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a b s t r a c t

Over the last few years, convolutional neural networks (CNNs) have dominated the field of computer
vision thanks to their ability to extract features and their outstanding performance in classification
problems, for example in the automatic analysis of X-rays. Unfortunately, these neural networks are
considered black-box algorithms, i.e. it is impossible to understand how the algorithm has achieved the
final result. To apply these algorithms in different fields and test how the methodology works, we need
to use eXplainable AI techniques. Most of the work in the medical field focuses on binary or multiclass
classification problems. However, in many real-life situations, such as chest X-rays, radiological signs
of different diseases can appear at the same time. This gives rise to what is known as "multilabel
classification problems". A disadvantage of these tasks is class imbalance, i.e. different labels do not
have the same number of samples. The main contribution of this paper is a Deep Learning methodology
for imbalanced, multilabel chest X-ray datasets. It establishes a baseline for the currently underutilised
PadChest dataset and a new eXplainable AI technique based on heatmaps. This technique also includes
probabilities and inter-model matching. The results of our system are promising, especially considering
the number of labels used. Furthermore, the heatmaps match the expected areas, i.e. they mark the
areas that an expert would use to make a decision.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the field of medicine has faced two relevant
roblems that hinder patient care: staff workload and subjectiv-
ty in the interpretation of tests [1,2]. These problems have no
asy solution, which is especially dangerous in medicine because
rocedural errors can lead to serious health complications. Firstly,
verwork in medicine, aggravated in recent times by the global
OVID-19 pandemic, can lead to errors and delays in diagnosis
nd treatment. As mentioned above, there is also subjectivity in
he interpretation of some medical tests. The expert analysing
hese tests, for example X-rays, may arrive at an erroneous di-
gnosis due to, for example, the existence of signs of different
iseases to different degrees [3]. This type of imaging test is one
f the most common in various diagnoses due to its low cost,
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speed of acquisition and the fact that it does not require much
preparation [4]. Chest X-rays are useful for detecting a variety of
diseases of the chest related to different organs such as the heart,
lungs or bones. The features of X-rays make them suitable for
analysis with convolutional neural networks (CNN) [5]. The com-
bination of AI algorithms and medical knowledge can improve the
performance of medical staff [6] and could also reduce patient
waiting times by speeding up the diagnostic process and reducing
the workload of doctors.

CNNs have been a breakthrough in computer vision due to
their ability to extract features from images. These architectures
are composed of different layers. The first has convolutional lay-
ers that are inspired by the notion of cells in visual neuroscience.
The architectures are based on the visual cortex of animals. The
main reason why these architectures have stood out is their great
capacity to extract patterns from data, improving the perfor-
mance of previous systems based on Machine Learning models.
This advantage has made them a benchmark in Deep Learning
due to their high performance in a wide range of tasks, such as

speech recognition, computer vision or text analysis [7].
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The properties of chest X-rays make them susceptible to be
nalysed by this type of algorithms. Some of the main advantages
f CNNs over traditional techniques are that it is not necessary to
anually extract image features or perform segmentation, and

hat by being able to learn from large volumes of data they
an identify patterns that are difficult for the human eye to de-
ect. Although in this article we focus on classification problems,
ther problems can be solved, such as X-ray segmentation [8],
ocalisation, regression (such as predicting drug dosage), among
thers. CNNs are a potential tool for the analysis of chest ra-
iographs. However, most of the work in this field focuses on
inary and multiclass classification problems. Actual problems
re usually more complex than the above; they tend to be mul-
ilabel classification problems, i.e. the different labels are not
utually exclusive, whereas in binary and multiclass classifica-

ion problems there is only one label per radiograph [9]. To solve
ultilabel problems, we need to explore new strategies. Adapting
lgorithms can interpret this kind of problem by transforming
hem into simpler problems that can be solved by traditional
lgorithms, i.e., transforming them into binary problems [10]. In
he field of chest X-rays we can find samples without labels,
ealthy patients and samples with radiological signs of several
iseases at the same time. On the other hand, there are a large
umber of different radiological signs in chest X-rays, so if we
ant to build and validate a system that approximates realistic
onditions, we have to use a dataset with a large number of
utually non-exclusive labels. This is the case of the PadChest
atabase [11], which has 174 different radiological signs, substan-
ially increasing the degree of realism and the complexity of the
roblem.
Many machine learning algorithms, including CNNs, work best

hen the classes in the dataset are balanced. However, in real
ife it is common to find datasets where this condition is not
et; they are imbalanced datasets, where one or more classes
ave substantially more examples than the rest. As a conse-
uence, with such datasets, machine learning algorithms learn
bias towards the majority class, even though the minority

lass is often more relevant. Therefore, it is necessary to apply
ifferent methods to improve the recognition rate [12]. There
re several options to overcome this difficulty: (a) modify the
ataset, reducing the samples from the majority class or increas-
ng the number of samples from the minority class; (b) modify
he algorithms to alleviate their bias towards the majority class,
.g. weighted learners [13]. The problem of unbalanced databases
s exacerbated in multilabel classification problems, where mul-
iple minority classes may appear, making this challenge more
ifficult to solve. In medicine, it is widespread because each
isease has a different incidence in the population. Heart disor-
ers top the list of the deadliest diseases, followed by chronic
bstructive pulmonary disease, which causes more than 6 million
eaths a year. In contrast, other diseases such as lung cancer
re the sixth leading cause of death with less than 2 million
eaths, according to the World Health Organization.1 As a result,

most radiographic datasets are imbalanced; a clear example is
PadChest, the dataset used in this article, where the number of
samples in each class approximates the incidence published by
the World Health Organization.

These algorithms, like many other Deep Learning and Machine
Learning methods, are considered ‘‘black box’’ algorithms because
end users can only analyse the input and output, but the inference
process is opaque, which reduces confidence in these algorithms.
To alleviate this problem, explainable AI techniques have been
developed, such as saliency maps, which produce heatmaps that

1 https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-
f-death
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Fig. 1. Visual representation of the problem and the objective of the
methodology.

highlight the pixels with the greatest influence on the final pre-
diction [14]. This problem is serious in medicine, where errors
can be dangerous for patients [15]. For this reason, explainable
AI techniques are essential, as they allow users to understand
how the system has arrived at the final result and use it to help
diagnose [16]. However, the combination of medical knowledge
and AI has many advantages, such as helping to reduce medical
errors and speeding up diagnostic processes, leading to improved
patient care, as doctors would have more time to attend patients.

The contribution of this manuscript is a methodology, see
Fig. 1, for classifying imbalanced multilabel datasets with many
classes The aim of this methodology is to generate robust and
quality models; in this case, it has been applied to a highly
imbalanced multilabel chest X-ray dataset with 174 classes. We
selected this dataset for two reasons: (i) the number of classes,
which is higher than in other state-of-the-art datasets; and (ii)
the high imbalance between these classes. This methodology will
allow to establish a suitable benchmark for this dataset against
which future works can be compared, as there are currently very
few published contributions using this dataset and they do not
provide a detailed analysis of the problem.

We can summarise the main contributions of this work as
follows:

• A methodology for imbalanced multilabel classification pro-
blems.

• A discussion about the experimental results obtained using
a dataset with a large number of classes (more than 30) and
a severe imbalance between them.

• An explainability interface using Grad-CAM for multilabel
datasets.

• A suitable benchmark for this dataset serving as a refer-
ence against which to compare future proposals from the
scientific community.

Finally, this manuscript is organised as follows. Section 2 sum-
marises the most relevant work in the literature, with a special
focus on chest X-ray classification problems for imbalanced mul-
tilabel datasets; Section 3 describes the methodology proposed
for this type of problem, consisting of training a model and gen-
erating a visualisation based on heatmaps; Section 4 presents the
CNN architectures, the hyperparameters used for training, details
of the execution environment, and a link to the repository where
the code used in the experimentation can be found; Section 5
presents the experimental results, and Section 6 presents the
main conclusions and possible lines of future work.

2. Related work

Since the first application of AI techniques in medicine in
the 1980s, the use of these algorithms has grown exponentially,

https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death
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especially in recent years. Deep learning algorithms are applied
to all kinds of clinical data [17]: biosignals, which include elec-
trical [18,19], mechanical [20,21] and thermal signals [22,23];
biomedicine, which studies molecules of biological processes
[24–26]; electronic health records (EHR), focused on optimising
diagnosis [27–30]; and clinical imaging, widely used in the diag-
nosis of many diseases [31–34], as is the case with our problem.
The practice of healthcare has evolved from observation-based
medicine to evidence-based medicine. This makes deep learning
and big data algorithms especially useful in this field as they
can identify some radiological signs that medical staff cannot
detect [35]. Although in this manuscript we focus on classifi-
cation problems, there are papers where these algorithms are
used in regression problems, such as estimating the dose of a
drug [36]; generating medical reports from clinical tests [37];
support healthcare management [38]; or image processing, such
as image segmentation [39] and image reconstruction [40].

The COVID-19 pandemic has had a strong impact on research
nto the application of machine learning and deep learning in
edical image analysis. As expected, many of the classification
ystems investigated have focused on detecting signs of bilateral
OVID-19-associated pneumonia. In Ahmed et al. [4] they use
wo different pre-trained architectures to classify chest X-rays,
GG16 and ResNet, and optimise the hyperparameters. In Pham
41] they train three different pre-trained architectures, AlexNet,
oogleNet and SqueezNet, with six datasets independently, test-
ng different percentages of train set samples (50 and 80%),
chieving an accuracy of 99.85% with SqueezeNet. However Ah-
ad et al. [42] develops an ensemble system based on MobileNet
nd InceptionV3 that achieves 96.49% accuracy. Soon, binary
lassification was extended to multiclass problems, making it
ossible to discern whether pneumonia is caused by COVID-19 or
nother virus/bacteria or whether the patient is healthy. As with
inary classification problems, many works, such as Avola et al.
43], use state-of-the-art architectures to find the best performing
nes, such as AlexNet, GoogleNet, ResNet and ShuffleNet, among
thers. MobilNet_v3 achieves the best result with a precision of
4.92% on a dataset composed of 6330 samples. In Zebin and
ezvy [44], in addition to training a pre-trained state-of-the-
rt architecture, a heatmap-based visualisation is generated that
hows two images for each sample. The first is the original X-ray,
nd the second is the class activation map, i.e. the most important
rea for the CNN. However, the images do not overlap, making
nterpretation difficult. Other works, such as Teixeira et al. [45],
pply segmentation techniques to remove all irrelevant areas of
he system, which should improve performance and visualisation.
heir dataset consists of three different classes: COVID-19, normal
nd lung opacity.
As we have discussed in Section 1, the explainability of deep

earning models is a fundamental factor to be taken into ac-
ount in their application. These models are black-box algorithms
nd need explainable AI techniques to make them more trust-
orthy [46]. There are two main ways to produce the final
isualisation, (1) generate a heatmap per label, or (2) generate a
ingle visualisation for all classes. The first one is more commonly
sed, [43,45,47] however, this technique has one main limitation:
t is not feasible for a large number of labels, and it makes a global
iew difficult. The second one (e.g. Teixeira et al. [48]), shows the
ifferent signs as areas with higher colour intensity, but only one
olour scale was used, which makes it difficult to identify which
athological sign indicates which area of interest. We propose a
ew technique where each visualisation shows a radiological sign
ncluding the probability and agreement between models.

Although most medical datasets have two classes (samples of
particular pathology and healthy samples), in chest X-rays it is

ommon to find signs of more than one pathology. For this reason,
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Table 1
Summary table of multilabel datasets in the field of chest radiography.

# samples # patients Labels Views Reference

ChestX-ray 14 112120 32717 14 frontal [54]
CheXpert 224316 65240 14 frontal/lateral [55]
PadChest 160000 67000 174 frontal/lateral [11]

in the last five years different authors have published multilabel
radiological datasets. These datasets are closer to real situations
than binary ones, with the additional challenge of imbalance of
different classes. The size of each class in a realistic dataset should
depend on the incidence of pathology in society, i.e. some classes
are more represented than others. These characteristics of these
datasets are interesting and need to be analysed in detail in order
to address the problem adequately.

2.1. Multilabel classification problems

As we have seen, much of the work generated in recent years
has focused on binary and multiclass classification problems. In
these problems, the labels are mutually exclusive, while multi-
label classification problems have multiple classes that are not
mutually exclusive, which increases the difficulty of the problem.
There are two ways to solve these problems: (a) transform the
multilabel problem into simple binary problems, or (b) adapt the
algorithms to solve the multilabel problem directly, i.e. attack the
problem globally [49].

Binary and multiclass classification systems are very restric-
tive, as they only serve to detect one type of radiological finding.
However, patients can often present signs of multiple diseases
at the same time. There are very few multilabel datasets that
take into account a large number of signs, as they require a
large number of samples and most of them have only a few
labels. Three datasets are worth highlighting for their quality and
relevance to the state of the art (see Table 1). The first two have
been used extensively in image classification problems, but the
third has been used mainly in medical report generation [37,50–
53]. However, this third dataset has two advantages that make it
very suitable also for classification problems: (1) the number of
labels is larger; (2) it has the largest number of different patients,
which implies a smaller number of similar samples from the same
patient. Given the lack of application of algorithms for this task
to increase the potential and interest of this dataset mentioned
above, it was selected as a case study for this article.

ChestX-ray 14 dataset is one of the most widely used datasets
in the field of chest X-ray classification since its publication in
2019 [54]. For example, Wang et al. [56] uses DenseNet-121
optimising its hyperparameters, obtaining an average AUC of
0.82. The AUC achieved for the pneumonia class was 0.662 (the
lowest), while for the hernia class it was 0.923 (the highest).
Other researchers use different architectures such as Inception-
ResNet_v2 and ResNet152_v2 to achieve an AUC for pneumonia
of 0.73 [57]. Much of the work on this dataset retrains state-of-
the-art architectures, but there are other strategies for improving
classification performance; for example, Almezhghwi et al. [58]
switches the classifier from AlexNet and VGG16 to SVM with
the intention of improving the results of previous manuscripts,
achieving an AUC for pneumonia of 0.98 with both architectures.
Having different types of radiographs of the patient can also
improve the classification results, for example a frontal and a
lateral X-ray. Finally, the main disadvantage of ChestX-ray 14
dataset is that it only contains radiographs with a frontal view,
while CheXpert and PadChest datasets also contain X-rays with a
lateral view.
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The second dataset, CheXpert has 14 different labels and
eports on all images. In terms of published classification work,
e find a situation similar to ChestX-ray 14, with many works
etraining state-of-the-art architectures, such as Seyyed-Kalantari
t al. [59], where they adjust the hyperparameters of DenseNet-
21 to optimise its performance. Other authors look for different
trategies, such as Cohen et al. [60], where they make two mod-
fications to DenseNet to improve its performance. First, they
odify the loss function by assigning weights to the different

abels, alleviating the imbalance problem. Second, they modify
he threshold for discerning between the presence or not of
ach label, i.e. the probability at which the class is considered
resent. However, the CheXpert dataset has the same limitation
s ChestX-ray 14: they contain only 14 possible diseases, which
epresents only a small subset of all possible diseases that may
e present in the chest.
Finally, PadChest is the most interesting dataset of the three in

ur opinion because it has many more labels than the others. It is
massive multilabel classification problem, much closer to reality
han the other datasets. The number of patients used is also larger
han in the others, leading to more variability in the dataset, and
he imbalance of the classes is larger too. One of the papers using
his dataset, [61], combines the PA and lateral views to predict
abels in four different ways: (a) the lateral view is stacked in
he second channel of PA X-ray; (b) both views are processed
y two CNNs and the combination of them is processed by a
ully connected layer; (c) the model input is processed through
wo separate CNNs, the output is concatenated and passed by
wo dense layers with an average pooling layer between them;
d) a modification of (c) where two dense layers are added. A
ajor limitation of that paper is that it shows overall results
ithout performing a detailed analysis per label, which prevents
omparison with other works in the area. On the other hand,
n Pooch et al. [62] CheXNet is retrained, which is a state-of-the-
rt architecture previously trained with a multilabel chest X-ray
ataset. In that paper, different models are trained with four
atasets, and each model is tested with each dataset separately.
he main limitation of that manuscript is the reorganisation of
he labels of PadChest dataset: the label ‘‘Lesion’’ is generated to
nify the samples of the atelectasis classes, using only 8 classes
ut of the 174 available. Given the limitations we have found
n all classification works using the PadChest dataset and that
ome most of them are not replicable, we propose to create a
enchmark that future works can use to compare results, with
methodology adapted for the two main problems: the high
umber of different labels, and the imbalance between them.
s we have explained in this section, the PadChest dataset has
everal advantages over other multilabel datasets: (i) it has the
ost labels, which makes it closer to real-world scenarios; (ii)

he number and diversity of patients is greater; and (iii) it con-
ains lateral and frontal radiographs. We propose two ways of
rganising the dataset based on the term tree provided by its
uthors, which allows us to group radiological signs into higher
lasses. The first one uses the specific labels for a finer-grained
lassification. The second one works with more general labels,
hich indicate more general radiological signs.

.2. Class imbalance in deep learning

As explained above, most machine learning algorithms work
est when the number of samples for each class is similar. When
here is a significant difference between the classes, the system
ill boost the majority class while the minority class(es) will have

ess relevance, even though the minority class is often the most
elevant. There are several classification tasks with this problem,
uch as Cohen et al. [63], where the majority class is COVID-
9 over the rest of the pneumonia classes. As expected, because
294
the incidence of COVID-19 has been extremely high, the dataset
contains more than 400 samples of COVID-19 followed by the
class Pneumocystis spp with fewer than 30 samples. This phe-
omenon appears in many classification tasks, especially those
ith more than two classes, both multiclass and multilabel. For
xample, in Wang et al. [54] there are 15 classes and the class
‘No findings’’/‘‘Normal’’ exceeds 50,000 samples, while the other
abels have less than 20,000 samples, of which only three exceed
0,000 samples.
As mentioned in the Introduction section, there are different

trategies to alleviate the class imbalance problem. Modify the
ataset, for example with oversampling techniques, which in-
rease the number of samples from minority classes by applying
ata augmentation and histogram equalisation techniques [64].
harte et al. [65] develops a new algorithm, Multilabel Synthetic
nstance Generation, for multilabel problems. For each sample,
nearest-neighbour search is performed, the features are ex-

rapolated and the label is generated from them. Another option
or generating synthetic samples is to use generative adversarial
etworks (GANs), i.e. to use deep learning models to produce
ew samples from the original dataset. Salehinejad et al. [66]
ses this method to generate new chest X-rays to balance the
ifferent classes. Another strategy for balancing the classes in the
ataset is to reduce the samples of the majority of classes. This
echnique is called undersampling. Typically, random samples
re removed from the majority classes, as in Qu et al. [67],
here the maximum number of samples in each class is set to
alance it. Undersampling is not as widespread as oversampling
ecause Deep Learning systems need a large number of samples,
o undersampling may not work.
Another strategy to alleviate class imbalance is to modify the

ay the model learns by increasing the weight of minority classes
n learning, thus preventing the model from giving more impor-
ance to majority classes. One option is to apply class weights
n the loss function that increase the relevance of the minority
lasses. One example is Rajpurkar et al. [68], which uses the chest
-ray14 dataset to classify the presence or absence of pneumonia.
nother example is Monowar et al. [69], where the weighted
inary cross-entropy loss function is applied. Ge et al. [70] devel-
ped a novel error function, Multilabel Softmax Loss, this method
onsiders the relationship of multiple labels explicitly, the author
omputes the derivative of the error with respect to each class
sing the chain rule. In addition they applied it to a system com-
osed of two CNNs combined by a bilinear pooling layer. Teixeira
t al. [48] proposes a dual lesion attention network composed of
wo models, DenseNet-169 and ResNet-152, as feature extractors,
fter an attention module and average max pooling. The outputs
re combined to generate three classifiers. Finally, all classifiers
re merged to obtain the final prediction. In addition, they used
variant of the weighted binary cross-entropy loss. To tackle the
lass imbalance, we propose using weighted cross-entropy with
ogits using class weights.

.3. The challenge of imbalance in multilabel classification problems

As we have explained, many real classification problems have
wo properties that make them difficult to solve: multilabeling
nd imbalance. Each of these two properties alone makes clas-
ification difficult, so together they can be very challenging. In
edicine, multilabel and imbalance problems are common be-
ause medical staff can find different radiological signs on a chest
-ray, and different diseases do not have the same incidence in
he population. All the datasets mentioned in Section 2.1 have
oth features; however, ChestX-ray 14 and CheXpert have a low
umber of classes, 14 labels, compared to PadChest [11], which is
omposed of 174 different labels with a large imbalance: the label
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Fig. 2. Visual representation of the proposed ensemble system. We train each
rchitecture with preprocessed images, and their outputs are combined to
enerate the ensemble output. Finally, the system produces the global prediction
nd heatmap visualisation.

‘Normal’’ has more than 35000 samples, while other labels, such
s round atelectasis, pleural mass or nephrostomy tube, have less
han ten samples.

Most of the published work using these datasets modifies the
rchitecture so that it can directly solve multilabel problems, but
oes not consider or apply any specific technique to solve the
mbalance problem. However, other works explore different ways
o overcome these difficulties and achieve better results. Such
s Huang and Fu [71], which proposes a multi-attention con-
olutional neural network to reduce the performance difference
etween classes and, more interestingly, to extract discriminative
eatures to classify similar classes, which is very common in
his kind of dataset. Wang et al. [72] generates three images:
he first one is the original chest X-ray, the second one is a
egmentation-based cropping, where areas not interesting for
he model are removed, and the last one is a cropping of the
rea where previous models have found pathological signs. The
nformation extracted from the three images is fused and finally
rocessed to obtain the final result. Another interesting strategy
s the modification of the loss function to focus on the most
nteresting samples; for example, Qin et al. [73] proposes a loss
unction called ‘‘weight focal loss’’, which forces the model to
ay more attention to the most difficult samples. This makes
he model pay more attention to minority classes, avoiding false
egatives.
These methods can help in class imbalance problems, but in

xtreme cases of multilabel and imbalance, such as the PadChest
ataset, they may not be sufficient. Most of the published pa-
ers attempt to improve the performance of the architecture or
olve these problems using a single strategy, which may not be
ufficient for datasets such as PadChest.
In contrast to other works in the related literature, we have

ecided to address these problems by combining different strate-
ies: (1) to avoid confounding the model with areas that do not
resent interesting radiological signs, we have applied
egmentation-based cropping; (2) to make the system robust
gainst the individual errors of the different architectures, we
ave created an ensemble whose hyperparameters have been
djusted in a validation split to obtain the best possible results;
3) we have applied a specific loss function for imbalanced data
hat weights each class by its inverse frequency. The combina-
ion of these techniques will allow us to substantially reduce
he errors due to imbalance and the high number of labels. In
ddition, we have created a heatmap-based visualisation that
ighlights the most important areas for detecting each disease
epresented in the dataset, the estimated probability of that
athology, and the agreement between models (how many mod-
ls have a probability higher than 50% for that disease), which
acilitates interpretation and shows the degree of confidence in
he result.
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Fig. 3. A segmentation-based cropped sample. The first image corresponds to
the original X-ray. The second shows the lung segmentation mask. The third
one show the cropped image with lung mask, and finally the last image shows
the input of our system, the preprocessing result.

3. Methodology

We can summarise the proposed methodology in Fig. 2, which
has four sections. The first is the data pre-processing step, where
we prepare the images for the model and apply data augmen-
tation to alleviate class imbalance. In the second stage we build
the model, training different state-of-the-art architectures. We
then combine the results of each model to obtain the final prob-
abilities. Finally, we developed a multilabel heatmap technique
to areas of the image that are relevant in the classification. In
this technique, the original X-ray is combined with one or more
regions labelled with different colours to facilitate the application
of these techniques in health centres or hospitals.

3.1. Label selection

As explained above, multilabel datasets are often imbalanced
as they have classes with a low number of samples. For this
reason, we must establish a criterion for choosing the labels to
include in our classification system, especially in datasets where
the number of classes is extremely high, as in our case. First, we
set the minimum number of samples a label must have to be
included in the classification problem, and we set the threshold
at 200 X-rays. For a dataset of 90000 samples this is 0.22% of
the total. The model cannot work correctly for under-represented
labels as it is not a few-shot system. If a sample has only deleted
minority labels we will remove it.

In this paper we consider two different experiments. First,
we use the classes proposed by the authors of the dataset that
correspond to the specific labels; this classification system has
a smaller number of samples and labels due to the cleaning of
under-represented labels explained in the previous paragraph,
but is a more fine-grained classification system. In the second
case, we use more general labels. We create these classes group-
ing the specific labels according to their characteristics. The num-
ber of samples and classes is larger at the cost of being less precise
systems, but it allows us to cover a larger number of different
classes.

3.2. Preprocessing

The raw images were preprocessed in order to train the model
efficiently. First, we reduced the number of channels to one
because although the original files are RGB images (three colour
channels), the X-rays are grayscale images, so all three channels
contain the same information. Next, we normalised their size to
512 × 512 pixels. The pixel values were then normalised between
0 and 1, Fig. 3 (first image).

Chest X-rays show an area larger than the area of interest
(ROI). Areas such as arms or neck, among others, are irrelevant
to the problem we want to solve, so a cropping based on seg-
mentation masks was performed, forcing the system to focus on
the relevant areas. This trimming is performed in three different
steps: first, we generated the lung masks using a segmentation

model based on the U-Net architecture [74], Fig. 3 (second image).
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We also added the area underneath the lungs to the masks as
it may contain radiological signs of interest. On many occasions,
the segmentation models are not perfect; they generate more
than two masks, leave gaps inside the masks, etc. Therefore,
thirdly, we decided to use a mask post-processing system [75].
This system fills the possible gaps in the masks by applying the
flood fill algorithm, which analyses the pixels neighbouring the
one of interest and depending on whether or not they belong
to the mask, it will decide to fill the gap or not. Then, if more
than two masks have been generated (one per lung), those whose
area is less than a predetermined value are removed. In addition,
in case the lung masks are stuck together, they are separated.
Finally, the image is cropped using the mask coordinates and the
lower boundary of the sample, Fig. 3 (third image). As the images
can have different sizes, we normalised their size to 224 × 224
pixels, because this is the normalised size of the samples in the
state-of-the-art models, Fig. 3 (last image).

3.3. Image classification with CNNs

Five state-of-the-art architectures pre-trained with ImageNet
were selected for their relevance:

EfficientNetB0. [76]: This architecture uses different scaling coef-
ficients to scale width, depth and resolution. In the EfficientNet
family, this architecture is the smallest. It is based on the idea
that if the images are larger, the network needs more layers to
extract the relevant information.

DenseNet-201. [77]: Instead of adding more layers to the archi-
tecture, the number of connections between units is increased
by connecting each unit to the last, unlike ResNet50, which only
connects one unit to the next output. This architecture has several
advantages: it alleviates the vanishing gradient problem, enforces
feature propagation and feature reuse, and reduces the number of
parameters.

InceptionV3. [78]: This architecture is different from the previous
ones. It factorises convolutions into smaller convolutions (which
can be asymmetric) to reduce cost. In addition, this architecture
has an auxiliary classifier between layers that acts as a regulariser.

InceptionResNetV2. [79]: This architecture combines ResNet and
InceptionV3. It consists of several Inception units with shortcut
connections between them; this enhances the capability of the
architecture.

Xception. [80]: It consists of depth-wise separable convolutions
involving two steps: depth-wise convolution, which differs from
the standard convolution in that it only acts on one channel; and
point-wise convolution, where a 1 × 1 convolution is applied to
all channels. This architecture also includes shortcut connections,
such as ResNet50.

We applied Transfer Learning on the above five architectures
and retrained them with PadChest dataset, replacing the classifier
in all cases with two dense layers. We froze the first 10% of
the convolutional layers, as they detect basic patterns and do
not need to be retrained. The remaining convolutional layers are
retrained to learn patterns specific to our problem. The main
relevant training parameters are summarised in Table 2. In ad-
dition, a checkpoint is used to save the best model using the
validation loss. Finally, an early stopping algorithm was used to
finish training when the validation loss did not improve over the
last 25 epochs by more than a threshold of 0.001.
296
Table 2
Summary of the hyperparameters used in training: optimisation, data
augmentation and training methodology.
Optimisation
Optimiser Adam
Learning rate 1e−4
Loss weighted crossentropy with logits
Feed-forward classifier
# Neurons 512
Activation ReLu
Dropout 0.2
Data Augmentation
Shear range 0.1
Zoom range 0.1
Rotation range 45
Width shift range 0.1
Height shift range 0.1
Horizontal flip True
Fill mode nearest
Brightness range 0.7–1.1
Channel shift range 0.05
Training methodology
Maximum epochs 350
Early stopping patience 25
Early stopping threshold 0.001
Batch size 32
Image size 224 × 224

3.4. Ensemble technique

Ensemble learning is an effective way to improve the perfor-
mance and robustness of deep learning algorithms. We combined
the results of all trained models, obtaining a system composed of
five different architectures with the same test set. We distinguish
two approaches [81]: ‘‘Combine then predict’’ (CTP) and ‘‘Predict
then combine’’ (PTC). In the CTP method, the label probabilities
predicted by the individual models are first calculated, and then
the average probability at each label is used to obtain the ensem-
ble label prediction. The other method, PTC, combines the binary
predictions to obtain the ensemble. We consider two versions
of PTC: label-wise voting (PTC-lw), which calculates the number
of positive and negative individual predictions for each label,
adopting the majority. Thus, PTC-lw calculates the prediction of
each label independently of the others. On the other hand, PTC-
mode calculates the set of labels predicted by each individual
model, and predicts the most frequent set.

3.5. Heatmap generation

As explained in Section 2, it is necessary to include XAI tech-
niques for the medical staff to understand the output given by our
system. For this reason, we developed a visualisation technique
using heatmaps. A heatmap is a matrix of the same size as
the input image. The value of each pixel is proportional to its
importance for the classification of the model. A colour scale is
used in the heatmap to highlight the most relevant pixels for the
model.

The first step in generating the heatmaps is to change the
activation function of the last layer (the classifier layer) from
softmax to linear. Then, for each classifier neuron, we compute
the weighted average of the last convolutional layer. Each channel
is weighted by the gradient of the classifier neuron with respect
to that channel. This is the so-called grad-CAM algorithm [82],
which allows to compute a heatmap for each class.

As explained before, the ensemble consists of five models.
We generate ensemble heatmaps by averaging the individual
heatmaps generated by those models. Finally, we generate a of
the average heatmap of each classifier neuron, which is overlaid
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Fig. 4. Example of a section of the term tree of the dataset. The general label
is boxed in blue, and the specific labels are marked in black.

Table 3
Summary table of the two types of experiments performed (general labels, and
specific labels). The total number of labels and the total number of samples in
each of the splits are shown.

# classes # samples Train size Val. size Test size

General labels 54 90687 63475 9069 18143
Specific labels 35 85367 59753 8532 17082

on the original X-ray using a 10% of transparency to improve the
information for the medical staff. We include in the title the es-
timated probability for this class and the inter-model agreement
showing the confidence of the ensemble in that prediction, which
facilitates the use of the system by medical staff.

4. Experimental setup

4.1. Dataset

In this article, we have used the PadChest dataset [11], an
mbalanced and multilabel dataset. It was published in January
019 by the University of Valencia together with BIMCV. The
amples were collected at Hospital de San Juan (Spain) between
009 and 2017. This dataset is composed of 160,868 clinical
mages from 67,625 patients, divided into 174 different labels,
nd corresponds to different signs of thoracic disease. This dataset
ontains chest X-rays with different projections: posteroanterior
PA), anteroposterior (AP) and lateral views; however, only PA
-rays were used for experimentation, corresponding to 91,728
linical images from the original dataset. The authors of the
ataset provided a term tree2 in which all labels are grouped

into more general labels, as can be seen in Fig. 4. In this exam-
ple, the general label is fracture. The specific labels are clavicle
fracture, humeral fracture, vertebral fracture, and rib and callus
rib fractures. Therefore, we designed two experiments, the first
using specific labels for classification and the second using more
general labels, each grouping one or more specific labels. We
then set the minimum number of samples that each class must
have to be included in the classification system. The more general
classification system has a larger number of classes that are more
heterogeneous, while the more specific classification system has
a smaller number of classes, but is more precise than the previous
one.

Table 3 shows the details of the two classification systems,
the number of samples, the classes and the size of the training,
validation and test sets. In the train/test/validation split we strat-
ify the samples according to classes and patient id, which avoids
biases and problems between subsets. In addition, to facilitate
the replicability and transparency of this article we will make the
split available on the github in Section 4.2.

2 https://github.com/auriml/Rx-thorax-automatic-captioning
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Fig. 5. Distribution of the number of labels per sample (specific labels
experiment).

Fig. 6. Label distribution (specific labels experiment).

Label distribution: Specific labels. This experiment, as explained in
Section 3.1, label selection, has a smaller number of samples and
classes than the second case, but the radiological signs are more
accurate. In this experiment we used a total of 85367 samples
and 35 different classes. We can observe in Fig. 5, how more
than half of the samples present a single class; however, we can
observe that there are samples with a high number of classes,
four of them presenting 12 different labels at the same time.
This distribution of the samples is in line with expectations; the
number of samples decreases as the number of labels per sample
increases. In Fig. 6 we can see how the classes in this experiment
are extremely imbalanced. Although there are 35 classes, the six
majority classes account for 82.7% of the dataset. Only the normal
class, which is the majority class, accounts for 47.4% of the total
samples, while the supra aortic elongation class, which is the least
represented class, accounts for only 0.28% of the total.

Label distribution: General labels. In this experiment, different
classes were unified according to the tree of terms proposed
by the authors. Therefore, the number of classes and samples
is higher than in the first experiment. However, the radiological
signs used in the classification are less precise, so in the end 54
classes and 90,687 samples were used. In Fig. 7 we can see how
the number of classes per sample is distributed in a very similar
way to the previous case. However, we can see that there are
samples with 13 different labels, one more than in the previous
case. If we look at Fig. 8, we can see that the six majority classes
represent 51.3% of the total, while the other 48 classes do not
reach 50%. The majority class, as in the previous case, is the
normal class. This class accounts for 22.6% of the total while the

minority class, vascular redistribution, accounts for only 0.13% of

https://github.com/auriml/Rx-thorax-automatic-captioning
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Fig. 7. Distribution of the number of labels per sample (general labels
experiment).

Fig. 8. Label distribution (general labels experiment).

he dataset. This shows that even if we group the radiological
igns into higher classes, the dataset is very imbalanced.

.2. Execution environment and Github repository

All experiments have been run on a 24 GB Nvidia GeForce
TX 3090. The main packages used in these experiments are the
ollowing: Tensorflow [83], Scikit-Learn [84] and openCV [85].
he code developed in our work is publicly available at GitHub.3

. Experimental results

This section describes the results obtained with the proposed
ethodology and evaluates its performance on a multilabel and

mbalanced problem, the PadChest dataset. We considered two
trategies for the classes: directly using the labels proposed by the
ataset creators, or grouping them into more generic classes that
ncompass similar radiological signs. First, we checked whether
reprocessing improves the ensemble performance. Next, we
hecked the performance of both the individual models and the
nsemble, and analyse the quality of the visualisations based on
xplainable AI techniques. To measure the performance of the
ifferent models, we have used three metrics suitable for multi-
abel problems: Area Under the Curve (AUC), Hamming Loss and
-measure [86].

.1. Impact of preprocessing techniques

First, we trained the models with the images without
egmentation-based cropping or data augmentation. The results
btained, Tables 4 and 5, show that only two individual models

3 https://github.com/helenalizlopez/multilabelimbalancedchestxraydataset
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have been able to learn, EfficientNet and DenseNet, while the rest
of the models were not able to learn and presented a flat training
curve with an AUC of 0.5. As expected, the ensemble does not
work correctly, and therefore the preprocessing step is necessary.

Tables 6 and 7 show the results training with segmentation-
based cropping but without applying data augmentation tech-
niques. At first, it is interesting that Inception does not learn,
possibly because it is not able to generalise correctly without data
augmentation techniques. InceptionResNet has the best results
in most classes, but EfficientNet achieves the best overall result,
achieving an AUC of 0.792 while InceptionResNet scores 0.779.
Comparing Table 8 with these results shows that the application
of data augmentation techniques improves the system perfor-
mance. If we focus on the results for the different ensembles,
we can see that for all labels, the CTP technique performs better
than the two PTC methods. CTP also performs better than the
individual models except in three cases: in one case it equals
them, and in two cases it performs worse). We can conclude that
data augmentation improves the performance of the system.

5.2. Performance analysis of CNN models

The first step is the comparison of the different architectures
explained in Section 3.3. They are used as a baseline to compare
the ensemble system. As explained in Section 3, we consider two
types of classification problems: the first uses the original labels
proposed by the authors of the dataset (‘‘specific labels’’), and
the second uses general labels constructed by grouping specific
labels. In the first problem, a finer-grained classification is per-
formed, but it contains a small number of labels, 35, as many of
the original 144 do not pass the filter of the minimum number
of samples (200). In the second problem, general radiological
patterns are classified, but there is a larger number of labels, 54,
because when grouping labels there are a larger number of classes
satisfying the minimum threshold of 200 samples.

Tables 8 and 9 show the results obtained by applying the
proposed methodology for the first case study (classification us-
ing specific labels). The model with the best global AUC value is
DenseNet, followed by EfficientNet, with 0.818 and 0.804 respec-
tively. The other models (Inception, InceptionResNet and Xcep-
tion) do not achieve an AUC = 0.8. These results are broken
down by class. First of all, we can observe that the labels with
fewer samples do not show worse results on average than the
classes with more samples, which means that we have managed
to overcome the data imbalance problems of. It can also be seen in
the table that some models perform better with majority classes,
such as Inception; others achieve the best results for minority
classes, such as EfficientNet and Xception. However, DenseNet
201 and InceptionResNet perform well in both cases.

Secondly, we have analysed the results obtained with the
ensemble techniques, using the individual models as baselines.
Interestingly, only the CTP technique improves the individual
models, as is also the case in Table 6. If we focus on this ensemble
technique, we can see that there are two classes, Pleural effusion
and pacemaker, where the results of the individual models are
not improved. These two classes have 658 and 336 samples
respectively, i.e. they are not majority classes, so one hypothesis
would be that the ensemble performs worse in minority classes.
However, the number of labels for which the ensemble does not
outperform the individual models is very small compared to the
total. Furthermore, the ensemble achieves an AUC above 0.85 for
more than 40% of the labels, which is higher than expected. Since
we can observe that the ensemble achieves an AUC higher than
0.9 for classes such as hemidiaphragm elevation, hiatal hernia, or
sternotomy, all of them with less than 300 samples, we conclude
that class imbalance does not affect our system significantly. Con-
sidering that the model is trained for 35 different classes, reaching

https://github.com/helenalizlopez/multilabelimbalancedchestxraydataset
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Table 4
Specific labels experiment: results obtained by training the models without segmentation-based cropping or data augmentation. For each label, the individual models
with the best performance and the ensembles that outperform all individual models are marked in bold. The best ensemble result is marked in italics unless it ties
the random classifier.

# Samples DenseNet EfficientNet Inception InceptionResNet Xception PTC-mode PTC-lw CTP

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Normal 34327 0.589 0.470 0.500 0.374 0.500 0.374 0.500 0.374 0.500 0.374 0.500 0.374 0.500 0.374 0.589 0.374
Copd signs 13419 0.500 0.457 0.500 0.457 0.500 0.457 0.500 0.457 0.500 0.457 0.500 0.457 0.500 0.457 0.500 0.457
Cardiomegaly 8412 0.620 0.551 0.611 0.563 0.500 0.475 0.500 0.475 0.500 0.475 0.500 0.475 0.500 0.475 0.633 0.475
Aorticelongation 1399 0.538 0.509 0.553 0.526 0.500 0.479 0.500 0.479 0.500 0.479 0.500 0.479 0.500 0.479 0.558 0.479
Unchanged 1311 0.535 0.483 0.526 0.504 0.500 0.480 0.500 0.480 0.500 0.480 0.500 0.480 0.500 0.480 0.543 0.480
Scoliosis 1073 0.500 0.484 0.550 0.522 0.500 0.484 0.500 0.484 0.500 0.484 0.500 0.484 0.500 0.484 0.550 0.484
Chronic changes 873 0.581 0.481 0.578 0.451 0.500 0.487 0.500 0.487 0.500 0.487 0.500 0.487 0.500 0.487 0.585 0.487
Costophrenic angle blunting 703 0.556 0.525 0.541 0.532 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.545 0.490
Air trapping 663 0.500 0.490 0.498 0.510 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.498 0.490
Pleural effusion 658 0.655 0.573 0.656 0.567 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.676 0.490
Pneumonia 651 0.626 0.556 0.629 0.566 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.645 0.490
Interstitial pattern 594 0.597 0.544 0.582 0.547 0.500 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.594 0.491
Infiltrates 591 0.615 0.540 0.594 0.542 0.500 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.612 0.491
Laminar atelectasis 578 0.500 0.491 0.508 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.508 0.491
Vertebral degenerative 575 0.500 0.491 0.573 0.485 0.500 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.500 0.491 0.573 0.491
Kyphosis 526 0.602 0.558 0.538 0.520 0.500 0.492 0.500 0.492 0.500 0.492 0.500 0.492 0.500 0.492 0.606 0.492
Apical pleural thickening 469 0.500 0.493 0.499 0.488 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.499 0.493
Vascular hilar enlargement 463 0.584 0.510 0.587 0.475 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.602 0.493
Fibrotic band 449 0.500 0.493 0.489 0.484 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.489 0.493
Nodule 449 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493 0.500 0.493
Calcified granuloma 388 0.500 0.494 0.499 0.494 0.500 0.494 0.500 0.494 0.500 0.494 0.500 0.494 0.500 0.494 0.499 0.494
Callus rib fracture 360 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495
Pacemaker 336 0.627 0.543 0.646 0.523 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495 0.663 0.495
Aortic atheromatosis 318 0.500 0.495 0.616 0.457 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495 0.500 0.495 0.616 0.495
Volume loss 294 0.500 0.496 0.512 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.512 0.496
Sternotomy 292 0.530 0.517 0.539 0.506 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.545 0.496
Bronchiectasis 290 0.500 0.496 0.480 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.480 0.496
Hiatal hernia 287 0.500 0.496 0.533 0.506 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.533 0.496
Pseudonodule 275 0.500 0.496 0.498 0.500 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.498 0.496
Hemidiaphragm elevation 254 0.515 0.496 0.531 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.544 0.496
Alveolar pattern 248 0.664 0.531 0.663 0.503 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.695 0.496
Increased density 239 0.528 0.513 0.536 0.502 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.500 0.496 0.547 0.496
Vertebral anterior compression 214 0.546 0.510 0.548 0.487 0.500 0.497 0.500 0.497 0.500 0.497 0.500 0.497 0.500 0.497 0.559 0.497
Suture material 210 0.500 0.497 0.542 0.509 0.500 0.497 0.500 0.497 0.500 0.497 0.500 0.497 0.500 0.497 0.542 0.497
Supra aortic elongation 200 0.500 0.497 0.503 0.497 0.500 0.497 0.500 0.497 0.500 0.497 0.500 0.497 0.500 0.497 0.504 0.497

Global 0.543 0.508 0.547 0.502 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.500 0.488 0.558 0.488
Table 5
Specific labels experiment: global results obtained by the individual models and the ensemble without using segmentation-based cropping or data augmentation
techniques.

DenseNet EfficientNet Inception InceptionResNet Xception PTC-mode PTC-lw CTP

Hamming Loss 0.067 0.107 0.046 0.046 0.046 0.046 0.046 0.046
AUC 0.543 0.547 0.500 0.500 0.500 0.500 0.500 0.558
F1 0.508 0.502 0.488 0.488 0.488 0.488 0.488 0.488
an imbalance between majority and minority classes of 1:172, we
can say that the performance of the system is sufficiently high,
considering its characteristics.

In the second case study used to validate the proposed metho-
ology, we have grouped the different radiological signs into
igher level classes that are more general, as shown in the ex-
mple of fracture types, Fig. 4. After this grouping, the number of
abels passing the minimum 200-sample filter rises to 54 (in the
pecific labels experiment only 35 labels passed this threshold).
herefore, we now train the system with a larger number of
abels, which is closer to the reality of health centres. Regarding
he individual models, we can see that the best model is Effi-
ientNet B0 followed by DenseNet, with an AUC of 0.767 and
.761, respectively. The rest of the models have a value lower
han 0.75. Regarding the performance per class of each model, we
bserve that Xception, EfficientNet and DenseNet perform better
n majority classes, while Inception and ResNet perform better in
inority classes.
If we look at the results obtained by the ensemble technique,

s in the previous case, CTP is the best performer with an AUC
299
of 0.819, which is an improvement of 0.052 over EfficientNet.
There are four classes where the ensemble performs as well as the
best individual model, but there is no class where the individual
models perform better than the ensemble. The number of labels
where the ensemble achieves an AUC above 0.85 is slightly lower
than in the previous case, 37%, but more than 50% of the classes
have an AUC greater than 0.8. This is interesting considering
the number of classes (54) and their imbalance. Although the
ensemble performs well, it does not perform well for all classes.
For example, with the class ‘‘Sclerotic bone lesion’’ it obtains an
AUC close to 0.5.

We can observe that in this case the ensemble further im-
proves the individual models as the improvement over the best
individual model is now high. The combination of different ar-
chitectures avoids overfitting and improves the generalisation
capacity in a problem where classification is more difficult due to
the specificities of the dataset (high number of classes, multilabel,
class imbalance). These results demonstrate that this methodol-
ogy works well on highly imbalanced and multilabel datasets (see
Tables 10 and 11).
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Table 6
Specific labels experiment: results obtained by training the models with segmentation-based cropping, but without data augmentation. For each label, the individual
models with the best performance and the ensembles that outperform all individual models are marked in bold. The best ensemble result is marked in italics.

# Samples DenseNet EfficientNet Inception InceptionResnet Xception PTC-mode PTC-lw CTP

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Normal 34327 0.5 0.374 0.802 0.725 0.453 0.374 0.819 0.723 0.5 0.374 0.528 0.444 0.500 0.374 0.806 0.374
Copd signs 13419 0.777 0.682 0.785 0.672 0.500 0.457 0.799 0.690 0.777 0.682 0.538 0.534 0.648 0.676 0.825 0.674
Cardiomegaly 8412 0.900 0.768 0.898 0.774 0.641 0.474 0.918 0.767 0.917 0.762 0.596 0.628 0.814 0.792 0.938 0.795
Aortic elongation 1399 0.863 0.700 0.874 0.686 0.500 0.479 0.875 0.719 0.837 0.705 0.594 0.623 0.767 0.724 0.898 0.724
Unchanged 1311 0.612 0.556 0.625 0.549 0.500 0.480 0.597 0.549 0.602 0.544 0.506 0.495 0.531 0.539 0.642 0.537
Scoliosis 1073 0.823 0.678 0.808 0.690 0.500 0.484 0.830 0.702 0.500 0.484 0.591 0.628 0.674 0.711 0.863 0.708
Chronic changes 873 0.707 0.537 0.731 0.553 0.500 0.487 0.696 0.547 0.695 0.538 0.515 0.518 0.625 0.568 0.738 0.568
Costophrenic angle blunting 703 0.810 0.698 0.837 0.691 0.500 0.489 0.842 0.655 0.810 0.704 0.558 0.587 0.729 0.713 0.884 0.712
Air trapping 663 0.500 0.490 0.671 0.568 0.500 0.490 0.500 0.490 0.688 0.553 0.508 0.506 0.500 0.490 0.705 0.490
Pleural effusion 658 0.925 0.839 0.942 0.818 0.479 0.046 0.943 0.770 0.927 0.838 0.818 0.542 0.901 0.823 0.942 0.825
Pneumonia 651 0.759 0.675 0.803 0.671 0.500 0.490 0.808 0.655 0.806 0.657 0.572 0.603 0.704 0.691 0.851 0.692
Interstitial pattern 594 0.799 0.638 0.795 0.650 0.500 0.491 0.813 0.637 0.812 0.615 0.562 0.576 0.714 0.678 0.858 0.680
Infiltrates 591 0.733 0.620 0.776 0.635 0.500 0.491 0.802 0.597 0.771 0.627 0.563 0.583 0.668 0.639 0.831 0.639
Laminar atelectasis 578 0.500 0.491 0.806 0.639 0.500 0.491 0.754 0.630 0.745 0.646 0.560 0.587 0.572 0.607 0.837 0.607
Vertebral degenerative 575 0.730 0.544 0.721 0.540 0.500 0.491 0.725 0.564 0.718 0.533 0.571 0.560 0.620 0.568 0.771 0.568
Kyphosis 526 0.796 0.611 0.813 0.644 0.500 0.492 0.794 0.628 0.813 0.615 0.569 0.585 0.683 0.664 0.860 0.664
Apical pleural thickening 469 0.798 0.591 0.787 0.573 0.500 0.493 0.775 0.569 0.758 0.575 0.574 0.567 0.701 0.619 0.838 0.619
Vascular hilar enlargement 463 0.679 0.562 0.741 0.506 0.500 0.493 0.717 0.559 0.715 0.547 0.531 0.533 0.596 0.578 0.771 0.582
Fibrotic band 449 0.756 0.568 0.772 0.599 0.500 0.493 0.767 0.608 0.758 0.593 0.573 0.585 0.688 0.636 0.813 0.638
Nodule 449 0.616 0.557 0.677 0.567 0.500 0.493 0.688 0.547 0.626 0.558 0.535 0.545 0.566 0.574 0.719 0.572
Calcified granuloma 388 0.741 0.651 0.752 0.641 0.500 0.494 0.757 0.622 0.689 0.611 0.578 0.601 0.645 0.654 0.819 0.656
Callus rib fracture 360 0.682 0.600 0.773 0.594 0.500 0.495 0.500 0.495 0.497 0.495 0.529 0.543 0.500 0.495 0.799 0.495
Pacemaker 336 0.996 0.948 0.996 0.945 0.500 0.495 0.996 0.946 0.996 0.949 0.741 0.799 0.992 0.951 0.996 0.951
Aortic atheromatosis 318 0.812 0.538 0.810 0.542 0.500 0.495 0.791 0.567 0.742 0.577 0.544 0.545 0.672 0.605 0.852 0.607
Volume loss 294 0.855 0.687 0.862 0.717 0.500 0.496 0.882 0.677 0.830 0.691 0.560 0.581 0.762 0.729 0.910 0.731
Sternotomy 292 0.991 0.945 0.991 0.939 0.500 0.496 0.993 0.872 0.993 0.918 0.756 0.814 0.983 0.948 0.996 0.948
Bronchiectasis 290 0.673 0.593 0.726 0.597 0.500 0.496 0.719 0.587 0.725 0.576 0.541 0.563 0.594 0.613 0.784 0.614
Hiatal hernia 287 0.912 0.852 0.920 0.826 0.500 0.496 0.939 0.843 0.945 0.726 0.747 0.784 0.877 0.870 0.962 0.872
Pseudonodule 275 0.632 0.524 0.705 0.547 0.500 0.496 0.536 0.514 0.639 0.540 0.530 0.536 0.540 0.544 0.718 0.545
Hemidiaphragm elevation 254 0.902 0.706 0.879 0.697 0.500 0.496 0.911 0.696 0.891 0.687 0.749 0.709 0.816 0.751 0.951 0.751
Alveolar pattern 248 0.791 0.626 0.834 0.603 0.500 0.496 0.853 0.580 0.810 0.604 0.568 0.579 0.715 0.621 0.887 0.622
Increased density 239 0.580 0.551 0.586 0.521 0.500 0.496 0.619 0.521 0.569 0.526 0.501 0.500 0.533 0.537 0.634 0.539
Vertebral anterior compression 214 0.640 0.536 0.645 0.530 0.500 0.497 0.644 0.537 0.623 0.517 0.516 0.522 0.524 0.524 0.702 0.525
Suture material 210 0.798 0.663 0.791 0.649 0.500 0.497 0.824 0.628 0.786 0.665 0.622 0.622 0.742 0.679 0.833 0.680
Supra aortic elongation 200 0.697 0.569 0.778 0.564 0.500 0.497 0.832 0.561 0.738 0.554 0.579 0.574 0.613 0.577 0.861 0.578

Global 0.751 0.633 0.792 0.648 0.502 0.475 0.779 0.636 0.750 0.622 0.584 0.586 0.677 0.650 0.831 0.651
Table 7
Specific labels experiment: global results obtained by the individual models and the ensemble with preprocessing (segmentation-based cropping) but without data
augmentation.

Densenet201 EfficientNet Inception InceptionResnet Xception PTC-mode PTC-lw CTP

Hamming Loss 0.077 0.079 0.072 0.070 0.077 0.056 0.057 0.057
AUC 0.751 0.792 0.502 0.779 0.750 0.584 0.677 0.831
F1-score 0.633 0.648 0.475 0.636 0.622 0.586 0.650 0.651
5.3. Visual explanation using heatmaps

As explained in Section 2, the visualisation of multilabel prob-
ems is an essential element for this methodology, but it is not
simple problem. Most of the work in this field has deficien-

ies. Therefore, we have developed a technique that for each
abel generates a heatmap, an estimated probability, and the
nsemble agreement. In Fig. 9, we can see the original X-ray and
he heatmaps of the different classes. The areas marked on the
adiographs match the radiological signs, and the probabilities are
igh, with three of the four cases showing agreement between all
odels.
In the second example, Fig. 10, we can see that the class

robabilities are lower than before. The class Atelectasis has an
greement of three models and a low probability (0.583), which
eans that the physician should be careful with this label. The

ast example, Fig. 11, belongs to the normal class. In this case,
he heat map marks approximately the entire radiograph, as it
cans the whole image for radiological signs. The performance
f the visualisations is highly dependent on the performance of
he model: if the model is better, the visualisations will be more
ccurate, and the probability and agreement between models
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will be higher. An advantage of this technique over the state
of the art is that we generate a grad-CAM map for each sign
that includes the probability generated by the system and the
agreement between the models of the ensemble.

6. Discussion

As mentioned throughout the article, the PadChest dataset has
a high quality and is really interesting due to the number of
classes, which is higher than other multilabel datasets, and the
challenge of class imbalance. Although we can find numerous
papers using this dataset for medical report generation, it is
underutilised in chest X-ray classification problems, which makes
the available works for comparison scarce. Moreover, those arti-
cles present several problems that complicate an adequate com-
parison of our work. Therefore, one of our aims is to generate a
methodologically correct baseline that allows comparison for fu-
ture work. For this purpose, we have conducted two experiments:
in the first one we have used the specific radiological signs, i.e. the
original ones from the dataset, while in the second we have used
more generic radiological signs from a tree of terms provided by
the authors of the dataset. In Table 12 we can find a summary of
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Table 8
Specific labels experiment: results obtained with by training the models with segmentation-based cropping and data augmentation. For each label, the individual
models with the best performance and the ensembles that outperform all individual models are marked in bold. The best ensemble result is marked in italics.

# Samples Densenet201 EfficientNet Inception InceptionResnet Xception PTC-mode PTC-lw CTP

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Normal 34327 0.820 0.722 0.811 0.716 0.832 0.727 0.820 0.709 0.827 0.732 0.725 0.731 0.725 0.731 0.837 0.730
Copd signs 13419 0.823 0.681 0.785 0.644 0.816 0.678 0.815 0.675 0.800 0.666 0.588 0.610 0.647 0.675 0.833 0.672
Cardiomegaly 8412 0.927 0.773 0.907 0.749 0.926 0.767 0.927 0.777 0.922 0.779 0.746 0.765 0.825 0.789 0.937 0.791
Aortic elongation 1399 0.885 0.690 0.846 0.655 0.882 0.676 0.888 0.698 0.888 0.702 0.690 0.682 0.777 0.705 0.894 0.707
Unchanged 1311 0.636 0.553 0.614 0.543 0.638 0.549 0.642 0.544 0.636 0.547 0.531 0.537 0.545 0.551 0.641 0.551
Scoliosis 1073 0.759 0.636 0.712 0.598 0.745 0.605 0.732 0.602 0.774 0.661 0.630 0.637 0.671 0.659 0.793 0.664
Chronic changes 873 0.759 0.518 0.720 0.549 0.768 0.546 0.762 0.519 0.752 0.533 0.621 0.556 0.684 0.545 0.772 0.547
Costophrenic angle blunting 703 0.862 0.674 0.845 0.674 0.832 0.662 0.831 0.665 0.855 0.663 0.685 0.676 0.739 0.693 0.877 0.693
Air trapping 663 0.692 0.557 0.687 0.560 0.515 0.490 0.469 0.490 0.506 0.490 0.525 0.532 0.500 0.490 0.704 0.490
Pleural effusion 658 0.959 0.827 0.951 0.811 0.956 0.823 0.955 0.830 0.945 0.816 0.862 0.822 0.886 0.839 0.967 0.840
Pneumonia 651 0.815 0.671 0.821 0.660 0.810 0.663 0.821 0.672 0.821 0.668 0.681 0.668 0.703 0.687 0.850 0.687
Interstitial pattern 594 0.834 0.625 0.828 0.636 0.846 0.651 0.843 0.616 0.830 0.613 0.727 0.651 0.743 0.650 0.858 0.651
Infiltrates 591 0.812 0.629 0.803 0.617 0.803 0.626 0.815 0.633 0.808 0.639 0.649 0.635 0.662 0.644 0.840 0.646
Laminar atelectasis 578 0.843 0.670 0.812 0.637 0.827 0.643 0.827 0.654 0.833 0.654 0.666 0.658 0.690 0.677 0.858 0.678
Vertebral degenerative changes 575 0.779 0.545 0.730 0.544 0.774 0.546 0.785 0.518 0.779 0.547 0.627 0.560 0.670 0.557 0.797 0.556
Kyphosis 526 0.867 0.640 0.834 0.589 0.845 0.587 0.849 0.609 0.839 0.625 0.691 0.617 0.736 0.639 0.870 0.640
Apical pleural thickening 469 0.808 0.553 0.801 0.568 0.789 0.573 0.509 0.493 0.500 0.493 0.592 0.574 0.661 0.619 0.830 0.621
Vascular hilar enlargement 463 0.746 0.549 0.742 0.568 0.769 0.522 0.755 0.544 0.745 0.515 0.618 0.556 0.651 0.562 0.783 0.563
Fibrotic band 449 0.831 0.583 0.809 0.600 0.813 0.614 0.575 0.493 0.806 0.611 0.641 0.604 0.716 0.658 0.848 0.659
Nodule 449 0.706 0.578 0.675 0.554 0.561 0.493 0.574 0.493 0.551 0.493 0.518 0.526 0.500 0.493 0.704 0.493
Calcified granuloma 388 0.808 0.653 0.802 0.649 0.542 0.494 0.554 0.494 0.496 0.494 0.572 0.593 0.500 0.494 0.833 0.494
Callus rib fracture 360 0.717 0.606 0.765 0.557 0.614 0.495 0.609 0.495 0.571 0.495 0.550 0.549 0.500 0.495 0.787 0.495
Pacemaker 336 0.993 0.927 0.997 0.942 0.996 0.919 0.996 0.931 0.984 0.926 0.984 0.930 0.993 0.946 0.997 0.946
Aortic atheromatosis 318 0.856 0.521 0.847 0.516 0.862 0.550 0.852 0.541 0.871 0.559 0.739 0.556 0.786 0.558 0.885 0.557
Volume loss 294 0.917 0.693 0.902 0.657 0.904 0.636 0.896 0.672 0.902 0.640 0.789 0.670 0.809 0.693 0.928 0.697
Sternotomy 292 0.992 0.898 0.987 0.920 0.990 0.926 0.995 0.936 0.992 0.865 0.961 0.912 0.984 0.941 0.997 0.941
Bronchiectasis 290 0.801 0.549 0.775 0.561 0.796 0.578 0.805 0.562 0.794 0.573 0.682 0.580 0.690 0.587 0.820 0.588
Hiatal hernia 287 0.939 0.856 0.941 0.697 0.947 0.824 0.964 0.801 0.947 0.851 0.871 0.786 0.876 0.867 0.967 0.867
Pseudonodule 275 0.612 0.496 0.670 0.550 0.598 0.496 0.589 0.496 0.545 0.496 0.536 0.543 0.500 0.496 0.672 0.496
Hemidiaphragm elevation 254 0.893 0.667 0.882 0.679 0.915 0.670 0.894 0.702 0.898 0.684 0.759 0.692 0.784 0.725 0.934 0.724
Alveolar pattern 248 0.876 0.627 0.877 0.589 0.885 0.607 0.895 0.606 0.871 0.594 0.748 0.612 0.774 0.623 0.911 0.622
Increased density 239 0.643 0.541 0.641 0.509 0.651 0.534 0.633 0.526 0.668 0.535 0.545 0.531 0.547 0.544 0.673 0.547
Vertebral anterior compression 214 0.749 0.532 0.696 0.524 0.736 0.517 0.743 0.527 0.734 0.535 0.573 0.530 0.597 0.540 0.752 0.539
Suture material 210 0.819 0.652 0.820 0.663 0.818 0.639 0.811 0.662 0.822 0.612 0.759 0.663 0.768 0.685 0.847 0.684
Supra aortic elongation 200 0.865 0.576 0.821 0.541 0.880 0.546 0.882 0.563 0.857 0.562 0.628 0.558 0.681 0.576 0.894 0.575

Global 0.818 0.642 0.804 0.629 0.797 0.625 0.780 0.621 0.782 0.625 0.677 0.637 0.701 0.647 0.840 0.647
Table 9
Specific labels experiment: global results obtained from the individual models and the ensembles.

Densenet201 EfficientNet Inception InceptionResnet Xception PTC-mode PTC-lw CTP

Hamming Loss 0.082 0.078 0.081 0.077 0.074 0.063 0.065 0.065
AUC 0.818 0.804 0.797 0.780 0.782 0.677 0.701 0.840
F1 0.642 0.629 0.625 0.621 0.625 0.637 0.647 0.647
Fig. 9. First visualisation example. The heatmaps of four radiological signs detected (cardiomegaly, pacemaker, sternotomy and suture material) are shown. The title
shows the label, the probability estimated by the ensemble, and the agreement between the models of the ensemble. The areas of interest for classification are
marked in blue.
the different published systems and their global and class specific
performance. First of all, it is interesting to note how most of the
papers have selected different labels to perform the classification,
and all papers, except [61], select a low number of total classes
compared to the number of classes available.

In the case of Rimeika et al. [87], the publication does not show
how the two models have been built; it does not provide infor-
mation on the architecture, the other dataset used, or the criteria
301
for selecting the classes from PadChest dataset, so there is no
possibility to replicate these models, and therefore we cannot use
it for comparison. In Pooch et al. [62], the PadChest classes have
been adapted to match the classes of other multilabel datasets
such as ChestX-ray14 and CheXpert. For example, regardless of
the fact that the class ‘‘Lesion’’ does not exist in two of the
datasets, they generated this class using the ChestX-ray14 labels
‘‘Nodules’’ and ‘‘Masses’’. However, PadChest was processed in
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Table 10
General labels experiment: results obtained by training the models with segmentation-based cropping and data augmentation. For each label, the individual models
with the best performance and the ensembles that outperform all individual models are marked in bold. The best ensemble result is marked in italics.

# Samples Densenet201 EfficientNet Inception InceptionResnet Xception PTC-mode PTC-lw CTP

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Normal 34327 0.735 0.685 0.707 0.652 0.750 0.691 0.723 0.658 0.732 0.674 0.702 0.693 0.690 0.691 0.770 0.691
Copd signs 13419 0.771 0.629 0.761 0.649 0.771 0.618 0.793 0.665 0.779 0.645 0.596 0.621 0.615 0.645 0.816 0.640
Cardiomegaly 8120 0.899 0.736 0.904 0.746 0.890 0.723 0.892 0.751 0.898 0.741 0.766 0.747 0.816 0.760 0.923 0.762
Thoracic cage deformation 7778 0.706 0.603 0.728 0.627 0.500 0.478 0.675 0.595 0.708 0.609 0.577 0.586 0.601 0.612 0.745 0.614
Aortic elongation 7436 0.858 0.691 0.853 0.690 0.842 0.661 0.866 0.683 0.866 0.687 0.701 0.690 0.758 0.697 0.886 0.700
Infiltrates 6706 0.794 0.686 0.802 0.664 0.791 0.663 0.797 0.668 0.794 0.663 0.703 0.676 0.721 0.690 0.827 0.692
Unchanged 6487 0.630 0.538 0.636 0.552 0.618 0.543 0.633 0.545 0.631 0.552 0.536 0.543 0.536 0.546 0.652 0.547
Chronic changes 4312 0.759 0.548 0.754 0.542 0.752 0.525 0.734 0.520 0.740 0.522 0.656 0.567 0.685 0.543 0.768 0.545
Surgery 3928 0.813 0.730 0.815 0.766 0.750 0.722 0.766 0.713 0.829 0.724 0.726 0.739 0.739 0.762 0.845 0.765
Atelectasis 3565 0.798 0.628 0.756 0.636 0.698 0.570 0.729 0.596 0.759 0.628 0.587 0.598 0.647 0.632 0.804 0.630
Costophrenic angle blunting 3306 0.845 0.655 0.807 0.638 0.758 0.604 0.784 0.638 0.828 0.652 0.660 0.634 0.700 0.656 0.864 0.658
Calcified densities 3253 0.719 0.638 0.751 0.639 0.500 0.491 0.500 0.491 0.500 0.491 0.520 0.527 0.500 0.491 0.764 0.491
Vertebral degenerative changes 3203 0.744 0.502 0.726 0.528 0.676 0.497 0.733 0.487 0.730 0.512 0.643 0.532 0.664 0.514 0.751 0.514
Hilar enlargement 3162 0.755 0.549 0.732 0.544 0.699 0.551 0.738 0.533 0.731 0.538 0.618 0.562 0.649 0.560 0.765 0.565
Pleural thickening 3010 0.753 0.586 0.773 0.585 0.737 0.572 0.743 0.525 0.763 0.562 0.651 0.587 0.671 0.586 0.790 0.587
Mediastinal enlargement 2813 0.795 0.643 0.798 0.668 0.774 0.688 0.778 0.675 0.822 0.657 0.705 0.689 0.710 0.697 0.841 0.700
Air trapping 2765 0.654 0.528 0.669 0.536 0.500 0.492 0.665 0.495 0.672 0.536 0.520 0.523 0.602 0.544 0.692 0.546
Fracture 2529 0.749 0.663 0.725 0.599 0.5 0.493 0.640 0.507 0.732 0.611 0.574 0.590 0.579 0.615 0.792 0.617
Pleural effusion 2436 0.942 0.738 0.927 0.782 0.930 0.720 0.935 0.735 0.937 0.771 0.878 0.762 0.900 0.775 0.956 0.775
Granuloma 2306 0.500 0.493 0.777 0.652 0.500 0.493 0.500 0.493 0.500 0.493 0.513 0.519 0.500 0.493 0.777 0.493
Nodule 1936 0.653 0.583 0.679 0.571 0.617 0.542 0.643 0.547 0.622 0.575 0.560 0.569 0.558 0.575 0.707 0.573
Fibrotic band 1781 0.738 0.530 0.747 0.531 0.712 0.522 0.500 0.495 0.727 0.519 0.606 0.546 0.654 0.556 0.770 0.556
Electrical device 1772 0.992 0.959 0.992 0.913 0.992 0.889 0.994 0.871 0.992 0.929 0.990 0.935 0.992 0.942 0.997 0.942
Pneumonia 1652 0.804 0.594 0.790 0.567 0.804 0.549 0.813 0.577 0.799 0.599 0.712 0.602 0.728 0.606 0.854 0.607
Aortic atheromatosis 1581 0.834 0.502 0.830 0.540 0.813 0.477 0.840 0.524 0.843 0.519 0.713 0.554 0.769 0.522 0.866 0.523
Pseudonodule 1451 0.693 0.561 0.727 0.553 0.500 0.496 0.500 0.496 0.708 0.562 0.557 0.555 0.576 0.589 0.759 0.593
Bronchiectasis 1430 0.795 0.544 0.776 0.571 0.789 0.548 0.814 0.539 0.779 0.561 0.639 0.575 0.696 0.573 0.833 0.574
Hiatal hernia 1362 0.916 0.813 0.892 0.796 0.906 0.773 0.918 0.804 0.927 0.788 0.857 0.810 0.889 0.852 0.959 0.852
Hemidiaphragm elevation 1231 0.814 0.651 0.841 0.680 0.841 0.596 0.823 0.649 0.811 0.645 0.733 0.670 0.746 0.683 0.890 0.683
Increased density 1133 0.633 0.497 0.640 0.524 0.596 0.492 0.609 0.509 0.606 0.511 0.539 0.516 0.533 0.514 0.661 0.515
Diaphragmatic eventration 757 0.500 0.498 0.775 0.586 0.500 0.498 0.500 0.498 0.500 0.498 0.525 0.534 0.500 0.498 0.775 0.498
Volume loss 684 0.802 0.542 0.776 0.580 0.809 0.531 0.814 0.513 0.776 0.560 0.728 0.561 0.761 0.564 0.865 0.564
Adenopathy 659 0.500 0.498 0.697 0.538 0.500 0.498 0.548 0.520 0.583 0.543 0.500 0.498 0.521 0.528 0.715 0.528
Bronchovascular markings 602 0.712 0.570 0.738 0.537 0.777 0.576 0.765 0.545 0.704 0.585 0.685 0.592 0.703 0.585 0.802 0.584
Mass 574 0.707 0.621 0.715 0.608 0.744 0.570 0.732 0.574 0.746 0.616 0.700 0.615 0.707 0.641 0.806 0.641
Artificial heart valve 562 0.969 0.658 0.953 0.730 0.975 0.696 0.977 0.727 0.972 0.713 0.941 0.736 0.968 0.730 0.981 0.731
Catheter 545 0.871 0.740 0.874 0.721 0.866 0.673 0.878 0.639 0.861 0.717 0.799 0.724 0.848 0.773 0.905 0.773
Suboptimal study 544 0.743 0.524 0.693 0.510 0.754 0.522 0.697 0.531 0.727 0.506 0.666 0.526 0.681 0.539 0.784 0.540
Pulmonary fibrosis 523 0.850 0.584 0.834 0.587 0.837 0.551 0.864 0.577 0.862 0.565 0.795 0.577 0.810 0.591 0.892 0.591
Heart insufficiency 520 0.875 0.541 0.877 0.555 0.896 0.546 0.884 0.538 0.870 0.547 0.819 0.553 0.856 0.551 0.920 0.551
Hypoexpansion 476 0.838 0.541 0.745 0.545 0.846 0.534 0.768 0.571 0.500 0.499 0.651 0.556 0.677 0.571 0.900 0.573
Gynecomastia 437 0.852 0.527 0.810 0.552 0.852 0.501 0.858 0.507 0.806 0.550 0.772 0.540 0.825 0.554 0.917 0.555
Emphysema 410 0.780 0.508 0.715 0.520 0.801 0.512 0.809 0.506 0.724 0.521 0.684 0.529 0.732 0.524 0.862 0.525
Sclerotic bone lesion 352 0.506 0.511 0.500 0.499 0.500 0.499 0.500 0.499 0.500 0.499 0.500 0.499 0.500 0.499 0.506 0.499
Fissure thickening 336 0.816 0.533 0.802 0.573 0.819 0.518 0.842 0.526 0.798 0.539 0.746 0.547 0.806 0.557 0.891 0.558
Hilar congestion 318 0.785 0.503 0.798 0.519 0.790 0.514 0.827 0.519 0.808 0.520 0.734 0.526 0.756 0.523 0.896 0.522
Osteopenia 318 0.659 0.508 0.688 0.507 0.659 0.483 0.695 0.466 0.701 0.497 0.611 0.500 0.647 0.500 0.752 0.500
Tuberculosis 299 0.852 0.534 0.861 0.567 0.869 0.561 0.824 0.559 0.805 0.597 0.760 0.577 0.848 0.592 0.909 0.592
Bullas 290 0.746 0.520 0.685 0.532 0.739 0.524 0.715 0.512 0.651 0.549 0.667 0.543 0.714 0.547 0.777 0.547
Hyperinflated lung 272 0.715 0.506 0.630 0.502 0.719 0.504 0.645 0.485 0.659 0.501 0.649 0.513 0.658 0.512 0.728 0.512
Cavitation 243 0.780 0.556 0.834 0.575 0.856 0.546 0.789 0.539 0.823 0.590 0.679 0.555 0.823 0.585 0.934 0.585
Mediastinic lipomatosis 212 0.648 0.499 0.654 0.551 0.5 0.499 0.500 0.499 0.500 0.499 0.520 0.514 0.500 0.499 0.681 0.499
Pneumothorax 210 0.705 0.572 0.717 0.530 0.717 0.540 0.721 0.518 0.620 0.592 0.596 0.546 0.630 0.572 0.847 0.573
Vascular redistribution 204 0.774 0.499 0.752 0.526 0.705 0.508 0.694 0.516 0.667 0.507 0.635 0.514 0.676 0.519 0.837 0.519

Global 0.761 0.589 0.767 0.600 0.732 0.566 0.739 0.572 0.739 0.589 0.669 0.594 0.696 0.601 0.819 0.602
Table 11
General labels experiment: global results obtained by the individual models and the ensembles.

Densenet201 EfficientNet Inception InceptionResnet Xception PTC-mode PTC-lw CTP

Hamming Loss 0.070 0.065 0.070 0.075 0.065 0.052 0.057 0.056
AUC 0.761 0.767 0.732 0.739 0.739 0.669 0.696 0.819
F1-score 0.589 0.600 0.566 0.572 0.589 0.594 0.601 0.602
that paper by unifying all classes related to Atelectasis, without
providing any medical explanation for this decision, so the labels
do not match ours, containing only 8 out of 174 classes available.
Therefore, it cannot be compared with our methodology. In the
case of Hashir et al. [61], they first select a single sample from
each patient and the authors have used 32 different labels, which
is not in line with expectations, since using a lower threshold
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than ours there should have a larger number of labels. In this case,
we can compare the overall AUC of the system. These authors
achieve an AUC of 0.800 using 32 labels while we obtain 0.8397
using 35 specific labels. Therefore, we have achieved a better AUC
than in Hashir et al. [61]. Because of the above reasons, comparing
our methodology with the state of the art is really difficult, and
therefore one of the aims of this paper is to create a baseline



H. Liz, J. Huertas-Tato, M. Sánchez-Montañés et al. Future Generation Computer Systems 144 (2023) 291–306
Fig. 10. Second visualisation example. The heatmaps of three radiological signs detected (pleural effusion, laminar atelectasis and suture material) are shown. The
title shows the label, the probability estimated by the ensemble, and the agreement between the models of the ensemble. The areas of interest for classification are
marked in blue.
Fig. 11. Third visualisation example. The sample belongs to the normal class.
The title shows the label, the probability estimated by the ensemble, and the
agreement between the models of the ensemble. The areas of interest for
classification are marked in blue.

Table 12
Comparative table of the different state-of-the-art models, their global and class
performance.

Rimeika G. et al. [87] Pooch, E. H. [62]

model1 model2

cardiomegaly 90.36% 91.94% 90.75%
nodule 74.97% 71.42% –
normal – – 87.10%
pleural effusion 95.42% 94.93% –
pneumonia – – 79.90%
lobar collapse 88.86% 86.39% –
edema 95.35% 96.05% 91.07%
subcutaneous emphysema 98.52% 93.79% –
consolidation 87.39% 85.50% 86.07%
pneumothorax 89.95% 88.19% 82.76%
tuberculosis 92.62% 92.40% –
Lymphadenopathy 77.11% 75.81% –
linear atelectasis 84.16% 78.26% 76.41%
lymph node calficiation 82.64% 72.69% –
congestion 85.39% 87.29% –
Widened mediastinum 75.02% 77.50% –
mass 86.90% 82.29% –
lesion – – 69.75%

Global 86.98% 84.97% 82.98%

to facilitate the comparison of future work with this dataset. If
we look at the overall AUC of the published models trained with
PadChest and compare them with ours, we see that we only
outperform two models, but we use a much higher number of
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classes. Therefore, we can see that our system performs well and
that although it works with a much larger number of labels, it
outperforms some of the published models.

7. Conclusions and future work

This paper proposes a Deep Learning methodology for clas-
sification tasks with imbalanced multilabel datasets. We have
built with this methodology an ensemble of five state-of-the-art
architectures: DenseNet-201, EfficientNet B0, Inception, Incep-
tionResNet and Xception. We have used weighted crossentropy
with logit loss to alleviate data imbalance and developed a new
technique for generating heatmaps in multilabel classification
problems.

The results of our experiments are promising. First, in contrast
to state-of-the-art papers, we have established a methodologi-
cally sound baseline for future work, regardless of whether spe-
cific or general labels are used. It will also allow us to analyse the
performance of these models when the number of labels varies.
Our system obtains high AUC values for the number of classes
used. In the case of specific labels, high performance is achieved
with an AUC of 0.84. In the case of general labels, we obtain an
AUC of 0.819. This value may be due to the fact that the general
classification has more classes and each of them is composed
of different radiological signs. Thus, the variability is high and
it is more difficult to classify. The results of the visualisation
technique show a great potential, as it allows a view of the whole
radiograph that differentiates the different pathological signs.
This technique generates a report that includes the visualisation
of the heatmap, the probability produced by the system and the
agreement between the ensemble models.

There are several ways to improve our methodology. First,
other strategies can be used to alleviate data imbalance, such
as adding new samples to the dataset. This can be done either
by obtaining new images from other datasets such as CheXpert,
ChestX-ray14, or other single disease datasets, or by creating
them with generative adversarial networks (GANs). Another way
to improve the performance of the proposed system is to use
different X-ray views of each sample.

In our proposal, we used segmentation techniques to force the
model to pay more attention to the most relevant areas. However,
different techniques have recently been developed for this same
purpose. For example, [88] used soft and hard attention mecha-
nisms to prevent the model from focusing on areas that are not
relevant to the problem. Another way to remove non-interesting
areas is the application of semi-supervised learning methods to
locate and distinguish different anatomical regions [89]. Based on
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these recent advances, it would be interesting to study whether
including them in our model improves its results.

To improve the visualisation technique, we can extend the
isplayed information by including a heatmap that shows the
tandard deviation of the visualisation of the ensemble [90]. This
ould help medical staff to know in which areas of the heatmap
here is more uncertainty. Another line of work we would like
o explore is the generation of a system that returns general
nd specific labels. In addition to a combination with report
eneration techniques, doctors would receive a report explaining
he different radiological signs and a visual interpretation of these
igns. This could be done using cascade models, which first clas-
ify the most general labels and later classify the subcategories.
his would allow to include minority classes, or at least part of
hem.

Another possible improvement would be to retrain the system
sing feedback from experts in the field on the system’s predic-
ions and heatmaps. This poses multiple challenges in practice,
ainly due to the need to implement close collaboration between
pecialised diagnostic models and medical staff, who may lack
ackground and expertise to rely on the models’ results. On
he positive side, semi-supervised Deep Learning techniques are
merging lately and are yielding results that are unprecedented
n the state of the art. For instance, Avilés-Rivero et al. [91]
ave developed a semi-supervised graph-based framework for
lassifying lung diseases (COVID-19, pneumonia and healthy).
uch frameworks have been identified as promising for support-
ng the construction of human-in-the-loop models in medical
pplications [30], hence future efforts will be devoted in this
irection.
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