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SUMMARY

DNA damage has long been advocated as a molecular driver of aging. DNA dam-
age occurs in a stochastic manner, and is therefore more likely to accumulate in
longer genes. The length-dependent accumulation of transcription-blocking dam-
age, unlike that of somatic mutations, should be reflected in gene expression
datasets of aging. We analyzed gene expression as a function of gene length in
several single-cell RNA sequencing datasets of mouse and human aging. We
found a pervasive age-associated length-dependent underexpression of genes
across species, tissues, and cell types. Furthermore, we observed length-depen-
dent underexpression associated with UV-radiation and smoke exposure, and in
progeroid diseases, Cockayne syndrome, and trichothiodystrophy. Finally, we
studied published gene sets showing global age-related changes. Genes underex-
pressed with aging were significantly longer than overexpressed genes. These
data highlight a previously undetected hallmark of aging and show that accumu-
lation of genotoxicity in long genes could lead to reduced RNA polymerase II
processivity.

INTRODUCTION

DNA damage has long been proposed as a primary molecular driver of aging.1–4 Aging has also been asso-

ciated with a series of transcriptional changes, most of which are highly tissue- and cell type-specific.5 Even

though the search for a global aging signature has been the goal of much research,6–9 meta-analyses have

shown that very few genes are consistently up- or downregulated with aging across different tissues.10 It

appears that, at the mRNA level, aging signatures are not defined by the overexpression of particular

sets of genes, but rather an overall decay in transcription.11 In fact, the differences between the transcrip-

tome of middle-aged and young individuals are bigger than those between young and old individuals, at

least in some human tissues.12

Genetic material is constantly challenged throughout the lifespan of the organism, both by endogenous

and environmental genotoxins. Some of this damage happens in the form of transcription-blocking lesions

(TBLs), which impede transcriptional elongation.13 Accumulation of TBLs provokes a genome-wide shut-

down of transcription, which also affects undamaged genes through poorly understood mechanisms

that may be related to RNA polymerase II (RNAP II) ubiquitylation and degradation.14,15 Assuming a

constant TBL incidence, meaning that any base pair in the genome has a similar probability of suffering

damage that results in a lesion, a greater accumulation of TBLs is to be expected in longer genes. In

fact, a gene length-dependent accumulation of other forms of genetic damage, like somatic mutations,

has already been reported in conditions like Alzheimer’s disease.16,17 Hence, TBLs, just like somatic muta-

tions are expected to accumulate with aging, and their accumulation should be dependent on gene length.

However, unlike somatic mutations, TBLs have a strong and direct impact on mRNA production, and their

gene length-dependent effects are likely to be measurable from RNA sequencing data of aged tissues,

which make single-cell RNA sequencing (scRNA-seq) atlases and datasets of aging an excellent opportu-

nity to characterize them at the cell-type-level over a wide range of tissues.

So far, a potential relationship between age-related transcriptional changes and gene length has received

relatively little attention. A recent analysis of the transcript length of 307 genes related to aging (as ex-

tracted from the GenAge database) found longer transcript lengths in these genes than that of the rest
iScience 26, 106368, April 21, 2023 ª 2023 The Author(s).
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Figure 1. Age-associated shutdown of transcription preferentially affects long genes

(A) Gene expression is highly conserved but shows a detectable decay with aging. Scatterplots showing the average gene expression in 24-month-old mice

against average gene expression in 3-month-old mice in 11 tissues (12 comparisons) from the TMS FACS and the TMS droplet datasets.20 Each dot

represents a gene. N: number of single cells; n: number of biological replicates. R2: coefficient of determination. The gray line represents y = x.

(B) A generalized shutdown of transcription is apparent in long genes. The scatterplots show the average gene expression of the 25% shortest (yellow) and

the 25% longest (blue) genes in 24-month-old versus 3-month-old mice. bs and bl represent the slopes of the straight lines that best fit the data points

corresponding to short and long genes, respectively. The number of young (ny) and old (no) biological replicates are shown.

See also Figures S1 and S2 and Tables S1 and S2.
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of the protein-coding genes.18 However, when they studied aging gene-expression signatures from a

human, mouse, and rat meta-analysis, they found no significance regarding transcript length in overex-

pressed and underexpressed genes, the only exception being the brain (which downregulated long

genes). Of interest, a previous analysis of gene expression profiles in the liver of mice deficient in the

DNA excision-repair gene Ercc1, which present features of accelerated aging, had found specific downre-

gulation of long genes.19 The same authors reported similar findings in naturally aged rat liver and human

hippocampus, indicating that it could reflect a more generalized phenomenon. Here, we aimed to extend

these early observations, which were based on bulk microarray and RNA sequencing data to the existing

aging datasets based on scRNA-seq technology. We also extended our gene length analyses to mouse

and human datasets of lifestyle-induced genotoxic exposure (UV, smoke) and progeroid syndromes

(Cockayne syndrome and trichothiodystrophy).

RESULTS

Age-associated shutdown of transcription preferentially affects long genes

In order to test if gene expression at the single-cell level is conserved with aging, we first analyzed 11 organs

of the landmark Tabula Muris Senis (TMS) dataset of mouse aging20 on the basis of having enough exper-

imental replicates and single cells for statistically significant analyses. Thus, we selected male animals of

both young (3-month) and old (24-month) age (Figure 1). Plotting the average gene expression of aged tis-

sues against their young counterpart’s yielded scatterplots where data presented a high linear correlation

between both average expression vectors (Figure 1A). However, we observed that a large number of genes

lied below the y = x line, meaning that their mean expression was lower in oldmice. This wasmost evident in

brain, heart, liver, lung,muscle, pancreas, and skin. Havingestablished that there is an age-relateddecline in

mRNA production, we explored the gene-length dependence of such decline. To this end, we split the

whole transcriptome into four equally sizedbins according togene length and fitted amultiple linear regres-

sionmodel considering the interaction effect between average expression in young and the categorical var-

iable representing the gene-length quartile. We found that the slope of the straight line that fits the gene

expression data decreases with gene length, which confirms that the decay in mRNA production is strongly

dependent on gene length.We graphically show this difference for the twomost extreme quartiles (the 25%

shortest and the 25% longest genes) in Figure 1B (gene lengths andp values for all comparisons are shown in

Tables S1 and S2). The differences in gene lengths were statistically significant in all analyzed organs.

In addition, we conducted a bootstrap-based permutation analysis for B = 200 bootstrap samples for the

same TMS datasets. In each bootstrap sample, we adjusted the regression model with an interaction term

considering the continuous log10 (gene length) variable. Results showed that the interaction term was

statistically significant (p value < 0.0001) in all the 200 bootstrap samples considered (data not shown).

This length-dependent effect was also detected in independent scRNA-seq datasets obtained frommouse

lung, kidney, spleen, and skin,20–24 although there were relevant experimental differences among datasets

(Figure S1). Importantly, downregulation of longer genes was also evident in single-cell data of human

lung, pancreas, and skin25–28 (Figure S1). Similarly, the effect was sex-independent since it was also detect-

able in TMS female animals (Figure S2). These results suggested a generalized underexpression of long

genes associated with age, which is seen across tissues, sexes, and species, and in data extracted from

several independent scRNA-seq datasets.

Differentially expressed genes between young and old individuals show a preferential bias

toward long gene underexpression

A number of genes change their expression in the same direction during aging in several tissues, and the

search for differentially expressed genes (DEGs) may thus, provide a molecular signature of aging.9 We
iScience 26, 106368, April 21, 2023 3
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Figure 2. Differentially expressed genes between young and old individuals show a preferential bias for the downregulation of long genes

Output of the differential expression analysis between old (24 months) and young (3 months) male mice in 12 datasets from the Tabula Muris Senis (using the

Wilcoxon method).

(A) Volcano plots showing the length of DEGs: -log10(p value) against log2(fold change). Each gene is colored according to its log10-transformed length.

(B) Boxplots showing the top 300 DEGs for each category. Whiskers extend to extend to the furthest datapoint within the 1.5*IR (interquartile range).

‘‘Young’’: top 300 most overexpressed genes in young cells with respect to old cells (blue). ‘‘Old’’: top 300 most overexpressed genes in old cells with respect

to young cells (pink). The difference in DEG length is significant in all tissues (p value < 0.001); see Table S3.

Se also Figures S3 and S4.
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next analyzed if DEGs between young and old animals from the TMS dataset showed a preferential bias

toward the underexpression of long genes (Figure 2). Indeed, DEGs between young (3-month) and old

(24-month) mice showed a global and strong bias for the underexpression of long genes for all tissues

and comparisons, as seen in the volcano plots (Figure 2A). Differences in gene length were apparent as

well in the boxplots showing the top 300 DEGs between age groups (Figure 2B). Differences in top 300

DEG lengths were statistically significant, based on a Wilcoxon-Mann-Whitney test (p values are provided

in the Table S3). Once more, this effect was not specific to the TMS dataset, since it was also detected in

independent scRNA-seq datasets obtained from mouse lung, kidney, spleen, and skin and human lung,

pancreas, and skin (Figure S3). Finally, the effect was also detectable in TMS female animals (Figure S4).

Despite the fact that inter-individual and inter-tissue differences were apparent in some cases, these

data confirmed that long genes were differentially affected by the age-associated shutdown of gene

expression.

The age-associated decrease in the expression of long genes is not cell type-specific

Since many aging signatures are cell type-specific, a relevant open question was if the age-associated

underexpression of long genes might be restricted to a particular cell type that is abundantly and ubiqui-

tously located across tissues, such as fibroblasts or endothelial cells. To answer this question, we selected

the four existing TMS heart datasets and analyzed the gene length of expressed genes (Figure 3, p values of

the regression analysis are provided in Table S4). As expected, shorter genes were overexpressed in old

mice as compared to those in young mice in all four datasets (Figure 3A). Compartmentalization of the an-

alyses onto the 11 single-cell types detected in at least two datasets showed that young animals expressed

longer genes in all cell types analyzed, including tissue-specific cells such as cardiomyocytes and infiltrating

cell types such as B and T lymphocytes (Figure 3B). Therefore, a pervasive underexpression of long genes

was detectable across aged cell types.

Genotoxic UV exposure of young mouse skin mimics age-associated decrease in the

expression of long genes

Ultraviolet (UV) radiation of skin exposed to sunlight produces accumulation of DNA damage and photo-

aging.29,30 Notably, UV-induced photolesions—mainly cyclobutane pyrimidine dimers (CPDs) and pyrimi-

dine-(6-4)-pyrimidone photoproducts (6-4 PPs)—trigger a general shutdown of transcription and aremainly

fixed by the nucleotide excision repair (NER) pathways.31 The vitamin D system provides a local adaptive

response to UV radiation, reducing DNA damage, inflammation, and photocarcinogenesis.32 To test if gen-

otoxic damage to DNA (a premature aging model) also affected the transcription of long genes, we

analyzed a single-cell RNAseq dataset of young (five to six-week-old) mouse skin irradiated with UVB or

normal light33 (Figure 4). One of the UV-irradiated groups was injected with vitamin D before exposure (Fig-

ure 4A). A Uniformmanifold approximation and projection (UMAP) plot of themerged datasets of mice skin

shows the 11 cell types detected in this experiment using unsupervised cell clustering (Figure 4B). A global

differential expression analysis showed that UV radiation causes long genes to be underexpressed in un-

treated mice. This effect was not evident on vitamin D-treated animals (Figure 4C, left and right panels,

respectively). As expected, a ranking of genes according to their differential expression showed that the

top 200 shortest and top 200 longest genes were located at positions consistent with a non-uniform distri-

bution (Figure 4D). An analysis of the length of the top 300 DEGs computed between the three conditions

(the genes differentially expressed in each of the conditions against the remaining two) further demon-

strated that longer genes were differentially affected by UV exposure (Figures 4E and 4G). Finally, this ef-

fect was detected in all skin cell types; although not all long gene transcriptional phenotypes were rescued

by vitamin D injection (Figure 4F). These results strongly suggested that environmental genotoxic damage

by UV-radiation might induce a generalized shutdown of long gene transcription in young animals, which

may be partially reverted by vitamin D injection.
iScience 26, 106368, April 21, 2023 5



Figure 3. The age-associated decrease in the expression of long genes is not cell type-specific

(A) Genes ranked according to their age-related difference in average gene expression. Genes are shown sorted

according to their difference in mean expression between old and young cells. The positions of the top 200 shortest

(yellow) and the top 200 longest (blue) genes are shown according to their overexpression in young (left) or in old animals

(right).

(B) Genes differentially expressed between old and young murine heart cells have significantly different gene lengths.

Gene length of the top 200 DEGs between young and old cells within each cell type. Whiskers extend to the furthest

datapoint within the 1.5*IR. ‘‘Young’’: top 200 most overexpressed genes in young cells with respect to old cells. ‘‘Old’’:

top 200 most overexpressed genes in old cells with respect to young cells.

EC, endothelial cell. SMC, smooth muscle cell. Significant differences (Wilcoxon-Mann-Whitney test, p value < 0.01) are

marked with an asterisk (*). See also Table S4.
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Smoke exposure of human airways mimics age-associated decrease in the expression of long

genes

Chronological age of never-smokers does increase the frequency of mutations in bronchial epithelial cells

at a rate of 28 mutations per cell per year. Mutation frequency in cells from smokers increased at a rate of 91

mutations per cell per year, i.e., 3.25X higher.34 In addition to somatic mutations, exposure to smoke from

organic matter is known to provoke TBLs.13 This seems to be due to benzo[a]pyrene diol epoxide (BPDE)

reacting with guanines to form bulky DNA adducts.15 To test if the lifestyle of smokers affected specifically

the expression of long genes in airway epithelial cells, we analyzed a scRNA-seq dataset35 of human
6 iScience 26, 106368, April 21, 2023



Figure 4. Genotoxic UV exposure of young mouse skin mimics age-associated decrease in the expression of long genes

(A) Experimental workflow: mice were sorted into three groups (n = 3 per condition). The Vit D group was injected with a vitamin D treatment. All mice were

shaved and irradiated, either with UV light (Vit D and UV groups) or with visible light (healthy). Skin samples were extracted and analyzed using scRNAseq.

(B) UMAP plot showing 11 cell types in themurine skin dataset (Lin et al., 2022). The samples corresponding to the three conditions were merged into a single

dataset. Diff, differentiated. EC, endothelial cell. HF, hair follicle. IFE, interfollicular epidermis. Kerat, keratinocytes. SG, sebaceous gland.

(C) Volcano plots showing UV radiation-related gene overexpression without prior vitamin D treatment (left) and with the vitamin D treatment (right): -log10(p

value) against the log2(fold change). DEGs were computed using the Wilcoxon method. Each gene is colored according to its log10-transformed gene

length.

(D) Position of the top 200 shortest (yellow) and top 200 longest (blue) genes in the differential expression ranking. Genes are shown ranked according to

their difference in mean expression between every pair of conditions and colored according to their length.

(E) Boxplots showing the log10(length) of the DEGs between conditions. Top 300 DEGs were computed between the three conditions (those differentially

expressed in each of the conditions against the remaining two). The differences were statistically significant (p values correspond to the Tukey post-hoc test

after ANOVA).

(F) Boxplots showing the log10(length) of the DEGs between conditions per cell type. The DEGs were computed between the three conditions for each cell

type separately. Whiskers extend to the furthest datapoint within the 1.5*IR.

(G) Scatterplots showing the mean expression in every pair of conditions: UV-radiated vs healthy skin (top), UV-radiated vs vitamin D treated skin (middle),

and vitamin D-treated vs healthy skin (bottom). bs and bl correspond to the slopes of the multiple linear regression models with interaction fitted on the first

and fourth quartiles (top 25% shortest and top 25% shortest genes), respectively.

See also Table S5.
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trachea of never-smokers and heavy smokers (subjects who had been smoking for > 20 years) of a similar

age range (Figure 5A). A UMAP plot of the merged datasets of both never-smokers and heavy smokers de-

tected 13 cell types in human trachea (Figure 5B). As expected by their increased accumulated genotox-

icity, long gene expression significantly decreased in heavy smokers as compared to never-smokers
iScience 26, 106368, April 21, 2023 7



Figure 5. Smoke exposure of human airways mimics age-associated decrease in the expression of long genes

(A) Experimental workflow: trachea samples from three non-smokers and five heavy smokers (for > 20 years) were analyzed through scRNAseq.

(B) UMAP showing the 13 detected cell types in the human trachea dataset. The samples corresponding to the two conditions (never-smokers and heavy

smokers) were merged into a single dataset. Diff, differentiated. KRT8, Keratin 8. PNEC, pulmonary neuroendocrine cells. Prolif, proliferating. Prot,

proteasomal. SMG, submandibular salivary glands.

(C) Volcano plot showing smoking-related gene overexpression: -log10(p value) against the log2(fold change). Each gene is colored according to its log10-

transformed gene length.

(D) Position of the top 200 shortest (yellow) and top 200 longest (blue) genes in the differential expression ranking. Longest genes are underexpressed in

airway cells from heavy smokers.

(E) Boxplots showing the log10(length) of the DEGs between heavy smokers and never-smokers, computed using the Wilcoxon method. ‘‘Never’’: top 300

most overexpressed genes in cells from never-smokers with respect to cells from heavy smokers. ‘‘Heavy’’: top 300 most overexpressed genes in cells from

heavy smokers with respect to cells from never-smokers. The distributions of log10 gene length (bp) were significantly different between conditions (Mann-

Whitney U test).

(F) Boxplots showing the DEGs between the conditions for each cell type. DEGs associated with heavy smoker airway cell types are significantly shorter.

DEGs were computed between never-smokers and heavy smokers for each cell type separately. Whiskers extend to the furthest datapoint within the 1.5*IR.

(G) Scatter plot showing the average gene expression in heavy smokers against the average gene expression in never-smokers. bs and bl correspond to the

slopes of the linear regression models fitted on the first and fourth quartiles (top 25% shortest and top 25% shortest genes), respectively.

See also Table S5.
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(Figures 5C–5E and 5G, p values in Table S5). Once more, this effect was not cell-specific since it was de-

tected in all tracheal cell types (Figure 5F). These results confirmed that environmental genotoxic damage

induces a generalized shutdown of long gene transcription.

Transcriptional stress in progeroid diseases cockayne syndrome and trichothiodystrophy

results in underexpression of long genes

A number of progeroid diseases are caused by mutations functionally linked to genome maintenance

and DNA damage repair.36 Of particular interest to this work, a subset of defects in repair genes impair
8 iScience 26, 106368, April 21, 2023
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Figure 6. A mouse model of Cockayne syndrome mimics age-associated decrease in the expression of long genes in the kidney

(A) In mouse kidney, methanol is oxidized to formaldehyde, which causes DNA damage. Damage can be prevented by the effect of alcohol dehydrogenase

(Adh5), which clears formaldehyde and is repaired by the TC-NER system. The Cockayne syndrome group B (Csb) protein is part of the TC-NER system that

repairs DNA damage. Mice that have either (or both) of these two genes knocked out will suffer increased levels of DNA damage.

(B) Experimental approach: twomice of each genotype (WT: wild-type;ADH5KO: deficient in formaldehyde clearance;CSBKO: Cockayne syndrome group B

knock-out, also known as Ercc6, and DKO: Adh5�/� Csbm/m double knock-out) were subjected to a genotoxic methanol treatment (1.5 g/kg via

intraperitoneal injection once a week). Kidneys were harvested and gene expression analyzed using scRNAseq.

(C) UMAP plot showing the genotype of proximal tubule cells selected for the analysis.

(D) Volcano plots showing the output of differential expression analysis of each knockout against wild-type mice: -log10(p value) against the log2(fold

change). DEGs were computed using the Wilcoxon method. Each gene is colored according to its log10-transformed gene length.

(E) Boxplots showing the length distribution of the top 300 DEGs obtained when comparing each of the knockouts against wild-typemice. Whiskers extend

to the furthest datapoint within the 1.5*IR.

(F) Scatterplots showing the average gene expression in each of the knockouts against wild-type mice. bs and bl correspond to the slopes of the linear

regression models fitted on the first and fourth quartiles (top 25% shortest and top 25% shortest genes), respectively.

See also Table S5.
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transcription-coupled nucleotide excision repair (TC-NER), i.e. TBLs remain unrepaired, causing RNAP II

stalling and ultimately syndromic features such as Cockayne syndrome, xeroderma pigmentosum, and

trichothiodystrophy.13 Of interest, increased cutaneous photosensitivity is one of the clinical features of pa-

tients suffering from these conditions, and is caused by deficiencies in genes coding for components of

the TC-NER. To explore if long gene transcription is specifically affected in progeroid diseases caused

by TC-NER deficiencies, we generated three independent lines of evidence: (i) a dataset of a mouse model

of Cockayne syndrome, (ii) a dataset based on cells derived from a human Cockayne syndrome patient, and

(iii) a list of DEGs between a trichothiodystrophy patient and her healthy mother.

Endogenous formaldehyde is abundant in the body, causing DNA crosslinks, oxidative stress, and potentially

contributing to the onset of Fanconi anemia and other syndromes37 (Figure 6). On the other hand, Cockayne

syndrome is caused by loss of the Cockayne syndrome A (CSA) or CSB proteins. Double knock-out mice defi-

cient in both formaldehyde clearance (Adh5�/�) and CSB protein (Csbm/m) develop transcriptional stress in a

subset of kidney cells and features consistent with human Cockayne syndrome38 (Figure 6A). To test if kidney

cells of these animals undergoing formaldehyde-driven transcriptional stress specifically decreased transcrip-

tion of long genes, we analyzed single-cell datasets of three knockout mice—ADH5KO (deficient in
iScience 26, 106368, April 21, 2023 9
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Figure 7. Human Cockayne syndrome and trichothiodystrophy (TTD)-derived cells mimic age-associated decrease in the expression of long genes

(A) Experimental approach: skin fibroblasts were extracted from a Cockayne syndrome (ERCC6mut) patient and reprogrammed to generate induced

pluripotent stem cells (iPSCs), gene-corrected using CRISPR-Cas9 (ERCC6GC), and differentiated to mesenchymal stromal cells (MSCs). The transcriptome of

ERCC6mut and ERCC6GC MSCs was analyzed using RNAseq in basal conditions and after UV-radiation exposure.

(B and C) Baseline effect of the Cockayne syndrome group B (ERCC6) mutation on length-dependent expression. (B) Boxplots showing the length of the top

300 DEGs between mutant (ERCC6mut) and gene-corrected (ERCC6GC) cells in normal conditions (control) and after UV-radiation exposure. Whiskers extend

to the furthest datapoint within the 1.5*IR. (C) Average gene expression of mutant against gene-corrected cells in basal conditions and after UV-radiation

exposure.

(D and E) Effect of UV-radiation on cells carrying the ERCC6 mutation and gene-corrected cells. (D) Boxplots showing the length of the top 300 DEGs

between cells with and without UV-radiation exposure. Whiskers extend to the furthest datapoint within the 1.5*IR. (E) Average gene expression in UV-

radiated cells against cells in basal conditions.

(F) Experimental approach: dermal fibroblasts from a PS-TTD patient (ERCC2mut) and her healthy mother were extracted and analyzed using RNAseq.

(G and H) Length of the DEGs (|logFC| R 2 and p value % 0.05) between PS-TTD cells and healthy cells in basal conditions (G) and upon UV-radiation (H).

Whiskers extend to the furthest datapoint within the 1.5*IR.

See also Table S5.
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formaldehyde clearance), CSBKO (Cockayne syndrome group B knockout, also known as Ercc6), and DKO

(Adh5�/� Csbm/m double knock-out)—against those of wild-type (WT) mice (Figure 6B). A UMAP plot of the

merged datasets of all data showed no obvious batch effect between animal groups (Figure 6C). Interestingly,

specific downregulation of long genes was already detected in ADH5KO and CSBKO single mutants (Fig-

ure 6D). Bothmutations seemed to synergize causing further downregulation of long genes in theDKO animals

as compared to WT mice (Figures 6D–6F, p values in Table S5).

Encouraged by these results, we analyzed a bulk RNAseq dataset of human mesenchymal stromal cells

(MSCs) derived from a Cockayne syndrome patient bearing a CSB/ERCC6mutation, which are known to pre-

sent marked changes in their transcriptome upon UV-radiation31 (Figure 7). In fact, skin fibroblasts from this

patient were first reprogrammed to generate induced pluripotent stem cells (iPSCs), which were then gene-

corrected with CRISPR-Cas9 and differentiated to MSCs. Thus, the available data included UV-radiated

MSCs vs MSCs in normal conditions in both mutant (ERCCmut) and gene-corrected (ERCCGC) backgrounds

(Figure 7A). First, we analyzed the baseline effect of bearing the ERCC6 mutation and observed that, while

there was no significant difference in gene length between gene corrected and mutant cells in basal condi-

tions, mutant cells expressed shorter genes than gene corrected cells upon UV-radiation (Figures 7B and 7C).

We then compared the effect of UV-radiation on gene corrected and mutant cells separately. As expected,
10 iScience 26, 106368, April 21, 2023



Mouse: Global Aging Genes (Zhang, 2021)

G
en

e 
le

ng
th

 (b
p)

G
en

e 
le

ng
th

 (b
p)

A

B Human: CHARGE cohort (Peters, 2015)

nu= 1,262nd= 1,618

p-value = 0.0015

p-value < 0.001

nu= 202nd= 101

Figure 8. Published aging signatures are influenced by gene length-dependent transcriptional decay

Down-regulated genes are longer than up-regulated genes in two published aging transcriptomic signatures. The length

of the genes from two independent aging signatures, murine (A) and human (B), are shown as two overlapped histograms

and separate boxplots. The number of down-and up-regulated genes in each signature are shown as nd and nu,

respectively. The gene length is significantly different between the two categories according to the Mann-Whitney test

(p values shown in the figure). Whiskers extend to the furthest datapoint within the 1.5*IR.
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UV-radiation on ERCCmut cells induced a decrease in long gene expression as compared to normal condi-

tions in both mutant and gene-corrected (ERCCGC) cells (Figures 7D and 7E). Overall, these results demon-

strated that photosensitivity in ERCCmut cells caused underexpression of long genes.

Finally, we tested if long gene expression was also affected in photosensitive trichothiodystrophy (PS-TTD),

another TC-NER-deficient progeroid syndrome (Figures 7F–7H). To this end, we analyzed the length of the

DEGs obtained by Lombardi et al.39 between a cancer-free PS-TTD patient carrying a mutation in the

ERCC2 gene and her healthy mother, both in basal conditions and upon UV-radiation (Figure 7F). Selecting

the genes that were significantly (p value% 0.05) over- or underexpressed in PS-TTD and with a substantial

effect size (logFC R 2 in either direction) we observed that the DEGs associated with PS-TTD were

significantly shorter upon UV-radiation (Figures 7G and 7H). These results suggested that other progeroid

syndromes might present a similar phenotype of reduced long gene expression.

Published aging signatures are influenced by gene length-dependent transcriptional decay

A number of aging-related transcriptional signatures have been proposed for both mice and humans. A

recent study identified a set of mouse global aging genes (GAGs),9 defined as genes whose expression

varies substantially with age in most (> 50%) of the tissue-cell types across several tissues of the TMS data-

set. These authors found that GAGs exhibited a strong bimodality, i.e., that they were either upregulated or

downregulated with aging in most tissues. However, gene length was not analyzed in that study. To test if

the length of GAGs influenced their up- or downregulation, we represented the distribution of log-trans-

formed gene lengths in the two groups (Figure 8). We found that downregulated GAGs are longer than

those that were found to be upregulated and that their difference in length is statistically significant

(Figure 8A, Wilcoxon-Mann-Whitney test, p value < 0.001).

In humans, the first large-scale meta-analysis (14,983 individuals) of aging-related gene expression profiles

identified 1,497 genes differentially expressed with chronological age in peripheral blood mononuclear
iScience 26, 106368, April 21, 2023 11
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cells.40 Interestingly, long genes downregulated with aging in this human cohort, the differences in length

between upregulated and downregulated genes being statistically significant (Figure 8B, Wilcoxon-Mann-

Whitney test, p value = 0.0015). Overall, these data suggest that transcriptomic aging signatures are influ-

enced by gene length.
DISCUSSION

In this article, we report that a generalized age-related decline in gene expression is dependent on gene

length. The fact that gene length affects mRNA expression levels has long been known.41 In early develop-

ment, gene size and architecture influence the expression timing of specific genes.42 This is also true more

generally, for instance in the immediate cellular response to external stimuli, where shorter pre-mRNAmol-

ecules are synthesized first.43 Furthermore, gene lengths appear to be compartmentalized among chromo-

somes and tissue-specific expression patterns may be detected.44

RNA polymerase II (RNAP II)-driven transcription can be divided into initiation, pausing, elongation, 30 end
formation, and termination stages; each step being tightly regulated.45 Once initiated, transcription

pauses downstream from the transcription start site and requires specific signaling for pause-release, elon-

gation and processivity. Cyclin-dependent kinases CDK12 and CDK13 seem to be involved in the regula-

tion of RNAP II elongation, processivity, and selection of alternative polyadenylation sites.46 Of interest, the

GC content of the initially transcribed sequence determines early RNAP II elongation rates, and recogni-

tion of a 50 splice site (SS) by U1 snRNP promotes RNAP II elongation potential.47 This is related to a process

known as telescripting, whereby U1 snRNP base pairing with 50SS avoids premature 30 end cleavage and

polyadenylation at cryptic intronic sites.48,49 It is likely that long gene transcription is mediated by many

other RNA-binding proteins (RBPs) as well, many of which have additional functions in the regulation of

pre mRNA splicing.50 In fact, only about half of the introns present in newly synthesized pre-mRNA are

co-transcriptionally spliced,51 further supporting alternative roles for specific RBP subsets. Although, we

have no mechanistic understanding of which dysfunction mediates the apparent loss of long gene tran-

scription associated with aging, our data may generate new avenues for aging-related research, where

the relevance of pathways related to RNAP II elongation and processivity remains virtually unexplored.

Premature transcript termination by RNAP II has already been described in some contexts. An increase in

elongation rate (speed) concomitant to premature termination at cryptic intronic polyadenylation signals

has recently been reported during heat shock, which wasmediated by inhibition of U1 telescripting.52 Inter-

estingly, failure to target the stalled RNAP II for degradation by polyubiquitination of a single residue is

enough to shutdown long gene transcription, the expression of shorter genes being unaffected.53,54

Further, the concept of long-gene transcriptopathy has been proposed as a possible mechanism underly-

ing a number of neurological and psychiatric disorders some of which are age-associated.16,17,50,55,56 RNA-

binding protein SFPQmediates CDK9 recruitment to the transcription elongation complex, which activates

RNAP II-CTD. Neuron-specific ablation of SFPQ downregulated a regulon of 135 genes, which account for

less than 10 percent of the genes with a pre mRNA > 100 kb in length inducing neuronal cell death and

embryonic lethality.56 Similarly, muscle-specific ablation of SFPQ induced metabolic myopathy, severe

progressive muscle mass reduction, and impairment of motor function. This was shown to be mediated

by downregulation of long genes regulating energy metabolism in skeletal muscle.50 While the specific

mechanisms underlying the generalized age-associated downregulation of long genes that we report

here remain to be determined, it seems likely that they will be related to some of the aforementioned

mechanisms. For example, a longitudinal analysis of gene expression differences in a human cohort that

followed 65 healthy individuals between ages 70 and 8057 found changes in the expression of the SFPQ

gene among the strongest associations with age. Of note, the key importance of RNA metabolism dysre-

gulation in human aging has long been known.58

Accumulation of genotoxic damage with chronological age is pervasive, and it may also be significantly in-

cremented through lifestyle choices.29,34,59,60 The fact that augmented DNA damage specifically induces

downregulation of long genes is of great interest. A recent study has shown that UV-mediated global tran-

scription shutdown favored transcription restart from shorter mRNAs with less exons.61 Similarly, transcrip-

tion blockage by DNA damage is known to generate neurodegenerative processes associated with human

genetic syndromes deficient in nucleotide excision repair, such as Cockayne syndrome and xeroderma pig-

mentosum.62 Our data showing that several models of progeroid disease specifically downregulate long

genes are most likely true as well for other TC-NER syndromes.
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The search for aging-related gene signatures has provided relatively little advance to the field. In our

opinion, the straightforward mechanism depicted here (of DNA damage-induced loss of RNAP II proces-

sivity as a molecular driver of aging) might better explain many of the age-associated features andmay thus

provide a fruitful research avenue for the aging field. Alternatively, other mechanisms distinct of TBL

accumulation and loss of RNAP II processivity might also be conceived. For instance, an epitranscriptomic

mechanism mediated by m6A-marked intronic LINE-1 elements has recently been suggested to preferen-

tially impair long gene transcription in human neurons. This may in turn be counteracted by RNA-binding

proteins SAFB and SAFB2, which are highly expressed in the hippocampus and cerebellum.63 As our knowl-

edge of 3D chromatin topology advances, it is likely that novel potential mechanisms will arise. In another

relevant example, long (> 300 kb) neuronal genes have been shown to present a ‘‘gene-decondensed’’ or

‘‘melted’’ state in mouse brain slices that results in higher levels of chromatin accessibility and gene tran-

scription.64 The authors suggested that extensive melting of long genes was associated with the resolution

of topological constraints. It will be interesting to see whether this is still the case in aged mouse brains.

Finally, a third unexplored possibility is that changes in cell cycle duration act as a ‘‘transcriptional filter’’

that constrains transcription of long genes. Mathematical simulations of embryonic development already

suggest the relevance of such mechanisms in early cell type specification.65

Importantly, while this manuscript was under review, other authors66 independently reached the conclusion

that there is a strong transcript length association with aging. Of note, they reported that the age-associ-

ated transcriptome imbalance was countered by several distinct anti-aging interventions (7 out of 11 inter-

ventions tested), indicating that this phenomenonmay be (at least partly) reversible, and thus amenable for

pharmacologic intervention. On the other hand, another recent work in aged mouse liver by Gyenis et al.67

found that accumulation of transcription-blocking DNA damage during normal aging causes RNAP II stall-

ing and leads to disruption of long gene transcription. While this mechanism is compatible with our find-

ings, TBLs in principle should not be reversible. However, tissues with high turnover constantly replace

damaged cells, and thus the additive effect of cellular aging may be diluted. Future work should shed light

on the specific mechanisms underlying loss of long gene transcription associated with aging.

Limitations of the study

This study is mainly limited by the fact that, despite the strong evidence for a gene length-dependent

decrease in mRNA production associated with aging, the underlying mechanism is yet to be fully under-

stood and experimentally validated. Additionally, it is not possible to tell from current single-cell RNAseq

data whether the length-dependent imbalance is due to underexpression of long genes and/or to overex-

pression of short genes. The evidence presented here is entirely based on reanalyzes of bulk and single-cell

RNA sequencing datasets. Further research will be needed to determine the exact mechanisms that result

in this decrease in long gene expression.
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Single-cell RNAseq datasets of 12 tissues from

the Tabula muris senis. Male mice aged 3 and

24 months. Organs: bladder, brain, brain

myeloid, heart, kidney, liver, lung, muscle,

pancreas, skin, spleen and thymus.

Almanzar et al. (2020)20 https://doi.org/10.6084/m9.figshare.
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Single-cell RNAseq datasets of 12 tissues from

Tabula muris senis. Female mice aged 3 and

18 months. Organs: muscle, brain, brain

myeloid, heart, heart, thymus, skin, pancreas,

mammary gland, spleen and kidney.

Almanzar et al. (2020)20 https://doi.org/10.6084/m9.figshare.

12654728.v1

Single-cell RNAseq datasets of heart and aorta

from the Tabula muris senis. Male and female

mice aged 3, 18, 21 and 24 months.

Almanzar et al. (2020)20 https://doi.org/10.6084/m9.figshare.

12654728.v1

Single-cell RNAseq dtaaset of the murine

aging lung.

Angelidis et al. (2019)21 GEO: GSE124872

Single-cell RNAseq datasets of the murine

lung, spleen and kidney.

Kimmel et al. (2019)22 GEO: GSE132901

Single-cell RNAseq dataset of the murine

aging brain.

Ximerakis et al. (2019)23 GEO: GSE129788

Single-cell RNAseq dataset of murine aging

dermal fibroblasts.

Salzer et al. (2018)24 GEO: GSE111136

Single-cell RNAseq dataset of human lungs

(Human lung cell atlas).

Travaglini et al. (2020)27 Synapse: syn21041850

Single-cell RNAseq dataset of lung cells from

young (21, 22, 32, 35 and 41 years old) and old

(64, 65, 76 and 88 years old) male and female

healthy donors.

Raredon et al. (2019)28 GEO: GSE133747

Single-cell RNAseq dataset of human

pancreatic cells from 21-22 and 44–54 years

old male and female healthy donors.

Enge et al. (2017)25 GEO: GSE81547

Single-cell RNAseq dataset of human whole-

skin from donors aged 25–27 (young) and 53–

70 years (old).

Solé-Boldo et al., (2020)26 GEO: GSE130973

Single-cell RNAseq dataset of murine skin

upon UV radiation treatment with and without

vitamin D treatment, and control.

Lin et al. (2022)33 GEO: GSE173385

Single-cell RNAseq datasets of human airway

cells from heavy smokers and never-smokers.

Goldfarbmuren et al. (2020)35 GEO: GSE134174, samples T101, T120, T154,

T167, T85, T164, T165, T166.

Single-cell RNAseq dataset of murine kidney

cells from WT, Adh5 KO (aldehyde clearance

deficient), Csb KO (impaired TC-NER) or a

double KO after methanol treatment.

Mulderrig et al. (2020)38 GEO: GSE175792

RNAseq dataset of human Cockayne

Syndrome (CS) and gene corrected (GC)-MSCs

upon UV treatment and in normal conditions.

Wang et al. (2020)31 GEO: GSE124208; samples GSM3525718,

GSM3525717, GSM3525714, GSM3525715,

GSM3525719, GSM3525716, GSM3525713

and GSM3525720
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List of DEGs between a cancer-free PS-TTD

patient carrying a mutated ERCC2 gene and

her healthy mother in basal conditions and

upon UV-radiation.

Lombardi et al. (2021)39 supplemental information (https://doi.org/10.

1073/pnas.2024502118)

List of Global Aging Genes (GAGs). Zhang et al. (2021)9 https://github.com/czbiohub/tabula-muris-

senis/tree/master/2_aging_signature

Software and algorithms

Jupyter Notebooks and R scripts to reproduce

the analyses described in the article.

Gitlab https://gitlab.com/olgaibanez/

transcription_stress

Jupyter Notebooks to reproduce the analyses

described in the article.

Figshare https://doi.org/10.6084/m9.figshare.

22140515.v1
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Ander Izeta (ander.izeta@biodonostia.org).
Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data. All the transcriptomics datasets used in this study were

downloaded from public repositories, mainly from the Gene Expression Omnibus (GEO). The accession

numbers for all these datasets are listed in the key resources table. The source of the lists of differentially

expressed genes from published studies can also be found in the key resources table.

All original code, including reproducible documented Jupyter Notebooks and R scripts, has been depos-

ited at Figshare and is publicly available as of the date of publication, and its DOI is listed in the key re-

sources table. Code is also available at our GitLab repository (https://gitlab.com/olgaibanez/

transcription_stress).

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.
METHOD DETAILS

Data inclusion criteria

In order to analyze balanced aging datasets, samples were selected according to the following criteria: i)

When sex annotations were available, same-sex datasets were generated. ii) Individuals of the same age

were used to create the "young" and the "old" cohorts. iii) In datasets including samples from different

sub-tissues, samples corresponding to the sub-tissues with representation in the two age cohorts were

selected. In murine datasets derived from Tabula Muris Senis data, 3 month-old and 24 month old mice

were used to form the young and old cohorts, respectively. In all TMS female murine aging datasets

18-month animals were used to form the old cohort. In the murine dermal fibroblast dataset (Salzer

et al. 2018), samples from newborn mice were not included. Regarding human aging datasets, samples

from newborn and middle-aged individuals were discarded and sex-stratified cohorts were created

when possible. In the human aging pancreas dataset (Enge et al. 2017), samples from pediatric donors

as well as those from a 38-year old patient were not used. Thus, only two young (21 and 22 years old)

and two old (44 and 54 years old) donors were included in the aging dataset. In the human trachea of heavy

smokers and never-smokers dataset (Goldfarbmuren et al. 2020) only donors aged over 50 years were

included in the dataset to avoid age as a confounding variable.
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General data processing pipeline

Single-cell RNA-seq datasets were preprocessed using a standard preprocessing pipeline in Scanpy (Wolf

et al. 2018): normalization, log-transformation of counts, feature selection using triku (Ascensión et al.

2022), dimensionality reduction through Principal Component Analysis (PCA) and Uniform Manifold

Approximation and Projection (UMAP) (McInnes et al. 2018), and community detection using Leiden68

(Traag et al. 2019). In some cases, when the original labels were too granular, some cell identities were

merged into broader categories before proceeding to downstream analyses.
Data processing of each dataset

Male murine aging datasets

TMS male mice aged 3 months and 24 months were selected to create balanced datasets of aging of 11

organs (12 comparisons): bladder, brain, brain myeloid, heart, kidney, liver, lung, muscle, pancreas, skin,

spleen and thymus.20

Female murine aging datasets

Due to the lack of available 24-month-old females in the TMS dataset, we chose a set of 3-month and

18-month-old mice to create 12 balanced female aging datasets: TMSF muscle, TMSF brain, TMSF brain

myeloid, TMSD heart, TMSF heart, TMSF thymus, TMSF skin, TMSF pancreas, TMSD mammary gland,

TMSF mammary gland, TMSF spleen and TMSF kidney.

Additional murine and human datasets

We analyzed six additional murine aging datasets of several tissues: lung cells from 3 and 24-month-old

mice21 (GEO:GSE124872), lung, spleen and kidney cells from 7 and 21-months-old mice22 (GEO:

GSE132901), brain cells from 2-3 and 21-23 month-old mice23 (GEO: GSE129788) and dermal fibroblasts

from 2 and 18-month-old mice24 (GEO: GSE111136). We also analyzed four human datasets: lung cells

from 46 and 75 years old male healthy donors27 (available at Synapse under accession syn21041850),

lung cells from young (21, 22, 32, 35 and 41 years old) and old (64, 65, 76 and 88 years old) male and female

healthy donors28 (GEO: GSE133747), pancreatic cells from 21-22 and 44-54 years old male and female

healthy donors25 (GEO: GSE81547), and whole-skin cells from 25-27 and 53-70 years old donors26 (GEO:

GSE130973). Murine lung, human lung and human pancreas datasets were processed and cell type anno-

tated as in Ibáñez-Solé et al.69

Murine aging heart

Four aging balanced datasets were created from samples from the TMS FACS heart and the TMS droplet

heart and aorta datasets. All mice aged 3, 18, 21 and 24 months were selected and combined so that all

mice representing an age cohort within a dataset were of equal age and sex: TMS FACSmale (3–24months),

TMS FACS female (3–18 months), TMS droplet female (3–18 months) and TMS droplet female

(3–21 months).

Murine UV-radiated skin with and without vitamin D treatment

The datasets of murine UV-radiated skin33 corresponding to the three conditions (healthy, UV-radiated and

vitamin D) were downloaded from the Gene Expression Omnibus (GEO: GSE173385). We checked that the

age of the mice used in the study was identical between conditions. The three datasets were subjected to

the standard processing pipeline described inData processing pipeline separately. Then, the Leiden com-

munity detection algorithmwas run and cell type annotations were added to the resulting clusters based on

the expression of known cell type markers. The murine dermal cell type characterization by Joost et al.70

was used as a reference.

The clusters were annotated based on the following gene markers: «IFE basal » (basal keratinocytes from

the interfollicular epidermis, Krt5, Krt14, Mt2); «IFE diff.» (differentiating keratinocytes, Krt1, Krt10, Ptgs1);

«IFE kerat.» (terminally differentiated cells in the keratinyzed layer, Lor, Flg2); «HF» (hair follicle cells, Krt17,

Krt79, Sox9); «Fibroblast» (Col1a1, Col3a1, Col1a2, Dcn, Lum, Sparc); «Myeloid» (Cd74, Lyz2); «SG» (seba-

ceous gland cells, Mgst1, Scd1, Krt25, Pparg); «T cell» (Cd3d, Thy1, Nkg7); «EC» (endothelial cells, Mgp,

Fabp4); «Melanocyte» (Mlana, Pmel, Tyrp1); «Erythrocyte» (Hbb-bs, Hbb-bt, Hbba-a2).
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The Lilliefors normality test71 was conducted on the log-transformed lengths of the differentially expressed

genes for each of the conditions, using Python module statsmodel. The null hypothesis – that the log10

gene lengths follow a normal distribution – could not be rejected (cutoff: 0.05), meaning that the

distribution of gene lengths within each group is normally distributed.We tested whether themean lengths

of the DEGs were significantly different across conditions using ANOVA (stats.f_oneway). The null

hypothesis that the three means were equal was rejected (p value 3.67E-06). Post-hoc analysis (Tukey

test, scikit_posthocs.posthoc_tukey) was run to test which of the pairwise comparisons be-

tween the three conditions yielded a statistically significant difference. Additionally, statistical signif-

icance was confirmed with non-parametric alternatives: Kruskal-Wallis (stats.kruskal) and Dunn test

(scikit_posthocs.posthoc_dunn).

Human airway cells from heavy smokers

The dataset used in Goldfarbmuren et al.35 was downloaded from the Gene Expression Omnibus (GEO:

GSE134174). Original cell type annotations were used, but subtypes of the same cell types were pooled

into a single category. The final dataset contained 13 cell types: «Diff. basal» (differentiating basal cells),

«Prolif. basal» (proliferating basal cells), «Prot. basal » (proteasomal basal cells), «ciliated» (the two mature

ciliated clusters –A and B– were pooled together), «ionocytes», «PNEC» (pulmonary neuroendocrine cells),

«secretory/ciliating» (hybrid secretory early ciliating cells), «KRT8 high», «secretory» (mucus secretory cells),

«tuft-like» (Tuft-like cells), «SMG basal» (basal cells from the submucosal gland or SMG, the two clusters –A

and B– were pooled into a single category), «SMG myoepithelial» (myoepithelial cells from the SMG),

«SMG secretory» (mucus secretory cells from the SMG).

In order to control for age as a possible confounding factor, we checked the ages of the subjects in the

original dataset. We discarded the youngest donors and only kept samples from donors aged >50 years.

The final dataset consisted of 21,425 cells from 8 donors. Heavy smokers (T101, T120, T154, T167, T85) were

aged 55–66 years, and never-smokers (T164, T165, T166) were 64–68 years old. Since the average never-

smoker age is slightly higher than the average heavy-smoker age, we can safely attribute transcriptional

changes between these two groups to their smoking status.

The Lilliefors test71 was used to test whether the log10 (length) of the DEGs for the two conditions ("heavy

smokers" and "never-smokers") were normally distributed. The null hypothesis could be rejected (cut-off:

0.05) for the "never-smokers", meaning that DEGs associated with that condition were not normally distrib-

uted, so a Mann-Whitney U test was used to compare between the means of the two distributions.

Kidney cells from mouse model of Cockayne Syndrome

The dataset generated by Mulderrig et al.38 was downloaded from the Gene Expression Omnibus (GEO:

GSE175792). Proximal tubule cells were selected on the basis of marker expression, following the annota-

tion done by the authors (see Extended Data, Figures and Tables from Mulderrig et al.38).

Human Cockayne Syndrome-derived MSCs

The dataset byWang et al.31 was downloaded from the Gene Expression Omnibus (GEO: GSE124208). The

following samples were included in the dataset: GSM3525718, GSM3525717, GSM3525714, GSM3525715,

GSM3525719, GSM3525716, GSM3525713 and GSM3525720. Those samples correspond to four experi-

mental conditions: MSCs from Cockayne syndrome patients carrying the ERCC6 mutation, with (UV) and

without (ct) UV-radiation treatment (MSC_mut_ct, MSC_mut_UV); MSCs from gene-corrected cells with

and without UV radiation treatment (MSC_GC_ct andMSC_GC_UV). All samples weremerged into a single

dataset and expression values were log-transformed.

DEG list between human PS-TTD-derived and healthy cells

The complete list of DEGs between a cancer-free PS-TTD patient carrying a mutated ERCC2 gene and her

healthy mother in basal conditions and upon UV-radiation were obtained from the Supplementary Material

provided by Lombardi et al.39 From the original DEG list, we selected the genes with a log fold-change

greater than 2 (either overexpressed in the sample from the PS-TTD patient or in the sample from the

healthy donor). The same threshold for statistical significance (p value % 0.05) as the one defined by the

original authors was used.
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Icons used in the Figures

The following icons were downloaded from the Noun Project (CC BY 3.0): mouse (Pedro Santos), syringe

(Anconer Design), lamp (Stan Diers), test tube (Misbahul Mun) cigarette (Robert Kyriakis), scissors (Sandra).

Gene length analysis

Human and mouse gene length annotations were obtained from Biomart. The version of Ensembl used in

the analysis was Ensembl 106 (released in April 2022, human: GRCh38.p13; mouse: GRCm39). Gene length

was calculated by subtracting the coordinates for the gene end from the gene start: ‘‘Gene end (bp)’’ -

Gene start (bp)’’.

Length-dependent difference in expression in aging and genotoxic conditions

Two different types of analyses were run between conditions: global average gene expression and length-

dependence of transcriptional decay and gene length analysis of the differentially expressed genes

between conditions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Gene length dependence in age-related transcriptional decay

Here, we computed the average gene expression across all cells for a pair of conditions (for instance,

"young" and "old"). We used a scatter plot to represent each gene according to its average expression

in old cells (y axis) against its average expression in young cells (x axis). This is a way of looking at how pre-

dictable the expression of each particular gene is in old cells based on the expression of the same gene in

young cells. As we observed that most genes show a strong correlation between young and old cells, even

though many of them show expression levels that are lower than what we would have expected from their

expression in young individuals, we then looked at the role gene length plays in this transcriptional decay.

We did so by splitting the transcriptome into four quartiles according to their length. We considered whole

sequence length from the transcription start site to the transcription end site. Then, we fitted a linear

regression model to the average gene expression in old and young cells for each of the quartiles, thus ob-

taining a separate linear model for each quartile, using the formulaME_old�ME_young *Q, whereME old

and ME young are the mean expression vectors for old and young cells, and Q is the vector that assigns

each gene to a length quartile, to be used as a factor by the linear model. The model included an intercept,

which would correspond to the old mean expression value for a gene whose length is in the 1st quartile and

young mean expression value is 0. We observed that the shorter the genes included in the linear model (for

instance, Q1 genes), the greater was the slope of the resulting straight. We performed statistical analysis to

compare between the slope of the Q1 model against each of the three remaining models (Q2, Q3 and Q4).

Additionally, we fitted a linear regression model to the average gene expression in old and young cells,

using log10(gene length) as a continuous interaction term, using the formula ME_old � ME_young * L,

where L is the log10(gene length). The intercept in this model would correspond to the oldmean expression

value when log-transformed gene length is 0. We conducted a bootstrap-based permutation analysis for

B=200 bootstrap samples for each aging dataset to verify the robustness of the length-association.

The same analysis was extended to conditions other than aging, by making analogous comparisons. In the

UV-radiated murine skin analysis, we compared UV-radiated skin against the healthy skin control (to test for

the effect of UV-radiation), the UV-radiated skin against the vitamin D-treated and UV-radiated skin (effect

of vitamin D treatment on damage caused by UV-radiation), and the vitamin D-treated skin against the

healthy skin control (effect of UV-radiation after vitamin D treatment). In the analysis on the murine model

for Cockayne syndrome we compared between each of the knockouts (Adh5�/�, Csbm/m, and double KO)

against the wild type (WT). In the analysis of human mesenchymal stromal cells derived from Cockayne syn-

drome patients, we compared between the following conditions: UV-radiated cells against control (both in

mutant and gene corrected cells), and ERCCmut against ERCCGC (to test for the effect of carrying the

ERCC6 mutation, both in basal conditions and after UV-radiation exposure).

Gene length analysis of the differentially expressed genes between conditions

We carried out two types of differential expression analysis: overall differential expression between condi-

tions and differential expression at the cell type level. Overall differential expression between conditions is

based on the assumption that the changes in cell type composition between the conditions to be
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compared are negligible, so that the genes that are detected to be differentially expressed do not corre-

spond to markers defining specific cell types that are more abundant in one of the conditions. Differential

expression analysis between conditions at the cell type level identifies genes that are overexpressed in one

of the conditions. Of course, DEGs can only be computed for cell types that are present in the conditions to

be compared in sufficient amounts (we used 10 cells as the minimum). Its output is not directly affected by

changes in cell type composition between conditions. However, if the abundance of cell type under study is

very different between conditions – if one cell type is very rare in one of the conditions – the population

might not be well sampled for that condition and the gene length analysis might not be reliable. We there-

fore used both approaches as they are complementary to one another. In either case, we used the Scanpy

function sc.tl.rank_genes_groups with method = ‘‘wilcoxon’’ to obtain the top 300 differen-

tially expressed genes between conditions.

In most cases, pairwise comparisons were made, as in the aging analysis ("young" vs "old") or when

analyzing the effect of smoking of human airways ("never-smokers" vs "heavy smokers"). In those cases,

two lists of genes were obtained: one per condition. In the analysis of murine UV-radiated skin (Figure 4),

we compared between the three conditions simultaneously. In that case, each of three DEG lists corre-

sponds to the genes that are over-expressed in one condition against the other two conditions pooled

together. First, the Lilliefors test71 was used to check whether gene lengths in each of the conditions

were normally distributed. In cases where the null hypothesis could be rejected (p-value < 0.05) in at

least one of the conditions to be compared, a non-parametric test was used to compare between means.

In order to make statistical comparisons between the mean gene length between conditions, we used

the following tests: Student’s T test (two conditions, normally distributed), Mann-Whitney’s U test (two

conditions, not normally distributed), ANOVA (three conditions) and Tukey’s test for post-hoc analysis.
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