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Abstract

The number of scenarios in which mobile robots can be seen performing a wide
range of tasks is increasing, being the most common transport, cleaning and rescue
operations. For example, the media has recently shown how robots can disinfect
schools and hospitals to prevent people from becoming infected with a certain virus
and stop its spread. The functions that are perhaps most impressive are those for
public assistance, but the number of applications for process automation in industry
is much higher.

Among the capabilities that a mobile system can have, flexibility, security and
robustness are probably the most demanded. On the one hand, whatever the
purpose for which it is designed, a mobile platform must be able to adapt to the
changes that an environment may undergo over time, or to the different casuistry
that may occur in it on a day-to-day basis. In addition, it must avoid damaging the
rest of the machinery and, especially, harming the people it shares the space with.
On the other hand, of course, the mobile platform must perform the tasks assigned to
it effectively and within a given time interval. Although significant progress has been
made in this field in the last decades, there are still challenges that these systems
have not been able to overcome.

One aspect where today’s mobile platforms cannot compete with the level already
achieved in industry is accuracy. The fourth industrial revolution brought with it
the implementation of machinery in most industrial processes, and a clear strength
of these is their repeatability. Autonomous mobile robots, which offer the greatest
flexibility, lack this capability, as the most successful ones are based on probabilistic
algorithms that depend on the perception of the environment. For this reason, a
large part of the research work presented in this document focuses on quantifying the
error committed by the main mapping and localisation methods, offering different
alternatives for improving their positioning.

To perceive this environment around the robot, the main sources of information
are exteroceptive sensors, which measure the surroundings and not so much the
state of the robot itself. Because of this, some methods are very dependent on the
scenario for which they have been developed, and do not obtain the same results
when moving to a different scenario. Most mobile platforms generate a map that
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represents the environment, and use it for many of their calculations for actions
such as, e.g., navigation. Map generation is a process that, in most cases, requires
human intervention and has a great impact on the subsequent performance of the
robot. In the last part of this research work, a method to optimise this step in order
to generate a richer model of the environment without requiring additional time is
proposed.
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Resumen

Cada vez son más los escenarios en los que se ven robots móviles realizando tareas
muy diversas, siendo las más comunes labores de transporte, limpieza o rescate.
Sin ir más lejos, los medios de comunicación han mostrado recientemente cómo
los robots pueden desinfectar escuelas y hospitales para prevenir que las personas
se infecten de un determinado virus y evitar que este propague. Las funciones
que quizá más impresionan son las de ayuda a la ciudadanía, pero el número de
aplicaciones destinadas a la automatización de procesos en la industria es mucho
más elevado.

Entre las capacidades que puede ofrecer un sistema móvil, probablemente las más
demandadas son la flexibilidad, seguridad y robustez. Por un lado, sea cual sea el
objetivo para el que se diseñe, una plataforma móvil debe ser capaz de adaptarse a
los cambios que pueda sufrir un entorno con el paso del tiempo, o a las diferentes
casuísticas que se puedan dar en este en el día a día. Además, debe evitar cualquier
daño que pueda producir al resto de maquinaria y, especialmente, a las personas con
las que comparta el espacio. Por otro lado, como cabe esperar, la plataforma móvil
debe realizar las tareas que se le asignen de forma efectiva y dentro de un intervalo
de tiempo determinado. Pese a que las últimas décadas los avances conseguidos en
este campo han sido importantes, todavía existen retos que estos sistemas no han
conseguido superar.

Un aspecto en el que las plataformas móviles actuales se quedan atrás en compara-
ción con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta
revolución industrial trajo consigo la implantación de maquinaria en la mayor parte
de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots
móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de
esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas
por los sensores y al dinamismo existente en la mayoría de entornos. Por este
motivo, gran parte de este trabajo se centra en cuantificar el error cometido por
los principales métodos de mapeado y localización de robots móviles, ofreciendo
distintas alternativas para la mejora del posicionamiento.

Asimismo, las principales fuentes de información con las que los robots móviles
son capaces de realizar las funciones descritas son los sensores exteroceptivos, los
cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón,
algunos métodos son muy dependientes del escenario en el que se han desarrollado,
y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas
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móviles generan un mapa que representa el entorno que les rodea, y fundamentan en
este muchos de sus cálculos para realizar acciones como navegar. Dicha generación
es un proceso que requiere de intervención humana en la mayoría de casos y que
tiene una gran repercusión en el posterior funcionamiento del robot. En la última
parte del presente trabajo, se popone un método que pretende optimizar este paso
para así generar un modelo más rico del entorno sin requerir de tiempo adicional
para ello.
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Introduction 1
„Be the change that you wish to see in the world.

— Mahatma Gandhi

This chapter is an overall introduction to the work. First, we describe the context in
which this research has been developed in Section 1.1. In Section 1.2, the motivation
for doing it is explained, and Section 1.3 contains its objectives and scope. The
scientific publications related are listed in Section 1.4. Finally, the main structure of
the document is presented in Section 1.5.

1.1 Context

By the time of writing this thesis proposal, robots are more demanded than ever
by society [@191]. Not only the industry, but also hospitals, schools and smaller
businesses are using robots for an increasing variety of tasks. However, in order to
understand the relevance of this event, it is interesting to make a brief tour through
the history of robots first.

The word robot is relatively new in the English language. It was first introduced
by the Czech playwright, novelist and journalist Karel Čapek in 1920 in his play
R.U.R. (Rossum’s Universal Robots) [33]. There, robots were some creatures capable
of doing all the work that humans preferred not to do. In fact, the word comes
from an Old Church Slavonic word, rabota, which means servitude of forced labour,
although it also has cognates in German, Russian, Polish and Czech [@43]. Never-
theless, the concept of an entity capable of carrying out a complex series of actions
automatically originates in the mythologies of many cultures around the world.
Different inventors and engineers from ancient civilisations already attempted to
build self-operating machines. In ancient Greece mythology, there was the idea of
Talos, a giant automaton made of bronze that protected Europe in Crete from pirates
and invaders. In the same 4th century BC, the Greek mathematician Archytas of
Tarentum built a steam-powered mechanical bird, which he called "The Pigeon" [95].

3



The engineer Heron of Alexandria (10-70 AD) also created numerous automatic de-
vices that users could modify, and described machines driven by air, steam and water
pressure [179]. The Chinese scholar Su Sung erected a clock tower in 1088 with
mechanical figures that chimed the hours [@218]. Ismael al-Jazari (1136-1206), a
Muslim inventor of the Artuqid Dynasty, designed and built a series of automated
machines, including kitchen utensils, water-powered musical automaton, and in
1206 an early programmable automata. The machines looked like four musicians
aboard a boat on a lake, entertaining guests at royal feasts. Their mechanism con-
tained a programmable drum with pegs that clashed with small levers that operated
percussion instruments. The rhythms and patterns played by the drummer could be
changed by moving the pins [89].

It is quite clear that the idea of automating tasks has always been present in the
human mind, but it was not until the 20th Century that it was implanted on a massive
scale. The Digital Revolution, or Third Industrial Revolution, brought to the factories
and businesses the shift from mechanical and analogue electronic technology to
digital electronics as a means of storing, transferring and utilising information. At
the heart of this period is the mass production and widespread use of digital logic
circuits, and their derivative technologies, including the digital computer, the digital
mobile phone, and the Internet. At the same time, the first large industrial robots
came into use, intended for heavy, repetitive tasks consisting of simple movements.
Due to the speed, accuracy, and decreased cost with which they performed these
functions, the 1980’s saw an explosion in the development of robotics and the decade
is known to be the beginning of the robotics era. It is considered that the seed that
would later give rise to the intelligent robotics we know today was sown at this time.
Since then, robots have evolved rapidly, increasing their capabilities and the number
of scenarios in which they can outperform humans [93, 103, 120, 88]. Nevertheless,
in order to perform many of these tasks autonomously, robots need to move around
the environment.

It was not until 20 years after the first mobile robots appeared in the 1940’s [249]
that Shakey, a general purpose mobile robot capable of reasoning about its own
actions, was built [172]. Mobile robots have the ability to move around the envi-
ronment and are not fixed to a physical location. They may have guidance devices
that allow them to follow a predefined navigation route in a relatively controlled
space [140]. Alternatively, they can be autonomous mobile robots (AMRs) capable
of navigating in a semi-structured environment without the need of physical or
electromechanical guidance devices [201]. In the last years, mobile robots have
become increasingly common in manufacturing and logistics applications, but they
are also being used for search and rescue, hazardous material handling, security,
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and other applications where it is necessary or desirable to have a mobile robot that
can navigate autonomously in a semi-structured environment.

The use of mobile robots in emergency situations could also help in search and rescue
tasks, and is another context that has recently attracted a great deal of interest.
Historically, the push for rescue robotics began in 1995 in the aftermath of the
Great Hanshin Earthquake in Japan [46]. Rescue robots have been in use for a long
time and their technology has advanced considerably over the years, such as their
mechanical reliability when used in the field. Innovation is a key factor in robotic
technology, which is seen as a next-generation industry with the potential to foster
employment and economic development as well as contribute to advancing the 2030
Agenda for Sustainable Development with practical solutions [@61]. They may
assist rescue efforts by searching, mapping, removing rubble, delivering supplies,
providing medical treatment or evacuating casualties.

In order for mobile robots to be able to perform all these tasks adequately, a number
of problems need to be tackled, such as:

• Perception and understanding of the surroundings.

• How to compute the absolute or relative localisation in the environment.

• Intelligent decision making.

• Robust and safe navigation and action execution.

• Error recovery behaviours.

• Interaction with other entities (humans, robots, etc.).

These problems have different solutions in the scientific literature, which are dis-
cussed further in this work, but most of them are mainly tested in setup environments
where certain conditions are met for the system to work. A real environment is
much more demanding than the situations to which these systems are exposed for
evaluation, which means that they do not always meet the requirements for correct
and continuous operation in such scenarios. In addition, industrial processes require
a level of robustness and speed of execution that AMRs often do not achieve. Outside
this realm, when robots are used in places where human presence or interaction is
constant, they fall even further short of society’s expectations and demands (mainly
generated by science fiction). Therefore, there is a need for further research in order
to develop techniques that can efficiently and robustly respond to the problems of
real environments.
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In line with the above, the aim of this research is to push the boundaries of mobile
robot navigation towards more reliable and autonomous behaviour, with some em-
phasis on indoor industrial environments. There are several entities that have made
this research work possible, the most important of which are described below.

1.1.1 Tekniker

Tekniker is a technology centre located in Eibar (Spain) specialised in Advanced
Manufacturing, Surface Engineering, Product Engineering and ICT for manufactur-
ing. Its mission is to deliver growth and well-being to society at large via R&D&I
and to promote the competitiveness of the business fabric in a sustainable way.
Throughout its 41-year history, Tekniker has participated in 268 European projects,
leading 23% of them in the last decade, and only in 2021, it published 62 research
articles, 41 of which were in Q1 journals. I started working with Tekniker in the
final year of my Bachelor in Computer Science and, since then, this is where I have
developed my career as a researcher.

1.1.2 University of the Basque Country (UPV/EHU)

The University of the Basque Country (UPV/EHU) is the public university of the
Basque Autonomous Community (Spain). It is an institution with more than 42
years of history with state of the art facilities, which underpins much of the region’s
scientific and technological progress and success. Following their motto ’Give
and spread knowledge’, UPV/EHU is an integrating institution willing to produce
knowledge, experience and research in order to forward them to the general public.
UPV/EHU has given me the scientific background I need to develop as a researcher.
Firstly, through the Bachelor’s Degree in Computer Science and its emphasise in
the mathematical and theoretical foundations of computing. Then, via the Master’s
Degree in Computational Engineering and Intelligent Systems with its focus on
research and, finally, during the Doctoral Programme in Informatics Engineering.

1.1.3 Autonomous Intelligent Systems (AIS) Laboratory at the
University of Freiburg

The Autonomous Intelligent Systems (AIS) laboratory belongs to the Department
of Computer Science at the Albert Ludwig University of Freiburg (Germany). Its
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research, led by Prof. Dr. Wolfram Burgard, is focused on autonomous mobile
robots, including: multi-robot navigation and coordination; environment modelling
and state estimation; interaction; and applications in human-populated natural
environments. In the third year of my Ph.D., I had the opportunity to do a stay in the
AIS group as a guest researcher, where we worked on the design of an autonomous
mapping system.

1.2 Motivation

I have always been fascinated by technology, and, particularly, by robots. But rather
than just imagining a world full of futuristic machines, I wanted to understand
how these devices were designed and programmed. However, it was not until 2012
that I really got into it. In the Bachelor’s Degree in Computer Science, I learnt
how computers work, the many possibilities they offer and what their limitations
are. Three years later, I was programming my first mobile robot. It was a simple
application in which a Kobuki-like1 platform had to follow a line drawn on the
ground and complete the course in the shortest possible time. Later, I had the
opportunity to do an internship at Tekniker, and it is here where I really discovered
the current state of the art and potential of mobile robotics.

In fact, a large part of my master’s thesis was done in Tekniker, in which I rehabili-
tated a service robot while improving some of its functionalities [134]. The robot
had to navigate through the hall of the building, provide information to visitors
and guide them to the points they requested. I soon realised that it was a very
demanding environment, as it had: large windows; dynamic and irregular objects;
narrow places; and stairs. Besides, there was often a large presence of people, whose
attention was captured by the robot, causing them to surround it. State of the
art algorithms were not, and still are not, prepared for all the circumstances men-
tioned, so the robot’s localisation, accuracy and trajectories were not as expected.
Its behaviour differed from the tests conducted in the laboratory and in the same
environment under controlled conditions, being far from ideal. In addition, we
wanted the system to be operating continuously. In such a long period of time and
with that unpredictable dynamism of the environment, it was nearly impossible to
finish the day without any issues. While working on this project, I was also involved
in other tasks related to mobile robotics, and worked side by side with colleagues
who had both industrial and research experience.

1http://kobuki.yujinrobot.com/about2/
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All these circumstances allowed me to learn about mobile robotics from different
points of view, experiencing its limitations and knowing the requirements that
each application and/or user has. I realised that there was a gap between what
mobile robots could offer and what the world was demanding. Moreover, the use of
these technologies continued to grow exponentially, and more and more areas were
looking to implement them. So, there was a clear need to increase the capabilities
of mobile robotics and its adaptation to different scenarios. As most of the research
projects and applications focused on indoor environments, we wanted the work
presented here to follow this line as well.

1.3 Objectives and Scope

In line with the ideas mentioned in the previous section, the overall objective of
the thesis project is to increase the autonomy and reliability of mobile platforms
in industrial environments. To achieve this, first of all, it is necessary to determine
the state of the art of current technologies, in order to be able to take them a step
further. Still, the scope of the research has to be bounded, as mobile robotics in
general encompasses a large number of challenges, which cannot be addressed in a
single project.

In this case, the developments focus on vision based systems, since we consider
them to have the best balance among throughput, flexibility, accuracy and cost.
They also offer the possibility to gather information of the surrounding without
adding supplementary elements to it, as in the case of radio-frequency identification
(RFID) technology. Furthermore, the work is limited to indoor environments, for
being this where some of the circumstances we are most interested in occur, such
as areas without a stable signal for global navigation satellite systems (GNSS).
Besides, it is also easier to control external conditions in this kind of places, e.g.,
illumination. More specifically, the research work is oriented towards industrial
indoor environments, as this is the area for which most applications are designed
and, consequently, where our developments can have the greatest collaboration and
impact. In one way or another, in all cases the experiments have been conducted
with a certain level of dynamism in the environment. However, this problem is not
directly addressed in our work. In addition, all the systems have been implemented
over ground wheeled robots, discarding aerial, aquatic and hybrid platforms or any
other type of mechanics (legged, tracked, etc.).

Three main objectives can be identified in this work:
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• Evaluate state-of-the-art methods for simultaneous localisation and map-
ping (SLAM). Perform a rigorous qualitative and quantitative evaluation of
state-of-the-art procedures for SLAM, in order to determine their requirements,
strengths and limitations.

• Improve accuracy and repeatability. Increase the accuracy in the positioning
of mobile platforms in indoor environments, increasing its repeatability and
ensuring that when the robot reaches the destination, it always does in the
same pose.

• Increase autonomy for mapping. Automate the process of mapping unknown
environments to make it more efficient and increase the adaptability to new
configurations. Similarly, facilitate the deployment of a mobile robot in any
scenario and the management of changing environments.

1.4 Contributions

Regarding the scientific contributions generated during the research, the following
list displays the articles that have been published and include contributions of the
author:

(a) I. Lluvia, A. Ansuategi, C. Tubío, L. Susperregi, I. Maurtua and E. Lazkano,
"Optimal Positioning of Mobile Platforms for Accurate Manipulation Opera-
tions", Journal of Computer and Communications, 2019, DOI: 10.4236/jcc.2019.75001.

(b) M. Pattinson, S. Tiwari, Y. Zheng, M. Campo-Cossio, R. Arnau, D. Obregón,
A. Ansuategi, C. Tubío, I. Lluvia, O. Rey, J. Verschoore, L. Lenža and J.
Reyes, "GNSS precise point positioning for autonomous robot navigation in
greenhouse environment for integrated pest monitoring", in 12th Annual Baška
GNSS Conference, 2019, DOI: 10.5281/zenodo.2620125.

(c) S. Tiwari, Y. Zheng, M. Pattinson, M. Campo-Cossio, R. Arnau, D. Obregón, A.
Ansuategi, C. Tubío, I. Lluvia, O. Rey, J. Verschoore, V. Adam and J. Reyes,
"Approach for Autonomous Robot Navigation in Greenhouse Environment for
Integrated Pest Management", in IEEE/ION Position, Location and Navigation
Symposium (PLANS), 2020, DOI: 10.1109/PLANS46316.2020.9109895.

(d) I. Lluvia, E. Lazkano, and A. Ansuategi, "Active Mapping and Robot Explo-
ration: A Survey", Sensors, 2021, DOI: https://doi.org/10.3390/s21072445.
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(e) I. Lluvia, E. Lazkano and A. Ansuategi, "Camera pose optimisation for 3D
mapping", IEEE Access, 2023, DOI: 10.1109/ACCESS.2023.3239657.

1.5 Thesis Outline

The thesis proposal presented here is organised as follows.

Chapter 2, Theoretical Background

Related works on the literature of mobile robotics are reviewed. From the classical
but currently most used methods to the latest contributions, the relevant works
related to the objectives of this research work are analysed. They define the canvas
in which we want to paint.

Chapter 3, Experimental Evaluation of Current Mapping Solutions

As starting point, the most well-known mapping existing methods are evaluated and
compared empirically in a concrete industrial environment. To develop our contribu-
tions, the effectiveness of current solutions must be evaluated in our workspace, as
they may set our limitations, challenges and opportunities.

Chapter 4, Accurate Positioning

Our proposed approaches to improve the localisation accuracy of a mobile platform
are explained. The experiments demonstrate that the position accuracy obtained
with the current solutions is not enough for some tasks, thus we propose two
different procedures to improve it.

Chapter 5, Active Mapping and Exploration

The system developed for autonomous mapping of unknown regions is defined.
After a deep revision of the state of the art in indoor mapping, we propose a system
that is capable of mapping an indoor environment autonomously.

Chapter 6, Conclusions and Future Work

Lessons learned in the course of this project are described. This chapter summarises
the research performed, as well as its contributions to the scientific community, and
registers the conclusions drawn from it. Finally, some ideas for further research are
presented.
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Robot Navigation: Concepts
and Background

2

„I have not failed. I’ve just found 10,000 ways
that won’t work.

— Thomas Alva Edison

This chapter provides a general review of the literature on different lines of research
in mobile robotics. It explains in detail techniques that, although not particularly
recent, are the basis of many of the methods being used at the present time. The
theoretical framework on which the developments performed in the following
chapters are based is defined in this chapter.

2.1 Introduction

Autonomous navigation is probably one of the most difficult skills expected of a
mobile robot. In fact, it is the only one the general public thinks of when talking
about, for example, an autonomous vehicle. However, its success depends on the
correct performance of four main functions: environment interpretation, localisation,
planning and motion control. First of all, the robot must be able to perceive
the environment and represent it unequivocally, as well as store the information
necessary to perform, at least, the tasks for which the robot is designed. Secondly,
the system must be able to position itself in that environment and, likewise, be able
to locate each element in it. In addition, it must have the ability to decide what
decisions it should take to reach a certain destination safely. Last but not least, the
robot must be able to command its locomotion system accordingly to follow the
planned trajectory correctly.

The estimation of the change in position over time is called odometry, and is a
core competency of a mobile robot. As data from motion sensors is used for this
purpose, and sensors can give unexpected readings per se, odometry will also have
an associated noise or uncertainty. Historically, odometry in mobile robotics has been
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estimated using wheel encoders, and one point to note is that the noise related to this
calculations is cumulative. The error made in any of the measurements is carried over
to all subsequent ones, which makes the problem of calculating and correcting that
deviation much more complex. Nevertheless, if each measurement obtained were
completely independent of the others, the error could be bounded and its effects
reduced by taking more measurements. For example, a thermometer measures
temperature, more or less accurately, but by taking many measurements one could
calculate its distribution and apply a correction. As a consequence, exteroceptive
sensors that provide absolute measurements such as cameras or satellite systems are
useful in order to correct this drift and maintain a correct localisation.

As each scenario has its own requirements and limitations, the sensors used as a
source of information also vary. Still, most of them can be classified into range
sensors and vision-based systems, either in 2D or 3D systems. Many other sensors can
be configured as primary information sources or act as additional ones, e.g. global
navigation satellite systems (GNSS), rotary encoders, sonars or inertial measurement
units (IMUs) [59, 14, 8, 200]. The wheels of a moving platform, for example, can slip
or even rotate in the air depending on the surface, generating completely erroneous
odometric information. For this reason, IMUs are incorporated in many vehicles as
complementary sensors because, compared to other devices, they provide reliable
information about the axes of rotation. For example, they are not as dependent
as other sensors on the environment in which they operate, although they cannot
perceive the surroundings. In fact, some cameras integrate IMUs in themselves 1 2.
Many researchers opt for lasers or cameras because a large number of robots are
intended to operate in indoor environments without GNSS signal, and other sensors
are often not accurate enough.

With the expansion of cameras, the concept of visual odometry also started to get
more attention. Briefly, it is the process of determining the position and orientation
of a robot, i.e., odometry, through images, instead of wheel encoders. Whether
visual odometry is monocular (one camera) or stereo (two or more cameras), it
extracts relevant data from different images in a sequence to estimate the movement
associated to the corresponding perspectives. Similarly, visual-inertial odometry
refers to calculating odometry with the use of visual and inertial sensors, and lidar
odometry corresponds to same process, but using a lidar.

In the end, many of these techniques end up considering sets of spatial points, also
known as point clouds, specially those based on lidars or depth images. The process

1https://www.intelrealsense.com/depth-camera-d435i/
2https://store.opencv.ai/collections/all/products/oak-d-poe
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of finding the spatial transformation that aligns two point clouds is known as point
cloud registration or scan matching. Instead, if the point set is purely in 2D pixel
coordinates, it is called image registration. However, usually, even features extracted
from 2D images are represented as 3D points with respect to a global reference
frame, simplifying the association of the same point in space captured at different
pixel coordinates in different images.

2.2 Probabilistic Algorithms

The favourable outcomes of most robotic algorithms depend to a large extent on the
use of precise sensors and on obtaining accurate models. But these two conditions
are not enough to guarantee full success, since errors and uncertainties will always
be present in any real robotic system. Faced with this problem, probabilistic methods
have shown to offer the most reliable results, as they are based on models that
represent the information through probability functions, being more robust against
the sensor limitations and noise in the robot kinematics and in the model of the
environment. On the other hand, the most cited disadvantages of probabilistic
algorithms are twofold: the computational inefficiency of having to consider entire
probability densities of the robot’s position space, and the inherent need to discretely
approximate the continuous reality of the robot context [226].

The basic principle underlying all successful probabilistic mapping algorithms is the
Bayes’ theorem. It states that the posterior probability of a hypothesis, given some
evidence, is proportional to the prior probability of the hypothesis multiplied by
the likelihood of the evidence given the hypothesis. Bayes’ theorem understands
probability inversely to the total probability theorem, which relates the conditional
probability with the marginal probability, as in Equation 2.1.

P (A) =
∑

n

P (A|Bn)P (Bn) (2.1)

The total probability theorem makes inference about an event B from the outcomes
of the events A. Bayes rule calculates the probability of A conditional on B. Let
{A1, A2, ..., Ai, ..., An} be a set of mutually exclusive and exhaustive events such
that the probability of each of them is non-zero (P [Ai] ̸= 0 for i = 1, 2, ..., n). If B

is any event for which the conditional probabilities P (B|Ai) are known, then the
probability P (Ai|B) is given by the expression:
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P (Ai|B) = P (B|Ai)P (Ai)
P (B) (2.2)

The Bayes filter, also known as recursive Bayesian estimation, extends the Bayes
rule of Equation 2.2 to deal with time domain estimation problems [99]. The Bayes
filter is a general probabilistic approach for estimating an unknown probability
density function recursively over time using incoming measurements and a mathe-
matical process model. It allows to compute the sequence of a posterior probability
distribution that cannot be directly observed.

In probabilistic robotics, the Bayes filter is used to calculate the posterior probability
of a robot’s position, taking into account both the measurement noise and the
uncertainty in the robot model. The whole process can be described using a graph
known as the Hidden Markov Model (HMM) [17], as shown in Figure 2.1.

Fig. 2.1. – Bayesian Network of a Hidden Markov Model in the robotic mapping problem. x
represents states of the robot, z observations, u actions, and m states of the map
at each time step t.

Thus, with a Bayes filter the posterior probability on state x at time step t can be
expressed as:

P (xt|z0:t, u0:t) = P (zt|xt, z0:t−1, u0:t)P (xt|z0:t−1, u0:t)
P (zt|u0:t)

(2.3)

In Equation 2.3, the posterior distribution P (xt|zt, ut) is also called belief Bel(xt),
and it represents the confidence or certainty of the state xt, given the all the
observations z0:t and actions u0:t until time t. The denominator P (zt|u0:t) is a
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normaliser that is necessary to ensure that the left hand side of Bayes rule is indeed
a valid probability distribution, and it can be replaced by a constant η:

Bel(xt) = ηP (zt|xt, z0:t−1, u0:t)P (xt|z0:t−1, u0:t) (2.4)

Applying the assumptions of Markov chain model and the law of the total probability
to Equation 2.4, we obtain the following:

Bel(xt) = ηP (zt|xt)P (xt|z0:t−1, u0:t)

= ηP (zt|xt)
∫

P (xt|xt−1, z0:t−1, u0:t)P (xt−1|z0:t−1, u0:t)dxt−1

= ηP (zt|xt)
∫

P (xt|xt−1, ut)P (xt−1|z0:t−1, u0:t)dxt−1

= ηP (zt|xt)
∫

P (xt|xt−1, ut)P (xt−1|z0:t−1, u0:t−1)dxt−1

(2.5)

In Equation 2.5, the second factor within the integral represents Bel(xt−1), which
is the confidence of the state at time t − 1. A more compact way of expressing
Equation 2.5 using this recursive form of the Bayes filter is:

Bel(xt) = ηP (zt|xt)
∫

P (xt|xt−1, ut)Bel(xt−1)dxt−1 (2.6)

To get the actual value of the belief Bel(xt), the two generative models involved
must be defined. The probability P (zt|xt) is often referred to as the perceptual model,
as it describes how the observations z are generated in the different x states of the
robot. The other model, P (xt|xt−1, ut), is known as the motion model, since it shows
the probability with which the action u leads to the state xt from the previous state
xt−1. It should be stressed that this explanation assumes that the map is static, the
noise in each state is independent and the model has no approximation errors. It
satisfies the Markov property.

There are many different probabilistic algorithms that have been developed for
mobile robotic applications. In the next sections, the most relevant techniques in
this area are described.
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2.3 Localisation

If a robot could incorporate an exact global positioning system, the problem of
localisation would be solved. The robot would be able to obtain its position and
orientation with respect to a reference frame whenever necessary, and no estimation
would be required. However, that technology does not exist yet. Current GNSS
devices do not provide the accuracy needed to perform many tasks, nor do they
work in all environments. Indeed, there are areas where they cannot receive the
signal to provide an effective localisation, commonly known as GPS-denied areas.

In addition to the localisation in the environment, mobile robots must be able to
calculate their relative position with respect to different frames of the workspace.
For example, if there is a human in the surroundings of the robot, the spatial relation
between both must be known in order to perform any action that may affect the
person. Furthermore, to achieve a safe navigation, the robot must actively detect
all the obstacles in its trajectory, which implies computing their position. Unless
each element knows its exact position and morphology, and is able to transmit this
information to the rest of the entities in real time, creating a perfectly communicated
ecosystem, robotics systems need methods to perceive and interpret the environment
on their own.

The three main localisation challenges are: pose tracking, global localisation and
kidnapped robot. In pose tracking, the initial position of the robot is known within
an uncertainty level and the objective is to track the motion of the robot for each
point in time during navigation. Here, each position depends on the position of
the robot in the previous state and the action performed, satisfying the Markov
property, as the conditional probability distribution of future states of the process
depends only upon the present state. This calculation is done continuously to
monitor the whole trajectory of the robot, using odometry and sensor data to
get that transformation between states. However, in case of high uncertainty, the
calculation of the robot position can quickly degenerate and end with a completely
incorrect localisation calculation, since the uncertainty is accumulative. Figure 2.2
depicts an approximation of how the pose uncertainty grows as the robot moves.
For this reason, the error made by the sensors should be minimal. In addition, in
pose tracking, the initial belief of the robot’s position is a normal distribution, and it
is not uncertainty-free either.

Global localisation, also known as relocation, refers to the problem of determining
the position of a robot under initial global uncertainty. The robot is located at any
point in the environment and, with no prior information about its pose, it must
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Fig. 2.2. – Approximation of the increment in the odometry uncertainty
as the robot navigates. Black circles represent robot positions
in different timestamps and red ellipses its possible locations
in the space considering measurements noise.

deduce exactly where it is. There are two ways to solve this: by establishing sets
of possible hypotheses or by discarding all but the correct possibility. Either way,
the robot perceives the environment by means of sensors, with the difficulties that
we have already mentioned. The last challenge cited, the kidnapped robot problem,
could be considered as an extreme variant of the global localisation problem, as it
states a situation where a localised robot is carried to an arbitrary location during its
operation. This is commonly used to test a robot’s ability to recover from catastrophic
localisation failures. An autonomous robot must be able to handle pose tracking
and relocation simultaneously, recognising when it is kidnapped and being able to
recover from that situation.

It is clear that sensors play a critical role in all of the above forms of localisation, and
it is due to the inaccuracy of these that localisation poses difficult challenges. The
error committed by these devices is often referred as measurement noise. Sensors
are the only source of information with which the environment is perceived, so their
accuracy is completely decisive in the performance of the system. They are the entry
point of a probably huge decision-making chain, and an unexpected reading at this
point can propagate all the way down the chain. Hence, how the system interprets
the environment depends on the sensors used to do so, and localisation algorithms
must be able to cope with noise to avoid undesired behaviours.
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2.3.1 Kalman Filter (KF)

One way to deal with the computational complexity of uncertainty over continuous
spaces is by estimating the state with a parametrised function. The Kalman filter (KF)
is a technique by means of which this type of uncertainty can be treated, provided
that it is represented by probability densities of the Normal or Gaussian type [106].
It is a state estimator that works on the basis of prediction and subsequent correction.
This means that it first calculates the uncertainty in a certain state, estimated by a
prediction mechanism based on the dynamics of the system, and then corrects this
prediction using measurements entering the system. This methodology emerged
from the influential contribution of Smith, Self and Cheeseman [213, 212], who
introduced the statistical theoretical framework for solving the SLAM problem.

The KF assumes that both the measurements and the state of the system can be
described by a linear dynamic system that is affected by white noise. The set of
equations that models the evolution of the system state over time, and describes
how the measurements are related to it, can be modelled in the discrete state space
according to the following state (xt) and observation (zt) equations:

xt = Axt−1 + But + vt, vt ∼ N (0, Q)

zt = Hxt + wt, wt ∼ N (0, R)
(2.7)

A represents the state-transition model, B the input-control model for the action
u, and H the observation model. v and w represent noise and are assumed to be,
respectively, a multivariate normal distribution with covariance Q and a zero mean
Gaussian white noise with covariance R. For the simple case, the various matrices
are constant with time, and thus the subscripts are not used, but KF allows any of
them to change t each time step [252]. Figure 2.3 shows the model underlaying a
KF.

KF can be seen as set of equations that fall into two groups. The first one is known
as the prediction step, where the prior estimations are used to predict the state at the
next time step through the idealised version of the dynamic system. These equations
are responsible of updating the current state and error covariance based on time
intervals, resulting in an a priori estimate. Equations belonging to the second group,
called the correction step, are in charge of the correcting the estimation obtained in
the other step. They incorporate sensor measurements into the a priori result to
improve it an obtain a new a posteriori estimation.
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Fig. 2.3. – Model underlying the Kalman filter. Squares represent matrices, ellipses multi-
variate normal distributions (with the mean and covariance matrix enclosed) and
unenclosed values are vectors. P is the a posteriori estimate covariance matrix.
(Headlessplatter, Public domain, via Wikimedia Commons) [@253].

KF are another type of probabilistic algorithm that have been widely used in robotics.
They are based on linear models and work by estimating the state of a system at any
given time based on a series of measurements taken over time. The KF then uses
these estimates to calculate the most likely state of the system at any given time, as
well as its uncertainty. By the nature of the algorithm, it requires an initial state and
a covariance matrix, although these can be initialised to any value. For example, if
the initial state is unknown, a guess of the initial state can be provided as a starting
point, setting the covariance matrix with large values.

The problem with the KF is that it considers a linear system with Gaussian noise,
but there are cases where this conditions are not met. For instance, while a lidar
produces linear measurements, a radar does not, as it contains angles that are non
linear. As a consequence, there is a need to adapt the KF so that it can be used with
nonlinear systems. The Extended Kalman filter (EKF) proposed by R. C. Smith and P.
Cheeseman [213] is probably the most widely used estimator for nonlinear systems,
and it simply approximates the nonlinear models using the first derivative of Taylor
series, called Jacobian Matrix, before applying the KF equations. Then, at each
time step, the Jacobian is evaluated with current predicted states. In some systems,
the derivation of the Jacobian matrices can lead to significant complexities, but
there is another method that attempts to simplify this step called unscented Kalman
filter (UKF) [104]. In the UKF, the linearisation of the model is performed using
the unscented transformation, which uses a set of weighted points to parameterise
the means and covariances of probability distributions, calculating the statistics of
a random variable which undergoes a nonlinear transformation. With the same
order of computational complexity as EKF, UKF often provides better estimates for
nonlinear systems and is equivalent to KF for linear ones.
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2.3.2 Monte Carlo Localisation (MCL)

The Monte Carlo method is a non-deterministic technique used to approximate
complex mathematical expressions that are costly to evaluate accurately. Applied
to the problem of localisation, the algorithm is known as Monte Carlo Localisation
(MCL) [55, 229] and it is one of the most popular techniques in mobile robotics. To
localise the robot, the MCL algorithm uses a particle filter (PF) to estimate robot’s
position, which are a set of algorithms used to solve filtering problems arising in
signal processing and Bayesian statistical inference [131]. A PF represents the
posterior probability distribution, called belief, by considering a set of particles or
samples, each one representing a possible state. The term "particle filter" was first
coined in 1996 by Del Moral [51] in reference to the mean-field interacting particle
methods used in fluid mechanics since early 1960s.

MCL requires a set of initial samples M to track a state vector Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t .

The algorithm is initialised by randomly assigning a state to each particle x
[m]
0 (with

1 ≤ m ≤ M), being M the number of particles in the set Xt. For instance, Xt

represents the belief of the robot’s position at time t in the localisation problem.
The state-space model can be nonlinear and the initial state and noise distributions
nonparametric estimations. The particles are then updated using Bayes rule, based
on the latest measurements zt and actions ut. Each particle has a likelihood weight
wt assigned to it that represents the probability of the system being in the state that
particle represents. After this resampling step, the particles with negligible weights
are replaced by new particles in the proximity of the particles with higher weights.
There are different criteria for such resampling, such as the variance of the weights
and the relative entropy with respect to the uniform distribution [54], but the aim
is always for the particles to reflect the most recent information about the robot’s
position. Algorithm 1 shows the basic MCL procedure.

Particle filter techniques provide a well-established methodology [51, 52, 53] for
generating samples from the required distribution without requiring assumptions
about the state-space model or the state distributions. Besides, they have the advan-
tage of being very efficient computationally, since it only needs to consider a small
number of particles to obtain a good approximation of the posterior distribution.
However, these methods do not work well when applied to very high-dimensional
systems and they are known to be less reliable than other probabilistic methods, as
they are very sensitive to outliers in the data. Adaptive PF techniques aim to reduce
this issue by bounding the error introduced by the sample-based representation
of the PF. In this line, one of the most relevant approaches is the one proposed
by D. Fox [69], where a sampling method based on Kullback-Leibler distance, or
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Algorithm 1 Monte Carlo Localisation (MCL) algorithm.

1: procedure MCL(Xt−1, ut, zt, m)
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: x

[m]
t = MotionModel(ut, x

[m]
t−1)

5: w
[m]
t = MeasurementModel(zt, x

[m]
t , m)

6: X̄t = X̄t + ⟨x[m]
t , w

[m]
t ⟩

7: end for
8: for m = 1 to M do
9: draw i with probability ∝ w

[i]
t

10: add x
[i]
t to Xt

11: end for
12: return Xt

13: end procedure

KLD-sampling, is used. The core idea behind this method is choosing a small number
of samples if the density is focused on a small part of the state space, and it chooses
a large number of samples if the state uncertainty is high. In this way, KLD-sampling
yields similar or even better results while using considerably fewer particles than
the original approach.

2.4 Mapping

The mapping problem in robotics consists of generating a spatial model of the
environment. These models are mainly used to enable the robot to localise itself
with respect to a known reference point and to plan trajectories between two points
on the map. In short, the main purpose of creating a digital representation of
the environment is to navigate autonomously through it. Besides, the generated
models are useful for many other tasks, among which we would like to highlight the
simulation of real environments and the acquisition of information from unknown
areas or inaccessible to humans.

Although having a map allows for trajectory planning, its very creation also requires
the robot to navigate through the environment. Sensors have range limitations
that make it impossible for the robot to perceive the whole area from a single
point of view, e.g., cameras cannot detect objects that are behind concrete walls.
Therefore, sensors must see the environment from different perspectives, so that
all the elements can be mapped. As sensors are normally fixed to the robot, it is
necessary that the mobile platform navigates through the environment during the
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mapping process. The actuators that make this motion possible are also subject to
errors, i.e., after executing a succession of consecutive movements, the platform
may not be where it should theoretically be. If this is the case, and mapping sensor
readings are added directly to the map, the map will now correspond to reality, as
elements captured in that scan will be added in the wrong place. Sensor readings
have their own reference frame, that are transformed into robot’s frame. Thus, the
error in localisation affects how sensor readings are projected. Sensor noise together
with uncertainty in the robot pose gives raise to inaccurate maps or even to not
usable maps.

It is worth recalling that in standard mapping processes the robot is normally guided
by a human in order to ensure that the environment is fully covered and that the
loop is closed. Loop closure refers to exploiting the detection of an already mapped
area to minimise the accumulated error [254, 91, 122] during the navigation. It is
also the responsibility of the operator to decide the trajectories of the robot and the
termination criteria, factors that directly affect the quality of the resulting map and,
in consequence, in the performance of the corresponding navigation. Consequent
local drifts are accumulated during motion, increasing the uncertainty and leading
to an inaccurate estimate. Loop closure enhances considerably the veracity of the
map with respect to the traversed path, as the technique attempts to correct this
divergence in the position of the robot. Loop closure detection methods differ from
one another as they may be geared towards specific map representations [146, 75,
109, 76, 123, 74]. Despite all this, the resulting model usually requires a refining
process to correct any erroneously added element. This post-processing can be done
manually or automatically [25, 135, 2].

2.4.1 World Representation

The main environment representations used in mapping systems can be hierarchically
classified in a few groups, as shown in Figure 2.4. Many other works already explain
the different methods to model geometry in a robot readable format [227, 14,
216, 73, 30, 5] and the IEEE Map Data Representation working group developed a
standard specification for representing a map used for robot navigation [266].

There are two predominant map representations: topological maps and metric maps.
The first ones, similar to graphs, only consider places and relations between them,
represent the environment as a set of nodes (locations) that are connected by edges.
An edge between two nodes is labelled with a probability distribution over the
relative locations of the two poses, conditioned to their mutual measurements [80].

22 Chapter 2 Robot Navigation: Concepts and Background



Fig. 2.4. – Map representation types.

A representation of the world based on this simplification eases mapping large
extensions and provides all the necessary information for path planning [164].
Notwithstanding the simplification of the world model, the concept of vicinity is lost
in topological representations not to mention the absence of explicit information
about the occupancy of the space. To overcome this, many authors store additional
information or use a combination with metric maps [71, 4, 23, 237, 39].

Alternatively, in metric maps the objects are placed with precise coordinates. They
provide all the necessary information to apply a mapping or navigation algorithm,
but the map size is directly proportional to the size of the working area, which makes,
by itself, costly to model large areas specially concerning 3D mapping. Three are the
common representations used in metric maps: landmark-based maps, occupancy
grid maps and geometric maps.

Landmark-based representations, also called feature-based representations, identify
and keep the poses of certain distinctive elements [126, 127]. A requirement that
must be met in these representation is that the landmarks must be unique and
distinguishable by the robot perception system. These landmarks can be points,
lines or corners, or even faces in 3D mapping, forming a sparse representation of
the scene. Landmarks can be more than raw sensor data measurements, such as
complex descriptors which establish the corresponding data association with each
measurement.

Instead, occupancy grid maps discretise the environment into so-called grid cells.
Each cell stores information about the area it covers. It is common to store in each
cell a single value representing the probability of being an obstacle there. Grid
cells may contain 2D or 3D information [111, 145]. There is a variant referred
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as 2.5D that, without being a pure 3D grid map, stores height information in an
extended 2D grid cell map [85]. Grid maps can be formed by regular grids or by
sparse grids. Regular grids make a discretisation of the continuous space into cells
that always have the same dimensions, while sparse grids extend the concept of the
regular grid by grouping regions with same values, similar to a tree-like approach.
In this occupancy grid classification, a 3D technique that it is worth mentioning is
the Octree Encoding [152]. An octree is a hierarchical 8-ary tree structure that can
represent objects of any morphology in any specified resolution. As it is shown later,
it is widely used in systems that require 3D data storage due to its high efficiency,
because the memory required for representation and manipulation is on the order
of the surface area of the object. A well known implementation of this idea is the
OctoMap framework 3 developed by Kai M. Wurm and Armin Hornung [94].

A widely used concept in grid maps is that of costmap. The costmap represents the
difficulty of traversing different areas of the map. It takes the form of an occupancy
grid with abstract values that do not represent any measurement of the world, as
the cost itself is obtained by combining the static map, the local obstacle information
and the inflation layer. It is usually used for path planning [150, 160, 144, 137].

Finally, there are geometric maps, which can be considered also discrete maps. In
geometric maps all the objects detected by the sensors are represented by simplified
geometric shapes, such as circles or polygons. This is an attempt to efficiently repre-
sent the environment without losing much information, but it hampers trajectory
calculation and the overall management of the data. So, in practice, not many works
make use of this method and the occupancy grid map option is preferred [101,
151].

2.5 Simultaneous Localisation and Mapping (SLAM)

The problem of mobile robot navigation has historically been tackled by breaking it
down into three subproblems: environment mapping, localisation and path plan-
ning. These three subproblems have become broad areas of research for decades,
approached separately and deterministically, ignoring uncertainty in robot sensing
and motion. In the early 1990s, probabilistic robotics turned the classical approach
to navigation on its head by developing algorithms capable of explicitly taking into
account the intrinsic uncertainty of the robot’s sensors [228, 47]. Probabilistic
robotics focuses on representing uncertainty and information through probability

3https://octomap.github.io/
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distributions rather than on the basis of a single guess. With the rise of these meth-
ods came the problem of SLAM, also known as concurrent mapping and localisation
(CML) [59, 67]: the mapping of sensor readings to a global reference frame depends
on the robot’s location in that frame and the uncertainty in the robot’s pose due to
the accumulated odometry error that affects the map construction process. Visual
odometry allows for improved navigation accuracy in robots or vehicles using any
type of locomotion. Combining visual information from cameras or inertial sensors
with information from wheel motion overcomes drift and provides much more accu-
rate visual localisation [72]. However, errors in the constructed map and robot pose
are correlated. Therefore, these two problems must be tackled together.

SLAM techniques vary depending on whether indoor or outdoor robots are used.
Outdoor environments are more challenging as they do not have specific limits and
the criteria of choosing the next navigation point or termination can be completely
different. Besides, indoor and outdoor classic SLAM systems differ from each other
in aspects such as the individual requirements, sensors provided and morphology
of the robots, Markovian, Kalman filter-based and PF-based are the most common
techniques used to solve the SLAM problem.

SLAM can be considered to be a mapping process in which robot localisation is
uncertain. However, the planning task is put aside during the map building process.
Although strategies like coastal navigation can be used [195], while building the map
the robot is usually guided by a human by means of teleoperation. In this way, the
wheels’ drift can be minimised, ensuring as well the full coverage of the environment.
Once the map is available, classic planers (A*, Dijkstra, ...) or stochastic planning
techniques, e.g., Partially Observable Markov Decision Process (POMDPs), can be
used for navigation. Moreover, teleoperating the robot for mapping is usually a
highly time-consuming task, especially in large areas or when the movement of the
robot is limited. In other cases, it is difficult or even impossible for the robot to be
guided due to insufficient connectivity or dangerous conditions, such as in rescue
operations of natural disasters.

The advent of SLAM techniques motivated huge advances and opened new possibili-
ties for robot development, but there are still considerable challenges in performance
when adding environment dynamism or increasing dimensionality. Subsequently,
SLAM-based systems proliferated widely in other areas, such as vision-based online
3D reconstruction or self-driving cars.

SLAM is one of the most demanding competencies for a mobile robot, but successful
navigation requires success in all three pillars: perception, the robot must interpret
its sensors to extract meaningful data about the surroundings; localisation, the robot
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must determine its position in the environment; and path planning, the robot must
decide how to act to achieve its goals and modulate the outputs of its motors to
achieve the desired trajectory.

In the following sections, some of the most relevant methods proposed to solve the
SLAM problem are described, with emphasis on pioneering methods leading to new
lines of research.

2.5.1 FastSLAM

FastSLAM, proposed for the first time by Motemerlo et al. [155] is considered as
the first efficient PF for SLAM, since the previous approaches were only feasible
in small environments. FastSLAM utilises a Rao-Blackwellised representation of
the posterior, integrating particle filter and Kalman filter representations. On the
one hand, the algorithm employs a modified PF for estimating the path posterior
p(xt | zt, ut, nt), each particle xt corresponding to a guess of the robot’s pose at time
t. zt and ut correspond to the measurements and actions, respectively, and nt to
the indexes of the landmarks perceived, all until time t. nt is often referred to as
correspondence and, in this formulation, the correspondences nt = n1, . . . , nt are
assumed to be known, and so is the number of landmarks K observed. On the other
hand, KF is used to represent the conditional landmark estimates p(θk | xt, zt, ut, nt),
using separate KFs for each different landmark. θk denotes the location in space of
each landmark for k = 1, . . . , L. Since the landmark estimates are conditioned by
the trajectory, each sample in the PF has its own local landmark estimates, being a
total of L ∗ M KFs for M particles and L landmarks. Therefore, the SLAM problem
is divided into one problem of estimating the robot’s path xt and L problems of
estimating this same number of landmarks:

p(xt, θ | zt, ut, nt) = p(xt | zt, ut, nt)
∏
L

p(θk | xt, zt, ut, nt) (2.8)

Even if FastSLAM recursively estimates the full posterior distribution over robot pose
and landmark locations, it scales logarithmically with the number of landmarks in
the map.

In this first version of the method, the proposal distribution representing the motion
model is the following:

x
[m]
t ∼ p(xt | x

[m]
t−1, ut) (2.9)
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Nevertheless, this formula is especially problematic if the vehicle motion noise is
large relative to the measurement noise, which is the case of real-world robots. For
this reason, the same authors proposed a year later FastSLAM 2.0 [156], which
includes a modification that corrects this aspect. Here, both the motion ut and
the measurement zt are considered for the pose sampling. Thus, the new proposal
distribution can be formulated as follows:

x
[m]
t ∼ p(xt | x

[m]
t−1, ut, zt, nt) (2.10)

By the nature of the algorithm, the current estimate of the observed landmark nt

must also be included in order the inclusion of the measurement zt to make sense.

2.5.2 Unscented Kalman Filter SLAM (UKF-SLAM)

We have already described Kalman filters in Section 2.3.1, and mentioned its expan-
sion for nonlinear systems through EKF and UKF. Although EKF is perhaps the most
widely used version of KF to solve the SLAM problem, different experiments show
that UKF obtains better results [148], so this one is described in more detail here.

For the application of the KF it is necessary to describe the system by means of
stochastic equations of state, which are given by

xt = f(xt−1, ut−1) + vt (2.11)

zt = g(xt) + wt (2.12)

where xt is the state of the system, ut is the action, vt ∼ N(0, Qt) is the process noise,
zt the measurement, and wt ∼ N(0, Rt) is the measurement noise, all at time t. The
state vector x = [rT mT ]T consists of the state of the robot x = [x y θ]T and the
state of the map m = [mT

1 · · · mT
n ]T , which is considered static mt = mt−1 = m.

The objective of the KF is to estimate the state xt from the measurements zt, by means
of the prediction and correction steps. This is where UKF differs from the standard
KF method. An unscented transform (UT) is applied directly in the prediction step
to obtain the state vector and the a priori covariance matrix using Equation 2.11.
In the correction step, the UT is applied to predict the measurement obtained
from Equation 2.12. Then, the state and the covariance matrix are corrected as
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in the classic KF procedure. The UT is designed on the basis that "it is easier to
approximate a probability distribution than it is to approximate an arbitrary nonlinear
function or transformation" [105]. In brief, the UT computes a subset of points,
called sigma points, and propagates them through a nonlinear model function, to
then estimate a Gaussian distribution. This same approach has been applied to
FastSLAM [112], obtaining better results than those obtained by classic KF and UKF
separately [121].

2.5.3 GraphSLAM

Thrun and Montemerlo [230] proposed GraphSLAM, where the SLAM problem is
addressed as a graph problem, instead of as a set of independent particles, as in
the previous approaches. In GraphSLAM, the SLAM problem compounded of a set
of measurements z1:t with associated correspondence variables c1:t, and a set of
controls u1:t, are turned into a graph. Thus, a node can correspond to either a robot
pose xt or a feature in the map mt at a given point in time t. Consequently, there are
two types of edges in this graph: motion arcs, which connect any two consecutive
robot poses, and measurement arcs, which connect poses to the landmarks that were
observed from there. Figure 2.5 shows how the SLAM problem is represented as a
simple graph.

Fig. 2.5. – Graph-based SLAM.

Each edge in GraphSLAM is a nonlinear quadratic constraint, which are of the
form of Equation 2.13 for motion constraints and Equation 2.14 for measurement
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constraints. In these equations, while g is the kinematic motion model of the robot
and Rt the covariance of the motion noise, h is the measurement function and Qt

the covariance of the measurement noise.

(xt − g(ut, xt−1))T R−1
t (xt − g(ut, xt−1)) (2.13)

(zi
t − h(xt, mj , i))T Q−1

t (zi
t − h(xt, mj , i)) (2.14)

The target function in GraphSLAM is to sum all these constraints, which results in a
nonlinear least squares problem:

JGraphSLAM = xT
0 Ω0 x0

+
∑

t

(xt − g(ut, xt−1))T R−1
t (xt − g(ut, xt−1))

+
∑

t

∑
i

(zi
t − h(yt, ci

j , i))T Q−1
t (zi

t − h(yt, ci
j , i))

(2.15)

Notice that Equation 2.15 also includes an anchoring constraint of the form xT
0 Ω0 x0,

corresponding to the absolute coordinates of the map by initialising the very first
pose of the robot as (0 0 0)T . Nodes and edges are represented by probability
distributions because constraints are inherently uncertain, and thus minimising the
objective function yields to the most likely map and robot path.

2.5.4 MonoSLAM

Davison et al. proposed the first SLAM algorithm based in monocular cameras only
in the mid 2000s, called MonoSLAM [47, 50]. Up to that moment, the proposed
methods used sensor measurements, normally obtained from lidars, as well as robot
odometry as input data. The basis of MonoSLAM is building a real-time feature-
based map that is represented by a state vector, composed of the stacked state
estimates of the camera pose and all the image features, and the covariance matrix
for the uncertainty of these estimates. Then, during execution, the state vector
is updated using EKF in two alternating ways, when the camera moves between
captures and after measurements of features have been achieved. The new state
vector is calculated applying the corresponding velocities and accelerations to the
previous state.
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In order to start the updating steps, firstly, the system is initialised with a known
target placed in front of the camera. Here, the state vector with the initial camera
position is given an initial low level of uncertainty. On the one hand, this first step
allows the system to assign a precise scale to the estimated map and motion and,
on the other, it provides several features with known positions to start with the
predict-measure-update tracking sequence.

However, not only the camera state must be updated, but also the probabilistic 3D
map, as new features can be added to it or even remove some of the ones already
mapped. To do this, MonoSLAM actively predicts the image position of each feature
in the map, to efficiently decide which to measure. Briefly, using the estimates of
camera position and features positions, the position of a point feature relative to the
camera is calculated first. Then, the position at which the feature is expected to be
found in a future state is estimated using the camera calibration parameters and the
corresponding relative transformation of the pose of the camera. This calculation
results in a Gaussian probability density function that defines an ellipsis in the
image within a specific feature is likely to lie. Limiting the search to these areas can
increase efficiency and minimise the chance of mismatches. Finally, the detections
of the already known features are used to feed the EKF model and update the map
accordingly.

Similar to the camera state vector, features have a special initialisation. As the three
coordinates of an unknown element cannot be extracted from a single image, a
semi-infinite 3D line is assigned to each feature the first time it is added observed,
with its corresponding Gaussian uncertainty.

MonoSLAM is the first relevant algorithm removing robot odometry from the equa-
tion, giving rise to a new field of study based solely on visual information, known as
visual SLAM (vSLAM). In fact, like many later vSLAM algorithms, MonoSLAM does
not use a robot itself in their proposal, only a hand-held camera.

2.5.5 Parallel Tracking and Mapping (PTAM)

Parallel Tracking And Mapping (PTAM) algorithm, developed by Klein and Mur-
ray [114], is also one of the first vSLAM methods, pioneering the separation of
tracking and mapping, and running them into two different threads. Besides, they
propose performing the mapping process only when it is necessary, instead of with
every new frame of the camera, introducing the concept of keyframes.
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Firstly, the map is initialised, which is a collection of M point features located with
respect to a common coordinate frame W , each one representing a patch in the
world. Thus, the jth point in the map pj has coordinates pjW = (xjW yjW zjW )T in
the global coordinate frame W and a unit patch normal nj . The map is initialised
in a semi-automatic process, where the user has to smoothly translate and rotate
the camera to allow the system to estimate the essential matrix of the camera and
triangulate the base map. At the end of this step, the map contains two keyframes
and describes a relatively small volume of space. New keyframes are then added
when the tracking is good, enough time has passed since the last keyframe was
added, and the camera pose has changed substantially. The corresponding pose
of each keyframe with respect to the world reference frame is calculated using
bundle adjustment (BA) [234, 87], which iteratively adjusts the map. As BA has a
relatively high computational complexity, it needs too much time to converge as the
map gets bigger. Thus, PTAM performs global and local adjustments independently
and iteratively even if there is no new keyframe. Here, triangulation between two
consecutive keyframes is used to calculate the point’s depth information.

Each keyframe that is passed to the mapping module initially considers the tracking
system’s camera pose estimation and all feature measurements. However, the
mapping thread can later re-project and measure new potentially visible features
and add them to the list. For each new frame, the tracking system estimates an
initial pose of the corners for performing the projection of the map points on the
image. Similar to MonoSLAM, PTAM also reduces the search space for new features
by transforming map points to the image plane using the camera projection model.
Finally, the algorithm uses the correspondences to iteratively update the camera
pose µ by minimising the Tukey’s biweight objective function Obj [236], which
considers the projection error ej , the noise of the measurement σj , and σT , an
estimate of the distribution’s standard deviation derived from all the residuals. This
minimisation process for the pose update is expressed by Equation 2.16, where S is
a set of successful patch observations.

µ′ = argmin
µ

∑
j∈S

Obj

( |ej |
σj

, σT

)
, (2.16)

2.5.6 Multi-State Constraint Kalman Filter (MSCKF)

In the last years, methods that give solution to the SLAM problem using not only
cameras, but also IMUs, have gained popularity in the scientific community. The
main reasons for this interest are the increasing use of unmanned aerial vehicles
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and the ability of inertial sensors not to be so dependent on external conditions.
Moreover, in outdoor environments, elements of interest may be so far away that it
is difficult to track or match landmarks accurately. The problem of SLAM through
inertial and vision sensors is known as visual-inertial SLAM (viSLAM), and the multi-
state constraint Kalman filter (MSCKF) [163] is one of the first relevant methods to
address the problem in this manner.

MSCKF proposes an EKF-based estimator to track the 3D pose of an IMU frame I

with respect to a global frame of reference G, whose state vector is given by:

ximu =
[

qI T
G bT

g vG T
I bT

a pG T
I

]T
, (2.17)

where qI
G is the unit quaternion describing the rotation from G to I, pG

I and vG
I

are the position and velocity of the IMU with respect to G, and, finally, bg and ba are
the biases affecting the gyroscope and the accelerometer, respectively. Accordingly,
the state vector from Equation 2.17 has its corresponding error state vector x̃imu.
Thus, after reaching time step k and including N camera poses to the EKF state
vector, ximu has the following form:

x̂imu =
[
x̂imuk

q̂C T
G,1 p̂C T

C,1 . . . q̂C T
G,N p̂G T

C,N

]T
(2.18)

The filter propagation equations are derived by discretisation of the continuous
time IMU system model. Upon recording a new image, the state augmentation is
performed, computing the camera pose from the IMU estimate as:

q̂C
G = q̂C

I ⊗ q̂I
G and p̂G

C = p̂G
I + CT

q̂ p̂I
C , (2.19)

and appending it to the state vector, augmenting the covariance matrix of the EKF
accordingly. In MSCKF, the measurement model groups camera observations by
feature, rather than per camera pose, avoiding to include the feature position in the
filter state vector. Finally, the EKF is updated when a feature that has been tracked in
a number of images is no longer detected and every time a new image is recorded.
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2.5.7 ORB-SLAM

ORB-SLAM can already be considered as a family of methods, as since 2015 four
different approaches have been published on the same basis [141], all of them with
meaningful impact.

ORB-SLAM [165] emerges as a monocular SLAM system capable of performing
tracking, mapping, relocalisation and loop closing using the same ORB features
(described in Section 2.6). The method is based on the ideas of PTAM and, similar
to this, performs tracking and local mapping in different threads. However, ORB-
SLAM also includes loop closing, which is executed in a third thread, and the
map initialisation step is done automatically. To accomplish it, the system actively
searches for feature matches until a safe two-view configuration is found. If there is
enough parallax, the adequate model between homography and fundamental matrix
is selected, to then retrieve the associated motion hypotheses and, finally, perform a
BA.

Once the map is initialised, it starts tracking and mapping continuously. The former
is executed every time the camera captures a new frame, and consists of performing
a motion-only BA to estimate the pose and deciding if that frame is considered as a
keyframe for mapping or not. If so, the mapping module receives that keyframe and
triangulates ORB with several keyframes to decide if the new frame and features
are added to the map. Here, again, a local BA is performed to optimise the pose of
all the connected elements in the map, represented as a covisibility graph. As a last
step of the mapping process, an attempt to detect and remove redundant keyframes
is made.

The third pillar of ORB-SLAM is loop closing. By representing the last keyframe
as a bag of words, its similarity with all its neighbours in the covisibility graph is
computed. Then, with those with the highest scores, their relative transformation is
calculated as in [167] and, if the correspondence with any of them is supported
by enough inliers, the loop is considered as valid. Detecting a loop closure implies
fusing duplicate points, inserting new edges in the covisibility graph and performing
a pose graph optimisation.

Following the same idea described here, Visual Inertial ORB-SLAM (VIORB) [168]
extends this method to include IMU data in all four map initialisation, tracking,
mapping and loop closing procedures. On the contrary, ORB-SLAM2 [166] was
presented at about the same time as VIORB, but it focuses on adapting the method
to stereo and RGB-D cameras. Recently, ORB-SLAM3 [32] has been presented, a
system able to perform visual, visual-inertial and multi-map SLAM with monocular,
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stereo and RGB-D cameras, using pin-hole and fisheye lens models. Its main novel
contributions are a viSLAM system that fully relies on Maximum-a-Posteriori (MAP)
and a multiple map scheme that allows it to recover from long periods of poor
visual information. Besides, it is all implemented in a unique open-source library 4.
Figure 2.6 shows an example of the system mapping a university-like environment
with a hand-held camera.

Fig. 2.6. – ORB-SLAM3 running in the TUM-VI dataset [@243]. On the left-hand side, the
points and graph of the map being built are shown. On the right-hand side, the
current frame captured by the camera with its corresponding features. Image
obtained from [@176].

2.6 Image Feature Detection and Matching

Some of the SLAM methods described in Section 2.5 are based on techniques that
attempt to extract features from images in order to compare them with subsequent
images and thus deduce the motion associated with the transition from one capture
to another. For this reason, below, we describe briefly the main feature extraction
methods used in mobile robotics and, in general, in computer vision.

Scale Invariant Feature Transform (SIFT)

The Scale Invariant Feature Transform (SIFT) [136] is an algorithm used in computer
vision to detect and identify similar features between different digital images. It
consists of calculating numerical information derived from the local analysis of an
image, called descriptors, that characterises its visual content regardless of scale,
framing, viewing angle and exposure. To get them, the first step of the algorithm

4https://github.com/UZ-SLAMLab/ORB_SLAM3
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is the detection of key points, each of which is defined by its coordinates on the
image and a characteristic scale factor. This is followed by a reconvergence and
filtering step where the accuracy of the location of the key points is improved and a
number of irrelevant ones eliminated. Each remaining key point is then associated
with an intrinsic orientation that depends only on the local content of the image
around the key point, at the scale factor considered. This ensures the invariance of
the method to rotation and is used as a reference in the calculation of the descriptor,
which is the final step in this process. Hence, two images of the same object are
likely to have similar SIFT descriptors, especially if the shooting times and viewing
angles are close, and vice versa in two photographs of very different subjects. This
discrimination robustness is a fundamental requirement for most applications and
explains much of the popularity of the SIFT method.

Speeded Up Robust Features (SURF)

Speeded Up Robust Features (SURF) [18] is a fast and robust algorithm for local,
similarity invariant representation and comparison of images. In SIFT, a window is
used to extract corners for potential key points, detecting changes in the direction of
lines for that particular window size and, to detect larger corners, larger windows are
used. Laplacian of Gaussians (LoG) is useful for detecting edges that appear at vari-
ous image scales or degrees of image focus, but it is costly. Thus, SIFT approximates
LoG with Difference of Gaussians (DoG) to do it faster. SURF goes a step further
and approximates LoG with box filters, which approximate second-order Gaussian
derivatives and can be evaluated at a very low computational cost using integral
images and independently of size. Besides, this method relies on the determinant of
the Hessian matrix for both space and scale selection, improving the performance
even more. This fast computation of operators makes SURF a very interesting option
for real-time applications such as tracking and object recognition.

Features from Accelerated Segment Test (FAST)

SURF improves the execution time of SIFT, but is still not fast enough for SLAM with
limited computational resources. To overcome this issue, Features from Accelerated
Segment Test (FAST) [194] is proposed, which focuses on the computational effi-
ciency of the corner detection. FAST uses a 16 pixel circle around each pixel of the
image to determine whether it is a corner or not. If, here, a set of N contiguous
pixels are all brighter or darker than the intensity of the candidate pixel p plus minus
a threshold value t, then it is classified as a corner. Thus, N and t values have a

2.6 Image Feature Detection and Matching 35



significant impact on the performance of the algorithm and they should be selected
wisely, since the number of detected corner points should not be too many and the
computational efficiency should not be sacrificed to achieve high performance. In
this process, machine learning is applied to achieve superior computational efficiency,
first performing corner detection with a given N on a set of training images and
then creating a decision tree with them based on the ID3 algorithm [186] for fast
detection in other images.

Binary Robust Independent Elementary Features (BRIEF)

The main difference of the Binary Robust Independent Elementary Features (BRIEF)
[31] method is that it uses binary strings as an efficient feature point descriptor. The
neighbourhood defined around a pixel or key point is known as a patch, which is a
square of a certain width and height of pixels. BRIEF identifies the patches around
the key point and converts them into a binary vector, so that they can represent an
object. In short, it is a faster method for feature descriptor calculation and matching,
but it does not provide a method to find the features, and any other feature detector
must be used for this purpose. Besides, it also provides a high recognition rate unless
there is a large rotation in the plane.

Oriented FAST and Rotated BRIEF (ORB)

Oriented FAST and Rotated BRIEF (ORB) [196] is a fusion of FAST key point detector
and BRIEF descriptor with some modifications to enhance the performance. ORB
performs as well as SIFT on the task of feature detection, while being almost two
orders of magnitude faster. Besides, it adds an analysis of variance and correlation
of oriented BRIEF features and a learning method for decorrelating BRIEF features
under rotational invariance, leading to better performance in nearest-neighbour
applications. It is worth noting that the SLAM method described in Section 2.5.7,
called ORB-SLAM, is based on this technique.

An example of applying the feature detection algorithms described here to an image
can be seen in Figure 2.7. There are many other feature detection algorithms, but
these are still the most used ones in vision-based SLAM systems, even in the latest
advances [263, 265].
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(a) Example feature extraction with SIFT. (b) Example feature extraction with SURF.

(c) Example feature extraction with FAST. (d) Example feature extraction with ORB.

Fig. 2.7. – Example feature extraction with the different methods described in Section 2.6.
Each algorithm is applied with the parameters presented in their original articles,
which may not be the optimal ones for this image.

2.7 Planning

There are different approaches to address the problem. On the one hand, there
are deliberative or hierarchical systems [36], where the trajectory to be executed
is calculated in advance. On the other hand, there are reactive systems, which rely
on the current state of the system to decide the next action to take, repeating this
process iteratively until the final goal is reached [132]. From the combination of
these two systems, hybrid methods appear, where the deliberative system is above
the reactive system. Here, the former is in charge of planning the main trajectory
and the latter tries to follow it while avoiding obstacles [180]. This subdivision
leads us to introduce two other key concepts in autonomous navigation systems,
global planning and local planning. In short, global planning refers to the process of
calculating the positions through which the mobile platform has to go in order to
reach the destination. This is usually based on the static map, which includes the
fixed elements of the environment. Local planning (or obstacle avoidance) is, in
contrast, the task of calculating the velocity commands to be sent to the platform in
order to follow the global trajectory. It is based on a local map that moves together
with the position of the robot, as it is intended to represent a space around the
robot. In this local map, all the elements captured by the sensors, both fixed and
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dynamic, are included, since the local planner is in charge of avoiding collision with
any other element in the surroundings. In practice, in most cases global and local
terms can be directly replaced by static and dynamic terms, as deliberative systems
are predominant in global planning and reactive systems in local planning.

Additionally, it is noteworthy that, with the recent explosion of machine learning re-
search, data-driven techniques are also being applied to the problem of autonomous
navigation [238]. Work of this nature has resulted in systems that use end-to-end
learning algorithms in order to find navigation systems that map directly from
perceptual inputs to motion commands, thus bypassing the classical hierarchical
paradigm.

2.7.1 Partially Observable Markov Decision Process (POMDP)

A Markov Decision Process (MDP) is a time-dependent random phenomenon for
which the Markov property is fulfilled. This refers to the property of certain stochastic
processes whereby the probability distribution of the future value of a random
variable depends only on its present value, being independent with respect to the
history of that variable. In a MDP, the state is fully observable, i.e., the agent
has full information about the current state. However, as we have already seen,
this is rarely the case in mobile robotics, as uncertainty is abundant in real-world
planning scenarios. When the Markov model underlying the data is completely
unknown for the agent, even if observable data is available, it is known as a HMM
(already mentioned in Section 2.2). However, this is not generally the case in mobile
robotics either, as localisation algorithms, for example, provide estimates of the
robot’s state. When information about the state is partially available in a MDP, the
process is known as a Partially Observable Markov Decision Process (POMDP). In
robot control, it addresses both the uncertainty measurement and the uncertainty in
control effects.

A POMDP models a decision process in which a sensor model must be maintained,
which is represented as a probability distribution of different observations Ω given
the underlying state x. Unlike in a MDP, which maps the underlying states X to
actions A, the POMDP policy π is a mapping of the history of observations, or belief
states B, to actions A. In robot navigation, the goal is to find the policy π that
specifies the motion command π(b) that is executed in belief state b and maximises
the value function VT
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VT (b) = γ max
u

[
r(b, u) +

∫
VT −1(b′)p(b′|u, b)db′

]
, (2.20)

which leads to the control policy

πT (b) = argmax
u

[
r(b, u) +

∫
VT −1(b′)p(b′|u, b)db′

]
(2.21)

The value function in POMDPs is defined over the space of all beliefs the robot
might have about the state of the environment. Solving POMDPs exactly over the
continuous space is often computationally intractable and, thus, the best known
mobile robotics algorithms are approximate. In grid-based algorithms, for example,
the value function is calculated for a set of points in the belief space, determining
the optimal action to take for states that are not in the set of grid points by means of
interpolation.

Although POMDPs are a general representation of motion control problems, the
main way of dealing with a navigation problem is to combine global planning with
local planning or obstacle avoidance. For this reason, the main idea underlying the
most relevant algorithms in each of these two groups are detailed below, which are
based on discrete map representations.

2.7.2 Global Path Planning

We have already mentioned that the most commonly used maps in mobile robotics
are discrete maps, and one of the main reasons is that they simplify the calculation
of trajectories considerably. More specifically, the most efficient discrete maps for
this purpose are grid maps. These cell-based maps can be easily represented by
graphs, where sections are equivalent to vertices - also called ’nodes’ - that are
connected by edges if the robot can navigate from one vertex to another. Thus,
global path planning can be seen as a graph problem, being the objective to find the
shortest path between two vertex. In this context, we should understand "shortest"
as the optimum for the cost function we use. That is, if the edge weights contain
only distance information, the calculated path will actually be the shortest. But, for
instance, if they also include the electricity consumption of getting from one cell to
another, the planned path will be the most energy-efficient.

One way or another, the meaning of the value of each edge is, in principle, irrelevant
with respect to the path planning methods. In fact, the algorithms on which most of
them are based were developed outside the field of autonomous navigation and even
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before it emerged, including those at the cutting edge [3, 220, 133]. In this sense,
we will explain the core idea behind the main algorithms for the determination of
the shortest path in a graph, which are: the breadth-first search, the depth-first
search, Dijkstra’s algorithm, and the A* algorithm.

Depth-First Search

Similarly, the depth-first search (DFS) [138] consists of expanding each and every
one of the nodes that it locates, recursively, on a specific path. When there are
no more nodes to visit on that path, it applies backtracking, and repeats the same
process with each of the siblings of the node already processed. However, as in this
case the last discovered state is the first to be considered, it is unsuitable for discrete
maps, as it can be completely inefficient for destinations close to the origin, especially
in the hypothetical case where the map is infinite, as it would not terminate. Its
computational cost is O(|V |+ |E|), where |V | and |E| are the number of vertices and
edges, respectively, assuming that all basic operations such as determining whether
a point has been visited are performed in constant time.

Breadth-First Search

In a breadth-first search (BFS) [274], you start at the origin point and scan all
neighbours of this node, i.e. all positions adjacent to it. Then, for each of the
neighbours, its respective adjacent neighbours are examined, and so on until the
target is reached. So all trajectories with k steps are always considered before
any with k + 1 steps. As in the case of DFS, the computational cost of BFS is
O(|V | + |E|).

Dijkstra

Dijkstra’s algorithm determines the shortest path given an origin vertex to the rest
of the vertices in a graph with weights on each edge [57]. The idea behind this
algorithm is to explore all the shortest paths starting from the source vertex and
leading to all the other vertices; when the shortest path from the source vertex to the
rest of the vertices that make up the graph is obtained, the algorithm stops. Dijkstra’s
algorithm belongs to the group of greedy algorithms, since in each iteration the
vertex with the smallest value is selected. This is a specialisation of the uniform
cost search and, as such, it does not work on graphs with negative cost edges -
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by always choosing the node with the shortest distance, nodes may be excluded
from the search that in future iterations would lower the overall cost of the path by
passing through a negative cost edge. The computational cost of Dijkstra’s algorithm
is O(|E| + |V |log|V |) and can be lower depending on the problem [40].

A*

The A* or A-star search algorithm is an extension of Dijkstra’s algorithm that aims to
reduce the total number of states it explores by incorporating a heuristic estimate
of the target performance given a state [86]. Thus, it uses an evaluation function
f(n) = g(n) + h′(n), where h′(n) represents the heuristic value to go from node
n to the end, and g(n) the actual cost to reach that node from the start. The
algorithm is a combination of breadth-first and depth-first searches: while h′(n)
tends to be depth-first, g(n) tends to be breadth-first. In this way, the search path is
changed whenever there are more promising nodes, using a priority queue ordered
by the value of the function f(n). Thus, A* is also a greedy algorithm, as it always
selects the locally optimal option. Besides, it is a complete algorithm because if a
solution exists, it will always find it. The time it takes to achieve this will depend
on the quality of the heuristic estimation. In the worst case, the complexity will
be exponential, while in the best case, the goal can be reached in linear time. To
guarantee the optimisation of the algorithm, the function h′(n) must be heuristically
admissible, that is, it must not overestimate the real cost of reaching the target node.
Moreover, if h′(n) = 0 is satisfied for every node n in the network, A* becomes an
uninformed uniform cost search, behaving as Dijkstra’s algorithm. The performance
of the A* algorithm is the best of the four approaches presented in this section, with
a worst-case computational cost O(|E|).

Figure 2.8 shows a comparison of these four path-finding algorithms. It should be
noted that a single example should not be taken as representative of its efficiency, as
each method has particular circumstances in which it is the optimal one. Moreover,
in BFS and DFS, the path found is the shortest if all the edges have the same weight
- or they are unweighted - since they explore the graph based on the number of
edges traversed from the origin. As the maps used do not always meet this condition,
Dijkstra and A* are the most used methods which are, in addition, more efficient.
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Fig. 2.8. – A comparison of the main path-finding algorithms in a 55x45 cell example maze
and a random destination point. White colour depicts the free unexplored space,
black are the obstacles (or walls), green is the destination point, red the origin
(or robot position), orange colour represents the explored nodes, yellow the next
nodes to analyse, and maroon is the trajectory found. On the right-hand side of
the image, some metrics of their performance are shown [@215].

2.7.3 Obstacle Avoidance

Local obstacle avoidance focuses on obtaining an alternative trajectory to the main
trajectory based on the information gathered from the sensors during the navigation
of the vehicle. The resulting movement is calculated based on the most recent
sensor readings, robot’s target position and its position relative to the target position.
Obstacle avoidance methods act as intermediaries between the global path planner
and the robot control module. Using a map, the global planner creates a kinematic
path for the robot to get from a starting point to a destination point. Until the target
is reached, the obstacle avoidance system creates a local map around the robot, with
an associated cost function. This area is depicted as a grid-map, whose values are
calculated, generally, based on the risk of collision or distance to the nearest obstacle.
The task of the local planner is to use this cost function to determine the linear and
angular velocities to send to the robot. The obstacle avoidance approaches presented
below depend to a greater or lesser extent on the existence of a global map, a target
destination or trajectory and precise knowledge of the location of the robot in the
map.
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Dynamic Window Approach

The Dynamic Window Approach (DWA) [70] is a planner that calculates the optimal
collision-free trajectory for a robot to reach its goal (see Figure 2.9). However, it
differs from the rest in the sense that it only works in the velocity space, as it uses
the Cartesian axes (x, y) and converts them into velocities (v, w) for the robot.

Fig. 2.9. – Illustration of the Dynamic Window Approach algorithm [@162]. The blue
box is the robot, obstacles are in red, and the discontinued lines represent the
calculated possible trajectories.

DWA algorithm focuses on two main goals: calculating a valid velocity space and
choosing the optimal velocity. To achieve this, the search space is constructed from
the set of velocities which produce a safe trajectory, called admissible velocities,
allowing the robot to stop before colliding. The next step is to reduce these can-
didates using a dynamic window, which consists of all tuples (v, w) that can be
reached within the next sample time period, given the acceleration capabilities and
the current velocity of the robot. Finally, the tuple chosen will be that maximising
(a) the alignment of the robot with the goal direction, (b) the distance between the
estimated path and the nearest obstacle, and (c) the speed at which the robot moves
towards the destination.

Rapidly-Exploring Random Trees

The underlying idea behind the algorithms based on Rapidly-Exploring Random
Trees (RRTs) [125] is to generate random displacements until a succession of them
form the desired trajectory (see Figure 2.10). Considering the starting point as
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the root, a tree is generated with nodes (positions) and branches (movements)
connected to each other, which are added to the tree in case they are feasible, i.e.,
they pass entirely through free space.

Fig. 2.10. – Example of path planning using Rapidly-Exploring Random Trees [7]. Blue
circles are obstacles, black lines are the explored trajectories and red is the
selected one.

With uniform sampling of the search space, the probability of expanding an existing
node is proportional to the size of its Voronoi region. As the largest Voronoi regions
belong to the states on the frontier of the search, this means that the tree preferen-
tially expands towards large unsearched areas. Because of this feature, this type
of algorithms have been widely used in the autonomous exploration of unknown
environments.

Lazy Theta*

This algorithm is based on Theta* [45], which in turn is based on A*. Theta* is a
variation of A*, which arises from the fact that the A* algorithm finds the shortest
path in the graph, but this one does not have to coincide with the shortest path
in the continuous environment. Theta* simply removes this restriction, making
it an any-angle path planning algorithm (see Figure 2.11). Thus, the difference
between the two algorithms is that Theta* allows the parent of a vertex to be any
visible vertex, in contrast to A*, where the parent must necessarily be an unoccupied
neighbour.

What happens is that if Theta* checks the visibility between a vertex and its parent,
and this vertex is never expanded, i.e., its neighbours are never analysed, the check
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Fig. 2.11. – A* (red), Theta* (green) and Lazy Theta* (blue) path planning comparison in
an example 3D environment [@90].

is unnecessary. The Lazy variant, uses a different evaluation to perform only one line-
of-sight (LOS) check per expanded vertex, at the expense of slightly more expanded
vertices, returning practically the same paths as Theta*.

2.8 Active Mapping

Active mapping, also called Active SLAM (ASLAM), is the task of actively planning
robot paths while simultaneously building a map and localising within it [164].
ASLAM goes a step further than the classic SLAM problem as it seeks the robot to
move autonomously during the whole mapping process. Exploration while mapping
could simplify the setting up of a navigation system in many applications, as the
robot would be capable of building the map by itself with no human interaction.

ASLAM pretends to overcome the disadvantages and potential sources of incongruity
previously mentioned by developing methods to perform the exploration step auto-
matically, i.e., automatising the robot guiding process by selecting online the paths
or navigation sub-goals that will lead to a more accurate map. The exploration
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field, extensively studied in the last decade [119, 209, 256, 221, 211], offers great
advantages for mobile robots, especially in hostile environments.

It has also been referred to in scientific literature as automatic SLAM [203, 107],
autonomous SLAM [38, 113, 110], adaptive CML [67], SPLAM (Simultaneous
Planning, Localisation and Mapping) [216] or robot exploration [262].

This concept of active motion selection is addressed from two research areas: mobile
robotics and computer vision. In robotics, the problem is known as robot exploration
whether in computer vision the term active perception is used.

2.8.1 Robot Exploration

In robotics [255], exploration refers to the autonomous creation of an operational
map of an unknown environment. Besides generating a world representation while
dealing with uncertain localisation, the robot must control its motion. Namely, it
must calculate the goals and the actions to take thereon to achieve those goals while
actively reacting to unexpected situations.

According to the literature, an ASLAM algorithm consists of three iterative phases [5]:
pose identification, goal selection, and navigation and checking, whose relationship
is shown in Figure 2.12. These phases involve the classic tasks of localisation,
path planning and mapping. The pose identification step identifies the possible
destinations; the goal selection phase selects the next destination; and, in the last
stage, the algorithm termination is evaluated based on the remaining candidate
points. As it can be seen, the three phases depend on the candidate viewpoints.
Those candidates are just possible destinations of the mobile robot, which are
limited by the model used to manage the navigation component. Therefore, how
the environment data is represented may have a huge impact.

Pose Identification

Given the partial map of the environment, the robot identifies a set of destinations.
In theory, all the physically reachable and non-visited destinations should be eval-
uated, as they are potential gains of information and, thus, any of them could be
the desired optimal viewpoint. However, in practice, the computational complexity
of the evaluation grows exponentially with the search space which proves to be
computationally intractable in real applications [26, 149, 216]. Thus, the implemen-
tation of certain filters reduce the number of candidates and the complexity of the
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Fig. 2.12. – Components that form the Active Simultaneous Localisation And Mapping
(ASLAM) problem, expressed as set theory. Overlapping areas represent the
combination of individual tasks.
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problem [241, 204]. Some poses can be discarded a priory, such as the ones that are
already tested, the ones surrounded by already mapped points or the ones that are
too far in the unknown space.

The most straightforward approach could be one that sets random destinations to
an existing SLAM system until a certain condition is met. In this case, the ASLAM
solution would not differ much from a SLAM technique. However, researchers have
developed more elaborated algorithms to autonomously map an environment.

In terms of dimensionality reduction and mapped space, a widely used concept in
the context of exploration is that of a frontier [260, 262, 261]. Frontiers are regions
on the boundary between open space and unexplored space, i.e., points in the map
between the free known space and the unknown space. The main idea behind these
points is that, as they are in the mapped space, it is very probable that the robot
can reach them. In addition, they ensure that unexplored areas next to them can
be covered. Frontiers, thus, represent optimal sets of points to be reached in order
to expand the explored environment. An example of a map with all the frontiers
identified is shown in Figure 2.13.

Fig. 2.13. – Example of a 2D map with frontiers.

Frontiers can be searched by applying computer vision techniques such as edge
detection or region extraction [108]. However, the vast majority of the approaches
find these points with algorithms based on Breadth-First Search (BFS) [274, 208,
233] and cluster these frontiers to be more efficient, as adjacent frontier points

48 Chapter 2 Robot Navigation: Concepts and Background



can lead to a similar exploration result proportional to the granularity of the map.
Generally, the clustering is performed using k-means [214, 64, 77, 224], although
some authors propose other alternatives such as histogram-based methods [154].

Optimal Goal Selection

Once the set of potential destinations is identified, the cost and gain of each of
them need to be estimated. The cost represents the effort required to reach the
actual goal, e.g., the distance between the actual position and the target pose. The
gain corresponds to the difference between the information provided by the map
after and before navigating to the selected goal. Information usually refers to the
number of points discovered. Generally, gain and cost are variables of a function
that results in a value called utility [102]. Utility serves as a metric to compare
exploration trajectories [35, 192]. Ideally, to compute the utility of a given action,
the robot should reason about the evolution of the posterior over the robot pose and
the map, taking into account future (controllable) actions and future (unknown)
measurements. However, computing this joint probability analytically is, in general,
computationally intractable [34, 65, 217], and thus, it is approximated [34, 157].

In general, the information gain Ib(u) of a belief b associated with an action u is
represented as the difference between the entropy Hp(x) of a probability distribution
p and expected entropy of the state x′ after action u and measurement z, as shown
in Equation 2.22:

Ib(u) = Hp(x) − Ez[Hb[x′|z, u)] (2.22)

Navigation and Checking

The robot navigates to the chosen optimal destination and updates the map during
motion or upon attaining the goal. Updating a map means completing unknown
data as well as improving the quality of the already known elements or correcting
old or erroneous information. Originally, the navigation is performed with a classic
technique, such us Dijkstra or A* [235], which is completely independent of robot
exploration. However, some researchers propose adapting these trajectories for the
autonomous mapping purpose, as it is described later on in Chapter 5. Then, the
robot checks if the exploration procedure must continue. In that case, the process
proceeds again with the pose identification step and another iteration is executed.
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When exploring an unknown environment, there may always be potential areas
of mapping or accuracy improvement, driving the system to an infinite loop. In
order to perform the autonomous mapping in a finite period of time, a termination
criteria must be defined. Thus, the procedure will be considered finished when
that criteria is satisfied [216, 20]. Many exploration systems based on frontiers
consider the exploration process as concluded when no frontier targets exist in the
map [34, 44, 188]. Other works opt for more straight-forward solutions as the
distance travelled, the time elapsed or the number of frames captured. Yet these
conditions are independent of the quality or completeness of the model built, and
their effectiveness is highly dependent on the optimal candidate selector. Kriegel
et al. [118] propose a 3D reconstruction system in which the termination criteria
is a predefined maximum number of scans mapped. This value is set based on an
estimation of the quality and the completeness rate of the scene, and it is unique
for each area due to the particular properties of different objects. Hence, there are
stopping conditions that are environment-specific.

Uncertainty metrics from Theory of Optimal Experimental Design (TOED) [68]
try to quantify utility from the variance of the variables of interest, that is, they
try to minimise the covariance of the joint posterior based on the actions to be
executed. Compared to information-theoretic metrics that are difficult to compare
across systems, functions built upon TOED seem promising as stopping criteria.
However, this decision is currently an open challenge [183].

2.8.2 Active Perception

In computer vision, the problem of exploration emerged as active perception [15]
and it is defined as an intelligent and reactive process for gathering information
from the environment to reduce the uncertainty around an element. It is considered
intelligent because the sensor’s state changes on purpose according to the sensing
strategies. Active perception applied to mobile robotics describes the capability of
the robot to determine particular movements in order to get a better understanding
of the environment. In the context of localisation, the position and/or heading of the
sensor is moved in an attempt to search for signs that reduce the position uncertainty.
In consequence, the shape, geometries or appearance of the surrounding elements
cannot be unknown and the robot must be able to recognise them with accuracy. This
is called active localisation and, although the environment is assumed to be already
mapped, many advances in this field can be extrapolated to the ASLAM problem [29,
6, 100]. A work that is especially worth highlighting is the one presented by Zhang
et al. [268]. On the one hand, they present a perception-aware receding horizon
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planner for micro aerial vehicles that allows the robot to reach a given destination
and avoid visually degraded areas at the same time [269]. On the other hand, they
define a dedicated map representation for perception-aware planning that is at least
one order of magnitude faster than the standard practice of using point clouds [270,
271]. Both contributions could push the research of mapping unknown areas in the
right direction.

In contrast, active perception in the context of mapping refers to the challenge of
modelling the environment with no prior information and calculating the motion
required to achieve it. Thus, this idea includes two processes, the reconstruction of
the environment itself and the motion control of the sensor. This method is referred
to as active mapping, i.e., a map of the unknown environment must be built in a
finite time, optimising the accuracy of the resulting model and the actions executed
for that purpose. There are several methods for estimating the spatial transformation
that corresponds to a specific motion. Approaches based on probabilistic filters [228,
171] give good results and are thus, used most commonly together with those that
employ Structure from Motion (SfM) [240, 200]. SfM is a photogrammetric range
imaging technique for estimating 3D structures from 2D image sequences, similar to
estimating the structure from stereo vision.

Some of the problems ASLAM is facing have already been tackled by other research
fields. For instance, active vision deals with the task of choosing the next optimal
sensor pose for 3D object reconstruction or obtaining a complete model of a scene.
This is known as Next Best View (NBV) and it has been studied since the 1980’s [42].
Alternatively, computational geometry confronts the art gallery problem. This
problem was first set out by Victor Klee in 1973 [175] as a matter of interest in
the field of security. The art gallery problem for an area A is to find a minimum-
cardinality covering viewpoint set P for A. It was called this way because one
envisions the area A as the floor plan of an art gallery, and the points in P as
locations to place guards, so that every part of the art gallery is seen by at least one
guard. In summary, provided that the system already has a digital model of the
environment, the objective is to find the minimum set of poses from which all the
scene is seen. Transferred to computational geometry, the gallery corresponds to a
simple polygon and each guard is represented by a point in the polygon. The goal
is then to find a minimal cardinality set of points (guards) that can be connected
by line segments without leaving the polygon. Many contributions have been done
finding the optimal placement of surveillance devices [24, 173, 97, 79, 161].
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Part II

Contributions





Experimental Evaluation of
Current Mapping Solutions

3

„Everything we hear is an opinion, not a fact.
Everything we see is a perspective, not the truth.

— Marcus Aurelius

In order to make contributions, a detailed understanding of the performance of
current solutions in a specific workspace is necessary, as they can mark limitations,
challenges and opportunities. This chapter presents the experimental evaluation
of some methods for robust autonomous navigation of mobile robots in indoor
environments.

3.1 Introduction

Autonomous navigation aims to design robotic systems capable of navigating without
having to modify the environment, i.e. without adding additional elements to it.
Currently, the performance of techniques in this line changes considerably depending
on the environment, as their efficiency depends directly on the characteristics of the
environment, such as morphology, lighting or size. During the operation of a mobile
robot, sensor readings are matched to the map and the pose is estimated based on
the similarity between them. Consequently, the greater the dissimilarity between
different regions of the environment, the easier it is for the system to localise itself,
increasing its accuracy, robustness and overall performance.

Shop floors and industrial environments are full of repetitive areas or long corridors
where the system localisation critically depends on unreliable odometry data, due
to high aliasing. As a result, the accuracy of localisation estimation methods is
degraded. Moreover, these environments undergo frequent modifications that would
require a remapping of the environment that is not always affordable.

Most of the developments to be carried out throughout this research work are put
through the same industrial environment, so it is necessary to be aware of the
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limitations of current techniques in order to develop improvements or new methods.
For this reason, the aim of this first phase is to empirically evaluate the main SLAM
techniques in order to lay the foundations for further research. Using an external
ultra-precision system, the aim is to quantify the error made in localisation in the
SLAM process by these algorithms. In addition, the maps generated by each of the
different methods are also compared, as the subsequent autonomous navigation is
directly affected by the model of the environment on which it is based.

3.2 Sensors for SLAM

Probabilistic approaches have become popular because they give a robust solution
to the SLAM problem. As the most relevant of them are already explained in
Section 2.5, the following is a brief review of the most commonly used sensors
for this task. The presented techniques are mainly based on two information
sources: motion information, usually obtained from wheel encoders and IMUs, and
perception information, gathered, in most cases, from cameras or lidars. Devices
belonging to the first group are known as proprioceptive sensors, and they provide
local information, in the sense that they are independent of the environment. An
odometer, for example, calculates the total or partial distance travelled, but does
not directly give any information about the surroundings. The measurements
depend only on the previous state and the movement since then, which generates a
cumulative error that is impossible to detect without additional information. For this
reason, it is necessary to use sensors that are capable of sensing the environment,
i.e., exteroceptive sensors. These kind of sensors allow the system to correct this
accumulative error and make a more accurate and robust estimate.

Among the different sensors used for correcting the estimated odometry positions,
lidar sensors are preferred nowadays, as they are quite reliable in most scenar-
ios [189, 251, 187, 129]. Briefly, lidars send out laser pulses and measure the
returned wavelength to obtain the distance to the first object in its path. They offer
a high level of robustness in terms of light effects such as shadows or reflections,
and visible light is not necessary for their operation. In some applications, it is even
preferred to acquire readings in the dark. However, many of the methods proposed
in the last decade are based on 2D images obtained from digital cameras. These are
cheap, lightweight, and the 2D image stream they provide are a valuable source of
information for visual feature detection [165, 63, 169]. Besides, in the last years
there has been a proliferation of devices that integrate both an RGB camera and a
depth module, which are known as RGB-D cameras. They use both sensors to collect
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data simultaneously and in a post-processing step the colour attribute is added to
each point of the point cloud, obtaining a realistic coloured point cloud, which can
better represent many aspects of a scene.

One robust approach to correct the localisation of a robot in an indoor environment
using visual sensors is by means of artificial markers [10]. By this method, visual
landmarks are placed in the environment through which the robot will navigate and
those are calibrated so that their positions with respect to the map reference frame
are known. When a landmark is identified, the robot’s relative position with respect
to it is computed and thus, the robot localisation in the map can be corrected [62,
222]. Although this method improves the quality of the pose estimation significantly,
it has some important drawbacks. On the one hand, the environment has to be
modified, which makes its installation costly and not always possible. On the other
hand, each of the labels to be placed has to be accurately calibrated. If the calibration
is not accurate, then the error is propagated to the robot pose estimate, which can
lead to unexpected situations. Furthermore, these measurements will only be valid
for a specific map. If the map changes, the reference frame also changes, and the
coordinates of the reference points have to be recalculated to fit the new map.

Several strategies designed to work outdoors use GNSS to address the localisation
aspect [1, 248]. However, those systems do not succeed in common factories due to
the bad quality of the signals produced by two main reasons [202]:

• The metal structures of the thick walls of industrial buildings. These structures
prevent signals from propagating properly, occasionally creating completely
isolated areas that are unreachable.

• Factories often have a considerable number of machines, each equipped with
its own communication devices. These devices can generate interferences or
even loss of information that can affect wireless data transmission. [139].

These communication issues can be addressed in different ways. Some approaches
propose to use signal repeaters or amplifiers to improve the quality of the sig-
nals [258] or replace the global positioning system with a local positioning sys-
tem [210]. Either way, the GNSS signal is not guaranteed to be available at all
times and it also requires a rigorous calibration between the GNSS data and the
environment. In addition, these sensors cannot sense the environment, which makes
it necessary to have another exteroceptive sensor. Optimising the use of sensors
such as cameras and lidars so that they can solve the entire SLAM problem without
the need for additional elements leads to more adaptable systems, less resources
management, and reduced robot manufacturing and installation costs.
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3.3 Proposed Approach

The algorithm used to build the map can make a big difference, so it is important to
choose the right one. However, regardless of the map building method used, the
procedure to follow is very similar. The robot must move around the environment
allowing the sensors to gather information from the area. The quality of the map
depends directly on the smoothness of the platform’s movement. Therefore, it
is highly recommended to limit speeds, especially rotational speeds, as rotations
increase the cumulative error the most, and abrupt turns can result in a much harder
scan matching problem. In addition, it is also a good practice to revisit mapped areas
to facilitate the global loop closure that many methods perform during mapping.
Loop closure consists of asserting that the vehicle has returned to a previously visited
location and correcting the correspondence of the scan matches in the map being
constructed to overlap the initial and final positions. Loop closure can be local,
where one tries to correct the relationship between neighbouring elements, and
global, where the correction is applied to the whole map.

Generally, the mapping process requires a post-modelling process in which unde-
sirable elements, such as dynamic obstacles detected during map construction, are
removed and loop closure is corrected. The decision to consider an obstacle as static
or dynamic, and therefore to decide whether to keep it on the map or not, is still an
open discussion. In theory, only static and immobile volumes should be part of the
map, but in most cases this is unfeasible because, strictly speaking, only walls and
pillars fulfil this condition. However, much relevant information would be lost and
the map would have little similarity to the sensor readings the robot gathers from
the environment as it navigates.

In this work, three map building strategies are studied: GMapping, Hector Mapping
and Cartographer. All of them are available as open source implementations in
ROS [@124], which makes our method easily replicable. GMapping [81] is a
Rao-Blackwellized particle filter to learn grid maps from laser range data, using a
particle filter in which each particle carries an individual map of the environment.
It computes an accurate proposal distribution taking into account not only the
movement of the robot but also the most recent observation. To perform the
computation efficiently, a marginalisation of the probability distribution of the state
space based on the Rao-Blackwell theorem is done [190]. On the contrary, Hector
Mapping [115] is a scan matching approach that attempts to find the best alignment
of each laser scan with the map. Based on a Gauss-Newton approach, inspired by
the field of computer vision, it optimises the alignment of beam endpoints with the
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map learnt so far. Therefore, there is no need to perform a data association search
between beam endpoints or an exhaustive pose search, as the correspondence is
implicitly made with all the preceding scans. However, the Hector Mapping method
does not perform loop closure. Finally, Cartographer [91] uses a branch-and-bound
approach for computing scan-to-submap matches as constraints and achieve real-
time loop closure detection and graph optimisation. To cope with the accumulative
error, it regularly runs a pose optimisation, creating constant submaps that take part
in scan matching for loop closure. Therefore, loops are closed immediately using
branch-and-bound when a location is revisited.

As mentioned before, industrial environments are full of symmetries and the shape
of the laser scan is, to a large extent, equal in spite of height variations when
keeping the same coordinate values. For this reason, during the mapping process
only 2D lidar information is used instead of the 3D point cloud. Although the 3D
data is flattened to the ground plane, the conversion could also have been done by
extracting the data in a range of heights and discarding the rest. This downsizing
is done to be able to extrapolate the method to more robots because not many of
them can incorporate a 3D lidar. Moreover, handling a complete point cloud involves
a greater degree of computational complexity and the extra information does not
increase accuracy proportionally.

Once a realistic map is created, the location of the origin is measured and saved
with an external measurement unit, which serves as ground truth when comparing
the localisation precision using that particular map. The Leica AT901 1laser tracker
shown in Figure 3.1 is used for that purpose, as it is a device that measures distances
with a micrometric accuracy.

The robot travels around the environment making runs with different styles of
navigation, varying the lineal and rotational speeds and accelerations, the order
and the visited areas of the map, the amount of turns done or the length and
duration of the runs. The more realistic the performed trajectories the better the
guess of the behaviour of the algorithm, and the more meaningful the experiment
is. The pose estimations of the algorithms are tracked while the real position of the
robot is saved with the laser tracker. Afterwards, both data are associated based on
their timestamp. Statistical values are obtained from that analysis, which allows to
establish a quantitative performance of each algorithm.

1https://manchester-metrology.co.uk/leica-absolute-tracker-at901/
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Fig. 3.1. – The laser tracker used to measure distances with a micrometric accuracy. It
serves as ground truth to measure localisation errors.

3.4 Experiments

The experimentation is proposed to be performed in an industrial rectangular
workshop of 90 m x 30 m, with a wall in the longitudinal axis. This wall divides the
area in two halves that are communicated by two large sliding doors, which were
completely opened during the experiment. This structure forms a sort of circuit with
a width of 4 m - 8 m, where there are machines, benches and industrial robots next
to the walls alongside the route. A part of the scenario, with the platform navigating
though it, can be seen in Figure 3.2.

The experimentation is divided in two main sections: mapping and localisation.
Besides, they are performed in that order, i.e., mapping before localisation evaluation,
as the former has a direct impact on the latter.

3.4.1 Robotic Platform

The robotic platform used for the experiments is a Segway RMP 440 Flex Omni, able
to drive in any direction due to its omnidirectional wheels, at a speed of 2.2 m/s
(5 mph) with a maximum payload of 450 kg (1,000 lbs). However, its velocities
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Fig. 3.2. – West half of the workshop. At the top, the mobile platform navigating.

are limited to 0.5 m/s (1.1 mph) and 1 rad/s during the experiments for improved
control and safety.

It includes the following main elements:

− PC with Intel i7 Processor: Core i7-3517UE (1.7-2.8 GHz + HD 4000), 16GB
(2x8GB) DDR3-1333/1600 SDRAM, 128GB high performance SSD.

− CH-Robotics UM7 IMU: Attitude and Heading Reference System (AHRS) for
precise pose estimation.

− Velodyne VLP-16 lidar PUCK: Real-time, 360º, 3D distance and calibrated
reflectivity measurements with a 150 m range, 360º horizontal field of view
and a 30º vertical field of view, with a 15º up and down.

− RGB camera: Optical format of 1/1.8" and a focal length of 12 mm. It is not
used in these experiments.

3.4.2 Mapping

The robot needs a map for navigation and the map must contain information
relevant to how the data will be processed by the system. This means that the map
must represent the environment according to how the robot’s sensors capture it,
which does not necessarily correspond to a human concept of realism. During this
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experimentation, first of all, a location is established to be the starting point of the
mapping process and the origin of coordinates of the map. This point normally
corresponds to the place where the mapping process starts. Then, with the help of a
joystick, the robot is guided through the environment, moving the robot smoothly
and covering the whole area of the workshop. In order to evaluate the different
algorithms under the same conditions, the three maps are built simultaneously,
during the same teleoperated trajectory and with the same sensor readings.

It is impossible to determine at a glance which of the maps obtained with the three
algorithms is better, at least not without having a real map that serves as ground
truth. This is quantified to some extent in Section 3.4.3, but a first comparison is
made in Figure 3.3, where the overlap of all the maps in the same image is shown.

Fig. 3.3. – Overlapping of the maps obtained with each algorithm: gmapping, blue; hec-
tor_slam, red; cartographer, green.

Apparently, hector_slam has a significant deviation in the orientation with respect
to gmapping and cartographer in the north part of the map (right-hand side of
Figure 3.3), which is the region that corresponds to the last phase of the trajectory
of the mapping process. It may be because hector_slam does not have loop closing
ability and therefore it does not apply the corresponding transformation in the data
to rectify the graph. Besides, gmapping and cartographer seem to cover a wider
range, i.e., there are elements that they add to the map while hector_slam does not,
as can be clearly seen in the bottom right of Figure 3.3. It should be noted that
all three algorithms have been configured so that parameters such as valid sensor
range, update rate, or map resolution are the same. Moreover, the process has been
carried out several consecutive times and the differences between the maps and
the trend of each technique have been analogous. Although this first comparison is
not meaningful in determining which algorithm is better, it can be useful as a first
approximation of the effectiveness of each algorithm.
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3.4.3 Localisation

Strictly speaking, we are evaluating the combination of a localisation method with
each of the mapping algorithms. However, the only aspect that changes from one
combination to another is the map itself, which is generated with the corresponding
mapping technique, so it can be deduced that the error measured is a result of
the latter. Indeed, localisation estimations may vary depending on the map being
used, as it represents how the robot perceives the environment. In these terms,
if the map built is mediocre, the whole system will perform poorly. As neither
gmapping nor hector_slam have a localisation-only mode, the probabilistic Adaptive
MCL (AMCL) [69] algorithm has been used for that purpose driving the localisation
tests.

In order to measure the magnitude of the localisation error produced by the use of
the different maps, teleoperated trajectories are recorded to afterwards reproduce
the data in each map, while AMCL is running for localisation purposes. Thus, no
planning algorithm is used to fulfil the routes; predefined action commands are used
instead.

First of all, we must fix a point with the laser tracker from which all trajectories will
start. This will also be the origin of coordinates of all the maps that are generated in
this manner. Indeed, this point must be common to all reference systems to be able
to directly compare the values of one system with another. Once this is done, the
mapping process can begin and be performed as described in Section 3.3.

12 tests were done, in which 35 different poses were recorded. Among these, 7 were
long routes executing each of them a complete loop of the workshop, and the other
5 were shorter trajectories that do not visit the whole environment, but all of them
finish in the origin. Besides, in 6 out of the 12 navigations the driving is smooth,
whereas in the other 6 the robot rotates 360º every 10 m. These sudden rotations
were done with the aim of adding systematic uncertainty to the system and see
how each configuration responds to them. As expected, jerky navigation does add
uncertainty in localisation as the errors in translations were bigger in those cases,
as shown in Table 3.1. Translational mean errors in smooth navigation were 0.19
m, 0.34 m and 0.17 m for each system, smaller compared with the 0.24 m, 0.50 m
and 0.25 m of the abrupt navigation. Nevertheless, while the same increment of
the error occurs with hector_slam, 1.61º against 2.20º, this is not the case with the
rotation values of gmapping and cartographer, as shown in Table 3.2.

In the smooth navigation, the rotational mean errors obtained with gmapping and
cartographer are, respectively, 1.08º and 0.94º, whereas values of 0.24º and 0.80º
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Translational error
Smooth navigation Abrupt navigation

gmapping hector_slam cartographer gmapping hector_slam cartographer
Mean 0.191 0.340 0.170 0.242 0.498 0.254
Min. 0.063 0.041 0.001 0.019 0.019 0.005
Max. 0.506 1.099 0.543 0.544 1.509 0.997

Std. dev. 0.130 0.317 0.185 0.176 0.482 0.317
Tab. 3.1. – Translational error in metres made with the three mapping algorithms, calcu-

lated on the basis of the laser tracker measurements.

Rotational error
Smooth navigation Abrupt navigation

gmapping hector_slam cartographer gmapping hector_slam cartographer
Mean 1.088 1.606 0.939 2.048 2.196 0.800
Min. 0.074 0.122 0.037 0.021 0.024 0.028
Max. 3.305 5.467 2.884 10.185 10.423 4.393

Std. dev. 1.077 1.847 0.963 2.782 2.700 1.210
Tab. 3.2. – Rotational error in degrees made with the three mapping algorithms, calculated

on the basis of the the laser tracker measurements.

are obtained navigating with sudden rotations. The overall values, including transla-
tional and rotational errors in both smooth and abrupt navigation, are depicted in
Figure 3.4.

3.5 Conclusions

The main conclusion this experiment leads to is that relative small differences in
the generated maps are directly related with the localisation procedure accuracy
in each one. Therefore, using an appropriate environment representation for the
task in hand is of high importance to obtain good results during pose estimation.
To determine if a map is good enough, it is mandatory to experimentally test it
in real situations. Based on the navigation done with the three maps, gmapping
and cartographer obtain the best results. But, based on our experience and the
applications we are working on, we consider that the system using gmapping is the
preferred one for general use. It obtains significantly lower maximum and standard
deviation values in translation (see Figure 3.4(a)) and only slightly higher ones in
rotation (see Figure 3.4(b)). This may be, to some extent, an indication of robustness
and stability. However, if one could ensure that navigation will be always smooth,
cartographer would be a better option according to the results.
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(a)

(b)

Fig. 3.4. – Overall error made with the three mapping algorithms, including both smooth
and abrupt navigation. While Figure 3.4(a) depicts translational errors in meters,
Figure 3.4(b) rotational errors in degrees.
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As expected, rough movements increase the error in localisation, so the robot should
have both angular and linear velocities and accelerations limited to cautious values
during the general usage. Even though navigating smoothly, the accuracy of the
positioning in the destination point is not enough for some operations and an
additional system may be required in some applications.
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Accurate Positioning 4
„If you tell the truth, you don’t have to remember

anything.

— Mark Twain

The positioning accuracy achieved in mobile robotics using state-of-the-art navigation
systems may not be sufficient depending on the task or may be deteriorated by the
scenario in which the robot is located. In this chapter, two different systems are
proposed to reduce the error made in these situations.

4.1 Introduction

Localisation is a core competency for any autonomous robot and many developments
assume the localisation as known. The robot location is given with respect to a
specific reference frame. However, depending on the task, the localisation accuracy
might not be enough. Here, we refer to accurate positioning as estimating the
location of the platform with a smaller tolerance than a general purpose localisation
algorithm in the same scenario.

Some applications do not require the robot to maintain an accurate localisation
along the entire path, but do require it at certain locations [147]. A typical example
is a mobile manipulator that performs inspection or handling tasks of some elements
in a plant. This type of systems can be more tolerant to deviations during navigation
between destinations, as long as the task is completed safely and within a reasonable
time interval. On the contrary, it requires a precise knowledge of the positioning of
the platform at the places where mobile manipulation is to be performed, due to the
nature of the task. Indeed, a lack of coordination between the robotic arm and the
mobile platform or low precision in either positions can lead to misleading results.

Here, we study the positioning accuracy of a platform in two different environments,
proposing and evaluating a localisation improvement method for each case. The
two cases are as follows:
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1. In the first one, the robot must navigate autonomously inside a factory and
then position itself precisely in front of an aircraft aileron to perform an
inspection operation. The proposed solution is based on artificial landmarks
placed in the inspection area that serve as a reference to improve localisation
accuracy.

2. In the second case, the platform operates in a semi-indoor environment, such
as a greenhouse, where it must be able to travel from plant to plant to perform
inspection and spraying tasks. In this case, the proposed improvement consists
of fusing the information obtained from the system’s local sensors with the
location provided by a GNSS module.

In the following sections, both scenarios are explained in detail independently.

4.2 Artificial Landmark-based Localisation for Aileron
Inspection

Highly integrated composite parts have begun to enter the market. Their inherent
complex structure makes more difficult inspection activities being crucial the devel-
opment of more flexible, more reliable and faster non-destructive testing solutions.
Currently, most inspections are performed manually, which entail two key disad-
vantages: an excessive amount of time and the risk of potential safety failures due
to human errors. To solve these issues, the automation of inspection processes has
been envisioned as a strategic solution. The integration of robots in manufacturing
lines has improved process reliability, reduced manufacturing times and, therefore,
costs.

This work aims to improve robotic capabilities, enabling faster and more reliable
operations. Specifically, the robot needs to navigate through an industrial plant to
reach an area where there is an aircraft aileron. Once there, it needs to position
itself precisely with respect to the aileron in order to perform an inspection process
using advanced ultrasonic techniques, as shown in Figure 4.1. Afterwards, the
platform must be able to precisely position itself at some pre-defined points, so
that the robotic arm mounted on it performs fast and robust ultrasonic scanning
of the aileron to accurately follow the complex curvatures of the composite parts.
As the working space of the arm is limited, the arm cannot scan the entire surface
of the same aileron at once, so the mobile platform must reach different positions
during a single inspection. Consequently, there must be robust coordination between
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the base and the arm, since the ultrasonic sensor is particularly sensitive to slight
variations.

Fig. 4.1. – The aileron inspection process. On the right-hand side, the aileron to be
scanned. The robotic arm with the scan is in front of it. In the lower left
corner of the image, the top part of the mobile platform is seen.

Based on the results obtained from our previous experiments described in Chap-
ter 3.4.3, the localisation accuracy obtained with the state of the art methods for
navigation is not enough for the task in hand. Therefore, another positioning
approach is required, which must be able to correct the deviation.

4.2.1 Visual Landmarks

Landmarks are defined as characteristic elements, regions or points in the envi-
ronment that can provide reliable localisation when they are within the robot’s
field of view. Their uniqueness allows them to be identified unequivocally from
different perspectives, allowing an association between their corresponding scans
and robot positions. While some methods actively search for natural landmarks
in the environment, others opt to place artificial markers or labels in it so that the
robot use them as known references to, for example, correct odometry error. One of
the main advantages of the artificial landmark-based approaches is that they can be
placed in critical areas and reduce system failures. It has been shown that, when
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certain assumptions and conditions are satisfied, these procedures guarantee the
robot the possibility to localise itself precisely [9, 259].

Setting artificial landmarks in the environment is simply a way of ensuring that
this provides relevant and easily distinguishable features. Indeed, one of the main
problems of localisation is dealing with environmental aliasing in symmetrical or
highly ambiguous scenarios.

4.2.2 Setting Up the Scenario

We present an approach where,after navigating, the platform arrives at the des-
tination point and switches its localisation system to one with higher accuracy.
Specifically, we propose a system based on artificial vision, which uses fixed tags
located in the target area as a reference point to correct the position.

The whole operation requires to ensure the precision of the camera, to create the
map for autonomous navigation, and to calculate the optimal position of the robot
with respect to each artificial marker. In addition, the location of these markers on
the created map must be known, which is what determines the destinations prior to
the precise positioning process, e.g., for autonomous navigation. These procedures
are explained below.

Ground Truth Generation

Before anything else, we must verify that the additional localisation system for
accurate positioning can actually provide a smaller tolerance than required. In our
case, the proposed vision system is validated using the TRITOP photogrammetric
unit [19]. TRITOP is an optical mobile measurement system, which accurately
defines the 3D coordinates of object points at quasi-static conditions. Based on this
information, TRITOP is capable of calculating 3D displacements and deformations
of objects and components. It consists of one digital single lens camera (DSLR),
contrast coded and uncoded bars, scale bars and the corresponding software - in
this case, TRITOP v6.2 has been used. As in the work proposed by Koutecký et.
al. [117], TRITOP is used for the validation of the vision system incorporated in
the robotic platform. This measuring procedure achieves a theoretical accuracy of
0.015 mm in an area of 1 m x 0.5 m x 0.5 m, which fits in the settings defined for
the validation.
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First, the coded plate used in the robot vision system is fixed in the same configu-
ration as it will later be used in the real application. Afterwards, several foils with
coded points of the TRITOP system are placed around it, so as everything can be seen
together. Then, some images are taken with the camera, varying the point of view,
but trying to keep as much markers as possible in the FoV. The relation between the
plate and the coded foils must be the same in all the images, so they must be placed
at stationary locations. A total of 14 images are taken in this particular evaluation,
similar to the one shown in Figure 4.2. Then, both the TRITOP system and the robot
vision system find the labels in the images and each of them calculates the pose of
the camera with respect to a common reference frame. In addition, the TRITOP
system also computes the intrinsic parameters of the camera. The results estimate an
average image point deviation of 0.02 pixels and an average object point deviation
of 0.01 mm. Accordingly, the vision positioning system assumes this error at all
times, which can be considered as negligible.

Fig. 4.2. – Example of an image taken for the TRITOP calibration.

Once it is verified that the additional localisation system has the potential to correct
the error made in autonomous navigation, it has to be evaluated in the real scenario.
Factors such as platform motion control, system cycle time, motion inertia forces,
lighting changes, or even the printing of the labels itself, can alter the accurate
positioning result. The mobile robot used in these experiments is a modified version
of the one described in Section 3.4.1, as a KUKA LBR iiwa 7 arm has been mounted
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on top of it, with all the necessary components to ensure its correct operation. In
addition, the motion control of the platform has been re-calibrated, due to the
increase in weight and volume of the whole structure.

Mapping

As the robot has to navigate autonomously before reaching the inspection area, it
needs a map of the environment. The SLAM method used for this task is GMapping,
based on the results obtained from our previous experimentation. Briefly, we can get
lowest translational and rotational deviations during the autonomous navigation.
The mapping process is performed in the traditional way and as explained in Sec-
tion 3.4.2, the robot is teleoperated, guiding it smoothly through all the environment
and using data obtained from the lidar. The 2D map obtained is post-processed
before using it for autonomous navigation.

Optimal Position Calculation

In the inspection area, the references are used to determine where the platform
must be positioned so that the arm on it can perform the execution. This position
is calculated empirically, i.e., the platform is positioned in different configurations
until a complete correct inspection of the aileron can be performed. In invalid
configurations, the arm cannot achieve all points of the spoiler because they are out
of reach, and the optimal inspection is the one with the least number of stops. Once
the whole trajectory can be fulfilled by the arm, three actions must be taken:

(a) Save the localisation on the map. Having the localisation method active and
correctly located, the pose of the platform in the global frame is saved. This
will be the destination for the autonomous navigation.

(b) Place the reference. The label is fixed to a structure where its spatial relation-
ship relative to the aileron does not change, and where the robot’s camera
used for precise positioning can see it.

(c) Calculate and save the transformation between the camera and the label.
Using the accurate vision system, the pose of the label with respect to the
camera is obtained and saved, as it is this relation which connects the chain of
transformations between the part to be inspected and the inspection tool.
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For the specific aileron inspection task, the mobile platform cannot remain stationary
as the arm mounted on it would not be able to reach the entire piece. Thus, there
is more than one label in the working area, as shown in Figure 4.3. In this way,
the platform can move to different scanning positions without losing the accuracy
offered by the vision system. In these cases, the spatial relation between different
labels must be calculated as well.

Fig. 4.3. – The accurate positioning and inspection scenario. The platform is positioned in
front of the first label, and the arm is performing the inspection of the first part.
Under the aileron, the label for the next scanning position can be seen.

Noticeably, a requisite is that the label must be located within the field of view of the
sensor that will afterwards be used for correcting the final positioning error. Ergo
there is a maximum error tolerance in natural navigation determined by the features
of the camera and lens chosen. Aspects like the focus, the depth of field or the angle
of view should be calculated beforehand as those features mark the boundaries of
the region inside which the vision system must fall after the navigation.

4.2.3 Proposed Approach

The robot navigates autonomously through the shop floor until the optimal position
from the inspection area is set as the goal. Figure 4.4 shows a snapshot of how
the environment is represented to perform the autonomous navigation. Once at
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the destination, the system must find the artificial marker to be able to proceed
with the correction. Based on the chosen vision configuration, the autonomous
navigation must reach the destination within a certain area, outside of which the
robot is not able to detect the marker. If there is no error in the robot orientation,
the variability is an area of approximately 20 cm in radius. On the contrary, if there
is no translational deviation, a maximum error of 16º (0.28 rad) is allowed. These
values vary if both translation and orientation are not precise in the last pose of the
navigation, which is what usually happens. If so, the accurate positioning process
starts.

Fig. 4.4. – The robot navigating autonomously to the inspection area. It is about to pass
through the door that connects the large shop floor with the laboratory where
the aileron is placed. Free mapped space is in grey, obstacles are in black and
blue/red colours are the inflation of obstacles in the costmap. The green line
represents the trajectory planned to reach the goal.

First, the system detects the marker with the camera and calculates the spatial
relation between the marker and the robot. The ideal inspection pose of the platform
with respect to the marker is already known, as it is calculated beforehand. Hence,
the system derives the relative movement to be performed from this relation, until
the objective pose is achieved. These movements are slight corrections, and they
are accomplished by sending linear and angular velocity commands directly to the
platform’s motion controller. To travel between consecutive inspection poses of a
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unique aileron, the same technique is used. During this movement phase, it must be
noted that the system does not make use of the map and that its localisation system
totally depends on the platform’s odometry and on seeing the labels. Therefore,
ideally, at least one marker should always be in the field of view of the camera. If no
markers are detected, the platform moves with dead reckoning.

Once the second label is detected, the same accurate positioning and inspection
process is performed. In principle, this positioning process can be repeated as many
times as necessary without worsening the accuracy, as each marker is calibrated
independently with respect to the aileron.

To check that the platform actually achieves the desired accuracy, the vision system
itself is used (validated as explained in Section 4.2.2). With this same method, the
pose of the platform before and after the correction is measured, in order to quantify
the improvement. In practice, though, the way to verify that the accuracy has been
sufficiently improved is ensuring the arm can reach every point of the inspection
trajectory.

4.2.4 Experimental results

The tests conducted focued on demonstrating that the proposed vision system is
capable of correcting the error made in localisation during autonomous navigation,
enabling the efficient inspection of an aileron. The robot started in a in a large
shop floor and navigated autonomously to a laboratory next to it, passing through a
narrow entrance and travelling a distance of approximately 20 m to its final destina-
tion. For autonomous navigation, the entire store floor was mapped with GMapping,
which was 30 m wide and 90 m long, and the robot used AMCL for localisation
and A* for trajectory planning. A total of 25 experiments were performed, each of
them with the corresponding accurate positioning process. As each experiment’s
starting point varied in position and orientation, the time navigating autonomously
and the length of the trajectories also varied from one test to another, with the aim
of adding variability to the experimentation and increasing the number of situations
covered.

If the tolerance configured for the correction of the motion control is too small, the
platform will hardly achieve it and, as a consequence, it can keep oscillating trying
to accomplish the correction. After some tests with the platform, a tolerance of 5 mm
in the x axis, 3 mm in the y axis, and 0.12º (0.002 rad) in rotation was established
for all the experiments. However, as these values are relatively low, we considered
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that the error made by the autonomous navigation at the destination point was fully
corrected if the robot succeeded to complete the accurate positioning step. Besides,
in order to position the platform within this range, the speeds at which it moves
were also reduced to a minimum. After several tests, we concluded that these values
were: 0.012 m/s in x axis, 0.012 m/s in y axis, and an angular velocity of 2.3 º/s
(0.040 rad/s).

Figure 4.5 shows the positions achieved after autonomous navigation, which are
then corrected. Note that autonomous navigation is only used to reach the first
marker, as for the subsequent markers a relative movement is made without taking
into account the map-based localisation. For this reason, to calculate the correction
that the proposed system achieves, only the positions with which the robot reaches
the first marker have been considered. In all the tests conducted, autonomous
navigation reached the inspection area so that the camera could detect the artificial
marker. Similarly, in all cases, the platform successfully achieved precise positioning.
Therefore, thanks to the vision system, the platform could always reach the goal
with the accuracy mentioned above.

Fig. 4.5. – Positions of the robot after the autonomous navigation. If we understand the
graph as the horizontal plane, each point P represents the coordinates of the
position at which the robot arrives after the autonomous navigation and prior to
correction. Being the origin O the target position, which is achieved after the
correction, the modulus of

−−→
PO is equivalent to the distance corrected.

In the 25 positions recorded, an average error in translation of 217 mm was corrected
with a standard deviation of 104 mm. Even in the most accurate autonomous
navigation (closest to the target position), a minimum improvement of 70 mm was
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achieved. On the contrary, in the worst case, an error of 456 mm was corrected with
the accurate positioning method. Note that, as shown in Figure 4.6, the errors on
the y axis were much larger, on the order of two to three times the ones made on the
x axis. This is probably due to the fact that the odometry in the lateral movement, y

axis, of the used platform is less precise than when moving in the longitudinal axis,
because of the specific configuration of the mecanum wheels.

Fig. 4.6. – Errors corrected with the precise positioning procedure after autonomous navi-
gation.

Furthermore, the tests showed that the deviation tended equally to one side of the
x axis as to the other, i.e., the positive magnitudes were similar to the negative
ones. On the contrary, regarding the y axis, there was a tendency towards positive
values (commonly left). This behaviour is shown in Figure 4.7. With respect to
rotation, the inaccuracies were proportionally much smaller than in translation, if we
compare them with the maximum error of 16º admissible to perform the correction
(see Section 4.2.3). Besides, the measurements were more homogeneous as, on
average, 1.7º were corrected, with a standard deviation of 2.2º. Still, the greatest
improvement was 10.2º, which is a significantly large error, although it could be
considered as an outlier.
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Fig. 4.7. – Tendency of the error on each axis.

4.3 GNSS-based Localisation in Greenhouse Crops

Issues such as population growth, climate change, resource scarcity and increased
competition, a key challenge for agriculture today is to increase production while
reducing resources. Greenhouses can protect crops from adverse weather conditions,
allowing year-round production and environmental consistency to increase yields,
while modern crop management approaches can significantly reduce water use.
However, in a closed environment such as a greenhouse, any infection can spread
rapidly if pests are not detected and treated in time, which will negatively affect
production.

To prevent this, crop inspection for pest identification must be performed thoroughly,
so that the appropriate treatment can be applied as soon as possible and keep
damage to a minimum. In addition, treatment must be applied in the right place,
and only there, so as not to use more resources than necessary. Traditionally, manual
inspection methods have been used, but these are labour-intensive and inefficient,
making them unfeasible as the area of glasshouses increases. As an alternative,
automatic inspection by computer vision has become increasingly popular. This
method is well suited to repetitive tasks and can also improve detection accuracy,
improving productivity and reducing the use of pesticides.

The main objective of this research is to design and develop an innovative robotic
solution for Integrated Pest Management (IPM) in greenhouse crops, with the ability
to navigate inside greenhouses whilst performing pest detection and control tasks
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in an autonomous way. Although some automatic IPM tools and techniques have
already been proposed [239, 257, 60, 16], none of them presents a completely
autonomous mobile manipulator as part of the pest treatment system. The main
advantage of using a mobile robotic platform is that it can cover a large greenhouse,
or greenhouses, with just a few sensors, as the same robot can move through
different sections and inspect any number of plants in the path. Furthermore, unlike
systems that rely on fixed guide rails, for example, a mobile platform does not
require a specific fixed infrastructure, being able to cope with changes in the layout
that may arise, making it much more flexible and easier to deploy.

Precise localisation is a fundamental capability for this research, as it enables
autonomous navigation of the robot inside the greenhouse and also makes it possible
to register accurately the location of the detected pests. Given that the use of
pesticides is subject to regulation, the robot needs two working modes: detection
and treatment. During detection mode, the detected pests must be registered in the
generated map with enough accuracy to guarantee that the robot will be able to
come back to the issued areas when working in treatment mode. Pesticide spraying
cannot be done as soon as a pest is detected because the points to be sprayed are
determined by a complex decision algorithm that requires knowledge of the state of
the entire greenhouse.

The high level of symmetries and repeated scenes in greenhouses make traditional
localisation algorithms drastically worsen the pose estimation. Moreover, the rough
terrain of the working area affects the odometry significantly. On the one hand, the
planar motion assumptions are not directly applicable when the ground is ondulated.
On the other hand, bumps on the ground can cause motion abruptness and make
visual registration harder. Therefore, to effectively perform the task, an additional
positioning system is required.

Artificial landmark-based vision systems like the one presented in Section 4.2 are
not valid in greenhouses for several reasons:

• It is not efficient to cover the whole greenhouse with artificial labels. They
are large environments with narrow corridors, which means that not many
elements fall within the camera’s field of view, due to the closeness of these.
Blurring of images in motion or at long distances and occlusions can lead to
complete loss of the robot’s location. Besides, calibrating all of them with
respect to a common reference to obtain a global localisation value is a complex
task.
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• A fixed structure on which to attach the labels is needed. Greenhouses are
changing scenarios due to the nature of the plants that compose them, in
which it is not possible to add static labels that serve for the localisation of the
platform.

• Accuracy and robustness in outdoor conditions is not tested. The accurate
landmark-based positioning has been designed and evaluated in an indoor
environment, where the lighting conditions are stable.

Most SLAM research studies are conducted in indoor environments with a large
number of features that are always under similar conditions. Outdoor environments
present changes such as seasons, weather, or time of day that are difficult to reflect
on maps and pose a challenge to SLAM methods [223, 197, 27]. Although GNSS
can help solve the location problem in these situations, it requires a constant and
reliable signal.

A greenhouse, the scenario of the present study, presents the disadvantages of
both worlds. On the one hand, its infrastructure can block the direct reception
of GNSS signals and generate multipath interference [250], which has disastrous
consequences on the provided localisation. On the other hand, its visual appearance
is conditioned by climate. Plants evolve over time, mainly due to seasons, and indoor
lighting is directly influenced by outdoor conditions. Figure 4.8 shows the state of
the greenhouse at the beginning and at the end of the project, while the Segway
platform described in Section 3.4.1 adapted for this scenario navigates through one
of the rows.

For these reasons, an additional localisation system is needed that does not have
the mentioned disadvantages of visual methods. In our approach, we study the
capabilities of combining GNSS and lidar data with probabilistic techniques in a
semi-indoor environment. It is stated that the localisation module should prove an
accuracy of 30 cm in position and 5º in heading at least 95% of the time, mainly
given by the spraying algorithm.

4.3.1 Current State of GNSS for Mobile Robotics

GNSS refers to a constellation of satellites that provide signals from space and deliver
position and timing data to GNSS receivers. The receivers then use this data to
determine location which has, by definition, global coverage. GNSS positioning
techniques provide real-time measurements that can be used as the primary sensor
in some agricultural robot navigation scenarios [181]. The signals provided by
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Fig. 4.8. – The platform inspecting plants while navigating through the greenhouse. Note
the difference of the plants at the beginning of the development (top) compared
to some months later (bottom). In that period, the platform was modified and
grew as well.
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Galileo [225], the European GNSS, allows users to know their exact position with
greater precision than what is offered by other available satellite systems, making it
a valuable tool for tackling this challenge.

However, due to the difficulties mentioned in Section 4.3, mobile robotics appli-
cations cannot rely solely on GNSS-based geolocalisation. Therefore, it is usually
coupled with the dead reckoning (DR), based on inertial navigation systems (INS)
and encoders’ odometry [82]. In fact, GNSS and dead reckoning (DR) techniques are
complementary in nature, since the incremental error of the latter can be corrected
by the former, whose error is not cumulative. Furthermore, while one requires a
satellite signal, that can be lost, the other does not require any communication with
an external element.

To perform this GNSS-DR combination, the most common strategies are tightly-
coupled and loosely-coupled integration. Briefly, the basic difference between them
is the type of data shared by the GNSS receiver and the DR module [41]. In
the loosely-coupled technique, the positions and velocities estimated by the GNSS
receiver are blended with the INS navigation solution [84], while in the case of the
tightly-coupled method, GNSS raw measurements are processed through a unique
Kalman filter with the measurements coming from the DR sensors [159]. The
heading angle provided by GNSS-DR can help to correct drift issues, as well as to
control big errors in relative positioning [184].

Therefore, problems and errors arising from separate GNSS and DR methods can
be reduced by exploiting the complementary qualities of both through GNSS-DR
fusion techniques. However, in practice, this solution is not robust enough [231], as
both components may lead to a bad outcome at the same time. SLAM methods have
proven to provide relatively good robustness and accuracy when the environment
does not vary much with respect to the map. Although we have already said that a
greenhouse changes over time, it does in the mid to long term, so SLAM methods can
be a valuable source of information in the short term [182]. Thus, SLAM techniques
can help to robustify the system by, for example, correcting the drift error of the DR
when the GNSS signal is not available [37].

The following is a brief description of the GNSS techniques that have been assessed
for analysis in this scenario, which are the most widely used ones in the literature.
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Single Point Positioning (SPP)

SPP is a positioning technique characterised by a single receiver that receives signals
from at least four different satellites [245]. It does not use any post-processing
technique, and its position is not relative to any point with known position (e.g. a
nearby base station). Although SPP is robust and easy to compute, it suffers from
several limitations. First, measurements of this technique’s code - or pseudo-distance
- experiences noise and errors that limit performance and make the accuracy of
positioning solutions around 1-2 m at best [199]. This tolerance is valid for some
operations, but higher precision is required for the geo-referencing of photographs
or treatments and autonomous navigation corresponding to our application.

Real Time Kinematic (RTK)

RTK is a GNSS correction technology that provides real-time centimetre-level posi-
tioning [170]. It consists of two receivers: one is the rover receiver placed in the
mobile platform, and the other one is the base station located over a known control
point. Both elements receive satellite signals and communicate between them via
Internet or radio, so the rover can apply base corrections and improve its accuracy.
Note that a specific base station is not always needed, as there may be local service
providers who share their base corrections over the Internet. However, in both cases,
the performance decreases as the distance between the base station and the user
increases [83].

Post-Processing Kinematic (PPK)

PPK is an alternative technique to RTK, where positional corrections are applied in a
post-processing step [232]. Here, the rover and the base station collect raw GNSS
data, which are then processed to get an accurate positioning track. Thus, there is
no need for continuous communication between both receivers, but the corrected
position is not available in real time either. The accuracy obtained is, as in the case
of RTK, within a few centimetres.

Precise Point Positioning (PPP)

PPP stands out as an optimal approach for providing static and kinematic geodetic
point positioning solutions using a single receiver. Combining GNSS satellite clock
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and orbit corrections generated from a network of global reference stations, PPP is
able to provide position solutions at centimetre-level precision without requiring
a base station [22]. This absence of the need for a local reference station means
that PPP is applicable anywhere in the world, as the accuracy does not depend on
the distance to a reference station. In addition, the user’s position can be calculated
directly in a global reference frame instead of being positioned relative to a single
reference station. Nevertheless, the main limitation of the PPP technique is its
requirement of a relatively long convergence time for precise positioning.

4.3.2 Proposed Approach

The approach proposed in this work is based on a GNSS-DR-SLAM localisation
strategy that attempts to combine the strengths of the three methods to perform the
inspection and treatment procedures successfully. The target environment in which
the system must operate is a single rectangular greenhouse of 52 x 30 m composed
of a main longitudinal corridor and 39 transverse corridors or rows.

To manage the different data sources, the architectural design of the proposed
system considers localisation at two different levels: absolute and relative. Figure 4.9
shows how the proposed architecture combines different sources of information for
localisation estimation and commands the mobile platform to perform navigation.

Fig. 4.9. – Proposed system architecture diagram in the greenhouse scenario.

Absolute Localisation

The purpose of the absolute localisation function is to provide real-time absolute
position and heading information to the relative localisation module. Due to the
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nature of the greenhouse, different robot poses that are far from each other can
generate the same SLAM posterior. Thus, limiting the area of possible poses can
significantly increase the robustness and precision of the estimation.

The absolute localisation module combines GNSS, inertial and odometry data to
generate accurate real-time position and heading information. The GNSS processing
uses the PPP approach to obtain the required absolute position performance, and the
data obtained from the odometer and the IMU are combined with it. In particular,
the proposed PPP solution takes advantage of additional signals provided by the
Galileo system, such as the E5 AltBOC signal [206].

First, the output of the PPP module is transformed into the robot’s world coordinates,
i.e., geographic coordinate expressed as a latitude/longitude pair and an earth-
reference heading into x, y and heading with respect to the robot’s origin. To
do this, the geolocalisation of the robot’s world frame must be known, as the
transformation is calculated based on this relation. In our case, as the system uses
a map for the operation, the robot’s world frame is the origin of the map itself,
whose corresponding geolocalisation is known and constant. Then, PPP information
is combined with that from the robot’s sensors to provide a better estimation of
the robot’s position in real time. The fusion is performed with a UKF, using the
implementation proposed by Moore and Stouch [158], as it accepts measurements
from an arbitrary number of pose-related sensors, among which IMUs, odometers,
and GNSSs are included. In addition, if there is a long period in which no data is
received from any of the sensors, the filter will continue to estimate the state of the
robot via an internal motion model, allowing continuous estimation.

Relative Localisation

The purpose of the relative localisation function is to capture the robot sensor
information at the right level of abstraction and use it to estimate the robot position
on the map of the environment. This relative position and heading of the robot
within its local environment is provided to the navigation function so that the
platform is able to travel to the inspection and spraying destinations.

The relative localisation layer takes the output of the absolute localisation layer as
input and combines it with a local localisation module. This second module takes
lidar readings and attempts to match them with the map through a KLD-sampling
MCL [69] (see Section 2.3.2). The 2D map that represents the environment is
created using GMapping [81] while the platform is teleoperated, as described in
Section 3.4.2. However, in this work, the map used in the experiments is obtained
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giving to GMapping the output of the absolute localisation module, instead of using
raw odometry.

The final position and heading information is given in local coordinates in the ENU
(East, North, Up) reference frame, i.e., tangent to the earth’s surface with axes
pointing east for x, north for y and up for z, and whose origin is defined by a specific
coordinate point in the greenhouse.

4.3.3 Experimental results

To validate both the absolute and relative localisation estimations, a reference is
needed for comparison. In these greenhouse tests we did not have an accurate
external system to use as a ground truth, as in the case of Section 3.3. Alternatively,
we evaluate if the robot moves through the corridors in a straight line and pointing
in the direction of the travel. Therefore, for these parts of the route where the robot
moves in a straight line along the corridors, a reference path is calculated using the
PPP coordinates of the start and end of the corridor. Then, the localisation obtained
at each step is compared to this reference value, considering the difference between
the two as the heading deviation. This method can be used to identify positions with
a poor heading and to get a general idea of the quality of the estimation.

However, using this reference as ground truth for the evaluation of the heading
accuracy has several limitations. Firstly, it only covers periods when the robot is
moving in a straight line and does not give an indication of the performance when
the robot is turning. In addition, this reference line assumes that the robot has
maintained the same heading at every position along the route, which is not always
the case, as can be seen in Figure 4.10. Therefore, the results do not consider those
areas where the robot made small turns and changes of direction, which correspond
to rows 1 and 39, and the main corridor. These alterations are consequence of
navigation trajectories, and not of localisation accuracy, which is what we want to
evaluate. Finally, even in the other rows where the space was limited and the robot
could not vary its heading much, it was not always heading forwards, so we do
not expect this analysis to determine accuracy with complete reliability, but it does
provide an approximation of the overall level of performance.

Data logs collected in the real greenhouse scenario have been used for the verification
of the localisation layers. During the experiment, the robot performed a total of
150 different trajectories, navigating along the main corridor and some of the rows
among the plants 10 times. It started at the entrance of the greenhouse, near
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Fig. 4.10. – Robot positions along the greenhouse corridors. The red line shows the straight
line between the starting point and the end point of the corridor, i.e., the
reference path. Circles show the positions of the robot obtained by the absolute
localisation module.
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corridor 1, and all the autonomous navigation destinations were selected by the IPM
strategy, which was restricted to the corridors shown in Figure 4.10 to reduce the
time of the validation.

Mapping

Although the actual creation of the map is not the subject of study in this work, it
is necessary to estimate the localisation with AMCL and a good map is crucial to
navigate successfully, as noted in Chapter 1. To do this, several tests were carried
out using different configurations. With regard to the generation of the map, it is
important that the result does not depend too much on the growth phases of the
plants or other elements in the greenhouse that may change size or shape over time.
For example, in vegetated environments, mapping the stems may help to robust the
robot’s behaviour, but not the leaves, as the these ones may vary too much.

The method used to build the map was GMapping, as we ranked it as the best
after the tests described in Chapter 3. Initially, the map was built with the same
configuration used in Section 3.3, that considers 100 particles and odometry errors
with 0.075 rho/rho and theta/rho, and 0.15 rho/theta and theta/theta. It is worth
mentioning that, in this approach, each particle includes a particular state of the
map. With respect to odometry errors, these parameters aim to quantify the extent
to which these values diverge from the actual movement of the robot. In this line,
rho/rho and rho/theta correspond to the odometry error in translation as a function
of translation and rotation, respectively. Thus, theta/rho and theta/theta are just the
opposite, how translation and rotation affect to the odometry error in rotation. Using
these parameters for GMapping, the resulting map is not able to reflect features such
as straight lines in the main corridor, rows among plants or right angles, as shown
in Figure 4.11.

To obtain a configuration that overcomes these drawbacks, an iterative trial and error
process is followed, modifying the number of particles and reducing the parameters
related to odometry errors - taking into account that these errors with a PPP+DR
solution are significantly lower. The final configuration considers 200 particles and
odometry errors 100 times smaller (0.00075 rho/rho and theta/rho, and 0.0015
rho/theta and theta/theta).

Figure 4.11 shows the difference between the maps obtained using the initial
configuration for GMapping and the one selected. Ten maps have been generated
with each configuration, in which the strengths and weaknesses corresponding to
each of them are maintained. With the final parameters, both the main corridor
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and the rows among the plants are straight lines, there are right angles between
them and the last three rows maintain the expected parallelism. In addition, the
dimensions represented on the map match the measurements in the real greenhouse,
which are 123 m long and 27 m wide.

Fig. 4.11. – Maps generated with different GMapping configurations. On the left-hand side,
the map built with the initial configuration. On the right-hand side, the one
used in the experiments generated with the configuration obtained after an
iterative optimisation process. Note the straight lines, the right angles and the
number of corridors.

Absolute Localisation Error

The heading error has been calculated individually for each corridor, without taking
into account those where the robot did not go in a straight line, as mentioned above.
Furthermore, these values have been discretised into three groups or conditions, as
the robot should maintain an error of less than 5º 95% of the time.

Table 4.1 shows the percentage of measurements where the error is less than a
certain value, where the heading deviation is less than 5º in 91.12% of the positions
evaluated, and less than 6º in 94.48%. Based on the tests performed, 95% of the
time an error of less than 7° can be assured, so that the proposed system offers a
robust accuracy between 1° and 2° lower than the required one. Although this is not
a formal validation, it is a good approximation, as it has proven to be sufficient to
be able to perform the IPM process correctly in subsequent experiments.
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Row <5º <6º <7º
2 92,00% 92,00% 92,00%
3 91,80% 100,00% 100,00%
4 92,30% 96,15% 96,15%

10 96,35% 97,01% 97,67%
20 86,79% 92,45% 100,00%
28 87,50% 89,29% 91,07%

Mean 91,12% 94,48% 96,15%
Tab. 4.1. – Deviation of the heading estimation of the system, with respect to the straight

line representing the corridor.

Relative Localisation Error

Figure 4.12 shows the difference between the heading calculated by the absolute
and the relative localisation modules. It can be seen that they have a similar profile
and that the values vary slightly. However, a maximum difference of 26.037º is
reached in a region, which is considerable.

(a) (b)

Fig. 4.12. – Heading difference between absolute and relative localisation modules, where
the 0 value corresponds to the East. Figure 4.12(b) zooms in on the interval
between minutes 32 and 40 of Figure 4.12(a) to represent the difference with
greater precision.

Analysing the heading estimation provided by the two modules for each straight
path followed by the robot in the greenhouse, it can be seen that the relative module
is able to improve the solution provided by the absolute location module for all
cases, as shown in Table 4.2.
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Row Abs. error (º) Rel. error (º) Error reduction %
2 3.232 2.916 9.78%
3 2.084 2.073 0.54%
4 2.686 2.062 23.25%
10 2.677 2.121 20.76%
20 2.005 1.841 8.21%
28 3.175 2.205 30.55%

Mean 2.643 2.203 16.66%
Tab. 4.2. – Mean reduction of the heading estimation error when applying the relative

localisation method to the result of the absolute localisation module.

4.4 Conclusions

In this chapter, we have presented the development and evaluation of two methods
for improving localisation accuracy in real-world scenarios.

On the one hand, the platform must navigate autonomously through an indoor
scenario, requiring a higher precision than the one obtained in this operation with
state-of-the-art methods at the destination point. This improvement is achieved by
detecting artificial tags placed in the destination area, which are used to directly
control the robot’s movement. Using an external micrometric calibration system,
it has been validated that the relative localisation of these tags is estimated with
millimetric accuracy. However, the platform does not offer such a level of control, so
the proposed positioning system achieves a final accuracy of approximately 5 mm in
the x axis, 3 mm in the y axis, and 0.12º (0.002 rad) in rotation around the z axis.

On the other hand, we address the problem of localisation using the same platform,
but this time in a greenhouse. This semi-indoor scenario poses other challenges,
mainly due to its symmetry, repetition of elements, and variation of the plants. The
proposed method is based on the use of GNSS PPP, which serves as an additional
input to the localisation system. With this fusion, the results obtained are better than
those offered by each of them independently, as it has been proven in the generation
of the map and the estimation of the platform’s heading.

Compared to the results obtained in Section 3.4.3, these errors are slightly larger
due to the features of the environment described above, but remain in the same
order of magnitude, making the two studies consistent with each other.

These experiments have shown once again that localisation based on sensory in-
formation and the model of the environment previously generated by it may not
be sufficient for the performance of certain tasks. This is highly dependent on the
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environment in which the operation is performed, and it is for this same reason that
there is no universal solution.
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Active Mapping and
Exploration

5
„There are only two ways to live your life. One is

as though nothing is a miracle. The other is as
though everything is a miracle.

— Albert Einstein

In this chapter, we present a system that is capable of building an uncertainty 3D
map of the environment by optimising the pose of the sensor that is feeding it. Our
algorithm estimates online the next optimal pose of the camera in order to maximise
the information provided by the map in the next step, balancing revisiting and
exploration. It is combined with a 2D mobile robot exploration method to obtain
a richer 3D model of the environment. The system is also compared with a 3D
exploration procedure to evaluate its performance and the quality of the obtained
maps.

5.1 Introduction

Having a virtual model of the environment is necessary for the transition to the
smart industry. When creating the digital twin of a robot, not only the robot itself
must be digitalised, but also its surroundings. Modelling the environment using
visual sensors is an efficient way of doing this task, with a result that can be very
realistic and equivalent to how the robot perceives the environment. However, the
process of teleoperating a robot to map an environment is usually a highly time
consuming task, especially in large areas or when the movement of the robot is
limited. In other cases, it is difficult or even impossible for the robot to be guided
due to insufficient connectivity or dangerous conditions, such as in rescue operations
of natural disasters. Also, a technician should be available and present so the
robot completes the mapping process efficiently, which is not always possible in real
scenarios. Besides, environments where mobile robots end operating in are often
unstructured and chaotic, and it leads to a fast decay of the performance over time.
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This issue makes necessary to create or edit the map regularly. Therefore, there is
not yet a method to make the robot capable of mapping an environment and start
navigating through it effectively without human intervention.

Most of the SLAM techniques share the guidance of the robot by a human during
the mapping process to ensure the full coverage of the environment and to ease the
detection of loop closures as well. In fact, loop closure detection is the process of
recognising an already mapped area and it is still one of the biggest problems in
SLAM [76]. The seed of loop closure is to minimise the accumulated error [91, 74]
during mapping and correct the map being built, increasing the coherence between
the digital representation and the real scenario. Despite this, the resulting model
usually needs a post-processing refining process to correct any erroneously added
element. Altogether, it is not a straightforward process to perform all these actions
automatically without no human intervention. As we have already mentioned,
ASLAM consists of an online search for exploration destinations for mapping, instead
of the traditional "passive" and teleoperated procedure. It simplifies the setting up
of a navigation system in many applications, as the robot is capable of building the
map by itself with no human interaction.

In this chapter, we present an ASLAM system that optimises the pose of the sensor
for the 3D reconstruction of an environment, while a 2D algorithm controls the
motion of a mobile platform. A Rapidly-Exploring Random Tree (RRT) [242]
algorithm is used for the ground exploration strategy, which calculates the optimal
exploration destination and sends it to the navigation unit. Then, the navigation
system calculates an obstacle-free trajectory and the mobile platform executes it.
Simultaneously, the pose of the camera is optimised based on the state of the 3D map
and the position of the platform, in order to capture the most relevant information
possible in each iteration. The information gathered from the camera is fed back
into the 3D map. The main contributions of this work are as follows:

1. A system to create a 3D model of the environment that provides information
about the quality of each mapped area. This model serves as a metric to
compare different reconstruction approaches.

2. An active vision method that optimises the pose of a camera to explore the
environment and increase the quality of the resulting map.
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5.2 Related Work

ASLAM approaches may focus on improving any of the phases described in Sec-
tion 2.8.1 (pose identification, goal selection and navigation and checking). One
relevant aspect that differentiates one algorithm from another is whether it opti-
mises the complete trajectory of the robot during exploration or it only estimates an
optimal viewpoint [34, 207]. In the latter case, only the navigation destination is
calculated, and a generic algorithm that does not address exploration is in charge of
path planning. Another common criterion to group these methods is the localisation
uncertainty. Exploration can assume perfect positioning [142] or, on the contrary,
it can address localisation uncertainty too [246], setting destinations not only to
broaden the knowledge about the environment, but also to improve localisation
estimates. Also, the search space for the pose identification step may vary as well.
Candidates can be found in the entire map, or they can be limited to a part of it.
Additionally, the candidate evaluation can be performed sequentially before and
after the navigation step, or it can be performed continuously while the robot moves
through the environment. In this case, the complete trajectory can be fulfilled, or,
instead, it can be interrupted and a trajectory towards a new destination executed.
As we can observe, the problem of ASLAM can be faced with many different perspec-
tives, and the there are many trends in optimisation. In the following paragraphs, a
brief review of the different approaches relevant to the current literature is done.

Even though it is one of the first contributions to ASLAM and not a recent work,
we consider that the approach of Brian Yamauchi [260] must be highlighted, as
many methods are still based on the same strategy. He proposes a solution based on
frontiers, the key idea behind which is: "to gain the most new information, move
to the boundary between open space and uncharted territory". To do so, he uses
an evidence grid map where each point is free, occupied or unknown. Free points
adjacent to unknown points are potential exploration destinations and they are
grouped into frontier regions. Then, the robot navigates iteratively to the nearest
reachable frontier. From there, the robot is able to get observations of unexplored
space and add them to the map, in addition to seeing new potential goals. The path
planner uses a depth-first search to calculate the shortest obstacle-free path from
the robot’s current position to the goal location. Navigating to each vantage point
and discarding inaccessible ones, the robot can map every reachable point in the
environment.

Senarathne and Wang [205] extend Yamauchi’s work to 3D volumes and present a
strategy based on the concept of surface frontiers. They detect surfaces in a given
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3D occupancy grid map and extract their edges. Then, voxels that do not have their
six faces exposed to unmapped space are discarded and the rest are considered
as frontier voxels. The remaining edges are processed to remove noisy data and
their contours segmented at corners. Finally, surface frontier representatives are
generated that indicate the direction in which the surface is projected. These vectors
are used to determine the navigation goals of the robot. In their approach, valid semi-
random view configurations are generated and selected based on the the distance to
them and the length of the surface frontier seen from there. The exploration finishes
when no frontier regions are detected. Similarly, Dornhege et al. [58] present a
frontier-based ASLAM of a 3D environment, but they seek frontiers in the complete
volumetric space, and not only using surfaces. Besides, they set a specific number of
poses as a termination criteria.

Some ASLAM methods propose to optimise the trajectory itself for mapping purposes
and not only for the exploration goal of each iteration. In this vein, using Rapidly
Exploring Random Trees (RRTs) [125] with a Receding Horizon (RH) strategy are
well-known sampling-based techniques [21]. Umari and Mukhopadhyay [242] use
RRTs to grow towards unknown regions and passively detect frontiers. The tree is
not used to define the robot trajectory itself, but to search for frontier points. It runs
independently of the robot movement. Likewise, Papachristos et al. [178] present an
RH-based ASLAM strategy that considers the uncertainty of the robot localisation as
well. In fact, the RRT is only used to find exploration destinations, and it is a second
planning layer the one that aims to optimise the probabilistic mapping behaviour of
the robot and minimise the root’s belief uncertainty. In an attempt to get the benefits
of different exploration methods, some approaches propose combining them in a
single ASLAM solution [204, 177, 66].

As during the exploration a complete map is not available, some approaches concur
that ASLAM strategies should include explicit place revisiting actions to reduce the
localisation uncertainty [219]. In that vein, Carlone et al. [34] present a method
that evaluates the particle-based SLAM posterior approximation using the Kullback–
Leibler divergence to decide between exploration and place revisiting. More recently,
Lehner et al. [128] integrate this same concept upon a submap-based 6D ASLAM
system. Similarly, Valencia et al. [244] evaluate the utility of exploration and place
revisiting sequences to choose the one that minimises the overall map and path
entropy. On the other hand, Sadat et. al. [198] consider feature-richness during
path planning to direct the sensor of a drone towards high-density areas and avoid
visually-poor sections, as the latter can increase the uncertainty in pose estimation
and make SLAM fail. The candidate viewpoints are also ranked based on their
surface normals and the viewing distance.
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Concerning dimensionality, nowadays most of the mobile robots are designed for
2D navigation, albeit there can be slopes, stairs or elevators that make the robot
operate at different heights. In these situations, mobile systems use multi-level
maps [193] and alternate among different layers, but the motion is still performed
in a plane. Here, robot poses, velocity commands, and trajectories include only x
and y positional values and rotations around the z axis (yaw). Indeed, 3D motion
calculations increase the complexity of the problem considerably, and often it is
not necessary. In this line, Micro Aerial Vehicles (MAVs) have been widely used
in surveillance, search and rescue, exploration and mapping applications. Their
reduced size and high manoeuvrability make them ideal for moving in cluttered
environments. The algorithms developed in this area go beyond the limitations of
ground robots, but there are several interesting approaches to take into consideration.
For example, Kompis et al. [116] present an informed sampling approach that takes
advantage of surface frontiers to sample viewpoints only where high information
gain is expected. Potential Next-Best-Views (NVBs) are sampled from the MAV’s
configuration space using surface frontiers, and ranked by their expected information
gain. Since the computational power of the MAV is limited, they define a heuristic
to decide which proposed viewpoint to evaluate next.

Davison and Murray [48, 49] implement a general system for autonomous local-
isation using active vision, where a stereo head is controlled in real time during
SLAM to improve localisation accuracy. They head the cameras towards certain
areas to ensure that persistent features are rematched, reducing the motion drift. To
decide which feature the vision system should target, they calculate uncertainties
for all visible features, and choose the one with the largest uncertainty. Marchand
and Chaumette [143] do consider unknown space in their work, as they propose
a 3D scene reconstruction system based on an information gain function that rep-
resents either the observation of a new object or the certainty that a given region
is object-free. Since the reconstruction is performed via a camera mounted on a
robotic arm and it is limited to geometric primitives, they avoid unreachable view-
points and positions in the vicinity of the robot joint limits. Isler et al. [98] go a
step further, and propose mounting the arm on a mobile platform to achieve the
complete 3D reconstruction of more complex objects. They employ an information
gain function that considers both unknown voxels and their entropies, being these
last ones derived from the occupancy probability. Delmerico et al. [56] also propose
a set of volumetric information formulations and evaluate them together with recent
formulations in the literature [118, 247].

Even though many more different methods have been proposed for active sensor
control [78, 272, 267], most of them focus on the optimisation of the handled task
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once the scans have been added to the map, without intervening in the map building
process itself. Instead, these approaches make use of common occupancy grid maps,
which may include colour data or not, but they are not optimised for the posterior
information estimation of already seen areas. We believe that the performance of 3D
reconstruction algorithms is dependant upon the data stored in the map and, for this
reason, our proposal includes additional information for uncertainty calculations in
the map creation step.

5.3 Proposed Approach

Our approach makes use of active perception to search for viewpoints of the sensor
that reveal areas of the environment that increase coverage together with the quality
of the map being built. Our method differs from the ones mentioned above in the
fact that it relies on the characteristics of the acquisition sensor itself and their
effect on the data obtained to calculate the information gain and the NBV, instead
of considering the size of the area to be mapped or the localisation uncertainty.
In addition, it is proposed as a complementary method to an exploration process,
optimising the perception capabilities of the robot used, and not a complete ASLAM
method. The proposed approach is based on its own octree-like structure, which
makes it independent and compatible with other mapping and navigation methods.
Broadly, the system is an iterative algorithm that: captures a frame from the sensor;
updates the 3D model according to it; calculates the next best sensor pose; moves
the sensor; and repeats the process again capturing a frame from the new pose. In
the generated 3D model, an uncertainty value together with spatial and occupancy
information are stored for each point. In the next two sections, the uncertainty
estimation and the algorithm itself are explained in detail.

5.3.1 Uncertainty Estimation

As we want the system to consider not only the completeness or coverage of the
map but also the quality, we need a value that represents this aspect. It is hard to
define or measure the quality of a map when there is no ground truth to compare it
with, that is what happens most of the times in robotic mapping scenarios. In the
absence of this option, the quality of a map can be seen as the reliability of its data.
As uncertainty is a common term in mobile robotics and it is directly related to the
reliability, it has been adopted for the representation built in our method.
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The uncertainty map presented here is an octree-based [153] representation. Octrees
are tree data structures where each branch node has eight children, as it represents
an octant. Tree nodes store information regarding the space they represent. In our
proposal, leaf nodes are voxels of the size of the resolution of the map, and they
include uncertainty values u which are calculated as a function of the pose they
have been seen from. Each time a cell is seen, the new value and the stored are
combined to update the uncertainty value accordingly. The u value of non leaf nodes
is thus inferred from leaf nodes. Every 3D point observed can be tracked, whether it
represents free or occupied space.

We consider that points in the scene at a certain distance are more likely to be
correctly captured by the sensor than elements that are closer or farther from it.
Cameras are configured to see optimally a specific plane in the scene, called the
focal plane. The closer an object is to the focal plane, the sharper it is seen. This
attribute is degraded gradually until an element is too far from this location and it is
completely blurred. The depth of field is then defined as the distance between the
closest and farthest objects in a photograph that appear to be acceptably sharp [264].
This fact is modelled on our uncertainty map in two ways. On the one hand, from the
set of points P captured by the sensor, only the points p whose Euclidean distance to
the lens d(p) falls in the range [Dmin, . . . , Dmax] are added to the map M . Hence,
elements that lay outside the depth of field are not taken into account. Therefore,
being p(x, y, z) a point whose spacial coordinates in the Euclidean space are x, y

and z:

p(x, y, z) ∈ M ⇐⇒ p(x, y, z) ∈ P : {Dmin < d(p) < Dmax | d(p) = ||
−−−−−→
(x, y, z)||2}

On the other hand, the distance d(p, F ) from each gathered point p(x, y, z) to the
focal plane F is measured as the difference between the distance from the lens to
the point d(p) and the distance from the lens to the focal plane DF :

d(p, F ) = |d(p) − DF |, (5.1)

Finally, the distance-based uncertainty of each point p in M is estimated according
to d(p, F ), as shown in Equation 5.2.

ud(p, F ) = 1 − 2
1 + ed(p,F ) (5.2)
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Equation 5.2 is a sigmoid function that represents the gradual degradation of the
sharpness of the objects as explained above. As it only receives positives values, it
does not have its characteristic "S"-shaped curve, as shown in Figure 5.2.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.5

1

d(p) in metres

u

ud

Fig. 5.1. – Plot of the function used to calculate the uncertainty of a point based on the
distance to the lens in metres, being the distance to the focal plane DF = 1.

Similarly, we assume that, given the FOV of a lens, points that lay on the boundary
of the frame have a higher uncertainty due to the inherent distortion of the lens [28].
Although there are methods such as camera calibration to correct this deviation, they
never reduce the error to zero. To represent this phenomenon, we define a function
that calculates an uncertainty value for each point p(x, y, z) ∈ P , with respect to the
sensor origin. The angles the point p(x, y, z) forms with the horizontal plane XZ

and vertical plane Y Z, αh and αv respectively, are calculated as follows:

αh = arctan(x

z
) (5.3)

αv = arctan(y

z
) (5.4)

Besides, the horizontal FOV h and vertical FOV v angles determined by the sensor
itself are required. They are used to perform the unity-based normalisation and
bring the angles from Equations 5.3 and 5.4 into the range [0, 1]:

α′
h = | αh

FOV h
| (5.5)

α′
v = | αv

FOV v
| (5.6)

Then, the angle-based uncertainty uα value of a point is the average between α′
h

and α′
v:
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uα(p) = α′
h + α′

v

2 (5.7)

Lastly, distance-based uncertainty ud obtained from Equation 5.2 and angle-based
uncertainty uα from Equation 5.7 are combined into a unique u value, as shown in
Equation 5.8.

u(p) = ud + uα

2 (5.8)

u is the final uncertainty estimation calculated for each point of a scan. Figure 5.2
shows the impact one function or another has in the uncertainty map built.

(a) (b) (c)

Fig. 5.2. – Initialisation of the uncertainty map in the same environment for each of the
three uncertainty estimation Functions 5.2, 5.8 and 5.7. Showing 5.2(a) the
distance-based uncertainty map (ud), 5.2(b) the combined uncertainty map (u),
and 5.2(c) the angle-based uncertainty map (uα). A reduced HSV colour gradient
is used to represent uncertainty values, where the most uncertain voxels are in
red and the most reliable ones in green.

Nevertheless, once this value is calculated for an input point, it must be checked
whether it is already mapped or not. If not, it is considered as a new unmapped
point and it is added to the octree directly with its u value. This action increases
the mapped area, i.e. the coverage. On the contrary, if the input point is already
known and it has an uncertainty value from a previous iteration, it must be updated
instead, enhancing the map quality. Here, we propose to store the uncertainty value
that corresponds to the best viewpoint from which a certain point has been captured.
That is, if a voxel v is captured for the t-th time, its new uncertainty ut(v) value is the
minimum between the value u(vt) calculated with Equation 5.8 and the uncertainty
value stored u(vt−1) (resultant from the previous iteration):

ut(v) = min(u(vt), u(vt−1) (5.9)
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It is worth mentioning that, although Figure 5.2 only shows occupied voxels, the
uncertainty map is also capable of storing information about free points.

5.3.2 Camera Pose Optimisation

The camera pose optimisation algorithm is in charge of estimating the optimal
viewpoint of the camera for a certain state of the uncertainty map. Given a partially
completed map and a position on the mobile platform, the optimal pose of the
sensor is calculated. The final objective is to maximise the knowledge about the
environment. Mapping new areas and improving the reliance of already acquired
data can both be considered as increasing the knowledge about the environment,
and the uncertainty do represent both aspects. Thus, we can assume that reducing
the uncertainty of the map implies progressing towards the final objective. It should
be noted that the sensor and map used for this task may also contribute to the
estimation of the global localisation. For this reason, the optimisation algorithm not
only focuses on exploration, but also selects viewpoints to observe already mapped
areas that may contribute to maintain a low localisation uncertainty.

As the system has no prior knowledge about the environment being mapped, it only
stores information about the occupancy value of visited points (nodes), but not
about the quality of the exploration itself. So, a new measure is needed to assess if a
map is better than another: information.

Information attempts to quantify the amount of knowledge we have about an envi-
ronment, and it is calculated with the uncertainty value we have already estimated.
As Equation 5.8 maps the inputs into the range (0, 1), it is consistent to say that the
uncertainty value that would correspond to unknown cells is 1. Accordingly, their
information value can be quantified as 0. Since the information value cannot be
negative, the result from the information function i must be inversely proportional
to the result of the uncertainty function u. Besides, a cell with uncertainty 0 corre-
sponds to the maximum information. Thus, the information function i must satisfy
the following statements:

∀v ∈ M : i(v) ≥ 0

∀v, w ∈ M : {u(v) ≥ u(w) =⇒ i(v) ≤ i(w)}
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∀v, w ∈ M : {u(v) = 0 =⇒ ∄w | i(w) > i(v)}

That being said, the result of the information function i is a growing function from
0 to a maximum, as the uncertainty for the same element decreases from 1 to 0.
Taking this into account, the proposed information function i for a single cell v is:

i(v) = k − u(v) | k > 1 (5.10)

k must be greater than 1 to avoid having a negative information value. Considering
what information represents, we propose calculating the information of a set of cells
or map simply adding the information value of each of the cells inside it. Besides, we
present a function whose maximum is the least possible maximum, because greater
values would favour the amount of cells in the map. We consider that, at this point,
the uncertainty of each cell itself should receive more attention, and that the system
can be biased towards exploration in the next-best view selection process. Hence,
the information value of a set A is calculated according to Equation 5.11.

I(A) =
∑
v∈A

(1 − u(v)) (5.11)

The most relevant aspect about the information value of a map is that it allows the
comparison between two maps of the same environment in different phases. At any
moment t, the system has a particular map Mt built and the camera has a specific
pose qt. The objective is to move the sensor to a pose qt+1 such that the map Mt+1

provides the maximum information possible based on the state of the system in the
previous step t. In other words, the pose optimisation algorithm has to maximise
the information gain from one iteration to another, moving the sensor accordingly.
In addition, the information value I obtained from Equation 5.11 can also be used
to compare maps that, for example, have been built with different approaches.

The challenge here is how to predict the information gain of an unknown point.
If a point is already mapped and, thus, its x, y, z coordinates are known, if that
point would fall in the sensor’s FOV for any of its possible poses can be calculated,
together with the exact position at which that point would be seen. Besides, in most
of the environments, it is done with a very high accuracy. Using these inputs in
the functions presented above, the system can predict how the uncertainty value
stored in each cell would be updated and the information gain it would provide,
if any. In this case, the information gain of that cell g(v) would be the difference
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between its actual information value i(vt) and the hypothetical future value i(vt+1).
However, when the camera’s FOV includes unmapped points, the future estimated
information value cannot be calculated mathematically. It is impossible to ensure
where the ray would find an object, adding the corresponding cell, and setting
it as occupied. To tackle this problem, we propose a "positive" approach, as we
imagine that every unknown point will be occupied. The information provided by an
unknown point is quantified as 0, i.e., i(vt) = 0, and, with the previous assumption,
its information in the potential next iteration i(vt+1) is calculated as for any already
mapped cell. In summary, the information gain of an unknown point is equal to the
information value it has when it is occupied, which as mathematically expressed as
in Equation 5.12.

g(v) =

i(vt+1) − i(vt) if i(vt+1) > i(vt)

0 otherwise
(5.12)

Again, being coherent with Equation 5.11, the information gain of a set of cells A is
the sum of the gain of every element inside it:

G(A) =
∑
v∈A

g(v) (5.13)

Once the information gain provided by any future camera pose can be estimated, it
is possible to optimise it. The optimisation algorithm simulates the FOV of each pose
q of all the viable poses Q of the sensor, calculating the information gain for each of
them. Then, the best one is selected and the sensor is moved accordingly. Taking
all calculations into account, the pseudocode of the whole sensor pose optimisation
process is shown in Algorithm 2.

The camera optimisation process proposed has two key functions that form the core
of the algorithm, as they determine the poses to be considered in each iteration and
the value - or ranking - assigned to each of them, in order to finally choose only
one, the one to be adopted by the sensor. These functions are GetPossiblePoses

and EstimateGain (Line 3 and 7 of Algorithm 2, respectively).

GetPossiblePoses The potential optimisation poses in each iteration are calculated
based on: the sensor’s current position, qcurrent; its degrees of freedom (DOF), ranges
and velocity limits, SensorDOF ; and a t value, which determines the maximum
time the sensor can be in motion between one pose and another, i.e., the maximum
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Algorithm 2 Camera pose optimisation

Require: M : 3D uncertainty map
Require: SensorFOV : Sensor’s FOV specification
Require: SensorDOF : Sensor’s movement’s degrees of freedom (DOF), ranges

and velocities
1: while True do
2: qcurrent = GetCurrentPose()
3: Q = GetPossiblePoses(qcurrent, SensorDOF, t)
4: gmax = 0
5: qopt = qcurrent

6: for each q ∈ Q do
7: gq = EstimateGain(q, SensorFOV, M)
8: if gq > gmax then
9: gmax = gq

10: qopt = q
11: end if
12: end for
13: if qopt ̸= qcurrent then
14: MoveSensor(qopt)
15: end if
16: end while

time it can take to reach the estimated optimal pose. While the first two parameters
are strictly necessary to estimate new poses, the t parameter is added for two main
reasons. First, since the platform continues navigating while the sensor motion
calculations are performed, the sensor pose selected with respect to the world and
the one reached may differ. This difference will be bigger the longer the time
between sensor poses and the higher the speed of the platform. Thus, a balance
between these two values must be maintained. Second, larger values of t imply more
possible poses to consider, leading to increased computation time. Note that the
elapsed time between consecutive sensor poses is the sum of the computation time
plus the sensor movement time, and the t value affects both, contributing to reduce
the difference between the initial state of the environment and the final state of each
iteration. In this line, there is also a configuration parameter qstep that determines
the step between poses, which serves not only to discretise the sensor positions, but
also to modify the number of them and, consequently, the computational cost of the
optimisation. The pseudocode of the complete procedure is shown in Algorithm 3.

EstimateGain Each of the candidate sensor poses Q must be evaluated in order to
estimate the optimal one. To this end, what the camera would capture in each of
the poses is predicted using a ray-tracing technique. Based on the FOV, range and
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Algorithm 3 GetPossiblePoses

Require: q : Relative pose of the sensor
Require: SensorDOF : Sensor’s movement’s degrees of freedom (DOF), ranges

and velocities
Require: t : Maximum movement time (0 = no limit)

1: Q = {q}
2: if t = 0 then
3: qranges = SensorDOF ranges

4: else
5: qranges = GetRanges(q, SensorDOF, t)
6: end if
7: n = GetNumberOfPoses(qranges, qstep)
8: for i in [1..n] do
9: qcandidate = GetPose(qcurrent, qstep, i)

10: add qcandidate to Q
11: end for
12: return Q

resolution of the sensor, a virtual ray is cast from the pose of the sensor through each
pixel to determine what is visible along the ray in the 3D scene. If the ray reaches the
maximum range without hitting any non-free voxel, a value of 0 gain is assigned to
it. On the contrary, if it hits a non-free voxel, either occupied (mapped) or unknown
(unmapped), the corresponding gain is calculated according to Equation 5.12. Then,
the values of the rays with the same FOV are summed up to get the information gain
of the corresponding sensor pose. Repeating this procedure for all the candidate
poses, as in Algorithm 2, the optimal pose is obtained, which is sent to the sensor
motion module. In principle, the optimisation algorithm has no termination criteria,
as it is intended to run in parallel and independently of the rest of the mobile robot
system.

5.4 Description of the Implemented System

Our algorithm is implemented in the well-known Robot Operating System (ROS)
framework [185], which is accessible to many other developers and users. Besides,
it provides the tools to integrate our functionalities into a robotic platform.

For the experiments described hereunder, we have integrated our algorithm in a
modified Turtlebot3 Waffle platform. It is a small omnidirectional wheeled robot
with a fixed RGB-D camera at the front and a lidar in the centre with 360º vision.
To test our camera optimisation algorithm correctly, a telescopic arm with a RGB-D
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camera on top of it has been added to the platform, which makes possible to pan, tilt,
and move the sensor along the vertical axis independently, as shown in Figure 5.3.
However, as the objective is to see the viability of the proposed approach, in these
first trials, the optimisation has been limited to the pan movement, i.e., one degree
of freedom.

Fig. 5.3. – Turtlebot3 Waffle platform with a second RGB-D mobile camera added on top of
it. In the image, it is rotated 60º left, as it has a 360º pan range.

As our sensor pose optimisation algorithm attempts to be modular and generic
without being restricted to a certain type of robot, it does not control the motion
of the platform, and publicly available ROS packages are used for this purpose.
Our 3D exploration is combined with a package that implements an RRT-based
2D exploration algorithm [242], which finds exploration goals in the horizontal
plane and sends them to the navigation system. These destinations are managed
by the ROS Navigation Stack, configured for obstacle-free trajectory planning and
execution. Thus, while a mobile robot exploration system controls the motion of
the platform and builds a 2D map, our system optimises the pose of the camera on
the fly to build a dense 3D map. Although both systems run in parallel, they are
independent and there is no communication between them.

With this configuration, where the camera pose optimisation algorithm does not
take into account the motion of the robot for the camera poses, an adequate t value
must be set as it has a significant impact. Essentially, it reduces the main issues of
the lack of coordination between platform and camera motion. Since the sensor is
attached to the platform, when the latter moves, the former moves implicitly in the
same direction. Consequently, the sensor is not in the global pose the optimisation
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algorithm decided to move to. This effect may be exacerbated when the platform
moves faster or the system needs more time to estimate the optimal camera pose.
Setting a low t value makes the transformations between consecutive poses smaller
and their overlapping regions larger, which eases the 3D map merging [130]. If the
same camera is used for localisation, it also improves position estimation [174].

As described before, the uncertainty map simply gets the colour image and the point
cloud provided by the top RGB-D camera and creates a 3D octomap accordingly. The
implementation has been done on the standard octomap, and a detailed explanation
can be found in the original paper [94]. Apart from occupancy and colour, our
version adds the possibility to store uncertainty values with the functions described
above. We have also implemented the corresponding Rviz plugins to visualise these
values1.

In brief, the implementation for testing consists of three independent systems that
live together in the same mobile robot: 2D mapping, uncertainty 3D mapping and
navigation. They gather information of the environment from different sensors and
may communicate with each other using ROS. Besides, they can send commands
to the platform and control its motion, which closes the cycle and enables a fully
autonomous behaviour. Figure 5.4 shows a general overview of the logic of the
system and its communications.

Fig. 5.4. – Complete ASLAM system’s diagram implemented in the mobile robot.

The experimental method followed is slightly different in simulation and in real-
world tests. Moreover, the data obtained in simulation are not always extrapolable to

1The code of the optimisation algorithm and the octomap related functionalities is available online
here: https://github.com/fundaciontekniker/aslam-system
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a real scenario, as the uncertainties from the sensors, for example, vary greatly. Thus,
the experiments performed and their results are shown separately in the following
two sections.

5.5 Evaluation in simulation

The system has been tested in diverse simulated and real environments where the
size, the number of elements and the level of detail of these vary.

The models used for the experiments in simulation are the following:

• "simple house". It is provided by the Robotis group in the official manual of the
TurtleBot3 platform, in the simulation section (https://emanual.robotis.
com/docs/en/platform/turtlebot3/simulation/). It contains six rooms,
with a few basic elements, covering a total area of 15 x 10 m. It has been
chosen for its simplicity.

• "apartment". It is also crated by the AWS Robotics team, and it is a very detailed
and realistic representation of an apartment of 19 x 11 m. It is available here:
https://github.com/aws-robotics/aws-robomaker-small-house-world. It
offers a good idea of how the mapping system would perform in a domestic
environment.

• "bookstore". It is a 3D model of a bookstore developed by the AWS Robotics
team (see Figure 5.5). It has many and very detailed elements, such as
furniture and books, which makes it a suitable environment to test a 3D map-
ping system. It can be acquired from: https://github.com/aws-robotics/
aws-robomaker-bookstore-world. The size of the bookstore is 15 x 14 m.

Fig. 5.5. – "bookstore" test environment.
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• "cafe". It is a spacious area of 25 x 10 m, with detailed elements along the
walls but just a few tables in the middle. This configuration allows the robot to
build the 2D map without navigating too much, because the lidar covers nearly
all the area from any location. As the FoV of the camera has a reduced scope,
the objective of the tests in this environment is to check if our system makes a
significant difference in the resulting 3D map in this kind of scenarios. Indeed,
the range of lidar for 2D mapping is set to 10 m with a 360º view, while the
camera has a 4 m range and a horizontal angle of 59º. Besides, two people
are walking through the cafe, adding dynamism to the problem. Here, the
behaviour of the system is also evaluated in the presence of dynamic elements.
The "cafe" model can be obtained from: https://automaticaddison.com/
how-to-load-a-world-file-into-gazebo-ros-2/.

Fig. 5.6. – "cafe" test environment.

• "warehouse". It is the usual warehouse of the majority of the factories nowa-
days. It is another model created by the AWS Robotics team (https://github.
com/aws-robotics/aws-robomaker-small-warehouse-world), and it is use-
ful to make an idea of the result the system may obtain in an industrial use
case. Its dimensions are 14 x 21 m.

• "willowgarage". It is a model available in Gazebo simulator itself by default,
already used in many research works. It represents a set of rooms in an
office-like area without objects, just walls (see Figure 5.7). It is the largest
environment tested, with an area of 65 x 45 m. As our algorithm solves a
local optimisation problem, the size of the environment does not increase the
complexity of each iteration. But, it does the size of the 3D uncertainty map
being built. It is relevant to test our system in such a large area to see if the
results obtained in small environments are extrapolable.

Note that all the models used in the tests presented here are publicly available and
compatible with the Gazebo simulator. Besides, they are all indoor environments
where the mobile platform navigates through a unique flat floor.
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Fig. 5.7. – "willowgarage" test environment.

In all the environments, the RGB-D sensor simulated is similar to the Inter RealSense
R200 camera, with a vertical FOV of 46º, horizontal FOV of 59º, a maximum range of
4 m and a 480x360 depth resolution. On the other hand, the 360º lidar is simulated
with a range of 100 m and 0.5º of horizontal resolution, which provides 720 points
in each scan. Nevertheless, the 2D mapping system is limited to a range of 4 m
in all the environments but in "willowgarage", where it is limited to 10 m. Larger
ranges increase the computational cost of the 2D exploration system, however, 4 m
is too low for this environment, because many times, the sensor does not find any
obstacles, the localisation has nothing to match, and the robot gets lost. This beam
cropping is done for efficiency purposes, as there are no such large free obstacle
distances in the selected scenarios.

5.5.1 Experimental Procedure

The system has been compared with two different exploration methods from the
literature, one based on 2D [242] and another one that considers the complete 3D
space [11, 13, 12]. Both algorithms are based on RRT mainly because it is one of
the best performing techniques in exploration. We believe that, by using methods
with the same basis, our algorithm gets more isolated and its effect is more clearly
observable. The tests are as follows:

• 2D. In each environment, the 2D autonomous exploration is performed first
using a strategy based on the use of multiple RRTs, proposed by Umari and
Mukhopadhyay2. It calculates the trajectories to explore the entire area and
builds the corresponding map using a 360º lidar. During this phase, the
RGB-D camera builds a 3D uncertainty map, while the robot moves through
the environment keeping the camera pose constant. While exploration is
performed, the entire trajectory of the robot is stored in order to replicate it in

2https://github.com/hasauino/rrt_exploration
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subsequent tests. In this way, the robot can keep the same pose and velocities
in the same timestamps among different tests of the same environment. This
allows to compare under equal conditions this first 3D map with results where
the 3D camera pose optimisation is performed.

• 2D+optimisation. After a 2D exploration where a 3D map is built keeping
the camera static, the same process is repeated with our pose optimisation
algorithm running. As the trajectory executed in these tests is the one recorded
in the previous case, the time needed to perform the exploration is exactly
the same. However, as the pose of the camera with respect to the robot is
continuously modified, the 3D map obtained differs. This type of test has
been performed with three different configurations, where the t value varies
between 0.2 s, 0.5 s and 1 s.

• 3D. Finally, the algorithm proposed by the Robust Field Autonomy Lab at
Stevens Institute of Technology 3 that performs complete 3D exploration of
complex environments by means of a ground mobile robot is executed in the
same environment. As this system calculates the trajectories of the mobile
platform itself to perform the 3D exploration, its positions may be different
from those achieved in the rest of the tests. In this last case, as in the first 2D
exploration, the camera is static during execution.

In all tests, the 2D map for trajectory planning and navigation is built using
OpenSLAM’s GMapping algorithm, which is a Rao-Blackwellized particle filer to learn
grid maps from laser range data [81]. These five procedures - one 2D exploration,
three 2D exploration with our optimisation, one 3D exploration - are repeated three
times in all the six environments described above, with three different starting points
in each of them, making a total of 90 experiments. At the end of each of them, the
time needed, the number of voxels of the 3D map and the total information provided
by this one are calculated. The numbers shown in this section are average values.

Table 5.1 shows the comparison of 3D mapping results with the three different
systems explained before. As can be seen, there is an improvement in the obtained
3D map by performing a 2D exploration with our optimisation algorithm compared
to not using it. Our approach has been tested with three different values of t, and
all three configurations help to build a denser and richer 3D model of any of the
environments. Note that the value t limits the maximum time the sensor has to
move from one pose to the next in each iteration. Thus, greater values evaluate
more pose candidates, increasing the optimisation possibilities, at the expense of
higher computational cost. For this reason, larger values t generally get slightly

3https://github.com/RobustFieldAutonomyLab/turtlebot_exploration_3d
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Tab. 5.1. – Comparison of the effectiveness of the obtained 3D maps considering all simu-
lation tests. The metrics shown are: number of voxels, increase in the number
of voxels compared to the 2D test in percentage terms, information provided,
information gain compared to the 2D test, information gain compared to 2D test
in percentage terms.

ENVIRONMENT TEST TYPE VOXELS VOXELS % INFO GAIN GAIN %
2D 63,894 38,898

2D+optimisation (t=0.2) 73,291 14.71% 42,705 3,808 9.79%
2D+optimisation (t=0.5) 78,217 22.42% 46,386 7,489 19.25%
2D+optimisation (t=1.0) 77,007 20.52% 45,984 7,086 18.22%

simple house
(15 x 10 m)

3D 79,248 24.03% 46,967 8,070 20.75%
2D 86,020 45,664

2D+optimisation (t=0.2) 113,218 31.62% 60,465 14,801 32.41%
2D+optimisation (t=0.5) 118,294 37.52% 63,442 17,778 38.93%
2D+optimisation (t=1.0) 131,533 52.91% 70,747 25,083 54.93%

apartment
(19 x 11 m)

3D 106,592 23.91% 68,271 22,607 49.51%
2D 114,651 70,770

2D+optimisation (t=0.2) 130,635 13.94% 79,911 9,141 12.92%
2D+optimisation (t=0.5) 137,217 19.68% 84,014 13,244 18.71%
2D+optimisation (t=1.0) 139,970 22.08% 85,238 14,467 20.44%

bookstore
(15 x 14 m)

3D 153,125 33.56% 91,666 20,896 29.53%
2D 69,566 35,585

2D+optimisation (t=0.2) 90,968 30.77% 48,345 12,759 35.86%
2D+optimisation (t=0.5) 103,998 49.50% 55,636 20,051 56.35%
2D+optimisation (t=1.0) 102,414 47.22% 56,058 20,473 57.53%

cafe
(25 x 10 m)

3D 136,490 96.20% 74,196 38,611 108.50%
2D 158,786 85,558

2D+optimisation (t=0.2) 177,206 11.60% 95,257 9,700 11.34%
2D+optimisation (t=0.5) 193,576 21.91% 104,291 18,734 21.90%
2D+optimisation (t=1.0) 190,987 20.28% 104,012 18,454 21.57%

bookstore
(14 x 21 m)

3D 186,610 17.52% 107,573 22,015 25.73%
2D 835,622 461,921

2D+optimisation (t=0.2) 1,045,753 25.15% 556,748 94,827 20.53%
2D+optimisation (t=0.5) 1,129,001 35.11% 610,689 148,767 32.21%
2D+optimisation (t=1.0) 1,144,487 36.96% 617,163 155,242 33.61%

bookstore
(65 x 45 m)

3D 1,371,774 64.16% 762,823 300,902 65.14%
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better results in the tests. Although, based on the experiments, the optimal t value
seems to be relative to the environment being explored.

Tab. 5.2. – Efficiency comparison of the obtained 3D maps considering all simulation tests.
The metrics shown are: duration of the exploration, increase in the time needed
compared to 2D test in percentage terms, average number of mapped voxels per
second, average information mapped per second.

ENVIRONMENT TEST TYPE DURATION (s) TIME % VOXEL / S INFO / S
2D 431 148 90

2D+optimisation (t=0.2) 431 0.00% 170 99
2D+optimisation (t=0.5) 431 0.00% 181 108
2D+optimisation (t=1.0) 431 0.00% 179 107

simple house
(15 x 10 m)

3D 1,668 287.01% 48 28
2D 378 228 121

2D+optimisation (t=0.2) 378 0.00% 300 160
2D+optimisation (t=0.5) 378 0.00% 313 168
2D+optimisation (t=1.0) 378 0.00% 348 187

apartment
(19 x 11 m)

3D 3,018 698.32% 35 23
2D 497 231 142

2D+optimisation (t=0.2) 497 0.00% 263 161
2D+optimisation (t=0.5) 497 0.00% 276 169
2D+optimisation (t=1.0) 497 0.00% 282 172

bookstore
(15 x 10 m)

3D 2,041 310.66% 75 45
2D 227 306 157

2D+optimisation (t=0.2) 227 0.00% 400 213
2D+optimisation (t=0.5) 227 0.00% 457 245
2D+optimisation (t=1.0) 227 0.00% 451 247

cafe
(25 x 10 m)

3D 2,274 900.44% 60 33
2D 446 356 192

2D+optimisation (t=0.2) 446 0.00% 398 214
2D+optimisation (t=0.5) 446 0.00% 434 234
2D+optimisation (t=1.0) 446 0.00% 429 233

warehouse
(14 x 21 m)

3D 4,477 904.49% 42 24
2D 1,615 517 286

2D+optimisation (t=0.2) 1,615 0.00% 647 345
2D+optimisation (t=0.5) 1,615 0.00% 699 378
2D+optimisation (t=1.0) 1,615 0.00% 709 382

willowgarage
(65 x 45 m)

3D 40,271 2393.05% 34 19

Surprisingly, in some cases, the combination of a 2D exploration with our camera
pose optimisation algorithm gets better results than the 3D exploration system. This
is the case of the tests carried out in "warehouse" and "apartment" environments,
obtaining a map with more voxels in the former and one with both more voxels
and information in the latter (see Figure 5.9). It is worth mentioning that in some
tests, the 3D exploration algorithm obtains worse result than even the basic 2D
exploration because it does not visit some narrow areas where the 2D algorithm
does and, indeed, the robot is able to map them. On the contrary, in the "cafe"
environment, the 2D algorithm is able to map the entire environment with a short
trajectory. As a consequence, the camera can only gather information from a small
proportion of the environment. As the 3D exploration system calculates its own
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trajectory for this purpose, it maps the whole area and there is a huge improvement
in the resulting map. Figure 5.8 shows the 3D uncertainty maps obtained with the
three different systems in the "cafe" test environment.

Fig. 5.8. – "cafe" environment mapping result after 2D basic exploration (left), combination
of 2D exploration and camera pose optimisation with t = 0.5 (middle) and 3D
exploration (right). The 3D uncertainty map is shown with colours, while the
2D map is in greyscale. A reduced HSV colour gradient is used to represent
uncertainty values, where the most uncertain voxels are in red and the most
reliable ones in green.

In 5 of the 6 environments, the map with the largest amount of information is
achieved with the 3D scanning system, which is quite logical as it is the only
procedure of those evaluated here that focuses entirely on that purpose. While the
resulting model may differ from one scenario to another, the 3D exploration needs
more time to complete the mapping process in all the tests, with an average duration
of ten times the duration of the other exploration processes. So, although this system
achieves the best result in most cases, the difference is not proportional to the time
needed to do so. In this aspect, the combination of 2D exploration with our camera
pose optimisation algorithm is the most efficient in all cases, regardless of the value
t used. Table 5.2 shows how this procedure obtains the best ratio between both the
number of voxels and the information value of the resulting model and the time
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Fig. 5.9. – "apartment" environment (top left), mapping result after 2D basic exploration
(top right), combination of 2D exploration and camera pose optimisation with
t = 0.5 (bottom left) and 3D exploration (bottom right). The 3D uncertainty
map is shown with colours, while the 2D map is in greyscale. A reduced HSV
colour gradient is used to represent uncertainty values, where the most uncertain
voxels are in red and the most reliable ones in green.
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needed to build it. More specifically, in the tests carried out, t values of 0.5 or 1.0
are those that achieve the optimal result.

5.6 Evaluation in a real environment

With respect to the real-world experiments, the system has been tested in two
different environments, workfloor and lab, the first one representing an uncluttered
environment and the latter a cluttered one. A picture of each of them can be seen in
Figure 5.10.

(a) (b)

Fig. 5.10. – Real scenarios in which the system has been tested. On the left, the workfloor
environment, which is 20 x 10 m big and relatively uncluttered. On the right,
the lab scenario, whose size is 15 x 8 m and represents a cluttered environment.
The mobile platform used is shown at the bottom centre of both images.

Here, the mobile robot used is slightly different for that used in simulation. In
this case, we have attached an Intel RealSense D435 RGB-D camera to a turret
that enables pan movement and mounted this module on top of a MiR200 plat-
form. However, the rest of the hardware components, sensor ranges, software and
configurations are almost identical.

5.6.1 Experimental Procedure

The real-word performance of the algorithm has been tested following a strategy
similar to that used in simulation. First, the map is built teleoperating the robot
through the environment, ensuring the 360º lidar captures correctly all the elements
of interest and the 2D map obtained with GMapping has no reachable unknown
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areas. In half of the experiments, at the end of the process, the robot is guided to
the starting point and the first metres of the mapping trajectory are repeated, to
ease the loop closure. But there is one thing to be aware of with this strategy. Most
exploration algorithms do not return to the starting point and do not repeat these
first movements at the end of the process, as is the case for the algorithm used to
define the robot’s trajectory in simulation. So, in the other half of the tests, the
robot has travelled the minimum distance to cover the area to be mapped, without
returning to the starting point before finishing. We may refer to it as a one-way
trajectory. As in the experiments described in Section 5.5.1, during this first mapping
process the 3D mapping camera is static with respect to the mobile platform, as the
optimisation algorithm is not running. In addition, the entire trajectory is recorded,
so that the robot performs exactly the same movements on subsequent runs that do
have our proposed pose optimisation algorithm active.

In this case, no 2D exploration algorithm is used to build the map in this first step and
the robot is manually guided to increase the speed and safety of the experimentation.
Similarly, no 3D exploration method has been added to the evaluation for the same
reason, but also because the mapping system is running on an MSI GL65 9SEK
laptop whose battery lasts about 30 minutes with everything running, and tested 3D
ASLAM methods require more time. Nevertheless, the tests we propose to perform
on real scenarios are valid enough to evaluate the difference in the resulting 3D
model between using our optimisation process and not using it.

As in the simulation experiments, each of the four configurations - one teleoperated
2D mapping, three with our optimisation - is repeated six times in each environment,
workfloor and lab. Out of these six runs, three of them try to simplify loop closure
detection, while the other three perform a one-way trajectory. Altogether, 48 runs
have been conducted, the results of which can be seen in Table 5.3, where data from
experiments where only the starting point varies have been averaged.

In both real-world scenarios, the map with the highest number of voxels and infor-
mation is always the one obtained using our camera pose optimisation algorithm,
achieving improvements of up to 131.67% and 142.48%, respectively. Regarding
the optimal t-value, it is again specific to each mapping process, as all three val-
ues achieve the best result in some of the tests, being t = 0.5 the only one to be
optimal twice and never obtaining the worst result. It should be noted that in the
lab environment, t = 0.2 even gets a worse result than keeping the camera static.
This configuration is prone to fall to a local minima, not taking advantage of the
full range of the sensor’s panning action. Moreover, this usually occurs at values
between ± 180º and ± 120º, i.e., looking almost backwards in the direction of travel.
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Tab. 5.3. – Comparison of the effectiveness of the obtained 3D maps considering all real-
world tests. The metrics shown are: number of voxels, increase in the number
of voxels compared to the 2D test in percentage terms, information provided,
information gain compared to the 2D test, information gain compared to 2D test
in percentage terms.

ENVIRONMENT TEST TYPE VOXELS VOXELS % INFO GAIN GAIN %
2D 40,553 16,209

2D+optimisation (t=0.2) 50,024 23.35% 20,811 4,601 28.39%
2D+optimisation (t=0.5) 60,000 47.96% 25,592 9,383 57.89%

Workfloor
(20 x 10 m)

2D+optimisation (t=1.0) 49,894 23.04% 22,076 5,867 36.20%
2D 14,510 5,727

2D+optimisation (t=0.2) 33,616 131.67% 13,887 8,160 142.48%
2D+optimisation (t=0.5) 31,001 113.65% 12,933 7,206 125.83%

Workfloor
(20 x 10 m)
(one-way)

2D+optimisation (t=1.0) 27,785 91.49% 11,586 5,859 102.30%
2D 42,289 17,922

2D+optimisation (t=0.2) 40,784 -3.56% 17,063 -859 -4.79%
2D+optimisation (t=0.5) 43,788 3.54% 18,763 841 4.70%

Lab
(15 x 8 m)

2D+optimisation (t=1.0) 47,829 13.10% 21,006 3,084 17.21%
2D 21,507 8,349

2D+optimisation (t=0.2) 20,754 -3.50% 8,398 49 0.59%
2D+optimisation (t=0.5) 30,325 41.00% 13,107 4,758 56.99%

Lab
(15 x 8 m)
(one-way)

2D+optimisation (t=1.0) 28,755 33.70% 12,542 4,193 50.22%

Another point to highlight is the difference in the improvement of our algorithm
between repeating the first movements before the end of the mapping process and
the one-way trajectories. For instance, information gain increases from 58.89% to
142.48% in workfloor, and from 17.21% to 56.99% in lab.

5.7 Conclusions

In this chapter, we presented a system that associates uncertainty values with the
mapped points based on where they have been captured, and an algorithm that
exploits this information to optimise the sensor pose for exploration. We use an
octree-based 3D uncertainty map to estimate the camera’s NBV online, which is built
during motion. Adding this algorithm to a 2D exploration, a denser and richer model
is acquired, without requiring additional time for it. Besides, in some cases, it has
demonstrated to obtain similar or even better results to a complete 3D exploration
system, but in much less time.

It is obvious that an ASLAM approach significantly reduces the human effort required
to operate an autonomous navigation system in any indoor environment, as the map
generation is automated. But, furthermore, it can also help to improve the accuracy
and robustness of navigation. 3D models provide a greater amount of information
than 2D maps, and can be very useful in resolving ambiguities, so common in
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human-made structures. The proposed method generates a partial 3D map of the
environment, which can also be used for localisation, performing both processes
without spending additional time. Similarly, the 3D model can be updated and/or
completed during the autonomous navigation of the robot. It could be used both as
a continuous, stand-alone 3D exploration system and as a more confident localisation
system. The generated model contains information about the uncertainty of each
spatial point, potentially allowing to focus the field of view on the less uncertain area,
which a priori leads to a more reliable matching and a more accurate localisation.
However, these theories need to be tested empirically.

Although the proposed method has been designed and tested on a terrestrial mobile
platform, the algorithm can be extrapolated to any aerial or underwater vehicle, with
whatever degrees of freedom to be optimised, making it a highly flexible solution.
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Conclusions and Future Work 6
„Don’t cry because it’s over, smile because it

happened.

— Dr. Seuss

This chapter summarises the work done throughout the research process, outlines
the main conclusions drawn from it, and proposes some possible future steps and
open questions that have yet to be solved.

6.1 Summary and Conclusions

As our particular main objective in mobile robotics is to strengthen, simplify, au-
tomate and, in general, improve the setting up and operation of mobile platforms
in real indoor applications, it is necessary to know the current state of the art of
the corresponding technologies. For this reason, the first of the three branches into
which the work done in this research process is grouped consists of empirically
assessing the capabilities and limitations of existing algorithms in the literature.

We have started by experimentally evaluating three known SLAM algorithms. The
results obtained in these first tests prove that the trajectory followed by the robot
during the mapping process has a direct influence on the morphology of the gener-
ated map. Likewise, even the smallest difference in the map makes the subsequent
localisation estimation in that area differ when using one model or another. This
effect is quite logical, and it is not a new discovery, but verifying it in our envi-
ronment is relevant for the proposed improvements. What is an added value of
our experimentation is the fact that the error made in the position estimation with
each of the three algorithms is methodically calculated. By means of an external
micrometric measuring device and the execution of multiple runs, the accuracy
of this location has been quantified, which turns out not to be sufficient for the
performance of certain tasks, e.g., inspection tasks.

The second branch builds on the limitations observed in the experimental evaluation
part, and proposes two different methods to improve the localisation accuracy. On
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the one hand, we propose a vision-based method to improve the positioning of a
mobile platform in an indoor environment. It can achieve an accuracy of up to
0.1 mm, validated with the TRITOP photogrammetric unit. However, when this
value is extrapolated to the platform, the error increases up to 6 mm and 0.12º,
as the platform control itself has a higher tolerance. Even so, an improvement of
approximately 20 cm is achieved, increasing the range of possibilities considerably.
Even so, an improvement of approximately 20 cm is achieved, a considerable step
forward that enables some tasks to be performed correctly. The system is validated
by navigating autonomously through an industrial plant before positioning precisely
in front of an aircraft aileron. At this point, a robotic arm mounted on the platform
performs a scan with an ultrasonic sensor, which cannot be carried out if the platform
is not positioned with the necessary precision. The main limitation of this method
is that the vision plate must be visible and within the field of view of the camera
in order to perform the accurate positioning, which may not always happen in
uncontrolled environments. On the other hand, the localisation accuracy of the
same mobile platform is improved in a semi-indoor scenario by means of a GNSS.
It navigates through a greenhouse, which is composed of a main corridor, rows
perpendicular to it and a large number of plants in between. It is both a changing and
symmetrical environment, due to the very nature of the greenhouse, and traditional
localisation algorithms fail in estimating the position. The exploitation of the GNSS
signal using the PPP technique is proposed to address these difficulties, which is
used as input for the absolute localisation system for its subsequent fusion with the
relative localisation module. By doing so, an error in the platform heading of less
than 6° is achieved approximately 95% of the time, improving the estimation by up
to 30% without the use of the GNSS signal. In addition, the map generated with the
proposed system is much more realistic and faithful to the greenhouse morphology,
although it has not been measured and the comparison is only done visually.

Finally, the last part differs to some extent from the previous ones, as it proposes a
camera pose optimisation system for autonomous 3D mapping. This contribution
aims to orient an RGB-D camera towards the area that will provide most information
to the map. The optimisation is performed online, iteratively, and is completely
independent of the other processes, although it is logically limited by the degrees
of freedom set for the sensor in question. For this calculation, a 3D model of
the environment containing an uncertainty estimation for each explored voxel is
generated. This uncertainty value is calculated from the distance and angle from
which it has been captured, and is updated every time the corresponding point is
viewed. The system is tested with a mobile robot that mounts an RGB-D camera on it.
In simulation, a RRT algorithm is used for 2D exploration while our method controls
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the pose of the sensor and builds the 3D map, while in real-world scenarios the
platform is teleoperated to generate that trajectory. The results show that our method
considerably improves the generated 3D map compared to not optimising the camera
pose, without requiring additional time or platform movements. Furthermore, the
information this map provides is not that far from that generated by a full 3D
scanning algorithm, which does require more resources. While this development
contributes to automating the generation of 3D indoor representations, it also aims
to quantify and increase the quality of these. These models can be used for different
purposes, but also for localisation, and higher quality models of reality contribute
to better localisation estimations, as we have already seen. So, in this last part, we
not only contribute to the mapping autonomy, but also to the improvement of the
localisation accuracy of mobile robots in indoor environments.

Altogether, the contributions presented here improve the basic capabilities expected
from a mobile platform, such as mapping, localisation and, as a consequence,
navigation. These developments are combined with algorithms from the literature to
meet the requirements of certain applications. Chapters 3 and 4 are directly related
to real applications demanded by industry, and their effectiveness is demonstrated
by the actual accomplishment of these tasks. Although the focus in the latter is
mainly centred on the inspection tasks to be performed, the proposed procedure
can be extrapolated to other scenarios, taking a step forward in this line in general.
Chapter 5, in contrast, introduces a general purpose method that can be implemented
not only on mobile platforms, but also on any element with a mobile 3D sensor
whose position can be optimised.

6.2 Future Work

The precise positioning procedures described here are intended to inspect an element
of the environment using a robotic arm mounted on the mobile platform. During
this process, platform and robot are coordinated to ensure that the task is performed
successfully, but the actions of both are performed sequentially. That is, if it is
necessary to move the platform so that the arm can continue the inspection, first, the
former pauses its trajectory and moves to a safe position. Next, the platform is moved
to the desired location and, then, the arm can proceed with its execution. Depending
on the size of the item to be inspected and the reach of the arm, this process can be
repeated iteratively until the whole element is analysed. Ideally, both should be able
to know each other’s pose in real time in order to adapt their trajectories accordingly.
The scientific community is making advances in this direction [96, 92], but there
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is not a solution that maintains the same precision that a robotic arm can offer
independently when the platform on which it is mounted is moving. Overcoming
this challenge will be a major breakthrough in mobile robotics, especially in control
and localisation, and will offer the possibility of optimising many processes in
industry, which, in principle, would reduce costs. For these reasons, we propose as a
next step the task of achieving accurate positioning while the platform is in motion
and not only when it is standing still facing the vision plate. The two devices will
then need to be able to communicate with each other and modify their respective
trajectories in real time, without the movement of one having an unintended effect
on the actions of the other, so that each can perform its task effectively.

The combination of 2D exploration with our sensor pose optimisation has shown
good results for 3D exploration and the system is highly configurable and adaptable
to different sensors. However, this first version of the algorithm has been imple-
mented with some limitations. On the one hand, the camera pose optimisation
should be tested with more degrees of freedom. In the performed evaluation, only
the pan movement has been considered, but our goal is to optimise, at least, the
tilt and height coordinates too in every iteration. However, due to the high compu-
tational cost of such extension, we would need to parallelise the code first to take
advantage of the increasing computing power of multicore architectures. On the
other hand, we want to calculate the angle-based uncertainty taking into account
not only the direction of the camera, but also the normal of the corresponding point
or surface. Besides, although a set of optimal poses for a certain platform trajectory
is hard to estimate correctly as how the map will grow is unknown, the system
can consider the next pose of the robot and calculate the optimal pose accordingly.
Our system runs independent from the robot motion to make it more generic and
because the robot used is omnidirectional, it does not need to rotate to reach any
objective. Nevertheless, with other motion systems, there can be a big divergence
between the NBV expected and the point of view achieved, and taking it into account
and going one step ahead would make a big difference in these situations.

Related to the mapping of the environment, latest advances in 3D reconstruction
build realistic models of static environments, but dynamic scenes need more complex
solutions [273]. Semantic mapping consists of building a map that represents
spatial volumes with concepts or labels, i.e., associating a chair in the scene with
a chair object in the model, and not just with a set of points. There are several
powerful applications of semantic mapping in robotics. For example, a robot could
use this information to self-localise in the environment, to improve the accuracy
or to approach a previously detected object instead of a specific metric position.
Furthermore, we would like to extend the state of the art of the environment by
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developing a system capable of building a dense 3D model of the environment
autonomously with the use of visual sensors and physical manipulation of objects.
This model would not only store semantic information of the elements in the scene,
but also additional characteristics that improve their management and manipulation,
such as materials, shapes and physical properties.

Some more ambitious and others not so much, mobile robotics offers a wide range
of possibilities to explore, with the potential application in a variety of areas. In
fact, whatever task we think of, it is very likely that a mobile robot can help to
automate it or chain it with another, so that the whole process is done faster, safer
or more efficiently. Although much progress has been made in this line in the last
decades, the incoming advances are perhaps even more exciting and may have an
even greater impact in the society.
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“UAV RTK/PPK method—an optimal solution for mapping inaccessible forested
areas?” In: Remote sensing 11.6 (2019), p. 721 (cit. on p. 83).

[233]Anirudh Topiwala, Pranav Inani, and Abhishek Kathpal. “Frontier based exploration
for autonomous robot”. In: arXiv preprint arXiv:1806.03581 (2018) (cit. on p. 48).

[234]Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.
“Bundle adjustment—a modern synthesis”. In: International workshop on vision
algorithms. 1999, pp. 298–372 (cit. on p. 31).

[235]Darko Trivun, Edin Šalaka, Dinko Osmanković, Jasmin Velagić, and Nedim Osmić.
“Active SLAM-based algorithm for autonomous exploration with mobile robot”.
In: IEEE International Conference on Industrial Technology (ICIT). 2015, pp. 74–79
(cit. on p. 49).

[236]John W Tukey. “A survey of sampling from contaminated distributions”. In: Contri-
butions to Probability and Statistics (1960), pp. 448–485 (cit. on p. 31).

[237]Stephen Tully, George Kantor, and Howie Choset. “A unified bayesian framework
for global localization and SLAM in hybrid metric/topological maps”. In: The
International Journal of Robotics Research 31.3 (2012), pp. 271–288 (cit. on p. 23).

[238]Spyros G Tzafestas. “Mobile robot control and navigation: A global overview”. In:
Journal of Intelligent & Robotic Systems 91.1 (2018), pp. 35–58 (cit. on p. 38).

146 Bibliography



[239]Yuko UEKA and Seiichi ARIMA. “Development of Multi-Operation Robot for Produc-
tivity Enhancement of Intelligent Greenhouses: For Construction of Integrated Pest
Management Technology for Intelligent Greenhouses”. In: Environmental Control in
Biology 53.2 (2015), pp. 63–70 (cit. on p. 79).

[240]Shimon Ullman. “The interpretation of structure from motion”. In: Proceedings of the
Royal Society of London. Series B. Biological Sciences 203.1153 (1979), pp. 405–426
(cit. on p. 51).

[241]H. Umari and S. Mukhopadhyay. “Autonomous robotic exploration based on multi-
ple rapidly-exploring randomized trees”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2017, pp. 1396–1402 (cit. on p. 48).

[242]Hassan Umari and Shayok Mukhopadhyay. “Autonomous robotic exploration based
on multiple rapidly-exploring randomized trees”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2017, pp. 1396–1402 (cit. on pp. 94,
96, 107, 111).

[244]Rafael Valencia and Juan Andrade-Cetto. “Active pose SLAM”. In: Mapping, Planning
and Exploration with Pose SLAM. Springer, 2018, pp. 89–108 (cit. on p. 96).

[245]Jan Van Sickle. GPS for land surveyors. CRC press, 2008 (cit. on p. 83).

[246]Fernando Vanegas, Kevin J. Gaston, Jonathan Roberts, and Felipe Gonzalez. “A
Framework for UAV Navigation and Exploration in GPS-Denied Environments”. In:
IEEE Aerospace Conference (AERO). 2019, pp. 1–6 (cit. on p. 95).

[247]J Irving Vasquez-Gomez, L Enrique Sucar, Rafael Murrieta-Cid, and Efrain Lopez-
Damian. “Volumetric next-best-view planning for 3D object reconstruction with
positioning error”. In: International Journal of Advanced Robotic Systems (IJARS)
11.10 (2014), p. 159 (cit. on p. 97).

[248]Ramiro Velázquez, Edwige Pissaloux, Pedro Rodrigo, et al. “An Outdoor Navigation
System for Blind Pedestrians Using GPS and Tactile-Foot Feedback”. In: Applied
Sciences 8.4 (2018), p. 578 (cit. on p. 57).

[249]W Grey Walter. “A machine that learns”. In: Scientific American 185.2 (1951),
pp. 60–64 (cit. on p. 4).

[250]Yuze Wang, Xin Chen, and Peilin Liu. “Statistical multipath model based on experi-
mental GNSS data in static urban canyon environment”. In: Sensors 18.4 (2018),
p. 1149 (cit. on p. 80).

[251]Ulrich Weiss and Peter Biber. “Plant detection and mapping for agricultural robots
using a 3D LIDAR sensor”. In: Robotics and Autonomous Systems 59.5 (2011),
pp. 265–273 (cit. on p. 56).

[252]Greg Welch, Gary Bishop, et al. “An introduction to the Kalman filter”. In: (1995)
(cit. on p. 18).

[254]Brian Williams, Mark Cummins, Jose Neira, et al. “A comparison of loop closing
techniques in monocular SLAM”. In: Robotics and Autonomous Systems 57 (2009),
pp. 1188–1197 (cit. on p. 22).

Bibliography 147



[255]Stefan B Williams, Gamini Dissanayake, and Hugh Durrant-Whyte. “An efficient
approach to the simultaneous localisation and mapping problem”. In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA). Vol. 1. 2002,
pp. 406–411 (cit. on p. 46).

[256]Ling Wu, Miguel Ángel García, Domenec Puig Valls, and Albert Solé Ribalta.
“Voronoi-based space partitioning for coordinated multi-robot exploration”. In:
Journal of Physical Agents 3.1 (2007) (cit. on p. 46).

[257]Chunlei Xia, Tae-Soo Chon, Zongming Ren, and Jang-Myung Lee. “Automatic
identification and counting of small size pests in greenhouse conditions with low
computational cost”. In: Ecological Informatics 29 (2015), pp. 139–146 (cit. on
p. 79).

[258]Rui Xu, Wu Chen, Ying Xu, and Shengyue Ji. “A new indoor positioning system
architecture using GPS signals”. In: Sensors 15.5 (2015), pp. 10074–10087 (cit. on
p. 57).

[259]Zhizun Xu, Maryam Haroutunian, Alan J Murphy, Jeff Neasham, and Rose Norman.
“An underwater visual navigation method based on multiple ArUco markers”. In:
Journal of Marine Science and Engineering 9.12 (2021), p. 1432 (cit. on p. 70).

[260]Brian Yamauchi. “A frontier-based approach for autonomous exploration”. In:
Proceedings of the IEEE International Symposium on Computational Intelligence in
Robotics and Automation. 1997, pp. 146–151 (cit. on pp. 48, 95).

[261]Brian Yamauchi. “Frontier-based exploration using multiple robots”. In: Proceedings
of the 2nd International Conference on Autonomous Agents (AAMAS). 1998, pp. 47–
53 (cit. on p. 48).

[262]Brian Yamauchi, Alan Schultz, and William Adams. “Mobile robot exploration and
map-building with continuous localization”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). Vol. 4. 1998, pp. 3715–3720 (cit. on
pp. 46, 48).

[263]Guanci Yang, Zhanjie Chen, Yang Li, and Zhidong Su. “Rapid relocation method for
mobile robot based on improved ORB-SLAM2 algorithm”. In: Remote Sensing 11.2
(2019), p. 149 (cit. on p. 36).

[264]Xieliu Yang and Suping Fang. “Effect of field of view on the accuracy of camera
calibration”. In: Optik 125.2 (2014), pp. 844–849 (cit. on p. 99).

[265]Abu Sadat Mohammed Yasin, Md Majharul Haque, Md Nasim Adnan, et al. “Local-
ization of Autonomous Robot in an Urban Area Based on SURF Feature Extraction
of Images”. In: International Journal of Technology Diffusion (IJTD) 11.4 (2020),
pp. 84–111 (cit. on p. 36).

[266]Wonpil Yu and Francesco Amigoni. “Standard for robot map data representation for
navigation”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Workshop on “Standardized Knowledge Representation and Ontologies for
Robotics and Automation". 2014, pp. 3–4 (cit. on p. 22).

148 Bibliography



[267]Rui Zeng, Yuhui Wen, Wang Zhao, and Yong-Jin Liu. “View planning in robot active
vision: A survey of systems, algorithms, and applications”. In: Computational Visual
Media (2020), pp. 1–21 (cit. on p. 97).

[268]Zichao Zhang. “Active robot vision: from state estimation to motion planning”.
PhD thesis. Zurich, Switzerland: Faculty of Business, Economics and Informatics,
University of Zurich, 2020 (cit. on p. 50).

[269]Zichao Zhang and Davide Scaramuzza. “Perception-aware receding horizon nav-
igation for MAVs”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2018, pp. 2534–2541 (cit. on p. 51).

[270]Zichao Zhang and Davide Scaramuzza. “Beyond point clouds: Fisher information
field for active visual localization”. In: IEEE International Conference on Robotics and
Automation (ICRA). 2019, pp. 5986–5992 (cit. on p. 51).

[271]Zichao Zhang and Davide Scaramuzza. “Fisher Information Field: an Efficient
and Differentiable Map for Perception-aware Planning”. In: ArXiv abs/2008.03324
(2020) (cit. on p. 51).

[272]Tai-Xiong Zheng, Shuai Huang, Yong-Fu Li, and Ming-Chi Feng. “Key techniques for
vision based 3D reconstruction: a review”. In: Acta Automatica Sinica 46.4 (2020),
pp. 631–652 (cit. on p. 97).

[273]Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, et al. “State of the art on 3D
reconstruction with RGB-D cameras”. In: Computer Graphics Forum. Vol. 37. 2.
2018, pp. 625–652 (cit. on p. 126).

[274]Konrad Zuse. “Der Plankalkül”. In: Ber. Gesellsch. Math. Datenverarbeit. 1.63 (1972),
pp. 1–285 (cit. on pp. 40, 48).

Webpages

[@43]Embassy of the Czech Republic in Ottawa. ROBOT - the most famous Czech word
celebrates 100 years. 2021. URL: https://www.mzv.cz/ottawa/en/news_and_
events/robot_the_most_famous_czech_word.html (visited on Jan. 20, 2022)
(cit. on p. 3).

[@61]United Nations - Department of Economic and Social Affairs. Transforming our
world: the 2030 Agenda for Sustainable Development. 2015. URL: https://sdgs.un.
org/2030agenda (visited on Jan. 24, 2022) (cit. on p. 5).

[@90]Ruoqi He and Chia-Man Hung. PATHFINDING IN 3D SPACE-A*, THETA*, LAZY
THETA* IN OCTREE STRUCTURE. 2016. URL: https://ascane.github.io/assets/
portfolio/pathfinding3d-report.pdf (visited on June 6, 2022) (cit. on p. 45).

[@124]Stanford Artificial Intelligence Laboratory and Open Robotics. Robot Operating
System. 2007. URL: https://www.ros.org/ (visited on Jan. 19, 2022) (cit. on
p. 58).

Webpages 149

https://www.mzv.cz/ottawa/en/news_and_events/robot_the_most_famous_czech_word.html
https://www.mzv.cz/ottawa/en/news_and_events/robot_the_most_famous_czech_word.html
https://sdgs.un.org/2030agenda
https://sdgs.un.org/2030agenda
https://ascane.github.io/assets/portfolio/pathfinding3d-report.pdf
https://ascane.github.io/assets/portfolio/pathfinding3d-report.pdf
https://www.ros.org/


[@162]Jash Mota. Dynamic Window Approach local planner. 2020. URL: http://wiki.ros.
org/dwa_local_planner (visited on June 6, 2022) (cit. on p. 43).

[@176]ORB-SLAM3. ORB-SLAM3: TUM-VI Stereo-Inertial, room1+magistrale1+magistrale5+slides1.
2020. URL: https : / / www . youtube . com / watch ? v = HyLNq - 98LRo (visited on
Sept. 30, 2022) (cit. on p. 34).

[@191]International Federation of Robotics. Robot Density nearly Doubled globally. 2021.
URL: https://ifr.org/ifr-press-releases/news/robot-density-nearly-
doubled-globally (visited on Jan. 20, 2022) (cit. on p. 3).

[@215]John Song. A Comparison of Pathfinding Algorithms. 2019. URL: https://www.
youtube.com/watch?v=GC-nBgi9r0U (visited on June 3, 2022) (cit. on p. 42).

[@218]National Institute of Standards and Technology. A Walk Through Time - Early Clocks.
2004. URL: https://www.nist.gov/pml/time- and- frequency- division/
popular - links / walk - through - time / walk - through - time - early - clocks
(visited on Jan. 21, 2022) (cit. on p. 4).

[@243]TUM University. Visual-Inertial Dataset. 2021. URL: https://vision.in.tum.de/
data/datasets/visual-inertial-dataset (visited on Sept. 30, 2022) (cit. on
p. 34).

[@253]Wikipedia. Kalman filter. 2022. URL: https://en.wikipedia.org/wiki/Kalman_
filter (visited on Mar. 11, 2022) (cit. on p. 19).

150 Bibliography

http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/dwa_local_planner
https://www.youtube.com/watch?v=HyLNq-98LRo
https://ifr.org/ifr-press-releases/news/robot-density-nearly-doubled-globally
https://ifr.org/ifr-press-releases/news/robot-density-nearly-doubled-globally
https://www.youtube.com/watch?v=GC-nBgi9r0U
https://www.youtube.com/watch?v=GC-nBgi9r0U
https://www.nist.gov/pml/time-and-frequency-division/popular-links/walk-through-time/walk-through-time-early-clocks
https://www.nist.gov/pml/time-and-frequency-division/popular-links/walk-through-time/walk-through-time-early-clocks
https://vision.in.tum.de/data/datasets/visual-inertial-dataset
https://vision.in.tum.de/data/datasets/visual-inertial-dataset
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter


Webpages 151


	Titlepage
	Cover
	Abstract
	Acknowledgements
	Contents
	I Introduction
	1 Introduction
	1.1 Context
	1.1.1 Tekniker
	1.1.2 University of the Basque Country (UPV/EHU)
	1.1.3 Autonomous Intelligent Systems (AIS) Laboratory at the University of Freiburg

	1.2 Motivation
	1.3 Objectives and Scope
	1.4 Contributions
	1.5 Thesis Outline

	2 Robot Navigation: Concepts and Background
	2.1 Introduction
	2.2 Probabilistic Algorithms
	2.3 Localisation
	2.3.1 Kalman Filter (KF)
	2.3.2 Monte Carlo Localisation (MCL)

	2.4 Mapping
	2.4.1 World Representation

	2.5 Simultaneous Localisation and Mapping (SLAM)
	2.5.1 FastSLAM
	2.5.2 Unscented Kalman Filter SLAM (UKF-SLAM)
	2.5.3 GraphSLAM
	2.5.4 MonoSLAM
	2.5.5 Parallel Tracking and Mapping (PTAM)
	2.5.6 Multi-State Constraint Kalman Filter (MSCKF)
	2.5.7 ORB-SLAM

	2.6 Image Feature Detection and Matching
	2.7 Planning
	2.7.1 Partially Observable Markov Decision Process (POMDP)
	2.7.2 Global Path Planning
	2.7.3 Obstacle Avoidance

	2.8 Active Mapping
	2.8.1 Robot Exploration
	2.8.2 Active Perception



	II Contributions
	3 Experimental Evaluation of Current Mapping Solutions
	3.1 Introduction
	3.2 Sensors for SLAM
	3.3 Proposed Approach
	3.4 Experiments
	3.4.1 Robotic Platform
	3.4.2 Mapping
	3.4.3 Localisation

	3.5 Conclusions

	4 Accurate Positioning
	4.1 Introduction
	4.2 Artificial Landmark-based Localisation for Aileron Inspection
	4.2.1 Visual Landmarks
	4.2.2 Setting Up the Scenario
	4.2.3 Proposed Approach
	4.2.4 Experimental results

	4.3 GNSS-based Localisation in Greenhouse Crops
	4.3.1 Current State of GNSS for Mobile Robotics
	4.3.2 Proposed Approach
	4.3.3 Experimental results

	4.4 Conclusions

	5 Active Mapping and Exploration
	5.1 Introduction
	5.2 Related Work
	5.3 Proposed Approach
	5.3.1 Uncertainty Estimation
	5.3.2 Camera Pose Optimisation

	5.4 Description of the Implemented System
	5.5 Evaluation in simulation
	5.5.1 Experimental Procedure

	5.6 Evaluation in a real environment
	5.6.1 Experimental Procedure

	5.7 Conclusions


	III Conclusions and Further Research
	6 Conclusions and Future Work
	6.1 Summary and Conclusions
	6.2 Future Work

	Bibliography


