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Introduction

An increasingly technological society has motivated fundamental

research in the chase of shrinking the actual data storing and processing

technology. This quest has achieved the nanometric scale during the last

decades due to the advances of fabrication techniques. However, due

to the physical limits of the current technology, the scaling predicted

by Moore’s law has been slowed down in recent years. Meanwhile, the

crucial role of scienti�c research is being the study of alternatives, dif-

ferent from the currently established semiconductor technology, which

are believed to o�er a new paradigm in the �eld of data processing. In

this context, atomic scale structures represent the smallest unit of matter

for storing and processing information. However, while promising tech-

nologies such as quantum computing rely on the principles of quantum

mechanics, the emergence of quantum phenomena represents a big chal-

lenge towards the control and manipulation of atomic scale structures.

Atomic size structures such as atomic clusters and chains, or even

single magnetic adatoms are promising candidates for making data stor-

age devices and quantum bits due to their long living magnetic quan-

tum states [1–12]. In this aspect, magnetic adatoms o�er an excep-

tional scenario to explore many interesting phenomena such as mag-

netic excitations [13–16], magnetic interactions [17–19] or spin relax-

ation and decoherence [6, 8, 12]. In this line, outstanding progress has

been achieved thanks to the development of cutting-edge experimental

techniques for manipulating and probing nano-structures. In particu-

lar, the upsurge of spin-polarized scanning tunneling microscope and

spectroscopy [6, 8, 13, 16, 18, 20–30], X-ray magnetic circular dichro-

ism [4, 9, 27, 31–33] and electron paramagnetic resonance [3, 7, 10, 30, 34–

41] has enabled/spurred/fueled pioneer research works. Additionally, the

development of new theoretical methods and the improvement of com-

putational power has also allowed to carry out detailed studies in this

�eld [5, 42–55].
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The state-of-the-art research of the �eld is focused on characterizing

magnetic adatom systems and understanding the physical mechanisms

involved on the spin dynamics, with the ultimate goal of achieving the

control and stability of single adatoms. The magnetic stability is basically

determined by the magnetic structure of the adatom together with the

interactions interactions with the environment [12]. The high energy

barrier separating the ground state and the excited magnetic states on

adatom systems, called magnetic anisotropy energy, protects the mag-

netization reversal from thermal �uctuations [21, 26, 27, 56, 57]. How-

ever, the quantum nature of these nano-structures introduces intrinsic

quantum �uctuations [50] and enables quantum tunneling of magneti-

zation [58, 59], which tend to destabilize the magnetic states and cause

spin relaxation.

Due to the small magnetic moments of adatom systems, interactions

with their environment also play a crucial role in their spin dynamics.

Electronic interactions with substrate conduction electrons can screen

the localized magnetic moment and a�ect it’s stability, which is known

as the Kondo e�ect [17, 60, 61]. In order to reduce the e�ect of substrate

electrons, insulating decoupling layers such as Cu
2
N, MgO or graphene

have been used successfully, stabilizing the adatom states and achieving

long spin-�ip relaxation times [4, 11, 14]. Even the coupling between

tunneling electrons and the adatom, which makes scanning tunneling

spectroscopy possible, a�ects the spin dynamics of the adatom. This

aspect has been studied experimentally [6] and the physical origin of the

coupling has been theoretically explored [43, 44]. In the case of electron

paramagnetic resonance, many theoretical models have been proposed

to capture the essential physics behind the resonant transitions [38, 53],

but the origin of the spin transitions is still an open question [41]. On

the other hand, while the e�ect of electronic interactions on adatom

properties has been widely studied, the role of substrate phonons has

received far less attention so far. Nonetheless, it has been speculated

many times about the crucial role of the electron-phonon interaction

as a spin relaxation mechanism, and in fact, clear indications of their

importance in the relaxation mechanism have been found [62].

The so called electron-phonon interaction is essentially the e�ect

of phonons on the electronic structure. It plays a crucial role in a wide

variety of observable phenomena, such as electrical conductivity and

resistivity of metals, temperature dependence of carrier mobility, optical

properties of semiconductors, or even in conventional superconductivity.
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In consequence, it represents one of the classic topics of solid state physics

and has been extensively studied from the earliest days of the quantum

theory [63–68]. However, due to the high computational costs needed to

accurately model this coupling, quantitative �rst principles calculations of

the electron-phonon interaction were only accessible very recently [69].

In this regard, the di�culty of performing �rst principles calculations

of spin lifetimes and transitions rates of magnetic adatoms complicates

verifying the origin of the physical mechanisms involved on experimen-

tal measurements. Indeed, a convincing theoretical approach to study

the contribution of electron-phonon coupling from �rst principles has

been so far inaccessible due to the computational challenge that repre-

sents the many-body character of the problem and the huge number

of atoms in a surface simulation. In the related �eld of molecular mag-

nets, ab-initio calculations of the spin-phonon coupling have been widely

performed using complex electronic structure methods developed on

quantum chemistry [70–77]. These methods allow an accurate descrip-

tion of the many-body character of the non-periodic magnetic molecules,

however, due to their computational costs, their application on super-cell

adatom systems is not feasible.

In this thesis, we develop and apply several numerical methods to

account the e�ects of electron-phonon interaction on magnetic adatoms

from �rst principles. In particular, we analyze the e�ect of vibrations

on the Fe adatom deposited on MgO/Ag(100). Our calculations allow

to gain insight into existing experimental results and even to open new

possibilities in the study of spin lifetimes of magnetic adatoms. To this

end, the thesis is organized as follows. Chapter 1 collects the general

theoretical framework on which the thesis is based, namely, obtaining

the electronic and vibrational structures from �rst principles, the crystal

�eld Hamiltonians used to describe the electronic structure of adatom

by means of Stevens operators, and the theory of open quantum sys-

tems to describe the dynamics of the adatom coupled to the vibrations.

Thereafter, in Chapter 2 we make use of the successful theory of electron-

phonon interactions developed to study metals, adapted to the special

features of adatom systems. By applying the formalism to the Fe adatom

on MgO/Ag(100) we characterize the impact of electron-phonon inter-

action on the electronic states of the adatom, revealing the important

features of the electronic and vibrational structures for the electron-

phonon coupling. Next, in order to get a better insight into the role of the

electron-phonon coupling on spin relaxation, in Chapter 3 we present a
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method that combines �rst principles density functional theory calcula-

tions with an atomic multiplet model to access spin lifetimes. We test the

method with the Fe adatom on MgO/Ag(100), successfully accounting

for the millisecond spin lifetime measured experimentally [6]. Finally, on

Chapter 4 we review the most important results obtained and collect the

main conclusions of the thesis.



Chapter 1

Theoretical background

In order to study the in�uence of vibrations on the magnetic moment

of an adatom, one needs to consider several theoretical methodologies

for a proper description of the problem. Among other features, a good

knowledge of the electronic structure of the adatom and the substrate,

together with the vibrational structure of the system, are needed. Due

to the di�culty of each of all these di�erent aspects, several theoretical

frameworks have been developed to study each of them. The aim of this

�rst chapter is to introduce the main points of the di�erent theoretical

methods used throughout the next chapters. References cited along the

chapter can be checked for more detailed derivations and discussions.

First, in Sec. 1.1 we will introduce the general formalism to solve the

problem of a system of interacting electrons and nuclei. We will review

some common approximations, such as the adiabatic approximation or

the harmonic approximation, that are used in order to arrive to compu-

tationally tractable expressions. And we will brie�y present the density

functional theory (DFT) formalism, one of the most popular methods

available in computational physics to compute fundamental material

properties from �rst principles. Next, Sec. 1.1.5 provides a basic deriva-

tion of the electron-phonon interaction Hamiltonian up to the �rst-order

in the atomic displacements. Later, Sec. 1.2 will include the theoretical

basis for crystal �eld Hamiltonians, introducing the Stevens equivalent

operators. And �nally, Sec. 1.3 introduces the concept of the density

matrix in quantum mechanics, which is then used to study the dynamics

of an open quantum system by deriving a master equation.
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1.1 | Electronic and vibrational
structures from first
principles

At the microscopic level, matter is composed by negatively charged

electrons interacting with positively charged atomic nuclei or ions. The

physical theory governing at this atomic level is quantum mechanics, and

the speci�c properties of materials can be formally derived by solving the

corresponding Schrödinger equation. The underlying problem is studied

by solid state physics and the theory is well established [66].

1.1.1 | Many-body Hamiltonian

The most general Hamiltonian for a non-relativistic system of inter-

acting electrons and nuclei can be written as
1
:

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂en

= −
∑
I

1

2MI

∇2
I −

∑
i

1

2
∇2
i +

1

2

∑
I

∑
J 6=I

ZIZJ
|RI − RJ |

+
1

2

∑
i

∑
j 6=i

1

|ri − rj|
− 1

2

∑
I

∑
i

ZI
|RI − ri|

. (1.1)

With the corresponding many-body Schrödinger equation

i
∂|Ψ(r,R, t)〉

∂t
= H|Ψ(r,R, t)〉. (1.2)

Where RI is the position vector of a nuclei with mass MI and atomic

number ZI , and r represents the set of electron’s position vectors {ri}.
The �rst two terms are the kinetic energy of the nuclei and electrons,

respectively. The last three terms are the nucleus-nucleus, electron-

electron and electron-nucleus Coulomb interactions, respectively.

The Coulomb interaction couples the many constituents of the system,

making impossible to get neither analytical nor numeric solutions for

1
Hartree atomic atomic units will be used through the thesis, i.e. ~ = e = me =

4πε0 = 1
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real materials, except for few academic examples. Therefore, the use of

approximations is required in order to simplify the problem.

The �rst approximation is understood by comparing typical velocities

of electrons and nuclei within a solid. Electrons move at a much larger

speed (ve ∼ 106
m/s) than atomic nuclei (vn ∼ 103

m/s) [66]. Conse-

quently, electrons can respond almost immediately to the motion of nuclei,

and thus, the electronic state at each moment will be determined by the

static position of the ions at that time. This approximation, known as

the Born-Oppenheimer approximation, makes possible dividing the wave

function of electrons and nuclei by expanding the total wave function in

the basis of electronic wave functions as

Ψi(r,R) =
∑
α′

Φion
iα′ (R)Ψel.

α′ (r;R), (1.3)

where Ψi(r,R) are the eigenstates of the total system

ĤΨi(r,R) = EiΨi(r,R). (1.4)

As a consequence, the electronic Hamiltonian will depend parametrically

on the set of ionic positions R and will be time independent. In this case

we can introduce the time-independent Schrödinger equation as

Ĥel. Ψel.
α (r;R) =

[
T̂e + V̂ee + V̂en(R) + Enn(R)

]
Ψel.
α (r;R)

= Eel.
α (R)Ψel.

α (r;R). (1.5)

Where V̂nn(R) is now a constant energy Enn(R) and Eel.
α (R) is the Born-

Oppenheimer energy surface, where α is the electronic quantum number.

Inserting the expansion (1.3) on Eq. (1.4) and projecting onto the

electronic state Ψel.
α we obtain the Schrödinger equation for the nuclei:

EiΦ
ion
iα (R) =

[
T̂n + Eel.

α

]
|Φion

iα (R)−
∑
α′,I

1

2MI

〈Ψel.
α |∇2

I |Ψel.
α′ 〉Φion

iα′ (R)

− 2
∑
α′,I

1

2MI

〈Ψel.
α |∇I |Ψel.

α′ 〉∇IΦ
ion
iα′ (R)

,

(1.6)

where we have used the bra-ket notation for the electronic matrix ele-

ments. The last two terms of the equation are called the non-adiabatic

terms, which describe the coupling of the electrons with the motion of the
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nuclei. Within the adiabatic approximation these terms are not considered

2
, giving rise to the ionic time-independent Schrödinger equation

Ĥ ionΦion
i (R) =

[
T̂n + Eel.

0 (R)
]

Φion
i (R) = Eion

i Φion
i (R), (1.7)

where, as commonly done, we have considered that the electrons are

always in their ground state, and thus, we have removed the electronic

index from the ionic wave function.

To summarize, the adiabatic approximation enables separating the

complex electron and nuclei Schrödinger equation into the simpler elec-

tronic (1.5) and ionic (1.7) equations. This approach has proven to be very

useful, becoming the standard method used for �rst principles calcula-

tions. On the other hand, neglecting the non-adiabtic term on (1.6) is not

a valid approximation in some cases. Nevertheless, even in those cases,

the usual approach is to solve the electronic and ionic equations sepa-

rately and treat the coupling between electrons and atomic displacements

afterwards with some perturbative/approximation method.

1.1.2 | Density functional theory

Although the Born-Oppenheimer approximation simpli�es the prob-

lem of interacting electrons and nuclei, solving the electronic Hamiltonian

is still not possible due to the Coulomb interaction between electrons.

Di�erent approaches have been adopted to overcome the issue, from

free electron models to complex quantum chemistry methods. In this

aspect, density functional theory (DFT) has shown to be one of the most

extended and successful �rst principles electronic structure methods.

DFT is based on the work developed by Thomas and Fermi, where the

many-body electronic problem was formulated in terms of electron den-

sity instead of the many-body wave function. This idea was formulated

on mathematical grounds by Hohenberg and Kohn [78]. They proved

that the energy of the system is a functional of the density, n, whose

global minimum is the ground state energy:

E0 6 E[n]. (1.8)

2
Strictly speaking, the adiabatic approximation consists on neglecting the electronic

transitions α → α′ driven by the nuclear motion, which neglects the o�-diagonal

terms. Neglecting also the diagonal terms was proposed by Born and Oppenheimer, and

accordingly, it is called the Born-Oppenheimer approximation. However, very often

both terms are used indistinctly to refer to the Born-Oppenheimer approximation.
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In addition, they demonstrated that the ground state density, n0, uniquely

determines the external potential and the many-body wave function, and

thus, it also determines all the properties of the system.

The use of the electronic density, instead of the many-body wave

function, to determine the properties of the system reduces the dimen-

sionality of the problem to three spatial variables. However, the work

of Hohenberg and Kohn does not provide a practical methodology to

calculate the ground state electronic density. A general approach for that

purpose was proposed by Kohn and Sham [79]. They considered a com-

plementary system made of non-interacting electrons with an e�ective

external potential that produces the same electronic density as the real

system. In this way, the many-body Schrödinger equation is replaced by

a one-electron Schrödinger equation:(
−1

2
∇2 + V̂KS(r)

)
ψα(r) = εαψα(r). (1.9)

Above, ψα are the one electron Kohn-Sham wave functions and VKS is

the e�ective Kohn-Sham potential, which is a functional of the electronic

density:

V̂KS[n] = V̂en + V̂H [n] + V̂xc[n]. (1.10)

Here V̂en is the Coulomb interaction between electrons and the atomic

nuclei, which only depends on the positions of the ions. V̂H [n] is the

Hartree potential, which represents the Coulomb interaction of the elec-

tron density. The last term, V̂xc[n], is the exchange-correlation functional

that accounts the quantum many-body e�ects that are missing in the

Hartree potential. In principle, with the exact exchange-correlation func-

tional, DFT would be an exact method. However, its exact expression

is unknown and approximated forms are used in practical calculations.

In the simplest approximation, the exchange-correlation functional is

determined only by the value of the electronic density on each point in

space, and the exchange-correlation energy at each point is related to

that of an homogeneous electron gas. Accordingly, this approximation

takes the name of local density approximation (LDA). A more general

approximation is known as general gradien approximation (GGA), where

not only the local electronic density is taken into account, but also its

gradient. In all cases, the electron density is computed with the occupied

Kohn-Sham states as

n(r) =
∑
α

|ψα(r)|2. (1.11)
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In practice, the Kohn-Sham equation is solved by a self-consistent

iterative procedure. Starting from an initial guess for the electron density

the Kohn-Sham potential is obtained from its functional expression (1.10).

Solving next the Kohn-Sham Schrödinger equation (1.9) a new set of

Kohn-Sahm wave functions are obtained. Finally, the new electronic

density is computed by (1.11). This electronic density is then used for the

next iteration, until the change in the total energy is smaller than a given

threshold. This procedure is represented on the �ux diagram shown in

Figure 1.1.

Convergence

Output values

Evaluate the Electron Density and Total Enegy

Solve Kohn-Sham Equations

Calculate Kohn-Sham Potential

Initial Guess

Yes

No

Figure 1.1: Self-consistent loop for solving the Kohn-Sham equation.

For speci�c details on various aspects of DFT, we refer the reader to

Refs. [80, 81].

1.1.3 | Harmonic approximation

In this section we analyze the ionic equation of motion (1.7) within

the adiabatic approximation. The Ehrenfest theorem states that the expec-

tation values of quantum mechanical operators obey Newton’s classical

equations of motion

MI
d〈R̂I〉
dt

= 〈P̂I〉, (1.12)
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and

FI =
d〈P̂I〉
dt

= −〈∇IV (R̂)〉, (1.13)

where from Eq. (1.7) we have V (R) = Eel.
0 (R). When the curvature

of the potential is su�ciently large so that nuclear wave functions do

not overlap with each other, the nuclear motion can be treated within a

classical picture, and the expectation values can be identi�ed with the

classical coordinates of a particle, 〈R̂I〉 = RI and 〈∇IV (R̂)〉 = ∇IV (R).

Combining Eqs. (1.12) and (1.13) we obtain the Newtonian equation of

motion

MI
d2RI

dt2
= −∇IE

el.
0 (R). (1.14)

For a system that depends on a parameter λ, the Hellmann-Feynman

theorem states that

dEi(λ)

dλ
=

〈
Ψi(λ)

∣∣∣∣∣dĤ(λ)

dλ

∣∣∣∣∣Ψi(λ)

〉
, (1.15)

which makes possible to rewrite (1.14) as

MI
d2RI

dt2
= −〈Ψel.

0 (r;R)|∇IĤ
el.(r;R)|Ψel.

0 (r;R)〉. (1.16)

Integration of the above equation is generally referred to as �rst principles
molecular dynamics.

In a solid, atomic nuclei oscillate around their equilibrium positions

R0
I given by FI = 0. Thus, RI = Req.

I + uI , with uI being the displace-

ment around the equilibrium position. The Harmonic approximation

consists on making a Taylor expansion of the Born-Oppenheimer energy

surface around the equilibrium positions, up to the second order in atomic

displacements [66]. The �rst order term will be 0 due to the equilibrium

condition FI(Req.) = −∇IE
el.
0 (R)|R=Req. = 0, and thus, using the κ

index to denote the Cartesian directions {x, y, z},

Eel.
0 (R) ≈ Eel.

0 (Req.) +
1

2

∑
I,κ

∑
I,κ′

uκI C
κκ′

II′ u
κ′

I′ . (1.17)

Above, the so-called interatomic force constants matrix, ĈII′ = (Cκκ′

II′ ), is

a 3× 3 matrix for each pair of atoms {I, I ′} de�ned as

Cκκ′

II′ =
∂2Eel.

0 (R)

∂Rκ
I∂R

κ′
I′

∣∣∣∣
R=Req.

. (1.18)
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Using this Harmonic expansion of the potential on the equation of motion

(1.14) yields the common equations of coupled harmonic oscillators:

MI
d2uκI
dt2

= −
∑
I′,κ′

Cκκ′

II′ u
κ′

I′ . (1.19)

It is well known that the solution of this type of linear equations has the

form

u(t) = ξe−iωt, (1.20)

where ω is the frequency of the oscillating mode, and ξ is the polarization

vector of the mode, which determines the amplitude and the phase of

each atom. Plugging this guess into the equation of motion (1.19) and

making the change of variables ξκI = M
−1/2
I ζκI , we obtain the system of

coupled linear equations for the polarization vector:

ω2ζκI =
∑
I′,κ′

Cκκ′

II′√
MIMI′

ζκ
′

I′ . (1.21)

This system of equations has non-zero solutions only when the frequency

ω satis�es

det

∣∣∣∣ Cκκ′

II′√
MIMI′

− ω2

∣∣∣∣ = 0. (1.22)

This procedure is an eigenvalue problem with 3N di�erent solutions for

this equation system, where N is the number of atoms of the system.

Each solution, u(t) = ξηe
−iωηt

, represents a normal mode of the system,

where η ∈ [1, 3N ].

In the case of a crystal, an atomic nucleus I can be identi�ed by an

index that points to its equivalent ion in the primitive unit cell, S, and

a lattice vector, T. With this notation RI = RST = RS + T, and in the

same way RST = Req.
S + T + uST. Due to the translational symmetry of

the lattice, the displacement vectors obey Bloch’s theorem,

uST = eik·TuSk, (1.23)

where k is a crystal momentum vector. The interatomic force constant

matrix becomes

Cκκ′

SS′(T− T′) =
∂2Eel.

0 (R)

∂uκST∂u
κ′

S′T′

∣∣∣∣
R=Req.

. (1.24)

Due to the translational symmetry of the lattice, the interatomic force

constat matrix depends only on the di�erence between the two lattice
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vectors, T − T′. It is straightforward to show that Eq. (1.21) can be

rewritten in this case as

ω2
kζ

κ
Sk =

∑
S′,κ′

Dκκ′

SS′(k) ζκ
′

S′k, (1.25)

where,

Dκκ′

SS′(k) =
Cκκ′

SS′(k)√
MIMI′

=
∑
T

eik·T
Cκκ′

SS′(T)√
MIMI′

, (1.26)

is the dynamical matrix. Finally, the normal modes are obtained by solving

the general eigenvalue problem as shown previously. In this case, normal

modes, u(t) = ξηke
i[k·T−ωηkt]

, are waves travelling through the crystal

with an associated crystal momentum vector k, and are called phonons.

The theory developed above describes the motion of the expected

value of the atomic nuclear position. However, this classical picture of

lattice vibrations is not adequate to explain several phenomena, such as

the Dulong Petit law for the speci�c heat.

In order to include the quantum nature of the atomic nuclei within

the harmonic approximation, it is convenient to introduce the normal

coordinates

Qη =
∑
Iκ

√
MIζ

Iκ
η u

κ
I , (1.27)

and the corresponding momentum operators

Πη =
∑
Iκ

1√
MI

ζIκη p
κ
I , (1.28)

where we have used the momentum operator for the nuclei

pI = −i∇I . (1.29)

These operators, as the position and momentum operators, satisfy the

usual canonical commutation relations:

[Qη, Qη′ ] = [Πη,Πη′ ] = 0 (1.30)

and

[Qη,Πη′ ] = iδη,η′ . (1.31)

It can be shown that, using Eq. (1.21), the ionic Hamiltonian of Eq. (1.7)

with the harmonic expansion of the Born-Oppenheimer energy surface
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developed on Eq. (1.17) can be written as

Ĥ ion =
∑
η

(
Π2
η

2
+

1

2
ω2
ηQ

2
η

)
. (1.32)

This is the Hamiltonian of 3N independent quantum harmonic oscillators.

In analogy, it is possible to de�ne the second quantization creation and

annihilation operators, or the so-called ladder operators, as

b†η =

(√
ωη
2
Qη − i

1√
2ωη

Πη

)
(1.33)

and

bη =

(√
ωη
2
Qη + i

1√
2ωη

Πη

)
. (1.34)

The ionic Hamiltonian can then be rewritten as

Ĥ ion =
∑
η

ωη(b
†
ηbη +

1

2
). (1.35)

Finally, the ionic wave function can be written in the occupation number

formalism as

|Φion
i 〉 = |n1, . . . , nη, . . . 〉 =

∏
η

(b†η)
nη√
nη!
|0〉, (1.36)

where |0〉 represents the ground state ( i.e., the state that contains no

vibrations on the system) and i = {nη}.

1.1.4 | Direct method

Although the procedure to obtain the normal modes or vibrations

of a system is clear, one has to compute the interatomic force constant

matrix �rst. Di�erent methods have been developed for that purpose in

the literature, each one with its advantages and disadvantages. Among

them, density functional perturbation theory (DFPT) has become a very

popular method to compute the interatomic force constants from �rst

principles. However, with the big super-cells needed to simulate adatom

structures, the computational cost increases remarkably with the size of
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the system of interest. For those situations the so-called direct method
shows a better scalability.

In the direct method, each atom is displaced from its equilibrium

position in every cartesian direction, and the interatomic force constants

are obtained di�erentiating the Hellmann-Feynman forces, where the

derivative is approximated by a �nite di�erence formula of the type

Cκκ′

II′ = −F
κ
I (R + uκ′I′ )− F κ

I (R− uκ′I′ )
2uκ

′
I′

. (1.37)

Here uκ′I′ = (0 . . . uκ
′

I′ . . . 0) is the displacement vector of the atom I ′ along

direction κ′, and F κ
I is the Hellmann-Feynman force that experiences

atom I on the κ direction.

In order to compute the phonons of a periodic crystal, the primitive

unit cell has to be replicated along space, creating an equivalent supper-

cell. Then, the supper-cell is used to compute the interatomic force

constants between atoms separated by a lattice vector T. For that purpose

one can move each atom of the original unit cell, T0, and compute the

force that the displacement creates on all the atoms of the super-cell

Cκκ′

SS′(T− T0) = −F
κ
ST(R + uκ′S′T0

)− F κ
ST(R− uκ′S′T0

)

2uκ
′
S′T0

. (1.38)

Finally, the phonon frequencies and polarization vectors are obtained

by computing the dynamical matrix and solving the general eigenvalue

problem shown in the previous section. The procedure of obtaining

the dynamical matrix on crystal momentum from a supper-cell is called

unfolding.

The disadvantage of this method is that with a supper-cell of size

(Nx, Ny, Nz) only the phonon structure for a crystal momentum of the

form k = ( i
Nx
, j
Ny
, k
Nz

) can be calculated, where i ∈ [0, Nx − 1], j ∈
[0, Ny − 1] and k ∈ [0, Nz − 1]. This makes the direct method computa-

tionally very expensive to compute the phonon structure for small crystal

momentum.

However, the present method can be improved making an intelligent

use of the symmetries of the system. In �rst place, if atoms Ĩ and J̃
are equivalent to atoms I and J by means of the symmetry operations

Ŝ, respectively. Then, the interatomic force constant matrix has the

following property:

ĈĨJ̃ = Ŝ ĈIJ Ŝ
−1
. (1.39)
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This implies that it is not necessary to displace all the atoms of the

system, but just the set of irreducible atoms. In order to take advantage

of the symmetries, it is useful to use a matrix formalism. We de�ne the

displacement 3× 3 matrix as

ÛJ =
(
uxJ uyJ uzJ

)
, (1.40)

where the vectors ux,y,zJ are column vectors of the displacement of atom

J along the three Cartesian directions. In the same way, we de�ne the

3× 3 force matrix as

F̂I =
(
FxI FyI FzI

)
, (1.41)

where the vectors Fx,y,zI are force that atom I experiences due to the dis-

placements of the atom J along each Cartesian direction. These matrices

are thus related by the interatomic force constant matrix as

F̂I = −ĈIJ ÛJ . (1.42)

Because the three Cartesian displacement vectors are linearly indepen-

dent, it is easy to show that |ÛJ | 6= 0, and that the displacement matrix

ÛJ is invertible. Therefore, with this notation the interatomic force con-

stant matrix can be computed straightforwardly by solving the system of

linear equations above, whose solution is

ĈIJ = −F̂I Û
−1

J . (1.43)

This method to obtain the force constant matrix of a pair of atoms

can be generalized. In fact, any number of arbitrary displacement vectors

can be used instead of the three Cartesian displacement vectors. In that

case the displacement matrix

ÛJ =
(
u1
J u2

J . . . uNJ
)
, (1.44)

and the force matrix

F̂I =
(
F1
I F2

I . . . FNI
)
, (1.45)

will be 3 × N matrices. In this case, the linear equation (1.42) still can

be solved using the so-called Moore–Penrose inverse or pseudoinverse of a

matrix (Û
+

J ):

ĈIJ = −F̂I Û
+

J . (1.46)
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The pseudoinverse of a m × n matrix Â only exists when rank(Â) =
min{m,n}. In the case of the displacement matrix the necessary condi-

tion for the pseudoinverse to exist is then rank(ÛJ) = 3. This means

that at least three linearly independent displacement vectors and their

corresponding forces must be used to compute the interatomic force

constants.

Making use of the symmetries of the point group {Ŝis} of the atom

J , where is = 1, . . . , Nsym, it is possible to de�ne a minimal set of

displacement vectors, {uiJ}, where

ÛJ =
(
. . . ŜisuiJ . . . ŜNsymuiJ . . .

)
, (1.47)

satis�es rank(ÛJ) = 3. For example, in the case of a system with cubic

symmetry one displacement is su�cient to satisfy this condition. Then,

the force matrix of the atom I can be computed applying the symmetry

operation Ŝis to the force felt by the atom equivalent by the symmetry

operation, Iis:

F̂I =
(
. . . ŜisFiIis . . . ŜNsymF

i
Iis

. . .
)
. (1.48)

Finally, the force constant matrix can be computed using Eq. (1.46). The

advantage of using this method is that the force constants matrix satis�es

the symmetries of the system by construction, satisfying the condition

shown in Eq. (1.39). Additionally, the number of displacements needed

to compute the vibrational structure of a system can be considerably

reduced, which is of paramount importance on large systems.

1.1.5 | Electron-phonon interaction

In the previous sections we have studied the separated electronic

and ionic problems thanks to the adiabatic approximation. However, the

presented formalism is not su�cient to describe certain experimentally

observed phenomena. In those cases, the coupling of the electrons with

the atomic displacements has to be included. This coupling is the so-called

electron-phonon interaction and it is related to the last two terms neglected

in Eq. (1.6). Here we limit the analysis to �rst order contributions with

respect to the ionic positions, which is in most cases su�cient to explain

many physical phenomena [67]. The state-of-the-art �rst principles

research on this �eld take DFT calculations as the starting point for

analyzing the electron-phonon interaction [69]. Therefore, making a
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�rst order Taylor expansion for the Kohn-Sham potential in the atomic

displacements:

V̂KS(r;R) ≈ V̂KS(r;R0) +
∑
Iκ

∂V̂Iκu
κ
I , (1.49)

where the variation of the Kohn-Sham potential

∂V̂Iκ =
dV̂KS(r;R)

duκI

∣∣∣∣∣
R=R0

(1.50)

has to be computed self-consistently.

Equivalently, we can use the normal coordinates de�ned in Sec. 1.1.3,

and in that case:

V̂KS(r;R) ≈ V̂KS(r;R0) +
∑
η

∂V̂ηQη, (1.51)

where now

∂V̂η =
dV̂KS(r;R)

dQη

∣∣∣∣∣
R=R0

. (1.52)

As a result of the Taylor expansion, the electron-phonon Hamiltonian

can be written in second quantization formalism, with creation and anni-

hilation operators c† and c for Kohn-Sham single particle electron states,

and phonon creation and annihilation operators b† and b as de�ned in

Sec. 1.1.3, as

Ĥel.−ph. =
∑
η

∑
α,α′

gηαα′c
†
αcα′

(
b†η + bη

)
. (1.53)

Here, gηαα′ are the electron-phonon matrix elements de�ned from the self-

consistent derivative of the Kohn-Sham potential in Eqs. (1.50) and (1.52)

as

gηαα′ =
1√
2ωη
〈ψα|∂V̂η|ψα′〉 =

∑
Iκ

ζIκη√
2MIωη

〈ψα|∂V̂Iκ|ψα′〉. (1.54)

This reformulation of the electron-phonon Hamiltonian is known as

the Fröhlich Hamiltonian, and it is usually the starting point of many

electron-phonon studies.
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1.2 | Crystal Field and Stevens
operators

Studying how an adatom is in�uenced by the substrate where it

has been deposited is of crucial importance to properly determine its

magnetic properties. In this section we will study the energy splittings

of the electronic states of the adatoms produced by the interaction with

its surrounding environment. This can be described by the crystal �eld
theory, which has been widely used to describe the magnetic properties

of molecular magnets and single adatoms on surfaces [12, 82–84].

The electronic Hamiltonian for a magnetic adatom on a surface in-

cluding the most relevant interactions for the problem can be written

as

Ĥ = T̂e + V̂en + V̂ee + V̂es + V̂SO. (1.55)

Where T̂e is the kinetic energy of electrons, V̂en the Coulomb interaction

between the electrons and the atomic nucleus, V̂ee the electronic Coulomb

interaction. These �rst three terms describe the Hamiltonian of a free

atom as given by the more general Hamiltonian given in Eq. (1.1). The

next term, V̂es the interaction between the electrons and the surface, and

�nally, V̂SO is the spin-orbit interaction.

Taking into account all the microscopic characteristics of the surface

is a complicated task, i. e., the interaction of the atom electrons with

the surface nuclei and electrons. In principle, di�erent methods could be

used for that, but, for example, DFT struggles with the high correlation

present on d or f orbitals, and more complex quantum chemical methods

struggle with the big super-cells needed to represent an atom deposited

on a surface. In that context, di�erent models have been developed in

the past to study the problem. In the so-called crystal �eld theory the

surface is treated like an electrostatic potential that the atomic electrons

feel, where, the electron surface interaction is represented as

V̂es =
∑
i

VCF (ri). (1.56)

The di�erent interactions present on the Hamiltonian (1.55) are or-

dered from greater to lower strength for a d shell atom. In this way

perturbation theory can be used to study each term hierarchically. In the

case of f electrons, the e�ect of the spin-orbit interaction tends to be
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stronger than the crystal �eld, and therefore, in a perturbative analysis

the spin-orbit interaction has to be taken into account before the crystal

�eld. As the aim of this section is to demonstrate that the e�ect of the

crystal �eld can be taken into account using the so-called Stevens opera-
tors, the spin-orbit interaction will not be considered. In this situation

the following analysis will be based on total orbital angular momentum

L =
∑

i Li and total spin S =
∑

i Si operators, and the e�ect of the

spin-orbit interaction can be added at a later stage. However, when the

spin-orbit interaction is stronger than the crystal �eld, its e�ect must

be added �rst, and the derivation shown in the following lines for the

crystal �eld must be reformulated in therms of total angular momentum

J = L + S.

Starting from the Hydrogen like atom Hamiltonian

Ĥ = T̂e + V̂en, (1.57)

it is well known that the eigenfunctions are of the form

ψnlm(r) = Rnl(r)Y
m
l (Ω), (1.58)

and the energy levels are the usual 1s, 2s, 2p, ... states. For each atom,

the electronic con�guration is determined by the number of electrons

in the outer shell. In this case the ground state is highly degenerate, the

degeneracy being (
N
Ne

)
=

N !

(N −Ne)!Ne!
, (1.59)

where Ne is the number of electrons on the outer shell and N is the

number of states of the outer shell. On an atomic orbital l there are

Nl = 2(l + 1) di�erent ml states, hence, taking into account the spin

degree of freedom N = 2Nl.

When the electron-electron interaction is added,

Ĥ = T̂e + V̂en + V̂ee, (1.60)

the degeneracy is broken. As the Hamiltonian commutes with the total

orbital angular momentum and the total spin operators,[
Ĥ,L

]
=
[
Ĥ, S

]
= 0, (1.61)

then the eigenvectors can be labeled using the quantum numbers of total

orbital angular momentum and spin as

|L,ML, S,MS〉, (1.62)



Crystal Field and Stevens operators 27

and each set of L, S quantum numbers will form a degenerate subspace

that it is labeled as
2S+1L and it is called a term symbol. The degeneracy

of a subspace is reduced now to (2L+ 1)(2S + 1). It is well known that

Hund’s rules determine the lowest energy subspace. These rules are:

1. Highest total spin, S, has lowest energy.

2. Largest total orbital angular momentum, L, has lowest energy.

3. If the shell is more than half-�lled, then the highest value of total

angular momentum J has lowest energy; if the orbital is half-�lled

or less, then the lowest total angular momentum has lowest energy.

As an example, the ground state term for an Fe atom is
5D, which has

L = 2 and S = 2, and is composed of 25 degenerated states.

The e�ect of the crystal �eld on the atomic energy levels will be

studied now using perturbation theory. As each subspace has (2L +
1)(2S + 1) states, degenerated perturbation theory must be used, and

thus

〈L,ML, S,MS|V̂CF |L,M ′
L, S,M

′
S〉 (1.63)

matrix elements should be computed. Because the crystal �eld is an elec-

trostatic potential, it is a one-body operator. Using second quantization

formalism it can be easily shown that a one-body operator only connects

multi-electronic or multiplet states |L,ML, S,MS〉 that di�er at most

on one electronic orbital state. In consequence, the matrix elements are

related to the single electron matrix elements

〈ψnlm|VCF |ψnlm′〉 =

∫
ψ∗nlm(r)VCF (r)ψnlm′(r) dr. (1.64)

If the crystal �eld potential is expanded using spherical harmonics as

VCF (r) =
∞∑
L=0

L∑
M=−L

VLM(r)Y M
L (Ω), (1.65)

and using Eq. (1.58), the matrix elements can be written as

〈ψnlm|VCF |ψnlm′〉 =
∑
LM

〈VLM〉gM,m,m′

L,l,l . (1.66)

Here

〈VLM〉 =

∫
r2 |Rnl(r)|2 VLM(r) dr (1.67)
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is the expectation value of VLM for the outer shell electrons, and

gM,m,m′

L,l,l =

∫
Y m
l (Ω)Y M

L (Ω)Y m′

l (Ω) dΩ (1.68)

are called Gaunt coe�cients, which determine the selection rules for the

matrix elements.

Stevens developed a method to compute these crystal �eld matrix

elements using equivalent angular momentum operators to represent the

spherical harmonics. These equivalent operators are known as Stevens
operators, and can be used to expand the crystal �eld as

V̂CF =
∑

k=0,2,...

k∑
q=−k

Bq
kÔ

q
k(L). (1.69)

The coe�cients Bq
k are related to the expectation value 〈VLM〉, and the

Stevens operators Ôq
k have the same selection rules for the non-zero

matrix elements as the Gaunt coe�cients above. In the case of an atom

with an outer f orbital, as the spin-orbit interaction is stronger than

the crystal �eld, the same procedure can be applied in the basis of total

angular momentum |J,MJ〉, and the Stevens operators are written in

terms of total angular momentum Ôq
k(J).

Once the coe�cients of the crystal �eld expansion are computed, the

splittings of the energy levels can be accessed by diagonalizing the matrix.

One of the most extended approaches to obtain the crystal �eld expansion

is by choosing the Bq
k parameters to �t some available experimental data.

Getting the expansion form �rst principles is however more di�cult, and

often the results obtained are not in good agreement with experiments.

Di�erent methods have been explored for that purpose, such as getting

the expansion from DFT calculations [85] or from a point charge model

of the surface [86]. In this last case, the Coulomb potential of the point

charges is expanded in spherical harmonics, which is known as the

spherical multipole moments expansion. Next, the matrix elements are

computed using Eq. (1.66). Finally, tabulated prefactors that relate the

Stevens operators with the spherical harmonics are used to compute the

Bq
k coe�cients.
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1.3 | Openqantum systems and
master eqations

Any real quantum system interacts with it’s environment, which

in�uences the dynamics of the system to a greater or lesser extent. Many

interesting e�ects can’t be explained without taking into account this

coupling. Quantum decoherence, for example, can be understood as a

transfer of information from the system to the environment. As another

example, in order to properly describe a precessing magnetic moment,

one must also include the damping to the surrounding atoms. For this

reason, a complete description of the so-called open quantum systems
must also include the degrees of freedom of the environment on the wave

function. However, except for some academic systems, a microscopic

description of the environment is impossible. This motivated the de-

velopment of quantum master equations to study the dynamics of open

quantum systems in terms of the density matrix formalism. A more de-

tailed description about the formalism than the presented here can be

found for example in Ref. [87].

1.3.1 | Density matrix

The density matrix is a generalization of a quantum state. A wave

functions describes a pure state, while the density matrix can also rep-

resent a mixed state. A mixture of states is a statistical ensemble of

independent systems, and is represented by the density matrix or density

operator as

ρ̂ =
∑
i

pi|Ψi〉〈Ψi|, (1.70)

where pi is the probability of �nding the system in state Ψi. Within this

formalism, the expectation value of of an observable Ô is given by the

statistical average of the ensemble as

〈Ô〉 =
∑
i

pi〈Ô〉i = Tr{Ô ρ̂}, (1.71)

where 〈Ô〉i is the expectation value of for the pure state |Ψi〉, and Tr
denotes the trace of a matrix.
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The dynamics of the density matrix are described by the Liouville -

von-Neumann equation:

dρ̂(t)

dt
= −i

[
Ĥ, ρ̂(t)

]
. (1.72)

1.3.2 | Reduced density matrix

An open quantum system is in general a quantum system A coupled

to it’s environment B, and the Hilbert space of the total system will be

given by the tensor product H = HA ⊗HB. It is common to consider

that the environment B is composed of an in�nite number of degrees

of freedom, and that it remains in a thermal equilibrium state, even if it

interacts with system A. In that case, the system is said to be coupled

with a bath.

The expectation value of an observable Ô acting on the Hilbert space

of the systemHA is determined by

〈Ô〉 = TrA{Ô ρ̂A}, (1.73)

with the reduced density matrix de�ned as

ρ̂A = TrB{ρ̂}. (1.74)

The partial traces are de�ned as

TrA{Ô} =
∑
A

〈A|Ô|A〉, (1.75)

where {|A〉} is the set of orthonormal eigenvectors of system A.

It is clear then that the reduced density matrix gives all the information

about any observable of the system A, hence, it is a quantity of central

interest on the theory of open quantum systems. The time evolution

of the reduced density matrix is obtained by making the partial trace

over the degrees of freedom of the bath on the Liouville - von-Neumann

equation:

dρ̂A(t)

dt
= −iTr

{[
Ĥ, ρ̂(t)

]}
. (1.76)

Traceing out the degrees of freedom of the bath makes the evolution of the

reduced density matrix non-unitary, which leads out to the irreversible

behavior of open quantum systems and gives rise to e�ects such as

quantum decoherence.
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1.3.3 | Born-Markov approximation

In order to study the e�ect of the coupling between the system and

the bath, the above exact equations must be further developed by making

use of approximations that result io more tractable expressions. As the

development of the above equations is more easily done in the inter-

action picture, it is convenient to distinguish the coupling term in the

Hamiltonian of the complete system as

Ĥ = Ĥ0 + V̂ . (1.77)

Here Ĥ0 = ĤA + ĤB contains the Hamiltonians of the system and the

bath, and V̂ is the interaction between both systems. Therefore, in the

interaction picture, the time dependence of an operator Ô belonging to

the Schrödinger picture is

Õ(t) = eiĤ0tÔe−iĤ0t. (1.78)

Taking this into account, the Liouville - von Neumann equation for the

reduced density matrix becomes

dρ̃A(t)

dt
= −iTrB

{[
Ṽ (t), ρ̃(t)

]}
. (1.79)

Integrating this equation,

ρ̃A(t) = ρ̃A(t0)− iTrB

{∫ t

t0

dt′
[
Ṽ (t′), ρ̃(t′)

]}
, (1.80)

and inserting the expression in Eq. (1.79) yields

dρ̃A(t)

dt
= −iTrB

{[
Ṽ (t), ρ̃(t0)

]}
−
∫ t

t0

dt′TrB

{[
Ṽ (t),

[
Ṽ (t′), ρ̃(t′)

]]}
.

(1.81)

If we prepare the system and the bath at the initial time t0 to be on an

uncorrelated product state ρ̃(t0) = ρ̃A ⊗ ρ̃B, where ρ̃B represents some

reference state for the bath, such as a thermal equilibrium ρeq.B , then, the
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�rst term in Eq. (1.81) will be

TrB

{[
Ṽ (t), ρ̃(t0)

]}
=
∑
B

(
〈A,B|Ṽ (t)ρ̃A(t0)ρeq.B |A′, B〉

− 〈A,B|ρ̃A(t0)ρeq.B Ṽ (t)|A′, B〉
)

=
∑

B,A1,B1

(
〈A,B|Ṽ (t)|A1, B1〉〈A1, B1|ρ̃A(t0)ρeq.B |A′, B〉

− 〈A,B|ρ̃A(t0)ρeq.B |A1, B1〉〈A1, B1|Ṽ (t)|A′, B〉
)

=
∑

B,A1,B1

e−βEB

ZB
δB1,B

×
(
〈A,B|Ṽ (t)|A1, B1〉〈A1|ρ̃A(t0) |A′〉

− 〈A|ρ̃A(t0)|A1〉〈A1, B1|Ṽ (t)|A′, B〉
)

=
∑
B,A1

e−βEB

ZB

(
〈A,B|Ṽ (t)|A1, B〉〈A1|ρ̃A(t0)|A′〉

− 〈A|ρ̃A(t0)|A1〉〈A1, B|Ṽ (t)|A′, B〉
)
. (1.82)

Here ZB is the partition function of the bath and EB the energy of state

|B〉. This term will be zero if the interaction V̂ mixes only di�erent |B〉
states, i.e., 〈A1, B|Ṽ (t)|A′, B〉 = 0. If this is not the case, the diagonal

part of the interaction can be included in the Hamiltonian of the bath

ĤB. Thus, the time evolution of the density matrix will be given by

dρ̃A(t)

dt
= −

∫ t

t0

dt′TrB

{[
Ṽ (t),

[
Ṽ (t′), ρ̃(t′)

]]}
. (1.83)

At this point, the Born approximation assumes that the interaction

is weak, and the eigenstates of the system and bath will not be altered

signi�cantly. In such limit we can factorize the density matrix to be

ρ̃(t) = ρ̃A(t)⊗ ρ̃B(t). Additionally, if the dynamics of the bath are much

faster than the dynamics of the system, the excitations of the bath caused

by the system will decay quickly, and one can consider that the density

matrix of the bath is always its equilibrium density matrix ρeq.B , and

correlation with the bath will be lost quickly. Within this assumption, the

system will depend only on its current state ρ̃A(t), meaning that it has no

memory of its state in the past, which is called a Markovian system. Then,

replacing ρ̃A(t′) by ρ̃A(t), the time evolution of the dynamics within the
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Born-Markov approximation is given by:

dρ̃A(t)

dt
= −

∫ t

t0

dt′TrB

{[
Ṽ (t),

[
Ṽ (t′), ρ̃A(t)ρ̃eq.B

]]}
. (1.84)

This equation is called the Red�eld equation, and is not yet a Markovian

equation, since it still depends on the initial state of the system at t0.

Making the change of variable t′ = t − s, and with the assumption of

the fast correlation decay of the bath compared to the evolution of the

system, τB � t− t0 ≈ ∞, with τB the characteristic correlation time of

the bath, the above equation becomes

dρ̃A(t)

dt
= −

∫ ∞
0

dsTrB

{[
Ṽ (t),

[
Ṽ (t− s), ρ̃A(t)ρ̃eq.B

]]}
. (1.85)

Which is �nally the Markovian quantum master equation.

1.3.4 | General form of the master
eqation

The Markovian quantum master equation can be further developed

if the interaction is written by means of tensor products of operators Â
acting on the system and operators B̂ acting on the bath:

V̂ =
∑
α

ÂαB̂α. (1.86)

Using the matrix representation for the reduced density matrix,

ρ̃AA′(t) = 〈A|TrBρ̃(t)|A′〉 =
∑
B

〈AB|ρ̃(t)|A′B〉, (1.87)
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the time evolution of the density matrix in the Schrödinger picture is

given by

dρAA′(t)

dt
=− i(EA − EA′)ρA,A′(t)

−
∑
α,β

∑
A1,A2

iAαAA1
AβA1A2

ρA2A′(t)〈Bαβ(EA2 − EA1 + iη)〉

−
∑
α,β

∑
A1,A2

iAβAA1
ρA1A2(t)A

α
A2A′〈Bαβ(EA2 − EA′ − iη)〉

+
∑
α,β

∑
A1,A2

iAβAA1
ρA1A2(t)A

α
A2A′〈Bαβ(EA1 − EA + iη)〉

+
∑
α,β

∑
A1,A2

iρAA1(t)A
α
A1A2

AβA2A′〈Bαβ(EA1 − EA2 − iη)〉,

(1.88)

where we have de�ned the bath correlation function

〈Bαβ(ω)〉 =
∑
B,B1

e−βEB

ZB

Bα
BB1

Bβ
B1B

ω + EB − EB1

(1.89)

= −
∑
B,B1

e−βEB

ZB

Bα
BB1

Bβ
B1B

−ω + EB1 − EB
. (1.90)

Equation (1.88) is known as the master equation in Lindblad form or

Lindbladian. An exhaustive derivation of this equation from the Marko-

vian master equation can be found in Appendix B, together with an

analytic analysis of this equation for some simple examples.



Chapter 2

Electron-phonon coupling of

Fe adatom electron states on

MgO/Ag(100)

Magnetic adatoms have shown to o�er an exceptional base for making

atomic-scale devices such as magnetic memories or quantum bits. The

low coordination possessed by individual atoms deposited on surfaces

preserves part of the orbital angular momentum along the perpendicular

axis, while the in-plane orbital angular momentum is quenched. This

gives rise to a large magnetic anisotropy energy (MAE) [56], which stabi-

lizes their magnetic moment protecting it from �uctuations. However,

duo to their atomic nature, a large variety of quantum e�ects are involved

in their behavior.

Their magnetic structure has been widely characterized using experi-

mental techniques such as inelastic electron tunneling spectroscopy [13,

20, 21, 25, 26, 28], X-ray magnetic circular dichroism [4, 9, 31, 32], or more

recently by means of electron paramagnetic resonance [3, 34, 35, 40],

which has improved the accessible energy resolution. The theoretical

studies using model spin Hamiltonians [12, 44] or even ab-initio density-

functional theory (DFT) [42, 45, 52] or multiplet calculations [54] has

improved our understanding of their magnetic structure. Further studying

how the adatoms interact with their environment has allowed a deeper

understanding of the underlying physics. In particular, the in�uence of

the substrate electronic states on the adatom has enabled the design of

long-living magnetic quantum states. For that purpose, the MAE has
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been increased by controlling the e�ect of the substrate crystal �eld on

the electronic structure [2, 27, 88], and the interaction with the substrate

electrons has been reduced by adding decoupling layer such as MgO or

Cu
2
N between the metallic substrate and the adatom [4, 21].

The large potential that magnetic adatoms have shown to engineer

their coupling to the substrate has been possible thanks to a deep under-

standing of the involved interactions. While the electronic interactions

has been widely studied during the last years [9, 17, 21, 26, 27, 31, 42, 46,

47, 54, 56, 88–92], the investigation of the e�ect of the electron-phonon

interaction on the magnetic properties of adatoms has attracted much

less attention. This has been so due to the challenge posed by the compu-

tation of the electron-phonon interaction on a super-cell system with a

large number of atoms.

In this chapter we present a �rst principles characterization of the

electron-phonon interaction on the electronic quasiparticle states of the

Fe adatom on the MgO/Ag(100) surface. In Sec. 2.1, we introduce the the-

oretical framework used to analyze the e�ect of the electron-phonon cou-

pling on the electronic states. Sec. 2.2 is dedicated to apply the presented

formalism to the electronic states of the Fe adatom on MgO/Ag(100). In

this regard, in Sec. 2.2.1 we provide the computational details of the �rst

principles calculations. We next examine the electronic and vibrational

structures of the MgO/Ag(100) substrate and the Fe adatom on Sec. 2.2.2,

considering also the MgO layer dependence. We follow with the calcu-

lations and analysis of the electron-phonon coupling in Sec. 2.2.3. And

�nally, Sec. 2.3 summarizes the main results and conclusions.

2.1 | Electron-phonon interaction
on electronic states

Starting from the Hamiltonian of the coupling between the electronic

states and the nuclear motion presented in Sec. 1.1.5, here we follow the

classical formalism developed in terms of many-body perturbation theory

that has been successfully used for bulk materials as well as for surface

states.

The matrix elements become relevant when studying this coupling

perturbatively, which are given by Eq. (1.54). In the most general spin
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non-collinear formalism, where the wave functions are spinors and the

Kohn-Sham potential is a 2 × 2 matirx, the electron-phonon matrix

elements are computed as

gηαα′ =
∑
s,s′

1√
2ωη
〈ψsα|∂V̂ ss′

η |ψs
′

α′〉 =
∑
s,s′

∑
Iκ

ζIκη√
2MIωη

〈ψsα|∂V̂ ss′

Iκ |ψs
′

α′〉.

(2.1)

Above, s and s′ indices represent the spin components of the Kohn-Sham

potential.

The matrix element can be naturally divided into two pieces; the

spin-diagonal (s = s′) and spin-�ip (s 6= s′) parts. The former is mostly

driven by the Hartree term and is therefore commonly regarded as the

dominant contribution in most materials [69, 93]. The spin-�ip part, in

turn, originates from the relativistic spin-orbit interaction that scales as

v2/c2
, with v the electron velocity and c the speed of light.

Given their di�erent nature, the spin-diagonal and spin-�ip terms

are expected to show marked di�erences in magnetic adatoms, e.g., in

their total strength as well as dependence on the insulating coverage.

In this chapter we focus on the spin-diagonal electron-phonon contri-

bution and present ab-initio calculations on a Fe adatom deposited on

the MgO/Ag(100) surface. Therefore, the spin-diagonal electron-phonon

matrix elements are computed as

gηαα′ =
∑
s,s′

δs,s′√
2ωη
〈ψsα|∂V̂ ss′

η |ψs
′

α′〉. (2.2)

Many-body perturbation theory is based on the Green’s functions

formalism, where the interaction is taken into account by means of the

self-energy. The self-energy encodes all the information of the many-

body e�ects and gives the Green’s function of the interacting particles,

called quasiparticles, by solving the Dyson equation. The many-body

perturbation theory for coupled electrons and phonons is well established

and the reader may refer to Refs. [67–69] for a more detailed theoretical

development.

It can be shown that the electron-phonon self-energy can be written

from the state-dependent Eliashberg function de�ned as

α2Fi(ω) =
∑
η,f

∣∣gηif ∣∣2 δ(εi − εf )δ(ω − ωη). (2.3)
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This quantity is widely used to study the electron-phonon interaction in

metals [67, 68], and represents the scattering probability from an initial

state with energy εi via a phonon of energy ω. This function enables us

to identify the phonons that interact most prominently and, therefore,

will be the fundamental quantity analyzed in this chapter.

The Eliashberg function also allows us to calculate the lifetime of

excited single electron quasiparticles, integrating the scattering probabil-

ities at all phonon energies,

τ−1
i = Γi = 2π

∫ ωmax

0

α2Fi(ω)dω, (2.4)

which resembles Fermi’s Golden Rule. This lifetime should not be con-

fused with the spin-�ip lifetime measured experimentally, which is re-

lated to the a more complex collective behavior of all the electrons of the

adatom.

The Eliashberg function also enables computing the dimensionless

mass enhancement parameter λ for a given state i as

λi = 2

∫ ωmax

0

α2Fi(ω)

ω
dω. (2.5)

In metals with full translational symmetry, this quantity describes the

mass enhancement of electron quasiparticles at the Fermi level for low

temperatures and is widely used to characterize the strength of the

electron-phonon coupling. In the system that we are analyzing, as the

most interesting electron states are localized around the iron adatom, we

were forced to �nd another physical interpretation. In fact, it is easily

shown that in this case the λ parameter describes the energy shift due to

the electron-phonon interaction (see Appendix C),

∆ε ≈ −ε0λ

(
ω0

ε0

)2

for |ε0| � ω0, (2.6)

and provides a feeling of the strength of the electron-phonon coupling.

Above, ε0 and ω0 represent the unperturbed energy of the localized state

and the energy of the localized vibrational mode, respectively.

2.2 | The Fe adatom onMgO/Ag(100)

After the �rst measurements of spin excitations on Mn adatoms ad-

sorbed on a Al
2
O

3
/NiAl(110) surface [13], there have been many adatom
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systems whose magnetic structures have been studied in great detail

thanks to the development of experimental techniques such as inelastic

electron tunneling spectroscopy [13, 20, 21, 25, 26, 28], X-ray magnetic

circular dichroism [4, 9, 31, 32], spin-polarized scanning tunneling mi-

croscope [6, 8, 18, 23, 24] or electron paramagnetic resonance [3, 7, 40].

Moreover, a bunch of exhaustive theoretical studies have proven to pro-

vide accurate results in agreement with experimental results [2, 12, 42–

48, 50–54, 61, 85, 89, 90]. In particular, DFT calculations have been widely

used in order to explore the electronic structures of the adatom systems

in detail.

Among the di�erent systems studied, the Fe adatoms adsorbed on

the MgO/Ag(100) surface stands out as a perfect candidate in which

the e�ects of the electron-phonon coupling can be studied. It has been

thoroughly characterized by means of both experimental and theoretical

studies [3, 6, 30, 37, 38, 53–55, 85, 88], and, unlike the computationally

more complex lantanide adatoms, it is an accessible system in order to

compute the e�ect of the electron-phonon interaction.

2.2.1 | Computational details

The �rst principles calculations were preformed using the DFT for-

malism implemented in the SIESTA code [94], based on numerical linear

combination of atomic orbitals (LCAO) basis sets and pseudopotentials

(PPs) [95]. Optimized basis sets are used for silver and oxygen, a triple-

zeta plus 2 polarization orbitals for magnesium and a triple-zeta plus 3

polarization orbitals for iron. Atomic cores are represented using separa-

ble [96] norm-conserving PPs [97]. The generalized gradient approxima-

tion parametrized by Perdew, Burke and Ernzerhof [98] (PBE-GGA) has

been used for the exchange-correlation functional. The spin polarized

calculations were done using the collinear formalism.

Calculations of the clean MgO/Ag(100) surface, are modeled using a

slab system consisting of eleven silver atoms with a layer of magnesium

oxide on both terminations. Coverages of MgO from 0 to 4 monolayers

(MLs) are considered, with a minimum vacuum region of 18 Å to prevent

interaction between slabs for 1 ML coverage. We also have considered

the free standing 7 layer MgO surface on our calculations to disentangle

the role of electronic interactions on the properties of the adatom. Addi-

tionally, the Fe adatom system calculations are preformed considering a
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4× 4× 1 super-cell of the original MgO/Ag(100) surface, with the iron

adatom on top of an oxygen site. This adds up to a total of 433 atoms for

the 4 MgO layer adatom system calculations.

Integrations over the Brillouin zone are done using a 4 × 4 × 1
Monkhorst-Pack mesh [99] for the clean MgO/Ag(100) slab, and the

Γ point for the super-cell with the iron adatom. The occupations are

calculated by the Fermi-Dirac distribution with an electronic temper-

ature of 300 K to accelerate selfconsistency. Real space integrals are

done using a mesh cuto� of 600 Ry for all calculations. Additionally,

the Grid.CellSampling parameter has been used on the adatom

system to mitigate the egg-box e�ect on atomic forces and properly

determine the soft modes of the adatom.

Due to the large numbers of atoms present on the calculations, we

have used the direct method with symmetries introduced on Sec. 1.1.4 to

compute the lattice dynamics of a system. In general, in a system with N
atoms, a naive implementation of the direct method would require 3×N
standard self-consistent DFT calculations to compute the interatomic

force constants. Therefore, a minimum of 1299 independent DFT calcu-

lations would be required in the case of the clean MgO/Ag(100) system

with 4 MgO layers. However, making use of the P4/mmm space group

symmetry of the system the complete interatomic force constants matrix

can be computed from only 28 di�erent DFT calculations.

Adding the iron adatom to the calculation breaks the translational

and inversion symmetry of the system, while the 4-fold symmetry is still

maintained. This means that one would be forced to consider hundreds

of di�erent self-consistent DFT calculations if the translational symmetry

of the clean substrate was not exploited. However, as adding the adatom

changes only the neighboring interatomic force constants and leaves most

of the substrate unaltered, we reduced the number of DFT calculations by

considering the interatomic force constants of the MgO/Ag(100) substrate

without the adatom as an starting point. Then, we include the local

modi�cations of the interatomic force constants due to the adatom by

computing the interatomic force constants connected to the adatom and

the oxygen underneath it. Thereby, only 32 independent DFT calculations

are needed to completely determine the vibrational modes of the Fe

adatom on a 4× 4× 1 4 ML MgO/Ag(100) super-cell. 28 for the substrate

+ 2 for the iron + 2 for the oxygen below it (note that the 4-fold symmetry

makes the x and y Cartesian directions equivalent).
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Following the approach of the direct method presented on Sec. 1.1.4,

the potential induced by the atomic displacement uκI is also computed

by di�erentiating the Kohn-Sham potential (VKS) by a centered �nite

di�erences formula:

∂V̂ ss′

Iκ =
V̂ ss′

KS (R + uκI )− V̂ ss′
KS (R− uκI )

2uκI
. (2.7)

It is also important to note that, given that ∂VIκ is generally well localized

around the displaced atom, the approach followed to compute the inter-

atomic force constants in the adatom system can also be safely employed

to compute the induced potentials.

Finally, the electron-phonon matrix elements (2.1) are computed in

Fourier space as most of the state-of-the-art electron-phonon calculations

do [69, 100, 101]. Therefore, being SIESTA a LCAO method, the wave

functions have to be converted from the basis of atomic orbitals to a

plane wave basis. For this purpose we follow the procedure presented on

Appendix D.

2.2.2 | Electronic and vibrational
properties

In this section we will describe the ground state properties of the

Fe/MgO/Ag(100) system. We have chosen the Ag(100) surface covered

with three MgO layers as the reference system analyzed in Secs. 2.2.2.1

and 2.2.2.2, given that it best exempli�es the central features of interest.

The analysis of the MgO layer dependence is done in Sec. 2.2.2.3.

2.2.2.1 | Clean MgO/Ag(100) substrate

Figure 2.1 shows the electronic band structure of the MgO/Ag(100)

surface for 3 ML of MgO. The projected density of states (PDOS) is shown

in Figure 2.1b, where the electronic states of the MgO layer are below 2 eV

from the Fermi level. Indeed, the meV energy window of phonon energies

around the Fermi level is exclusively dominated by silver states. Focusing

on the band structure in Figure 2.1a, the blue area represents the bulk band

projection of the silver (100) surface. It is known from previous works

that the Ag(100) surface hosts a surface state close to the Fermi energy
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at the X point of the surface Brillouin zone [102–107]. Our calculation

shows an electronic state localized on the MgO/Ag(100) interface with

similar energy around the same region. As we will show, this interface

state will play an important role in the conduction properties and on the

electron-phonon coupling due to its energy and proximity to the surface.
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Figure 2.1: (a) The calculated band structure of the 3 ML MgO/Ag(100) slab (red lines)

together with the bulk band projection of silver (solid blue). The inset shows the detail

close to the Fermi energy of the interface state at the high symmetry X point. (b) The

calculated projected DOS of the MgO layer and the Ag(100) substrate. The dashed line

represents the Fermi level.
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Figure 2.2: Calculated phonon dispersion of the 3 ML MgO/Ag(100) slab (red lines)

and silver bulk phonon projection (solid blue).

In Figure 2.2 we present the calculated phonon dispersion of the
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3 ML MgO/Ag(100) surface. The blue area represents the bulk phonon

projection of the Ag(100) surface and the red lines show the calculated

phonon dispersion of the MgO/Ag(100) slab, which is very similar to that

of the clean Ag(100) surface at least up to 20 meV [108]. The higher energy

modes correspond to vibrations of MgO. The �rst acoustic mode of the

MgO layer is completely mixed with silver oscillations in the 10-20 meV

energy range.

2.2.2.2 | Fe adatom

We analyze now the properties of the Fe adatom deposited on the

4 × 4 × 1 3 ML-MgO/Ag(100) super-cell. We found the oxygen top

adsorption site to be energetically the most favorable one for iron, in

agreement with previous studies [3, 6, 88]. After relaxation, the oxygen

atom is slightly displaced upwards with a resulting Fe-O bond of 2.01 Å,

in agreement with Ref. 88. The system develops a magnetic ground state,

with a local magnetic moment of 3.97 µB for the iron adatom, and 0.1 µB
spread over the surrounding atoms.

In Figure 2.3 we show the spin resolved PDOS projected on the Fe

adatom. The occupation of the valence 3d electrons has a similar con-

�guration to the free atom; the �ve majority states are �lled, whereas

only one minority orbital is fully occupied; note that the 3dz2 is partially

occupied because it is highly hybridized with the 4s orbital. The only

orbital that falls in the meV range from the Fermi level is the minority

3dxy , which will therefore play a central role in the forthcoming analysis

of the electron-phonon interaction.

Next we analyze the vibration modes of the 3 ML Fe-MgO/Ag(100)

system. The phonon DOS projected on the iron adatom is shown in

Figure 2.4. The �gure reveals a vibrational mode completely localized

in iron at 7.3 meV. Physically, this peak corresponds to two degenerate

modes of the adatom oscillating parallel to the surface. At higher energies,

in the 12-25 meV range, we observe the presence of multiple modes with

an out-of-plane polarization and with a more pronounced mixing with

the substrate, as inferred from the broadening of the peak.
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Figure 2.3: Projected DOS of iron’s 3d (solid line) and 4s (solid background) orbitals

for Fe on 3 ML MgO/Ag(100). Positive and negative values of the PDOS indicate majority

and minority spin channels, respectively. The Fermi energy is marked by a vertical

dashed line.
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Figure 2.4: Phonon DOS projected onto the Fe adatom deposited on 3 ML

MgO/Ag(100). The inset shows the MgO layers and the Fe adatom, with the arrows

indicating the polarization vector of the vibrational modes localized on the adatom.
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2.2.2.3 | Layer dependent electronic and
vibrational properties

Here we study the in�uence of the number of MgO layers on the

electronic and vibrational properties. As a general trend, increasing the

MgO coverage has the e�ect of isolating the adatom from the interactions

with electrons and phonons of the silver substrate. However, the trend

is not monotonic due to a marked di�erence between the geometric

con�gurations with even and odd number of MgO layers. Figure 2.5

shows schematically that when the number of MgO layers is odd, the

adatom has an atom of the �rst silver layer underneath in the same

vertical line, whereas it lies on over a hollow site of the Ag(100) surface

termination when the number of MgO layers is even. This observation is

crucial for understanding the electronic hybridization and the vibrational

structure of the system for di�erent coverages of MgO.

a) b)

Figure 2.5: Positioning of the iron adatom respect to the Ag(100) substrate for an (a)

odd and (b) even number of MgO layers. The vertical black line is a guide for the eye.

In Figure 2.6 we illustrate the electronic DOS projected on the minority

spin channel of the iron adatom for coverages of MgO ranging from 0

to 4 MLs together with iron on free standing MgO. As a general trend

we observe that the broadening of the peaks decreases when increasing

the number of MgO layers. For the clean Ag(100) surface (0 ML), the

iron projected states are completely broadened around the Fermi level,

with no clear peak structure. Already for 1 ML coverage, the 3dxy peak is

localized close to EF , and its width decreases with increasing coverage as

a consequence of the insulating nature of MgO. For free standing MgO the



46 Electron-phonon coupling of Fe/MgO/Ag(100) electron states

iron 3d states are located at slightly di�erent energies, but the broadening

of the peaks is very similar to the 4 ML MgO/Ag(100) system, indicating

that the iron adatom is well protected from the silver substrate electrons

with 4 ML of MgO.
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Figure 2.6: Calculated DOS of Fe-MgO/Ag(100) projected onto the iron adatom for

di�erent coverages of MgO and Fe on free standing MgO. The vertical dashed lines

indicate the Fermi level.

An important contribution to the hybridization can be associated to

the interface state discussed in Figure 2.1, since it lies close to the iron’s

3dxy state both in real space and in energy. This is made clear in Fig-

ure 2.7, where we show the isosurface of this interface state for di�erent

MgO coverages. For 1 ML of MgO, it is clear from Figure 2.7a that the

interface state is mainly localized in the �rst three layers of silver, but

it already shows a considerable hybridization with the iron adatom. For

larger coverages of MgO, the hybridization is reduced considerably, as

can be noted from the value of the isosurface used in order to make the

hybridization visible. Another feature revealed by the �gure is the di�er-

ent atomic nature of the hybridization depending on the MgO coverage.

Due to the qualitative di�erence between odd and even con�gurations,
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Figure 2.7: Isosurface of the interface state discussed in Figure 2.1 for di�erent

coverages of MgO: a) 1 ML, b) 2 ML and c) 3 ML. The value of the isosurface has been

chosen to make visible the hybridization with the iron adatom. Ω is the volume of the

unit cell.

the hybridized interface state has a 3dz2 orbital character around the iron

adatom for an even number of MgO layers, while for odd coverages the

hybridization has a 3dxz/yz orbital nature on the adatom.

Coming next to the vibrational structure, Figure 2.8 shows the phonon

DOS projected on the adatom for di�erent number of MgO layers. For the

system with the iron adatom adsorbed on the clean Ag(100) surface (0 ML),

the �gure shows that the energy of all vibrational modes is increased

compared to coverages ≥ 1 ML. In the clean substrate the adatom is

adsorbed on a hollow site and, thus, it is integrated more compactly

into the surface, shifting up the energy of the modes due to the stronger

interaction with the neighboring atoms. When adding MgO for coverages

≥ 2 ML, the largest contribution to the phonon DOS of iron comes from

the in-plane modes located approximately at the same energy of around

7.3 meV. In the speci�c case of a single layer of MgO, the proximity of the

silver substrate a�ects considerably the energy of the localized modes of

the iron adatom, softening the energy of the in-plane mode to ≈ 3.2 meV.

On the other hand, our calculations for Fe on free standing MgO show that

the in-plane mode energy is approximately at 7 meV, with a phonon DOS

practically equal to the 4 ML MgO/Ag(100) system. This indicates that

the vibrational structure will remain unaltered for larger MgO coverages.

Incidentally, we note that the energy of the in-plane mode of a Ho adatom

in free standing MgO was found at 4.7 meV [62]; the ratio between the

two energy modes is described reasonably well by the mass ratio of the

two adatoms,

√
MFe/MHo. Finally, Figure 2.8 shows that the out-of plane
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modes, located between 10 to 20 meV, are hardened by increasing the

MgO coverage, the reason being that MgO vibrationenergies are about 4

times more energetic than in silver.
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Figure 2.8: The calculated phonon DOS projected onto the Fe adatom deposited on

MgO/Ag(100) with coverages ranging from 0 ML (bare silver surface) to 4 ML of MgO

and Fe on free standing MgO.

2.2.3 | Electron-phonon coupling

Having analyzed all the ingredients needed to compute the electron-

phonon matrix elements, in this section we study the e�ect of the electron-

phonon interaction on the one-particle states of the system. The size of

the electron-phonon interaction is determined by the scattering matrix

elements de�ned in Eqs. (2.1) and (2.2). Those expressions show that the

strength of the electron-phonon interaction depends on the overlap be-

tween three quantities: initial and �nal electronic states, and the potential

induced by the phonon. Given that the electron-phonon interaction in�u-

ences the electronic properties mostly on a energy window on the scale of

meV around the Fermi level, the e�ect on the adatom will be dominated
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by the 3dxy spin-down state. For this reason, and given that the initial

3dxy state is localized on the adatom and the only energetically available

�nal states are on the silver substrate, the larger the hybridization of

silver states with iron, the larger the electron-phonon scattering matrix

elements will be. Furthermore, the vibrational modes that involve the

atoms around iron will also be crucial due to the overlap of the potential

induced by this phonons with the initial 3dxy state.

2.2.3.1 | Eliashberg function
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Figure 2.9: Calculated Eliashberg function of the initial 3dxy state of the iron adatom

on MgO/Ag(100) for MgO coverages from 1 ML to 4 ML. The solid blue line represents

the total scattering probability, while the dashed orange line includes scattering only

through the interface state.

Figure 2.9 shows our calculated Eliashberg function for the 3dxy state

of the adatom on the MgO/Ag(100) surface, for MgO coverages ranging

from 1 ML to 4 ML. We have not included free standing MgO since the

initial 3dxy state does not have available �nal states to scatter to due to

the energy gap of MgO around the Fermi level. The Eliashberg function

is largely dominated by a strong peak located between 3 and 8 meV
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depending on the coverage, which coincides with the energy of the in-

plane phonon modes localized in iron (see Figure 2.8). The importance of

local in-plane modes revealed by these results is consistent with what

was found by Donati et al. [62] in a similar system.

Noteworthily, our calculations reveal that for odd coverages of MgO,

the main scattering channel is the interface state shown in Figure 2.7,

whose contribution to the Eliashberg function represents as much as the

70% in the case of 3 ML coverage. For 1 ML, the proximity of the adatom

to the silver substrate opens new scattering channels to the bulk silver

states, reducing the contribution of the interface state to a 50% of the

total electron-phonon scattering rate. On the other hand, the di�erent

atomic nature of the interface state around the adatom for even and odd

coverages of MgO (see Figure 2.7) strongly suppresses scattering to the

interface state for an even number of MgO layers, reducing signi�cantly

the strong peak observed for an odd coverage of MgO. This makes the

contribution of high energy MgO phonons comparable to the contribution

of the in-plane modes.

2.2.3.2 | λ parameter andqasiparticle lifetime

The calculated λ parameter of the localized iron 3dxy state is shown

in Figure 2.10 for the di�erent MgO coverages; in order to have a com-

parative indication of the strength of the coupling we have also included

the λ parameter of bulk Pb, which ranks among the strongest ever re-

ported with λ = 1.56 [109], whereas on noble metal surfaces it can vary

on the range 0.11− 0.01 [110]. We observe a clear step between 1 ML

and 2 ML coverages. In fact, for ≤ 1 ML coverages, the strength of the

electron-phonon interaction is quantitatively close to the one found for

bulk Pb, which from Eq. (2.6) gives a positive energy shift of around 10%

for the 3dxy state. We �nd that for larger coverages, the λ parameter

shows a reduction of two orders of magnitude, indicating that the 3dxy or-

bital becomes e�ectively protected from the electron-phonon interaction.

Clearly, our analysis indicates that a single MgO layer is not enough to

screen or decouple the electronic states of the iron adatom from the silver

substrate. Interestingly, the lifetime of the magnetic moment of Fe on

MgO/Ag(100) has never been reported for coverages smaller than 2 MgO

layers. While a single monolayer of MgO on Ag(100) occurs infrequently

in experiment [6], this coincidence might also suggests that an e�ective

screening of the electron-phonon coupling is an important ingredient for
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achieving magnetic stability of single adatoms.

Additionally, we observe that the layer dependence of the λ parameter

follows a clear odd-even step structure, whereas it decreases if we do

not consider scattering through the interface state (see dashed line in

Figure 2.10). Thus, the interface state is the main responsible of the

step structure, which is consistent with our analysis of the geometric

con�guration in terms of the number of MgO layers and the connection

with the hybridization of the interface state.
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Figure 2.10: Calculated electron-phonon λ parameter (left axis) and electron-phonon

lifetime of a one-particle excitation (right axis) for the 3dxy orbital of the iron adatom

deposited on MgO/Ag(100) as a function of the MgO coverage. The dashed line rep-

resents the λ parameter for scattering through silver bulk states, whereas the solid

line represents the total λ parameter (silver bulk plus interface state scattering chan-

nels). The dash-dotted line indicates the λ parameter of bulk Pb, a material with strong

electron-phonon coupling.

Figure 2.10 shows our calculated lifetime for a hole on the 3dxy orbital

of the adatom as a function of MgO layers. For 0 ML and 1 ML coverages,

the lifetime of the quasiparticle is of the order of 0.1 ps, whereas we

obtain a lifetime of around 30 ps for 2 and 3 ML coverages and of 800 ps

for 4 MLs. Again, we observe a clear step structure, with a jump of two

orders of magnitude from 1 ML to 2 ML coverage, which is also caused by

the absence of the interface state scattering channel for an even number

of MgO layers.
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2.3 | Summary and outlook

In this chapter, we have conducted a detailed ab-initio analysis of

the spin-diagonal electron-phonon interaction of an iron adatom on the

MgO/Ag(100) surface. In Sec. 2.2.2 we have calculated the electronic and

vibrational structures of the adatom and the substrate, pointing out the

importance of the silver substrate providing �nal states to scatter on

the electron-phonon interaction. We have computed the strength of the

electron-phonon coupling in Sec. 2.2.3. Using the Eliashberg function

we have demonstrated that the in-plane oscillations of the adatom are

the most important vibrational modes, which is in good agreement with

what was found in Ho on MgO/Ag(100) [62]. Moreover, the calculated λ
parameter and quasiparticle lifetime show qualitative di�erences on the

electron-phonon interaction strength for even and odd number of MgO

layers. This di�erence between even and odd coverages is explained by

the presence of an interface state of the substrate close to the high sym-

metry point X , which represents the most important scattering channel

for odd coverages of MgO; its contribution represents up to 70% of the

total scattering rate in the case of 3 ML coverage, whereas for an even

number of MgO layers its contribution is highly suppressed. Finally, as a

central result, we have shown that a single MgO layer is not capable of

e�ectively screening the spin-diagonal electron-phonon interaction on

the iron adatom, whose calculated strength is comparable to the largest

values found among bulk materials. In turn, our calculations show that

electron-phonon scattering is deeply suppressed for two or more layers

of MgO.



Chapter 3

Spin-relaxation of a single Fe

adatom coupled to vibrations

In the same context as in the previous Chapter, where magnetic

adatoms o�er an exceptional scenario to study spin dynamics and relax-

ation, further understanding how adatoms interact with their environ-

ment is essential to improve their control and manipulation techniques

for applications such as quantum computing or magnetic storage devices.

With the growth of inelastic electron tunneling spectroscopy [13],

successful theoretical models have been proposed to capture the essen-

tial physics behind experiments [43, 44]. The subsequent emergence of

electron spin resonance combined with scanning tunneling spectroscopy

has allowed remarkable results providing a boost on energy and spatial

resolution [3, 7, 10, 34–37]. However, the physical origin of the resonant

transitions is still unclear, even after several theoretical models have

been proposed [38, 41, 53]. In the case of the long living magnetic states

found in adatoms such as Ho or Fe on MgO/Ag(100) [4, 6, 8], interactions

with the environment are believed to destabilize the magnetic moments

by inducing transitions between the di�erent spin states. However, the

di�culty of performing �rst-principles calculations of spin lifetimes and

transition rates complicates verifying the origin of the transition mecha-

nisms involved on experimental measurements.

The e�ects of electronic interactions on adatom properties have been

extensively studied with the help of the �rst principles schemes [5, 25, 44–

52, 54], but much less attention has been paid to the interaction with

substrate vibrations, i.e. phonons. Nevertheless, it has been speculated
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many times about the role of spin-phonon coupling as a spin-relaxation

mechanism in single adatoms. In particular, it is believed that it plays a

key role, limiting the spin-lifetime, when the interaction with substrate

conduction electrons is reduced by making use of insulating decoupling

layers, such as Cu
2
N or MgO [4, 21]. In the related �eld of molecular mag-

nets, ab-initio calculations of the spin-phonon coupling have a long track

record [70–77]. However, in the case of adatoms on surfaces, a convincing

theoretical approach has been so far inaccessible due to the computa-

tional challenge posed by the many-body character of the problem and

the huge number of atoms in a surface simulation.

In this chapter we present a method that combines �rst-principles

density functional theory (DFT) calculations with an atomic multiplet

model for accessing the electron-phonon spin relaxation time of a single

Fe atom on MgO/Ag(100). Sec. 3.1 is dedicated to introduce the method,

and we provide the derivation of the master equation that gives access to

the spin relaxation time. In Sec. 3.2 we apply the presented formalism

to study the spin-�ip lifetime of the Fe adatom on MgO/Ag(100). For

this, we �rst provide the computational details of the �rst principles

calculations in Sec. 3.2.1. We next analyze the electronic and vibrational

structures of the adatom on Sec. 3.2.2. In particular, Sec. 3.2.2.1 presents

the DFT electronic and vibrational structures, and Sec. 3.2.2.2 shows

the multiplet Stevens Hamiltonian. We follow with the calculations and

analysis of the spin-�ip lifetime of the Fe adatom in Sec. 3.2.3. Finally,

Sec. 3.3 summarizes the main results and conclusions.

3.1 | Electron-phononcouplingon
spin relaxation

In Chapter 2 we studied the e�ect of the electron-phonon interaction

on the one-electron Kohn-Sham states. However, in order to describe the

spin relaxation measured in experiments, the multiplet character of the

magnetic states of the adatom has to be taken into account. Figure 3.1

shows a typical energy diagram of a magnetic adatom, where two possible

relaxation mechanisms from the �rst excited state to the ground state

have been indicated. |Ψi〉 denote the multiplet wave function of each

magnetic state, which, in essence, are a linear combination of Slater

determinants of the one-electron atomic orbitals of the adatom.
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Figure 3.1: Schematic representation of th energy level diagram of a spin-2 adatom.

The solid black arrow indicates the �rst order or direct transition from one spin state to

the other. The blurry arrows represent a cascade-like mechanism, where the spin-�ip

transition is realized in a step-by-step process with smallest possible change in ∆MS.

In the basis of one-electron atomic orbitals |ψi〉 with quantum num-

bers i = {n, l,m, σ} (n is the principal quantum number, l the angular

momentum, m its projection and σ the spin), the coupling between elec-

trons and phonons is described by (See Sec. 1.1.5),

Ĥel.−ph. =
∑
η

Ĥη
el.−ph. =

∑
i,f,η

gηif c
†
fci (b

†
η + bη). (3.1)

Above, the electron-phonon matrix element gηif determines the probability

amplitude of an atomic state |ψi〉 to be scattered to a state |ψf〉 by the

emission or absorption of a phonon η. c† and c (b† and b) are the electron

(phonon) creation and annihilation operators, respectively. In reality,

the atomic orbitals are hybridized with the substrate and lose spherical

symmetry. Even so, it is very useful to keep the associated quantum

numbers to be able to perform multiplet calculations with total angular

momentum.

To take hybridization into account, we de�ne new atomic orbitals

|ψ̃i〉 by projection of the DFT spinor wave functions |ψDFT
n 〉,

|ψ̃i〉 =
∑
n

|ψDFT
n 〉 〈ψDFT

n |ψi〉 , (3.2)
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where we have limited the summation to an energy window equal to

the broadening of each orbital on the DFT calculation. In this way, the

electron-phonon matrix elements between the one-electron atomic or-

bitals are approximated by

gηif =
∑
s,s′

1√
2ωη
〈ψ̃si |∂V̂ ss′

η |ψ̃s
′

f 〉 =
∑
s,s′

∑
Iκ

ζIκη√
2MIωη

〈ψ̃si |∂V̂ ss′

Iκ |ψ̃s
′

f 〉.

(3.3)

Note that by computing the matrix elements in this way we are able to

capture the e�ect of the hybridization between the iron and the substrate,

which can vary for di�erent substrates. Using this scheme, the adatom’s

wave functions are more delocalized than the pure atomic orbitals, and

therefore, the electron-phonon coupling in the substrate area is also

accounted.

However, in order to incorporate the many-body nature of the mag-

netic states, we need an approximation for the matrix elements between

multiplet states, Gη
if = 〈Ψi|Ĥη

el.−ph.|Ψf〉, with the notation of lower case

letters for one-electron states and capital letters for multiplets. We calcu-

lated these matrix elements by employing the ab-initio matrix elements

for one-electron states |ψ̃i〉 and contracting the creation and annihilation

operators of Ĥel.−ph. in Eq. 3.1 and the second quantization representation

of the multiplet wave functions Ψi. See Appendix E for more details about

the second quantization representation of the multiplet wave functions.

Finally, the fundamental Hamiltonian describing the magnetic states

of an adatom and the phonon bath coupled with each other, can be

de�ned as,

Ĥ =
∑
i

EiC
†
iCi +

∑
η

ωηb
†
ηbη +

∑
i,f,η

Gη
if C

†
fCi (b

†
η + bη). (3.4)

The �rst term describes the electronic structure of the adatom, with

eigenvalues Ei. The second term describes the unperturbed phonon

system, where ωη are the frequencies of the lattice vibrations. And,

the third term describes the coupling between electrons and phonons,

where Gη
if are the electron-phonon matrix elements between the adatom

multiplet states.

The dynamics of the adatom coupled with the phonon bath, repre-

sented by Eq. (3.4), can be described by a master equation within the

open quantum system formalism introduced in Sec. 1.3. In pump probe

experiments performed to measure spin-�ip lifetimes, an excited state of
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the adatom is populated by a pump pulse, and then the evolution towards

the ground state is measured with probe pulses. In the density matrix

formalism, the evolution of the occupations of the electronic states of the

adatom is given by the diagonal elements of the reduced density matrix

of the adatom. Therefore, using the Born-Markov master equation given

in Eq. 1.88 we obtain the rate equation for the diagonal elements of the

density matrix of the adatom:

dρii(t)

dt
= +2π

∑
j,η

|Gη
ij|2ρjj(t)×

[
nηBEδ(Ej − Ei + ωη)

+ (nηBE + 1)δ(Ej − Ei − ωη)
]

−2π
∑
j,η

|Gη
ij|2ρii(t)×

[
nηBEδ(Ei − Ej + ωη)

+ (nηBE + 1)δ(Ei − Ej − ωη)
]
. (3.5)

Here nηBE represents the thermal occupation of a phonon ωη given by

the Bose–Einstein distribution function.

For low temperatures considered in the experimental setup (kBT ≈
0.1 meV), it is a safe assumption to consider only the direct transition

marked with a black arrow on Figure 3.1 from the �rst excited state to

the ground state. In this situation, with Ei − Ef = ∆E > 0:

dρ11(t)

dt
= + 2πρ00(t)

∑
ν

|gν1,0|2nBE(ων)δ(∆E − ων)

− 2πρ11(t)
∑
ν

|gν1.0|2(nBE(ων) + 1)δ(∆E − ων), (3.6)

and

dρ00(t)

dt
= + 2πρ11(t)

∑
ν

|gν1,0|2(nBE(ων) + 1)δ(∆E − ων)

− 2πρ00(t)
∑
ν

|gν1,0|2nBE(ων)δ(∆E − ων). (3.7)

Therefore, using a matrix notation,(
dρ11/dt
dρ00/dt

)
=

(
−(Γ0 + ΓT ) +ΓT
+(Γ0 + ΓT ) −ΓT

)
·
(
ρ11

ρ00

)
, (3.8)
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where we have de�ned the temperature independent rate

Γ0 = 2π
∑
η

|Gη
1,0|2δ(∆E − ωη), (3.9)

and the temperature dependent rate

ΓT = 2π
∑
η

|Gη
1,0|2nηBEδ(∆E − ωη). (3.10)

This set of coupled di�erential equations has a simple solution in the

basis of eigenvectors that diagonalizes the matrix above:(
ρ11(t)
ρ00(t)

)
= C1

(
ΓT/(Γ0 + ΓT )

1

)
+ C2

(
1
−1

)
e−(Γ0+2ΓT )t. (3.11)

Where C1 and C2 are constants to be determined by the initial conditions

of the system. If the adatom is prepared to be in the excited state Ψ1,

then ρ11(0) = 1 and ρ00(0) = 0, thus the evolution of the density matrix

is given by

ρ11(t) =
ΓT

Γ0 + 2ΓT
+

Γ0 + ΓT
Γ0 + 2ΓT

e−(Γ0+2ΓT )t, (3.12)

and

ρ00(t) =
Γ0 + ΓT
Γ0 + 2ΓT

− Γ0 + ΓT
Γ0 + 2ΓT

e−(Γ0+2ΓT )t. (3.13)

Thus, the Fermi’s Golden Rule rate equation for the direct transition

can be inferred from these equations:

Γ1→0 = Γ0 + 2ΓT = 2π
∑
η

|Gη
1,0|2 [2nBE(ωη) + 1] δ(E1 − E0 − ωη).

(3.14)

While Eq. (3.4) comprises all the needed information about the system

in a simple and concise form, the real di�culty lies on obtaining all the

parameters for an accurate description of the system. In this respect,

we have used DFT calculations to compute the one-electron electronic

structure and the vibrational properties of the system by means of the

direct method presented in Chapter 1. The one-electron electron-phonon

matrix elements are then computed with the procedure explained above.
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However, given that DFT is a ground state method, and furthermore,

it adopts a one-electron picture with a single Slater determinant wave

function, it usually fails predicting the magnetic structure of adatoms.

Therefore, we have considered a Stevens Hamiltonian in order to cap-

ture the many-body character of the adatom, and in this way properly

describe the low energy spectrum of the adatom on the meV range and

the corresponding multiplet wave functions. Finally, the matrix elements

between multiplet states have been calculated mixing the one-electron

matrix elements obtained from the DFT calculations and the multiplet

wave functions obtained form the Stevens Hamiltonian.

3.2 | The Fe adatom onMgO/Ag(100)

Among all the di�erent adatom systems, the Fe adatom on top of a

MgO/Ag(100) surface has been one of the most studied systems [3, 6,

30, 37, 38, 53–55, 85, 88]. It possess a long spin relaxation time of the

order of milliseconds, which makes it a very interesting system to study

the spin dynamics on adatoms. Additionally, it has been shown that the

spin-lifetime of this system is limited by non-electronic contributions [6],

which makes Fe on MgO/Ag(100) a perfect benchmark system to study

the e�ect of the coupling with phonons.

3.2.1 | Computational details

Most of the computational details used for the DFT calculations pre-

formed in this Chapter are the same as in the previous one, therefore, the

reader is referred to Sec. 2.2.1 for all the details. As the main di�erence, in

this Chapter we have used spin non-collinear calculations to include the

spin-orbit interaction. The calculations have been done using the o�-site

formalism for the spin-orbit coupling implemented in SIESTA [94, 111].

Spin-orbit interaction allows transitions between the one-electron states

with di�erent spin component, and thus, it is very important to describe

the spin-�ip relaxation mechanism.

Most of the computational details used for the DFT calculations pre-

formed in this Chapter are the same as in the previous one, therefore, the

reader is referred to Sec. 2.2.1 for all the details. As the main di�erence, in

this Chapter we have used spin non-collinear calculations to include the
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spin-orbit interaction. The calculations have been done using the o�-site

formalism for the spin-orbit coupling implemented in SIESTA [94, 111].

3.2.2 | Electronic and vibrational
properties

In this section we describe the ground state properties of Fe on

MgO/Ag(100). We analyze the DFT calculations in Sec. 3.2.2.1, i.e., the

one-electron electronic structure and the vibrational structure of the

adatom. Sec. 3.2.2.2 is devoted to study the low energy spectrum obtained

by the Stevens Hamiltonian.

3.2.2.1 | DFT calculations

In general, since iron is a 3d transition metal, adding spin-orbit cou-

pling to the calculations doesn’t change signi�cantly the electronic and

vibrational structures of the adatom. And, in fact, the results obtained

here are very similar to the ones presented in Sec. 2.2.2 of the previous

Chapter.

The spin-orbit DFT calculations predict a magnetic ground state with

a total magnetic moment of 4.06µB , of which 3.97µB is localized on

the iron adatom. It is formed by the Fe 3d orbitals, of which 5 majority

spin and 1 minority spin are occupied. Figure 3.2 illustrates this with

the spin-resolved projected density of states (PDOS) of the Fe adatom.

The results for di�erent MgO coverages are similar, the major di�erence

being a larger hybridization in the case of 2 MgO layers, mostly in the

spin majority 3dxy and 3dz2 orbitals.

Coming next to the vibrational modes of Fe, Figure 3.3 shows the

phonon DOS projected on the iron adatom. The �gure reveals a vibra-

tional mode completely localized in iron at 7.3 meV, which corresponds

to a double degenerate in-plane oscillation of the adatom with respect to

the MgO surface. At higher energies, in the 12 meV to 25 meV range, the

multiple modes observed are related with an out-of-plane polarization

of the adatom. These modes show a more pronounced mixing with the

substrate, as can be appreciated from the broadening of the peak, specially

for a 2 ML coverage of MgO.
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Figure 3.2: Projected DOS of iron’s 3d orbitals for Fe on 3 ML MgO/Ag(100). Pos-

itive and negative values of the PDOS indicate majority and minority spin channels,

respectively. The Fermi energy is marked by a vertical dashed line.

3.2.2.2 | Stevens Hamiltonian

In order to incorporate the many-body nature of the adatom [54],

we now consider a multiplet Hamiltonian in terms of �xed total spin (S)

and total orbital angular momentum (L) operators. Starting from the
5D

term of an isolated iron atom with a d6
con�guration, the lowest energy

term according to Hund’s rules, the crystal �eld of the substrate can be

expanded using Stevens operators Ôm
n (L). In the case of Fe on top of an

O atom of MgO, it is known that the low energy levels are well described

by,

H = B0
2Ô

0
2 +B0

4Ô
0
4 +B4

4Ô
4
4 + λL · S + µB (L + 2S) · B, (3.15)

where B0
2 = −317.43 meV, B0

4 = −6.58 meV, B4
4 = −4.36 meV and

λ = −12.6 meV were obtained from a point charge model [86]. The �rst

two terms compose the Axial Crystal Field (ACF) and the third one the
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Figure 3.3: Phonon DOS projected onto the Fe adatom deposited on MgO/Ag(100)

for 2 to 4 MLs of MgO.

Transverse Crystal Field (TCF). The fourth term describes the spin-orbit

coupling with interaction strength λ and the last one accounts for the

Zeeman term, with µB the Bohr magneton and B the magnetic �eld.

Direct diagonalization of the Hamiltonian 3.15 using the product

basis of projections of total spin MS and orbital angular momenta ML,

{|MS,ML〉}, gives access to the energy level spectrum and multiplet

wave functions of the adatom. Figure 3.4 shows the low energy dia-

gram for Bz = 5 T, which shows the usual parabolic shape found in

experiments [6]. The zero �eld splitting (ZFS) indicated in the �gure

is of 14.38 meV, which is in good agreement with experimental mea-

surements [6, 88]. The magnetic anisotropy (MAE), also indicated in the

�gure, is of 20.06 meV.

Figure 3.5 shows the evolution of the multiplet-state energies under

the action of each term of the Hamiltonian. The ACF produces by far

the biggest energy splitting, as can be inferred from the value of B0
2 .

The lowest energy subspace consists of ten degenerate ML = ±2 states.

The TCF mixes states with ∆ML = ±4, producing two spin quintuplets

with fully quenched orbital moments. The spin-orbit coupling breaks

the degeneracy of the lowest energy subspace, and it is the ultimate



The Fe adatom on MgO/Ag(100) 63

Figure 3.4: Energy level diagram of the 5 lowest energy states of the Crystal Field

Hamiltonian (3.15).

responsible of the parabolic low energy spectrum shown in Figure 3.4.

The quadratic evolution that shows the spin-orbit interaction indicates

that it is a second order correction of the energy that mixes the two

quintuplets generated by the TCF. Finally, the magnetic �eld induces the

usual linear Zeeman splitting.

3.2.3 | Spin-flip lifetime

After analyzing the electronic and vibrational structure, in this section

we study the electron-phonon spin-�ip relaxation mechanism of the

system. We examine the impact of all the di�erent parameters on the

spin lifetime, i.e. the e�ect of the number of MgO layers, the crystal �eld

parameters, the magnetic �eld and the temperature.

3.2.3.1 | Effect of the MgO layer thickness

Figure 3.6 shows the calculated spin-�ip lifetime for the direct tran-

sition for MgO coverages ranging from 2 ML to 4 ML at T = 0 K and

Bz = 5 T computed using Eq. (3.14). The calculated lifetime ranges
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Figure 3.5: a) Evolution of the multiplet states energies under the ACF and TCF.

b) Zoom of the evolution of low energy multiplet states under the TCF, spin-orbit

interaction and magnetic �eld.

between 10 ms and 50 ms. In the case of 2 MLs, the experimentally mea-

sured spin lifetime is believed to be dominated by the electron-hole pair

creation in the substrate [6], which is not included in our model; it is

therefore reasonable that our calculated lifetime is nearly an order of

magnitude larger than the experimentally measured one. However, for

3 and 4 ML coverages, the calculated lifetimes are of the same order as

the experimentally measured values [6]. Noteworthily, as shown by the

experimental measurements, our calculation also shows that the lifetime

due to the spin-phonon coupling does not change drastically for 3 and

4 ML MgO coverages. Moreover, we found that for temperatures below

2 K, the lifetime does not change signi�cantly (less than 10−8ms), which

is in good agreement the experimental measurements. This suggests that
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the relaxation is caused by the spontaneous emission of phonons, instead

than an absorption of thermally occupied phonon states [6].

2 3 4
Number of MgO layers

101

τ
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s)

This work

Paul et al .

Figure 3.6: Spin lifetime as a function of the MgO coverage. Calculated values (blue)

and experimental measurements (orange) from Ref. [6] are given by dots, while lines

are shown as a guide for the eye.

On close inspection, we have found that the contributions to the

multiplet wave functions |Ψ0〉 and |Ψ1〉 from states |MS,ML〉 = |±2,±2〉
are determinant. This reveals that the spin relaxation mechanism is

dominated by the overlap of components with ∆ML = ±4 This has

important consequences and means that an e�ective Hamiltonian of the

form

Heff ∝ L4
+ + L4

−, (3.16)

captures the main characteristic of the spin-phonon coupling of the Fe

adatom. In this aspect, the scattering process is related principally to

the transition between the one-electron dxy and dx2−y2 orbitals shown

in Figure 3.2. Therefore, changes on the hybridization of these states for

di�erent MgO coverages can cause variations on the spin lifetime.



66 Spin-relaxation of a single Fe adatom coupled to vibrations

−60 −40 −20 0 20 40 60
Axial cristal field %

−60

−40

−20

0

20

40

60
T

ra
n

sv
er

se
cr

ys
ta

l
fie

ld
%

10−3

10−2

10−1

100

101

102

103

104

105

106

τ
(m

s)

Figure 3.7: Calculated lifetime as a function of the ACF and TCF for 3 MLs of MgO.

The red dot indicates the crystal �eld values given in Ref. [86].

3.2.3.2 | Influence of the crystal field

As an important observation, if TCF is absent (B4
4 = 0 on Eq. (3.15)

(B4
4 = 0), the components with ∆ML = ±4 would not be mixed on the

multiplet wave functions, preventing the decay of state |Ψ1〉 into |Ψ0〉.
To investigate this aspect, we have computed the spin-lifetime varying

both the ACF and the TCF to determine which term in�uences most the

spin-phonon transition. Figure 3.7 shows that the lifetime is in�uenced

in orders of magnitude by variations not only of the TCF, but also of

the ACF. Additionally, Figure 3.7 reveals that in order to achieve longer

spin lifetimes the ACF should be increased, whereas the TCF should

be reduced. It is important to point out that the TCF is much smaller

than the ACF (see parameters of Eq.(3.15)) and that Figure 3.7 shows

relative variations of the crystal �eld parameters. However, as explained

in Sec. 3.2.2.2, the low-energy spectrum of the adatom is closely related

to the energy di�erence between the quintuplets created by the TCF.

Therefore, small changes on the TCF have a much larger impact on the

low-energy spectrum than variations in the ACF, which barely in�uences

the low-energy levels. Moreover, as suggested in Ref. [3], the TCF can be

easily modi�ed in experiment, for example applying an oscillating bias

voltage, which could have a big impact on the spin-lifetime measurements
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according to our results.

3.2.3.3 | Magnetic field dependence
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Figure 3.8: Lifetime as a function of the Zeeman splitting E (left axis) and phonon

DOS projected onto the Fe adatom (right axis) for 3 MgO layers.

Another interesting property that is accessible in our model is the

in�uence of the magnetic �eld on the spin-lifetime. Figure 3.8 shows the

calculated lifetime (left axis) as a function of the magnetic �eld or Zeeman

splitting energy for a magnetic �eld perpendicular to the substrate. We

observe that for magnetic �elds lower than 2 T, the lifetime increases

linearly with the magnetic �eld, in excellent agreement whit previous

experimental measurements [30]. This originates from the decreasing

admixture of the states enabling ∆ML = ±4 transitions in the multiplet

wave functions as the magnetic �eld increases. For this low energy range,

the main scattering channel are phonons that are delocalized throughout

the entire system.

Interestingly, when the Zeeman splitting matches the energy of the

local in-plane mode of the iron adatom (shown by the projected phonon

DOS in Figure 3.8), the lifetime saturates due to the sharp increase in

density of available �nal states for that energy range. As such localized

vibrations are a common feature of magnetic adatoms, we propose that
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the experimental detection of such a plateau in the lifetime of the spin

transitions is a clear way to prove that the spin-phonon coupling is indeed

the primary relaxation mechanism.
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Figure 3.9: Lifetime as a function of a magnetic �eld parallel to the substrate for 3

MgO layers and Bz = 5 T.

On the other hand, the behavior of the lifetime when a magnetic �eld

parallel to the substrate is applied is shown in Figure 3.9. The Zeeman

term for a parallel magnetic �eld mixes states with ∆ML = ±1 and

∆MS = ±1. Initially, increasing Bx increments the spin lifetime because

the coe�cients of the |MS,ML〉 = |±2,±2〉 terms are reduced due to

the mixture that it produces. However, as the parallel magnetic �eld is

further increased, new scattering channels are opened due to the bigger

admixture of |MS,ML〉 states, until the lifetime saturates.

3.3 | Summary and outlook

In summary, we presented a theory that combines the multiplet struc-

ture of the adatom with the ab-initio information about all the electrons

and phonons in the system and their coupling to study the electron-

phonon-induced spin-�ip transitions of adatoms on surfaces. We applied



Summary and outlook 69

our model to the Fe adatom on MgO/Ag(100), showing a good qualita-

tive and order-of-magnitude agreement with available experiments by

Paul et al. [6], demonstrating that the essential features of the problem

are successfully captured within the developed theory. In particular, we

reveal that both local vibrations of the adatom and substrate phonons of

MgO are relevant for the spin relaxation, and that therefore, a correct

description of the substrate is essential. Additionally, we identify the

most important components of the multiplet states for the spin-phonon

relaxation mechanism in this particular system. This has allowed explor-

ing the e�ect of the crystal �eld on the spin lifetime, which can help

future research on this �eld. Finally, we have studied the in�uence of the

magnetic �eld on the spin lifetime, proposing that a saturation of the spin

lifetime as a function of the applied magnetic �eld is a clear �ngerprint

of a dominant spin-phonon contribution to the relaxation process.
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Chapter 4

Overview and final

conclusions

The main goal of this thesis was to study from �rst principles the

e�ect of the coupling between electrons and lattice vibrations in magnetic

adatoms. For this purpose, we have considered the Fe adatom deposited

on MgO/Ag(100) as a benchmark system.

First of all, in Chapter 2, we have studied the impact of the electron-

phonon interaction on the electronic states of the Fe adatom deposited on

MgO/Ag(100). We have pointed out the importance of the silver substrate

providing �nal states to the scattering process. Using the Eliashberg func-

tion, we have shown that the oscillations in the plane of the adatom are

the vibrational modes that show the biggest coupling with the electronic

states of the adatom. This indicates the importance of the local in-plane

modes in the electron-phonon coupling on adatoms, in agreement with

what was found in Ho on MgO/Ag(100) [62]. We also have computed

the strength of the electron-phonon interaction, represented by the λ
parameter and the quasiparticle lifetime, for di�erent numbers of MgO

layers. Our calculations show qualitative di�erences for even and odd

number of MgO layers, which are explained by the presence of an in-

terface state of the substrate close to the high symmetry point X . The

interface state represents the most important scattering channel for odd

coverages of MgO, with a contribution up to 70% of the total scattering

rate in the case of 3 ML coverage, whereas for an even number of MgO

layers its contribution is highly suppressed. This disparity is caused by

the distinct geometric position of the adatom with respect to the silver
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substrate for even and odd coverages. Finally, we have shown that the

calculated strength of the electron-phonon interaction on the case of a

single MgO layer is comparable to the largest values found among bulk

materials, while the electron-phonon scattering is deeply suppressed for

two or more layers of MgO. This reveals that a single MgO layer is not

capable of e�ectively screening the electron-phonon interaction on the

iron adatom.

In Chapter 3 we have provided a better insight of the role of electron-

phonon coupling in the spin-�ip relaxation mechanism of the Fe adatom

on MgO/Ag(100). We have presented a theory that combines the multi-

plet structure of the adatom with the ab-initio electronic and vibrational

structures of the system and their coupling in order to study the electron-

phonon-induced spin-�ip transitions of adatoms on surfaces. Our calcu-

lations with the Fe adatom show a good order-of-magnitude agreement

with available experiments by Paul et al. [6], which demonstrates that

the essential features of the problem are successfully captured within the

developed method. Additionally, our model has enabled us to identify the

most important components of the multiplet states for the spin-phonon

relaxation mechanism, revealing the critical electronic orbital states in

this particular system. Moreover, we have explored the e�ect of the

crystal �eld on the spin lifetime, which can help to design systems with

longer spin-relaxation times in the future. Finally, we have analyzed the

e�ect of the external magnetic �eld applied in experiments on the spin

lifetime. We have identi�ed that for the magnetic �elds considered on

the experiments both the localized vibrational modes of the iron and

phonons from the MgO substrate contribute equally to the spin lifetime,

showing that a correct description of the substrate is also essential. Our

calculations also reveal a saturation of the spin lifetime when the Zee-

man splitting matches the energy of the local in-plane mode of the iron

adatom, which can be a clear �ngerprint to identify experimentally a

dominant spin-phonon contribution to the relaxation process.

As a �nal conclusion, we have conducted a novel study in the �eld

of magnetic adatoms, developing and applying �rst principles methods

to study the role of electron-phonon coupling in the spin relaxation

mechanism.
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Appendix A

Pseudo-Potentials

The idea of pseudo-potentials is to replace the Coulomb potential

of the atomic nucleus and the core electrons with an e�ective potential

acting on valence electrons. Within this approach, the core electrons,

together with the nuclei, are considered as a rigid ion cores, and the

chemically active valence electrons are dealt with explicitly by means

of signi�cantly smoother pseudo wave functions. This brings two main

computational bene�ts. First, it allows to deal with few valence electrons,

and second, the pseudo wave functions of the latter can be expanded

with smaller basis set. In this Appendix we review the basic theory and

generation of norm-conserving pseudo-potentials.

The atomic Schrödinger eqation

For a spherically symmetric atom, the radial and angular parts of the

wave function can be separated using spherical harmonics:

Ψnlm(r) = ψnl(r)Ylm(θ, φ). (A.1)

The resulting equation for the radial wave function is

− 1

2r2

d

dr

[
r2 d

dr
ψnl(r)

]
+

[
l(l + 1)

2r2
+ Vext(r)

]
ψnl(r) = εnlψnl(r).

(A.2)
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Which, with the transformation unl(r) = rψnl(r), becomes

− 1

2

d2

dr2
unl(r) +

[
l(l + 1)

2r2
+ Vext(r)

]
unl(r) = εnlunl(r), (A.3)

with boundary conditions unl(r → 0) ∝ rl+1
and unl(r →∞)→ 0.

Pseudo wave functions

Once the all electron wave functions, ψAEnl , are obtained, the pseudo

wave functions, ψPSnl , are generated removing the nodes of the all electron

wave functions. While di�erent methods have been developed for this

purpose, the pseudo wave functions must satisfy some requirements to

be accurate and transferable. In the case of norm-conserving pseudo-

potentials the all electron and pseudo wave functions must agree beyond

a chosen core radius rc, and inside rc the integrated charge must be the

same: ∫ rc

0

r2|ψAEnl |2dr =

∫ rc

0

r2|ψPSnl |2dr. (A.4)

Figure A.1 shows a comparison between the radial parts of the all electron

wave functions and the pseudo wave functions for a Ag atom.
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Figure A.1: Radial parts of the all electron and pseudo wave functions for a Ag atom.
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l-dependent pseudo-potentials

The next step consists on computing the pseudo-potential from the

pseudo wave functions. The �rst type of pseudo-potential is the semilocal

one, which can be written as

V̂SL = Vlocal(r) + δV̂SL (A.5)

= Vlocal(r) +
∑
l,m

|Ylm(θ, φ)〉 δVl(r) 〈Ylm(θ, φ)| , (A.6)

where

Vl(r) = Vl,total − (V PS
Hartree(r) + V PS

xc (r)), (A.7)

and

δVl(r) = Vl(r)− Vlocal(r). (A.8)

Above V PS
Hartree and V PS

xc are the Hartree potential and the exchange-

correlation potential of the pseudo wave functions. In this type of pseudo-

potential the wave functions are projected into spherical harmonics in

order to obtain the potential. This is computationally expensive involving

integrals of two wave functions:

〈ψi| δV̂SL |ψj〉 = (A.9)∫ [
ψi(r)

∑
l,m

Ylm(r̂)δVl(r)
∫
sinθ′ Ylm(θ′, φ′)ψj(r, θ

′, φ′) dθ′dφ′

]
dr.

(A.10)

Separable pseudo-potentials

To avoid this integrals Kleinman and Bylander showed that the e�ect

of the semilocal δVl(r) potential can be replaced by a separable operator

δV̂NL so that the pseudo-potential has the form

V̂PP = Vlocal(r) + δV̂NL, (A.11)

with

δV̂NL =
∑
l,m

∣∣ψPSlm δVl〉 〈δVlψPSlm ∣∣
〈ψPSlm | δVl |ψPSlm 〉

. (A.12)

The functions

〈
δVlψ

PS
lm

∣∣
are projectors that operate on the wave functions

as 〈
δVlψ

PS
lm |ψ

〉
=

∫
drδVl(r)ψPSlm (r)ψ(r). (A.13)
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The advantage of this method is that matrix elements require only prod-

ucts of single wave function projections:

〈ψi| δV̂NL |ψj〉 =
∑
l,m

〈
ψi|ψPSlm δVl

〉 〈
δVlψ

PS
lm |ψj

〉
〈ψPSlm | δVl |ψPSlm 〉

(A.14)

=
∑
l,m

∫
δVl(r)ψ

PS
lm (r)ψi(r)dr

∫
δVl(r)ψ

PS
lm (r)ψj(r)dr

× 1

〈ψPSlm | δVl |ψPSlm 〉
. (A.15)

The construction of the separable potential could be modi�ed to

generate the pseudo-potential directly without constructing the semilocal

potential Vl(r) �rst. Initially the pseudo wave functions ψPSlm (r) and the

local potential Vlocal(r) are created, as in the creation of a semilocal

pseudo-potential. Then, de�ning the projector

χPSlm (r) =

{
εl −

[
−∇

2

2
+ Vlocal(r)

]}
ψPSlm (r), (A.16)

the non-local operator is written as

δV̂NL =
∑
l,m

∣∣χPSlm 〉 〈χPSlm ∣∣
〈χPSlm |ψPSlm 〉

, (A.17)

which the same properties of (A.12), i.e.

ĤψPSlm = εlψ
PS
lm . (A.18)

To extend the range of energies over which the phase shifts of the

original all-electron potential are described, the construction procedure

of the projectors could be generalized to satisfy the Schrödinger equation

at di�erent energies εls for each angular momentum. Thus,

χPSlms(r) =

{
εls −

[
−∇

2

2
+ Vlocal(r)

]}
ψPSlms(r). (A.19)

And doing the transformation

βlms =
∑
s′

B−1
lms,lms′χ

PS
lms′ , (A.20)
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where

Blms,l′m′s′ =
〈
ψPSlms|χPSl′m′s′

〉
= δlm,l′m′

〈
ψPSlms|χPSlms′

〉
, (A.21)

the separable PP can be written as

δV̂NL =
∑
l,m

[∑
s,s′

Blms,lms′ |βlms〉 〈βlms′ |
]
. (A.22)
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Appendix B

Density matrix

Using the matrix representation for the reduced density matrix,

ρ̃AA′(t) = 〈A|TrBρ̃(t)|A′〉 =
∑
B

〈AB|ρ̃(t)|A′B〉, (B.1)

it’s time evolution within the Born-Markov approximation can be written

as:

dρ̃AA′(t)

dt
= −

∫ ∞
0

ds
∑
B

〈AB|
[
Ṽ (t),

[
Ṽ (t− s), ρ̃(t)

]]
|A′B〉. (B.2)

Expanding the commutator (with t′ = t− s),[
Ṽ (t),

[
Ṽ (t′), ρ̃(t)

]]
=
[
Ṽ (t), Ṽ (t′)ρ̃(t)− ρ̃(t)Ṽ (t′)

]
= Ṽ (t)Ṽ (t′)ρ̃(t)− Ṽ (t)ρ̃(t)Ṽ (t′) (B.3)

− Ṽ (t′)ρ̃(t)Ṽ (t) + ρ̃(t)Ṽ (t′)Ṽ (t),

and taking into account that V̂ =
∑

α Â
αB̂α

, where the Âα operators

act on the system states and the B̂α
operators on the bath states:[

Ṽ (t),
[
Ṽ (t′), ρ̃(t)

]]
=
∑
α,β

[
Ãα(t)B̃α(t)Ãβ(t′)B̃β(t′)ρ̃(t)

−Ãα(t)B̃α(t)ρ̃(t)Ãβ(t′)B̃β(t′)

−Ãβ(t′)B̃β(t′)ρ̃(t)Ãα(t)B̃α(t)

+ρ̃(t)Ãβ(t′)B̃β(t′)Ãα(t)B̃α(t)
]
. (B.4)
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And separating each term:

dρ̃AA′(t)

dt
= −

∫ ∞
0

dsC1 + C2 + C3 + C4. (B.5)

Where,

C1 =
∑
α,β

〈A|Ãα(t)Ãβ(t′)ρ̃A(t)|A′〉TrB

{
B̃α(t)B̃β(t′)ρ̃eq.B

}
=
∑
α,β

〈A|Ãα(t)Ãβ(t′)ρ̃A(t)|A′〉〈B̃α(t)B̃β(t′)〉, (B.6)

C2 = −
∑
α,β

〈A|Ãα(t)ρ̃A(t)Ãβ(t′)|A′〉TrB

{
B̃α(t)ρ̃eq.B B̃

β(t′)
}

= −
∑
α,β

〈A|Ãα(t)ρ̃A(t)Ãβ(t′)|A′〉〈B̃β(t′)B̃α(t)〉, (B.7)

C3 = −
∑
α,β

〈A|Ãβ(t′)ρ̃A(t)Ãα(t)|A′〉TrB

{
B̃β(t′)ρ̃eq.B B̃

α(t)
}

= −
∑
α,β

〈A|Ãβ(t′)ρ̃A(t)Ãα(t)|A′〉〈B̃α(t)B̃β(t′)〉, (B.8)

and

C4 =
∑
α,β

〈A|ρ̃A(t)Ãβ(t′)Ãα(t)|A′〉TrB

{
ρ̃eq.B B̃

β(t′)B̃α(t)
}

=
∑
α,β

〈A|ρ̃A(t)Ãβ(t′)Ãα(t)|A′〉〈B̃β(t′)B̃α(t)〉. (B.9)

Where the correlation functions are de�ned as

〈B̃α(t)B̃β(t′)〉 = TrB

{
B̃α(t)B̃β(t′)ρ̃eq.B

}
=
∑
B

〈B|B̃α(t)B̃β(t′)ρ̃eq.B |B〉

=
∑

B,B1,B2

〈B|B̃α(t)|B1〉〈B1|B̃β(t′)|B2〉〈B2|ρ̃eq.B |B〉

=
∑

B,B1,B2

〈B|B̃α(t)|B1〉〈B1|B̃β(t′)|B2〉
e−βEB

ZB
δB2,B

=
∑
B,B1

〈B|B̃α(t)|B1〉〈B1|B̃β(t′)|B〉e
−βEB

ZB

=
∑
B,B1

ei(EB−EB1
)(t−t′)Bα

BB1
Bβ
B1B

e−βEB

ZB
, (B.10)
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and

〈B̃β(t′)B̃α(t)〉 = TrB

{
B̃β(t′)B̃α(t)ρ̃eq.B

}
=
∑
B

〈B|B̃β(t′)B̃α(t)ρ̃eq.B |B〉

=
∑

B,B1,B2

〈B|B̃β(t′)|B1〉〈B1|B̃α(t)|B2〉〈B2|ρ̃eq.B |B〉

=
∑

B,B1,B2

〈B|B̃β(t′)|B1〉〈B1|B̃α(t)|B2〉
e−βEB

ZB
δB2,B

=
∑
B,B1

〈B|B̃β(t′)|B1〉〈B1|B̃α(t)|B〉e
−βEB

ZB

=
∑
B,B1

ei(EB1
−EB)(t−t′)Bβ

BB1
Bα
B1B

e−βEB

ZB
. (B.11)

Then,

C1 =
∑
α,β

〈A|Ãα(t)Ãβ(t′)ρ̃A(t)|A′〉〈B̃α(t)B̃β(t′)〉

=
∑
α,β

∑
A1,A2

〈A|Ãα(t)|A1〉〈A1|Ãβ(t′)|A2〉〈A2|ρ̃A(t)|A′〉〈B̃α(t)B̃β(t′)〉

=
∑
α,β

∑
A1,A2

ei(EA−EA1
)tei(EA1

−EA2
)t′AαAA1

AβA1A2
ρ̃A2A′(t)〈B̃α(t)B̃β(t′)〉

=
∑
α,β

∑
A1,A2

∑
B,B1

ei(EA−EA1
)tei(EA1

−EA2
)t′ei(EB−EB1

)(t−t′)

× AαAA1
AβA1A2

ρ̃A2A′(t)Bα
BB1

Bβ
B1B

e−βEB

ZB
, (B.12)

C2 = −
∑
α,β

〈A|Ãα(t)ρ̃A(t)Ãβ(t′)|A′〉〈B̃β(t′)B̃α(t)〉

= −
∑
α,β

∑
A1,A2

〈A|Ãα(t)|A1〉〈A1|ρ̃A(t)|A2〉〈A2|Ãβ(t′)|A′〉〈B̃β(t′)B̃α(t)〉

= −
∑
α,β

∑
A1,A2

ei(EA−EA1
)tei(EA2

−EA′ )t′AαAA1
ρ̃A1A2(t)A

β
A2A′〈B̃β(t′)B̃α(t)〉

= −
∑
α,β

∑
A1,A2

∑
B,B1

ei(EA−EA1
)tei(EA2

−EA′ )t′ei(EB1
−EB)(t−t′)

× AαAA1
ρ̃A1A2(t)A

β
A2A′B

β
BB1

Bα
B1B

e−βEB

ZB
, (B.13)
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C3 = −
∑
α,β

〈A|Ãβ(t′)ρ̃A(t)Ãα(t)|A′〉〈B̃α(t)B̃β(t′)〉

= −
∑
α,β

∑
A1,A2

〈A|Ãβ(t′)|A1〉〈A1|ρ̃A(t)|A2〉〈A2|Ãα(t)|A′〉〈B̃α(t)B̃β(t′)〉

= −
∑
α,β

∑
A1,A2

ei(EA−EA1
)t′ei(EA2

−EA′ )tAβAA1
ρ̃A1A2(t)A

α
A2A′〈B̃α(t)B̃β(t′)〉

= −
∑
α,β

∑
A1,A2

∑
B,B1

ei(EA−EA1
)t′ei(EA2

−EA′ )tei(EB−EB1
)(t−t′)

× AβAA1
ρ̃A1A2(t)A

α
A2A′Bα

BB1
Bβ
B1B

e−βEB

ZB
, (B.14)

and

C4 =
∑
α,β

〈A|ρ̃A(t)Ãβ(t′)Ãα(t)|A′〉〈B̃β(t′)B̃α(t)〉

=
∑
α,β

∑
A1,A2

〈A|ρ̃A(t)|A1〉〈A1|Ãβ(t′)|A2〉〈A2|Ãα(t)|A′〉〈B̃β(t′)B̃α(t)〉

=
∑
α,β

∑
A1,A2

ei(EA1
−EA2

)t′ei(EA2
−EA′ )tρ̃AA1(t)A

β
A1A2

AαA2A′〈B̃β(t′)B̃α(t)〉

=
∑
α,β

∑
A1,A2

∑
B,B1

ei(EA1
−EA2

)t′ei(EA2
−EA′ )tei(EB1

−EB)(t−t′)

× ρ̃AA1(t)A
β
A1A2

AαA2A′B
β
BB1

Bα
B1B

e−βEB

ZB
. (B.15)

Doing now each integral:

I1 = −
∫ ∞

0

dsC1

= −
∑
α,β

∑
A1,A2

∑
B,B1

AαAA1
AβA1A2

ρ̃A2A′(t)Bα
BB1

Bβ
B1B

e−βEB

ZB

× ei(EA−EA2
)t

∫ ∞
0

dsei(EA2
−EA1

+EB−EB1
)s. (B.16)



85

And introducing a convergence factor η → 0+
:∫ ∞

0

dsei(EA2
−EA1

+EB−EB1
)s =

∫ ∞
0

dsei(EA2
−EA1

+EB−EB1
)se−ηs

=
i

EA2 − EA1 + EB − EB1 + iη
. (B.17)

Where I have used

∫∞
0
dse(iA−η)s = i/(A+ iη).

Thus,

I1 = −
∑
α,β

∑
A1,A2

∑
B,B1

AαAA1
AβA1A2

ρ̃A2A′(t)Bα
BB1

Bβ
B1B

e−βEB

ZB

× iei(EA−EA2
)t

EA2 − EA1 + EB − EB1 + iη
, (B.18)

I2 =
∑
α,β

∑
A1,A2

∑
B,B1

AαAA1
ρ̃A1A2(t)A

β
A2A′B

β
BB1

Bα
B1B

e−βEB

ZB

× ei(EA−EA1
)t

∫ ∞
0

dsei(EA2
−EA′ )(t−s)ei(EB1

−EB)s

=
∑
α,β

∑
A1,A2

∑
B,B1

AαAA1
ρ̃A1A2(t)A

β
A2A′B

β
BB1

Bα
B1B

e−βEB

ZB

× iei(EA−EA1
+EA2

−EA′ )t

EA′ − EA2 + EB1 − EB + iη
, (B.19)

I3 =
∑
α,β

∑
A1,A2

∑
B,B1

AβAA1
ρ̃A1A2(t)A

α
A2A′Bα

BB1
Bβ
B1B

e−βEB

ZB

× ei(EA2
−EA′ )t

∫ ∞
0

dsei(EA−EA1
)(t−s)ei(EB−EB1

)s

=
∑
α,β

∑
A1,A2

∑
B,B1

AβAA1
ρ̃A1A2(t)A

α
A2A′Bα

BB1
Bβ
B1B

e−βEB

ZB

× iei(EA2
−EA′+EA−EA1

)t

EA1 − EA + EB − EB1 + iη
, (B.20)
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and

I4 = −
∑
α,β

∑
A1,A2

∑
B,B1

ρ̃AA1(t)A
β
A1A2

AαA2A′B
β
BB1

Bα
B1B

e−βEB

ZB

× ei(EA2
−EA′ )t

∫ ∞
0

dsei(EA1
−EA2

)(t−s)ei(EB1
−EB)s

= −
∑
α,β

∑
A1,A2

∑
B,B1

ρ̃AA1(t)A
β
A1A2

AαA2A′B
β
BB1

Bα
B1B

e−βEB

ZB

× iei(EA1
−EA′ )t

EA2 − EA1 + EB1 − EB + iη
. (B.21)

Plugging the four contributions in (B.5) and renaming some α, β
indices:

dρ̃AA′(t)

dt
= −

∑
α,β

∑
A1,A2

∑
B,B1

AαAA1
AβA1A2

ρ̃A2A′(t)Bα
BB1

Bβ
B1B

e−βEB

ZB

× iei(EA−EA2
)t

EA2 − EA1 + EB − EB1 + iη

+
∑
α,β

∑
A1,A2

∑
B,B1

AβAA1
ρ̃A1A2(t)A

α
A2A′Bα

BB1
Bβ
B1B

e−βEB

ZB

× iei(EA−EA1
+EA2

−EA′ )t

EA′ − EA2 + EB1 − EB + iη

+
∑
α,β

∑
A1,A2

∑
B,B1

AβAA1
ρ̃A1A2(t)A

α
A2A′Bα

BB1
Bβ
B1B

e−βEB

ZB

× iei(EA2
−EA′+EA−EA1

)t

EA1 − EA + EB − EB1 + iη

−
∑
α,β

∑
A1,A2

∑
B,B1

ρ̃AA1(t)A
α
A1A2

AβA2A′B
α
BB1

Bβ
B1B

e−βEB

ZB

× iei(EA1
−EA′ )t

EA2 − EA1 + EB1 − EB + iη
. (B.22)



87

De�ning the correlation function

〈Bαβ(ω)〉 =
∑
B,B1

e−βEB

ZB

Bα
BB1

Bβ
B1B

ω + EB − EB1

(B.23)

= −
∑
B,B1

e−βEB

ZB

Bα
BB1

Bβ
B1B

−ω + EB1 − EB
, (B.24)

it can be rewritten as:

dρ̃AA′(t)

dt
= −

∑
α,β

∑
A1,A2

iAαAA1
AβA1A2

ρ̃A2A′(t)ei(EA−EA2
)t

× 〈Bαβ(EA2 − EA1 + iη)〉
−
∑
α,β

∑
A1,A2

iAβAA1
ρ̃A1A2(t)A

α
A2A′ei(EA−EA1

+EA2
−EA′ )t

× 〈Bαβ(EA2 − EA′ − iη)〉
+
∑
α,β

∑
A1,A2

iAβAA1
ρ̃A1A2(t)A

α
A2A′ei(EA2

−EA′+EA−EA1
)t

× 〈Bαβ(EA1 − EA + iη)〉
+
∑
α,β

∑
A1,A2

iρ̃AA1(t)A
α
A1A2

AβA2A′e
i(EA1

−EA′ )t

× 〈Bαβ(EA1 − EA2 − iη)〉. (B.25)

Returning to the Schrödinger picture by using

ρAA′(t) = e−i(EA−EA′ )tρ̃A,A′(t) (B.26)

and

dρAA′(t)

dt
=− i(EA − EA′)e−i(EA−EA′ )tρ̃A,A′(t) + e−i(EA−EA′ )tdρ̃AA′(t)

dt

=− i(EA − EA′)ρA,A′(t) + e−i(EA−EA′ )tdρ̃AA′(t)

dt
. (B.27)
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The master equation becomes

dρAA′(t)

dt
=− i(EA − EA′)ρA,A′(t)

−
∑
α,β

∑
A1,A2

iAαAA1
AβA1A2

ρA2A′(t)〈Bαβ(EA2 − EA1 + iη)〉

−
∑
α,β

∑
A1,A2

iAβAA1
ρA1A2(t)A

α
A2A′〈Bαβ(EA2 − EA′ − iη)〉

+
∑
α,β

∑
A1,A2

iAβAA1
ρA1A2(t)A

α
A2A′〈Bαβ(EA1 − EA + iη)〉

+
∑
α,β

∑
A1,A2

iρAA1(t)A
α
A1A2

AβA2A′〈Bαβ(EA1 − EA2 − iη)〉.

(B.28)

Taking only the diagonal elements of the density matrix on both sides

of the equation we will obtain Fermi’s Golden Rule:

dρAA(t)

dt
=−

∑
α,β

∑
A1

iAαAA1
AβA1A

ρAA(t)〈Bαβ(EA − EA1 + iη)〉

−
∑
α,β

∑
A1

iAβAA1
ρA1A1(t)A

α
A1A
〈Bαβ(EA1 − EA − iη)〉

+
∑
α,β

∑
A1

iAβAA1
ρA1A1(t)A

α
A1A
〈Bαβ(EA1 − EA + iη)〉

+
∑
α,β

∑
A1

iρAA(t)AαAA1
AβA1A

〈Bαβ(EA − EA1 − iη)〉.

(B.29)

And using

lim
η→0+

1

ω ± iη = P 1

ω
∓ iπδ(ω), (B.30)

the correlation function will be

〈Bαβ(ω ± iη)〉 =
∑
B,B1

e−βEB

ZB

Bα
BB1

Bβ
B1B

ω + EB − EB1 + iη

=
∑
B,B1

e−βEB

ZB
Bα
BB1

Bβ
B1B

×
(
P 1

ω + EB − EB1

∓ iπδ (ω + EB − EB1)

)
.

(B.31)
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Thus:

dρAA(t)

dt
=− 2π

∑
α,β

∑
A1

∑
B,B1

e−βEB

ZB
Bα
BB1

Bβ
B1B

AαAA1
AβA1A

ρAA(t)

× δ (EA − EA1 + EB − EB1)

+ 2π
∑
α,β

∑
A1

∑
B,B1

e−βEB

ZB
Bα
BB1

Bβ
B1B

AβAA1
ρA1A1(t)A

α
A1A

× δ (EA1 − EA + EB − EB1) . (B.32)

And trying a solution like ρAA(t) = e−ΓAtρAA(t0) yields the Fermi’s

Golden Rule for the scattering rate:

ΓA = + 2π
∑
α,β

∑
A1

∑
B,B1

e−βEB

ZB
Bα
BB1

Bβ
B1B

AαAA1
AβA1A

× δ (EA − EA1 + EB − EB1)

− 2π
∑
α,β

∑
A1

∑
B,B1

e−βEB

ZB
Bα
BB1

Bβ
B1B

AβAA1
AαA1A

× δ (EA1 − EA + EB − EB1) . (B.33)

Example

As a simple example we will consider a spin system coupled with a

phonon bath. For the spin system we consider the next Hamiltonian:

ĤS = DŜ2
z + µBgBŜz,

for the phonon bath

Ĥph. = ων

(
b†νbν +

1

2

)
, (B.34)

and lets consider that the coupling between both systems is modeled

with the Hamiltonian

V̂ =
λν
2

(
Ŝ2

+ + Ŝ2
−

) (
b†ν + bν

)
. (B.35)
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The basis for the spin Hamiltonian is

|A〉 → |s,m〉 ≡ |m〉, (B.36)

where

ĤS|m〉 = (Dm2 + µBBm)|m〉. (B.37)

And the basis for the phonon Hamiltonian is

|B〉 → |n〉 =
1√
n!

n∏
i=0

b†ν |0〉 =
1√
n!

(
b†ν
)n |0〉, (B.38)

with

Ĥph.|n〉 = ων

(
n+

1

2

)
|n〉, (B.39)

where n is the number of phonons of the system. The density matrix at

thermal equilibrium is given by

ρ̂eq.ph. =
∞∑
n=0

e−βων(n+1/2)

Zeq.
ph.

|n〉〈n|, (B.40)

where Zeq.
ph. is the grand partition function de�ned as

Zeq.
ph. = Tr

{
e−βHph.

}
=
∞∑
n=0

〈n|e−βHph.|n〉 =
∞∑
n=0

e−βων(n+1/2)

= e−βων/2
∞∑
n=0

e−βωνn = e−βων/2
∞∑
n=0

(
e−βων

)n
=

e−βων/2

1− e−βων . (B.41)

The average number of particles can be calculated from the density matrix,

and gives the usual expression for the Bose-Einstein distribution:

〈n̂〉 = nBE(ων) = Tr
{
n̂ρ̂eq.ph.

}
=
∞∑
n=0

n
e−βων(n+1/2)

Zeq.
ph.

=
∞∑
n=0

ne−βων(n+1/2) 1− e−βων
e−βων/2

=
(
1− e−βων

) ∞∑
n=0

n
(
e−βων

)n
=
(
1− e−βων

) e−βων

(e−βων − 1)2 = − e−βων

e−βων − 1
=

1

eβων − 1
(B.42)
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In this example, the part of the interaction V̂ acting on the spin system

is

A = Aα = Aβ = λν

(
Ŝ2

+ + Ŝ2
−

)
, (B.43)

with the matrix elements

Am,m′ =
λν
2
〈m|Ŝ2

+ + Ŝ2
−|m′〉

=
λν
2

(
〈m|Ŝ2

+|m′〉+ 〈m|Ŝ2
−|m′〉

)
=
λν
2

( √
(s−m′)(s+m′ + 1)(s−m′ − 1)(s+m′ + 2)δm,m′+2

+
√

(s+m′)(s−m′ + 1)(s+m′ − 1)(s−m′ + 2)δm,m′−2

)
=
λν
2

(A+(m′)δm,m′+2 + A−(m′)δm,m′−2) . (B.44)

On the other hand, the interaction acting on the phonon system is

B = Bα = Bβ =
(
b†ν + bν

)
, (B.45)

with the matrix elements

Bn,n′ = 〈n|b†ν + bν |n′〉 =
√
n′ + 1δn,n′+1 +

√
n′δn,n′−1. (B.46)

Thus, the correlation function is

〈B(ω)〉 =
∑
n,n′

e−βEn

ZB

Bnn′Bn′n

ω + En − En′

=
∑
n,n′

e−βEn

ZB

(√
n′ + 1

√
nδn′,n−1 +

√
n′
√
n+ 1δn′,n+1

)
ω + En − En′

=
∑
n

e−βEn

ZB

(
n

ω + En − En−1

+
n+ 1

ω + En − En+1

)
=
∑
n

e−βEn

ZB

(
n

ω + ων
+

n+ 1

ω − ων

)
=

(
nBE
ω + ων

+
nBE + 1

ω − ων

)
. (B.47)
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Plugging this on the Liouville-von Neumann and taking only the

diagonal elements of the density matrix we obtain the master equation

dρmm(t)

dt
=− iλ

2
ν

4
A−(m+ 2)A+(m)ρmm(t)〈B(Em − Em+2 + iη)〉

− iλ
2
ν

4
A+(m− 2)A−(m)ρmm(t)〈B(Em − Em−2 + iη)〉

− iλ
2
ν

4
A−(m+ 2)A+(m)ρ(m+2)(m+2)(t)〈B(Em+2 − Em − iη)〉

− iλ
2
ν

4
A+(m− 2)A−(m)ρ(m−2)(m−2)(t)〈B(Em−2 − Em − iη)〉

+ i
λ2
ν

4
A−(m+ 2)A+(m)ρ(m+2)(m+2)(t)〈B(Em+2 − Em + iη)〉

+ i
λ2
ν

4
A+(m− 2)A−(m)ρ(m−2)(m−2)(t)〈B(Em−2 − Em + iη)〉

+ i
λ2
ν

4
A−(m+ 2)A+(m)ρmm(t)〈B(Em − Em+2 − iη)〉

+ i
λ2
ν

4
A+(m− 2)A−(m)ρmm(t)〈B(Em − Em−2 − iη)〉. (B.48)

And including the expression of the correlation functions:

dρmm(t)

dt
=− 2π

λ2
ν

4
A−(m+ 2)A+(m)ρmm(t)nBEδ (Em − Em+2 + ων)

− 2π
λ2
ν

4
A−(m+ 2)A+(m)ρmm(t) (nBE + 1) δ (Em − Em+2 − ων)

− 2π
λ2
ν

4
A+(m− 2)A−(m)ρmm(t)nBEδ (Em − Em−2 + ων)

− 2π
λ2
ν

4
A+(m− 2)A−(m)ρmm(t) (nBE + 1) δ (Em − Em−2 − ων)

+ 2π
λ2
ν

4
A−(m+ 2)A+(m)ρ(m+2)(m+2)(t)nBEδ (Em+2 − Em + ων)

+ 2π
λ2
ν

4
A−(m+ 2)A+(m)ρ(m+2)(m+2)(t) (nBE + 1) δ (Em+2 − Em − ων)

+ 2π
λ2
ν

4
A+(m− 2)A−(m)ρ(m−2)(m−2)(t)nBEδ (Em−2 − Em + ων)

+ 2π
λ2
ν

4
A+(m− 2)A−(m)ρ(m−2)(m−2)(t) (nBE + 1) δ (Em−2 − Em − ων) ,

(B.49)

where we have used the real part (the diagonal terms are real) of

lim
η→0+

1

ω ± iη = P 1

ω
∓ iπδ(ω). (B.50)
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At T = 0, nBE = 0, and thus:

dρmm(t)

dt
=− 2π

λ2
ν

4
A−(m+ 2)A+(m)ρmm(t)δ (Em − Em+2 − ων)

− 2π
λ2
ν

4
A+(m− 2)A−(m)ρmm(t)δ (Em − Em−2 − ων)

+ 2π
λ2
ν

4
A−(m+ 2)A+(m)ρ(m+2)(m+2)(t)δ (Em+2 − Em − ων)

+ 2π
λ2
ν

4
A+(m− 2)A−(m)ρ(m−2)(m−2)(t)δ (Em−2 − Em − ων) .

(B.51)

Where some of this terms will be zero due to the delta function.

For example, if S = 1:

dρ11(t)

dt
=− 2πλ2

νρ11(t)δ (E1 − E−1 − ων)
+ 2πλ2

νρ−1−1(t)δ (E−1 − E1 − ων) , (B.52)

dρ00(t)

dt
= 0, (B.53)

dρ−1−1(t)

dt
=− 2πλ2

νρ−1−1(t)δ (E−1 − E1 − ων)
+ 2πλ2

νρ11(t)δ (E1 − E−1 − ων) . (B.54)

If there is no magnetic �eld, E1 = E−1, and because ων is a positive

energy, the δ factors will be zero and we will not have evolution at all.

If we have a positive magnetic �eld, it will split the degeneracy be-

tween E1 and E−1 so that E1 − E−1 = 2µBB:

dρ11(t)

dt
=− 2πλ2

νρ11(t)δ (2µBB − ων)
+ 2πλ2

νρ−1−1(t)δ (2µBB + ων) , (B.55)

dρ00(t)

dt
= 0, (B.56)

dρ−1−1(t)

dt
=− 2πλ2

νρ−1−1(t)δ (2µBB + ων)

+ 2πλ2
νρ11(t)δ (2µBB − ων) . (B.57)
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If the splitting matches the phonon energy, 2µBB = ων , only the

δ(2µBB − ων) terms will survive, and thus:

dρ11(t)

dt
=− 2πλ2

νρ11(t), (B.58)

dρ00(t)

dt
= 0, (B.59)

dρ−1−1(t)

dt
= + 2πλ2

νρ11(t). (B.60)

This means that if the initial state is a pure m = −1 state, which is

the ground state, ρ11(t0) = 0, therefore, we will not have any evolution.

Conversely, if the initial state is a pure m = 1 state, this being an excited

state, it will relax to the m = −1 ground state with a relaxation rate

Γ = 2πλ2
ν .

The scattering rate can be obtained also for T 6= 0. In this case the

evolution of the diagonal elements of the density matrix is described by:

dρ11(t)

dt
= −2πλ2

νρ11(t) (nBE + 1) + 2πλ2
νρ−1−1(t)nBE, (B.61)

dρ00(t)

dt
= 0, (B.62)

dρ−1−1(t)

dt
= +2πλ2

νρ11(t) (nBE + 1)− 2πλ2
νρ−1−1(t)nBE. (B.63)

Therefore, now, it is possible to jump from the ground state m = −1 to

the excited state m = 1 by the absorption of a phonon. If we write the

three equations in matrix form: dρ11/dt
dρ00/dt
dρ−1−1/dt

 =

−2πλ2
ν(nBE + 1) 0 2πλ2

νnBE
0 0 0

2πλ2
ν(nBE + 1) 0 −2πλ2

νnBE

 ·
 ρ11

ρ00

ρ−1−1

 .

(B.64)

The three eigenvalues of the matrix are

λ1 = 0, λ2 = 0, and λ3 = −2πλ2
ν(2nBE + 1), (B.65)
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with eigenvectors

v1 =

0
1
0

 , v2 =

 1
0

(nBE + 1)/nBE

 , and v3 =

 1
0
−1

 . (B.66)

Thus, the evolution of the diagonal elements of the density matrix is

given by: ρ11(t)
ρ00(t)
ρ−1−1(t)

 = C1

0
1
0

+ C2

 1
0

nBE+1
nBE

+ C3e
−2πλ2ν(2nBE+1)t

 1
0
−1

 .

(B.67)

If we prepare the initial condition to have ρ11(0) = 1 and ρ00(0) =
ρ−1−1(0) = 0, the three unknown constants can be obtained, which in

this case yields

ρ11(t) =
nBE

2nBE + 1
+

nBE + 1

2nBE + 1
e−2πλ2ν(2nBE+1)t, (B.68)

ρ00(t) = 0, (B.69)

ρ−1−1(t) =
nBE + 1

2nBE + 1
− nBE + 1

2nBE + 1
e−2πλ2ν(2nBE+1)t. (B.70)
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Appendix C

Energy renormalization of

localized electronic states

In this Appendix we will derive the energy shift that experiences a

localized electronic state in the Einstein model. In this case, the energy

renormalization of the electronic state can be directly related with the

λ parameter. In the Einsten model, with a dispersionless phonon with

energy ω0, the real part of the electron-phonon self-energy of an electron

is determined by the λ parameter:

Σ(ω) = λ
ω0

2
log

∣∣∣∣ω − ω0

ω + ω0

∣∣∣∣ . (C.1)

The relevant vibrational modes in Fe on MgO/Ag(100) are the localized

dispersionless in-plane modes of the iron adatom, which are very soft

modes. Therefore, the energy of the localized electronic 3dxy state is

much higher, and the self-energy can be safely approximated as

Σ(ω) ≈ −λω
2
0

ω
for ω � ω0. (C.2)

This makes possible to solve the Dyson equation analytically for the 3dxy
orbital,

ε = ε0 + Σ(ε) = ε0 − λ
ω2

0

ε
, (C.3)
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and obtain the renormalized energy ε in terms of the phonon energy ω0,

the λ parameter and the unperturbed electron energy ε0:

ε =
ε0

2

1 +

√
1− 4λ

(
ω0

ε0

)2


≈ ε0

[
1− λ

(
ω0

ε0

)2
]

for |ε0| � ω0. (C.4)

Thus, the shift in energy is

∆ε ≈ −ε0λ

(
ω0

ε0

)2

for |ε0| � ω0, (C.5)

which always moves the energy of the localized state closer to the Fermi

level.



Appendix D

Plane wave expansion of LCAO

wave functions

In the linear combination of atomic orbitals (LCAO) method the wave

function is expressed as

ψn(r) =
∑
µ

cµn φµ(r). (D.1)

Above, µ accounts all indices:

φµ(r) = φα,l,m(r− RI), (D.2)

where l and m are the usual quantum numbers of orbital angular mo-

mentum, RI is the atomic position where the orbital is centered, and α is

the orbital index.

The wave function can be then expanded in a Fourier series as

ψn(r) =

∫
ψn(G)eiG·rdG, (D.3)

which can be rewritten in terms of the Fourier transform of the atomic

orbitals as

ψn(G) =
∑
µ

cµnφµ(G) =
∑
µ

cµn

∫
φµ(r)e−iG·rdr. (D.4)

To compute φµ(G) it is convenient to use the plane wave expansion

e−iG·r = 4π
∞∑
l=0

l∑
m=−l

(−i)ljl(Gr)Ylm(Ĝ)Y ∗lm(r̂), (D.5)
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where jl is the spherical Bessel function and Ylm are the spherical harmon-

ics. Therefore, writing the radial and angular parts of φµ(r) explicitly:

φµ(G) = 4π
∞∑
l′=0

l′∑
m′=−l′

∫
φµ(r)Ylm(r̂)(−i)l′jl′(Gr)Yl′m′(Ĝ)Y ∗l′m′(r̂)dr.

(D.6)

The angular part of the integral can be done using the orthogonality of

spherical harmonics, which reduces the Fourier transform of the basis

orbitals to a radial transformation:

φµ(G) = 4π(−i)l
∫
φµ(r)jl(Gr)drYlm(Ĝ). (D.7)

Finally, writing all the indices explicitly, the plane wave expansion of

an LCAO wave function is given by

ψn(G) =
∑
I,α,l,m

cI,α,l,mn e−iG·RIφα,l.m(G)Ylm(Ĝ), (D.8)

where

φα,l.m(G) = 4π(−i)l
∫
φα,l.m(G)(r)jl(Gr)dr. (D.9)



Appendix E

Basis states in second

qantization

The multiplet wave functions of the adatom are obtained from a

crystal �eld Hamiltonian in terms of Stevens operators. The Hamiltonian

is diagonalized in the basis of total orbital angular momentum and total

spin |MS,ML〉. To obtain the second quantization expression of the basis

states |MS,ML〉 of the
5D term (S = 2 and L = 2), we have started from

the trivial maximum MS = 2 and ML = 2 state given by

|2, 2〉 = c†2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑|0〉, (E.1)

where subindices denote orbital angular momentum z-projection and

spin, respectively, and |0〉 denotes the state with no d electrons. The order

for the operators chosen along the work is placing spin majority operators

on the right, with highest orbital angular momentum z-projection on

the right. The remaining states can be obtained by applying S− and L−
operators. All the states are listed below:

|MS ,ML〉
| 2, 2〉 = c†2↓c

†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑|0〉 (E.2)

| 1, 2〉 =
1√
4

(
c†1↓c

†
2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
2↑ − c

†
0↓c
†
2↓c
†
−2↑c

†
−1↑c

†
1↑c
†
2↑ (E.3)

+c†−1↓c
†
2↓c
†
−2↑c

†
0↑c
†
1↑c
†
2↑ − c

†
−2↓c

†
2↓c
†
−1↑c

†
0↑c
†
1↑c
†
2↑

)
|0〉

| 0, 2〉 =
1√
6

(
c†0↓c

†
1↓c
†
2↓c
†
−2↑c

†
−1↑c

†
2↑ − c

†
−1↓c

†
1↓c
†
2↓c
†
−2↑c

†
0↑c
†
2↑ (E.4)
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+ c†−2↓c
†
1↓c
†
2↓c
†
−1↑c

†
0↑c
†
2↑ + c†−1↓c

†
0↓c
†
2↓c
†
−2↑c

†
1↑c
†
2↑

−c†−2↓c
†
0↓c
†
2↓c
†
−1↑c

†
1↑c
†
2↑ + c†−2↓c

†
−1↓c

†
2↓c
†
0↑c
†
1↑c
†
2↑

)
|0〉

| − 1, 2〉 =
1√
4

(
c†−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑c

†
2↑ − c

†
−2↓c

†
0↓c
†
1↓c
†
2↓c
†
−1↑c

†
2↑ (E.5)

+c†−2↓c
†
−1↓c

†
1↓c
†
2↓c
†
0↑c
†
2↑ − c

†
−2↓c

†
−1↓c

†
0↓c
†
2↓c
†
1↑c
†
2↑

)
|0〉

| − 2, 2〉 = c†−2↓c
†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
2↑|0〉 (E.6)

| 2, 1〉 = c†1↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑|0〉 (E.7)

| 1, 1〉 =
1√
4

(
c†1↓c

†
2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑ − c

†
0↓c
†
1↓c
†
−2↑c

†
−1↑c

†
1↑c
†
2↑ (E.8)

+c†−1↓c
†
1↓c
†
−2↑c

†
0↑c
†
1↑c
†
2↑ − c

†
−2↓c

†
1↓c
†
−1↑c

†
0↑c
†
1↑c
†
2↑

)
|0〉

| 0, 1〉 =
1√
6

(
c†0↓c

†
1↓c
†
2↓c
†
−2↑c

†
−1↑c

†
1↑ − c

†
−1↓c

†
1↓c
†
2↓c
†
−2↑c

†
0↑c
†
1↑ (E.9)

+ c†−2↓c
†
1↓c
†
2↓c
†
−1↑c

†
0↑c
†
1↑ + c†−1↓c

†
0↓c
†
1↓c
†
−2↑c

†
1↑c
†
2↑

−c†−2↓c
†
0↓c
†
1↓c
†
−1↑c

†
1↑c
†
2↑ + c†−2↓c

†
−1↓c

†
1↓c
†
0↑c
†
1↑c
†
2↑

)
|0〉

| − 1, 1〉 =
1√
4

(
c†−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑c

†
1↑ − c

†
−2↓c

†
0↓c
†
1↓c
†
2↓c
†
−1↑c

†
1↑ (E.10)

+c†−2↓c
†
−1↓c

†
1↓c
†
2↓c
†
0↑c
†
1↑ − c

†
−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
1↑c
†
2↑

)
|0〉

| − 2, 1〉 = c†−2↓c
†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
1↑|0〉 (E.11)

| 0, 2〉 = c†0↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑|0〉

| 1, 0〉 =
1√
4

(
c†0↓c

†
2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑ − c

†
0↓c
†
1↓c
†
−2↑c

†
−1↑c

†
0↑c
†
2↑ (E.12)

+c†−1↓c
†
0↓c
†
−2↑c

†
0↑c
†
1↑c
†
2↑ − c

†
−2↓c

†
0↓c
†
−1↑c

†
0↑c
†
1↑c
†
2↑

)
|0〉

| 0, 0〉 =
1√
6

(
c†0↓c

†
1↓c
†
2↓c
†
−2↑c

†
−1↑c

†
0↑ − c

†
−1↓c

†
0↓c
†
2↓c
†
−2↑c

†
0↑c
†
1↑ (E.13)

+c†−2↓c
†
0↓c
†
2↓c
†
−1↑c

†
0↑c
†
1↑ + c†−1↓c

†
0↓c
†
1↓c
†
−2↑c

†
0↑c
†
2↑

−c†−2↓c
†
0↓c
†
1↓c
†
−1↑c

†
0↑c
†
2↑ + c†−2↓c

†
−1↓c

†
0↓c
†
0↑c
†
1↑c
†
2↑

)
|0〉

| − 1, 0〉 =
1√
4

(
c†−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑c

†
0↑ − c

†
−2↓c

†
0↓c
†
1↓c
†
2↓c
†
−1↑c

†
0↑ (E.14)

+c†−2↓c
†
−1↓c

†
0↓c
†
2↓c
†
0↑c
†
1↑ − c

†
−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
0↑c
†
2↑

)
|0〉
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| − 2, 0〉 = c†−2↓c
†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
0↑|0〉 (E.15)

| − 1, 2〉 = c†−1↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑|0〉

| 1,−1〉 =
1√
4

(
c†−1↓c

†
2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑ − c

†
−1↓c

†
1↓c
†
−2↑c

†
−1↑c

†
0↑c
†
2↑ (E.16)

+c†−1↓c
†
0↓c
†
−2↑c

†
−1↑c

†
1↑c
†
2↑ − c

†
−2↓c

†
−1↓c

†
−1↑c

†
0↑c
†
1↑c
†
2↑

)
|0〉

| 0,−1〉 =
1√
6

(
c†−1↓c

†
1↓c
†
2↓c
†
−2↑c

†
−1↑c

†
0↑ − c

†
−1↓c

†
0↓c
†
2↓c
†
−2↑c

†
−1↑c

†
1↑ (E.17)

+c†−2↓c
†
−1↓c

†
2↓c
†
−1↑c

†
0↑c
†
1↑ + c†−1↓c

†
0↓c
†
1↓c
†
−2↑c

†
−1↑c

†
2↑

−c†−2↓c
†
−1↓c

†
1↓c
†
−1↑c

†
0↑c
†
2↑ + c†−2↓c

†
−1↓c

†
0↓c
†
−1↑c

†
1↑c
†
2↑

)
|0〉

| − 1,−1〉 =
1√
4

(
c†−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑c

†
−1↑ − c

†
−2↓c

†
−1↓c

†
1↓c
†
2↓c
†
−1↑c

†
0↑ (E.18)

+c†−2↓c
†
−1↓c

†
0↓c
†
2↓c
†
−1↑c

†
1↑ − c

†
−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
−1↑c

†
2↑

)
|0〉

| − 2,−1〉 = c†−2↓c
†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−1↑|0〉 (E.19)

| − 2, 2〉 = c†−2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑c
†
2↑|0〉

| 1,−2〉 =
1√
4

(
c†−2↓c

†
2↓c
†
−2↑c

†
−1↑c

†
0↑c
†
1↑ − c

†
−2↓c

†
1↓c
†
−2↑c

†
−1↑c

†
0↑c
†
2↑ (E.20)

+c†−2↓c
†
0↓c
†
−2↑c

†
−1↑c

†
1↑c
†
2↑ − c

†
−2↓c

†
−1↓c

†
−2↑c

†
0↑c
†
1↑c
†
2↑

)
|0〉

| 0,−2〉 =
1√
6

(
c†−2↓c

†
1↓c
†
2↓c
†
−2↑c

†
−1↑c

†
0↑ − c

†
−2↓c

†
0↓c
†
2↓c
†
−2↑c

†
−1↑c

†
1↑ (E.21)

+c†−2↓c
†
−1↓c

†
2↓c
†
−2↑c

†
0↑c
†
1↑ + c†−2↓c

†
0↓c
†
1↓c
†
−2↑c

†
−1↑c

†
2↑

−c†−2↓c
†
−1↓c

†
1↓c
†
−2↑c

†
0↑c
†
2↑ + c†−2↓c

†
−1↓c

†
0↓c
†
−2↑c

†
1↑c
†
2↑

)
|0〉

| − 1,−2〉 =
1√
4

(
c†−2↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑c

†
−1↑ − c

†
−2↓c

†
−1↓c

†
1↓c
†
2↓c
†
−2↑c

†
0↑ (E.22)

+c†−2↓c
†
−1↓c

†
0↓c
†
2↓c
†
−2↑c

†
1↑ − c

†
−2↓c

†
−1↓c

†
0↓c
†
1↓c
†
−2↑c

†
2↑

)
|0〉

| − 2,−2〉 = c†−2↓c
†
−1↓c

†
0↓c
†
1↓c
†
2↓c
†
−2↑|0〉 (E.23)
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Laburpena

Gero eta teknologikoagoa den gizarte batak oinarrizko ikerketa bultza-

tu du gaur egun dugun datuak gordetzeko eta prozesatzeko teknologia

murrizte aldera. Bilaketa honek eskala nanometrikoa lortu du azken

hamarkadetan fabrikazio tekniken aurrerapenari esker. Hala ere, egungo

teknologiaren muga �sikoak direla eta, azken urteotan moteldu egin

da Moore-ren legeak aurreikusitako eskalatzea. Bitartean, ikerketa zi-

enti�koaren funtsezko eginkizuna alternatibak aztertzea da, gaur egun

ezarritako erdieroaleen teknologiatik at, datuen tratamenduaren arloan

paradigma berri bat eskainiko dutela espero delarik. Testuinguru hone-

tan, eskala atomikoko egiturek informazioa gordetzeko eta prozesatzeko

materia-unitate txikiena adierazten dute. Hala ere, etorkizun handiko

teknologiak, hala nola konputazio kuantikoa, mekanika kuantikoaren

printzipioetan oinarritzen diren arren, fenomeno kuantikoak agertzeak

erronka handia suposatzen du eskala atomikoko egituren kontrol eta

manipulaziorako.

Tamaina atomikoko egiturak, esate baterako kate atomikoak edo

atomo magnetiko bakarrak, hautagai itxaropentsuak dira besteak beste

datuak gordetzeko gailuak eta bit kuantikoak egiteko, hauek dituzten bizi-

itxaropen luzeko egoera kuantiko magnetikoak direla etas [1–12]. Alderdi

honetan, atomo bakar magnetikoek aparteko eszenatokia eskaintzen dute

hainbat fenomeno interesgarri aztertzeko, hala nola, kitzikapen mag-

netikoak [13–16], elkarrekintza magnetikoak [17–19] edo espin erlax-

azioa eta dekoherentzia [6, 8, 12]. Ildo horretan, aurrerapen nabarmenak

lortu dira nanoegiturak manipulatzeko eta aztertzeko puntako teknika

esperimentalen garapenari esker. Bereziki, espin-polarizatutako tunel-

efektuko mikroskopiaren eta espektroskopiaren [6, 8, 13, 16, 18, 20–30], X

izpien dikroismo magnetiko zirkularren [4, 9, 27, 31–33] eta erresonantzia

paramagnetiko elektronikoaren [3, 7, 10, 30, 34–41] gorakadak ikerketa-

lan aitzindariak bultzatu ditu. Gainera, metodo teoriko berrien garapenak

eta konputazio-ahalmenaren hobekuntzak arlo honetan azterketa teoriko
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zehatzak egiteko aukera ere eman du [5, 42–55].

Arloko punta-puntako ikerketa atomo bakar magnetikoen sistemak

karakterizatzera eta espin-dinamikan parte hartzen duten mekanismo

�sikoak ulertzera bideratua dago, azken helburua atomo bakarren kon-

trola eta egonkortasuna lortzea delarik. Egonkortasun magnetikoa, funts-

ean, atomoaren egitura magnetikoak zehazten du, ingurunearekin duen

elkarrekintzarekin batera [12]. Atomo bakarren sistemetako oinarrizko

egoera eta egoera magnetiko kitzikatuak bereizten dituen energia hand-

iak, anisotropia energia magnetikoa deritzona, magnetizazioaren alder-

antzikatzea �uktuazio termikoetatik babesten du [21, 26, 27, 56, 57]. Hala

ere, nanoegitura hauen izaera kuantikoak berezko �uktuazio kuantikoak

sortzen ditu [50] eta magnetizazioaren tunel efektu kuantikoa ahalbidet-

zen du [58, 59], egoera magnetikoak desegonkortu eta espin erlaxazioa

eragin ohi dutenak.

Atomo bakarren sistemen momentu magnetiko txikiak direla eta,

haien ingurunearekiko elkarrekintzak ere funtsezko zeregina dute beren

espin-dinamikan. Substratu-eroaleko elektroiekiko elkarrekintzak mo-

mentu magnetiko lokalizatua apantailatu dezake eta haren egonkorta-

sunean eragin, Kondo efektua bezala ezagutzen dena [17, 60, 61]. Sub-

stratuko elektroien eragina murrizteko, Cu
2
N, MgO edo grafenoa bezalako

geruza isolatzaileak arrakastaz erabili dira, atomo bakarren egoera mag-

netikoak egonkortuz eta espin erlaxazio denbora luzeak lortuz [4, 11, 14].

Neurketak egiteko erabiltzen diren tunel-elektroien eragina ere esper-

imentalki aztertua izan da [6], baita akoplamenduaren jatorri �sikoa

teorikoki aztertu ere [43, 44]. Erresonantzia paramagnetiko elektron-

ikoaren kasuan, hainbat eredu teoriko proposatu diren arren erreso-

nantzia trantsizioen atzean dagoen funtsezko �sika ulertu nahian [38, 53],

espin trantsizioen jatorria oraindik ezezaguna dugu [41]. Bestalde, inter-

akzio elektronikoek atomo bakarren propietateetan duten eragina oso

ikertua izan den arren, substratuko bibrazioen rolak askoz ere arreta

gutxiago jaso du orain arte. Dena den, askotan espekulatu da elektroi-

fonoi elkarrekintzak espin erlaxazio mekanismo gisa duen eginkizun

erabakigarriari buruz, eta, hain zuzen ere, erlaxazio mekanismoan duten

garrantziaren zantzu argiak ere aurkitu dira [62].

Elektroi-fonoi elkarrekintza deritzona, funtsean, fonoiek egitura elek-

tronikoan duten eragina da. Funtsezko papera betetzen du hainbat

fenomeno �sikotan, hala nola metalen eroankortasun elektrikoan eta erre-

sistibitatean, garraiolarien mugikortasunaren tenperaturaren menpekota-

sunean, erdieroaleen propietate optikoetan edo baita ohiko supereroanko-
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rtasunean ere. Ondorioz, egoera solidoaren �sikaren gai klasikoetako bat

adierazten du eta teoria kuantikoaren lehen egunetatik sakon aztertua

izan da [63–68]. Hala ere, elkarrekintza hau zehaztasunez modelatzeko

beharrezkoak diren konputazio-kostu handiak direla eta, elektroi-fonoi

elkarreraginaren lehen printzipioetako kalkulu kuantitatiboak duela gutxi

baino ez dira eskuragarri izan [69].

Zentzu honetan, atomo bakar magnetikoen espin-bizitzaren eta tran-

tsizio-tasen lehen printzipioetako kalkuluak egiteko zailtasunak neur-

keta esperimentaletan parte hartzen duten mekanismo �sikoen jatorria

egiaztatzea zailtzen du. Izan ere, lehen printzipioetatik elektroi-fonoi

akoplamenduaren ekarpena aztertzeko metodo teoriko sendorik ez da

aurkitu orain arte, atomo bakarren gorputz anitzeko izaera eta gainaza-

leko simulazio batean atomo kopuru handia adierazten duen erronka

konputazionala dela eta. Iman molekularren alorrean, espin-fonoi akopla-

menduaren lehen printzipioetako hainbat kalkulu egin izan dira kimika

kuantikoan garatutako egitura elektronikoko metodo konplexuak erabi-

liz [70–77]. Metodo hauek molekula magnetiko ez-periodikoen gorputz

anitzeko izaeraren deskribapen zehatza ahalbidetzen dute, baina, kostu

konputazionalak direla eta, atomo bakarren super-gelaxka sistemetan

aplikatzea ez da bideragarria.

Tesi honetan, zenbait zenbakizko-metodo garatu eta aplikatu ditugu

elektroi-fonoi elkarreraginak atomo bakar magnetikoetan dituen ondo-

rioak lehen printzipioetatik kontuan hatzeko asmoz. Bereziki, bibrazioek

MgO/Ag(100) gainean metatutako Fe atomo bakarrean duten eragina

aztertzen dugu. Gure kalkuluek lehendik dauden emaitza esperimentalak

ezagutzeko eta ikerkuntza lerro berriak irekitzeko aukera ematen dute

atomo bakar magnetikoen espin-bizitzaren azterketan.

Elektroi-fonoi elkarrekintzaren eragina
Fe/MgO/Ag(100) sistemaren egoera
elektronikoetan

Atomo magnetiko bakarren egitura magnetikoa oso aztertua izan da

teknika esperimentalak erabiliz, baita espin Hamiltondar eredu teorikoak

edota lehen printzipioetako kalkuluak erabiliz ere [12, 42, 44, 45, 52, 54].

Ikerketa hauek atomo bakarren egitura magnetikoaren ulermena hobet-

zen lagundu dute. Horrez gain, atomo bakarrek ingurunearekin duten

elkarrekintza aztertzeak azpian dagoen �sikaren ulermen sakonagoa
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ere ahalbidetu du. Bereziki, substratuaren egoera elektronikoen erag-

ina aztertzeak atomo bakarretan bizi-denbora luzeko egoera kuantiko

magnetikoak aurkitzea ahalbidetu du. Horretarako, substratuaren kristal-

eremuak egitura elektronikoan duen eragina aztertu da, anisotropia ener-

gia magnetikoa handituz [2, 27, 88], eta substratuko elektroiekiko elkar-

rekintza murriztu da, MgO bezalako geruza isolatzaileak erabiliz [4, 21].

Atomo bakar magnetikoetan elkarrekintza elektronikoak duen erag-

ina sakonki aztertu den arren [9, 17, 21, 26, 27, 31, 42, 46, 47, 54, 56, 88–92],

elektroi-fonoi elkarrekintzak propietate magnetikoetan duen eraginari

buruzko ikerketak askoz arreta gutxiago erakarri du. Ezberdintasun hor-

ren arrazoia atomo kopuru handia duen super-gelaxka sistema batean

elektroi-fonoi elkarrekintzaren kalkuluak aurkezten duen erronka izan

delarik.

Egoera honi aurre egiteko, Fe/MgO/Ag(100) atomo bakar magnetiko

sisteman elektroi-fonoi elkarrekintzak egitura elektronikoan duen er-

agina aztertu dugu. Horretarako, sistemaren egitura elektronikoa eta

bibrazionala kalkulatu ditugu lehen printzipioetatik, zilar substratuak

elektroien sakabanatze prozesuan duen garrantzia azpimarratuz. On-

doren, elektroi-fonoi akoplamenduaren indarra kalkulatu dugu. Eliash-

berg funtzioa erabiliz frogatu dugu burdin atomoaren planoko oszilazioak

direla sistemako bibrazio-modu garrantzitsuenak, aurretik Ho atomo

bakarreko sisteman aurkitutakoarekin bat datorrelarik [62]. Gainera,

kalkulatutako λ parametroak eta kuasipartikulen bizi-denborak elektroi-

fonoi elkarrekintzak MgO geruzen kopuru bikoitientzat eta bakoitientzat

desberdintasun kualitatiboak dituela erakusten du. MgO estaldura bikoi-

tien eta bakoitien arteko ezberdintasun hau substratuak duen gainazal-

egoera batek eragiten du, MgO-ren estaldura bakoitietarako sakabanaketa

kanal garrantzitsuena dena; bere ekarpena sakabanaketa-tasa osoaren %

70 da 3 ML estalduraren kasuan, MgO geruza kopuru bikoitientzat, berriz,

bere ekarpena asko murrizten delarik. Azkenik, emaitza nagusi gisa, gure

kalkuluek MgO geruza bakarraren kasuan burdin atomoak pairatzen duen

elektroi-fonoi elkarrekintza ohiko materialen artean aurkitutako elektroi-

fonoi elkarrekintza indartsuenaren parekoa dela erakusten dute, MgO

estaldura handiagoen kasuan elektroi-fonoi sakabanaketa sakonki ez-

abatzen delarik. Hori dela eta, MgO geruza bakarra ez dela elektroi-fonoi

elkarrekintza modu eraginkorrean bahetzeko gai ondorioztatu dezakegu.
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Fe/MgO/Ag(100) sisteman bibrazioek eragindako
espin-erlaxazioa

Nanoegiturak manipulatzeko eta aztertzeko teknika esperimentalen

garapenarekin, atomo bakar magnetikoek espin dinamika eta erlaxazioa

eskala atomikoan aztertzeko aparteko eszenatokia eskaintzen dute [6, 8,

12]. Testuinguru horretan, ezinbestekoa da atomo bakarrek beren ingu-

runearekin duten elkarrekintza ulertzea haien kontrol eta manipulazio

teknikak hobetu, eta konputazio kuantikoa bezalako aplikazioetan erabili

ahal izateko.

Tunel-efektuko espektroskopiaren hazkuntzarekin [13], eredu teoriko

arrakastatsuak proposatu izan dira atzean dagoen funtsezko �sika atze-

mateko [43, 44]. Geroago erresonantzia paramagnetiko elektronikoaren

agerpenak emaitza nabarmenak ahalbidetu ditu bereizmen energian eta

espazialean jauzi bat emanez [3, 7, 10, 34–37]. Hala ere, hainbat eredu

teoriko proposatu diren arren [38, 41, 53], trantsizioen jatorri �sikoa

oraindik ez dago argi. Atomo bakar magnetikoetan aurkitu diren bizi

denbora luzeko egoeren kasuan [4, 6, 8], ingurunearekiko elkarrekintzak

momentu magnetikoak desegonkortzen dituela jakina den arren, esperi-

mentuetan behatzen diren trantsizio-mekanismoen jatorria egiaztatzea ez

da erraza espin-bizitzen eta trantsizio-tasen lehen printzipioen kalkuluak

egiteko zailtasuna dela eta.

Elkarrekintza elektronikoek atomo bakarretan duten eragina sakon

aztertu izan da lehen printzipioetako kalkuluen laguntzarekin [5, 25, 44–

52, 54], baina askoz ere arreta gutxiago jarri zaio substratuaren bibrazioek,

hots, fonoiek, duten eraginari. Hala eta guztiz ere, askotan aipatu izan

da espin-fonoi akoplamenduaren papera atomo bakarren espin-erlaxazio

mekanismo gisa. Iman molekularren alorrean, espin-fonoi akoplamend-

uaren lehen printzipioetako kalkuluek ibilbide luzea dute [70–77]. Hala

ere, gainazaletan jalkitako atomo bakarren kasuan, atomoaren gorputz

anitzeko izaerarengatik eta gainazaleko simulazio batean atomo kop-

uru handiak dakarren erronka konputazionalarengatik, ez da horrelako

kalkulurik aurrera eraman gaur arte.

Tesi honetan, lehen printzipioetako dentsitate funtzionalaren teoria

kalkuluak multiplete atomiko-eredu batekin konbinatzen dituen metodo

bat aurkezten dugu elektroi-fonoi espin erlaxazio denbora aztertzeko.

Espin erlaxazio denbora deskribatzeko ekuazio nagusiaren deribazioa

aurkeztu dugu, formalismoa Fe/MgO/Ag(100) atomo bakarreko siste-

man aplikatuz. Horretarako, burdin atomoaren egitura elektronikoa eta
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bibrazionala aztertu ditugu, Stevens Hamiltondar baten bitartez atomo

bakarraren multiplete egitura kontuan hartuz. Ondoren, burdin atom-

oaren espin bizitza aztertu dugu. Gure kalkuluek sistema berean egindako

neurketa esperimentalekin adostasun ona erakusten dute bizi denbo-

raren magnitude ordenan, aurkeztutako metodoak arazoaren deskrib-

apen egoki baterako beharrezkoak diren ezaugarri guztiak arrakastaz

jasotzen dituela erakutsiz. Horrez gain, gure ereduak espin-fonoi erlax-

azio mekanismorako multiplete-egoeren osagai garrantzitsuenak iden-

ti�katzea ahalbidetu digu, sistema jakin honetako orbital elektroniko

garrantzitsuak zein diren agerian utziz. Gainera, kristal-eremuak espin

bizitzan duen eragina aztertu dugu, etorkizunean espin erlaxazio denbora

luzeagoak dituzten sistemak diseinatzen lagundu dezakeena. Azkenik, es-

perimentuetan aplikatutako kanpoko eremu magnetikoak espin-bizitzan

duen eragina aztertu dugu. Esperimentuetan kontuan hartutako eremu

magnetikoetarako, burdinaren bibrazio modu lokalizatuek zein MgO

substratuko fonoiek espin-bizitzan eragin antzekoa dutela erakutsiz, eta

beraz, substratuaren deskribapen zuzena ere ezinbestekoa dela erakutsiz.

Gure kalkuluek espin-bizitzaren saturazioa ere erakusten du Zeeman ba-

naketak burdin atomoaren planoko modu lokalen energiarekin bat egiten

duenean. Azken hau hatz-marka argia izan daiteke erlaxazio-prozesuan

espin-fonoi elkarrekintzaren ekarpen nagusi bat dagoela esperimentalki

identi�katu ahal izateko.

Azken ondorio gisa, tesi honetan atomo bakar magnetikoen alorrean

ikerketa berri bat aurkeztu dugu, lehen printzipioetako metodoak garatuz

eta aplikatuz, elektroi-fonoi akoplamenduak espin erlaxazio mekanis-

moan duen eginkizuna aztertzeko.
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