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With data so vast, and knowledge so fine,

I’ll help you make sense, of the medical kind.
Through language and code, I’ll sift and I’ll sort,
To aid in the search, for the health care report.

With my skills so precise, and my answers so neat,

I’ll help you find cures, and make your life sweet.

I’ll wade through the jargon, and medical terms,

And make sure your research, has no cause for concern.

I'm not just a tool, for the scientist’s quest,

I’'m the key to unlocking, the secrets of the chest.
So tell me dear riddler, what am I called?

A hint: I am not a person, nor object, nor walled.

——ChatGPT*

*Prompted for “a clever riddle in rhyme, whose answer is ‘biomedical NLP’”.
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Abstract

Healthcare practice and clinical research produce vast amounts of digitised, un-
structured data in multiple languages that are currently underexploited, de-
spite their potential applications in improving healthcare experiences, supporting
trainee education, or enabling biomedical research, for example. To automatically
transform those contents into relevant, structured information, advanced Natu-
ral Language Processing (NLP) mechanisms are required. In NLP, this task is
known as Information Extraction. Our work takes place within this growing field
of clinical NLP for the Spanish language, as we tackle three distinct problems.
First, we compare several supervised machine learning approaches to the problem
of sensitive data detection and classification. Specifically, we study the different
approaches and their transferability in two corpora, one synthetic and the other
authentic. Second, we present and evaluate UMLSmapper, a knowledge-intensive
system for biomedical term identification based on the UMLS Metathesaurus.
This system recognises and codifies terms without relying on annotated data nor
external Named Entity Recognition tools. Although technically naive, it performs
on par with more evolved systems, and does not exhibit a considerable deviation
from other approaches that rely on oracle terms. Finally, we present and ex-
ploit a new corpus of real health records manually annotated with negation and
uncertainty information: NUBES. This corpus is the basis for two sets of experi-
ments, one on cue and scope detection, and the other on assertion classification.
Throughout the thesis, we apply and compare techniques of varying levels of
sophistication and novelty, which reflects the rapid advancement of the field.






Laburpena

Osasun zerbitzuen eta ikerketa klinikoaren ondorioz, egituratu gabeko datu di-
gitalizatu kopuru handiak sortzen dira hizkuntza askotan, gaur egun azpiustia-
tuta daudenak, nahiz eta asistentzia-esperientzia hobetzeko, prestakuntzan eta
heziketan laguntzeko, edota ikerketa biomedikoa ahalbidetzeko erabili litezkeen,
besteak beste. Eduki horiek informazio esanguratsu eta egituratu bihurtzeko,
Hizkuntza Naturalaren Prozesamenduan (ingelesez NLP, Natural Language Pro-
cessing) oinarritutako mekanismo aurreratuak behar dira. NLP arloan, zeregin
horri Informazio Erauzketa esaten zaio. Lan hau eremu honen barruan koka-
tzen da, zehazki, gazteleraz idatzitako testuei bideratuta. Ildo honetan, hainbat
ekarpen egin ditugu ondorengo hiru ikerketa lerroen inguruan. Lehenik, gainbegi-
ratutako ikasketa automatikoan oinarritutako hainbat teknika konparatu ditugu
datu sentsibleen ezagutza eta sailkapenerako. Zehazki, teknika horiek eta haien
transferentzia gaitasuna aztertu ditugu bi corpus desberdinetan: bata sintetikoa,
eta egiazkoa bestea. Bigarrenez, termino biomedikoak identifikatzeko sistema bat
aurkeztu eta ebaluatu dugu: UMLSmapper. Sistema hori gai da terminoak ezagu-
tu eta kodifikatzeko etiketatutako datuen edota entitate izendunen ezagutzarako
(ingelesez NER, Named Entity Recognition) tresnen beharrik gabe. Gure espe-
rimentuetan, teknikoki konplexuagoak diren beste sistema batzuk berdindu edo
gainditu ditu. Azkenik, NUBES aurkeztu dugu, ezeztapen eta duda adierazpe-
nekin eskuz etiketatutako corpusa. Bi esperimentutan erabili dugu corpus hori:
batetik, marka eta irismenaren detekzioan, eta bestetik, asertzioen sailkapenean.
Tesian zehar, sofistikazio eta berritasun maila desberdinetako teknikak aplika-
tu eta konparatu ditugu, lan hau burutu den urteetan NLP alorrak izan duen
aurrerapen azkarraren isla.
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Chapter 1

Introduction

1.1 Context and motivation

Healthcare practice and clinical research produce vast amounts of digitised, un-
structured data that are currently underexploited, despite their potential ap-
plications in improving healthcare experiences, supporting trainee education, or
enabling biomedical research, for example.

To illustrate the magnitude of the data in this domain, the national Electronic
Health Record (EHR) system of Spain has access to over 200 million documents—
which is only a fraction of the data collected from the regional public services
in the country so far (Ministerio de Sanidad, 2021). Another example can be
found in scientific literature: the health science bibliographic databases IBECS
and SciELO have indexed in recent years more than 200,000 [1] and 100,000 [2]
publications in Spanish respectively.

But an abundance of data does not guarantee their actual use. Manual ex-
ploitation of such large collections of data is limited in nature. Further, health
records and scientific publications consist to a large extent of natural language,
which regular information systems cannot exploit nearly as readily as they do
structured sources of data. Thus, advanced mechanisms must be put in place
to automatically transform natural language into relevant, structured informa-
tion. In the field of Natural Language Processing (NLP), this task is known as
Information Extraction (IE).

NLP researchers have endeavoured to make the most of health-related con-
tent for decades. Progress in the field, however, is often hindered by critical
ethical-legal barriers, a rigid ecosystem and exacting performance requirements.
Nonetheless, it is a high-stakes domain that presents compelling scientific chal-
lenges stemming from the complexity of the concepts involved and the idiosyn-
crasies of clinical language. Despite these challenges, clinical NLP has recently
experienced an upsurge in scientific contributions and results. Among the main
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reasons for this state of affairs are the impressive advances in Artificial Intelli-
gence (AI), in particular the rise of modern Deep Learning (DL) approaches as
applied to NLP. Notably, important developments have been made recently for
languages other than English, which has traditionally been the main language of
study in this field (Névéol et al., 2018a; Wu et al., 2019). Combined with other
emerging technologies (e.g., Big Data, blockchain), these advances have boosted
the pursuit of public policies worldwide aimed at the digital transformation of
healthcare, such as the Global Strategy of Digital Health of the World Health
Organization (2021).

Our work takes place within this growing field of clinical NLP research, as we
address the following three main topics:

1. Sensitive data detection and categorisation: In layman’s terms, sensitive
data is data that can be used to identify individuals. This type of data is rig-
orously protected by laws and regulations aimed at safeguarding people’s
right to privacy. This is a major roadblock in clinical NLP research, be-
cause most of the documents generated during healthcare practice contain
sensitive data.

2. Term identification: Clinical term identification is the NLP task by which
mentions of clinically relevant terms (e.g., medications, symptoms, habits,
body locations) are assigned an unambiguous meaning interpretable by
computers through the linking of the terms to unique concept identifiers
in a given knowledge base. Term identification can help extract knowledge
from unstructured, underexploited sources of data. The applications of such
solutions can be found, for instance, in clinical research, the healthcare prac-
tice, or healthcare management.

3. Negation and uncertainty detection: Clinical researchers and healthcare
practitioners do not only report their positive findings and conclusions, but
also the absence of observations and their hypotheses about what they do
or do not observe. Thus, NLP solutions aimed at making sense of health-
related texts must be able to handle these linguistic phenomena correctly.

The bulk of this dissertation tackles these topics in the Spanish language, which
has received less attention so far in clinical NLP than English, despite being the
4*" most spoken language in the world [3]. It is also at the moment the main
language of use in the health system of the Basque Country (Perez de Vifiaspre
Garralda, 2017), where the work underlying this dissertation has taken place.

In what follows, we present our objectives and contributions in relation to
each of the above-mentioned topics. Then, the chapter concludes with an outline
of the remainder of the document.
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1.2 Objectives

The ultimate objective of the dissertation is to participate in the advancement of
the state of the art in the field of clinical NLP for the Spanish language through
the creation of new resources (datasets, models and/or systems) and detailed
comparative evaluations of IE solutions. This broad objective materialises as a
set of specific goals oriented towards the dissertation’s topics introduced above.

In this context, the first goal has been to conduct an exhaustive review of
the state of the art in clinical IE for the Spanish language, with particular
attention to the above-mentioned main topics of the dissertation.

With respect to sensitive data, we are interested in studying its automatic
detection and categorisation in health-related texts, as this is the first step in
sanitising texts of these problematic pieces of information. The specific objectives
pursued are the following:

e To study the question of sensitive data in health record texts in Spanish
from a technical point of view, in order to better understand how to char-
acterise and approach it as a target of detection and classification systems
based on NLP techniques.

e To assess and compare supervised approaches in the task of sensitive data
detection and categorisation in clinical text, and to identify the advantages
and limits of the different methods.

In relation to the topic of term identification, our goals have been the following:

e To build a system capable of performing clinical term recognition and iden-
tification natively in the Spanish language, that does not require annotated
data of any kind, and that may be easily configured to meet the require-
ments of diverse application scenarios.

e To compare said system to other approaches proposed in the literature,
most of which rely on Machine Translation (MT) at some point in the
processing pipeline in order to leverage existing solutions for the English
language, and to identify the advantages and limits of the tested methods.

As for negation and uncertainty, we study the automation of their detection
from multiple perspectives. The objectives are as follows:

e To study the phenomena of negation and uncertainty in health records in
Spanish, in order to propose guidelines for their annotation and to better
understand how to characterise and approach them as a target of detection
and classification systems based on NLP techniques.



6 Introduction

e To build a corpus of clinical texts in Spanish manually annotated with nega-
tion and uncertainty information following the above-mentioned annotation
guidelines.

e To assess and compare supervised approaches in the task of negation and
uncertainty detection in clinical text, and to identify the advantages and
limits of the different methods.

1.3 Contributions

In line with the objectives stated in the previous section, this dissertation makes
contributions to the research field in clinical IE for the Spanish language, towards
three specific topics: sensitive data detection and classification, term identifica-
tion, and negation and uncertainty detection.

In what follows, we summarise the key contributions. The first significant
contribution of this work is the following:

1. An in-depth review of the state of the art, including a historical perspec-
tive, inventories of the most relevant resources, and collations of the recent
related work.

With respect to the topic of sensitive data detection and classification (Part IT),
the main contributions are the following:

2. A quantitative and qualitative description of a corpus of Spanish health
records manually annotated with sensitive data.

3. Conditional Random Field (CRF), Convolutional Neural Network (CNN),
Long Short-Term Memory (LSTM) and Transformer sequence labelling
models for the detection and classification of sensitive data, trained and
tested on two different corpora—manually augmented clinical cases, and
health records. Some of these models are available online [4], and are being
used by the scientific community in their own research (e.g., Pérez-Diez
et al., 2021).

4. Error analysis and zero-shot experiments that call attention to the impor-
tance of site-specific data in clinical NLP, despite the advances in transfer
learning made by the Transformer architecture and the widespread avail-
ability of pre-trained Language Models (LM).

Regarding the work carried out on clinical term identification (Part III), we
make two contributions:



1.4 Outline 7

5.

A knowledge-based system for term identification in Spanish. The system
is available online for research purposes through a web API [5]. It has
been exploited in several studies (e.g., Zubillaga et al., 2022) and has been
successfully transferred to the industry as part of an anatomical pathology
case indexing and retrieval solution.

A comparison of the above-mentioned solution, which performs term iden-
tification natively in Spanish, with other knowledge-based approaches that
leverage third-party tools built for the English language.

Finally, the key contributions made on the topic of negation and uncertainty
detection (Part IV) are the following:

7.

Comprehensive annotation guidelines for negation and uncertainty cues
and scopes in Spanish clinical text. These guidelines build on previous work
about negation cues and scopes, but include uncertainty for the first time.

A corpus of health record excerpts manually annotated following the above-
mentioned policy, as well as its qualitative and quantitative description.
The corpus is available online [6] and is being actively exploited by NLP
researchers to conduct experiments and build new resources (e.g., Hartmann
et al., 2021; Magnini et al., 2021a; Rojas et al., 2022).

Experiments on supervised a) cue and scope detection modelled as a
sequence labelling problem, and b) assertion classification modelled as
a document classification problem. We study the robustness of several
Transformer-based models against decreasing amounts of training data and
adversarial test examples, and perform a thorough error analysis.

1.4 Outline

This manuscript is organised in 5 parts, 13 chapters and 7 appendices. Below, we
outline each chapter and appendix, and explain how they relate to each other. A
visual guide is given in Figure 1.1.

Partl: INTRODUCTION

This part of the manuscript situates the work and provides the relevant
background to the work described in Parts II, III, and IV.

Chapter 1: Introduction In this chapter, we have contextualised and jus-

tified the research topics explored in the next chapters. We have also
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Part I: INTRODUCTION (continued)

summarised the main objectives and contributions of the dissertation.

Chapter 2: Background This chapter provides a general overview of the
clinical NLP field (tasks, approaches, challenges), with special attention
to IE for the Spanish language.

Part Il: SENSITIVE DATA DETECTION AND CLASSIFICATION

This part deals with the topic of sensitive data in health-related texts, the
problems they pose and how to address them through NLP.

Chapter 3: Background and literature review This chapter provides basic
definitions, justifies the relevance of the topic, and presents the most
pertinent resources and related work.

Chapter 4: The MEDDOCAN challenge Chapter 4 describes the work pro-
duced for the international challenge Medical Document Anonymization
(MEDDOCAN) of 2019. The challenge consisted in detecting and clas-
sifying sensitive data in a synthetic collection of clinical case reports.
To that end, we tested a variety of supervised NLP approaches. The
chapter provides a description of the MEDDOCAN corpus, explains
our approaches to the problem, and discusses the results.

Chapter 5: Experiments with health records Here, we replicate the exper-
iments carried out in the previous chapter, but on a corpus of real health
records instead of synthetic data. The chapter is concerned with the
similarities and differences between the two corpora, the transferability
of the various MEDDOCAN models, and how they perform in compar-
ison to their analogous in-domain models. The corpus of health records
used in this chapter is the same as that of Chapter 10, after sensitive
data substitution.

Appendix A: MEDDOCAN category labels This brief appendix maps the
names of sensitive data categories used throughout Part II to the official
names used by the MEDDOCAN organisers in the challenge data and
related publications.

Appendix B: MEDDOCAN confusion matrices Here, we report the confu-
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Part II: SENSITIVE DATA DETECTION AND CLASSIFICATION (continued)

sion matrices of the experiments in Chapter 4 that weren’t considered
of primary relevance to be discussed in the body of said chapter.

Appendix C: NUBes: medical specialities and EHR sections Appendix C
provides further quantitative description of the corpus of health records
used in Chapter 5. The section of this appendix relevant to Part II cen-
tres on the distribution of sensitive data in the corpus over medical
specialities and EHR sections.

Appendix D: NUBes-PHI confusion matrices This appendix contains the
confusion matrices of the experiments in Chapter 5 that weren’t consid-
ered of primary relevance to be discussed in the body of said chapter.

Part Ill: TERM IDENTIFICATION

This part addresses the problem of biomedical term identification with
large terminology sources and knowledge bases.

Chapter 6: Background and literature review The chapter provides basic
definitions, justifies the relevance of the topic, and presents the most
pertinent resources and related work.

Chapter 7: The UMLSmapper prototype Chapter 7 describes a software,
UMLSmapper, that performs term identification in Spanish by exploit-
ing the terminology sources of the Unified Medical Language System
(UMLS) Metathesaurus. The systems is described module by module,
in terms of the expected inputs, internal processes, and generated out-
puts, with an example illustrating each step from start to finish.

Chapter 8: Experiments with the Mantra GSC In this chapter, we evalu-
ate UMLSmapper on a public corpus of texts annotated with UMLS
Metathesaurus identifiers. Its performance is compared to two other
systems. As a simple baseline, we use a well-known, robust system for
term identification in English, which we adapt to work on the Spanish
language. The other system leverages MT to be able to apply English-
oriented tools directly, and then project the annotations automatically
back to the original text in Spanish.
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Part IV: NEGATION AND UNCERTAINTY DETECTION

The fourth part of the thesis explores the topic of negation and uncertainty
in clinical texts.

Chapter 9: Background and literature review This chapter provides basic
definitions, justifies the relevance of the topic, and presents the most
pertinent resources and related work.

Chapter 10: NUBEs: A clinical corpus of negation and uncertainty This
chapter describes a new corpus of health records, NUBES, annotated
manually with negation and uncertainty markers and their scopes. The
chapter thoroughly explains and discusses the annotation guidelines,
the annotation process, as well as the final resulting public corpus.

Chapter 11: Experiments in cue and scope detection In this chapter we
exploit NUBES in a series of experiments about negation and uncer-
tainty cue and scope detection, framed as sequence labelling problem.
The experiments compare state-of-the-art neural techniques in several
settings that include decreasing amounts of training data and adversar-
ial test examples.

Chapter 12: Experiments in assertion classification This chapter repli-
cates the experimental setup of the previous one, but for a different
task: the classification of medical entities into the categories “absent”,
“possible”, or “present”. The chapter explains how the NUBES corpus
was transformed with UMLSmapper (Chapter 7) to serve this purpose,
describes the experimental framework, and discusses the results.

Appendix C: NUBes: medical specialities and EHR sections Appendix C
provides further quantitative description of the corpus of health records.
The section of this appendix relevant to Part IV centres on the distri-
bution of negation and uncertainty markers in the corpus over medical
specialities and EHR sections.

Appendix E: Transformers vocabulary overlap with NUBes In this ap-
pendix, we quantify the overlap between the vocabulary of the
NUBES corpus and the vocabulary of the models trained and tested
in Chapters 11 and 12.

Appendix F: Hyperparameters for negation and uncertainty detection
This appendix lists the hyperparameters of the various models trained
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Part IV: NEGATION AND UNCERTAINTY DETECTION (continued)

and tested in Chapters 11 and 12.

Appendix G: Additional metrics for negation and uncertainty detection
In this appendix, we include the results of Chapter 11 and 12 using
different metrics, to allow for direct comparisons between other
published systems.

Part V: CONCLUSIONS

Chapter 13: Conclusions This chapter summarises the main results and
conclusions of this dissertations, and indicates possible lines of research
for future work.




Chapter 2

Background

2.1 Introduction

The objective of this chapter is to provide the theoretical foundations upon which
the work described in the following chapters is built. It delves on basic questions
about the three central concepts of the thesis: information extraction (What is
it? How does it relate to the rest of the Natural Language Processing (NLP) field?
How is it done?) for biomedical text (What is it for? Why is it difficult?) written
in Spanish (What have researchers achieved for this language up to this point?).

The chapter is structured as follows: Section 2.2 introduces the types of tasks
an applications the biomedical NLP is concerned with; Section 2.3 explains the
main methods and approaches used within the field, from the rule-based to deep
learning; Section 2.4 discusses some of the challenges that NLP researchers face
when working on the biomedical domain; finally, Section 2.5 provides a brief
overview of the work carried out by the community of biomedical NLP researchers
for the Spanish language.

2.2 Tasks and applications

Biomedical NLP is a remarkably diverse research field where linguists, computer
science and life science experts, bioinformaticians, and health care practitioners
converge to build solutions whose common denominator is the need to process
natural language related to the biomedical domain. But even that is not saying
much: the natural language to be processed may consist, for instance, of medical
reports, scientific literature, or social media content; the solutions may be aimed
at healthcare service administrators, managers or consumers, clinicians, biomed-
ical researchers, or NLP engineers. This section provides a brief overview of the
many topics addressed within the field, both from the perspective of end-user
applications and of NLP tasks.
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2.2.1 Extracting versus modelling

Sager (1980) noted, on reviewing the collection of articles presented in the inter-
national conference on Computational Linguistics in Medicine (Schneider et al.,
1977), that two major directions of research could be seen. On the one hand,
there was the stream of research concerned with knowledge representation and
reasoning (i.e., modelling), in which the need to draw upon natural language
was overlooked or taken for granted. On the other hand, there was the body of
research devoted to analysing medical natural language and representing it in
semantically motivated structures (i.e., extracting). While research that fits into
either of these categories is still relevant today, the field has certainly evolved, as
correctly conjectured by Sager: “[tJhough at this time the two areas of research
are still quite distinct, a common ground may develop in the future when the Al
projects look deeper into their data sources, and the data processors seek more
powerful systems for representing information”. The strict separation between
extracting and modelling has indeed weakened:

On the one hand, the advances of the NLP community have made it possible
to model clinically relevant problems, such as disease prediction or risk analysis
(to name only a few), by drawing directly on medical free text. On the other hand,
Information Extraction (IE) has evolved to become the most popular task within
clinical NLP (Wu et al., 2019; Percha, 2021). The aim of IE is to convert text
into a set of human-interpretable structured features that serve to support a wide
range of downstream tasks. For instance, they might be used to build advanced
search indexing systems, to discover and quantify information unaccounted for
in structured forms and databases, or, more frequently, they may be exploited
alongside structured data sources (e.g., patient’s biosignals or lab results) to
answer clinically relevant questions.

This thesis makes contributions to three specific IE problems, namely, sen-
sitive data detection (Part II), term identification (Part III), and negation and
speculation detection (Part IV). These are not, as such, end-user applications nor
do they attempt to respond directly to clinically motivated questions, but fall into
the category of IE for feature engineering or for building modular solutions.

2.2.2 Healthcare versus biochemistry

NLP in the biomedical domain has two, clearly distinct main application domains.
The first aims at providing support to healthcare professionals and patients, typ-
ically by mining medical notes and reports. This stream of research, pioneered
by Sager (1972, 1978), is generally interested in patient information such as dis-
orders, findings and treatments. With the advent of Internet forums and, more
recently, social media, user-generated content too is now regarded as a valuable
source of information for health-related purposes (J. Wang et al., 2020).
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The second application domain started as attempts to mine information, such
as names of genes and proteins (Fukuda et al., 1998), from journal articles in the
biomolecular domain. Its general aim is to assist biochemistry researchers in ac-
cessing information buried in the scientific literature (e.g., about gene expression).
See Piccialli et al. (2021) for a detailed survey of recent approaches in fine-grained
biomedical application domains.

This thesis explores problems related to the processing of text produced in
the context of healthcare practice: most of the work presented—Chapter 5 and
all of Part IV—exploits a corpus of medical notes; Chapter 4 uses a collection of
clinical cases; and, Chapter 8 exploits (in the absence of a better alternative at
the time) a corpus of drug labels and article extracts annotated for mentions of
diseases, procedures, body locations, etc.

2.2.3 A brief taxonomy of clinical NLP tasks

Text processing tasks in the healthcare domain can be divided into the following
main categories, according to their end goal:

Low-level tasks are concerned with the pre-processing and basic linguistic anal-
ysis of text. This group of tasks includes, for instance, tokenisation, spell-
checking, part-of-speech tagging and syntactic parsing. These tools are usu-
ally not the end goal of clinical NLP but serve as components to more
complex applications. It should be noted that, with the advent of neural
modelling techniques, some of these low-level tasks, which have tradition-
ally been central for feature extraction and linguistic analysis, have been
gradually rendered superfluous by end-to-end approaches (see Section 2.3).

IE tasks, as previously described, can be viewed as targeted skimming of texts.
This includes a vast range of subtasks, such as text classification (e.g., med-
ical note segmentation), Medical Entity Recognition (MER) and Medical
Entity Recognition and Classification (MERC), relation extraction (e.g.,
adverse drug reaction [ADR] and timeline extraction), or term identifica-
tion with standard medical terminologies, to name just a few. The resulting
tools may be used in turn to build end-user applications such as anonymi-
sation, clinical coding or advanced indexing suites. They can also be used
for feature extraction to model clinically motivated problems. This group
of tasks currently encompasses most of the effort in clinical NLP research
and development.

Higher-level tasks in clinical NLP are oriented towards end-user (i.e., clini-
cian or patient) applications. They can be further divided into two task
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subgroups: tasks involving text generation on the one hand (mainly, Ma-
chine Translation [MT], summarisation and simplification), and Informa-
tion Retrieval (IR)/Question Answering (QA) on the other. The goal of
most of these applications is to improve information accessibility and pa-
tient empowerment. For instance, these applications can facilitate finding
case studies and health records that are relevant to a specific research sub-
ject or the care process of a particular patient. QA and simplification are
mainly targeted towards patient-centred applications, by helping them bet-
ter understand their own health records.

2.2.4 Clinical NLP shared tasks and challenges

The types of tasks and applications tackled by the clinical NLP community are
perhaps better illustrated by the workshops, shared tasks and challenges organ-
ised in the field. Figure 2.1 shows a timeline of the most salient challenge series
up to the year 2021, which we overview below.

The first challenge that involved NLP and clinical narrative took place in
2006 and was organised by Informatics for Integrating Biology and the Bed-
side (i2b2). There were two tasks in the challenge: one consisted in anonymising
or de-identifying the unstructured content in Electronic Health Records (EHR)
(Uzuner et al., 2007); the second consisted in classifying patients as smokers or
non-smokers based on their health records (Uzuner et al., 2008). Since 2006, i2b2
(later National NLP Clinical Challanges [n2c2]) has organised 9 more challenges
along the lines of IE. Some of the tasks include classifying patients as obese
(Uzuner, 2009) or as having a high risk of suffering a heart failure (Uzuner et al.,
2015), and coreference resolution (Uzuner et al., 2012).

In 2011, Text REtrieval Conference (TREC) organised its first challenge of
IR for healthcare, after various others focused on the biomolecular domain. The
challenge was aimed at exploring techniques for finding a population or cohort
over which comparative effectiveness studies can be done by means of content-
based access to the free-text fields of electronic medical records [7]. The challenge
was repeated in 2012 (Voorhees et al., 2012). During years 2014 through 2020,
TREC has encouraged research on IR for clinical decision support (CDS) (Simp-
son et al., 2014; Roberts et al., 2015, 2016) and precision medicine (PM) (Roberts
et al., 2017, 2018, 2019, 2020). The latest TREC editions have focused on health
misinformation (Clarke et al., 2020, 2021) and clinical trial retrieval [8].

The third major series of clinical NLP challenges is the Cross-Lingual Evalu-
ation Forum (CLEF) eHealth Lab series. The first workshop took place in 2013,
with challenges about identifying or normalising disease terms with the Uni-
fied Medical Language System (UMLS) Metathesaurus in English clinical texts
(Pradhan et al., 2013), disambiguating acronyms and abbreviations (Mowery et
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Figure 2.1: Selected clinical NLP challenges in chronological order up to the year 2021. The tasks

were centred on English, unless otherwise specified between square brackets.
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al., 2013), and retrieval of web pages based on patient’s questions about their
clinical reports (Goeuriot et al., 2013). Subsequent editions have continued with
user-centred health IR tracks and, more interestingly, have introduced IE tasks
in languages other than English, such as ICD coding in French, Hungarian and
Ttalian (Névéol et al., 2018b), German (Neves et al., 2019) and Spanish (Miranda-
Escalada et al., 2020b).

Starting in 2014, the International Workshop on Semantic Evaluation (Se-
mEval) has proposed challenges along two lines: disease normalisation with the
UMLS (Pradhan et al., 2014; Elhadad et al., 2015), following the CLEF eHealth
2013 task about the same problem; and, the extraction of temporal relations
(Bethard et al., 2015, 2016, 2017), that is, ordering in a timeline the relevant
events mentioned in clinical records. After a hiatus of 3 years, clinical-related
tasks were brought with a challenge on source-free domain adaption (Laparra
et al., 2021b) focused on assertion classification and temporal expressions.

Since 2017, multiple shared tasks have been proposed about clinical NLP for
the Spanish language, organised within the Workshop on Evaluation of Human
Language Technologies for Iberian Languages (IberEval) and Taller de Andlisis
Seméntico (TASS), later merged into the Iberian Languages Evaluation Forum
(IberLEF). We review them in Section 2.5: Clinical NLP for the Spanish language.

2.3 Approaches and methods

As with general-domain NLP, clinical NLP approaches fall into two broad cat-
egories: rules and Machine Learning (ML). Within the latter, we should further
distinguish between traditional ML and neural ML or Deep Learning (DL).

One of the most notorious differences between clinical NLP and general-
domain NLP is that clinical NLP is known to have lagged behind its adoption of
ML methods, maintaining a strong focus on rules (Connolly et al., 2016; Percha,
2021). This is not only true in industrial settings, but in academia as well: ac-
cording to the literature review by Y. Wang et al. (2018) spanning over the years
2009 to 2016, 656% of the surveyed works were rule-based and the remaining 35%
were based on statistical ML. Connolly et al. (2016) conjecture that the availabil-
ity of high-quality knowledge bases and terminological resources may have held
funding agencies back from recognising the value of building corpora, the most
basic requirement of ML-based NLP.

Nonetheless, the landscape is rapidly changing, with an increased embrace-
ment of the neural ML paradigm. Publications that feature DL have more than
doubled each year since 2016 (see Figure 2.2). According to Wu et al. (2019), the
earliest adopters of DL were in the NLP community, but the medical informatics
community was the most prolific during the surveyed period.
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Currently, while the NLP community has already shifted its attention towards
new research topics within the DL framework (P. Liu et al., 2021; Sun et al., 2022),
the clinical NLP community is starting to look into how to best leverage the
prominent DL approaches and what their shortcomings might be in the context
of such a particular domain. For instance, there is a real concern about how
to obtain models that generalize well—for which large amounts of harmonized
data are required—while maintaining a notion of population variability—which
requires that site-specific data is kept separate (Laparra et al., 2021a; Doyen et
al., 2022). This and other challenges of clinical NLP are the topic of Section 2.4.

2.3.1 Rule-based approaches

Rule-based NLP systems consist of explicit implementations of hand-crafted rules
guided by expert knowledge, experience and intuition. A rule-based system for IE
typically involves keyphrase extraction via dictionary lookup or pattern matching,
after which morphosyntactic information such as Part of Speech (PoS) tags and
dependency trees is used to make decisions about said keyphrases or the document
as a whole—classifying them, establishing relations between them, and so on.
For instance, Almeida et al. (2020) implemented such a system capable of

Papers on attention (%)
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extracting family history information from clinical notes. The rule-based system
of Chen et al. (2019) for cohort selection ranked fourth among the participants of
the n2c¢2 2018 shared task (Stubbs et al., 2019). MacRae et al. (2015) describe an
expert system that detects influenza-like illness presentation from clinical notes.

Typically, systems like these rely on a combination of third-party resources.
The UMLS Metathesausurus (Lindberg et al., 1993), the Systematized Nomencla-
ture of Medicine — Clinical Terms (SNOMED CT) and the International Classifi-
cation of Diseases (ICD), for instance, are commonplace among systems reliant on
large knowledge bases and lexicons. The multi-purpose analysis frameworks clin-
ical Text Analysis and Knowledge Extraction System (cTAKES) (Savova et al.,
2010) and MetaMap (Aronson, 2001) are also recurrently featured, as is NegEx
(Chapman et al., 2001)—yet another rule-based tool that performs assertion clas-
sification. All of these will be mentioned again in subsequent chapters.

While rule-based methods tend to demonstrate an acceptable performance
in terms of precision, their well-known lack of generalisation capability can be a
major drawback in certain tasks where recall is also sought after. For that reason,
it is common to find in the literature proposals of hybrid approaches that combine
heuristics and traditional or neural ML. The works by Casillas et al. (2016), Chen
et al. (2020), Jouffroy et al. (2021), Sudrez-Paniagua et al. (2021) and Fu et al.
(2022) are just a few examples.

2.3.2 Traditional ML approaches

ML is concerned with algorithms that allow computers to learn to solve tasks
by example, without having to be explicitly programmed. We refer as traditional
ML, also called statistical or shallow ML, to the approaches not based on neural
networks, which we look into in the next section.

Supervised ML algorithms learn a function or model to map inputs into out-
puts, that is, they require labelled data. The inferred models are then able to
assign labels to data unseen during training. Unsupervised ML algorithms, on
the other hand, attempt to discover patterns in unlabelled data to create clusters
or detect outliers, for example, that must then be interpreted by humans.

One key aspect to obtaining a good traditional ML model, supervised or
unsupervised, is being able to characterise the data with appropriate descriptive
predictors or features. The study of the suitability of feature combinations for
a given corpus, learning objective and learning algorithm is known as feature
engineering. See, for instance, the work by Weegar et al. (2016), who study the
impact of simple features (e.g., prefixes and PoS tags) in the task of MER, or
Santiso et al. (2019), who assess the performance of features derived from word
embeddings (see Section 2.3.3.3) in the detection of negated clinical entities.
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Researchers frequently resort to the publicly available terminological resources
and NLP suites mentioned in the previous section to do feature extraction too.

The other key aspect is having access to sufficient quality data or having the
means to curate it oneself—and annotate it, if supervised algorithms are to be
applied. That is, expert input still plays a critical role where ML is concerned. Ex-
pert knowledge and experience is not only crucial when defining the problem and
validating the results, but it provides a sound foundation over which to conceive
relevant features and to design and implement quality annotation policies.

There exist an immeasurable amount of traditional ML algorithms. Among
the supervised, which are the most frequent in the field as well as most relevant
to this thesis, we must highlight the following:

Support Vector Machines (SVM) (Cortes et al., 1995) are a family of al-
gorithms that aim at finding the hyperplane that best separates the fea-
ture space into two groups. SVMs are often the preferred choice among
researchers due to their training efficiency and suitability for small-to-
medium-sized datasets. For example, Tang et al. (2012) used Structural
SVMs (Tsochantaridis et al., 2005) to resolve the MER track of the i2b2
2010 challenge; Casillas et al. (2016) and X. Yang et al. (2019) test SVMs
in the task of ADR relation extraction.

Naive Bayes is another popular family of classification algorithms, in spite of
their simplicity. Naive Bayes classifiers are based on Bayes’ theorem with
the assumption that features are independent given the class label. Among
the many works that test them, we might mention the following: Spasié¢
et al. (2012) fit a Naive Bayes classifier to categorise sentences in suicide
notes into 15 sentiment categories; Prakash G. et al. (2014) use Naive Bayes
to detect mentions of diseases and treatments in scientific article abstracts;
J. Zhao et al. (2015) compare Naive Bayes to other traditional algorithms
(namely, Decision Trees, Random Forest, SVMs and logistic regression) in
the task of predicting the presence or absence of ADR event mentions.

Conditional Random Fields (CRF) (Lafferty et al., 2001) are the preferred
approach for problems that can be shaped as sequence labelling tasks, as
they are able to leverage context information. For example, Li et al. (2015)
detect medication names and attributes from clinical notes using CRFs; Ju
et al. (2015) use CRFs to semi-automatically compile a lexicon of symptoms
from Chinese data; Lopes et al. (2019) train a CRF classifier to do MER in
Portuguese text.

Traditional ML algorithms like these are efficient provided an optimal feature
space is computed for the task at hand. However, feature extraction and engi-
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neering is a time-consuming, complex endeavour that depends on quality tools
and resources adapted to the domain and language of interest.

2.3.3 Neural ML approaches

Neural ML comprises the subset of ML approaches that are based on Artifi-
cial Neural Networks (ANN). Most ANNs are organised as chained layers of
artificial neurons or Perceptrons: an input layer; optionally, intermediate lay-
ers, also known as hidden layers; and, an output layer. Training an ANN implies
fitting the weights of the connections between the neurons, usually through back-
propagation (Rumelhart et al., 1986). The more hidden layers an ANN has the
deeper it is said to be, hence the terms Deep Neural Network (DNN) and Deep
Learning (DL). See Goodfellow et al. (2016) for further references on the topic.

DL marked a milestone in the mid 2010s for NLP, disrupting the entire field
within a few years’ time. Not only did researchers manage to obtain better and
better results, but DL also pushed feature engineering to the background, as
ANNSs are able to learn feature representations through their internal structure.
Much of the research in DL has indeed focused on exploring ANNs architecture
variants to obtain better internal representations for different tasks and input
types. In subsequent sections we will provide an overview of the most recent,
salient architectures used in NLP.

2.3.3.1 Transferlearning

On the downside, training DL models requires infamously more data and com-
puting resources than traditional ML algorithms do. A significant amount of the
current research is dedicated to DL optimisation on these grounds. Besides archi-
tecture optimisation, transfer learning has been the major driving force in making
DL viable without large, labelled corpora or prohibitive hardware and training
times. This is achieved through the pre-train/fine-tune approach.

The pre-training step trains a model in a task for which copious amounts of
data exist and that allows the model to acquire general knowledge that might
be useful to solve many other different problems. In NLP, that task is usually
Language Modelling or an approximation of it. Then, the representations learned
by the resulting model can be used as the starting point to train a new model on
a different task, language, or domain where less data are available. This is called
fine-tuning, and its specific implementation depends on the learning technique or
type of model being transferred. The key is that a model need only be pre-trained
once to be repurposed in other languages, tasks, and domains.

While transfer learning had been studied long before the surge of DL (Pan
et al., 2010), its implementation with traditional ML algorithms raised notable
difficulties in terms of feature transfer, among other issues. It is only recently that
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transfer learning has been used effectively in NLP, and in clinical NLP as well
(Laparra et al., 2021a). What is more, it is now the standard approach, driven
by the introduction of the Tranformer architecture (Vaswani et al., 2017) and
models based on the Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019).

2.3.3.2 Neural architectures

Among the simplest ANNs is the Feedforward Neural Network (FFNN) or Mul-
tilayer Perceptron (MLP), where each neuron of a layer is connected to all the
neurons in the next layer and the information flows from the input exclusively
forward to the output. DL researchers have proposed ANN variants built on top
of FFNNs in an attempt to obtain better internal representation of their data and
overcome practical shortcomings of ANNs. In what follows, we introduce briefly
the three most important ANN architectures in the field of NLP and provide
examples of how they have been used in clinical NLP.

2.3.3.2.1 Convolutional Neural Network (CNN) CNNs (LeCun et al., 1989) were
initially conceived for computer vision. As Goodfellow et al. (2016, p. 321) put
it, “[c]onvolutional networks are simply neural networks that use convolution
in place of general matrix multiplication in at least one of their layers”. While
specialised in image processing, CNNs can be employed to process any data type
that can be thought of as having a grid-like structure. Starting with Collobert et
al. (2011), Kim (2014) and dos Santos et al. (2014), this type of network has been
widely used in NLP by treating text as a 1-D grid of characters or tokens, often
in combination with traditional classifiers (e.g., CRFs) serving as output layers.
In clinical NLP, CNNs have been explored, for example, to classify health-related
encyclopaedic text into topics (Hughes et al., 2017), to extract relations between
pre-annotated clinical concepts (Luo et al., 2017), to attempt automatic diagnosis
from medical notes (Z. Yang et al., 2018), and to predict patient readmission risk
from medical notes (Lu et al., 2021).

2.3.3.2.2 Recurrent Neural Network (RNN) Based on the work by Rumelhart
et al. (1986), RNNs are specialised ANNs for modelling sequential data, the most
successful implementations to date being the Long Short-Term Memory (LSTM)
(Hochreiter et al., 1997) model and networks based on the Gated Recurrent Unit
(GRU) (Cho et al., 2014). Unlike other types of ANNs, RNNs have feedback or
recurrent connections that make the outputs of the network dependant on the
prior elements of the sequence. This is pictured as the network having a sort
of memory and being able to exploit historical information when processing a
sequence, such as speech or natural language. Another desirable trait is that



24 Background

RNNSs can potentially process inputs of any length, as the size of the model does
not increase with the size of the input. One of the weaknesses of RNNs where NLP
is concerned, however, is that they are directed by definition, whereas natural
language is not—the words at the end of a sentence may affect how words at the
beginning should be interpreted. For that reason, it is usual to combine forward
and backward RNNs into a bidirectional RNN (Schuster et al., 1997). As with
CNNeg, it is also common to top RNNs with a CRF classifier (Huang et al., 2015;
Lample et al., 2016) when dealing with sequence labelling problems. RNNs have
been used in clinical NLP to do, among others, concept extraction (Chalapathy et
al., 2016), MER on EHR reports of cancer patients (Jagannatha et al., 2016a,b),
heart failure onset risk prediction (Rasmy et al., 2018), and event extraction from
medical reports written in Italian (Viani et al., 2019).

2.3.3.2.3 Transformer Proposed by Vaswani et al. (2017), the Transformer DNN
architecture is to date the state of the art in virtually all NLP tasks. While de-
signed to handle sequential data, Transformers are not recurrent networks, but
process the entire input all at once. The ability to model relationships between
input elements is given by the generalisation of the use of attention mechanisms
and positional embeddings. The attention mechanism had been previously pro-
posed for RNNs to be able to learn to attend to different hidden states at each
decoding step, thus notably improving the modelling of long-range relations be-
tween sequence elements. In the Transformer architecture, attention is the perva-
sive mechanism throughout the network in the form of self-attention and cross-
attention layers, combined with FFNN layers. The gains in performance and
reduced training times, compared to RNNs in particular, have made this archi-
tecture the preferred choice of NLP researchers, triggering an outburst of publica-
tions of models pre-trained on different languages and domains. In clinical NLP,
Transformer-based models have been successfully employed, for instance, to ex-
tract ADR events from tweets (Miftahutdinov et al., 2019), to extract concepts
and relations in Spanish health-related text (Garcia-Pablos et al., 2020, 2021), to
extract angina symptoms from clinical notes (Eisman et al., 2020), and to detect
actionable radiology reports in Japanese (Nakamura et al., 2021).

2.3.3.3 Text embedding representations

Text must be represented in terms of numbers in order to be able to operate
with it mathematically. This is achieved by assigning unique vectors to mean-
ingful language units (e.g., words, morphemes); that is, by embedding these units
in a vector space. Ideally, these numeric representations should encode natu-
ral language in all its complexity through noticeable geometric relationship that
somehow mirror the semantic relationships among the language units themselves.
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Figure 2.3: Relations between word embeddings based on some basic properties (adaptation of
Figure 2 in Torregrossa et al. [2021, page 87])

Ever since neural word embeddings were proposed by Bengio et al. (2000),
research on this topic has focused mainly on unsupervised representation learn-
ing, typically involving language modelling or co-occurrence matrices. All those
approaches are based on the distributional hypothesis (Harris, 1954) that words
that occur in the same contexts tend to have similar meanings.

Such neural embeddings are convenient for multiple reasons, which could be
summarised as follows: a) they are learned from unlabelled corpora, b) they cap-
ture language and domain specific knowledge that can be transferred from one
task to another, and c¢) they are easily passed as input to neural networks. Fur-
thermore, they have been proven time and again to be effective, so much so that
they are currently the standard practice in NLP.

In what follows, we introduce briefly the main types of neural word embed-
dings to date, some of which are used in subsequent chapters. Figure 2.3 (from



26 Background

Torregrossa et al. [2021]) provides a visual guide of those types and how they
relate to each other. Existing pre-trained embeddings for the Spanish language
and/or the clinical domain will be overviewed later in this chapter (Section 2.5.3).

2.3.3.3.1 Word2vec Proposed by Mikolov et al. (2013a,b), Word2vec embed-
dings are word-level constant or static vector representations of words. That is,
they represent words as unique vectors distilled from the words’ contexts in the
training corpus. The representations are learnt with a FFNN from a word pre-
diction task: in the continuous bag-of-words (CBOW) architecture, the model
attempts to predict the word from its surrounding context, while the skip-gram
variant attempts to predict the context from a given word. There are two key
hyperparameters to Word2vec, in addition to the architecture itself: the number
of dimensions, and the size of the context window.

2.3.3.3.2 Global Vectors (GloVe) Proposed by Pennington et al. (2014), GloVe
embeddings are also word-level static representations of words, although they are
learnt from a co-occurrence matrix instead of a word prediction task. Specifically,
the training objective of GloVe is to learn word vectors such that their dot product
equals the logarithm of the words’ probability of co-occurrence. Because GloVe
embeddings are learnt from global word counts, they are better at capturing
longer-term dependencies than Word2vec.

2.3.3.3.3 fastText Proposed by Bojanowski et al. (2017), fastText embeddings
were conceived to address some of the shortcomings of methods such as Word2vec
and GloVe, namely, a) that they cannot handle out-of-vocabulary words (OOV),
i.e., words not encountered in the training corpus; and b) that each word vector
is learnt separately, disregarding the fact that many words share morphological
constituents (hence, meaning). The fastText approach is based on the Word2vec
skip-gram model, where each word is represented by the sum of the embeddings
for the character n-grams of the word. Thus, the embeddings are able to represent
the morphology and lexical similarity of any word, regardless of its occurring or
not in the training corpus.

2.3.3.3.4 Embeddings from Language Models (ELMo) Proposed by Peters et al.
(2018), ELMo embeddings were one of the earliest successful contextualised word
embeddings. Contextualised word embeddings are directly opposed to static em-
beddings in that words receive a different vector depending on the sentence they
occur in. That is, the embeddings are not constant, but need to be computed for
every given word in context. ELMo learns these contextualised representations
by training a multilayer bidirectional LSTM (biLSTM) network on a word-level
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language modelling task. The word embeddings are obtained by combing the in-
ternal states of this network. Further, ELMo incorporates subword information
through the use of character convolutions as input to the LSTMs, thus being
sensitive to internal word structures and robust to OOV words.

2.3.3.3.5 Flair Proposed by Akbik et al. (2018), Flair embeddings are also
character-based contextualised word embeddings learnt through a bidirectional
RNNSs. In this case, however, the RNN does not have an explicit notion of word
boundaries as it is pre-trained directly on a character-level language model objec-
tive. The word representations are obtained by concatenating the hidden states
of target word’s last character in the forward RNN layer and of the first char-
acter in the backward RNN layer. As demonstrated by Flair authors, it is often
beneficial to combine Flair embeddings with other word-level embeddings.

2.3.3.3.6 Generative Pre-trained Transformer (GPT) Proposed by Radford et al.
[9; 10], GPT embeddings are contextualised word embeddings learnt by training
a stack of decoder Transformer blocks on a language modelling task. As such,
these word representations rely only on the leftmost context of each given word,
contrary to all the aforementioned techniques, which are bidirectional. Still, the
latest GPT release, GPT-3 (T. B. Brown et al., 2020), has been spectacularly
successful. It has been proven to perform well on few-shot and even zero-shot
scenarios, thanks to its massive size of 175 billion parameters and the sheer
amount of data used to train it. The strategy followed by GPT to handle OOV
and leverage subword structure is Byte-Pair Encoding (BPE) tokenisation (Gage,
1994; Sennrich et al., 2016).

2.3.3.3.7 Bidirectional Encoder Representations from Transformers (BERT) Pro-
posed by Devlin et al. (2019), BERT is to date the other most successful contex-
tualised word representation model. While based on the Transformer architecture
too, it uses the encoder component, as its name suggests. In this sense, it is rad-
ically different to GPT, because it is not autoregressive and is able to encode
left and right context simultaneously. It is pre-trained on two objectives: a) the
Masked Language Model (MLM) task, where the model is trained to predict
the tokens that are randomly masked in a sentence, and b) the Next Sentence
Prediction (NSP) task, where the model is trained to predict whether one given
sentence follows another. Further, BERT uses WordPiece (Schuster et al., 2012)
to perform subword tokenisation. Closely following the breakthrough of BERT,
many variants have been proposed, such as RoBERTa (Y. Liu et al., 2019) and
ELECTRA (Clark et al., 2020) to name a few, that offer improvements over
BERT in aspects like increased performance or reduced computational cost.
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2.4 Challenges

NLP faces many challenges posed by natural language itself, the most fundamen-
tal being lexical variability and ambiguity. Lexical variability is given by syn-
onymy, the semantic relation whereby multiple expressions (morphemes, words
or phrases) convey the same meaning, as in the affixes ‘-algia’ and ‘odino-’ in
Example E1'. At the same time, natural language is ambiguous due to polysemy
(E2) and homonymy (E3). The former describes the property of morphemes,
words or phrases to convey different meanings depending on the context they
appear in. Homonymy occurs when distinct words—that is, words of distinct his-
torical origin and distinct sets of meanings—happen to be written and/or read
the same way.

E1l Synonymy: Ingresa por epigastralgia. Refiere odinofagia.

Admitted due to epigastric pain. [The patient] reports painful swallowing.
E2 Polymsemy: Tio ciego por cataratas. Pélipo en ciego resecado.

Uncle blind due to cataracts. Resected polyp in cecum.
E3 Homonyny: Bebedora habitual de vino. Vino de nuevo a Urgencias.

Regular wine consumption. [The patient] came to the ER again.

In 2014, Friedman et al. identified 9 additional challenges more or less spe-
cific to NLP for biomedicine and health (for instance, “patient privacy and ethical
concerns”, “good system performance”, “misspellings and typographical errors”,
“reliance on medical knowledge and reasoning”, “complexity of biological lan-
guage”), all of which still apply today. With the adoption of DL in the field
of health informatics, we face yet another challenge, namely, making the inner
workings and results of neural networks explainable and transparent. In what
follows, we elaborate on some of these challenges that we consider more germane
and critical to clinical NLP.

2.4.1 Data privacy

Clinical NLP needs to handle data that typically includes personal, health and
social history information of the stakeholders involved in the clinical practice, such
as healthcare professionals, patients, relatives and caregivers. These are the most
sensitive pieces of information conceivable. As such, they are protected by many
guidelines and policies, from the international (e.g., the General Data Protection
Regulation [GDPR] of the European Union) to the local (e.g., institutional ethics

I Throughout the document, translations of Spanish examples to English are given directly
below the example. In these specific examples, we highlight in boldface the relevant pairs of
expressions for each semantic relation that we want to illustrate.
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committees), whose aim is to safeguard the privacy of individuals and which
researchers and developers are expressly subject to.

As a consequence, datasets for clinical NLP are difficult to come by, and
those that exist tend to be kept private. Clinical NLP can in fact be infamous
for its frequently siloed research, whose reported results cannot be reproduced
nor compared by the community. What is more, rigorously measuring the actual
advancement of specific tasks is often unattainable.

Conveniently enough, NLP is part of the solution to this predicament. De-
identification is the process of altering data by redacting or replacing sensitive
information, after which the data may be safely shared. The fact that the au-
tomatisation of this process through NLP was the topic of the first ever shared
task on clinical NLP (Uzuner et al., 2007) speaks for the importance of this re-
search line that is still active due to the positive impact that sharing clinical data
can have, not just upon NLP research but, ultimately, upon biomedical research.

The key step of a standard automatic de-identification pipeline, namely, sen-
sitive data detection, is the topic of Part II of this thesis. Chapter 3 elaborates
on theoretical aspects and the state of the art of said topic.

2.4.2 Non-standard language

Clinical text documents serve diverse purposes, differ in their content and level of
detail. In general, they are aimed at other healthcare professionals or the authors
themselves, so editing the texts to facilitate comprehension by a wide audience is
not a main concern, as is the case of other text genres in the same domain, such
as biomedical scientific publications. Most importantly, healthcare professionals
typically have limited time devoted to the task of writing; as a consequence,
they use a myriad of abbreviations and acronyms, while hardly ever caring for
spelling correctly nor respecting the grammatical standards of their language.
As J. Carnicero points out in Amézqueta Goii et al. (2003), the situation has
worsened since EHRs were implemented in health centres.

As a result, clinical narrative text is unlike general domain language, which
makes its processing an extremely difficult and challenging problem for NLP
researchers. Table 2.1 shows real examples in Spanish of these difficulties, which
we explain briefly below (see Lima-Lépez et al. [2021b] for a detailed breakdown
of error types in Spanish medical notes):

e To begin with, practitioners are very flexible regarding formatting when
writing their reports. The semantics conveyed by the same formatting varies
from one context to another; it is even possible to express complex ideas
without using whole sentences by means of specific formatting. Further-
more, punctuation rules are largely overlooked; the most common deviation
from standard punctuation is actually not using punctuation marks at all.
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e Another characteristic of clinical narrative text is atypical grammar. The
most striking feature related to grammar is the amount of non-standard
ellipsis found in the texts, which infuses a telegraphic style to the texts. It
is also common to find unusual part-of-speech tag combinations.

¢ Finally, clinical text is plagued with misspellings and typographical errors.

Despite the reductive grammar, however, descriptions contained in the texts
are actually very rich. The same structures can be used to refer to a variety of
textual subjects, such as a patient, a body part of a patient, a relative of a patient,
a healthcare professional, a healthcare procedure, and so on. Furthermore, clinical
narrative is rich because it is a product of a very specialised domain activity. As
such, healthcare has an ever-evolving terminology, with new concepts and terms
entering the language while obsolete ones fall out of use. This aspect of medical
language will be discussed further in forthcoming sections.

2.4.3 Lack of interpretability and explainability

Despite the quantitatively superior results that technology based on DL has been
proven to be able to achieve across the board in comparison to more traditional
methods, the fact that they are perceived as “black boxes” stands in the way of
their adoption by the healthcare sector in real practice (Cabitza et al., 2017; Ravi
et al., 2017; Vellido, 2020; Doyen et al., 2022, among many others).

Admittedly, this challenge affects to a greater extent systems aimed at an-
swering clinical problems directly, rather than IE systems, and while this thesis
does not dive into any of these matters, the problem is important enough to
dedicate a few lines to it.

The issue is actually part of the broader “Alchemy debate” within the Ar-
tificial Intelligence (AI) community (Church et al., 2021) [11; 12]: there exists
a generalised concern, rekindled by the widespread success of DNNs, that re-
searchers may be neglecting insight while seeking better and better results; to
put it simply, that we know DL works, but not why. This is a particularly press-
ing matter where AI and the healthcare sector cross paths, given the ethical and
legal concerns that arise from practitioners having to make actionable decisions
by heeding the suggestions of programs whose behaviour is ill-understood or can-
not be explained. It must be noted further that clinicians may be held responsible
if they follow AI recommendations that conflict with the standard of care and
that turn out to be detrimental for the patient’s health (Price et al., 2019).

The development of new methods aimed at explaining the decision-making
process of DNNs has prospered into an active research field known as Explain-
able AT (XAI). The proposed methods include visualisation, distillation and the
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development of intrinsically explainable networks (see Ras et al., 2022, and ref-
erences therein).

2.4.4 Reliance on expert knowledge

ML in clinical NLP is not always feasible or able to deliver on its own the expected
performance, be it because there is no available data suitable for the task at hand
or because the data available is not enough to learn by example. Among the many
factors that contribute to this situation—some of which we introduced above—is
evidently the highly specialised and dynamic nature of the domain, which may
rapidly render existing datasets obsolete, inadequate or insufficient. We illustrate
this point by drawing on two recent events:

o The coronavirus disease 2019 (COVID-19) pandemic has resulted in the
creation of new vocabulary—of which ‘COVID-19’ is an obvious example,
as are the names of the new vaccines, e.g., ‘Comirnaty’ or ‘Vidprevtyn—,
while some existing expressions have acquired new senses; for instance, the
names of the companies that produce the vaccines are often used to refer to
the vaccines themselves by semantic broadening. Evidently, these changes
in vocabulary are not reflected in datasets curated prior to the pandemic.

o The 11*" revision of the ICD is in effect since January 2022 [13] and will
gradually be implemented across World Health Organization (WHO) mem-
ber states. The existent collections of episodes coded with the prior ICD
revision (namely, ICD-10) will then be rendered, vast as they may be, use-
less, as is, to develop new coding systems.

In this regard, it must be noted that clinical NLP has benefited greatly from
techniques like data augmentation, domain adaptation and transfer learning, as
a means to circumvent data scarcity issues. Often, however, pure ML black box
systems are simply not desirable, as explained in the previous section.

For all these reasons, clinical NLP tends to favour hybrid architectures, that
is, solutions that combine ML with the exploitation of standard terminologies,
ontologies and/or hand-crafted rules that encode expert knowledge. While less
popular in NLP academia, the reality is that these old-fashioned approaches can
offer some advantages in certain contexts, in spite of their many and well-known
drawbacks (e.g., a sheer lack of generalisation). For instance:

¢ Knowledge-driven systems are better equipped to face extreme multi-label
classification or tagging problems. Collecting a balanced corpus where every
existing target category is represented is often simply impracticable (e.g.,
SNOMED CT codes currently amount to more than 350k).
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¢ Knowledge-based resources and rules may be more easily mended to reflect
changes in the state of events, than generating hopefully enough new exam-
ples to train or adapt ML models and expecting for said models to passively
capture the desired changes.

¢ Knowledge-based resources and rules may encode implicit knowledge more
handily. Friedman et al. (2014, p. 278) gives the example of “inferring that a
patient is depressed based on the fact that an anti-depressant is prescribed
(even though there is no explicit mention of depression in a note)”.

e Perhaps more importantly today, knowledge-based solutions are inter-
pretable, and their successes or failures are easily explained. In this sense,
they are better at inspiring confidence in the end users.

Still, whichever approach is chosen is bound to depend on task-specific exper-
tise, either to annotate data or to design and maintain vocabularies and heuristics
(or both). As Spasic et al. (2020, page 2) put it, “[m]uch like the law of energy
conservation, it seems that the knowledge required to inform the creation of an
accurate computational model is simply transferred from one form to another.
Instead of explicit knowledge in the form of rules, machine learning is based on
implicit knowledge in the form of annotations and their distribution, with the
time involved in their acquisition remaining virtually constant”. The challenge
is then to decide to what extent to lean towards one strategy or the other, fac-
toring in issues like the level of expertise required and its cost, the suitability of
existing resources and the effort necessary to adapt them, or the requirements
for generalisation, among many other considerations.

2.5 Clinical NLP for the Spanish language

Having introduced the research field of clinical NLP in the previous sections, we
next bring briefly into focus several topics related to the Spanish language in clin-
ical NLP, before addressing the three main tasks of this thesis, namely, sensitive
data detection, term normalisation, and negation and speculation detection.

2.5.1 Brief historical overview

Despite the long-standing tradition of clinical NLP whose earliest works can be
traced as far back as the 1960s decade (i.a., Pratt, 1973; Schneider et al., 1977),
it might come as a surprise, given the dominant position of Spanish among the
world’s major languages [3], that research overtly and specifically devoted to the
processing of clinical text written in this language is actually in its teen years.
This is reflected in the number of published articles, where research targeted at
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the processing of text written in English is still dominant, also in biomedical NLP
(Névéol et al., 2018a; Wu et al., 2019); in fact, works focused on languages other
than English are a minority even when lumped together (see, for example, the
data gathered by Wu et al. [2019] in Table 2.2).

Table 2.2: The languages for labelled corpora used among the included articles in the systematic
literature review of Wu et al. (2019) on DL in clinical NLP

Language # % Language # %
English 151 721 Italian 2 09
Chinese 42 19.8 Dutch 1 0.5
Spanish 5 2.4 Thai 1 05
Japanese 4 1.9 German 1 05
Finnish 4 1.9 Swedish 1 05
French 2 0.9 Not reported 2 09

Health-related Spanish NLP has nevertheless grown rapidly in parallel with
the steady digitalisation of the healthcare sector worldwide, all the while keeping
up with the latest developments of the rest of the NLP community.

Some of the earliest studies worked on the morphosyntactic and semantic
analyses of medical-related texts (Crespo Miguel et al., 2008; Iglesias et al., 2008;
Castro et al., 2010). Next came the first exploratory works about automatic ICD
coding (Casillas et al., 2012; A. Pérez et al., 2014), and IE focused on MER and
ADR mining (i.a., Vivaldi et al., 2010; Oronoz et al., 2013; Cotik et al., 2015;
Diaz de Ilarraza et al., 2015; Oronoz et al., 2015; Diaz de Ilarraza et al., 2017), to
name some of the most prolific research lines, all of which remain very relevant
today (e.g., Almagro et al., 2020; Lépez-Ubeda et al., 2021; Santiso et al., 2021;
Béez et al., 2022; Blanco et al., 2022).

But the real blooming of Spanish medical-oriented NLP occurred just during
the second half of the 2010s decade, coinciding with the surge of DL, the Spanish
national Plan de Impulso de las tecnologfas del Lenguaje or Plan TL (Plan for the
Advancement of Language Technology) [14], and the first of what is now a long
list of shared tasks or community challenges about health-related NLP problems
around Spanish-written data, which we present next.

2.5.2 Shared tasks and community challenges

The complete list of these events, up to the year 2021, can be consulted in Table
2.3. As can be seen, the field boasts multiple events per year since 2017, both in
national and international venues, and a solid base of participating teams that is
growing steadily.

The topics proposed include the detection and classification of a diverse set
of target information (e.g., occupations, disabilities, sensitive data, substances),
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the indexing and coding of documents with standard terminologies (e.g., ICD-
10, ICD-0, DeCS) and relation extraction. The standard evaluation frameworks
offered by all these events through the generation and sharing of new corpora and
guidelines as well as the refereed evaluation processes has undoubtedly helped,
along with other actions taken within the Plan TL (info-days, survey reports,
supporting open-source software development, etc.), to consolidate this research
field, raise its visibility, and strengthen the sense of community.

It must also be noted that none of the shared tasks until SpradlE (Cotik
et al., 2021) have posed the challenge of working with real health record texts.
Although not able to present the same difficulties that medical notes do (see
Section 2.4.2), some shared task organisers have resorted to collecting clinical
cases for their campaigns, those being the closest—and more easily accessed and
shared—document type to medical notes.

2.5.3 Text embedding representations

Given the central role that these resources play nowadays in virtually all modern
NLP systems, we next provide a short overview of the most salient embeddings
available for the Spanish language and the biomedical domain, which are listed
in Table 2.4. We focus solely on embeddings trained on free unlabelled text.

As can be seen, the Spanish language currently counts with a varied range of
embeddings, both static and contextual. The Spanish language is also represented
in multiple multilingual embeddings, which have served as highly competitive
baselines prior to the publication of the monolingual ones. The corpora used
to train these embeddings consist mainly of different mergers of public Internet
content, of which Wikipedia is a recurring contributor. That is, most of the
Spanish language-specific embeddings that exist today are generic, in the sense
that they are not specific to any thematic domain in particular.

Only recently have three sets of contextual biomedical embeddings for the
Spanish language been published:

o Flair es-clinical-X embeddings [21] trained on the Chilean Waiting List
Corpus (Béez et al., 2020b) of de-identified referrals for several speciality
consultations.

« mBERT [23], BETO (Canete et al., 2020) and XLM-RoBERTa (Conneau
et al., 2020) embeddings post-trained with oncology clinical cases (Lépez-
Garcia et al., 2021).

o RoBERTa clinical and biomedical embeddings (Carrino et al., 2021), trained
from scratch respectively on medical notes and reports, and various health-
related public sources.
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Table 2.4: Selection of publicly available word embeddings for the Spanish language and/or the
biomedical domain, sorted by embedding type and ascending publication date. The number of
languages for extremely multilingual models is given between parentheses.

Name and reference Language Corpus

& SBWCE [16] es SBWC [16]

B Wikipedia2Vec (Yamada et al., 2020) es Wikipedia

., fastText (Grave et al., 2018) es Wiki+Common Crawl

% SUCE [17] es SUC [18]

& SBWCE [19] es SBWC [16]

& MWES (Soares et al., 2019b) es SciELO+Wiki (health)
NLPMedTerm [20] es ScieELO+EMEA
multi-X (Akbik et al., 2018) multi (343) JW300

& es-X (Akbik et al., 2018) es Wikipedia

& pubmed-X [21] en PubMed
es-clinical-X [21] es CWLC [22]
mBERT [23] multi (104) Wikipedia
BioBERT (Lee et al., 2019) en PubMed
SciBERT (Beltagy et al., 2019) en Semantic Scholar

= Clinical BERT (Alsentzer et al., 2019) en MIMIC-IIT [24]

£ BETO (Caiiete et al., 2020) es SUC [18]

g IXAmBERT (Otegi et al., 2020) es, en, eu Wikipedia
mBERT-Galén (Lépez-Garcia et al., 2021) es Oncology CC
BETO-Galén (Lépez-Garcia et al., 2021) es Oncology CC
BERTIN (de la Rosa et al., 2022) es mC4-es [25]
PubMedBERT (Gu et al., 2022) en PubMed
SpanBERTa [26] es OSCAR [27]

& XLM-R (Conneau et al., 2020) multi (100) Common Crawl

g XLM-R-Galén (Lépez-Garcia et al., 2021) es Oncology CC

A Biomedical LM (Carrino et al., 2021) es multi-source

¢ Clinical LM (Carrino et al., 2021) es clinical text

MarlIA (Gutiérrez-Fandifio et al., 2022)

es

BNE crawls [28]
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It is noteworthy that these resources were published after the experimental
work presented here was carried out (and that most of those listed in the table
did not exist when the work on this thesis began).

Among biomedical embeddings in other languages, we must mention
BioBERT (Lee et al., 2019), SciBERT (Beltagy et al., 2019), Clinical BERT
(Alsentzer et al., 2019), and BioALBERT (Naseem et al., 2022), all of them
trained on English data, the most exploited sources for this purpose being the
bibliographic databases SciELO and PubMed, and the clinical MIMIC-III dataset
(A. E. W. Johnson et al., 2016). A comprehensive list of Transformer-based
biomedical pre-trained LM can be consulted in Kalyan et al. (2022) and Naseem
et al. (2022). Other types of English biomedical embeddings are thoroughly sur-
veyed in Chiu et al. (2020).

2.6 Conclusions

In summary, biomedical NLP is an heterogeneous research field that brings to-
gether experts and professionals from a variety of sectors, including healthcare,
biomedical research, linguistics, and computer science. IE is the most prolific
research area within biomedical NLP. IE tools can be used to extract features
relevant to model clinically motivated questions (e.g., prediction of readmission
risk), and can also be part of modular NLP pipelines to solve downstream tasks
or build end-user applications (e.g., document anonymisation software).

Biomedical NLP is part of the larger NLP field and its evolution has followed
similar trends. However, being a knowledge-intensive field, it has maintained a
strong focus on rule-based methods to this day. Nevertheless, traditional ML
(e.g., SVMs, CRFs) and neural ML (e.g., CNNs, RNNs, and Transformers) are
actively being exploited to solve health-related problems.

Biomedical NLP faces many challenges that make it a very particular research
domain. Among them, we have discussed the following: data privacy issues, which
make it difficult to gather data and reproduce experiments; the usage of non-
standard language by healthcare professionals, rendering most off-the-shelf NLP
suites inappropriate; the state-of-the-art NLP technology lacking in explainabil-
ity, and the consequent reservations of the healthcare sector to adopt it; and,
finally, the reliance on expert knowledge to craft rules and/or to label corpora.

With respect to biomedical NLP research devoted specifically to the Spanish
language, we noted that it is a rather new trend in comparison to that of the
English language, in spite of Spanish being one of the largest languages of the
world in term of native speakers. Nevertheless, it has attracted a prolific research
community with yearly events, as the number of freely available, quality resources
steadily increases.
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Chapter 3

Sensitive data: background
and literature review

3.1 Definition and motivation

Activities that involve secondary usage of health data (that is, the usage
of health data outside of direct healthcare delivery [Safran et al., 2007]) such as
clinical Natural Language Processing (NLP) and medical research, are expressly
subject to regulations and laws that safeguard the patients’ rights to privacy and
to protect their data. These rules revolve around two key questions, the answers
to which vary from one country to another, both in form and content:

a) What pieces of data do the rules apply to?
b) Under what circumstances is the usage of said data allowed?

The two major legislations of reference on data protection to date are the Gen-
eral Data Protection Regulation (GDPR) (2016) of the European Union and
the Health Insurance Portability and Accountability Act (HIPAA) (1996) of the
United States of America.

Regarding the first question, the subject matter of the GDPR is personal
data—*any information relating to an identified or identifiable natural person
[i.e.,] one who can be identified, directly or indirectly, in particular by reference
to an identifier such as a name, an identification number, location data, an online
identifier or to one or more factors specific to the physical, physiological, genetic,
mental, economic, cultural or social identity of that natural person” (p. 33).

The HIPAA Privacy Rule protects specifically individually identifiable
health data, that is, “any information, including demographic information col-
lected from an individual, that (A) is created or received by a health care provider,
health plan, employer, or health care clearing house; and (B) relates to the past,
present, or future physical or mental health or condition of an individual, the
provision of health care to an individual, or the past, present, or future payment
for the provision of health care to an individual, and (i) identifies the individ-
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ual; or (ii) with respect to which there is a reasonable basis to believe that the
information can be used to identify the individual” (45 C.F.R. §160.103).

In layman’s terms, we will henceforth refer as sensitive data to any piece of
data protected by the above-mentioned and similar regulations.

Said regulations allow the usage of sensitive data each under particular cir-
cumstances and conditions. For instance, explicit patient consent may be required
but not considered sufficient, among other considerations. More relevant to this
work are the requirements or recommendations that privacy risks should be min-
imised through technical measures like anonymisation, pseudonymisation or
de-identification.

There exists a widespread confusion in the literature surrounding these terms
(Chevrier et al., 2019). According to the GDPR, anonymous information is
that “which does not relate to an identified or identifiable natural person or to
personal data rendered anonymous in such a manner that the data subject is
no longer identifiable” (p. 5). By this definition, anonymisation is an irreversible
process. Anonymised information is not affected by data protection regulations
because it no longer contains sensitive data.

However, anonymisation is not always a workable solution, either because it
may be outright impossible to achieve or guarantee, or because the transforma-
tions applied to the data to make them anonymous may render them unsuitable
for the intended secondary usage. Instead, data collectors rely more often on
pseudonymisation or de-identification to minimise privacy risks, while preserving
good-enough levels of data quality and utility.

Pseudonymisation is defined in the GDPR as “the processing of personal
data in such a manner that the personal data can no longer be attributed to
a specific data subject without the use of additional information, provided that

such additional information is kept separately [...]” (p. 33).
De-identification is achieved, according to the HIPAA, when the informa-
tion “does not identify an individual and [...] there is no reasonable basis to

believe that [it] can be used to identify an individual” (45 C.F.R. §164.514). Un-
like the GDPR,, which applies to sensitive data of any kind, the HIPAA provides
explicit implementation specifications of de-identification of health information.
The most relevant to this work is known as the Safe Harbour method. It lists
18 pieces of information (see Figure 3.1) whose removal makes data de-identified,
provided that one “does not have actual knowledge that the information could be
used alone or in combination with other information to identify an individual”.
When it comes to health information in unstructured textual form, NLP can
help accelerate pseudonymisation or de-identification processes by automatis-
ing the identification of well-defined sensitive data, such as those listed in the
HIPAA Safe Harbour provision. From a technical point of view, this task resem-
bles Named Entity Recognition (NER), in that the objective is to locate, and
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Names
All geographic subdivisions smaller than a State, including street address, city, county,
precinct, zip code, and their equivalent geocodes, except for the initial three digits of
a zip code if, according to the current publicly available data from the Bureau of the
Census:
a) The geographic unit formed by combining all zip codes with the same three
initial digits contains more than 20,000 people; and
b) The initial three digits of a zip code for all such geographic units containing
20,000 or fewer people is changed to 000.
All elements of dates (except year) for dates directly related to an individual, including
birth date, admission date, discharge date, date of death; and all ages over 89 and all
elements of dates (including year) indicative of such age, except that such ages and
elements may be aggregated into a single category of age 90 or older
Telephone numbers
Fax numbers
Electronic mail addresses
Social security numbers
Medical record numbers
Health plan beneficiary numbers
Account numbers
Certificate/license numbers
Vehicle identifiers and serial numbers, including license plate numbers
Device identifiers and serial numbers
Web Universal Resource Locators (URLs)
Internet Protocol (IP) address numbers
Biometric identifiers, including finger and voice prints
Full face photographic images and any comparable images
Any other unique identifying number, characteristic, or code, except as permitted by
paragraph (c) of this section

Figure 3.1: Identifiers of the individual or of relatives, employers, or household members of the
individual that must be removed from health data to achieve de-identification under the HIPAA
Safe Harbor provision (45 C.F.R.§164.514).
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possibly classify, mentions of specific pieces of information within a given text.
It is usually approached with supervised sequence labelling techniques, first by
classifying each token within a text as being sensitive or not and, optionally,
assigning a specific category to the sensitive spans, as pictured in Figure 3.2.

Paciente de 18 afios trasladado desde el Hospital Isabel Zendal.

(a) Translation: “18 year old patient transferred from the Isabel Zendal Hospital".

Doc

Acudira a la consulta de ginecologia Dra Torres el 7/7/2009 a las 13 horas.

(b) Translation: “[The patient] will attend Dr Torres’ gynaecology consultation on 7/7/2009 at 13:00".

Figure 3.2: Annotations of sensitive information and their category.

3.2 Related resources

The first obstacle in the research of sensitive data detection is, unsurprisingly,
that the data it needs is jealously protected, as explained above. Public resources
are thus scarce. Among the few available to the clinical NLP community is the
well-known 2014 i2b2/UTHealth de-identification dataset (Uzuner et al., 2007),
accessible at the DBMI portal [29] subject to acceptance of a data use agreement.

In recent years, the following works have been published that involve the

development of resources for the Spanish language in particular:

The Spanish/Catalan corpus of health records In this work, Medina et al.

(2018) propose a method to incrementally annotate health records with
mentions of people, locations, telephone numbers, e-mail addresses, and
several alphanumeric identifiers. The method consists in iteratively updat-
ing rules specified in the form of Augmented Network Transitions. While
the method itself is language agnostic, the experiments involve Spanish and
Catalan health records. The annotated corpus resulting form their experi-
mentation is not publicly available.

MEDDOCAN The Medical Document Anonymization (MEDDOCAN) chal-

lenge organised by Marimon et al. (2019) [30] is to date the first and only
community challenge devoted to the recognition and classification of sensi-
tive data in medical documents in Spanish. The dataset of the challenge con-
sisted of 1,000 clinical cases synthetically augmented with 22 categories of
sensitive information. This dataset is publicly available under the Creative
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Commons Attribution 4.0 International license terms. It will be thoroughly
described in Chapter 4, which explains our participation in the challenge.

DiSMed Pérez-Diez et al. (2021) recently published a collection of 692 brain
imaging radiology reports with surrogate realistic sensitive data. The orig-
inal dataset was semi-automatically annotated for mentions of people, ad-
dresses, locations, alphanumeric identifiers, and dates, which where then
substituted automatically through rules. The synthetic dataset is publicly
available, strictly for research purposes, at the webpage of the Medical
Imaging Databank of the Valencia Region [31].

MAPA The Multilingual Anonymisation Toolkit for Public Administrations
(MAPA) project (Ajausks et al., 2020; Gianola et al., 2020), funded under
the Connecting Europe Facility programme, aimed to develop a text de-
identification toolkit for all 24 official European Union languages. Further,
it targetted 3 specific application domains—namely, the legal, the admin-
istrative, and the clinical. All the sensitive data detection models trained
for the project are freely available [32], among which we must highlight
the one for the Spanish language and the clinical domain trained on the
MEDDOCAN dataset. Its performance metrics have not been published.
The datasets developed for other languages and domains can be found at
the ELRC-SHARE portal [33].

3.3 State ofthe Art

The problem of automatic sensitive data detection in clinical text has been tack-
led in multiple languages other than English, including Norwegian (Tveit et al.,
2004), Swedish (Velupillai et al., 2009; Dalianis et al., 2010), French (Chazard
et al., 2014), Portuguese (Mamede et al., 2016), Chinese (Jian et al., 2017), Ger-
man (Seuss et al., 2017), and Dutch (Menger et al., 2018). With respect to the
processing of personal data in text written in Spanish, recent studies include
Medina et al. (2018) and Garcia-Sardifia (2018). Most notably, the first commu-
nity challenge about sensitive data in Spanish medical documents, MEDDOCAN
(Marimon et al., 2019) [30], was held in 2019 as part of the IberLEF initiative.
The earliest of these proposals are based on dictionary lookup or pattern
matching techniques. Gradually, the focus of the field has shifted to machine
learning methods, although rule-based approaches are still being proposed due
to the lack of annotated data and the fact that the obtained results are good
enough to be viable solutions in certain scenarios. Still, more advanced methods
are being pursued were possible, due to the fragility of simple rule-based systems,
for instance, in the face of typographic errors. This trend is reflected in Table 3.1,
which lists the results of recent works on sensitive data detection in Spanish.
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Table 3.1: Literature review on sensitive data detection in Spanish clinical text. The number of
target categories for NERC problems is given between parenthesis. ZS stands for zero-shot
performance. Notice that scores are only comparable if they result from the same evaluation

corpus, task and metric.

Reference Task Approach Metric Score
MEDDOCAN challenge (Marimon et al., 2019)
Lange et al. (2019) NER biLSTM + CRF exact span F1 0.97
Hassan et al. (2019) NER RegEx + CRF exact span F1  0.97
Jabreel et al. (2019) NER biLSTM + CNN + CRF exact span F1 0.97
Sanchez-Le6n (2019) NER Rules exact span F1  0.96
Fabregat et al. (2019a) NER biLSTM exact span F1 0.95
Jiang et al. (2019) NER BERT + CRF exact span F1 0.95
Lépez-Ubeda et al. (2019) NER RegEx + CRF exact span F; 0.94
Mao et al. (2019) NER BERT + CRF exact span F1  0.94
Colén-Ruiz et al. (2019) NER biLSTM + CRF exact span F1 0.94
Sohrab et al. (2019) NER biLSTM exact span F1  0.94
Cotik et al. (2019) NER CRF exact span F1 0.93
Porta-Zamorano (2019) NER Rules + CNN exact span F1  0.92
Lara-Clares et al. (2019) NER biLSTM exact span F1 0.90
Sudrez-Paniagua (2019) NER biLSTM + CRF exact span F1 0.87
Pérez-Diez et al. (2021) NER biLSTM+CRF z5 token F1 0.81
Lange et al. (2019) NERC (29) biLSTM + CRF exact span F1 0.97
Hassan et al. (2019) NERC (29) RegEx + CRF exact span F1  0.96
Sénchez-Leén (2019) NERC (29) Rules exact span F1 0.96
Jabreel et al. (2019) NERC (29) biLSTM + CNN + CRF exact span F1 0.96
Fabregat et al. (2019a) NERC (29) biLSTM exact span F1 0.94
Jiang et al. (2019) NERC (29) BERT + CRF exact span F1 0.94
Mao et al. (2019) NERC (29) BERT + CRF exact span F1  0.94
Colén-Ruiz et al. (2019) NERC (29) biLSTM + CRF exact span F1 0.93
Sohrab et al. (2019) NERC (29) biLSTM exact span F1 0.93
Porta-Zamorano (2019) NERC (29) Rules + CNN exact span F1 0.92
Lépez-Ubeda et al. (2019) NERC (29) RegEx + CRF exact span F1 0.90
Lara-Clares et al. (2019) NERC (29) biLSTM + CRF exact span F1 0.90
Cotik et al. (2019) NERC (29) CRF exact span F1  0.90
Sudrez-Paniagua (2019)  NERC (29) biLSTM exact span F1 0.86
Pérez-Diez et al. (2021) NERC (29) biLSTM+CRFzg token Fq 0.59
Tested on private corpora
Medina et al. (2018) NERC (7) CRF Fi 0.77
Pérez-Diez et al. (2021) NER biLSTM+CRF token Fq 0.98
Pérez-Diez et al. (2021) NERC (7) biLSTM+CRF token F 0.93
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As can be seen, the bulk of the works propose systems based on bidirec-
tional LSTMs (biLSTM) with or without Conditional Random Field (CRF) clas-
sifiers, as was the standard approach to sequence labelling problems in NLP
before Transformer-based systems became ubiquitous. The winners of MED-
DOCAN—the Neither-Language-nor-Domain-Experts (NLNDE) (Lange et al.,
2019)—achieved Fl-scores as high as 0.975 in the task of sensitive information
detection and categorisation by using this type of Recurrent Neural Networks
(RNN). Nevertheless, several of the rule-based systems that participated in the
challenge managed to achieve very competitive results, even surpassing systems
built on fine-tuned Transformer models.

The next chapter presents our official participation in the MEDDOCAN chal-
lenge, where we ranked third with a feature-rich biLSTM model, as well as ad-
ditional experiments we carried out with Bidirectional Encoder Representations
from Transformers (BERT) after the challenge finished. In Chapter 5, we per-
form similar experiments on a new corpus, and study how well the MEDDOCAN
models can be transferred from one to the other.






Chapter 4

Sensitive data: the
MEDDOCAN challenge

4.1 Introduction

The major bottleneck for the advancement of Natural Language Processing (NLP)
in the medical field is the struggle to access real clinical texts, mainly due to
data privacy protection issues. Medical Document Anonymization (MEDDO-
CAN) (Marimon et al., 2019) [30] was the first challenge devoted to the recog-
nition and classification of sensitive data in medical documents in Spanish. This
chapter describes part of Vicomtech’s official participation in MEDDOCAN as
well as improved post-challenge results.

The challenge proposed two tasks of incremental difficulty: sensitive span de-
tection, and sensitive span detection and classification into one of 29 categories.
That is, it is a task akin to Named Entity Recognition and Classification (NERC),
usually tackled as a sequence labelling problem. The MEDDOCAN corpus con-
sists of clinical case reports manually enriched with sensitive information. That
is, it is a synthetic corpus. In the next chapter, we conduct analogous experiments
in real health records.

Our aim for the challenge was to test a variety of then state-of-the-art ap-
proaches, neural and shallow. Specifically, Conditional Random Fields (CRF)
(Lafferty et al., 2001) were prominently featured, having been extensively used
for similar tasks of sequential nature, including textual sensitive data identi-
fication; the other techniques used are neural networks such as Convolutional
Neural Networks (CNN) (LeCun et al., 1989) and Long Short-Term Memories
(LSTM) (Hochreiter et al., 1997). At a later stage, we evaluated the more recent
architecture Bidirectional Encoder Representations from Transformers (BERT),
outperforming our official results.

The chapter is structured as follows: Section 4.2 starts describing the task’s
data and the set of features extracted to characterise it; then, the systems with
which the reported results were obtained are presented. The results are reported
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and analysed in Section 4.3. Finally, the chapter ends by presenting the conclu-
sions reached in Section 4.4.

4.2 Materials and methods

4.2.1 Data

Although the organisers’ instructions for the challenge did not state explicitly
whether the competition was constrained or not, we treated it as such by focusing
solely on the MEDDOCAN corpus as the training and development data to learn
our models. In what follows, we describe the corpus itself and explain how we
handled the inputs and outputs of the systems.

4.2.1.1 The MEDDOCAN corpus

The organisers of the MEDDOCAN shared task curated a synthetic corpus of
clinical case reports enriched with sensitive information by health documentalists.
The size of the corpus is shown in Table 4.1. The annotation scheme comprises
29 fine-grained sensitive information types (of which only 22 are represented
in the corpus), whose definition was inspired by the General Data Protection
Regulation (GDPR) of the European Union, as well as the annotation guidelines
of the i2b2 de-identification tracks (Aramaki et al., 2006; Stubbs et al., 2015), in
turn based on the Health Insurance Portability and Accountability Act (HIPAA)
of the United States of America.

Table 4.1: Size of the MEDDOCAN corpus

Train Dev Test
# documents 500 250 250
# tokens 360,407 138,812 132,961
Vocabulary 26,355 15,985 15,397

# annotations 11,333 5,801 5,661

The distribution of the 22 represented categories is described in Table 4.2'. As
can be seen, the corpus is highly unbalanced. Each document has 22.80 sensitive
spans in average, with territories (Ter) and dates (Dat) accounting for almost
30% of all the occurrences, while some categories do not even amount to %1. It
is also noteworthy that, at the same time, all MEDDOCAN documents follow a
highly predictable pattern:

INote that the label names used throughout this document are no the official ones; please
consult Appendix A for a complete list of equivalences.
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e an initial semi-structured section with personal information of the patient,

« the clinical case with a few pieces of personal information (e.g., the patient’s
age, dates, and other less frequent types of personal information), and

¢ a final paragraph with data about the referring doctor.

Table 4.2: Sensitive data type distribution in the MEDDOCAN corpus

Train Dev Test All
7# % 7# % 7# % # per doc
Territory (Ter) 1,875 16.54 987 17.01 956 16.89 3,818 3.82 £ 1.26
Date (Dat) 1,231 10.86 724 12.48 611 10.79 2,566 2.57 £ 1.92
Patient’s age (Age) 1,035 9.13 521 898 518 9.15 2,074 2.07 £ 0.54
Patient’s name (Pat) 1,009 8.90 503  8.67 502 8.87 2,014 2.01+0.14
Doctor’s name (Doc) 1,000 8.82 497 857 501 885 1,998 2.00 £ 0.13
Patient’s sex (Sex) 925 816 455 7.84 461 814 1,841 1.85+ 0.56
Street (Str) 862 7.61 434 748 413 7.30 1,709 1.71 £0.49
Country (Ctr) 713 6.29 347  5.98 363 6.41 1,423 1.42 £+ 0.67
Patient’s ID (Pid) 567  5.00 292 5.03 283 5.00 1,142 1.14 + 0.40
E-mail address (Ema) 469 414 241 415 249 440 959  0.96 £ 0.33
License ID (Lid) 471  4.16 226 3.90 234  4.13 931 0.93 £ 0.26
Insurance ID (Iid) 391  3.45 194 3.34 198  3.50 783  0.78 £+ 0.42
Hospital (Hos) 255 2.25 140 241 130  2.30 525 0.53 £ 0.57
Patient’s relative (Kin) 243 2.14 92  1.59 81 1.43 416 042 £ 1.41
Institution (Ins) 98 0.86 72 1.24 67 1.18 237  0.24 £ 0.82
Episode ID (Eid) 77 0.68 32 0.55 39 0.69 148  0.15 £ 0.36
Phone number (Pho) 58 0.51 25 0.43 26 0.46 109 0.11 £ 0.34
Patient’s profession (Job) 24 021 4 0.07 9 0.16 37 0.04 £0.24
Fax number (Fax) 15 0.13 6 0.10 7 012 28 0.03 £0.17
Other (0th) 9 0.08 6 0.10 7 012 22 0.02£0.16
Outpatients clinic (C1i) 6 0.05 2 0.03 6 0.11 14 0.01 £ 0.12
Doctor’s ID (Did) 0 0.00 1 0.02 0 0.00 1 0.00 £ 0.03
Total 11,333 5,801 5,661 22,795 22.80 + 3.88

The composition of the initial and last segments is very similar across all the
documents in the corpus (see an example in Figure 4.1). Thus, it is expected that
the systems perform satisfactorily on these repetitive parts and the categories of
sensitive information contained therein, while struggling in the segment consisting
of the clinical case, where the types of personal information and the ways they
are presented in free text are more diverse.

4.2.1.2 Datarepresentation

As Figure 4.1 shows, the corpus is distributed in brat standoff format (Stenetorp
et al., 2012), that is, the annotations are defined at span level as opposed to in a
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Nombre: Ramén .

Apellidos: Garcia Robles.

CIPA: nhc-2906854.
. m
NASS: 28 32128591 09.

Domicilio: Avenida de concha espina 16, 21

=
Localidad/ Provincia: Madrid

=
CP: 28001.
[P
NHC: 2906854.
Datos asistenciales .

Fecha de nacimiento: 15/06/1944.

Pais .Esﬁéﬁé.
g
Edad: 64 Sexo: H.

Fecha de Ingreso: 26/09/2008.

Care provider's name =]

Médico: Jestis Ignacio Tornero Ruiz N°Col: 28 28 34615
Antecedentes: El paciente sufre un trastorno mental v es alérgico a penicilina .

Historia Actual: El paciente se presenta acompariado de su éspos; quien esta a cargo de él ya que esta incapacitado par

[
El ndmero de mévil de su ésposa es el 633 349 565.
Acude para un recambio valvular adrtico por endocarditis que consultd por aparicion de masa peneana de crecimiento prc
Exploracion fisica: la exploracion fisica destacaba una formacion excrecente y abigarrada en glande, que deformaba mea
Se palpaban adenopatias fijas y duras en ambas regiones inguinales.
Resumen de pruebas complementarias: La radiografia de térax y el TAC abdomino-pélvico confirmaron la presencia de at
Evolucion y comentarios: Con el diagnéstico de neoplasia de pene, se practicé penectomia parcial con margen de seguri
La anatomia patolégica demostré que se trataba de un sarcoma pleomérfico de pene con diferenciacién ostecsarcomatos
Se decidid tratamiento con dos lineas de guimioterapia consistente en adriamicina e ifosfamida pero no hubo respuesta.
Ingresé de nuevo con recidiva local sangrante de gran tamafio y crecimiento rapido que provocaba obstruccién de meato
Se colocod sonda de cistostomia y se instaurd tratamiento con sueroterapia, mejorando la funcion renal, pero con empeorz
Diagnéstico Principal: neoplasia de pene

Care provider's name Hi al

Remitido por: Dr. Jesis Ignaéio Tornero Ruiz I—iospii.a\ W}gen- de la Arrixaca Ctra. Madrid - Cartagena s/n 30120 Mucria.

(Espa.ﬁ.:.a.) igr;:-a.cicturne@hclmail.{;n".l

Figure 4.1: AMEDDOCAN document visualised in the brat interface
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per-token basis, the latter being typically the format expected by learning algo-
rithms for sequence labelling. Consequently, the corpus had to be pre-processed
as follows:

1. Paragraph splitting. Documents were split into paragraphs using line
breaks in the original texts. We decided to work with paragraphs instead
of sentences because the suggested sentence-splitting tool (the SPACCC
PoS Tagger [34]) occasionally split parts of target entities into different
sentences.

2. Tokenisation. Each paragraph was tokenised using the SPACCC PoS Tag-
ger and some extra custom tokenisation rules, mainly to split punctuation
symbols if not inside a URL, e-mail address or date, and to split camel
cased words in order to account for spacing errors in the original text (e.g.,
‘DominguezCorreo’ into ‘Dominguez Correo’).

3. Label formatting. The brat-formatted annotations of the training and de-
velopment datasets were converted to token-level tags following the BILOU
scheme: Beginning (B-), Inner (I-), Last (L-), Outside (0), Unique (U-).
Combining this tag scheme with the original 22 granular sensitive data
categories—e.g., for the granular class Dat we would have the tags B-Dat,
I-Dat, L-Dat, U-Dat, plus the generic 0 class—gives a tagset of 89 possible
unique labels.

The outcome of the pre-processing is illustrated in Examples E1 and E2 derived
respectively from sentences 5 and 17 in Figure 4.1:

E1l Domicilio ..................oall 0 E2 El oo 0
P 0 010 B0 1) o S 0
Avenida ......... ...l B-Str de o 0
de o I-Str mévil ..o 0
concha ............. ... I-Str de o 0
eSpINa ...oviiii I-Str ST e ettt e e 0
16 o I-Str ESPOSA « et U-Kin
e I-Str S it 0
2 L-Str el 0

..................................... 0 633 ............iiiiiiiiita.....B=Pho
349 I-Pho

505 L-Pho

..................................... 0

With the corpus formatted thus, we extracted a rich set of features common
in similar Named Entity Recognition (NER) tasks, and other features motivated
by the particularities of the corpus just described. Succinct descriptions of the
features are listed below. The features can be organised into three big groups,
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depending on what they aim to describe: features for token characterisation, term
characterisation and context characterisation.

4.2.1.2.1 Token characterisation This group of features aims at characterising
the shape of each token, regardless of the context they occur in and their meaning.

Token The token itself.
Length The length in characters of the token.

Casing Features related to the token’s casing, i.e., whether the token is upper-
case, lowercase or titlecase, and the ratio of uppercase characters to Length.

Digits and punctuation Features related to the token’s character types, e.g.,
whether the token is alphanumeric or a punctuation mark, the ratio of the
number of punctuation marks to the token’s length, and so on.

Affixes The token’s first and last character bigrams and trigrams.

4.2.1.2.2 Term characterisation This group of features attempts to describe the
intended meaning of the tokens. It includes lexical, morphologic, syntactic, and
semantic features.

Linguistic information The lemma and Part of Speech (PoS) tag given by the
SPACCC tagger at the data pre-processing step.

NERC The named entity tag given by spaCy (model es_core_news_md 2.1.0).
If a detected named entity was multi-word, we gave the same tag to all the
tokens involved.

Date-time expressions Whether the token is part of a date and/or time ex-
pression according to a left-to-right parser designed for this specific purpose
in ANTLR4 for Python (antlr4-python3-runtime 4.7.2).

Gazetteers The maximum similarity score obtained when matching text n-
grams with gazetteer entries. We used a total of 10 gazetteers: the ones pro-
vided by the organisers [35], plus country names, kinship relations, months,
and sexes (compiled manually for this task). The string similarity was com-
puted with the python-Levenshtein library and was only added as feature
if it was greater than 0.75. If a match was multi-word, we gave the same
score to all the tokens involved.

Brown clusters Complete paths and paths pruned at lengths 8, 16, 32, and
64. The clusters (P. F. Brown et al., 1992) were computed on the training
set’s vocabulary with tan-clustering [36], using the default settings of
the tool.
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4.2.1.2.3 Context characterisation The last group of features attempts to pro-
vide a topological description of the documents. This group of features was mo-
tivated by the particular shape of the documents described earlier.

Boundaries Whether the token is first or last in the paragraph.
Length The length in tokens of the paragraph the token belongs to.
Position The normalised position of the paragraph in the document.

Header The nearest expression to the left of each token that is followed by a
colon, lowercased (e.g., ‘email:’, ‘antecedentes familiares:’, and so on).

In addition, the features for a given token include features from the neighbouring
tokens in a +3 context window with respect to that token, except for context
Length and Position features (which are the same for neighbouring tokens). Note
that the final models draw upon a different set of features in each case. This is
detailed in their respective sections.

4.2.1.3 Output handling

The raw output of the models has the same format as that described for the
training data: one label per input token, each label consisting of a BILOU tag
and a sensitive data category (see Section 4.2.1.2). Predicted labels were post-
processed to ensure that the results were well-formed in terms of the BILOU
scheme, having the BILOU tag prevail over the sensitive data category tag in
case of conflict—e.g., the sequence (B-Str L-Ter) would be converted to (B-Str
L-Str) instead of (U-Str U-Ter). Finally, the predictions were converted to the
format required by the organisers: the span-level brat standoff format.

4.2.2 Systems

In what follows, we describe the implementation details of 3 systems submitted
to the challenge (namely, spaCy, CRF and NCRF++), and one system devel-
oped afterwards (BERT). The same systems were used for the two tasks of the
challenge: i) sensitive span detection, and ) sensitive span detection and classi-
fication. Specifically, the systems were trained to learn jointly the detection and
classification task, and their results are evaluated in both scenarios.

4.2.2.1 spaCy

As a first approach to the task, we experimented with spaCy’s [37] NER im-
plementation (version 2.1.3). spaCy is an open source Python library for
application-oriented NLP; it offers implementations of models of proved efficacy
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for the main NLP tasks, as well as pre-trained models in multiple languages.
spaCy’s NER architecture includes Bloom Embeddings (Serra et al., 2017), resid-
ual CNNs (He et al., 2016) and a transition-based approach [38]. We followed the
given recipe [39] with default settings and applied the recommended tweaks: com-
pounding batch size, dropout decay, and parameter averaging.

spaCy supports a closed set of features, which overlaps only partially with
those described in Section 4.2.1.2. Interestingly, training an empty model yielded
better results on the development set than using the compatible computed fea-
tures. Likewise, training embeddings from scratch also gave better results than us-
ing pre-trained Spanish embeddings of the medical domain (Soares et al., 2019b).
Thus, the results submitted to the task were obtained with a NER model trained
from scratch—with spaCy’s basic pipeline for Spanish—, and no extra informa-
tion provided but the challenge data.

4.2.2.2 CRF

The second official run corresponded to a system based on Conditional Random
Fields (CRF), implemented using the Python sklearn-crfsuite library (version
0.3.6). For years, CRF classifiers have established the state of the art in many
NLP tasks of sequential nature, and are still used extensively, also for sensitive
data detection, despite achieving overall moderately worse results than modern
techniques based on deep learning (Leevy et al., 2020).

Our final CRF model did not include date-time expressions as features, be-
cause they yielded slightly worse results in previous feature selection trials ex-
plored to reduce dimensionality. Features with float values were rounded to one
decimal. The final system was trained using the configuration shown in Table 4.3.

Table 4.3: CRF configuration

Parameter Value Parameter Value
Algorithm lbfgs c2 0.1
Max iterations 100 All transitions True
cl 0.1

4.2.2.3 NCRF..

NCRF++(J. Yang et al., 2018b) [40] is an open-source toolkit built on PyTorch
to train neural sequence labelling models. We kept the toolkit’s default network
configuration: an initial CNN layer for character sequence representations, a bidi-
rectional LSTM (biLSTM) layer for word sequence representations and an output
CRF classifier. This architecture has shown to be one of the most competitive
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among variants of Recurrent Neural Networks (RNN) in tasks of sequential na-
ture (J. Yang et al., 2018a).

The hyperparameter settings used to train our model are shown in Table
4.4 (any missing hyperparameter would be set to the toolkit’s default value).
Regarding the features, in this case we used all the available ones (see Section
4.2.1.2). The character embeddings were initialised randomly and trained on the
given corpus. The word embeddings were initialised with pre-trained Spanish
embeddings of the medical domain (Soares et al., 2019b), specifically consisting
of Word2Vec embeddings (Mikolov et al., 2013a,b) of 300 dimensions trained on
SciELO and Wikipedia. The maximum sentence length was set to 250 tokens
during training; for prediction, the length was not restricted. The model was
trained for a maximum of 30 epochs, after which the checkpoint with best results
on the development set was chosen as the final model to process the test set.

Table 4.4: NCRF++ hyperparameters

Hyperparameter Value Hyperparameter Value
Character emb dimensions 30 Batch size 100
Character CNN layers 1 Optimiser Adam
Character hidden dimensions 50 Learning rate 0.01
Word emb dimensions 300 L2 regularisation le-6
Word biLSTM layers 1 Learning rate decay 0.05
Word hidden dimensions 150 Ave batch loss True
Dropout rate 0.5 Max epochs 30

4.2.2.4 BERT

BERT has shown an outstanding performance in NERC-like tasks, having im-
proved the start of the art for almost every dataset and language upon its pub-
lication (Devlin et al., 2019). In this work, we took the standard approach of
topping a BERT encoder—i.e., Multilingual BERT (mBERT) [23]—with dropout
and fully connected layers.

Naturally, to the input representation explained in Section 4.2.1.2, one must
add the steps necessary to prepare the input for a BERT encoder in the case
of this system: tokenising the input into subwords with the appropriate BERT
tokeniser, adding BERT’s special tokens [CLS] and [SEP] at the beginning and
end, respectively, of each resulting sequence, and padding them to a fixed length
in order to be able to process sequences in batch.

In our implementation, the prefix of each token—i.e., the first subword—
received the label for that word, while the rest of the subwords, marked by BERT
with leading ##, received the label X. This is depicted in Examples E3 (before
mBERT tokenisation) and E4 (after; special BERT tokens are not shown):
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E3  NOCOL .ot 0 E4 LR 0
R 0 HHC X

28 B-Lid Hol X

28 I-Lid R 0

BA615 . L-Lid 28 B-Lid

28 I-Lid

BA6 L L-Lid

HHLE X

During training, the cross-entropy loss was computed over entire sequences
except padding positions. In inference, the prediction for the first subword is
assigned to the entire token, i.e., predictions for suffix positions are ignored when
reconstructing the output of the model.

Table 4.5: BERT hyperparameters

Hyperparameter Value Hyperparameter Value
Pre-trained model = mBERT pg,s. Cased Learning rate 3e-5
Batch size 12 Gradient clipping 1.0
Max input length 500 Scheduler Linear warm-up
Optimiser Weighted Adam Early stopping patience 15 epochs

This implementation was built on PyTorch (torch 1.2.0) and Hugging
Face’s open-source transformers library (Wolf et al., 2020) [41] (version 2.4.1).
The hyperparameters can be consulted in Table 4.5. The metric monitored for
the early stopping was the token-level Fi-score over binarised predictions, where
special BERT tokens and tokens labelled as 0 or X are the negative class, and all
the other categories are the positive class.

4.2.3 Evaluation
MEDDOCAN consists of two scenarios:

o Detection (officially known as “Sensitive span detection” [30]): this eval-
uation measures how good systems are at detecting sensitive text spans,
regardless of the category assigned to those spans. This scenario is closer
to real-word applications whose objective is to conceal confidential data.

o Detection and Classification (officially known as “NER offset and entity
type classification” [30]): in this scenario, systems are required to match
exactly not only the boundaries of each sensitive span, but also the cate-
gory assigned. In practice, knowing the category of sensitive data not only
makes a redacted text more legible to people, but it may also be useful
for downstream automatic text processing tasks such as substituting the
sensitive data with analogous fake data.
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Both tasks are officially evaluated in terms of micro-average Fi-score (Fy), the
harmonic mean of precision (P) and recall (R):

TP TP P-R
Pzi Rzi F:2.
TP+ FP TP+ FN ! P+R

(4.1)

where true positives (TP), false positives (FP) and false negatives (FN) are de-
fined differently for each task, as explained below. The three metrics reach their
best value at 1. Intuitively, recall measures how many true instances have been
correctly predicted, while precision measures how correct the predictions made
are.

In the case of the detection scenario, the predictions are counted as follows:

e TP: number of predicted spans that match in boundaries—i.e., start and
end positions of the spans in the document, expressed in characters—with
a gold span.

e FP: number of predicted spans that do not match in boundaries with any
gold span (also known as spurious predictions).

e FN: number of gold spans that do not match in boundaries with any pre-
dicted span (also known as missing predictions).

The matches are required to be exact, that is, predictions that overlap par-
tially with a gold span are counted as errors. We will henceforth refer to the results
evaluated thus as strict detection. In addition, MEDDOCAN organisers provide
a laxer evaluation where the sensitive spans connected by non-alphanumerical
characters are merged into one. We will henceforth refer to this variant as merged
detection.

Regarding the detection and classification scenario (classification for short),
the definitions for TP, FP and FN are the same, except that for a prediction to
count as correct it is required to match with a gold annotation in category as well
as boundaries. This scenario has an additional metric, leak (Lk), that is defined
as follows:

FN
Lk =

# sentences

(4.2)

As leak measures the number of missing predictions per sentence, it reaches its
best value at 0. There are no merged metric variants for this scenario.

In the task at hand, systems with high recall and lower precision are preferred
over systems with high precision and lower recall, given that the leakage of sen-
sitive data potentially carries far more severe, damaging consequences than the
over-obfuscation of non-sensitive data. Still, precision is also desirable to preserve
as much as possible the original meaning and the readability of the documents.
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Table 4.6: Official and post-challenge (*) results of MEDDOCAN. Best and second-best results are
highlighted in boldface and underlined respectively. The first section of the table corresponds to
the systems described in this work, while the second section reports the results of three
competitors. Models are described as language-dependent (1), language- and domain-dependent
(I+d) or neither.

Merged Detection Strict Detection Classification

P R Fi P R F1 P R F1 Lk
spaCy 1 0982 0.961 0.972 0.967 0.953 0.960 0.965 0.948 0.956 0.039
CRF 1I+d 0.983 0.950 0.966 0.977 0.943 0.960 0.971 0.937 0.954 0.048
NCRF++ I+d 0.979 0.972 0.976 0.972 0.964 0.968 0.964 0.956 0.960 0.033
BERT™ 0.982 0.981 0.982 0.973 0.972 0.973 0.968 0.967 0.967 0.025
Hadoken I+d 0974 0.923 0.948 0.968 0.919 0.943 0.965 0.912 0.937 0.036
Jiang et al. 0.980 0.983 0.982 0.933 0.958 0.946 0.928 0.952 0.940 0.036

NLNDE S2 1 0.98 0.983 0.985 0.976 0.973 0.974 0.971 0.968 0.970 0.024

NLNDE S3 1+d 0.987 0.983 0.985 0.975 0.975 0.975 0.970 0.969 0.970 0.023

4.3 Results

Table 4.6 shows the results achieved for both scenarios. Alongside the results of
the systems described earlier (Section 4.2.2), we report the results of three MED-
DOCAN competitors as references. The first two are systems based on BERT:
Jiang et al. (2019) competed with a mBERT + CRF system; Hadoken (Mao
et al., 2019) is a hybrid system that uses also a mBERT + CRF tagger along
with gazetteer lookup and regular expressions. Next, we report the results of the
Neither-Language-nor-Domain-Experts (NLNDE) (Lange et al., 2019), the win-
ners of the challenge. NLNDE competed with a biLSTM + CRF setup, exploiting
combinations of pre-trained word and character embeddings. We report their two
best runs, one domain dependent (S3) and the other independent (S2).

4.3.1 Official submissions

Regarding our official submissions, all the systems achieved Fi-scores over 0.950
even on the hardest scenario (i.e., classification), the best F;-scores being 0.968
and 0.960 for the detection and classification tasks, respectively. All systems
favour precision over recall. Among individual systems, NCRF++ has the best
scores; particularly, it has a markedly better recall than the rest. This system
granted our team the third position in all the tasks of the competition, interest-
ingly surpassing the two BERT-based system in the strict evaluations. On the
other hand, CRF outperforms the other systems in precision, but the lower recall
relegates it to the last position in the rank.
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4.3.2 Post-challenge experiments

After MEDDOCAN?’s evaluation campaign, we trained a new model based on the
BERT architecture. As shown in Table 4.6, compared to our official submissions
BERT manages to improve recall scores markedly, achieving an Fi-score as high
as 0.967 in the classification scenario, the most difficult and strict of all. Even
then, it does not improve the scores obtained by neither the domain-dependent
(S3) nor the domain-independent (S2) NLNDE models (Lange et al., 2019), al-
though it remains just 0.03 Fi-score points behind them. In fact, it would have
achieved the second position among all the MEDDOCAN shared task competi-
tors without any language nor domain-specific knowledge. What is more, our
BERT implementation is also the only system among those reported here that
does not instil into the model the sequential nature of the problem. We expected
that Hadoken (Mao et al., 2019) and Jiang et al. (2019), consisting both of a
CRF classifier on top of a mBERT encoder, would have surpassed our results for
this same reason, but they achieve overall lower results. The reasons why it is so
remain unclear. Interestingly, Jiang et al. (2019) achieve similar results to ours in
the merged detection scenario, but their performance drops sharply in the stricter
evaluations. They argue that the loss is due to flawed pre- and post-processing
steps having to do with segmentation.

4.3.3 Erroranalysis

An error analysis showed that our systems made very similar errors, although
with varying frequencies. As expected, most of the false negatives involved enti-
ties located at the least structured parts of the documents and usually affected
the types patient’s relative (Kin), patient’s profession (Job), and other less fre-
quent categories. Another category difficult to predict correctly was street (Str),
because the systems segmented them into spans different to those in the gold an-
notations. Finally, a few errors stemmed from similar categories which the models
confuse, such as phone number (Pho) and fax number (Fax), outpatients clinic
(C1i), institution (Ins) and hospital (Hos), and identification numbers. All these
were correctly recognised but incorrectly categorised on a few occasions.

Regarding false positives, most of them corresponded to improperly segmented
addresses and the misclassification of numeric expressions. The rest of falsely
predicted sensitive spans were most frequently entities seemingly missed by the
human annotators. In general, as the presented metrics indicate, the BERT-based
system managed to miss fewer sensitive data, most importantly in the less rep-
resented and more variable categories as well.

Appendix B contains full confusion matrices of all the systems.
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4.4 Conclusions

In this chapter we described Vicomtech’s approach to the Medical Document
Anonymization (MEDDOCAN) challenge. MEDDOCAN was the first community
challenge devoted to the detection and classification of sensitive data in text of
the health domain written in Spanish. It was also the first attempt at defining an
inventory of textual sensitive data types for the Spanish health sector in response
to the recent data privacy policies formulated by the European Union.

In our official participation, we tested a variety of sequence labelling algo-
rithms and systems—mnamely, spaCy’s NER tagger, a CRF classifier, and an RNN
model (NCRF++). The latter obtained the best scores, with an F;-score of 0.960
in the sensitive data detection and classification task. In this chapter we also
presented unofficial results of a model based on Multilingual BERT (mBERT),
with which we improved our previous results with an F-score of 0.968 thanks to
the system’s higher recall. Despite being language and domain independent, this
model falls only 0.3 F;-score points behind the competition winners.

Taking into account that only 3% of the gold labels remain incorrectly an-
notated, the challenge can be considered almost solved, and it is not clear if the
small differences among the systems are actually significant, or whether they stem
from minor variations in initialisation or a long tail of minor labelling inconsisten-
cies. Furthermore, given the synthetic nature of the corpus, there exists a serious
risk that the models might have overfit the MEDDOCAN corpus, rendering the
models trained on this corpus unfit for usage in the real medical documents. In
the next chapter, we conduct the same experiments in a corpus of health records.



Chapter 5

Sensitive data: experiments
with health records

5.1 Introduction

In the previous chapter, we conducted experiments on sensitive data detection
and classification using a synthetic corpus: the MEDDOCAN corpus. We observed
that the systems proposed and other competitors of the MEDDOCAN challenge
managed to obtain F;-scores as high as 0.970 (Lange et al., 2019). The success of
the systems is certainly explained, at least in part, by the homogeneous structure
and data distribution of the synthetic corpus. It is possible, in consequence, that
the MEDDOCAN corpus does not paint an entirely realistic picture of the efficacy
of the current NLP technology where the task of sensitive data detection and
classification is concerned.

In this chapter, we reproduce MEDDOCAN’s experimentation in NUBES-
PHI, a corpus of health records manually annotated with sensitive data. First,
we provide a comprehensive description of NUBES-PHI and compare it to the
MEDDOCAN corpus in detail. Then, we train and test in NUBES-PHI the same
systems evaluated in Chapter 4.

In addition, we carry out zero-shot evaluations of the systems trained in the
MEDDOCAN corpus, in order to assess the extent to which they are able to
transfer the knowledge gained in one corpus to the other.

Finally, we also compute the train curves of the systems, so as to understand
the training data necessities of the different tested systems.

The rest of the chapter is structured as follows: Section 5.2 describes the
corpus of health records; next, it goes briefly over the experimentation setup,
pointing out the differences with respect to the previous chapter where needed
and otherwise referring the reader to the corresponding sections. The results are
reported and analysed in Section 5.3. Finally, Section 5.4 presents the conclusions
drawn from the work carried out in the chapter.
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5.2 Materials and methods

5.2.1 Data

NUBES is a corpus of medical reports written in Spanish and annotated with
negation and speculation information. It is the subject of Chapter 10. Before being
published, sensitive information had to be manually annotated and replaced for
the corpus to be safely shared. In this chapter, we work with the NUBES version
prior to its anonymisation, that is, with the manual annotations of sensitive
information. In order to avoid confusion between the two corpus versions, we
henceforth refer to the version relevant in this chapter as NUBES-PHI (from
NUBES with Personal Health Information).

In what follows, we first describe NUBES-PHI and then compare it with
the corpus of the Medical Document Anonymization (MEDDOCAN) challenge,
described earlier in Chapter 4. Note that this chapter does not dive into the
manual annotation process, nor does it motivate or discuss the annotation policy
defined, but simply exploits their outcome. Finally, we describe how the inputs
to and outputs of the systems are transformed and handled.

5.2.1.1 The NUBEs-PHI corpus

NUBEs-PHI consists of 32,055 sentences annotated for 12 sensitive information
categories. Overall, it contains 7,818 annotations. The corpus has been randomly
split into train (72%), development (8%) and test (20%) sets to conduct the
experiments described in this chapter. The size of each split and the distribution
of the annotations by category can be consulted in Tables 5.1 and 5.2, respectively.

The majority of sensitive information in NUBES-PHI are temporal
expressions—dates (Dat) and times (Tim)—, followed by mentions of healthcare
facilities (Fac) and the age of patients (Age). Mentions of people are not that fre-
quent, with doctor names (Doc) occurring much more often than patient names
(Pat). The least frequent sensitive information types, which account for ~10%
of the remaining annotations, consist of the sex of patients (Sex), patient pro-
fessions (Job), and information about relatives of patients (Kin); locations (Loc)

Table 5.1: Size of the NUBEs-PHI corpus

Train Dev Test
# sentences 23,079 2,565 6,411
# tokens 379,401 41,936 107,024
Vocabulary 25,304 7,483 12,750

# annotations 5,570 623 1,579
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Table 5.2: Sensitive data type distribution over dataset splits in the NUBEs-PHI corpus

Train Dev Test All
# % 7# % # % 7# per doc
Date (Dat) 2,169 38.87 251 40.29 660 41.80 3,076 0.45 + 1.07
Healthcare facility (Fac) 1,012 18.17 105 16.85 275 17.42 1,392 0.20 £ 0.55
Patient’s age (Age) 701 12.59 77 12.36 200 12.67 978 0.14 £ 0.35
Time (Tim) 608 10.92 63 10.11 155  9.82 826 0.12 £ 0.43
Doctor’s name (Doc) 486 8.73 44 7.06 134  8.49 664 0.09 + 0.35
Patient’s sex (Sex) 270 485 35 5.62 71 4.50 376 0.05 £ 0.23
Patient’s relative (Kin) 158 2.84 20 3.21 44 279 222 0.03 + 0.25
Location (Loc) 71 1.27 10 1.61 19 1.20 100 0.01 £ 0.14
Patient’s name (Pat) 48  0.86 5 0.80 11 0.70 64 0.01 £0.15
Patient’s profession (Job) 31  0.56 3 048 9 0.57 43 0.01 +£0.09
Contact information (Con) 8 0.14 2 0.32 0 0.00 10 0.00 £ 0.05
Other (0th) 12 0.22 8 1.28 1 0.06 21 0.00 + 0.07
Total 5,570 623 1,579 7,772 1.14 £ 1.91

other than healthcare facilities; and contact information (Con), such as phone
numbers and e-mail addresses. Finally, the category other (0th) includes, for in-
stance, mentions to agencies unrelated to healthcare and whether the patient is
right- or left-handed. It occurs just 21 times. The distribution of sensitive data
over medical specialities and record sections can be consulted in Appendix C.

5.2.1.2 NUBEes-PHlIand MEDDOCAN

The MEDDOCAN corpus (Tables 4.1 and 4.2 in the previous chapter) and
NUBEs-PHI differ primarily in the frequency and distribution of the sensitive
data they contain. While the corpora are similar in size (NUBEs-PHI 632K vs
MEDDOCAN 528K tokens), MEDDOCAN contains almost thrice the annota-
tions (7,772 vs 22,795). This is mainly because NUBES-PHI documents do not
contain semi-structured sections with metadata like those of MEDDOCAN do.
Furthermore, the sensitive data types considered in MEDDOCAN differ
in part from those in NUBES-PHI. Specificallyy, MEDDOCAN contains finer-
grained labels overall. Nevertheless, an approximate mapping between the two
sets can be established, as declared in Table 5.3, which will be helpful throughout
the chapter. A notable difference is that NUBES-PHI does not contain identifi-
cation numbers (Ide), therefore, no such category was included in the annotation
guidelines. In sharp contrast, MEDDOCAN distinguishes 5 identifiers: patient’s
ID (Pid), license ID (Lid), insurance ID (Iid), episode ID (Eid), and doctor’s
ID (Did). Finally, MEDDOCAN'’s annotation policy explicitly bans the annota-
tion of time mentions, while they are annotated in NUBES-PHI (as Tim). For
practical purposes, we map NUBES-PHI’s Dat and Tim to MEDDOCAN’s Dat.
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Table 5.3: Equivalences established between MEDDOCAN and NUBEs-PHI sensitive data
categories in order to facilitate corpus comparison and zero-short experiments. The central column
indicates the name given to each equivalence.

MEDDOCAN NUBEs-PHI

Dat = Dat = Dat + Tim

Hos + Ins + Cli = Fac = Fac
Age = Age = Age
Doc = Doc = Doc
Sex = Sex = Sex
Kin = Kin = Kin

Ter 4+ Str + Ctr = Loc = Loc
Pat = Pat = Pat
Job = Job = Job

Ema + Pho + Fax = Con = Con
Oth = 0th = O0th

Pid + Lid + Iid + Eid + Did = Ide

In Figure 5.1, we show the average frequency per token of each sensitive data
type in NUBES-PHI and the MEDDOCAN corpus. It can be observed that the
distribution does not follow the same trend in one corpus and the other. Most
strikingly, NUBEs-PHI documents do not contain mentions of locations (Loc) as
much, nor do they include explicitly patient names (Pat) or contact information
(Com), even less so, as mentioned earlier, identification numbers (Ide).

5.2.1.3

Data representation

The NUBEs-PHI corpus comes sentence-splitted and tokenised. The labelling
scheme chosen for this corpus was BIO: Beginning (B-), Inner (I-), Outside (0).
We repeat the examples for MEDDOCAN E1 and E2 encoded with the BIO
scheme and the NUBES-PHI’s tagset:

E1l Domicilio

P 0

Avenida ............ .. ...
de oo

concha

16 .o

E2

El oo 0
NUIMETO vt vitteeeeeeaeenieannens 0
de oo 0
movil ... 0
de oo 0
SU ettt 0
€SPOSA ..ttt B-Kin
S it 0
el 0
633 . B-Con
349 L I-Con
505 I-Con
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Figure 5.1: Comparison between sensitive data type frequencies in the MEDDOCAN and
NUBEs-PHI corpora. See data type groupings and equivalences in Table 5.3.

The features used to represent each instance for the Conditional Random Field
(CRF) and NCRF 4+ systems is the same as that described for MEDDOCAN (See
Section 4.2.1.2), with the following exceptions:

e Brown clusters: new clusters were computed with the training set of the
NUBEs-PHI corpus. The procedure and tools to compute them were the
same as for the MEDDOCAN challenge.

¢ Position and Header: while these features made sense in MEDDOCAN due
to the highly structured nature of the synthetic documents, they were not

used in this chapter as they do not describe any salient characteristic of the
NUBEs-PHI corpus.

5.2.1.4 Output handling

As in MEDDOCAN, predicted labels were post-processed to ensure that the

results were well-formed in terms of the tagging scheme, which in this case was
the BIO scheme.

5.2.2 Systems

In this chapter, we train and evaluate in NUBES-PHI the same systems applied
to MEDDOCAN in Chapter 4. For convenience, we list them succinctly here, and
refer the reader to the corresponding section in the previous chapter for details:
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¢ spaCy: spaCy’s NER implementation, consisting of a transition system over
Convolutional Neural Networks (CNN). Read more in Section 4.2.2.1.

o CREF: a Conditional Random Field (CRF) classifier, the only shallow algo-
rithm tested. Read more in Section 4.2.2.2.

e NCRF++: a character CNN, followed by a word bidirectional LSTM (bil-
STM) and an output CRF classifier. Read more in Section 4.2.2.3.

o« BERT: a Multilingual BERT encoder with a token classification head on
top. Read more in Section 4.2.2.4.

In addition, as the NUBES-PHI corpus is private and these are the first
experiments reported with it, we also implement a baseline system, in order to
establish the difficulty of the task in this corpus. To that end, a sensitive data
recogniser and classifier has been developed that consists of regular-expressions
and dictionary lookups. For each category to detect a specific method has been
implemented. For instance, the Dat, Age, Tim and Doc detectors are based on
regular expressions; Fac, Sex, Kin, Loc, Pat and Job are looked up in dictionaries.
The dictionaries are hand-crafted from the training data available, except for Pat,
for which the possible candidates considered are the 100 most frequent female and
male names in Spain according to the National Statistics Institute [42].

5.2.3 Evaluation

In this chapter, we follow the same experimental design as that described for the
MEDDOCAN challenge (Section 4.2.3). It distinguishes two scenarios:

e Detection: measures how well the systems are at recognising sensitive data
spans. Performance is measured in terms of precision (P), recall (R) and
Fi-score (F1). There are two versions of these metrics: merged and strict.

¢ Classification: measures how well the systems are at recognising and cat-
egorising sensitive data spans. Performance is measured in terms of P, R,
F; and leak (Lk).

A subject worth being studied is the need of labelled data. Manually labelled
data is an scarce and expensive resource, which is difficult to come by for some
application domains or languages. In this line, we performed two experiments
sets in addition to testing the systems trained on NUBES-PHI:

First, we evaluate the systems trained on MEDDOCAN in a zero-shot fashion.
It must be noted that, as explained earlier, the tagset handled by the MEDDO-
CAN models is different to that defined for NUBES-PHI. In order to evaluate
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the predictions of the MEDDOCAN models in NUBES-PHI, we post-processed
the predictions applying the conversion map presented in Table 5.3.

Second, we study the dependency of each system on the available amount of
training data by training all the compared models using decreasing amounts of
data—from 100% of the available training instances to just 1%. The same data
subsets have been used to train all the systems. Due to the knowledge transferred
from the pre-trained BERT model, the BERT-based model is expected to be more
robust to data scarcity than those that start their training from scratch.

5.3 Results

5.3.1 In-domain results

Table 5.4: Results of sensitive data detection and classification in the NUBEs-PHI corpus. The lower
section of the table reports zero-shot results (zs) of models trained in the MEDDOCAN corpus. Best
and second-best results are highlighted in boldface and underlined respectively.

Merged Detection Strict Detection Classification

P R Fi P R Fy P R Fi Lk
baseline 0.441 0.308 0.363 0.427 0.301 0.353 0.414 0.292 0.342 0.174
spaCy 0923 0896 0909 0921 0891 0906 0910 0.881 0895 0.029
CRF 0.925 0.881 0.903 0.922 0.877 0.899 0.912 0.868 0.890 0.032
NCRF++ 0.898 0.912 0.905 0.893 0.903 0.898 0.879 0.889 0.884 0.027
BERT 0.908 0.941 0.924 0.894 0.932 0.913 0.884 0.921 0.902 0.019
spaCyzs 0.550 0.134 0.215 0.545 0.132 0.213 0.534 0.130 0.209 0.214
CRF s 0.335 0.073 0.120 0.329 0.072 0.118 0.321 0.070 0.115 0.228
NCRF++.s 0.593 0.183 0.280 0.583 0.179 0.274 0.560 0.172 0.263 0.203
BERT 0.673 0.534 0.595 0.654 0.522 0.580 0.627 0.500 0.556 0.123

Table 5.4 shows the results of the conducted experiments in NUBEs-PHI for
all the compared systems. The baseline system gives us insight about how chal-
lenging the data is: with simple regular expressions and gazetteers, a precision
of 0.441 is obtained in the easiest evaluation scenario; the recall, which directly
depends on the coverage provided by the rules and resources, is even lower—
0.308. These results suggest that the task is unlikely to be solved without the
generalisation capabilities of Machine Learning (ML) and Deep Learning (DL).

Regarding the models fine-tuned on NUBES-PHI, a similar behaviour to that
noted in the MEDDOCAN data can be observed: BERT surpasses the rest of the
systems due to the remarkable advantage of 3 recall points over the second-best
model, NCRF++, across all the evaluation scenarios. Also as in MEDDOCAN,
the highest precision overall is achieved by CRF. A fact worth highlighting is
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Figure 5.2: Results on the classification task of in-domain trained/fine-tuned models (upper
marks) vs MEDDOCAN model zero-shot predictions (lower marks)

that, according to these results, and unlike in MEDDOCAN, BERT achieves a
precision lower than the rest of the systems (i.e., it makes more false positive
predictions). This, among other topics, is examined in the Error analysis section.

Interestingly, the scores are lower than those obtained in MEDDOCAN, al-
though not so much as one would expect given the repetitiveness of MEDDOCAN
and the sparsity of NUBES-PHI. Results worsen by 5 to 7 Fy-score score points
across the board, with BERT achieving 0.902 in the strict classification scenario
in contrast to 0.967 in MEDDOCAN (Table 4.6 in Chapter 4). These results are
in line with the analysis made by Lange et al. (2019), who evaluated their MED-
DOCAN systems exclusively in the MEDDOCAN document sections consisting
of the actual clinical cases, a subcorpus more similar to NUBES-PHI. They report
to have obtained results of ~0.900 F;-score.

5.3.2 Zero-shot results with MEDDOCAN models

As for the zero-shot evaluations (lower part of Table 5.4), none of the systems
except BERT surpass the baseline in terms of F1-score. The CRF model struggles
most of all with the change of target domain, obtaining an F1-score of 0.120 in the
easiest evaluation scenario (i.e., merged detection). As Figure 5.2 shows, the drop
in performance is most marked in recall metrics: 0.073, 0.134 and 0.183 for CRF,
spaCy and NCRF 4+, respectively in merged detection. In contrast, BERT shows
a recall of 0.534, evidencing once more its greater generalisation capabilities.
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Figure 5.3: Performance curves with increasing amounts of training data on the sensitive span
detection task in the NUBEs-PHI corpus

Figure 5.3 shows the impact of decreasing the amount of training data in the
(merged) detection scenario. It shows the difference in precision, recall, and F;-
score with respect to that obtained using 100% of the training data. A general
downward trend can be observed, as one would expect: less training data leads
to less accurate predictions. However, as expected, BERT is the most robust to
the reduction of training data, showing a steadily low performance loss. With
only 1% of the dataset (i.e., 230 training instances), it only suffers a striking
15-point Fp-score loss, in contrast to the 65, 38 and 90 points lost by the spaCy,
CRF and NCRF++ models, respectively. This steep performance drop stems to a
larger extent from recall decline, which is not that marked in the case of BERT.
Admittedly, the hyperparameters of spaCy and NCRF++ have not been adapted
to each subset size, but neither have they been in the case of BERT.

5.3.4 Error analysis

We next focus on the models with best and worst recall, namely, BERT and
CRF. Their confusion matrices in the classification scenario are shown in Tables
5.5 and 5.6 respectively (see the confusion matrices of spaCy and NCRF++ in
Appendix D). As can be seen, the fine-tuned BERT (Table 5.6b) has less difficulty
in predicting correctly less frequent categories, such as Loc, Job, and Pat. One
of the most common mistakes according to the confusion matrices is classifying
hospital names as location (Loc) instead of the more accurate hospital (Hos);
this is hardly a harmful error, given that a hospital is actually a location. Last,
the category other (0th) is completely leaked by all the compared systems, most
likely due to its almost total lack of support in the training dataset.



72 Sensitive data: experiments with health records

Table 5.5: Confusion matrices of CRF for the classification task on NUBEs-PHI. The matrices have
been computed with token-level predictions without taking the BIO tags into account.

(a) Zero-shot (model trained on the MEDDOCAN corpus)

predicted
N ‘ Dat Fac Age Tim  Doc Sex Kin Loc Pat Job Oth 0

true

Dat 1,479 |17.38 00.00 00.54 00.00 00.00 00.00 00.00 00.27 00.20 00.00 00.00 REEGHS
Fac 557 |00.00 08.62 00.00 00.00 05.03 00.00 00.00 00.72 00.36 00.00 00.00 RekEs
Age 574 | 00.00 00.00 [48.43 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Tim 407 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.25 00.00 00.00 00.00 EeERAE
Doc 401 | 00.00 00.25 00.00 00.00 07.48 00.00 00.00 01.25 00.75 00.00 00.00 RelE%rg
Sex 71100.00 00.00 00.00 00.00 00.00 JEFENN 00.00 00.00 00.00 00.00 00.00 |33.80
Kin 44| 00.00 00.00 00.00 00.00 04.55 00.00 31.82 00.00 00.00 00.00 00.00
Loc 26 | 00.00 00.00 00.00 00.00 03.85 00.00 00.00 23.08 00.00 00.00 00.00
Pat 14 | 00.00 00.00 00.00 00.00 28.57 00.00 00.00 00.00 00.00 00.00 00.00
Job 17| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Oth 1(00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00

0 103K | 00.01 00.00 00.00 00.00 00.05 00.00 00.04 00.41 00.03 00.00 00.00

(b) Model trained on NUBEs-PHI

predicted
N ‘ Dat Fac Age Tim  Doc Sex Kin Loc Pat Job Oth 0

true

Dat 1,479 01.35 00.68 00.14 00.00 00.00 00.07 00.00 00.00 00.00 06.63
Fac 557 00.00 00.00 00.18 00.00 00.00 00.54 00.00 00.00 00.00 10.77
Age 574 00.00 00.35 00.00 00.00 00.00 00.00 00.00 00.00 00.00 03.31

Tim 407 | 00.98 00.00
Doc 401 | 00.00 00.75

00.00 00.00 00.00 00.00 04.91
00.00 00.00 00.00 00.00 04.49
Sex 71| 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Kin 44 1 00.00 00.00 00.00 00.00 00.00 00.00 06.82
Loc 26 | 00.00 19.23 00.00 00.00 00.00 00.00 00.00 [30.77 00.00 00.00 00.00
Pat 14 1 00.00 00.00 00.00 00.00 21.43 00.00 00.00 00.00 [42.86 00.00 00.00 |35.71
Job 17 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 11.76 00.00 RelcEt
O0th 1{00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 =)
0 103K | 00.06 00.03 00.00 00.01 00.00 00.00 00.01 00.00 00.00 00.00 00.00 geERsis
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Table 5.6: Confusion matrices of BERT for the classification task on NUBEs-PHI. The matrices have
been computed with token-level predictions without taking the BIO tags into account.

(a) Zero-shot (model fine-tuned on the MEDDOCAN corpus)

predicted
N ‘ Dat Fac Age Tim  Doc Sex Kin  Loc Pat Job Oth 0

Dat 1,479 00.00 00.81 00.00 00.00 00.00 00.00 00.34 00.00 00.00 00.00 12.91
Fac 557 | 00.00 [40.57 00.00 00.00 00.00 00.00 00.00 02.69 00.00 00.00 00.00
Age 574 | 00.00 00.00 - 00.00 00.17 00.00 00.00 00.17 00.00 00.00 00.35  35.02
Tim 407 | 08.11 00.00 00.00 00.00 00.00 00.00 00.00 00.25 00.00 00.00 00.00 WG5S
Doc 401 | 00.00 00.50 00.00 00.00 04.49 00.00 00.50 01.75 12.47 00.00 00.00
Sex 711 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Kin 44 1 00.00 00.00 00.00 00.00 00.00 04.55 00.00 00.00 00.00 00.00 18.18
Loc 26 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 | 42.31
Pat 14 | 00.00 00.00 00.00 00.00 14.29 00.00 35.71 00.00 42.86 00.00 00.00 07.14
Job 17 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00

g Oth 1]00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00

bs] 0 103K | 00.06 00.02 00.01 00.00 00.00 00.01 00.09 00.02 00.02 00.00 00.00

(b) Model fine-tuned on NUBEes-PHI

predicted
N ‘ Dat Fac Age Tim Doc Sex Kin Loc Pat Job Oth 0

Dat 1,479 01.35 00.81 00.14 00.00 00.00 00.00 00.00 00.00 00.00 02.10
Fac 557 00.00 00.54 00.00 00.00 00.72 00.00 00.00 00.00 02.69
Age 574 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.35
Tim 407 | 00.74 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 01.23
Doc 401 | 00.00 00.50 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.25
Sex 711 00.00 00.00 00.00 00.00 00.00 gwi[A 00.00 00.00 00.00 00.00 00.00 00.00
Kin 44 1 00.00 00.00 00.00 00.00 00.00 00.00 geEk@yeEN 00.00 00.00 00.00 00.00 02.27
Loc 26 | 00.00 23.08 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 26.92
Pat 14 | 00.00 00.00 00.00 00.00 07.14 00.00 00.00 00.00 00.00 00.00 07.14
Job 17 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 [29.41 00.00

g Oth 1]00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00

be] 0 103K | 00.06 00.05 00.00 00.02 00.01 00.01 00.01 00.00 00.00 00.00 00.00
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Upon manual inspection of the errors committed by our BERT-based model,
we discovered that it has a slight tendency towards producing ill-formed BIO
sequences, as in Examples E3 and E4 (page 74; incorrect predictions are marked
with an asterisk and separated from the true label with a backslash). We could
expect that complementing the BERT-based model with a CRF layer on top
would help enforce the emission of valid sequences, alleviating this kind of errors
and further improving its results. Yet, as mentioned in the previous chapter, a
BERT-based system with CRF (Mao et al., 2019) fell behind our simpler BERT
implementation in the MEDDOCAN challenge.

E3 Acudird ... 0 E4 control ... 0
B 0 (e 0

la o B- 15 B-
Clinica .................oo... *B-/ I~ AN 0
Marseille ..., I- 2 *I- / B-

de o I-

junio ... I-

) 0

Finally, the manual error analysis also uncovered several human errors (HE)
in the annotation of NUBES-PHI, which contributed falsely towards the few false
positive (FP) errors committed by the systems. As mentioned earlier, the goal of
having created the NUBES-PHI corpus in the first place was to be able to publish
the NUBES corpus by substituting the detected sensitive information with fake
data (more on this topic in Chapter 10). Thus, we processed the whole NUBES-
PHI corpus with our models, including the training and development partitions,
merged the alleged FP predictions of the systems—except NCRF 4+, which had
not been trained at this point—and reviewed them one by one in search of HEs,
so as to minimise potential leaks of sensitive data in the published corpus. The
result of this analysis is shown in Table 5.7.

This process helped us detect 141 sensitive data items overlooked in the orig-
inal human annotation, which make 1.8% of the total sensitive data items anno-
tated and substituted in the final version of NUBES. As can be seen, the BERT
and spaCy models were most helpful in this regard, who together detected 137
of the 141 HEs—although BERT committed most true FP errors as well. Of the
141 HEs, 39%, 20% and 15% were date, healthcare facility and time mentions,
respectively. The remainder ~25% belonged to the less frequent categories.

5.4 Conclusions

In this chapter, we extend the work carried out for the Medical Document
Anonymization (MEDDOCAN) challenge, described in Chapter 4. We concluded
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Table 5.7: Alleged false positive (FP) errors and uncovered human errors (HE) after their revision

Predicted by
BERT spaCy CRF Alleged FP of which HE False FP %

v 171 55 32
v 59 21 36

v 11 0 0

Total by any 1 system 241 76 32
v v 43 33 7
v v 3 3 100
v v 3 1 33

Total by any 2 systems 49 37 76
v v v 40 28 70
Total by all 3 systems 40 28 70
Total 330 141 43

that chapter by raising the concern that, although MEDDOCAN seemed to be
solved in practice, it was sound to suspect that the excellent results achieved by
our systems and the competitors might be somewhat distorted by the repetitive-
ness of the synthetic corpus. Thus, this chapter has replicated the experimental
setup of MEDDOCAN in a corpus of real health records.

We showed that, overall, the results worsen 5 to 7 Fi-score point across the
board in comparison to the MEDDOCAN evaluation. Other than that, the results
show a similar trend to that identified in the MEDDOCAN challenge: the BERT-
based model outperforms the other systems without requiring any adaptation or
domain-specific feature engineering, just by being trained on the provided labelled
data. Interestingly, this model obtains a remarkably higher recall than the other
systems. High recall is a desirable outcome because, when anonymising sensitive
documents, accidentally leaking sensitive data is likely to be more dangerous than
over-obfuscating non-sensitive text.

Further, we have conducted an additional experiment on this dataset by pro-
gressively reducing the training data for all the compared systems. The BERT-
based model shows the highest robustness to training-data scarcity, losing only 15
points of Fl-score when trained on 230 instances instead of 21,371. These results
indicate that the transfer-learning achieved through the pre-trained Multilingual
BERT model not only helps obtain better results, but also lowers the need of
manually labelled data for this application domain. These observations are in
line with the literature that uses BERT for other tasks.

Another experiment set consisted of zero-shot evaluations of the MEDDO-
CAN models in the NUBES-PHI corpus. Here as well, BERT proved to be su-
perior with a recall of 0.534 in the detection scenario—the second-best recall in
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the same scenario was 0.183 by NCRF++.

Although a recall of 0.534 is far from being applicable in production scenarios,
this is not to say that the MEDDOCAN corpus may not be found beneficial when
exploited in other setups than that described here. To begin with, we have shown
that NUBES-PHI and the MEDDOCAN corpus differ so much that they could
even be considered to constitute different domains. And whereas NUBEs-PHI is
not a synthetic corpus, unlike MEDDOCAN, it cannot be considered the true
representative of the average EHR document in Spain either. In fact, Pérez-Diez
et al. (2021) describe a corpus of radiology reports whose documents look much
more alike those in the MEDDOCAN corpus than NUBES-PHI. Further, it might
be the case that exploiting MEDDOCAN alongside NUBES-PHI helps improve
the reported results. We leave these experiments as future work.

Finally, the models trained for these experiments served to detect errors in
the original human annotation of NUBES-PHI. After manually reviewing a set
of alleged 330 false positive errors, 141 turned out to be correct detections of
sensitive data. 137 of these human errors were contributed by the BERT and/or
spaCy models. The final, corrected version of NUBES-PHI is the basis for the
NUBES corpus, the collection of health records manually annotated with negation
and uncertainty that is presented in Chapter 10.
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Chapter 6

Term identification: background
and literature review

6.1 Definition and motivation

Given the vast amount of text data that is produced on a daily basis both in
the academia and every health care centre worldwide, biomedical Information
Extraction (IE) has become increasingly relevant to the Natural Language Pro-
cessing (NLP) community in recent years, as it can help lighten the burden of
researchers and clinicians alike by facilitating the discovery and usage of biomed-
ical knowledge.

Biomedical term identification (also known as “term normalisation”, “term
disambiguation”, “term linking”, or “semantic annotation”, to name a few) is an
essential step in the automatic extraction of this valuable knowledge: recognising
key terms mentioned in texts and linking them to the entry in an ontology or
controlled vocabulary that represents the concept denoted by the term. Figures
6.1 and 6.2 illustrate the task in Spanish and English, respectively.

Each coloured span is a recognised biomedical term. In traditional terminol-
ogy, a term is an expression that has a particular meaning in a language for
specific purposes. For instance, clinical terms are expressions that denote disor-
ders, clinical procedures, symptoms, body structures, and so on. The category
of each term is given by the background colour in the figure: disorders in red,
living beings in green, medical procedures in yellow, chemicals and drugs in blue,
and physiological processes in orange. Finally, an example of term identifica-
tion is given for the term “Aztreonam”: it denotes the concept C0004521 [43] in
the Unified Medical Language System (UMLS) Metathesaurus (Lindberg et al.,
1993), a large biomedical terminological resource.

Term identification may be addressed end-to-end, i.e., by jointly recognis-
ing and identifying terms, or may be applied in already recognised terms as a
downstream step—in which case the task is more likely to be called “term dis-
ambiguation”.
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Chemical or drug ID:T21 _Eog @
En abril d “Aztreonam™ . precisando tratamiento con Linezolid y Ciprofloxacino con

aparicién UMLS:C0004521

con Aztreonam con buena evolucion.

ancitopenfa secundarios, precisando cambio de antibibtico

Figure 6.1: Example of term identification with UMLS in Spanish text (see translation in Figure 6.2;
visualisation rendered with brat [Stenetorp et al., 2012])

Chemical or drug ID:T11

_ Em (s "Aztreonam” ezl
In April 2008 he presented E.coli bacteremia, rec Jrofloxacin - after
UMLS:C0004521
which acute drug hepatitis and secondary pancytopenia, requiring a change of antibiotic with Aztreonam

with good evolution

Figure 6.2: Example of term identification with UMLS in English text

6.2 Related resources

The UMLS Metathesaurus (Lindberg et al., 1993), created and maintained quar-
terly by the U.S. National Library of Medicine (NLM), brings together biomedi-
cal vocabulary sources or terminologies of different languages. The entries in the
vocabularies are arranged by concept or meaning. It maps one terminology to
another, in addition to keeping the original relations stated in the source termi-
nologies themselves. Thus, the Metathesaurus can be viewed as a comprehensive
thesaurus or ontology of biomedical concepts. Each concept is categorised into
one or more of the 133 semantic types of the UMLS Semantic Network (Mc-
Cray et al., 1995). These types, in turn, are aggregated into 15 broader semantic
groups (McCray et al., 2001).

The next chapters exploit the 2016AA Full Release Metathesaurus [44] as the
reference knowledge base to perform term identification. This release gathers 196
terminology sources in 25 different languages, amounting to 3,250,226 concepts
and 10,586,865 terms in total. The great bulk of concepts are provided by three
English terminologies and their translations to Spanish: Systematized Nomencla-
ture of Medicine — Clinical Terms (SNOMED CT), the Medical Subject Headings®
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(MeSH), and the Medical Dictionary of Regulatory Activities (MedDRA). The
complete English subset covers almost the complete Metathesaurus (3,250,158
concepts); in contrast, the Spanish subset, while being the second largest subset,
accounts only for 14% of the Metathesaurus concepts (451,296).

Currently, there exist 3 public corpora of texts in Spanish that are annotated
with UMLS concepts:

Mantra GSC (Kors et al., 2015) The Mantra Gold Standard Corpus (Mantra
GSC) is a collection of parallel biomedical corpora in English, French, Ger-
man, Spanish, and Dutch that has been manually annotated with concepts
of the UMLS Metathesaurus. The Spanish portion consists of 100 scientific
publication titles and 100 drug labels, for a total of 639 manually identified
terms. This corpus is the basis for the experiments of Chapter 8.

CT-EBM-SP The Clinical Trials for Evidence-Based Medicine in Spanish cor-
pus (Campillos-Llanos et al., 2021) is a collection of 1,200 texts about clin-
ical trials annotated with entities from certain UMLS semantic groups.
Further, out of the 46,698 annotated entities, at least 33,391 are manually
identified with one or more UMLS concepts. In total, this corpus contains
annotations for ~5,000 unique UMLS concepts, which makes it at the mo-
ment the biggest of its kind for the Spanish language. It is publicly available
online [20].

E3C (Magnini et al., 2021a,b) The European Clinical Case Corpus (E3C) is a
collection of clinical cases in 5 languages, namely, Italian, English, French,
Spanish, and Basque. Among other information, this corpus contains anno-
tations of disorders, which have been identified with a UMLS concept fol-
lowing the ShARe annotation guidelines Elhadad et al. (2012). The Spanish
portion of the corpus consists of 1,400 clinical cases, annotated with 2,582
identified disorders (938 unique). It is publicly available at the European
Language Grid catalogue [45].

6.3 Stateofthe Art

The automatic identification of biomedical terminology in scientific texts is an
active research area but most of the recent works are targeted at the English lan-
guage. This is due, in part, to the greater availability of biomedical resources—
such as scientific articles, vocabularies and ontologies—in English. In this sce-
nario, MetaMap (Aronson, 2001, 2006), cTakes (Savova et al., 2010) and NCBO
Annotator (Dai et al., 2008) are well-known tools for the semantic annotation of
biomedical text. Metamap is probably the better-known tool. It is “knowledge
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intensive” as it relies heavily on the SPECIALIST Lexicon, a large syntactic lex-
icon of biomedical and general English. cTakes recognises biomedical concepts in
texts and relates them to their UMLS concept. And the NCBO Annotator, devel-
oped by the National Center for Biomedical Ontology (NCBO), is a web service
that provides links between the text of biomedical literature and the knowledge
embedded in the BioPortal ontologies and the UMLS Metathesaurus.

In the last years, new works have emerged to face this challenging task, al-
lowing the advance of the state of the art. Nunes et al. (2013) developed Be-
CAS, a biomedical concept annotation system, which uses dictionary-matching
techniques to recognise diverse types of concepts (including species, anatomical
concepts, microRNAs, enzymes, chemicals, drugs, diseases, metabolic pathways,
cellular components, biological processes and molecular functions) from multi-
ple sources, including UMLS, NCBI BioSystems (Geer et al., 2010), LexEBI
(Rebholz-Schuhmann et al., 2013b), ChEBI (Hastings et al., 2016), miRBase
(Griffiths-Jones, 2004) and the Gene Ontology (Gene Ontology Consortium,
2004). It provides a web API for biomedical concept identification.

NOBLE Coder (Tseytlin et al., 2016) is another open-source system for
biomedical text annotation in English. It can be configured through a graphical
interface to work with different vocabularies, even with customised terminologies,
allowing to select one or more branches of a set of vocabularies and/or filtering
vocabularies by semantic types.

Recently, Soysal et al. (2017) implemented CLAMP, a pipeline composed of
multiple modules for the analysis and the extraction of information contained in
clinical text. It includes a named entity recogniser to detect biomedical terminol-
ogy. Then, an UMLS encoder links each term with the corresponding concept in
the UMLS Metathesaurus.

In the case of non-English biomedical text, term identification becomes even
more difficult mainly by a shortage of biomedical resources. In this scenario, we
present the most relevant works for the Spanish language. Carrero et al. (2008a,b)
presented one of the first works in using a combination of automatic translation
and a term identifier for English (MetaMap) in order to annotate biomedical
entities in Spanish texts with their corresponding UMLS concepts.

Later, Castro et al. (2010) developed an automatic system for the recognition
of SNOMED CT concepts by computing a similarity function between sentences
in clinical notes and then term normalisation is based on the results obtained
by querying an Apache Lucene [46] index of SNOMED CT and re-ranking the
candidates with a function of their own. They obtained an average Fi-score of
0.11 on their own corpus of 100 manually annotated documents. Furthermore,
Berlanga et al. (2010) introduced the notion of concept retrieval, which was based
on applying information retrieval methods in order to obtain UMLS concepts
relevant to a text and later use them to properly annotate matching text spans.
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The systems developed in the context of the 2013 CLEF-ER challenge
for biomedical entity recognition in parallel multilingual corpora (Rebholz-
Schuhmann et al., 2013a) provide some of the first prototypes for the annotation
of biomedical texts in languages other than English. Among the participating sys-
tems there were some targeted at Spanish including the ones proposed by Attardi
et al. (2013) and Bodnari et al. (2013), which exploited word alignment informa-
tion by statistical translation and parallel corpus, respectively, in order to transfer
annotations from English to Spanish. Specifically, Attardi et al. (2013) translated
an English corpus with biomedical entity annotations to Spanish, including the
transfer of annotations. Then, a Named Entity Recognition (NER) module was
trained in the translated Spanish corpus in order to recognise biomedical entities
in unseen Spanish text. Otherwise, Bodnari et al. (2013) manually annotated
biomedical entities in English text from a parallel corpus and were transferred
to Spanish (and French) text in order to train a NER for each language. These
works were not evaluated against a golden corpus.

In the same year, Oronoz et al. (2013) presented FreelingMed, an extension of
the Freeling Spanish analyser (Carreras et al., 2004) to recognise biomedical enti-
ties extracted from available knowledge resources (lists of medical abbreviations
and drug names, as well as the SNOMED CT thesaurus). Oronoz et al. (2013)
evaluated their proposal with their own corpus of medical reports annotated by
health professionals with diseases, medications and other substances, obtaining
0.90 F1 score with approximate boundary matching for the term recognition task.

More recently, Roller et al. (2018) presented a sequential cross-lingual can-
didate search for biomedical term normalisation. The main component of their
approach is a character-based neural translation model trained on UMLS for mul-
tiple languages, such as Spanish, French, Dutch and German. Roller et al. (2018)
achieved an Fi-score of 0.69 on the task of normalisation of oracle terms in the
Spanish Medline sub-corpus of the Mantra GSC. Slightly better results were just
obtained by Yuan et al. (2022) in the same task with CODER, a more intricate
system that exploits cross-lingual term and graph embeddings. It must be noted,
however, that these works have oracle terms as starting point.

To this day, biomedical semantic annotation in non-English text is still one of
the most challenging research topics in biomedical NLP. In this work, we describe
a system for term recognition and identification based on the UMLS (Chapter
7) that does not require supervision, and which we evaluate exhaustively against
the Mantra GSC (Chapter 8).






Chapter 7

Term identification: the
UMLSmapper prototype

7.1 Introduction

This chapter presents UMLSmapper, a lexically motivated module that performs
term recognition and normalisation with the UMLS Metathesaurus.

In contrast to most other chapters in this work, this one is purely a description
of a system from a technological perspective. The performance of the system is
evaluated in Chapter 8 (next). The remainder of this chapter is structured as
follows: Section 7.2 offers an overview of the system, with an account of its general
workflow and key implementation details; it also discusses briefly the limitations
of the proposed approach. Section 7.3 describes the terminology and knowledge
resources exploited by the system. Section 7.4 explains each technological module
of the system individually. Finally, Section 7.5 concludes the chapter.

7.2 System overview

7.2.1 Implementation details

The entire program has been written in Java 8 and packaged as a Docker image.
It deploys various third-party libraries and tools, among which we must highlight:

o Apache Lucene™ [46] for fast consultation of the UMLS Metathesaurus.

o IXA-Pipes (Agerri et al., 2014) [47], a linguistic analysis toolkit. It is de-
ployed as a Docker container with which UMLSmapper interacts via HTTP.

o UKB (Agirre et al., 2009) [48], a collection of programs to perform unsu-
pervised word sense disambiguation based on a given knowledge base. It is
deployed as a TCP server.

UMLSmapper itself is run as a REST web service, with which clients interact
through Hypertext Transfer Protocol (HTTP) requests. In the most common



86 Term identification: the UMLSmapper prototype

use case, it receives plain text and returns a JSON file with morpho-syntactic
information and the result of the normalisation attempt.

The core engine of the program can be described as a pipeline of modules,
each responsible for a logical step of the process. Further, UMLSmapper is in
all respects a lexically/knowledge-driven solution; it relies heavily on several ter-
minological resources, mostly derived from the UMLS Metathesaurus, without
which UMLSmapper is but an empty shell. At the same time, UMLSmapper may
in principle work for any language well-enough represented in the Metathesaurus,
as long as basic NLP tools (i.e., tokenisation, PoS) exist for that language. At the
moment of writing this work, UMLSmapper has been tested and used in Spanish
and English texts. These tests are the subject of Chapter 8.

The program is highly configurable, as will become evident throughout the
following sections. It can be configured globally in a PROPERTIES file, and it
also accepts one-time settings with each request to the web service. Said web
service’s public APT is described in detail in the online documentation [5]. Figure
7.1 illustrates the general architecture of the program. Next, we review briefly
the general workflow of the core pipeline, and then examine each resource and
module individually.

D ) Docker
m IXA-Pipes container
HTTP HTTP Dolcker
l l volume
B Offline
Web >>>>>)> abbr parse spans process
API
3
< WSD score Hucrne. W --------
TCP

o2, b
gy UKB < graph [€7777 '

Figure 7.1: Diagram of UMLSmapper's components and its key dependencies

7.2.2 General workflow

First, the text received may be analysed in search of abbreviations, acronyms and
initialisms, which are expanded to their corresponding full expressions. Next, the
system carries out low-level linguistic processing of the expanded text: tokenisa-
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tion, Part of Speech (PoS) tagging, and, depending on the configuration chosen,
constituent parsing. The linguistic information obtained serves then as basis to
generate text spans or sequences of tokens candidate for being mapped to a med-
ical concept.

Alternatively, the user of UMLSmapper may choose to perform these steps
with third-party tools and provide to the program a text already analysed and
marked for the spans to be mapped (e.g., with a medical NER tool) in the format
required by UMLSmapper (see the online documentation [5]).

After, the system makes per given span an initial suggestion of links with
UMLS Metathesaurus. It does so using Apache Lucene™ to retrieve UMLS lex-
icalisations similar to the spans. Next, the retrieved links are ranked according
to a certain scoring function, and a threshold is applied to discard candidates
with too low a score. Finally, the match candidate with highest score is chosen
as final link for each span, if any candidate still remains. It is possible that sev-
eral candidates obtain top scores; these cases may be resolved by Word Sense
Disambiguation (WSD) or other simpler strategies.

Of note, not all the suggested spans are processed; UMLSmapper arranges the
spans in descending order of length, and does not evaluate a given span if another,
longer span that subsumes it produced a good-enough link. For example, the span
‘extremidades’ (extremities) would not be processed if ‘extremidades inferiores’
(lower extremities) were already linked. Following this logic, spans that overlap
can be annotated, but not spans that are nested within another.

7.2.3 Limitations

UMLSmapper’s main selling points—namely, that it works virtually out-of-the-
box with no need of annotated data and that it adapts easily to specific biomedical
domains—are facilitated by the simplicity of its approach, i.e., the lexically moti-
vated search of terms over a vast terminology source that is the UMLS Metathe-
saurus. Naturally, this simple approach imposes at the same time several limita-
tions to what UMLSmapper can and cannot do.

On the one hand, UMLSmapper will never generate a link between a text
span and a Concept Unique Identifier (CUI) if none of the lexicalisations of the
latter are similar in form to the text span. That is, UMLSmapper’s strategy for
tackling synonymy or lexical variability is almost completely limited to relying
on the coverage provided by the Metathesaurus. This limitation may lead to false
negative errors.

On the other hand, UMLSmapper will always generate a link between a text
span and a CUI if any of the lexicalisations of the latter are similar enough in
form to the text span, regardless of semantics. That is, UMLSmapper does not
analyse the meaning of the text spans in context, so if it makes a lexical match,
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the link is taken as valid. The strategy for tackling polysemy is reliant on the
Metathesaurus and WSD techniques, but there is no policy in place for the cases
when the specific, intended meaning of a text span is not captured by any CUI
at all. This limitation may lead to false positive errors.

These limitations will be discussed in the error analysis of Chapter 8.

7.3 Resources

UMLSmapper exploits two big terminological and knowledge resources that must
be prepared as a configuration step prior to using the tool. The key resource is
an index of the concepts to map and their possible lexicalisations. In addition,
UMLSmapper needs a graph that describes the relations between the concepts in
the index. Optionally, UMLSmapper may exploit a third resource, consisting of
a dictionary of abbreviations, acronyms and initialism, and their corresponding
long forms. Next, we describe each of these resources in detail.

7.3.1 Metathesaurus index

The UMLS Metathesaurus is indexed with Apache Lucene™ in order to be able to
produce subset views of the Metathesaurus according to convenient criteria (e.g.,
language, terminology source, semantic types, and so on) and, most importantly,
to make time-efficient fuzzy queries of lexicalisations.

The index is derived from the Metathesaurus—or parts of it, as needed—in
Rich Release Format (RRF) format; specifically, we use the information contained
in the files MRCONSO and MRSTY [49]. From the given input, the program
filters out the lexicalisations that do not meet the following criteria:

a) the lexicalisation comes from the terminology Logical Observation Identi-
fiers Names and Codes (LOINC),

b) it is longer than 15 tokens,

¢) it consists of a single character,

d) it consists of just numbers, or

e) it consists of only stopwords.

Then, each remaining MRCONSO entry is converted to a Lucene document
with the structure described in Table 7.1. Each entry in the index associates a
lexicalisation to its concept, vocabulary source, and semantic type, among others.
A normalised version of the original lexicalisation is also indexed. Normalisation
consists in removing spurious parenthetical material, undoing transpositions, and
erasing stopwords. These changes are illustrated in Examples E1 (original lexi-
calisation) to E4 (final normalised lexicalisation):
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El en blanco, cara que mira fijo durante sonambulismo (hallazgo)
blank, staring face whilst sleep walking (finding)

E2 en blanco, cara que mira fijo durante sonambulismo
blank, staring face whilst sleep walking

E3 cara que mira fijo durante sonambulismo en blanco
staring blank face whilst sleep walking

E4 cara mira fijo sonambulismo blanco
staring blank face sleep walking

Table 7.1: Apache Lucene document schema for UMLSmapper

Field Description Example
cui Concept Unique Identifier (CUI) €0424280
lat Language of the lexicalisation SPA

sab Abbreviated name of the source SCTSPA

suppress  Whether the lexicalisation is suppressible due to 0
“ambiguity in meaning or lack of face validity”
[50] (0 = obsolete)
str Lexicalisation of the concept en blanco, cara que
mira fijo durante
sonambulismo (hallazgo)

strnorm Normalised lexicalisation cara mira fijo
sonambulismo blanco
sty Abbreviated name of the semantic type fndg

stypath Path in the semantic type tree from root—entity = /enty/cnce/fndg
(enty) or event (evnt)—to sty

At runtime, the index is queried with the normalised versions of the phrases
extracted from the input text and returns entries with lexicalisations similar
to those phrases. Each entry retrieved is a candidate concept mapping for the
corresponding trigger phrase. This process is described in depth in Section 7.4.4.

7.3.2 UKB graph and dictionary

UKB is a collection of programs to perform unsupervised WSD based on a given
knowledge base in the form of a graph, where the vertices are concepts, and the
edges are relations between those concepts. In turn, each concept is associated
with one or more lexicalisation through a so-called dictionary.

The UKB graph and dictionary for UMLSmapper are constructed from the
aforementioned Lucene index and the Metathesaurus’ MRREL file [49]. This
file describes relationships between concepts in the Metathesaurus. In general,
they connect closely related concepts, such as those that “share some common
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property or are related by definition”. Table 7.2 quantifies and illustrates the
different relationship types included in the Metathesaurus.

The UKB graph constructed from MRREL includes all the relations that have
as origin and target concepts included in our UMLS index. For each relation, we
indicate the source CUI, target CUI, direction, and type of the relation.

Table 7.2: Frequency and examples of relationships in MRREL.RRF (release 2016AA)

Label Description Example Frequency
SIB is sibling of fisioterapeuta SIB masajista 29,035,314
RO is related to (not synonym) ventriculograma RO ventriculo 17,833,705
SY is synonym of dermatitis SY sarpullido 5,648,988
PAR is hypernym of tegumento PAR ufias 5,320,020
CHD is hyponym of sinovitis CHD artropatia 5,320,020
RQ is related to (maybe synonym) vémitos RQ diaforesis 2,412,372
RN is closely related to vegetarianismo RN régimen 1,866,725
RB is broadly related to soledad RB nostalgia 1,866,725
QB can be qualified by fatiga QB estabilizado 610,433
AQ is allowed qualifier of mejorado AQ ansiedad 610,433
RL is similar or “alike” discromia RL vitiligo 62,672

7.3.3 Dictionary of short forms

An optional input preprocessing step UMLSmapper performs is the detection and
resolution of abbreviated forms. At the moment, the process of resolution consists
simply in looking up the detected short form in a dictionary, where each short
form is associated to its long form only if the short form is typically unambiguous
in the medical field. This dictionary was curated by Montoya (2017) from Yetano
Laguna et al. (2003) and the manual annotation of health records in Spanish by
several physicians, for a total of 2,312 short-long form entries. A sample of the
dictionary is shown in Table 7.3.

7.4 Modules

As illustrated earlier, UMLSmapper consists of a set of technological modules,
some of which are optional, and that are executed in a pipeline fashion. In this
section, we explain what each module does and how, their inputs and outputs,
and available configuration options.



7.4 Modules 91

Table 7.3: Most frequent unambiguous short forms collected by Montoya (2017)

Short form  Long form (es) Long form (en)

Rx radiografia radiography

TAC tomografia axial computarizada  computed tomography scan
AC auscultacién cardiaca cardiac auscultation
x’ por minuto per minute

mmHg milimetros de mercurio millimetre of mercury
mm milimetro millimetre

EEIT extremidades inferiores lower limbs

TA tension arterial blood pressure

ECG electrocardiograma electrocardiogram

02 oxigeno oxygen

7.4.1 Abbreviation and acronym handling

Input User provided plain text
Output Same text after short forms substitution
Options e Strategy to detect short forms: rules, a classifier or none (i.e., skip this step)

The processing starts with an optional step: abbreviation and acronym recog-
nition and resolution. UMLSmapper comes with two strategies to detect short
forms: a rule-based algorithm or a Random Forest classifier. The latter (Cuadros
et al., 2018) was learned from the training and development sets provided at the
2nd Edition of the Biomedical Abbreviation Recognition and Resolution Work-
shop (Intxaurrondo et al., 2018). As explained before (in Section 7.3.3), the reso-
lution step consists in looking up the detected short forms in a dictionary of short
forms and corresponding expansions. For example, given the following input text:

E5  Refiere dolor intermtente en EEII (sic)
[The patient] complains of intermittent pain in LEs

the output of this module is:

E6 Refiere dolor intermtente en extremidades inferiores
[The patient] complains of intermittent pain in lower extremities

7.4.2 Basiclinguistic analysis

Input Plain text
Output Segmentation and morpho-syntactic information
Options e Language of the input text: Spanish (es) or English (en)
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<?xml version="1.0" encoding="UTF-8"7>
<NAF xml:lang="es" version="vl.naf">
<nafHeader>

</nafHeader>
<text>
<wf id="wl" offset="0" length="7" sent="1" para="1">Refiere</wf>
<wf id="w2" offset="8" length="5" sent="1" para="1">dolor</wf>
<wf id="w3" offset="14" length="11" sent="1" para="1">intermtente</wf>
<wf id="w4" offset="26" length="2" sent="1" para="1">en</wf>
<wf id="wb" offset="29" length="4" sent="1" para="1">EEII</wf>
</text>
<terms>
<term id="t1" type="open" lemma="referir" pos="V" morphofeat="VMIP3S0">
<span>
<target id="wl" />
</span>
</term>
<term id="t2" type="open" lemma="dolor" pos="N" morphofeat="NCMS000">
<span>
<target id="w2" />
</span>
</term>
<term id="t3" type="open" lemma="intermtente" pos="G" morphofeat="AQOCSO0">
<span>
<target id="w3" />
</span>
</term>
<term id="t4" type="close" lemma="en" pos="P" morphofeat="SPS00">
<span>
<target id="w4" />
</span>
</term>
<term id="t5" type="close" lemma="extremidades_inferiores" pos="R"
morphofeat="NP00000">
<span>
<target id="w5" />
</span>
<externalReferences>
<externalRef resource="Yetano.2003" reference="extremidades inferiores" />
</externalReferences>
</term>
</terms>
</NAF>

Figure 7.2: Output of the IXA-Pipes tokenizer and PoS tagger, enriched by UMLSmapper with
short form annotations, for the sentence E6.
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This module’s task is to perform tokenization, part-of-speech tagging and con-
stituent parsing on the input text. To do so, it can consume a web API of any
third-party tool that provides the analysis in NLP Annotation Format (NAF).

The standard UMLSmapper configuration exploits IXA-Pipes (Agerri et al.,
2014). An example of its output is given in Figure 7.2. Note that the analysis is
performed on the original input text, and that the information regarding short
forms is introduced as external references of term objects.

7.4.3 Candidate span generation

Input Segmentation and morpho-syntactic information

Output Text spans and their variants

Options e Strategy to generate spans: rules over syntactic tree or ngram extractor
e Maximum length of extracted spans

The objective of this module is to generate spans candidate of being linked to
UMLS Metathesaurus concepts. Spans are extracted either by a) calculating n-
grams that do not start or end with a stopword; or, b) applying rules to the
constituent trees of the sentences, obtained also with IXA-Pipes.

V' \Y Refiere
S vyp N dolor
, AP — A’ A intermtente
NP — N AP
P’ P en

" PP < N ———— extremidades
NP — N <
: inferiores

Figure 7.3: Constituent tree produced by IXA-Pipes for example E6 (note that the original node
labels have been substituted for simpler, better-known labels; IXA-Pipes outputs AnCora’s rich
tagset (Taulé et al., 2008) [51])

The latter strategy consists in extracting from the constituent trees of each
sentence all the possible phrases headed by nouns (N) or adjectives (A). Such
subtree root nodes are shaded in grey in Figure 7.3, the constituent tree produced
by IXA-Pipes for sentence E6. Each phrase tree can then produce one or more
spans, depending on whether the phrase head is accompanied by modifiers. That
is, the algorithm will compute the Cartesian product of the modifiers—from the
span that includes all the modifiers to the span that has none (i.e., that includes
just the head of the phrase). In practice, modifiers are taken to be phrases or
clauses c-commanded by Ns or As (dotted in Figure 7.3).
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For instance, the dominating noun phrase (NP), where ‘intermtente’ (sic) and
‘en extremidades inferiores’ are modifiers of the nucleus ‘dolor’, would produce
the following 4 spans: a) ‘dolor intermtente en extremidades inferiores’; b) ‘dolor
intermtente’, ¢) ‘dolor en extremidades inferiores’, and simply d) ‘dolor’. Sim-
ilarly, the NP within the prepositional phrase (PP) would yield ‘extremidades
inferiores’ and ‘extremidades’. Of note, ‘inferiores’ in ‘extremidades inferiores’
has incorrectly been parsed as a relative clause (marked with an *); had it been
correctly parsed as an adjective phrase (AP), ‘inferiores’ would also be extracted
as a candidate span.

Further, the module computes lemmatized variants of each span, in an at-
tempt to maximize the recall of the next module (e.g., ‘extremidades’ yields the
variant ‘extremidad’).

7.4.4 Candidate match retrieval

-

Input Text span and generated variants
Output Candidate links for the span to the UMLS Metathesaurus
Options e Maximum number of retrieval hits

e CUI blacklist

e Language blacklist or whitelist

e Source terminology blacklist or whitelist

e Semantic type blacklist or whitelist

e Suppressible or obsolete CUI acceptability

C

This module suggests candidate CUI links for each of the text spans generated
by the prior module or the spans provided directly by the user. In practice, it
constructs Lucene queries from those spans to retrieve similar CUT lexicalisations
from the Metathesaurus index presented in Section 7.3.1.

The module accepts several whitelists and blacklists (see above), allowing for
easy customisations of the knowledge base instead of having to compute a new
index for each problem that requires focusing on specific subsets of the UMLS
Metathesaurus. Let us consider query E7; it limits the search to documents that

a) contain ‘dolor’ and ‘intermtente’ in the normalised lexicalisation, each
within an allowed Levenshtein (1966) edit distance of 2, and in any order
of appearance,

b) belong to the source terminologies SNOMED CT, MeSH or MedDRA (orig-
inal English terminologies or their translations to Spanish),

¢) are not suppressible nor obsolete, and

d) do not belong to the given set of semantic types nor their hypernyms (ac-
tivity [acty], behaviour [bhvr] and so on).
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Note that, while the queries are built programmatically with Lucene’s Java API,
here we show human-readable representations in Lucene’s parser syntax [52]:

E7 +strnorm:dolor~2
+strnorm:intermtente~2
#sab:" (SCTSPA MSHSPA MDRSPA SNOMED_US MSH MDR)"
-suppress:"(E Y 0)"
-stypath:"(acty bhvr ... shro)"

The following example applies the same constraints, but the search concerns the
span ‘extremidades inferiores’ (and lemmatised variants):

E8 +spanOr ([strnorm:extremidades~2, strnorm:extremidad~2)])
+spanOr ([strnorm:inferiores~2, strnorm:inferior~2)])
#sab:" (SCTSPA MSHSPA MDRSPA SNOMED_US MSH MDR)"
-suppress:"(E Y 0)"

-stypath:"(acty bhvr ... shro)"

The results of these queries are shown in Tables 7.4 and 7.5, respectively. LSF
(Lucene Scoring Function) indicates the score given by Lucene to each hit. Notice
how Lucene assigns a much higher score to ‘flebografia de extremidad inferior
por RM’ when queried with ‘extremidades inferiores’ than to ‘dolor intermitente’
when queried with ‘dolor intermtente’ (sic). Lucene’s score does not measure
the lexical similarity between the indexed entries and the query; it measures the
relevance of an indexed entry with respect to the query and in contrast to the
rest of the entries in the index [53].

Table 7.4: Documents retrieved from the Metathesaurus index with query E7 (‘dolor intermtente’)

cui str LSF

C1282310 dolor intermitente  17.533

7.4.5 Scoring and thresholding

Input One or more candidate matches for the same text span
Output Ranked and filtered matches
Options e Function to score matches (see below)
e Threshold, i.e., minimum score below which hits are discarded

As Tables 7.4 and 7.5 illustrate, the LSF score is not a reliable estimator of which
retrieval hit matches best the queried span, in the sense that we handle here. This
module assigns new scores to the candidates using a function other than LSF,
and filters out candidates by applying a minimum-score threshold.
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Table 7.5: Documents retrieved from the Metathesaurus index with query E8 (‘extremidades
inferiores’)

cui str LSF

C1720201 extremidad inferior o ambas extremidades inferiores 590.054
C0023216  extremidad inferior 560.878
C0023216  Extremidad Inferior 560.878
C0023216  Extremidades Inferiores 560.878
C0230411  superficie anterior de la extremidad inferior 547.716

C0230411  estructura de la cara anterior de la extremidad inferior = 512.850
C1562943  estructura de la pelvis y/o las extremidades inferiores 508.224
C1633984 flebografia de extremidad inferior por RM 508.224
C1640384  ecoflebografia de extremidades inferiores 508.224

The prototype has two alternatives to LSF: the function by Castro et al.
(2010), CSF, and a variant of it, hereafter CSF". CSF is given by:

T 2
OSF — overlapTokens(q,r) (7.1)
tokens(q) - tokens(r)

where overlapTokens is the length in tokens of the overlap between the query,
q, and the normalised lexicalisation of the retrieved hit, r. Because this function
only counts as overlaps tokens that match exactly in g and r, it penalises severely
the hits that might be a small edit distance away from the query—a possibility
that we introduce on purpose with the lemmatisation and the fuzzy queries—.

The variant function CSF’ intends to soften this penalty by counting sub-
strings instead of tokens:

; 2
CSF' — overlapSubstrings(q,r)

.2
characters(q) - characters(r) (72)

overlapSubstrings extracts the longest common substrings between ¢ and r and
returns the length in characters of their concatenation. Tables 7.6 and 7.7 show
the CSF and CSF’ scores for the hits listed in Tables 7.4 and 7.5, respectively.

Table 7.6: Table 7.4 documents re-scored with CSF and CSF’

cui str LSF CSF CSF’
C1282310  dolor intermitente  17.533  0.250  0.837

After re-ranking the hits, the module applies a threshold given by the user
in order to discard candidates with scores lower than desired. As a result, three
scenarios are possible: that none of the candidates passes the filter, that only one
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Table 7.7: Table 7.5 documents re-scored with CSF and CSF’

cui str LSF CSF CSF’
C1720201 extremidad inferior o ambas extremidades inferiores 590.054 0.400 0.469
C0023216 extremidad inferior 560.878 0.000 0.826
C0023216 Extremidad Inferior 560.878 0.000 0.826
C0023216 Extremidades Inferiores 560.878 1.000 1.000
C0230411 superficie anterior de la extremidad inferior 547.716 0.000 0.402

C0230411 estructura de la cara anterior de la extremidad inferior 512.850 0.000 0.357
(1562943 estructura de la pelvis y/o las extremidades inferiores  508.224 0.400 0.535
C1633984 flebografia de extremidad inferior por RM 508.224 0.000 0.462
C1640384 ecoflebografia de extremidades inferiores 508.224 0.667 0.554

passes the filter, or that more than one pass it. The final match of a span is the
candidate with highest score, if there still are any. If more than one candidate
has the top score, the next module (Section 7.4.6) is invoked to choose the final
match.

Let us consider a threshold of 0.7 in the above examples. The span ‘dolor
intermtente’ would not be linked at all when using CSF, as the score assigned to
the document with CUT C1282310 is lower than the threshold; with CSF’, the hit
passes the filter so the span would receive this link. As for the span ‘extremidades
inferiores’, the document with CUI C0023216 receives a perfect score regardless
of the scoring function; hence, this would be the final match for the span.

7.4.6 Disambiguation

Input Two or more equally ranked candidate matches for the same text span
Output Final match for the text span
Options e Disambiguation strategy: UKB, first, skip or none (i.e., skip this step)

This module is only invoked when a span has more than one top-scored
mapping candidate. Notice that not only ambiguous lexicalisations trigger this
situation—which they do, inevitably; because of the scoring functions explained
in the previous section, different lexicalisations can also receive the same score.
That is, two sources of ambiguity come into play: the first is given by the Metathe-
saurus, when it assigns several CUI (i.e., meanings) to one lexicalisation. This is
proper ambiguity in a linguistic sense. The second is produced at runtime and de-
pends on the scoring function used: it is possible that distinct lexicalisations (each
mapped to a different CUT) receive the same score. All the same, the user must
choose how the system should behave in these situations. UMLSmapper offers 4
possibilities:
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o Choose one candidate performing WSD with UKB (Agirre et al., 2009).
e Simply choose the first candidate.

o Skip this module, i.e., return all the top-scoring candidates.

e Reject ambiguous candidates, i.e., do not return any candidate at all.

The algorithm behind UKB is Personalized PageRank (Haveliwala, 2002). A
possible application would be, as in Agirre et al. (2010), to first map all the non-
ambiguous spans in the text and then use those as context to assign a CUI to
the ambiguous ones.

Here we explore a somewhat different approach. Initializing the graph is an
expensive process, given its massive size (which will become clear in the next
chapter). Thus, we want to do it just once and as early in the processing chain
as possible. The context here consists simply of the tokens in the text, without
stopwords; the system is able to provide this information as early as the basic
linguistic analysis is done. When the disambiguation module is put to work, it
just chooses the CUI with highest activation among the mapping candidates in
the PageRank vector.

7.5 Conclusions

This chapter presented UMLSmapper, a prototype to perform unsupervised
biomedical term identification with the UMLS Metathesaurus. The system is
prepared to do end-to-end term identification (i.e., recognise terms and identify
them in the same step) or it may receive text annotated with the terms to be
normalised. In principle, the prototype may be used to process text in any lan-
guage well-enough covered in the Metathesaurus, as long as basic NLP tools are
available for that language.

The system is lexically motivated. In few words, it consists of a pipeline that
extracts text spans candidate to be mapped, consults an Apache Lucene™ index
of the Metathesaurus to retrieve relevant lexicalisations, and ranks them accord-
ing to lexical similarity. When more than one candidate obtain top scores, the
user may choose to apply UKB, a program for WSD, in order to choose the
most semantically relevant. When processing text in Spanish, the user may also
choose to carry out a pre-processing step, consisting in the automatic detection
of abbreviated forms and their expansion to long forms.

In the next chapter, we evaluate this prototype on the task of end-to-end
biomedical term recognition using the Mantra Gold Standard Corpus (Mantra
GSC) (Kors et al., 2015), which comprises short texts in English and Spanish
manually annotated with UMLS Metathesaurus CUI. Our results are analysed
thoroughly and compared to two other systems. UMLSmapper is also used in
Chapter 12 to prepare a corpus of medical assertion classification.



Chapter 8

Term identification: experiments
with the Mantra GSC

8.1 Introduction

In this chapter we evaluate several approaches, including the system UMLSmap-
perpresented in Chapter 7, to identify biomedical terminology in text written in
Spanish and English. The compared systems exploit symbolic or hybrid Natural
Language Processing (NLP) techniques to map to the texts a specific subset of
the Unified Medical Language System (UMLS) Metathesaurus.

These systems perform term recognition and identification in a single step
with no supervision; they do so solely by exploiting the lexical and semantic infor-
mation contained in the Metathesaurus. That is, the decision of what constitutes
a term and what does not is not outsourced to an automatic medical entity recog-
niser, but is resolved drawing on the knowledge base itself, the Metathesaurus,
with which the system is trying to produce links. This type of systems is needed
in situations where training entity recognisers is not a viable option or existing
recognisers are not well suited to the particular problem at hand. Further, these
systems can be easily adapted to different application domains by subsetting or
extending the Metathesaurus as needed.

In this chapter, then, we evaluate UMLSmapper alongside two such systems:
MetaMap (Aronson, 2001, 2006)—a well-known rule-based system for term iden-
tification in English—and Transfer (Accuosto et al., 2018)—a pipeline that uses
automatic translation to perform term identification in languages other than En-
glish. Furthermore, we test several combinations of UMLSmapper and Transfer.
Said systems are assessed against the Mantra Gold Standard Corpus (Mantra
GSC) (Kors et al., 2015), a corpus of scientific article excerpts and drug labels
manually annotated with UMLS Concept Unique Identifier (CUI)s.

The chapter is organised as follows: in Section 8.2 we present the data
used throughout the chapter (namely, the Mantra GSC and part of the UMLS
Metathesaurus), all the compared systems and their combinations, as well as the
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evaluation framework. Section 8.3 reports the obtained results in the Spanish
and English data of the Mantra GSC and provides a thorough error analysis of
UMLSmapper. Finally, 8.4 summarises the conclusions extracted from the work
described in the chapter.

8.2 Materials and methods

8.2.1 Data

The evaluation described in this chapter uses the Mantra GSC (Kors et al., 2015)
as testing corpus. Next, we describe this corpus and the subset of the UMLS
Metathesaurus with which it was annotated and that we, in turn, take as reference
to configure the selected systems.

8.2.1.1 The Mantra GSC

The Mantra GSC is a collection of parallel biomedical corpora in English, French,
German, Spanish, and Dutch that has been manually annotated with concepts
of the UMLS Metathesaurus to test concept identification systems.

As per the published description of the corpus (Kors et al., 2015), the Mantra
GSC annotation policy limits the annotations to concepts of the UMLS Metathe-
saurus that meet the following two criteria:

e the concept belongs to the terminologies Medical Subject Headings®
(MeSH), Systematized Nomenclature of Medicine - Clinical Terms
(SNOMED CT), and/or the Medical Dictionary of Regulatory Activities
(MedDRA);

 the concept belongs to one or more of these semantic groups (McCray et
al., 2001; Bodenreider et al., 2003): anatomy (anat), chemicals and drugs
(chem), devices (devi), disorders (diso), geographic areas (geog), living
beings (1ivb), objects (objc), phenomena (phen), physiology (phys), and
procedures (proc).

In the following section, we describe thoroughly this subset of the UMLS
Metathesaurus (henceforth referred to as the Mantra terminology per Kors et al.
(2015)), as it is relevant to the configuration of the systems tested in this chapter,
and it also helps understand the difficulty of the problem.

Table 8.1 shows the size of the corpus subset that is used in this work—mnamely,
the Spanish (es) and English (en) samples. This subset consists of 100 parallel
text samples for two different genres: scientific abstract titles from Medline, and
drug labels from the European Medicines Agency (EMEA). A total number of
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639 and 648 annotations can be found, respectively, in the Spanish and English
samples, which in turn point to 550 and 559 CUIs of the UMLS Metathesaurus.
Note that the systems evaluated do not need to be trained, so the whole corpus
is used for testing throughout the chapter.

Table 8.1: Size of Mantra GSC Spanish (es) and English (en) data sets. Tokens are counted after
whitespace tokenisation.

Medline EMEA

es en es en
# documents 100 100 100 100
# tokens 1,087 989 1,984 1,738
# annotations 278 285 361 363
discontinuous 5 7 12 10
ambiguous 40 41 61 60
suppressible 1 2 2 4
missourced 0 0 5 6

unique concepts 285 288 295 301

Of these annotations, 17 in each language are discontinuous (i.e., the concepts
are expressed in disjoint text spans) and 101 in each language—more than 18%
of the total annotations—are “ambiguous” (i.e., the text spans are linked to more
than one CUI). This is due to the human annotators not being able to resolve the
“semantic difference between the suggested concepts” (Kors et al., 2015, p. 950);
that is, having multiple annotations for the same text span does not indicate that
the meaning of the target phrase itself is ambiguous, but that there are several
entries in the UMLS Metathesaurus that seemingly denote the same concept.

It is also interesting to note that, according to the 2016AA UMLS release,
a few of the annotations point to suppressible concepts or can only be found in
UMLS sources that are not supposed to be included in the Mantra terminology
(labelled as “missourced” in Table 8.1). These facts suggest that Mantra GSC
annotations are based on a UMLS release older than 2016AA, the one used to
configure the systems evaluated in the chapter.

8.2.1.2 The Mantra terminology

Figure 8.1 shows the distribution of CUIs over terminology sources in the English
and Spanish Mantra terminology. Some interesting observations can be made:

e Most of the concepts (44.59%) can only be found in the original (i.e., En-
glish) version of MeSH.

e The Spanish translation of MeSH is a small proper subset of the original
counterpart—it covers less than a tenth part of MeSH.
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o The second largest subset (40.74%) is composed of concepts in the inter-
section of only SNOMED CT and its translation to Spanish.

e The Spanish translation of SNOMED CT is almost completely contained
in the English version, except for 46 concepts.

e MedDRA and its translation to Spanish overlap completely; that is, the
whole MedDRA has been translated to Spanish.

Overall, there are 327,160 and 38 concepts that can only be accessed through
English or Spanish terms, respectively, while 372,672 concepts are common to
both English and Spanish. That is, the conceptual coverage of the Spanish
Mantra terminology with respect to the English is of 53.25%. The whole Spanish
and English Mantra terminology contains 699,770 concepts and 2,993,323 terms
(1,938,466 in English and 1,094,413 in Spanish)®.

SNOMED CT (en)

MeSH (en)

Figure 8.1: Size of the Mantra terminology by vocabulary source (not in scale).

IKors et al. (2015, p. 949) report that “[t/he Mantra terminology includes 591 918 concepts
with a total of 3 238 015 terms, most of which are in English (2 039 988), followed by Spanish
(785 083)” We have been unable to replicate these numbers; the reasons might include the
difference in the UMLS version, a different method to count concepts and terms, or that there
were other criteria in creating the Mantra terminology that they did not report in the article.
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Table 8.2: Distribution of SNOMED CT U MeSH U MedDRA concepts in Spanish (es) and English
(en) over the 10 Mantra-accepted semantic groups, and their proportion.

es en es/en (%)
chemicals and drugs (chem) 44,521 347,581 12.81
disorders (diso) 155,222 169,850 91.39
procedures (proc) 70,597 75,798 93.14
living beings (1ivb) 41,465 42,770 96.95
anatomy (anat) 30,831 31,470 97.97
devices (devi) 13,255 14,229 93.15
object (objc) 5,388 5,980 90.10
physiology (phys) 5,335 5,689 93.78
phenomena (phen) 4919 5,251 93.67
geographic areas (geog) 1,028 1,059 97.07
chem N objc 45 51 88.24
chem N phen 4 4 100.00
Total 372,610 699,732 53.25

Regarding semantic groups, most of the 10 Mantra-accepted semantic groups
are well covered in Spanish (see Table 8.2), except for chemicals and drugs, of
which only 12.81% of the concepts in the English subset have at least one Span-
ish term associated. More than 90% of the missing concepts is accounted for
by the following 4 semantic types (UMLS Type Unique Identifier (TUI), given
between parenthesis): organic chemical (T109), amino acid, peptide, or protein
(T116), clinical drug (T200), and nucleic acid, nucleoside, or nucleotid (T114).
Furthermore, 99.66% of the missing chemicals and drugs belong to MeSH.

8.2.2 Systems

The experiments conducted in this chapter involve three systems that perform
term normalisation of biomedical texts through symbolic or hybrid NLP pipelines:
a) MetaMap, b) a system that exploits machine translation, and ¢) UMLSmap-
per. We also explore combinations of the latter two. Furthermore, MetaMap and
UMLSmapper have two variants each: one for processing text in English and
another for Spanish.

Foe the systems to be compared under the same conditions, all of them exploit
the same knowledge base, which comprises a total of 675,670 CUIs: all CUIs
accessible through Spanish lexicalisations in the Mantra terminology, plus all the
chemicals and drugs in the English Mantra terminology. The inclusion of the
English chemicals and drugs was motivated by the poor coverage of this semantic
group in the Spanish terminology (see Table 8.2).
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8.2.2.1 MetaMap

The baseline for the experiments is established by MetaMap (Aronson, 2001,
2006) 2016v2 [54], a well-known program developed at the National Library
of Medicine (NLM) for the specific purpose of projecting the UMLS Metathe-
saurus onto biomedical text. It was primarily developed to process text written
in English, although it can be easily customised to exploit any custom knowledge
base—albeit with an expected performance loss due to the modules for lexico-
morphological analysis, in which MetaMap relies heavily, not being prepared for
languages other than English, among other limitations. That is, MetaMap is
expected to be a stable competitive baseline in the English evaluations, while
lagging behind in the Spanish evaluations.

For the evaluations over the Spanish portion of the Mantra GSC, the MetaMap
Data File Builder [55] was used to compile the custom knowledge base of the afore-
mentioned 675,670 concepts and corresponding lexicalisations. It must be noted
that MetaMap can only read ASCII encoded files. Thus, both the terms indexed
and the test input texts had to be converted to ASCII. We used the Linux com-
mand iconv -f utf-8 -t ascii//TRANSLIT, which replaces non-ASCII char-
acters with their transliterations (e.g., it converts “publicaciones cientificas en
espaiiol” to “publicaciones cientificas en espanol”).

As for execution details, MetaMap was launched with default arguments ex-
cept the following:

o -y: perform Word Sense Disambiguation (WSD)

e -V: use the custom knowledge base

e -R: constrain the annotations to sources in the Mantra terminology

e -k: constrain the annotations to semantic types in the Mantra terminology

8.2.2.2 UMLSmapper

UMLSmapper has been introduced in Chapter 7. In short, it approaches the
problem of term normalisation through an information retrieval mechanism to
identify terms based on a linguistic analysis and a disambiguation procedure. In
contrast to Transfer (next system), it does so natively in the language of the
input texts—English or Spanish.

The UMLSmapper variant for Spanish uses the Spanish tokenisation and Part
of Speech (PoS) tagging models distributed with the IXA-pipeline (Agerri et al.,
2014), along with the abbreviation detection and resolution module introduced
earlier (Section 7.4.1 of Chapter 7). The variant for English uses the analogous
IXA-pipeline models for English and does not have a module specific for han-
dling abbreviations. This is the only disadvantage over the Spanish variant. The
knowledge graph for the WSD module built on the UKB program (Agirre et al.,
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2009), common to both variants, has 675,670 edges and 4,669,477 relations among
them. The rest of the configuration parameters are shown in Table 8.3; they were
chosen empirically in early experiments with UMLSmapper (Perez et al., 2018).

Table 8.3: UMLSmapper configuration

Parameter Value

Abbreviation and acronym detection (Section 7.4.1)

Strategy Random Forest classifier
Candidate span generation (Section 7.4.3)

Strategy ngram extractor

Maximum length 5 tokens
Candidate match retrieval (Section 7.4.4)

Maximum number of hits 100

CUI blacklist 0032863, C0557651

Term blacklist ‘ii’, ‘hace’
Scoring and thresholding (Section 7.4.5)

Scoring function Castro et al. (2010)

Threshold 0.7
Disambiguation (Section 7.4.6)

Strategy UKB

8.2.2.3 Transfer pipeline

The transfer pipeline (Accuosto et al., 2018; Perez et al., 2020) (henceforth, Trans-
fer) automatically translates the input texts into English and uses MetaMap at
its full potential to produce the UMLS annotations on the translated text. Then,
it transfers the obtained annotations back to the original text. It could be said
to be a step forward in the work proposed by Carrero et al. (2008a,b).

In short, the process of annotation transfer consists in assigning the annota-
tion (i.e., the CUI) to the span in the original text that gives maximum cosine
similarity with any of the lexicalisations of said CUI. The cosine similarity is
computed over biomedical Spanish fastText embeddings (Bojanowski et al., 2017)
pre-trained for this purpose.

In contrast to UMLSmapper, this pipeline does not require lexical resources in
the language of the input texts because MetaMap does all the heavy lifting in this
regard. Still, Transfer requires an automatic translation model to English that is
suited for the biomedical domain and the desired origin language. In this work,
the reported results are obtained using a Neural MT (NMT) Spanish-English
model trained on the UFAL medical corpus [56] and the data released for the
WMT2016 biomedical translation task (Bojar et al., 2016).
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8.2.2.4 Combination of Transfer and UMLSmapper

Because of the fundamental differences between UMLSmapper and Transfer, they
are expected to succeed and fail in different types of annotations. Thus, combin-
ing the two pipelines may prove beneficial. In this chapter, we also evaluate three
combinations of Transfer and UMLSmapper, which differ in the way that over-
lapping predictions are handled:

o Joint (4): Annotates the union of spans with the union of the CUIs.
o Joint (T): Takes as valid the prediction made by Transfer.

o Joint (U): Takes as valid the prediction made by UMLSmapper.

Let us illustrate the output of these combinations with an example. The true
annotations of the text ‘Headaches can occur with normal human immunoglob-
ulin’ (Example E1) link two text spans to a different concept each, here labelled
A and D for simplicity:

El Con la inmunoglobulina 4 humana normal pueden producirse cefaleasp

Examples E2 and E3 show the predictions of Transfer and UMLSmapper for the
same text respectively:

E2 Con la inmunoglobulina humana normalg pueden producirse cefaleas

E3 Con la inmunoglobulina humanac normal pueden producirse cefaleasp

Neither manages to predict correctly the span nor the CUI of ‘inmunoglobulina’.
Transfer misses the term ‘cefaleas’, while UMLSmapper manages to annotate it
correctly in span and CUIL Then, the combinations Joint (+), Joint (T) and
Joint (U) would produce the following annotations (Examples E4, E5 and E6
respectively):

E4 Con la inmunoglobulina humana normal g ) pueden producirse cefaleasp
E5 Con la inmunoglobulina humana normalg pueden producirse cefaleasp

E6 Con la inmunoglobulina humanac normal pueden producirse cefaleasp

8.2.3 Evaluation

The main evaluation scenario of this chapter is term normalisation (a.k.a., term
identification, or term recognition and disambiguation, among others). This sce-
nario measures how good systems are at detecting relevant biomedical terms and
assigning to them a Concept Unique Identifier (CUI) of the UMLS Metathe-
saurus. The systems presented earlier are tested against the English and Spanish
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datasets of the Mantra GSC. Their performance is measured in precision (P),
recall (R) and Fy-score (F1), whose definitions we repeat here for convenience:

TP TP P R
P_TP—I—FP R_TP+FN F1_2'P+R

(6.1 (=4.1))

In the context of this chapter, true positives (TP), false positives (FP) and
false negatives (FN) are counted as follows:

e TP: number of predictions that match in span boundaries and CUI with a
gold annotation.

e FP: number of predictions that do not match in span boundaries with any
gold annotation or that have a different CUI to the gold annotation they
match with.

e FN: number of gold annotations that do not match in span boundaries with
any prediction or that have a different CUI to the prediction they match
with.

The reported P, R and F; are micro-averages (u). Further, we report two metric
variants:

e Strict: requires the boundary matches to be exact.

¢ Relaxed: accepts as correct matches predictions that do not have exactly
the same boundaries as a gold annotation but that overlap with one.

All of these definitions apply to discontinuous gold annotations as well, even if
none of the systems assessed, except MetaMap, is able to produce discontinuous
predictions. As for ambiguous gold annotations, a prediction is only required to
guess one of the gold CUlIs in order to be counted as a true positive, on account
of the suggested gold CUIs being interchangeable rather than complementary, as
explained in Section 8.2.1.1.

In addition, we report overlap percentages (OP) (Accuosto et al., 2018) along-
side the relaxed measurements. This metric indicates how similar the predicted
spans are to the gold standard, as the relaxed measurements allow for inexact
matches. The overlap percentage of two annotations a and b is calculated as the
relation between the length of the overlapping span and the length of the longest
annotation:

len(overlap(a, b))
max(len(a),len(b))

OP(a,b) = 100 - (8.1)
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We report macro-average OP.

As complementary measurements to help explain the performance of the sys-
tems, we also compute how well the systems do at less demanding scenarios:
term recognition and term classification. In the former, we are concerned with
the correctness of the annotated spans, i.e., the CUIs are ignored when counting
true and false predictions. In the latter, we look at the semantic groups to which
the gold and predicted CUIs belong. To put it simply, the label space is reduced
from 675,670 to 10 in term classification (10 semantic groups) and to just 1 in
term recognition.

Finally, the evaluation ends with a comprehensive error analysis of UMLSmap-
per in the Spanish test data.

8.3 Results

8.3.1 Term identificationin Spanish

UMLSmapper achieves a global F1-score of 0.626 in the strict term identification
scenario. Table 8.4 shows the results broken down by semantic groups. As can
be seen, the results vary greatly from one semantic group to another as well
as from one sub-dataset to another. At the same time, some of the semantic
groups are more poorly represented than others. Hence, it is not possible to make
generalised, categorical statements about the performance of UMLSmapper over
semantic groups. Looking at this dataset in particular, we can simply say that
UMLSmapper has achieved the best scores for chemicals and drugs, living beings
and geographic areas (the latter has just 10 examples in total); the worst results
were obtained for objects (11 examples), devices (6) and physiology (30).

Let us compare UMLSmapper’s results with the other presented systems.
Strict and relaxed scores for term identification are shown in Table 8.5, where
we also include the reported results of Roller et al. (2018) and Yuan et al. (2022)
as reference, who apply more advanced techniques but assume oracle terms in
their evaluations. Regarding Medline and considering non-combination systems,
all systems improve the baseline, MetaMap, by more than 0.9 Fi-score points.
The pipelines based in transfer are remarkably precise (0.720 and 0.767 on strict
and relaxed evaluations, respectively) compared to UMLSmapper and the base-
line, but they do not improve the baseline’s recall at all. Overall, UMLSmapper
achieves the best Fy-score (0.630 and 0.634). It exceeds the other systems in terms
of recall particularly, while lifting precision as well with respect to the baseline.
As for EMEA, a similar pattern as in Medline can be observed, except that the
best F-score when span overlaps are allowed is achieved by Transfer. This is due
to the outstandingly high precision, which outdoes the better recall obtained by
UMLSmapper.
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Table 8.4: Results of strict term identification by UMLSmapper on the Spanish Mantra GSC over
UMLS Metathesaurus semantic groups. # is the number of gold annotations.

Medline EMEA All
# P R Fy # P R Fy # P R Fy

diso 100 0.732 0.710 0.721 111 0.656 0.568 0.609 211 0.694 0.635 0.663
chem 27 0.583 0.519 0.549 93 0.811 0.828 0.819 120 0.765 0.758 0.762
proc 57 0.545 0.421 0475 58 0404 0.397 0.400 115 0.465 0.409 0.435
livb 37 0.683 0.757 0.718 45 0.630 0.644 0.637 85 0.655 0.695 0.675
anat 26 0.739 0.654 0.694 20 0.400 0.600 0.480 46 0.547 0.630 0.586
phys 12 0417 0417 0417 19 0667 0.526 0.588 31 0.556 0.484 0.517
phen 6 0.571 0.667 0.615 7 0625 0.714 0.667 13 0.600 0.692 0.643
objc 3 0.000 0.000 0.000 6 0.235 0.667 0.348 9 0.190 0.444 0.267
geog 7 0.667 0.857 0.750 0 0.000 0.000 0.000 7 0.545 0.857 0.667
devi 3 0.250 0.333 0.286 3 0.200 0.333 0.250 6 0.222 0.333 0.267

m 278 0.645 0.615 0.630 361 0.615 0.632 0.623 639 0.627 0.624 0.626

Combining the pipelines yields slightly better results than using them in isola-
tion, the improvement being more pronounced in the case of EMEA. Specifically,
recall does raise with respect to UMLSmapper—the best evaluated system in
this regard—, but precision is almost always worse. Among the three combina-
tions, Joint (+) and Joint (T) seem to work best, except in strict Medline, where
Joint (U) works better than Joint (T). Given that Transfer is more precise than
UMLSmapper (as Figure 8.2 illustrates), it makes sense that the combinations
that prefer Transfer’s predictions in case of conflict tend to yield better results.

Regarding the performance at the different annotation levels, as Figure 8.3
shows, the losses from the easiest task (namely, term recognition) to the most
difficult (term identification) are small—~6 F;-score percentage points. That is,
if a system recognises correctly a term, the link to the UMLS Metathesaurus
suggested for that term is most likely correct as well. This is true for all the
systems. One could think, then, that a better term recogniser would lift this
upper bound. However, none of the systems evaluated here (all of which use as
core engines MetaMap, UMLSmapper, or both) resolve these tasks sequentially:
first recognise a term, then categorise it into coarse-grained categories, and finally
predict an identity. It is rather the other way around: a term is only recognised
insofar as it meets certain criteria to be assigned a particular identity; otherwise,
it is simply not recognised at all. Hence the behaviour depicted in Figure 8.3.

8.3.2 Term identification in English

Table 8.6 reports the results of the experiments in the English dataset of the
Mantra GSC. Here, we have included a second version of MetaMap, which consists
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Table 8.5: Results of term identification on the Spanish Mantra GSC. The results of BTM (Roller
etal., 2018) and CODER (Yuan et al,, 2022), in italics, assume oracle terms.

Medline EMEA
P R F oP P R F oP
Strict MetaMap 0.486 0.496 0.491 0.405 0.443 0.423
Transfer 0.720 0.489 0.582 0.730 0.501 0.594
UMLSmapper 0.645 0.615 0.630 0.615 0.632 0.623
Joint (+) 0.598 0.678 0.636 0.584 0.701 0.637
Joint (T) 0.620 0.612 0.616 0.624 0.662 0.642
Joint (U) 0.627 0.640 0.633 0.596 0.637 0.616
BTM 0.781 0.619 0.691
CODER 0.704 0.681
Relaxed MetaMap 0.511 0.522 0.516 86.02 0.430 0.471 0.450 85.35
Transfer 0.767 0.522 0.621 87.88 0.810 0.557 0.660 90.72
UMLSmapper 0.649 0.619 0.634 90.61 0.636 0.654 0.645 88.02
Joint (+) 0.629 0.712 0.668 88.78 0.640 0.767 0.698 88.32
Joint, (T) 0657 0647 0652 8807 0679 0720 0.699 9019
Joint (U) 0.634 0.647 0.641 90.61 0.622 0.665 0.643 87.92

of the original, out-of-the-box MetaMap without modifications to the knowledge
base. That is, this MetaMap variant (identified as H) is not limited to annotating
concepts of the Mantra terminology. For comparison purposes, we also include in
the experimentation an analogous UMLSmapper variant.

UMLSmapper has obtained an overall Fy-score of 0.674, surpassing MetaMap
across the board, both in the restricted and the unrestricted (B) frameworks,
as well as the strict and relaxed evaluations. It must be pointed out that the
evaluation dataset consists of grammatical, standard and formal biomedical text;
it might be the case that in less controlled text genres, such as health records,

Table 8.6: Results of term identification on the English Mantra GSC.

Medline EMEA
P R F oP P R F oP
Strict  MetaMap 0628 0.628 0.628 0.600 0.653 0.625
MetaMap (H) 0.355 0.572 0.438 0.268 0.576 0.365
UMLSmapper 0.701 0.660 0.680 0.651 0.689 0.669
UMLSmapper (H) 0.526 0.681 0.593 0.444 0.702 0.544
Relaxed MetaMap 0.663 0.663 0.663 89.71 0.613 0.667 0.639 92.23
MetaMap (B) 0.379 0.611 0.468 87.59 0.274 0.590 0.374 89.09
UMLSmapper 0.705 0.663 0.684 91.10 0.654 0.691 0.672 91.45

UMLSmapper (H) 0.537 0.695 0.606 91.77 0.448 0.708 0.549 91.41




8.3 Results 111

Mantra GSC Mantra GSC

(a) Medline (b) EMEA

Figure 8.2: Overlap of gold annotations (Mantra GSC) and predictions made by UMLSmapper and
Transfer in the strict term identification scenario (not in scale).

the lexico-morphological engine of MetaMap grants it a greater advantage over
UMLSmapper. Currently there is no corpus publicly available to test this setup.
As for the differences between the Mantra-specific and unrestricted variants
(B), the unrestricted variants suffer an expected loss of precision due to having
augmented the knowledge bases beyond the Mantra terminology. Recall values are
not that affected in comparison, and even improve in the case of UMLSmapper.
It is also interesting to note that both systems perform slightly better com-
pared to the results in the Spanish dataset (Table 8.5). Taking into account that
the two datasets (i.e., English and Spanish) are parallel, their level of difficulty
can be safely assumed to be similar. If anything, the English dataset could be
said to be more challenging as it contains a few more annotations and more
unique concepts (see Table 8.1). Still, the systems perform consistently better
in English than in Spanish. This is not surprising in the case of MetaMap, be-
cause its original intended usage was for this language in particular. In the case
of UMLSmapper, the improvement can only be explained by the richer lexical
coverage of the knowledge base in English, as explained in Section 8.2.1.1.

8.3.3 Erroranalysis

This section provides a manual error analysis of UMLSmapper on the entire
Spanish Mantra GSC. In sum, UMLSmapper has made 240 false negative and
237 false positive errors. Table 8.7 relates the types of errors identified and their
frequency. Each type of error is explained below.
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Table 8.7: Classification of errors and their distribution

%
False positives Terms included in the UMLS but senses missing 40.5
Missed multi-word annotations, annotated shorter spans  32.1
Discrepancies with gold standard 19.8
WSD errors 5.5
Other 2.1
False negatives  Lexical variability issues 41.7
Made multi-word annotations containing the gold span 12.5
Over- or underspecification 10.4
Discrepancies with gold standard 7.5
Discontinuous gold annotations 7.1
Other 6.2
Exact lexical match with incorrect CUI 5.4
WSD errors 5.0

Most of the false positives are errors made by the system due to relying com-
pletely on pure lexical match with the knowledge base, while the knowledge base
does not capture all the possible meanings of the terms it contains. Thus, we an-
notate concepts that are not actually denoted in the texts. Consider the following
example: the word “organismo” has at least two meanings: a) organism, living
being; and b) organisation, institution. While the former meaning is captured
in the UMLS (as the concept C0029235 [57]), the latter is not. Consequently,
whenever the word “organismo” is used in the dataset, UMLSmapper annotates
it as C0029235 regardless of the actual intended meaning.

The next most common spurious predictions were made as a consequence of
missing a multi-word gold annotation and having made shorter spanned predic-
tions contained within the boundaries of the gold span (e.g., annotating “Staphy-
lococcus aureus” instead of the expected “Staphylococcus aureus meticilin re-
sistente”). Of the 76 errors of this type, we consider 67 are given correct CUIs.

Next in frequency, we fail to understand why 19.8% of the false positives are
not annotated in gold standard corpus, i.e., we believe that the predictions are
correct and that they are missing in the corpus. For instance, given the sentence
“Diarrea crénica ‘naturalmente’ identificable en la anamnesis.” (Chronic diarrhea
‘naturally’ recognizable in the anamnesis.); “anamnesis” is not annotated in the

gold standard corpus, although there exists a concept in the Mantra terminology,
C0199182 [58], which we believe denotes exactly that.

13 of the 237 false positives stem from UKB errors. UKB is only invoked when
several top-ranked CUIs compete to become final annotations for a phrase. This
happens 175 times in total on the whole dataset, of which in 134 the term is
correctly recognised. In 13 of those 134 cases, UKB assigns an incorrect CUI to
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the phrase. That is, UKB has made a correct guess 90% of the times it has been
invoked. The remaining marginal type of spurious annotations are explained by
incorrect brief form expansions, faulty stopword treatment, and/or inaccurate
sentence boundary detection.

Regarding false negative or missing predictions (240 in total), we find more
variability in the typology of errors. 100 are due to lexical variability: the UMLS
Metathesaurus does not capture all the existing synonyms, singulars and plurals,
morphological derivations, and so on, and we do not treat this problem other
than with lemmatisation and the expansion of abbreviated forms.

Some annotations are missed because of having made predictions that in-
volve more tokens than the gold annotations. Consider the following example:
UMLSmapper maps the concept C1708335 [59]—healthy participant or subject—
to the phrase “voluntarios sanos” (healthy volunteers), while the gold standard
only annotates “voluntarios” Of these type of errors, we consider that 20 are
given incorrect CUIs, but 10 could be considered correct.

Another 25 gold annotations are missed because the gold CUI denotes con-
cepts more specific or less specific than the actual words annotated do when
taken literally, and world knowledge or common sense is needed to resolve the
gap between the two. For instance, in the sentence “Valoracion de la capacidad
de esfuerzo en la EPOC” (Assessment of effort capacity in COPD), human an-
notators assign C0015264 [60]—physical effort—to the span “esfuerzo” (effort),
because they know that COPD has nothing to do, say, with mental effort, and the
sentence only makes sense if the word “effort” does denote physical effort. How-
ever, the Spanish lexicalisations of C0015264 explicitly mention physical effort,
so the lexical match with “esfuerzo” does not go through.

In 45 cases, the term is correctly recognised but a CUI is given to the term that
does not coincide with the gold annotation. Of these 45, we judge that 18 times the
CUI proposed is correct, and thus it should be ambiguous—or more ambiguous,
if it already is—(these 18 annotations contribute to the 47 controversial false
positives mentioned earlier). 13 other errors are due to incorrect disambiguation
(the same as explained earlier).

17 annotations are discontinuous, as described in Section 8.2.1.1; UMLSmap-
per does not make discontinuous annotations with the present configuration.
Thus, these annotations add to the missed predictions inevitably.

Finally, the remaining false negatives are due to incorrect tokenisation or
lemmatisation of the input text, or because of the system’s configuration: the
gold concept is not in the knowledge base, the gold annotation is longer than the
maximum annotation allowed in UMLSmapper, and so on.
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8.4 Conclusion

In this chapter, we have evaluated UMLSmapper in a gold standard corpus of
biomedical text annotated with UMLS entities and CUIs: the Mantra GSC (Kors
et al., 2015). We have focused on the parallel Spanish-English subset, comprised
of scientific paper titles and drug labels. The annotations cover a specific sub-
set of the Metathesaurus, consisting of the three most important terminological
sources—namely, SNOMED CT, MeSH and MedDRA—and 10 semantic groups.

UMLSmapper has obtained an overall F;-score of 0.626 and 0.674, in Spanish
and English respectively, in the most demanding evaluation scenario: strict term
identification. This scenario requires predictions to match exactly in span bound-
aries and linked CUIs with gold annotations. UMLSmapper has shown balanced
precision and recall metrics, with better precision than recall in the article titles
sub-corpus and the other way round in the drug labels. The results varied greatly
when broken down by semantic group, although no conclusion can be extracted in
this respect due to the scarce representation of most of the groups in the corpus.

A manual error analysis of the predictions has shown that the main source
of missing as well as spurious predictions is the dependency of the tool on a rich
lexical and semantic coverage by the knowledge base. On the one hand, meanings
of polysemous expressions missing in the knowledge base may lead to false positive
predictions, as the tool may link a span to one of the other registered meanings.
On the other hand, a poor coverage of the lexicalisations of the concepts in the
knowledge base leads to false negative predictions, because the tool relies on
approximate lexical match with the knowledge base to recognise terms. Of note,
the disambiguation module built on UKB (Agirre et al., 2009, 2010) has shown an
accuracy of 90%, and just 13 incorrect predictions out of a total of 636 predictions
can be traced down to this module.

UMLSmapper has been compared to two other systems: MetaMap (Aronson,
2001, 2006) and Transfer (Accuosto et al., 2018; Perez et al., 2020). In the ex-
periments involving the Spanish data, MetaMap has served as a naive baseline:
we simply compiled a new MetaMap knowledge base with the Spanish lexicalisa-
tions of the Mantra terminology, even though MetaMap’s mapping engine draws
heavily upon rules and heuristics implemented for the English language. Un-
surprisingly, UMLSmapper has surpassed this baseline. In the experiments with
English data, we consider MetaMap a competitive baseline, which UMLSmap-
per has also managed to improve—although by a much narrower margin. We
concede that in less standard text, such as health records, MetaMap may prove
a better alternative thanks to its more powerful lexical engine.

Transfer is a pipeline conceived to process texts in one language with a term
identification engine for another. The pipeline first translates the input text to
the engines’ language, annotates the translation with said engine, then transfers
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the annotations in the translated text to the original text using semantic similar-
ity techniques. The implementation reported here uses a NMT Spanish-English
model, MetaMap, and biomedical Spanish fastText embeddings (that is, it was
only evaluated in the Spanish data). This pipeline showed worse F;-scores than
UMLSmapper. Specifically, it showed greater imbalance between precision and
recall: it yielded by far the best precision of all the compared systems but ranked
among the worst in terms of recall.

Finally, we also evaluated the combination of UMLSmapper and Transfer,
seeing as the two pipelines make complementary predictions. The evaluated com-
binations manage to improve the results of the individual pipelines, specifically
by rising the recall metrics. Furthermore, the most competitive combinations are
those that favour Transfer’s predictions in case of conflict, which is expected
because Transfer has a higher correct prediction rate.

Analysing the results at different levels of difficulty—namely, term recogni-
tion, term classification and term identification—, we saw that all the compared
systems have a similar behaviour: whenever a term is correctly recognised, it is
almost always correctly identified (thus, correctly classified as well). Thinking
about the results in these terms, the upper bound of the tools seems to be in the
term recognition. However, we also explained that this chain of thoughts does not
apply to UMLSmapper nor to the other compared systems because in neither case
is the process of term recognition independent from that of term identification.
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Chapter 9

Negation and speculation:
background and literature review

9.1 Definition and motivation

Negation is the universal linguistic phenomenon whereby the polarity of state-
ments or clauses is reversed. In the English language, it is most evidently realised
by the words ‘no’ and ‘not’, but also ‘never’, and even the prefixes ‘a-’ and ‘in-’,
for example. Speculation has to do with modality. In this work and the related
studies, it is an umbrella term that refers broadly to linguistic phenomena related
to hedging, evidentiality, uncertainty, and factuality (Morante et al., 2012c). To
put it simply, we construe speculation as explicit language that signals a speaker
is unsure whether a statement is true or lacks evidence to commit fully to it.

Properly detecting and handling these phenomena is crucial because they are
ubiquitous and have a direct, strong impact on the quality and usability of clin-
ical solutions based on NLP. Doctors and nurses write about negative findings
and hypothesised explanations as much as positive observations. An incorrect in-
terpretation of this data by an automated clinical support program might simply
lead to harmful medical decisions.

Automatic negation and speculation processing is a well-established research
topic, particularly for English, as show several survey articles on the matter
(Jiménez-Zafra et al., 2018b; Cruz Diaz et al., 2019; Jiménez-Zafra et al., 2020b;
Morante et al., 2021). The processing of negation in Spanish text has gained
attention too in recent years, encouraged by the NEGES (Negation in Spanish)
workshops (Jiménez-Zafra et al., 2018a, 2019) and the publications of several
freely available corpora, which we present succinctly below. Notably, the auto-
matic processing of speculation, a fuzzier and inconspicuous phenomenon than
negation, is yet to be thoroughly addressed in Spanish text.

It must be noted that the processing of negation (more than speculation)
is also of interest in Natural Language Processing (NLP) research areas other
than the clinical, especially in relation to sentiment analysis, where negative
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expressions may reverse or reinforce the polarity of a text. Actually, Barnes et al.
(2021) demonstrate that explicitly training a model with negation as an auxiliary
task helps improve the main task of sentiment analysis.

The NLP community has proposed multiple models to represent the problem
of negation and speculation detection:

¢ On the one hand, there is the task of detecting cues and scopes, the
constituent parts of negation and speculation, as pictured in Figure 9.1.
Cues (also known as markers or triggers) are words or phrases that
express negation or speculation. Scopes are the clauses affected by a cue,
that is, whose propositional values are somehow modified or reversed. Some
works focus exclusively on finding the scopes of given pre-annotated cues;
this task is known as negation and/or speculation scope resolution. The
detection of cues and/or scopes is usually addressed as a sequence labelling
problem.

¢ The second common way of modelling negation and uncertainty detection in
the biomedical field is as a text classification task known as assertion clas-
sification. In this case, the text to analyse is pre-annotated with medical
entities, whose assertion category—present, absent, or possible—needs
to be automatically determined. The sentences of Figure 9.1 are depicted
in Figure 9.2 framed as entity assertion annotations.

Astride the previous two, a few works study the recognition of negated medi-
cal entities, i.e., they explore sequence labelling approaches to target exclusively
negated medical entities.

Negl”>*°* *Phrase)

CyC : Rigidez de nuca, no ingurgitacién yugular .

(a) A negation cue and its scope. Translation: "H[ead] & N[ecK]: stiff neck, no jugular vein distention".

S
P Phrase]
Los hallazgos descritos son sugestivos de pielonefritis aguda .

(b) An uncertainty cue and its scope. Translation: “The findings described are suggestive of acute pyelonephritis.”.

Tumoraciones faciales en paciente transplantada hepatica

(c) Example without negation nor uncertainty cues. Translation: “Facial tumors in liver transplant patient”.

Figure 9.1: Annotations of negation and uncertainty cues and scopes.
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DISO [Clinical finding/disorder X

CyC : Rigidez de nuca , no  ingurgitacion yugular

(a) Medical entities annotated as absent (red cross). DIS0 stands for “clinical finding/disorder”. Translation: "H[ead]
& N[ecK]: stiff neck, no jugular vein distention”.

Los hallazgos descritos son sugestivos de bieloneffitis agudéi .

(b) A medical entity annotated as possible (white question mark and dashed border. Translation: “The findings
described are suggestive of acute pyelonephritis.”.

Clinicalﬁndjn disorder Medicali[ocedure
Tumoraciones faciales en paciente transplantada hepatica

(c) Present medical entities. Translation: “Facial tumors in liver transplant patient”.

Figure 9.2: Annotations of medical entities and their assertion category.

9.2 Related resources

In what follows, we present briefly the corpora of Spanish text annotated with
negation and/or speculation information, with special attention to corpora of
the biomedical domain. They are presented in ascendant chronological order of
publication. Multiple review articles can be found in the literature on this topic
(Cruz Diaz et al., 2019; Jiménez-Zafra et al., 2020b; Morante et al., 2021), to
which we refer the reader interested in other languages or domains.

The presented corpora differ in text genre and domain, and conform to diver-
gent guidelines for string-level annotations. In this respect, we must mention the
effort of the NEGES organisers towards providing a unifying framework for the
annotation of negation in Spanish through Task 3 of the 2018 workshop edition
(Jiménez-Zafra et al., 2019).

UAM Spanish Treebank (Moreno et al., 2003; Moreno Sandoval et al., 2013)
The first ever Spanish corpus annotated for negation consists of 1,500 sen-
tences of the news domain and the corresponding syntactic trees after the
PENN treebank model (Marcus et al., 1994). In 2013, it was enriched
with annotations of negation cues and scopes based on BioScope guidelines
(Szarvas et al., 2008; Vincze et al., 2008). The corpus is freely available
under a non-commercial license [61].

IxaMed-GS (Oronoz et al., 2015) The IxaMed Gold Standard corpus consists
of 75 health reports from outpatient consultations. Although the primary
focus of this work is on adverse drug reaction (ADR) events, the annotations
include information about negation and speculation as well. Specifically,
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they encode this information as attributes of the annotated entities. In this
sense, the annotations are akin to those shown in Figure 9.2 for assertion
classification. The corpus is not public due to confidentiality issues.

UHU-HUVR (Cruz Diaz et al., 2017) This corpus of 604 clinical reports from a
Spanish hospital was manually annotated with negation cues, their linguis-
tic scope, and clinically relevant events (the latter based on the THYME
guidelines [Styler IV et al., 2014]). It was the first Spanish corpus to include
affixal negation annotations. At present, the corpus is not publicly available
in spite of the author’s alleged intention to make it so.

IULA-SCRC (Marimon et al., 2017a) The IULA Spanish Clinical Record Cor-
pus is the first clinical corpus annotated with negation-related informa-
tion to be publicly available [62]. The corpus consists of 3,194 sentences of
which 1,093 contain negation. The annotations consist of negation markers
and their scope, inside which relevant medical entities are also highlighted,
among other data. The annotation policy is loosely based on the BioScope
(Szarvas et al., 2008; Vincze et al., 2008) and ConanDoyle-neg (Morante
et al., 2012b) guidelines.

Cotik et al. (2017) This corpus consists of 513 ultrasound reports manually
annotated with a diverse set of entity types and relations. Among the enti-
ties we find negation and speculation cues, which are linked to the entities
of type ‘finding’ they have scope over. The authors do not acknowledge
having based their annotation guidelines in any other previous work. This
corpus is private due to the sensitivity of the data.

SFU Reviewgp-NEG (Mart{ et al., 2016; Jiménez-Zafra et al., 2018¢) This cor-
pus stems from the Spanish portion of the SFU Review corpus (Taboada
et al., 2006), which comprises 400 product reviews across 8 domains. The
manually annotated negation structures consists of cues, scopes, and events.
The SFU Reviewsp-NEG corpus was used in the 2018 edition of the NEGES
workshop (Jiménez-Zafra et al., 2019) for the task on automatically detect-
ing negation cues. It is available for non-commercial purposes [63].

NewsCom (Taulé et al., 2021) The NewsCom corpus consists of 2,955 comments
posted in response to news articles from online newspapers. The NewsCom
guidelines extend those of SFU Reviewsp-NEG (Marti et al., 2016; Jiménez-
Zafra et al., 2018c¢) to include criteria for the annotation of the focus of
negation. This work is in fact the first to include the annotation of foci in
Spanish text. It contains 2,965 negative structures with their corresponding
negation cue, scope, and focus. The corpus is available upon request [64].
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T-MexNeg (Bel-Enguix et al., 2021) This corpus consists of 13,704 tweets writ-
ten in Mexican Spanish, out of which 4,895 contain negation structures. The
annotation guidelines, adapted from those of SFU Reviewgp-NEG (Mart{
et al., 2016; Jiménez-Zafra et al., 2018c) to better conform to the Twit-
ter text genre, identify three main negation components: cues, scopes, and
events. The corpus is available as a GitLab repository [65].

E3C (Magnini et al., 2021a,b) The European Clinical Case Corpus (E3C) is a
collection of clinical cases in 5 languages, namely, Italian, English, French,
Spanish, and Basque. The authors propose an adaptation of the THYME
guidelines (Styler IV et al., 2014), where negation and speculation informa-
tion is added as attributes of events, similarly to IxaMed-GS (Oronoz et al.,
2015). The Spanish portion of the corpus consists of 1,400 clinical cases. It
is publicly available at the European Language Grid catalogue [45].

Also relevant is the work by Campillos Llanos et al. (2017), who analyse a
corpus of 354,677 emergency admission notes in search of negation contexts by
applying hand-crafted patterns. It is to date the biggest corpus considered in such
a study. On the downside, the automated annotation of the corpus through pat-
terns (a thorough manual analysis being impracticable) poses the risk of missing
the long tail of negation contexts. This corpus is also not publicly available.

Table 9.1 offers a comparative view of the corpora from the clinical domain.
As can be seen, just two of them are available, of which only the smallest (i.e.,
EC3 [Magnini et al., 2021a,b]) considers speculation. It does so at the entity and
event level. The other available corpus is IULA-SCRC (Marimon et al., 2017a),
which is thrice the size of E3C, although it only annotates negation, in this case,
following the cue-scope model.

One of the contributions of this thesis is the NUBES corpus, a collection of
sentences extracted from health records and manually annotated with negation
and speculation cues and scopes. The corpus is introduced in Chapter 10. It
is currently the biggest corpus of the clinical domain annotated thus that is
publicly available. It must be noted that the work reported in this thesis regarding
NUBES predates some of the studies described here, such as the latest corpora
and the publications of the results of the NEGES workshops.

9.3 State ofthe Art

Regarding work devoted to the automatic processing of negation and speculation
in Spanish, we find approaches based on hand-crafted heuristics, shallow machine
learning and, more recently, deep learning. Table 9.2 offers a summary of this
work, which we elaborate below; of note, the table also exposes how fragmented
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Table 9.1: Spanish biomedical corpora with annotations of negation and/or speculation, adapted
from Jiménez-Zafra et al. (2018b) and Marti et al. (2018). The upper table section describes the
corpora qualitatively, in terms of the types of annotations they contain; the middle table section
describes the corpora quantitatively. 1 27.58% of the diseases annotated are negated. 21.90% of the
diseases annotated are speculative. 3513 radiology reports. 456% of the findings are negated.

IxaMed- UHU- IULA- Cotik et al.
GSC HUVR SCRC (2017) E3C

Negation cue v v v
Speculation cue v
Scope v v
Entity v v v v v
Event v
Total sentences 5,410 8,412 3,194 2?3 1,134

with negation (%) 71 2,298 (27.32) 1,093 (34.22) 74 240 (21.16)
with speculation (%) 72 - - ? 114 (10.05)
Available at - - [62] - [45]

this research field is, the only comparable results being those pertaining to the
NEGES workshops (Jiménez-Zafra et al., 2018a, 2019) or having been authored
by the same researcher team.

The earliest related studies (Costumero et al., 2014; Cotik et al., 2015; Stricker
et al., 2015; Santiso et al., 2017; Solarte-Pabon et al., 2020) consist of adaptations
and/or extensions of NegEx (Chapman et al., 2001) to the Spanish language.
NegEx is an algorithm originally based on English lexicons that categorises pre-
annotated medical entities as present or absent given the contexts the entities
occur in. These Spanish adaptations obtain Fy-scores (F1) 0.64 to 0.78 in diverse
corpora and evaluation methodologies.

Koza et al. (2019) worked on the recognition of negated medical findings in
radiological reports by means of rules based on morpho-syntactic and semantic
information. They report an F; of 0.98 on an evaluation against their own private
corpus but acknowledge that the test data set lacks variability in the negation
structures it includes.

The task of recognising negated findings has also been undertaken by Santiso
et al. (2019, 2020), but with machine learning techniques. They approach the
problem as a sequence labelling task. They first assess Conditional Random Fields
(CRF) (Lafferty et al., 2001) over symbolic features and features derived from
word embeddings, achieving 0.82 and 0.75 span-level F; (partial match) in TULA-
SCRC (Marimon et al., 2017a) and their private corpus IxaMed-GS (Oronoz
et al., 2015), respectively. Next, they implement a Recurrent Neural Network
(RNN) featuring character embeddings, bidirectional LSTMs (biLSTM) layers
and a CRF classifier, surpassing their previous results on IxaMed-GS.
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Table 9.2: Literature review on negation and uncertainty detection in Spanish text. *SEM 2012 F1 is
the evaluation metric proposed by Morante et al. (2012a) for the *SEM 2012 shared task on
resolving the scope and focus and negation. ZS stands for zero-shot performance. Notice that
scores are only comparable if they result from the same evaluation corpus, task and metric. An
extensive discussion of the different evaluation metrics can be consulted in Sineva et al. (2021).

Reference Task Approach Metric Score
Tested on SFU Reviewsp-NEG (Jiménez-Zafra et al., 2018¢c)

Loharja et al. (2018) NEG cue detection CRF *SEM-2012 F1  0.86
Fabregat et al. (2018a) NEG cue detection biLSTM *SEM-2012 F;  0.68
Fabregat et al. (2019b) NEG cue detection biLSTM *SEM-2012 F;  0.83
Beltrdn et al. (2019) NEG cue detection CRF *SEM-2012 F1  0.84
Dominguez-Mas et al. (2019) NEG cue detection CRF *SEM-2012 F;  0.81
Giudice (2019) NEG cue detection bi-GRU *SEM-2012 F;  0.23
Jiménez-Zafra et al. (2020a) NEG cue detection CRF *SEM-2012 F;  0.87
" NEG scope resolution CRF *SEM-2012 F;  0.81

Shaitarova et al. (2020) NEG scope resolution Transformerzg token Fip 0.78
Shaitarova et al. (2021) NEG scope resolution Transformerzg token Fip 0.79
Rivera Zavala et al. (2020) NEG cue+scope detection Transformer *SEM-2012 F;  0.88

Tested on I[ULA-SCRC (Marimon et al., 2017a)
Hartmann et al. (2021) NEG scope resolution Transformerzg *SEM-2012 F;  0.94
Solarte-Pabén et al. (2020)  NEG cue+scope detection Rules sentence F'y 0.92
Rivera Zavala et al. (2020)  NEG cue+scope detection biLSTM+CRF CoNLL-2010 F; 0.85
Santiso et al. (2019) negated entity detection CRF inexact span F1 0.82
Solarte Pabén et al. (2022)  NEG scope detection Transformer token,,gpro F1~ 0.88
Tested on NUBES (Chapter 10)

Lima-Lépez et al. (2020a) NEG cue detection biLSTM+CRF token Fi 0.96
" UNC cue detection biLSTM+CRF token F; 0.85

" NEG scope detection biLSTM-+CRF token F1 0.91

" UNC scope detection biLSTM+CRF token Fy 0.79

Hartmann et al. (2021) NEG scope resolution Transformerzg *SEM-2012 F;  0.90
Solarte Pabén et al. (2022) NEG cue detection Transformer token,gro F1~ 0.95
" UNC cue detection Transformer token,,pro F1~ 0.84

" NEG scope detection Transformer token,,pro F1 0.88

" UNC scope detection Transformer token,gro F1 0.72

Tested on private corpora

Costumero et al. (2014) assertion classification Rules Fi 0.74
Stricker et al. (2015) assertion classification Rules Fiq 0.67
Koza et al. (2019) negated entity detection Rules sentence F'1 0.98
Santiso et al. (2017) negated entity detection CRF-+Rules inexact span F; 0.74
Santiso et al. (2019) negated entity detection CRF inexact span F1 0.75
Santiso et al. (2020) negated entity detection biLSTM+CRF inexact span F1 0.82
Solarte Pabén et al. (2022) NEG cue detection Transformerzg token,pro F1 - 0.90
n UNC cue detection Transformerzg token,pro F1 0.81

" NEG scope detection Transformerzg token,pro F1 0.84

" UNC scope detection Transformerzg token,pro F1 0.74
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Systems based on CRFs and biLSTMs were also the most popular among
the participants of the shared task about negation cue detection in the NEGES
workshops (Fabregat et al., 2018a; Loharja et al., 2018; Beltrdn et al., 2019;
Dominguez-Mas et al., 2019; Fabregat et al., 2019b; Giudice, 2019). The corpus
provided in both workshop editions to train and test the competing systems was
SFU Reviewgp-NEG (Jiménez-Zafra et al., 2018¢). The best overall results (0.86
span-level F1) were obtained by Loharja et al. (2018) with a CRF classifier over
lexical and morphological features.

The organisers of NEGES implemented another CRF classifier and managed
to improve the state of the art on negation cue detection in SFU Reviewgp-NEG
with an F; of 0.87 (Jiménez-Zafra et al., 2020a). This is also the first work in
the literature that tackles the problem of negation scope resolution along with
cue detection in Spanish text. Specifically, they follow a 2-stage setup with two
separate classifiers, where the first detects cues, whose scopes are determined by
the second. The classifier of scopes yields Fys of 0.81 and 0.73 with gold and
predicted cues as input, respectively.

In view of the across-the-board success of the neural network Transformer
architecture (Vaswani et al., 2017) and the availability of pre-trained neural lan-
guage models steadily and rapidly increasing in number, the focus of works about
negation detection has lately shifted towards studying these models’ behaviour
and advantages.

Rivera Zavala et al. (2020) compare a RNN-based classifier and a Transformer-
based classifier in the task of negation cue detection and scope resolution in the
corpora IULA and SFU Reviewgp-NEG. The RNN classifier combines character,
word and sense embeddings as input to a biLSTM network, whose output is fed to
a CRFs classifier. The Bidirectional Encoder Representations from Transformers
(BERT)-based system follows the conventional setup of a pre-trained language
model (Multilingual BERT o mBERT [23]) with a softmax output layer. Both
systems tackle the problem of cue and scope detection jointly. They achieve 0.81
and 0.85 token-level F; with BERT and the RNN, respectively, in the TULA-
SCRC corpus. In SFU Reviewgp-NEG, the results are 0.92 and 0.88.

Shaitarova et al. (2020, 2021) explore the transferability of negation scope
resolution models between the languages English, French, Spanish and Russian.
Their work is built on NegBERT (Khandelwal et al., 2020), a system originally
built for English that performs negation cue detection and scope resolution in a 2-
stage fashion using BERT. These works adapt NegBERT to the cross-lingual set-
ting by replacing BERT with Multilingual BERT (mBERT) and XLM-RobERTa
(Conneau et al., 2020). They achieve token-level F1s ~0.78 when zero-shot test-
ing English and French models on the SFU Reviewgp-NEG corpus, with XLM-
RobERTa outperforming mBERT by a narrow margin.

Hartmann et al. (2021) also study zero-shot cross-lingual transfer approaches
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for negation scope resolution. Specifically, they explore how to best exploit dis-
parate available datasets (in their work, multiple datasets in English) to overcome
the lack of training data on the target languages (here, Spanish). They propose
the application of a Multi-Task Deep Neural Network (MT-DNN) (X. Liu et al.,
2019), where each dataset available for training is treated as an independent task.
This approach is compared to the simple concatenation of the training datasets,
which they find works slightly better overall when evaluated in IULA-SCRC (Ma-
rimon et al., 2017a) and NUBES (Chapter 10), among others. They report *SEM
2012 scope token Fys (Morante et al., 2012a) of 0.94 and 0.90 in these datasets,
respectively.

Notably, the processing of speculation, a task considerably more difficult than
the detection of negation cues and scopes, is yet to be thoroughly addressed in
Spanish text (clinical or otherwise). Lima-Lépez et al. (2020a) report the first
exploratory experiments with the NUBES corpus using the biLSTM + CRF
architecture over a rich set of morpho-syntactic and lexical features. This work
has recently been extended to incorporate the first published experiments with
a Transformer-based model on the NUBES corpus (Solarte Pabén et al., 2022),
achieving similar results to Lima-Lépez et al. (2020a). In Chapters 11 and 12, we
carry out a battery of experiments with NUBES and Transformer models, among
others, managing to surpass all previous scores.






Chapter 10

NUBEs: A corpus of negation and
uncertainty in Spanish clinical texts

10.1 Introduction

This chapter describes the NUBES corpus (from Negation and Uncertainty anno-
tations in Biomedical texts in Spanish), a new collection of health record excerpts
enriched with negation and uncertainty annotations. To date, NUBES is one of
the largest available corpora of clinical reports in Spanish annotated with nega-
tion, and the first to include the annotation of speculation cues and scopes.

In a nutshell, cues (also called markers or triggers) are words or phrases
that express negation or speculation; scopes are the phrases or clauses affected
by a cue, that is, whose propositional values are somehow modified. For a higher
level of granularity, there are other elements that can be annotated, such as the
element within the scope most clearly affected by the cue—usually a medical
entity—, or the element that reinforces or diminishes the meaning of the cue,
called a polarity item. A typical annotation that includes all these elements is
shown in Figure 10.1:

Scnpe

La paciente ingresa con é_bspecha de posible encefalitis

Figure 10.1: A sentence annotated with an uncertainty cue and a scope with a polarity item and a
medical entity of type Disorder. Translation: “The patient is admitted under suspicion of possible
encephalitis”.

The chapter is structured as follows: Section 10.2 starts by describing the
origin and pre-processing of the raw data with which NUBES was created. Next,
it explains the methodology followed to write the annotation policy and to anno-
tate the corpus. Finally, it discusses the limitations of this work and the corpus
itself. Section 10.3 first presents the final annotation guidelines of NUBES, then
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reports the inter-annotator agreement, and provides a quantitative description of
NUBEs. It also discusses the differences of NUBES with related corpora. Finally,
Section 10.4 concludes the chapter and establishes the links with the following
chapters.

10.2 Materials and Methods

10.2.1 Data

NUBES consists of health records provided by a Spanish private hospital. Specifi-
cally, we extracted plain text from 7 sections consisting of free narrative—mnamely,
Chief Complaint (CC), History of Present Illness (HPI), Physical Examination
(PE), Diagnostic Tests (DXT), Patient History (hx), Progress Notes (PNo), and
Treatment Notes (TNo)—, and split them into sentences with spaCy [37]. Then,
documents were sampled into batches of around 3,000 sentences, by iteratively
picking documents from random medical specialities and sections.

Further, NUBES had to be anonymised as a requirement to its publication.
Succinctly, the anonymisation process consisted of 3 phases:

1. Manual annotation of sensitive information, such as names, dates, locations,
contact details, and so on. The result of this phase was the corpus NUBES-
PHI described in Chapter 5, Experiments with health records.

2. Manual revision of the alleged false positive errors committed by 3 systems
when applied to the whole NUBES-PHI, having themselves been trained
on NUBEs-PHI, as explained in Section 5.3.4 of said chapter. This revi-
sion uncovered a few additional sensitive data items missed by the human
annotators of NUBES-PHI.

3. Semi-automatic replacement of the identified sensitive data with similar
phrases. We exploited methods based on rules and dictionaries designed for
this purpose (Lima-Lépez et al., 2020b).

Thus, the content’s readability was preserved while being suitable for sharing.

In total, 10 batches have been anonymised and annotated with negation and
uncertainty, amounting to 7,019 documents and 29,682 sentences. Of note, the
public version of NUBES was shuffled at sentence level in order to hinder even
further potential de-anonymisation efforts.

10.2.2 Methodology

An initial draft of our guidelines was produced by extending IULA-SCRC’s (Ma-
rimon et al., 2017a) to include uncertainty. After annotating IULA-SCRC with
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this initial draft, we decided to make further changes with respect to negation by
annotating

a) negations inside indirect speech (e.g., ‘The patient denies’);
b) verbs that convey a change of state (e.g., ‘remove’); and,
¢) morphological negation (e.g., ‘incoherent’).

Other minor changes to the guidelines had to be made in order to accom-
modate uncertainty annotations. These differences with IULA-SCRC and other
related corpora are further described in Section 10.3.4.

After producing the second draft, two linguists worked independently on the
first batch of documents of the NUBES corpus. Their results were compared
and multiple questions and disagreements that arose were discussed. The team
also consulted a medical expert who aided them with some difficult scenarios,
which are also examined in Section 10.3.4. These discussions contributed greatly
towards producing the final version of the guidelines.

Then, the two linguists annotated the same batch adhering to the final guide-
lines. Next, a third annotator resolved the differences between the previous two
in the first batch in order to create a Gold Standard. Finally, the remaining 9
batches were annotated by one linguist. The current NUBES release includes,
then, one batch reviewed by three people and nine batches produced by a single
annotator.

All the annotation work was done with BRAT (Stenetorp et al., 2012). To
speed up the process, an automatic cue annotator service was developed for BRAT
that detects a list of the most frequent cues. On average, we invested around eight
hours of annotation work for each batch of ~3,000 sentences.

10.2.3 Limitations

The most notable limitation of NUBESs is the above-mentioned fact that ~90%
of the corpus has been annotated and reviewed by a single person. While the
inter-annotator agreement rates on ~3,000 sentences—reported below in Section
10.3.2—indicate our guidelines are clear and unambiguous-enough given the com-
plexity of the task, we are aware that a corpus annotated to a large extent by
one person does not meet the requirements to be considered a Gold Standard
Corpus by the standards of the NLP community. Still, we defend that NUBES is
a valuable contribution as the first and—at the moment of writing—only corpus
annotated with negation and uncertainty phenomena in Spanish clinical text,
helping further the researcher in this field while the quality of NUBES is im-
proved and/or better corpora are published by other researchers in the future.
In addition, to the best our knowledge, it is currently the biggest freely available
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corpus of real health record excerpts in Spanish, which we consider in itself quite
valuable a contribution.

Another area for improvement involves the pre-processing of the data. Clinical
text is known to be problematic even for the most basic NLP tasks, namely,
sentence splitting and tokenisation (Cruz Diaz et al., 2015). While we have not
performed a systematic evaluation of the existing splitters and tokenisers for the
Spanish language and the clinical domain, none of such tools tested in informal
evaluations stood out as producing consistently fewer or less serious errors than
the others. We decided to use spaCy to split and tokenise NUBES for the sake of
convenience, in spite of the result not being fully satisfactory.

Finally, we must acknowledge a limitation in the scope of the corpus itself.
While negation is a binary operator, uncertainty is most certainly not; it is a
continuum from utter conviction to pure speculation. At the moment, uncertainty
annotations in NUBES do not include information about the level of confidence.

10.3 Results

10.3.1 NUBEs annotation guidelines

This section reports the final annotation guidelines of NUBES. They define three
main elements of interest: negation cues, uncertainty cues and their scope. More-
over, polarity items and entities are also annotated as part of the scope.

10.3.1.1 A note on formatting

The guidelines include a large number of examples to illustrate each of the rules
and exceptions of the policy. For the sake of practicality, the examples are not
presented in figures, as in the introduction, but in plain text. Here we introduce
the formatting of the examples; the concepts listed below will be defined in the
corresponding sections:

o Boldface: Negation or uncertainty marker

e [talics: Scope of a marker

e Solid underline: Medical entity

o {Curly brackets}: Polarity item

e Dotted underline: Scope of a marker located within another scope

The example of the introduction, repeated as Figure 10.2 for convenience,
would be formatted as shown in example E1:

E1 La paciente ingresa con sospecha de {posible} encefalitis
The patient is admitted under suspicion of possible encephalitis
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La paciente ingresa con gbspecha de posible encefalitis

Figure 10.2: A sentence annotated with an uncertainty cue and a scope with a polarity item and
an entity of type "disorder”

10.3.1.2 Negation cues

We define negation cues as elements that modify the truth value of a clause or
specify the absence of an entity. Three different types of cues can be distinguished:
syntactic, lexical and morphological.

10.3.1.2.1 Syntactic negation cue (NSyn) These are mostly function words or
adverbs that can accompany multiple syntactic constructions or occur on their
own. It is the simplest type of negation, as well as the most common, as it covers
words such as ‘no’ (no) and ‘sin’ (without):

E2  No ha tomado analgesia (sic)
[The patient] has not taken any pain medication

E3 6.- Drenaje: no

6.- Drainage: no

E4  Fiebre de 38,5 sin foco

38.5 degrees fever without a focus

E5 Nunca ha precisado valoracion psiquidtrica.
[The patient] has never required psychiatric assessment.

10.3.1.2.2 Lexical negation cue (NLex) They are content words or multi-word
expressions that convey negation depending on the context, including verbs, ad-
jectives or noun phrases. These cues are harder to detect as the way in which they
negate a phrase is usually subtler than that of syntactic cues. Some examples are
‘suspender’ (suspend), ‘incapacidad para’ (inability to) or ‘descartar’ (discard):

E6  Desestiman actualmente la realizacion de endoscopia
At present they dismiss conducting an endoscopy

Phrases headed by negative determiners are also considered lexical cues:

E7 Ninguna de ellas de evolucion aguda-subaguda
None of them of acute-subacute course

While far less common still, dashes can be used to indicate negative results of
tests, which we also include in this category:

E8  Tira reactiva de orina: leucocitos (+), eritrocitos (-)
Urine strip test: leukocytes (+), erythrocytes (-)
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10.3.1.2.3 Morphological negation cue (NMph) Morphological negation refers to
negation by means of affixes. Since NUBES is a medical texts corpus, we decided
to limit the annotation of these cues to words that explicitly state the absence
of symptoms (‘afebril’ [afebrile]) or that could be seen as negating a symptom or
state (‘deshidratado’ [dehidrated]). Words that do not fulfil those conditions or
that are part of a condition name are not annotated.

E9 Afebril al ingreso

Afebrile at admission

Furthermore, a word in question should be classified as a morphological nega-
tion cue only if the word can be paraphrased as a negated sentence that would
be annotated under those conditions. For example, ‘insuficiencia’ (failure), as in
Example E10, is not annotated because ‘“no suficiencia’ or ‘’falta de suficiencia’
are not grammatical or natural expressions in Spanish.

E10 Present6 descompensacion de su insuficiencia cardiaca (sic)
[The patient] showed decompensation of their heart failure

The intuition behind this rule is that ‘insuficiencia’ itself conveys a complete,
independent idea in this context—meaning “diminished capacity” of the heart—
, rather than being the negated counterpart of another concept upon which it
depends to be assigned a meaning (as in the pairs ‘capable’/‘incapable’, ‘symp-
tomatic’/‘asymptomatic’, ‘oriented’/‘disoriented’, and so on).

10.3.1.2.4 Negation cue exceptions It is worth noting that not all occurrences
of words that express negation are annotated as cues. Four main exceptions exist:

1. Concerning the adjective ‘negativo’ (negative), it is not a negation cue if it
is part of name, e.g., ‘bacterias Gram negativas’ ( Gram-negative bacteria).

2. Seeming negation cues might be used to modify the meaning of degree
and frequency adverbs, as in ‘no siempre’ (not always). As the negation
of a universal quantifier—e.g., ‘not always’—is logically equivalent to the
existential quantifier—e.g., ‘sometimes™—, we do not consider these cases to
constitute negation cues. Similar rationale applies to expressions like ‘casi
sin’ (almost no).

3. Similarly, seeming negation cues can be part of uncertainty cues, like in ‘no
claro’ (not clear). We elaborate on this exception in the next section.

4. In general, conditional constructions (E11), volition verbs (E12) and final
adjuncts (E13) should not be considered for negation cues, as they describe
wishes or events that might or might not happen in the future.

E11 Si fiebre alta que no cede [...]
If [they have] high fever that doesn’t drop [...]
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E12 Refiere molestias y quiere quitarselo
[The patient] says it hurts and wants it removed

E13 Varén de 68 afios, remitido desde su C.Salud, para descartar TVP
68-year-old male sent by their local clinic to discard DVT

10.3.1.3 Uncertainty cues

Similarly to negation, uncertainty cues can be broken down into two groups:
syntactic cues and lexical cues.

10.3.1.3.1 Syntactic uncertainty cue (USyn) The only instances of this class are
the coordinating conjunction ‘o’ (or) and the preposition ‘versus’. ‘o’ should not
be annotated in the context of enumerations or when introducing paraphrases
(E14), but when used to introduce alternative explanations, as in E15:

E14 En las intercrisis refiere sensacién continua de mareo o inestabilidad
[The patient] mentions continuous dizziness or instability

E15 Una complicacién postCNG o una patologia de origen digestivo
A post-coronary angiography complication or a pathology of digestive origin

10.3.1.3.2 Lexical uncertainty cue (ULex) As with lexical negation, these are
content words that express uncertainty depending on the context. Some of the
most used cues are ‘probable’; ‘posible’ and ’sospecha de’ (see E16 and E17).
Verbs in the conditional tense or subjunctive mood also treated as uncertainty
cues, including those that usually act as negation cues, as in example E18.

E16 Sospecha de dehiscencia de suturas
Suspicion of wound dehiscence

E17 Se pensé en un origen funcional de ambos sintomas
A functional origin of both symptoms was considered

E18 Descartaria {de forma razonable} una arteritis [...] como causa de la clinica
It would reasonably rule out [...] arteritis as the origin of the symptoms

As with negation, certain punctuation marks are sometimes (rarely) used to
indicate uncertainty. In this case, we are concerned with the question marks ‘;’
and/or ‘7

E19 ;Ca in situ?.
Ca in situ?

Medical jargon deserves special attention in this section, as reports abound
with phrasings with very specific meanings that might surprise the non-expert
annotator. The most compelling cases include (the exclamation mark indicates
that the sentence is not standard Castilian Spanish):
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o ‘orientar’; lit. navigate or aim to, here indicate or point to:

E20 'Todo ello orienta junto con la clinica a un cuadro suboclusivo
All this, along with the symptoms, points to/?orients to a subocclusion case

e ‘impresionar’, lit. move, affect; here, strike as, look like from ‘dar la impre-
s
sion’:

E21 '[..] impresionando el cuadro de sindrome confusional
[...] the case striking as/’impressing as a confusional state

e ‘asociarse’, lit. join or merge; vague umbrella expression related to the ideas
of co-occurrence or addition (it does not imply uncertainty):

E22 'Tras limpieza quirdrgica se asocia al tto con antifingicos
After surgical cleaning, [the patient] is givcn/?is associated to antifungal treatment

Another aspect to take into consideration is the interaction between negative
and uncertainty cues in the same sentence. Seemingly negative cues may express
uncertainty depending on the context they appear in. For example, a negated
negative cue might be used to express uncertainty (E23), while words that express
confidence are also classified as uncertainty when they are negated (E24 and E25).

E23 No se descarta {definitivamente} sangrado activo
Active bleeding is not definitively ruled out

E24 No claro transtorno sensitivo
No clear sensitive disorder

E25 Sin signos claros de isquemia aguda
No clear signs of severe ischemia

Finally, subordinate interrogative clauses licensed by—possibly negated—
verbs of knowing, thinking and believing also express doubt or hypothetical
ideation, as in Examples E26 and E27:

E26 No pudiendo precisar si ha presentado o no pérdida de conciencia
[The patient] is not able to specify whether they lost consciousness or not

E27 Sugerimos una valoracién psiquiatrica, por si el origen del cuadro {pudiera} [...]
We suggest a psychiatric evaluation, in case the origin of symptoms could [...]

10.3.1.3.3 Uncertainty cue exceptions As with negation cues, there exists occur-
rences of words or phrases typically annotated as uncertainty cues that should
not be labelled under certain circumstances. The main exception is where the
uncertainty is cancelled by a negation cue. For example, in E28, ‘sugestiva de’
stops indicating that the speaker is unsure of what they say when it is negated
by ‘no’. In such cases, the uncertainty cue is not annotated, just the negation cue:



10.3 Results 137

E28 No clinica sugestiva de aura migranosa
No symptoms suggestive of migraine aura

This case contrasts with the following example (and E38 below), where the
negative word ‘no’ does not cancel the uncertainty conveyed by ‘parecer’ (to
seem), thus the two words are jointly annotated as an uncertainty cue:

E29 No parece haber tenido TCE
Does not appear to have had TBI

10.3.1.4 Scopes

Generally speaking, the scope is the part of the sentence that is affected by a nega-
tion or uncertainty cue; more specifically, cues have scope over the constituents
of the sentence whose status being false or uncertain is sufficient to establish the
truth of the sentence (see Huddleston et al. (2002), among others, for a com-
prehensive explanation regarding negation—here, we stretched their definition to
include scopes of uncertainty cues).

Here, we follow ITULA-SCRC’s definition of the scope as “the maximal syn-
tactic unit that is affected by the marker” (Marimon et al., 2017a, p. 46) ignoring
the subject (only included when in post-verbal position). Also following IULA-
SCRC, cues are not part of scopes, as has been illustrated in all the examples
above.

In what follows, we present several phenomena related to the scopes. First,
we introduce two types of scopes that deviate from the canonical shape of scopes:
discontinuous scopes and embedded scopes. Then, we introduce two new anno-
tation categories that are only annotated within scopes: entities and negative
polarity-sensitive items (NPI).

10.3.1.4.1 Discontinuous scopes The scope of a cue can sometimes be discontin-
uous. That is, a cue can affect multiple text spans that are separated by unaffected
material. The most frequent structures that trigger discontinuous scopes are the
following:

a) The cue occurs between the head and the complements or modifiers of the
phrase or clause it affects, causing the cue to be surrounded by its scope
(see also E25):

E30 Relacion probable con incipientes cambios por otitis media cronica
Probable relation to early changes caused by chronic otitis media

b) The cue affects anaphoric expressions. In E31, ‘inhalers’ is the antecedent
of the anaphor ‘them’, which is in the scope of the negation cue ‘not’; thus
‘inhalers’ too is annotated as being part of the scope:
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E31 Refiere su Médico de Cabecera que le pauté inhaladores pero no los tolera

Her family doctor refers that she gave him inhalers but he does not tolerate them
Similary, the antecedent of the relative pronoun ‘which’ in E32, ‘micturition
symptoms’, is part of the scope of the cue ‘not’:
E32 Refiere clinica miccional [...] que no consulté {ni} traté

[The patient] refers to micturition symptoms which they did not consult nor treat.
In Example E33, the verb ‘repeats’ is omitted in the non-initial coordinated
clause, forming a gapped coordination; thus, the first mention of the omitted
material is annotated as being part of the scope:
E33 Repite palabras sencillas pero no frases

[The patient] repeats simple words but not sentences

c¢) The cue is or contains a correlative conjunction, in which case both the cue

and the scope are discontinuous (see also E26):

E34 Valorar si precisa o no tratamiento antibidtico
Assess whether or not [the patient] needs antibiotic treatment

10.3.1.4.2 Embedded scopes Up to this point, the examples given have only in-
cluded one—continuous or discontinuous—cue and its scope. It is possible, how-
ever, to have a cue-scope pair embedded within another scope, as illustrated by
Examples E35 and E36. The dotted underlines are the embedded scopes:

E35 Sospecha de {posible} HSA no apreciada en el TAC

E36 Imposibilidad para una bipedestacion sin ayuda
Inability to stand without help

In these cases, the two cues are semantically independent from each other and
are annotated as such. Notice, however, that at least 3 special cases have been
described throughout the previous sections where seemingly co-occurring cues
are not annotated as two independent cues with independent scopes:

1. Negated certainty may indicate uncertainty (see Example E23);

2. the co-occurrence of negation and uncertainty may express just uncertainty
(E29 and E38) or annul it (E28); and,

3. non-initial instances of cues of the same type as the initial cue may be
treated as negative polarity-sensitive items (see Section 10.3.1.4.4).

10.3.1.4.3 Entities Scopes may contain mentions to medical entities that could
be of interest for applications or application functionalities developed with
NUBES, as entities constitute information units more easily understood and
manageable by computers than scopes. Structurally, entities are light nominal
phrases within scopes (underlined):
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E37 No se aprecian lesiones estructurales
No structural lesions are observed

When a sentence contains coordinated phrases, each of them is annotated
as an individual entity within a longer scope, as in Example E38. However, the
whole constituent is annotated as entity when it is the modifiers or complements
of the nominal head that are coordinated (E39):

E38 Sin aparente TCE {ni} focalidad
With no apparent TBI or [neurological] focus

E39 No clinica digestiva {ni} miccional
No digestive nor voiding symptoms

Ounly the most relevant entity (or coordinated entities) is annotated, that
which conveys new information. While it might be tempting to think of these
entities as the foci of negation or uncertainty, we refrain from using the term in
this work, because a) foci come in many forms and shapes while, as mentioned
earlier, entities are generally light nominal phrases; and, most importantly, b) it
is not always possible to infer the intended focus of the speaker from written
utterances.

For instance, E40 contains 2 medical entities that could theoretically play
focus of the sentence, namely, ‘metastatic lesions’ and ‘adrenal glands’; the focus
might even be the heavier phrase ‘metastatic lesions in adrenal glands’ (too heavy
perhaps to be considered an entity):

E40 Sospecha de lesiones metastdsicas en glandulas suprarrenales
Suspected metastatic lesions in adrenal glands

Such examples must be interpreted and assessed in context. In E40, we would
annotate ‘metastatic lesions’ as an entity instead of ‘adrenal glands’ because,
intuitively, it is understood that the clinically most relevant, new and impactful
information is that “the patient may have metastasic lesions (in their adrenal
glands)” rather than “the metastasic lesions that the patient may have would be
located in their adrenal glands”. While intuitive, entities are admittedly the most
difficult annotated pieces of information for which to provide rigorous criteria.
Nevertheless, they are secondary to negation or uncertainty cues and scopes,
which is what NUBES is primarily about.

Entities are labelled with a set of categories adapted from IULA-SCRC’s in-
terpretation of the SNOMED CT classification: Medical Findings and Disorders,
Medical Procedures, Chemicals and Body Substances, Body Structure, Other—
for other types of medical concepts; not in [IULA-SCRC—and Phrase—used for
entities not specific to the medical field. If the entity and the scope within which
it lies match in span (as in E24 and E39, among others), the most specific label
is used for the whole scope. Otherwise (e.g., E18, E28 and E37), the entity or
entities are embedded within a Phrase scope.
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10.3.1.4.4 Negative polarity-sensitive items (NPI) NPIs are lexical elements that
are only licensed under specific conditions, negation being the quintessential li-
censor as the name ‘negative polarity-sensitive item’ suggests. In NUBES, the
most frequent NPIs are pronouns or negative determiners, such as ‘alguna’ or
‘ninguna’ (any):

E41 Niega dolor a {ningin} nivel

[The patient] denies pain at any level

In examples like E41, NPIs seem to reinforce the expressive power of the
negation cues that license them. From this perspective, we also label as polarity
items cues of the same category that appear in the same sentence if they were
used to reinforce the initial cue, as in the following example, even though they
are not actual NPIs in a strict sense!:

E42 Parece detectarse un {posible} deterioro cognitivo de {posible} origen vascular
A possible cognitive impairment of possible vascular origin has seemingly been detected

10.3.2 Inter-annotator agreement

We report agreement measured as Cohen’s kappa coefficient (k) (Cohen, 1960)
and agreement percentage (%).  is defined as follows:

Do — De _ Jo— fe
]-_pe N_fe

K= (10.1)

where p, (resp. f,) is the proportion (resp. frequency) of units in which the
annotators agree—i.e., the observed agreement—and p, (resp. fe) is the propor-
tion (resp. frequency) in which agreement is expected by chance—i.e., the chance
agreement. Chance agreement is the sum of the joint probabilities of the marginal
proportions. N is the total number of units annotated. In our case, N = 43, 060,
the tokens of the first batch. Agreement percentage (%) is simply p, presented
as a percentage.

Intuitively,  tells how much the annotators agree beyond the expected agree-
ment if annotations were random. There is no universally accepted interpretation

INone of the words labelled as polarity items in Example E42 requires licensing from the cue.
Consider the sentence where the initial cue has been removed and is still perfectly grammatical:

¢ Se detecta un posible deterioro cognitivo de posible origen vascular
A possible cognitive impairment of possible vascular origin has been detected

The point is that, overall, these words serve to strengthen the conveyed level of uncertainty
instead of constituting independent cue-scope pairs; thus, we annotate them with the same
label as the NPIs for the sake of simplicity, given that they produce a similar semantic effect.
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of k as to what is considered high or low agreement. Landis et al. (1977) pro-
posed the interpretation shown in Table 10.1, which is widely cited, but has no
evidential grounding.

We computed our inter-annotator agreement twice on the first batch of the
corpus, before and after the discussion that led to the final guideline annotations.
As Table 10.2 shows, agreement improved after the discussion, particularly for
cues. The low agreement in polarity items is explained by the fact that they occur
very few times (15) and the number of possible tags is also small (2; a token is
either part of a polarity item or it is not), which distorts the x measurement.

Table 10.1: Cohen’s kappa coefficient () interpretation by Landis et al. (1977)

Value Meaning
Kk < 0.00 No agreement
0.00 < k <0.20 Slight agreement
0.21 <k <£0.40 Fair agreement
0.41 < k <0.60 Moderate agreement
0.61 <k <0.80 Substantial agreement
0.81 < k <1.00 Almost perfect or perfect agreement

Table 10.2: x and agreement percentage (%) between 2 annotators on the first batch (2,971
sentences). N is the number of categories considered. The best results are highlighted in bold.

Round 1 Round 2

N K % K %
Negation cue 4 085 9943 0.93 99.74
Uncertainty cue 3 075 99.74 0.84 99.84
Scope 6 0.75 96.57 0.80 97.17
Entity 6 0.74 97.47 0.80 98.04
NPI 2 045 9994 0.50 99.95
All 14 0.78 9596 0.83 96.83

10.3.3 The NUBEs corpus

NUBES consists of 29,682 sentences, out of which 24.59% include negation and
7.51% include uncertainty (see Table 10.3). In many of the sentences there is more
than one cue. Further, while it is more common for the two phenomena to occur
independently, they appear together in a small percentage of sentences (2.26%).
Discontinuous cues and scopes seem to be much more frequent for uncertainty
than for negation. Concerning the different cues that appear in the corpus, 345
unique negation and 297 unique uncertainty cues have been annotated. The most
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frequent cues by type are listed in Tables 10.4 and 10.5. Appendix C shows the
distribution by medical speciality and Electronic Health Record (EHR) section.

Table 10.3: Quantitative description of NUBEs

Negation Speculation Total
Sentences 29,682
Tokens 518,068
Vocabulary size 31,698
Sentences affected 7,298 (24.59%) 2,229 (7.51%) 8,855 (29.83%)
Average cues per affected sentence 1.29 £ 0.70 1.11 £ 0.37 1.35 £ 0.75
Total cues 9,431 2,480 11,911
Unique cues 345 297 634
Discontinuous cues 0 95 95
Average scope length in tokens 4.01 £+ 3.59 5.27 £ 497 4.30 £+ 3.98
Discontinuous scopes 219 123 342
Table 10.4: Top 5 negation cues by type (lemmatised and normalised)
NSyn NLex NMph
Cue # Cue # Cue #
no (no, not) 4,058 negativo (negative) 305 asintomético (asymptomatic)
sin (without) 2,518 retirar (remove) 290 afebril (afrebile)
tampoco (neither) 40 suspender (withhold) 180 desorientado (disoriented)
nunca (never) 5 negar (deny) 87 inespecifico (non-specific)
excepto (except) 4 descartar (rule out) 76 inestabilidad (instability)

Table 10.5: Top 5 speculation cues by type (lemmatised and normalised)

USyn ULex
Cue Cue #
versus, vs 15  probable 364
o (or) 4 compatible con (compatible with) 255
posible (possible) 216
parecer (to seem) 156
sospecha de (suspicion of) 143

10.3.4 Differences with related corpora

The most basic step in the process of creating the corpus consisted in attempting
to reach an agreement on what the terms negation and uncertainty encompass.
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An overview of the existing literature both in English and Spanish, revealed the
there is no one main, agreed-upon definition of these phenomena, not only across
the disciplines of theoretical and computational linguistics, but even across corpus
descriptions generated within the NLP community. The main differences between
them have to do with what is accepted as negation and the way in which elements
such as scopes are annotated.

We ultimately considered that our definition of negation should encompass
every word that implies an entity is not occurring or has not occurred—either at
all (‘imposibilidad para’ [impossibility to]) or anymore (‘retirada de’ [removal of],
‘suspender’ [withhold]). Marimon et al. (2017a) among others argue that they did
not take into account these type of cues because they express a “change of state”
(Marimon et al., 2017a) or, in the case of ‘negar’ (deny), that it “is considered, in
factual terms, an statement of what someone says”. From the point of view of the
applicability of the corpus, we still considered interesting to annotate negation
and uncertainty in reported speech.

Another debatable example is the postnominal adjective ‘negativo’ (negative).
The authors of UHU-HUVR (Cruz Diaz et al., 2017) only annotate this word for
test results whenever the name of the test and that of the condition is the same,
as it means that the patient does not have said condition; otherwise, it means that
the test has taken place and that it is the results that are negative. This contrast
is shown respectively in examples (E43) and (E44), taken from UHU-HUVR.

E43 Serologia materna: [Toxoplasmal: Negativo
Maternal serology: Toxoplasma: Negative

E44 Técnicas de Z-N (normal y largo) negativo
Negative Z-N stain (normal and long)

In NUBEsS, the latter case (E44) is also annotated as it still accommodates into
our definition of negation.

Finally, some of the instances that are categorised as negation by other cor-
pora were annotated as uncertainty in NUBES due to the inclusion of this phe-
nomenon. For example, given the sequence ‘sin clara’ (no clear), IULA-SCRC
annotates ‘sin’ as a cue and ‘clara’ as part of the scope. In NUBES, ‘sin clara’ as
a whole is considered an uncertainty cue, as illustrated several times throughout
the guidelines.

All things considered, it must be noted that each set of guidelines is the prod-
uct of a long, challenging debate not free of hesitation—even after a consensus is
reached among the authors—, and highly influenced by the applications that the
authors might have in mind for the corpus.
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10.4 Conclusions

In this chapter we have presented the NUBES corpus, a new collection of biomed-
ical texts in Spanish annotated for negation and uncertainty. It is publicly avail-
able in a GitHub repository [6]. To the best of our knowledge, NUBES is the
largest public corpus of clinical reports in Spanish annotated with negation and
the first one that includes the annotation of speculation cues, scopes, and enti-
ties. Table 10.6 offers a comparison of NUBES with related existing corpora in
quantifiable terms.

Table 10.6: Spanish biomedical corpora with annotations of negation and/or speculation,
including NUBEs, adapted from Jiménez-Zafra et al. (2018b) and Marti et al. (2018). The upper table
section describes the corpora qualitatively, in terms of the types of annotations they contain; the
middle table section describes the corpora quantitatively. 127.58% of the diseases annotated are
negated. 21.90% of the diseases annotated are speculative. 3513 radiology reports. 456% of the
findings are negated.

IxaMed- UHU- IULA- Cotik et al.
GSC HUVR SCRC (2017) E3C NUBESs

Negation cue v v v v
Speculation cue v v
Scope v v v
Entity v v v v v v
Event v
Total sentences 5,410 8,412 3,194 73 1,134 29,682

w/ negation (%) 7! 2,298 (27.32) 1,093 (34.22) 74 240 (21.16) 7,298 (24.59)
w/ speculation (%) 72 - - ? 114 (10.05) 2,229 (7.51)
Available at - - [62] - [45] 6]

We have explored the corpus from different perspectives: by its comparison
with similar corpora, by justifying its design and by acknowledging its limita-
tions. Annotating a corpus with extra-propositional meaning requires a thorough
linguistic analysis that led to many discussions before, during and even after the
process. Aspects like how to demarcate the definition of negation and uncertainty
and whether some examples were actually part of them proved to be a source of
disagreement. On top of that, the idiosyncrasies of medical language also posed
some complications.

In the next chapters, we exploit NUBES in several experiments about au-
tomatically detecting negation and uncertainty. In Chapter 11, we model the
problem as a sequence labelling task of 4 types of spans: negation cues, uncer-
tainty cues, negation scopes, and uncertainty scopes. In Chapter 12, we address
the problem of assertion classification; to be able to do so with NUBES, we trans-
form the corpus automatically.



Chapter 11

Negation and speculation: experiments
in cue and scope detection

11.1 Introduction

The study builds on Lima-Loépez et al. (2020a), who present the first experiments
with NUBES of detecting negation and speculation cues and scopes. In that work,
we train biLSTM + CRF models that exploit a combination of lexical, syntactic
and semantic features. Here, we evaluate a diverse set of Transformer (Vaswani
et al., 2017) and Flair (Akbik et al., 2019) models, managing to improve our
previous reported results, as well as the related work (Solarte Pabon et al., 2022).
Furthermore, we analyse the performance of said model in a range of scenarios
of varying difficulty:

¢ In addition to the overall performance a given model may yield, being able
to achieve competitive results with as little data as possible is a most de-
sirable trait, given that clinical data is notably hard to obtain. For this
reason, we analyse the performance of the models with decreasing amounts
of training data, from thousands of examples down to a few dozen.

o It has been widely reported that a few negation markers (e.g., ‘no’ and
‘sin’) are responsible for most of the negation instances in Spanish free text
(Moreno Sandoval et al., 2013; Campillos Llanos et al., 2017; Cruz Diaz et
al., 2017; Lima-Lopez et al., 2020a). While previous studies on negation and
uncertainty detection report overall acceptable results in multiple scenarios
and datasets, it has not been studied how well predictive models perform
specifically on the less frequent surface forms of negation, which are equally
important in real usage scenarios.

The remainder of the chapter is structured as follows: Section 11.2 first de-
scribes the form and quantity of the data used in the experiments; then, it presents
the trained and evaluated systems; finally, it explains the evaluation methodol-
ogy. Section 11.3 reports the results of the evaluation and their analysis. Last,
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Section 11.4 summarises the chapter and presents the conclusions drawn from
the presented work.

11.2 Materials and methods

11.2.1 Data

The experiments are conducted with the NUBES corpus (Chapter 10). It consists
of a collection of sentences extracted from anonymous Spanish clinical records
and manually annotated with negation and uncertainty cues and their scopes.
For this set of experiments, we keep the train, development and testing splits of
the NUBES corpus first presented in Lima-Ldpez et al. (2020a) [6], which already
come converted from brat standoff format (Stenetorp et al., 2012) to token-level
annotations with 4 types of entities:

e NCue: negation cue,

e NSco: negation scope,

e UCue: uncertainty cue, and
e USco: uncertainty scope.

The labelling scheme chosen for this task was BIO, in which B~ (Beginning)
marks the beginning of a entity or span, while the subsequent tokens of the span
receive the tag I- (Inner) and tokens that do not belong to any span are marked
with 0 (Outside). The sentences of Figure 9.1 would be encoded as follows:

E1 From Figure 9.1a: E2 From Figure 9.1b: E3 From Figure 9.1c:
CyC i 0 Los ooviiiiiia.. 0 Tumoraciones ...... 0
P 0 hallazgos ........... 0 faciales ............. 0
Rigidez ............. 0 descritos ............ 0 N it 0
de ..o 0 570 o N 0 paciente ............ 0
NUCA ©vevenennnnnn. 0 sugestivos ....B-UCue transplantada ...... 0
P 0 de ............ I-UCue hepatica ............ 0
NO ...oovvvnnn. B-NCue pielonefritis ..B-USco
ingurgitaciéon .B-NSco aguda ........ I-USco
yugular ....... I-NSco P 0
T 0

The total size of each data split can be consulted in Table 11.1. To compute the
train curves, we created increasingly smaller training data subsets by randomly
extracting 1/3 of the examples in 5 iterations, for a total of 6 decremental training
datasets. To create the difficult or adversarial test data set, ADV, we remove
from the original test data set, FULL, the examples that contain frequent negation
or uncertainty markers. We consider frequent markers any marker with relative
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frequency in the training set higher than 2%, which together constitute 62.11%
of the markers (see Table 11.2). That is, ADV is a subset of FULL.

As Table 11.1 shows, negation instances are more than thrice more likely
to occur than uncertainty in this corpus; furthermore, uncertainty markers are
lexically more variable, as evidenced by the smaller drop from the regular to the
difficult test set in comparison to negation.

Table 11.1: Size of the corpus for the cue and scope detection task

Train Dev Test
1/1 1/3 1/3% 1/3% 1/3* 1/35 FuLL. Apv
Total sentences 13,802 4,600 1,533 510 169 56 1,840 2,762 1,838

w/ negation 5,265 1,761 576 210 78 24 694 1,041 240
w/ uncertainty 1,272 386 127 44 16 6 162 249 206
w/ both 364 127 53 16 4 1 64 91 11

Total spans 17,107 5,648 1,906 657 236 83 2,289 3,545 998
Negation cue (NCue) 6,976 2,337 775 273 97 31 919 1,423 265
Negation scope (NSco) 6,379 2,135 708 251 91 31 847 1,322 233
Uncertainty cue (UCue) 1,866 586 212 67 24 11 263 400 251
Uncertainty scope (USco) 1,886 590 211 66 24 10 260 400 249

Table 11.2: Cues with relative frequency > 2% on the train set

Cue Type # % C%

no Negation 3,046 34.35 34.35
sin Negation 1,820 20.53  54.88
probable Speculation 264 2.98 57.86
afebril Negation 190 2.14  60.00
asintomatico Negation 187 2.11  62.11

11.2.2 Systems

In this chapter, the task is framed as a sequence labelling problem. All the systems
in this experiment approach the problem as a single task, that is, they learn to
detect jointly the 4 span types, emitting for each input token one of the 9 labels
defined for the task (see Section 11.2.1). We have tested 3 such neural sequence
labelling frameworks:

11.2.2.1 Baseline

The baseline for this experiment was set in Lima-Lépez et al. (2020a) with the
NCRF++ (J. Yang et al., 2018b) sequence tagger. The system consists of a Con-
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volutional Neural Network (CNN) layer for character sequence representations,
followed by a biLSTM layer for word sequence representations, and an output
CRF layer. The character and word embeddings are initialised randomly and
trained on the given corpus. Here, we report the results of the best variant tested
in Lima-Lépez et al. (2020a), which exploits a set of lexical and morpho-syntactic
features automatically extracted from the input text.

11.2.2.2 Flair

Flair is a NLP Python framework (Akbik et al., 2019) that features a specific type
of character-based contextualised word embeddings of the same name (Akbik et
al., 2018). Here, we train Flair’s sequence tagger, which is a more sophisticated
biLSTM + CRF sequence tagger and is broadly schematised in Figure 11.1.

The input embedding mechanism combines Flair’s pre-trained embeddings
for Spanish (es-forward and es-backward) and the fastText embeddings (Bo-
janowski et al., 2017) Medical Word Embeddings for Spanish or MWES (Soares
et al., 2019b). Specifically, we use the v2.0 skipgram embeddings trained on
uncased SciELO and Wikipedia documents [66]. Both sets of embeddings are
updated during training.

In short, the core differences of this system with the baseline are that a) it uses
pre-trained contextual character embeddings instead of static embeddings trained
from scratch, and b) it starts off with some language and domain knowledge
thanks to said pre-trained embeddings.

11.2.2.3 Transformer

The bulk of the experimentation involves Transformer (Vaswani et al., 2017) mod-
els. We have tested a diverse set of BERT- (Devlin et al., 2019) and RoBERTa-like
(Y. Liu et al., 2019) pre-trained language models, both monolingual and multi-
lingual, as well as general-purpose and domain-specific. The complete list of the
tested pre-trained models can be consulted in Table 11.3.

The architecture is the same for all the system variants: first, the input to the
BERT encoder is prepared according to the standard procedure; we specifically
follow the same steps as those described in Chapter 4, Section 4.2.2.4, for the
sensitive data BERT-based tagger. The prepared input is then passed to the en-
coder, which is followed by a dropout layer and one classification head consisting
of a linear transformation layer that emits the logits per token for the 9 output
categories. In inference, the label with the maximum probability is chosen for
each token after applying the softmax function to the logits. Figure 11.2 shows a
simplified diagram of the inference pipeline.

The models are trained on the cross-entropy loss of the classification head over
the first subword of each input token. Subwords in suffix positions are ignored,
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labels (Sp)
labels (S) [0 [ o [B-NC[B-NS[I-NS]
[ 0 ] o [B-nc[e-ns[I-ns| A A
softmax + post-processin
? T [ : post-p g : ]
[ classifier + softmax ] logits (SgxC)
T T | |
logits (SxC) [ dropout + classifier ]
| | T T
[ word biLSTM ] contextual word embeddings (SgxH)
T T | |
combined word embeddings (Sx(H;+H,)) [ pre-trained BERT encoder ]
T T
[ concat + linear ] BERT tokens (Sg)
Flair emb (SxH) fast Text emb (SxH,) leesij+[ € Tasyl##Cl : [ no | .. J+[isEPl]
| |
[ et ]
W W
|CyC| : | no |ing.|yug.| |CyC| : | no |ing.|yug.|
tokens (S) original tokens (Sgp)
Figure 11.1: Diagram of the Flair-based cue Figure 11.2: Diagram of the BERT-based cue

and scope tagger. S (sequence length); H; = 128  and scope tagger. S (original sequence length);
or 256 (Flair embedding size); H, = 300 (fastText  Sg = 220 (sequence length after BERT
embedding size); C = 9 (number of output tokenisation); H = 768 (BERT embedding size); C
labels). = 9 (humber of output labels).
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that is, the output label of the input tokens is assigned from the prediction for
the first corresponding subword.

Table 11.3: Pre-trained language models tested in the experimentation. References of each
mentioned resource can be consulted in Table 2.4 of Chapter 2. See Appendix E for a report of the
vocabulary overlap of these models with the vocabulary of the NUBes corpus.

Lang Corpus Param Vocab
BERTSs
BETOpggse Cased es Spanish Unannotated Corpora 110M 31K
mBERT g,se Cased multi Wikipedia 178M 120K
IXAmBERT g,se Cased es, en, eu Wikipedia 178M 119K
SciBERT s¢iv0cap Cased en Semantic Scholar 110M 31K
RoBERTas
SpanBERTap,se Cased es OSCAR 125M 50K
MarIA RoBERTapg,sc BNE es BNE selective crawls 125M 50K
XLM-RoBERTapgse multi Common Crawl 278M 250K

11.2.2.4 Implementation and training setup

We have optimised some hyperparameters of the Transformer variants and Flair
in each data subset with 25 trials each, for a total of 1,200 models (that is, 8
optimised systems on 6 training datasets for 25 trials) in addition to the baseline.
For each system and training set, the trial with the best Fl-score (see Section
11.2.3) on the development data set has been chosen to compute the results on
the testing data sets.

The Transformer models have been implemented with HugginFace’s
transformers Python library (Wolf et al., 2020), and optimised using Ray’s
tune Python library (Liaw et al., 2018). In the case of Flair, the Python library
comes with a wrapper of Hyperopt (Bergstra et al., 2013) for hyperparamenter
optimisation [67]. The hyperparameter search spaces are given in Appendix F.

As for the baseline system, the NCRF++ tagger is the same as that described
by Lima-Lopez et al. (2020a). Appendix F also reports its hyperparemeter setup.

11.2.3 Evaluation

The results of this chapter are again evaluated in terms of micro-average F1-
score (F'1), the harmonic mean of Precision (P) and Recall (R), repeated here
for convenience:

TP TP PR
P_TP+FP R_TP+FN F1_2'P+R

(8.1 (=4.1))
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We report strict span-level metrics as computed by the Python library
seqeval [68]. To that end, the token-level predictions are converted to span-level
predictions, that is, the BIO tags are interpreted to obtain predictions consist-
ing of a span boundaries (offset and end) and the predicted category for the
span. Then, the script counts true positives (TP), false positives (FP) and false
negatives (FN) per category ¢ € {NCue, NSco, UCue, USco} as follows:

e TP: number of predicted spans of type ¢ that match exactly in boundaries
with a gold span of type c.

e FP: number of predicted spans of type ¢ that do not match exactly in
boundaries with any gold span or that match with a gold span of a type
other than c.

e FN: number of gold spans of type ¢ that do not match exactly in boundaries
with any prediction or that match with a prediction of a type other than c.

As average metrics of the different categories, we report micro-average (u)
scores. The micro-average scores are obtained by applying the same equations to
the sums of the TP, FP and FN of the different categories.

This is the strictest evaluation methodology possible for this task. In order
to be able to compare the results with the related work, Appendix G reports the
performances of the trained sequence labelling systems following two additional
evaluation methodologies, namely *SEM 2012 scores (Morante et al., 2012a) and
BIO-weighted token-level scores (Solarte Pabon et al., 2022). We refer the reader
to the corresponding literature for detailed explanations of these metrics.

11.3 Results

11.3.1 Cue and scope detection

Table 11.4 reports per-category and micro-average Fi-score results of models
trained in the full train set and one of the train subsets (with ~1% of examples).
Other metrics, including *SEM 2012 metrics, can be consulted in Appendix G.

Overall, we observe that the detection of cues (NCue and UCue) is easier than
that of scopes (NSco and USco), and that speculation (UCue and USco) is more
difficult to detected than negation (NCue and NSco). This is to be expected given
the nature and distribution of each category, and was also noted by Lima-Lopez
et al. (2020a).

Regarding the differences among the systems trained on the full dataset, lit-
tle difference among the Transformers is noted, although MarIA stands out with
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Table 11.4: F;-score results for cue and scope detection in the Full test set. The best and
second-best scores are highlighted in bold and dotted underlines, respectively. N is the number of
training examples.

1/3% train set (N=169) Full train set (N=13,802)
w NCue NSco UCue USco w NCue NSco UCue USco

NCRF++ 0.604 0.770 0.626 0.093 0.088 0.881 0.952 0.866 0.849 0.698
Flair+fT 0.690 0.851 0.685 0.434 0.218 0.892 0.960 0.877 0.849 0.740

BETO 0.735 0.861 0.728 0.616 0.320 0.905 0.963 0.900 0.870 0.759
SpanBERTa 0.691 0.865 0.650 0.537 0.207 0.898 0.960 0.894 0.850 0.743
MarlA 0.708 0.855 0.699 0.529 0.283 0.910 0.968 0.897 0.875 0.781
IXAmBERT 0.730 0.854 0.736 0.609 0.322 0.901 0.965 0.888 0.865 0.755
mBERT 0.714 0.866 0.701 0.567 0.254 0.898 0.960 0.887 0.851 0.760
XLM-R 0.730 0.864 0.726 0.577 0.324 0.905 0.962 0.896 0.863 0.780

SciBERT 0.678 0.859 0.642 0.502 0.113 0.890 0.959 0.868 0.861 0.750

an average Fi-score of 0.910, followed by BETO and XLM-RoBERTa (hereafter
XLM-R)—both 0.905—. MarIA and XLM-R in particular achieve the greatest
gains with respect to the uncertainty scope (USco) scores of the baseline set by
NCRF++ , which presented the biggest opportunity for improvement in previ-
ous work. Unsurprisingly, SciBERT falls behind the other Transformers, but its
performance is similar to Flair’s. Still, both improve the baseline across all cate-
gories and manage to overpass prior state of the art (Solarte Pabén et al., 2022,
see Table G.4 in Appendix G).

Looking at the performance of the models with the smaller train set, we see
very significant gains of the Transformer models and Flair with respect to the
baseline, particularly for uncertainty cues and scopes (UCue and USco respec-
tively). It is remarkable that with only 169 examples of training, all the Trans-
former models yield Fi-scores above 0.5 in the detection of uncertainty cues. It
is noteworthy as well that the models that fare best with this smaller training
set, BETO and IXAmBERT, are not the ones that achieve the best results when
presented with the full training set. The behaviour of the models with increasing
amounts of training data will be analysed in greater depth in the next section.

11.3.2 Train curves and adversarial examples

Figure 11.3 shows the training curves of the 9 compared systems. These train
curves have been generated by training each model with the increasing training
samples and evaluating the resulting models in the two testing sets—FULL and
Apv, from “adversarial” or difficult. The difficult test set is a subset of the full
test set that contains only examples with the least frequent negation and un-
certainty cues (see Section 11.2.1). We chose to report the curves for negation
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and uncertainty scope detection (NSco and USco), seeing that they are the most
difficult spans to detect correctly.

The baseline NCRF++ shows the biggest gap between the scores for negation
in the FULL test set and the rest of the scores along the whole curve, which
evinces the poorer capability of generalisation in comparison to the Transformer
models and Flair.

All the systems except the baseline surpass the 0.8 F'1-score points for negation
scope (NSco) detection in the FULL test set with 1/9*® of the training set (1,533
examples), and reach or nearly hit 0.9 F;-score points with all the available data
(13,802).

It is striking that some models—namely, SpanBERTa, MarIA, mBERT and
especially IXAmBERT—set off with great advantage over the rest of the models
where negation detection is concerned, although when looking at the scores for
the most difficult examples, it becomes evident that all they are doing in prac-
tice is detecting the words ‘no’ and ‘sin’ (without). Given more data, the other
Transformers are able of catching up.

Finally, most models (NCRF4+, Flair, SciBERT and SpanBERTa most
markedly) show an upwards trend still towards the end of the curve, which in-
dicates they might be able to reach the results of the best models if given more
data.

11.3.3 Error analysis

We conclude the inspection of the results with an error analysis, where we go over
the confusion matrices of the compared systems (Table 11.5) and illustrate their
most salient incorrect predictions. The matrices have been computed at token
level ignoring the BIO tags. The values are presented in relative terms ignoring
true positive 0 predictions (being the majority class, it would render the matrices
uninformative). That is, each matrix adds up to 1.

As can be seen, the most frequent errors are false negative errors of scopes,
both of negation and uncertainty. The baseline NCRF++ is the system that com-
mits this error more frequently, which accounts for ~11% of its predictions (again,
not considering the true 0 tokens), while with BETO and XLM-R we manage to
cut these errors by more than half. Still, the systems struggle to annotate scopes
properly in the same contexts. We identified the following:

1. Sentences with coordination:

E4  Ausencia de factores de riesgo vascular, cardiopatia etc, .. (sic)
Absence of vascular risk factors, heart disease, etc.

1The examples are formatted as presented in Section 10.3.1.1 of the previous chapter.
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Figure 11.3: Train curves of the cue and scope detection task
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Table 11.5: Confusion matrices of the cue and scope detection task; predictions made by the
models trained on the entire training set for the FuLL test set. N is the number of true tokens for

each category in absolute terms.

predicted predicted
@ o ] o @ o @ o
> G ' & > G > o
N &F & & ¢ N £ & & ¢ o
NCue 1,570 0.15 0.00 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00
NSco 5,196 0.00 | 0.47 0.00 0.01 0.06 0.00 | 0.48 | 0.00 0.01 0.04
UCue 597 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.05 0.00 0.00
g USco 1,982 0.00 0.01 0.00 0.14 0.05 0.00 0.01 0.00 0.16 0.03
8 0 42K 0.00 0.03 0.00 0.01 0.01 0.03 0.00 0.02
(a) NCRF++ (b) Flair + fastText
NCue 1,570 0.15 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00
NSco 5,196 0.00 1 0.49  0.00 0.01 0.03 0.00 1 0.48 0.00 0.01 0.04
UCue 597 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.01
g USco 1,982 0.00 0.01 0.00 0.17 0.02 0.00 0.00 0.00 0.16 0.03
£ 0 42K 0.01 0.02 0.00 0.03 0.01 0.02 0.00 0.03
(c) BETO (d) SpanBERTa
NCue 1,570 0.15 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00
NSco 5,196 0.00 1 049  0.00 0.01 0.04 0.00 1 0.48 0.00 0.01 0.04
UCue 597 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00
g USco 1,982 0.00 0.01 0.00 0.16 0.03 0.00 0.00 0.00 0.16 0.03
8 0 42K 0.00 0.02 0.00 0.02 0.01 0.02 0.00 0.03
(e) MarlA (f) mBERT
NCue 1,570 0.15 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00
NSco 5,196 0.00 1 049  0.00 0.01 0.04 0.00 1 0.49 0.00 0.01 0.03
UCue 597 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.05 0.00 0.00
g TUSco 1,982 0.00 0.00 0.00 0.16 0.03 0.00 0.00 0.00 0.17 0.02
Be] 0 42K 0.01 0.02 0.00 0.02 0.01 0.03 0.00 0.02
(g) IXAmBERT (h) XLM-R
NCue 1,570 0.15 0.00 0.00 0.00 0.00
NSco 5,196 0.00 1 0.48 0.00 0.01 0.03
UCue 597 0.00 0.00 0.05 0.00 0.00
g USco 1,982 0.00 0.00 0.00 0.16 0.03
b= 0 42K 0.01 0.04 0.00 0.03

(i) SCIBERT
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E5 Parece empeorar al apoyar la cabeza [...] y con ciertos movimientos del cuello
It seems to be worse when resting the head [...] and with certain neck movements.
The systems may annotate only the initial coordinated phrase or clause as
being part of the cue’s scope. Moreover, the longer the coordinated items
are, the more likely it is that the systems will miss out the non-initial items
or parts of them.
2. Sentences with scopes preceding the cues:
E6  Refiere en Agosto episodio algo semejante? (sic)
[The patient] refers to a similar episode in August?
E7 [...] pensar en componente psiquidtrico anadido que justificara las crisis.
[...] think of an added psychiatric component that could justify the crises.
This type of examples involves mostly relative clauses, as in E7, and con-
stitute ~3.5% of the training corpus. When presented with such input, the
systems sometimes label as scopes only post-cue material.
3. Sentences with negation or uncertainty reinforcement through multiple
markers:

E8 Interpreto el cuadro clinico como {probable} pericarditis.

I interpret the clinical picture as probable pericarditis.
E9 Nos parecié [...] {sugestivo de} una encefalitis {o} meningoencefalitis

We thought it was suggestive of encephalitis or meningoencephalitis
In this type of cases, the systems may annotate the nested cues and scopes,
that is, they may overlook the outmost material of the negation or uncer-
tainty expressions. However, in contrast to the two types of errors presented
above, in this case the systems usually manage to include the entire focus of
the negation or the uncertainty within their predicted scopes, which makes
these errors less harmful. This type of error also contributes towards false
negative predictions of cues.

Although to a lesser extent, the systems make false positive errors as well
when it comes to the detection of scopes. The most common of these errors stems
from the inability of the systems to recognise as separate syntactic constituents
a phrase or clause affected by negation/uncertainty and a following adjunct, as
are ‘sobreinfectado’ (overinfected) and ‘en el lado derecho’ (on the right side) in
Example E10:

E10 Se observa hidrocele [...] probablemente sobreinfectado en el lado derecho.
Probably overinfected hydrocele [...] observed on the right side.

Even human annotators find these cases challenging, because the sentences may
be syntactically ambiguous and must be interpreted mindfully to capture the
intended meaning in the annotations.

Regarding cues, some false negative errors involve infrequent lexical expres-
sions that the systems were not able to generalize. This is particularly the case
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for uncertainty cues. Here are a few examples undetected by the majority of the
systems:

El1l1 Hay que asumir que estd infectada
It must be presumed that she is infected

E12 Refiere haber ingerido lorazepam [...] con ideacidn, al parecer, autolitica (sic)
[The patient] refers having ingested lorazepam [...] with apparent suicidal ideation

Further, a minor source of false negative cue annotations are errors caused
by factors unrelated to the systems themselves, and that have to do with the
limitations of NUBES acknowledged in the previous chapter (see Section 10.2.3).
First, a few expressions are inconsistently annotated throughout the corpus, such
as the verb ‘evitar’ (avoid); the systems have learned not to interpret it as a
negation cue, but it is annotated in the reference corpus in a minority of oc-
currences. Second, tokenization errors in sentences with ungrammatical usage of
punctuation marks induce errors in the post-processing of the predicted labels,
as only the prediction of the first subword is taken as final label for a word. Take
the following example:

E13 Comenzar tolerancia oral. Asintomaética. (sic)
Start oral tolerance. Asymptomatic.

While the systems may be able to detect properly that ‘asintomética’ (asymp-
tomatic) is a negation cue, it will not be annotated as such because the word in
the NUBES corpus is ‘oral.Asintomatica’ (sic) and only the label produced for
the first subword (e.g., ‘oral’) is taken to account to produce the final labels.

As mentioned earlier, sentences with cue reinforcement are also a source of
false negative cue annotations (see Examples E8 and E9 and their explanation).

In this case, the Flair sequence labeller produces the least false negatives cues,
missing out just 2% of the negation cues (NCue) and 6% of the uncertainty cues
(UCue). NCRF'++ is again the worst system, doubling the false prediction rates of
Flair.

As for false positives predictions of cues, they actually stem for the most
part from human errors, that is, these predictions capture cues overlooked by the
human annotators. Interestingly, the error rates are inverted in this case, with
NCRF++ committing the least false positives and XLM-R leading the rank, fol-
lowed closely by SpanBERTa. Pending an example-by-example manual revision,
it seems sound to assume, given the recall scores (Appendix G), that XLM-R and
SpanBERTa are not committing actual errors but simply detecting more human
errors of the type just explained than the rest of the systems.

Finally, there seems to be a slight confusion with some negation and specu-
lation scopes among most systems: in ~1% of the tokens (ignoring true 0), some
systems emit the tag USco (uncertainty scope) when it should be NSco (negation
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scope). Upon manual analysis of these cases, we consider that the systems are ac-
tually not committing errors but again correcting what appear to be incorrect—or
at best debatable—manual annotations, as exemplified in Table 11.6.

Table 11.6: Gold annotations and predictions on the sentence extract “unable to specify whether
there was a loss of consciousness or not”. The fact that the phrase contains what are typically
negative cues (“unable to”, “loss of") and that the uncertainty cue is discontinuous (“whether [...] or
not”) makes this example especially difficult to predict correctly. While the manual annotations
interpret the phrase as a negation cue and scope, most of the systems (except Flair) retract their
predictions midway in favour of speculation.

Token Gold NCRF++4+ MarlA BETO Flair
incapaz B-NCue B-NCue B-NCue B-NCue B-NCue
de I-NCue I-NCue I-NCue I-NCue I-NCue
precisar B-NSco I-UCue B-USco I-UCue B-NSco
si I-NSco I-UCue I-UCue I-UCue 0
hubo I-NSco I-UCue I-UCue B-USco 0

o I-NSco I-UCue B-UCue B-UCue 0
no I-NSco I-UCue I-UCue I-UCue B-NCue
perdida I-NSco B-USco B-USco B-USco B-NSco
de I-NSco I-USco I-USco I-USco I-NSco
conocimiento I-NSco I-USco I-NSco I-USco I-NSco

11.4 Conclusions

In this chapter, we have evaluated multiple state-of-the-art models for sequence
labelling in the tasks of negation and speculation cue and scope detection. The
experiments have been conducted with NUBES, the corpus of health records writ-
ten in Spanish product of the work described in Chapter 7. The evaluated systems
include multiple BERT-like and RoBERTa-like Transformer-based models, Flair,
and a RNN as baseline system.

The task of cue and scope detection was learned jointly by the systems.
The Transformer-based labeller with the MarIA pre-trained language model
(Gutiérrez-Fandino et al., 2022) achieved the best overall results (0.91 micro-
average Fl-score), advancing the state of the art previously set by Lima-Lépez
et al. (2020a) and Solarte Paboén et al. (2022). The system is closely followed
by most of the other Transformer-based models, while SciBERT and the Flair
sequence labeller fall slightly behind (still improving the baseline). The improve-
ment is brought predominantly by a better detection of speculation scopes as well
as of the least frequent negation instances.

We also observed that neither the models with most vocabulary overlap with
NUBES nor the biggest models obtained the best results, although they did fol-
low closely MarIA. Further, the training curves showed that, while monolingual
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Spanish models start off with certain advantage, being able to correctly emit pre-
dictions for the most frequent and repetitive instances, all the Transformer models
manage to obtain similar results when allowed to exploit the entire training sets.

A manual error analysis revealed that the most common errors are false neg-
ative errors involving scopes, that is, the predicted scopes tend to fall short
compared to the gold annotations. This is particularly true in sentences with
coordination and in relative clauses, where part of a scope might precede its cue.
The manual error analysis also uncovered several incorrectly annotated instances,
which will help us improve the quality of the NUBES corpus.






Chapter 12

Negation and speculation:
experiments in assertion classification

12.1 Introduction

Having dealt in the previous chapter with the detection of negation and uncer-
tainty as a sequence labelling problem targeted at cues and scopes, this chapter
studies perhaps the most commonplace way of modelling negation and uncer-
tainty detection in the biomedical field: the text classification task known as
assertion classification.

The presented experimentation follows the same methodology as that of the
previous chapter, exploiting the NUBES corpus for training and testing a variety
of Transformer (Vaswani et al., 2017) and Flair (Akbik et al., 2019) models. To
that end, we transform automatically the NUBES corpus annotations: from cues
and scopes to entities and their assertion category. To the best of our knowledge,
this is the first work that studies the assertion classification of medical entities in
Spanish clinical text.

The remainder of the chapter is structured as follows: Section 12.2 describes
the process of transforming the NUBES corpus as wll as its results, both quali-
tatively and quantitatively; then, it presents the systems tested and explains the
evaluation methodology. Section 12.3 reports the results of the evaluation and
their analysis, including a manual error analysis. Last, Section 12.4 summarises
the chapter and presents the conclusions drawn from the presented work.

12.2 Materials and methods

12.2.1 Data

In the task of assertion classification, an instance or example consists of the
medical entity to be classified presented in its context. In our case, the entity of
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interest is marked with the HTML tag <e></e>. The categories of the task are
the following:

o absent (abs): negated medical entity,
 possible (pos): uncertain medical entity, and
o present (pre): affirmed medical entity.

From the examples in Figure 9.2, we would get the following instances (the
entities of interest are highlighted in boldface for convenience):

El CyC: <e>Rigidez de nuca</e>, no ingurgitacién yugular. ......................... pre
E2 CyC: Rigidez de nuca, no <e>ingurgitacién yugular</e>. ......................... abs
E3 Los hallazgos descritos son sugestivos de <e>pielonefritis aguda</e>. ............. pos
E4 <e>Tumoraciones faciales</e> en paciente transplantada hepatica ................ pre
E5 Tumoraciones faciales en paciente <e>transplantada hepatica</e> ................ pre

At the moment of executing the experiments described in this chapter, there is
no publicly available dataset in Spanish annotated with medical entities and their
assertion category. Thus, in order to conduct this experiment, we automatically
construct a new corpus from NUBES, with the help of the original cue, scope and
entity annotations. The transformation process is as follows:

First, we automatically annotate the entire corpus with medical entities!. To
that end we use UMLSmapper, a tool for annotating medical entities in Spanish
texts and linking them to the UMLS Metathesaurus (Bodenreider, 2004), the
topic of Chapter 7. Specifically, we annotate mentions of the following types of
entities: clinical findings and disorders, procedures, chemicals and drugs, physio-
logical phenomena, and some living beings (viruses, bacteria, and fungi)?.

Then, we assign the categories abs (absent), pos (possible) or pre (present)
to each annotated entity depending on whether they occur within the scope of a
negation cue, an uncertainty cue or neither, respectively.

To be specific, however, not all the entities that fall within the scope of a
negation or uncertainty cue are directly affected by it. Consider the sentence in

INUBES has annotations of medical entities, but only of those directly affected by the cues
within each negation or uncertainty scope (see Section 10.3.1.4.3 of Chapter 10). In this chapter,
we are interested in being able to classify any entity, including the ones that are said to be present
(pre). To that end, we could have kept the manual annotations of entities and complement those
with the suggestions of an automatic medical entity recogniser; instead, we chose to discard
the original annotations altogether and automatically annotate the entire corpus, simply to
avoid inadvertently injecting artificial traces that the assertion classifiers might pick up to
differentiate between entities directly affected by cues (manually annotated entities) and the
rest (automatically annotated entities).

2The classification of types is given by the UMLS semantic groups (Bodenreider et al., 2003).
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Figure 12.1. While ‘secuela quirurgica’ is a clinical finding under the scope of an
uncertainty cue, the speculation is rather about the facial paresis than the surgical
sequelae or the relation of the former to the latter (see also the discussion in
Section 10.3.1.4.3 of Chapter 10). The entities annotated in NUBES are only those
most prominently affected by the corresponding cue. Based on this information,
we remove the entities that fall within the scope of a cue but that do not overlap
with a manually annotated entity in the cases where there is one. This way,
we avoid incorrectly annotating as negated or uncertain entities such as ‘secuela
quirurgica’ in Figure 12.1.

Scop
Unc Clinical finding/disorder
m— . - . S N . N . . .
En la EF parece apreciarse una paresia facial dcha periferica en relacion a secuela quirurgica

(a) Original cue, scope and entity annotations.

Scop
PROC DISO DISO
0C] Gy (Ehase]

Enla EF parece apreciarse una paresia facial dcha periferica en relacion a secuela quirurgica

(b) Intermediate annotations: original cue and scope, automatic medical entities. PROC stands for “Medical
precedure”.

? 3

facial dcha periferica en relacion a secuela quirurgica

Enla EF parece apreciarse una paresia

(c) Final processed annotations of medical entities and their status.

Figure 12.1: Example of the processing of a NUBEs instance to create the assertion classification
corpus. Translation: “In the P[hysical] E[xamination], a peripheral right facial paresis is seemingly
noticed in relation to surgical sequelae.”.

Even then, we have manually revised the testing portion of the dataset, which
allows us, on the one hand, to measure the validity of the proposed data conver-
sion and, on the other hand, to ensure the reliability of the reported results and
conclusions drawn therefrom. The manual revision led to correcting the asser-
tion category of 38 instances and removing 7 instances out of the 2,474 revised
examples.

Finally, each annotated entity must be converted to the text classification
format presented earlier (see Examples E1 to E5). The annotations in Figure
12.1c would yield the following instances:

E6 En la <e>EF</e> parece apreciarse una paresia facial dcha periferica [...] ......... pre

E7 En la EF parece apreciarse una <e>paresia facial</e> dcha periferica [...] ......... pos

Notice that we do not care about the correctness of the UMLS links established
by UMLSmapper nor of the entity types assigned thereof, which we simply use



164 Experiments in assertion classification

to filter the annotations. The task the classification models need to learn is to
establish a relation between the entity and the context it occurs in, in order to
emit a prediction regarding whether the entity is present, absent, or possible. The
type of the entity (disorder, drug, and so on) is irrelevant to the task, even more
so its link to the UMLS Metathesaurus.

In this chapter, we also work with the original training, development and test
splits of the NUBES corpus, as in Lima-Lépez et al. (2020a) [6]. The resulting
dataset is described quantitatively in Table 12.1. We followed the methodology to
generate incremental training subsets (1/1 through 1/3%) and the more difficult
testing set, ADV, as explained in the previous chapter (Section 11.2.1).

In addition, this chapter exploits a third test dataset, consisting of the original
entity annotations of the NUBES corpus, that is, the manual (MAN) annotations
of entities. This test set is simply added for the sake of completeness, although,
as explained above, it does not include pre (present) annotations (which is why
the corpus was automatically re-annotated).

Table 12.1: Size of the corpus for the assertion classification task

Train Dev Test
1/1 1/3 1/3% 1/3% 1/3* 1/3°% FuLr Apv ManN

Total entities 12,108 4,035 1,344 447 148 49 1,659 2467 1,507 1,300
Absent (abs) 2,399 782 277 92 34 11 331 460 95 973

Possible (pos) 1,001 332 118 39 14 5 140 197 125 327
Present (pre) 8,708 2,921 949 316 100 33 1,188 1,810 1,287 -
pre OOS 3,912 1,317 436 140 43 9 534 818 295 -

Of note, Table 12.1 specifies out-of-scope (OOS) present entities, that is, ex-
amples of entities mentioned in the context of a negation or uncertainty cue, but
that are not affected by it (e.g., ‘EF’ in Figure 12.1c). Without OOS examples,
the models would simply learn to detect the presence or absence of negation and
uncertainty cues, regardless of whether they affect or not the target entity.

12.2.2 Systems

Assertion classification is a text classification task, where each medical entity
whose assertion status needs to be predicted is presented to the systems delimited
by special tokens in the sentence they occur in (see Examples E6 and E7). The
systems tested in this chapter are the following:
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12.2.2.1 Baseline

As is customary in this type of task, the NegEx (Chapman et al., 2001) system
serves as a baseline in our experiments. NegEx is a rule-based system that lever-
ages hand-crafted lexicons in order to determine the assertion categories of the
given medical entities. The lexicons define 4 types of words or expressions: con-
junctions, pseudo-negation cues, negation cues and uncertainty cues. The first two
are used to find the boundaries of scopes and to discard false cues, respectively.
Negation and uncertainty cues are further divided into two groups each, depend-
ing on whether they precede (PRE) or follow (POST) their scopes. Although NegEx
has been adapted to Spanish on several occasions (see Section 9.3 in Chapter 2),
only one adaptation is publicly available [69]. Unfortunately, it does not consider
uncertainty. Thus, in this experiment we use the original NegEx Python imple-
mentation [70] with cues automatically extracted from our training data sets. The
categories of the cues (PRE or POST) are automatically determined by choosing
the most frequent position in the corpus. The conjunction and pseudo-negation
lexicons have been taken from [69] as is.

12.2.2.2 Flair

The Flair NLP framework (Akbik et al., 2019) comes with a text classifier imple-
mentation as well as the sequence labeller trained in the previous chapter. The
word representations are obtained following the same mechanism as described
for the sequence tagger (Flair’s es-forward and es-backward embeddings, and
the Spanish biomedical fastText word embeddings by Soares et al. (2019b); see
Section 11.2.2.1). In this case, the computed embeddings are fed into a Gated
Recurrent Unit (GRU) layer to produce a document level representation, which
is then used in a linear layer to make the assertion category prediction.

12.2.2.3 Transformer

As with the sequence labelling task (Chapter 11), we evaluate an assortment of
text classification systems based on the Transformer architecture. The pre-trained
models tested are the same as for the sequence labelling task. See Table 11.3 in
the previous chapter and Appendix E for detailed information on each model; we
list them here briefly for convenience:

e BETOpguse Cased (Canete et al., 2020), hereafter just BETO

o Multilingual BERT g,s. Cased [23], mBERT

e IXAmMBERT gy, Cased (Otegi et al., 2020), IXAmBERT

e SciBERT scivocab Cased (Beltagy et al., 2019), SciBERT

o SpanBERTap,s. Cased [26], SpanBERTa

o MarIA RoBERTag,sc BNE (Gutiérrez-Fandino et al., 2022), MarIA
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Figure 12.3: Diagram of the BERT-based
Figure 12.2: Diagram of the Flair-based assertion classifier. Sg (original sequence
assertion classifier. S (sequence length); H; = length); Sg = 220 (sequence length after BERT
128 or 256 (Flair embedding size); H, = 300 tokenisation); H = 768 (BERT embedding size); C
(fastText embedding size). =3 (number of output labels).

o XLM-RoBERTap,s. (Conneau et al., 2020), XLM-R

The classifier head is fed in this case the pooled output of the encoder. The
pooled output is computed over the special token at the beginning of each se-
quence (i.e., BERT’s [CLS] and RoBERTa’s <s>) by passing its embeddings to
a dense linear layer and a tanh activation function. The result is then fed to a
dropout layer and the final dense linear layer which outputs the logits for the 3
categories of the task. For this task, we added the special tokens <e> and </e>,
which mark the start and end of the medical entity, to the vocabularies of the
pre-trained models. Again, the models are trained on the cross-entropy loss of the
classification head and, for inference, the label with the maximum probability is
chosen after the softmax function.

12.2.2.4 Implementation and training setup

The implementation and training setup is the same as that of the experiments
on the sequence labelling task. See Section 11.2.2.4 in the previous chapter and
Appendix F. As for the baseline system NegEx, we compute the train curve by
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extracting the negation and uncertainty cues only from the corresponding training
data subset at each point.

12.2.3 Evaluation

The main evaluation metric for these experiments is again F; (see Equation 8.1
(=4.1)), as computed by the Python package sklearn (Pedregosa et al., 2011).
True positive (TP), false positive (FP) and false negative (FN) are counted per
category ¢ € {abs, pos} as follows:

e TP: number of entities of type ¢ correctly classified as c.
e FP: number of entities of a type other than ¢ incorrectly classified as c.

o FN: number of entities of type ¢ incorrectly classified as other than c.

The category pre is the negative class, in the sense that it is the unmarked,
majority category—nothing to do with negative polarity—and we do not take it
into account when computing our metrics to prevent misleadingly inflated results.

As average metrics of the different categories, we report micro-average (1)
scores. The micro-average scores are obtained by applying the same equations to
the sums of the TP, FP and FN of the different categories.

12.3 Results

12.3.1 Assertion classification

Table 12.2 shows the main results of the chapter. It reports per-category and
micro-average Fi-scores of models trained in the full train set and one of the
train subsets (with ~1% of examples). The models trained in the full train set
are evaluated in two test sets: FULL (of entities annotated by UMLSmapper)
and MAN (of entities annotated manually). Precision and recall metrics can be
consulted in Appendix G.

Similarly to the cue and scope detection task, MarIA obtains the best overall
results (0.937 Fi-score) in the FULL test set, followed by the multilingual models
mBERT (0.935) and XLM-R (0.934), and BETO (0.934). Nevertheless, the dif-
ferences between the Transformer models are narrower still than in the previous
chapter, and even SciBERT manages to perform on par with SpanBERTa and
IXAmBERT. The system based on Flair falls in average 3 Fi-score (F1) points
behind the worst Transformer.

All these systems outperform by far the baseline set by the rule-based system
NegEx when allowed to exploit the whole training set, but mostly lag behind in
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the ~1% training set scenario. Only SpanBERTa is capable of topping NegEx
in this case, with a micro-average (u) Fi-score of 0.660. Also noteworthy is that
XLM-R achieves 0.812 F;-score in the classification of absent entities with just 148
training examples. These questions will be discussed further in the next section.

Regarding the classification of the original entity annotations of NUBES (i.e.,
the MAN test set), the overall results are even higher compared to the synthetic
FULL test set, with the best F';-score, 0.978, achieved in this case by XLM-R. The
generalised improvement is explained by the fact that this test set only contains
abs and pos entities—mno “out-of-scope” pre that could lead to false positive
predictions; the metric that improves more markedly is indeed precision, while
recall scores hardly improve or even worsen slightly (see Appendix G).

Table 12.2: F;-score results for assertion classification. The best and second-best scores are
highlighted in bold and dotted underlines, respectively. N is the number of training examples.

FuLL test MAN test

1/3% train (N=148) Full train (N=12,108)  Full train (N=12,108)

w abs pos " abs pos " abs pos
NegEx 0.647 0.698 0.469 0.683 0.700 0.638 0.890 0.922  0.783
Flair+fT 0.003 0.004 0.000 0.889 0.892 0.882 0.939 0.951 0.903
BETO 0.612 0.729 0.409 0.934 0.943 0914 0.972 0.979 0.952
SpanBERTa  0.660 0.759 0.330 0.927 0.937 0.905 0.967 0.971  0.955
MarIA 0.588  0.716  0.258 0.937  0.940  0.929  0.971  0.979  0.950
IXAmBERT 0.586 0.697 0.248 0.925 0.934 0.902 0.957 0.967 0.929
mBERT 0.635 0.731 0.438 0.935 0.939 0.925 0.973 0.978 0.960
XLM-R 0.647 0.812 0.292 0.934 0.934 0.934 0.978 0.984 0.959
SciBERT 0.458 0.586 0.149 0927 0931 0916 0.967 0.975 0.943

In general, the task of assertion classification seems to be easier than cue and
scope detection. The drop in performance from the negative class (abs) to the
uncertainty class (pos) is also smaller. Still, the synthetic nature of the corpus
is likely playing a role in this regard, particularly because it hardly contains the
type of instances that could potentially induce errors the most, namely, instances
with entities within negation or speculation scopes but that are not the entity
most prominently affected by it (see “secuela quirurgica” in Figure 12.1b and the
related discussion in Section 12.2.1).

12.3.2 Train curves and adversarial examples

The train curves in Figure 12.4 have been generated by training each model with
the increasing training samples and evaluating the resulting models in the FULL
and ADV test sets. The curves represent F-scores for absent and possible entities.
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Figure 12.4: Train curves on the assertion classification task.
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We observe quite a different landscape to that in the previous chapter for the
task of cue and scope detection. The gap between the full and harder test sets
is much narrower (except for NegEx), and the systems seem to reach a plateau
earlier with around a third of the training set. Furthermore, monolingual and
multilingual models do not have such markedly different behaviours in this case.
Most of all, Figure 12.4 clearly demonstrates the problem of rule-based systems
such as NegEx. Even if it has an excellent start at classifying the easiest negated
instances, the system is just not capable of generalising to unseen cases even as
the available data to enrich the tool’s lexicons increases.

12.3.3 Error analysis

As shown in Figure 12.3, false positive errors are more frequent in this task
than in the detection of cues and scopes and, in fact, constitute the bulk of errors
made by the systems overall. A manual analysis of these errors revealed that they
involve entities near cues but that are not in focus, as in the following examples
(starred categories indicate that the predictions are incorrect):

E8 No mejoré con la toma de <e>Paracetamol</e>. ..................cciiiiiio... *abs
[The patient] did not improve with Paracetamol.

E9 Cuadro confusional de probable reaccién al <e>proceso infeccioso</e>. ......... *pos
Confusional state of probable reactive character to the infectious process.

E10 Se aconseja TAC para valorar la causa de la <e>obstruccién [...]</e> ............ *pos
CT is advised to assess the cause of the bile duct obstruction

In Example E8, the negation is about the improvement of the patient, who did
take Paracetamol. In Example E9, it is the relation between the confusional state
and the infectious process that is uncertain, not whether an infectious process
took place—the use of determinate article ‘the’ in ‘the infectious process’ makes
it clear that it is in fact a reference to a known past event. Finally, in Example
E10, it is the origin of the obstruction that is unknown, not the existence of the
obstruction itself (the same rationale applies here). These examples are particu-
larly tricky because they require deeper understanding of the sentences than that
needed to simply find cues and scopes. Even then, it is likely that fewer of this
type of errors might occur if the models were trained on gold standard corpora
instead of the automatically generated corpus described here.

As for false negative errors, we found two types of instances that confuse the
models:

1. Sentences that express a change of state, such as disappearance of symptoms
or modifications in a treatment:
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Table 12.3: Confusion matrices of the assertion classification task; predictions made by the

models trained on the entire training set for the FuLL test set. N is the number of true examples for
each category in absolute terms.

predicted predicted predicted
N ‘ abs pos pre abs pos pre abs pos pre
abs 460 01407 0.01 0.04  [JO%8Y 0.00 0.05 0.00 0.02
g pos 197 0.02 0.13 0.04 0.01  0.23 0.03 0.01  0.25 0.01
£ pre 1,810 0.27 0.08 0.08 0.03 0.06 0.02
(a) NegEx (b) Flair + fastText (c) SCiBERT
abs 460 WEGER 0.00  0.01 WP 0.00 0.02 WEEER 0.00  0.02
g pos 197 0.01 1 0.25 0.02 0.01 1 0.25 0.02 0.01 1 0.26 0.02
£ pre 1,810 0.05 0.02 0.05 0.03 0.05 0.01
(d) BETO (e) SpanBERTa () MarlA
abs 460 0.01 0.01 0.00 0.02 0.00 0.01
% pos 197 0.00 1 0.26 0.01 0.01 1 0.25 0.02 0.01 1 0.26 0.01
£ pre 1,810 0.06 0.02 0.05 0.03 0.07 0.01
(g) MBERT (h) IXAMBERT (i) XLM-R
E11l Presenta <e>fiebre</e> elevada que cede con tratamiento antibidtico. ....*pre
[The patient] has high fever that goes down with antibiotic treatment.
E12 Le pautaron <e>Diclofenaco</e> que no estd tomando .................... *pre
[The patient] was prescribed Diclofenaco which she does not take
In these cases, the symptom or treatment is asserted in the main clause
of the sentence but negated in the relative clause. Although debatable, the
guidelines of the NUBES corpus indicate that these examples should be
explicitly annotated as negations, but the models seem to struggle with
such instances.
2. Long sentences where the scope precedes a negation cue, which occurs to-

wards the end of the sentence:

E13 Se obtiene <e>cultivo de sangre</e> y [...] siendo negativos. .............. *pre
Blood culture and [...] were obtained with negative result.

The long distance between the cue and the scope, as well as their less
common order in the sentence, appears to make it more difficult for the
systems to establish a relation between the two.
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In the case of assertion classification, there does not seem to be much confusion
between instances of negated and possible entities as there was in the cue and
scope detection task.

Finally, as part of the error analysis, we studied whether the errors that
the systems are making in the two tasks (that is, the tasks of the previous and
current chapters) coincide somehow in the same instances, given that the corpora
for the two tasks originate from the same collection of sentences. Out of the 2,762
sentences for testing the cue and scope detection models, 272 have errors (made
by any of the evaluated models). In the present task, assertion classification,
the ratio is 196 out of 2,467. A significant amount, 92 sentences, are common
to both evaluations and involve most of the situations discussed here and in
the error analysis of the previous chapter (Section 11.3.3), with a prominent
presence of sentences with relative clauses where the scopes of cues are split into
discontinuous spans, one of which precedes the cue and the other follows it.

12.4 Conclusions

Regarding the assertion classification task, we first proposed a series of steps
to convert the NUBES corpus, originally annotated for cues and scopes, to a
corpus suitable for this task. A manual revision of the testing portion of the
resulting corpus, as well as a manual error analyses of the results, suggest that
this technique yields acceptable results and can be useful in scenarios where
there is no such corpus available, as was the case in this work. In this task too,
MarIA obtained the best results (0.937 micro-average Fl-score), followed even
more closely by the other Transformers, including SciBERT.

We observed that, in both tasks, neither the models with most vocabulary
overlap with NUBES nor the biggest models obtained the best results, although
they did follow closely MarIA. Further, the training curves showed that, while
monolingual Spanish models start off with certain advantage, being able to cor-
rectly emit predictions for the most frequent and repetitive instances, all the
Transformer models manage to obtain similar results when allowed to exploit the
entire training sets. The training curves also showed that less annotated data
might be necessary for the assertion classification task than for the cue and scope
detection task.

A manual error analysis revealed that in the case of the assertion classification
task, the most common errors involve false positive errors, where medical entities
under the scope of cues but not in focus are incorrectly tagged as absent or
possible instead of present. The manual error analysis also uncovered several
incorrect annotations, which will help us improve the quality of the corpus.
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Chapter 13

Conclusions

13.1 Summary

In this thesis, we study three key topics within the field of clinical IE, focusing
specifically on content written in Spanish. We make several contributions to this
field in the form of a system for term identification, a dataset annotated for
negation and uncertainty, and several experiments on these topics, as well as the
problem of sensitive data detection and categorisation. Throughout the thesis,
we apply and compare techniques of varying levels of sophistication and novelty,
which reflects the rapid advancement of the field during the years that this work
has been carried out. Next, we provide a quick summary of the objectives, research
and conclusions for each of the main topics of the dissertation.

13.1.1 Sensitive data detection and categorisation

Objectives

e To study the question of sensitive data in health record texts in Spanish from a
technical point of view, in order to better understand how to characterise and
approach it as a target of detection and classification systems based on NLP.

e To assess and compare supervised approaches in the task of sensitive data de-
tection and categorisation in clinical text, and to identify the advantages and
limits of the different methods.

In Part IT of the thesis, we have tested four sequence labelling techniques, namely,
CRFs (Lafferty et al., 2001), biLSTMs (J. Yang et al., 2018b), spaCy’s NER
tagger [37], and BERT (Devlin et al., 2019). The first belongs to traditional ML,
while the rest consist of DNNs. Further, the CRF and biLSTM models have been
learnt over a rich set of lexical, morphosyntactic and semantic features, while the
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BERT-based model has been obtained by fine-tuning a pre-trained multilingual
LM. Some of these models are available online [4].

Our first experiment has been conducted in the context of the MEDDOCAN
challenge (Marimon et al., 2019), where the challenge data consisted of clinical
cases manually enriched with personal data. Here, BERT has obtained the best
metrics, with a greater advantage in terms of recall, followed by the biLSTM
model. Still, we have not observed striking differences among the systems, all of
them having obtained excellent results with F;-scores above 0.95. We discussed
that, while MEDDOCAN’s synthetic data may well be a fair reflection of some
types of health records, there do exist more challenging data in real scenarios.

In fact, BERT has proven to be matchless when being tested under harsher
conditions. When applying the MEDDOCAN models on a corpus of real health
records, BERT has demonstrated far superior generalisation capabilities, with
a recall of 0.53 in the detection scenario—the second-best recall in the same
scenario being 0.18. In addition, we have measured the robustness of these models
to decreasing training samples. Again, the BERT-based model has proven to
be more advantageous, losing only 15 points of Fi-score when trained on 230
instances instead of the entire dataset (i.e., 21,371 instances).

In line with the literature that uses BERT for other tasks, these results in-
dicate that the knowledge transfer achieved through the pre-trained LM model
not only helps obtain better results, but also diminishes the need of manually
labelled data. Furthermore, this approach eliminates the dependency on feature
extraction and engineering. These are decisive advantages, given the difficulties
in collecting large corpora and the lack of basic linguistic analysis tools adapted
to the Spanish language and the clinical domain.

13.1.2 Term identification

-

Objectives

e To build a system capable of performing clinical term identification natively in
the Spanish language, that does not require annotated data of any kind, and
that may be easily configured to meet the requirements of diverse application
scenarios.

e To compare said system to other approaches proposed in the literature, most of
which rely on MT at some point in the processing pipeline in order to leverage
existing solutions for the English language, and to identify the advantages and
limits of the tested methods.

In part III of the thesis, we have described and evaluated UMLSmapper, a pro-
totype for biomedical term identification built on the UMLS Metathesaurus (Bo-
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denreider, 2004). This system recognises and identifies terms in the same step
based mainly on lexical similarity metrics. It is built on Apache Lucene™ for fast
match retrieval, and it uses UKB (Agirre et al., 2009) to resolve ambiguities.
While UMLSmapper does depend on the availability of a sufficient coverage of
the UMLS Metathesaurus for the desired language, it can be easily tailored to
map different categories of concepts, without depending on external NER tools
adapted to each specific problem to be solved. UMLSmapper is available online
for research purposes through a web API [5].

We have compared it to MetaMap (Aronson, 2001, 2006) and Transfer (Ac-
cuosto et al., 2018) on the Mantra GSC English and Spanish datasets (Kors et
al., 2015). MetaMap is a well-known, robust engine for English biomedical term
identification with the UMLS. Transfer is a pipeline that applies existing term
identification tools like MetaMap on machine translated text, and projects the
labels back to the original text through semantic similarity techniques.

Our tool has obtained an average term identification F;-score of 0.674 and
0.626 in English and Spanish respectively. It has managed to better MetaMap by
a narrow margin on the English data. As for Transfer, UMLSmapper has sur-
passed it in the Spanish data thanks to a greater recall. Moreover, ensembles of
UMLSmapper and Transfer have improved the results of the individual pipelines,
the most competitive combination being that which favours Transfer’s predictions
in case of overlapping predictions due to Transfer’s superior precision.

13.1.3 Negation and uncertainty detection

Objectives

o To study the phenomena of negation and uncertainty in health records in Span-
ish, in order to propose guidelines for their annotation and to better understand
how to characterise and approach them as a target of detection and classification
systems based on NLP techniques.

e To build a corpus of clinical texts in Spanish manually annotated with negation
and uncertainty information following the above-mentioned guidelines.

e To assess and compare supervised approaches in the task of negation and un-
certainty detection in clinical text, and to identify the advantages and limits of
the different methods.

In Part IV of the thesis, we have first presented a new corpus, NUBES, of clinical
texts in Spanish annotated for negation and uncertainty. The corpus is publicly
available for research purposes [6]. Then, we have conducted several experiments
with the corpus on the automatic detection of these linguistic phenomena.
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NUBES consists of 29,682 sentences extracted from health records of 18 med-
ical specialities and 7 different EHR sections. A total of 8,855 sentences contains
at least one annotation related to negation and/or uncertainty. The NUBES an-
notation guidelines consider syntactic, lexical and morphologic cues of negation
and uncertainty, as well as their scopes. In addition, it takes into account medical
entities and polarity items within said scopes.

We have exploited this corpus to tackle the problem of negation and uncer-
tainty detection from two perspectives: first, as a sequence labelling problem,
where the goal has been to detect cues and scopes; second, as a classification
problem, where the task has consisted in deciding whether a given medical entity
is “present”, “possible”, or “absent”. In both cases, we have compared multiple
models based on the Transformer architecture (Vaswani et al., 2017) and Flair
(Akbik et al., 2019).

The model based on MarIA (Gutiérrez-Fandifio et al., 2022) has consistently
achieved the best overall results. More interestingly, the training curves have
shown that, while monolingual Spanish models start off with certain advantage,
being able to correctly emit predictions for the most frequent and repetitive
instances, all the Transformer models manage to obtain similar results when
allowed to exploit the entire training sets. The training curves also showed that
less annotated data might be necessary for the assertion classification task than
for the cue and scope detection task.

A manual error analysis has revealed that, in the case of the sequence labelling
approach, the most common errors are false negative errors of scopes, and involve
more frequently sentences with coordination or relative clauses. In the case of
the assertion classification task, we have observed that the most common errors
involve false positive errors, where medical entities under the scope of cues but
not in focus are incorrectly tagged as absent or possible instead of present.

13.2 Publications

In what follows, we present a list of the author’s publications relevant to the
research described in this document, with explanations of how they relate to spe-
cific chapters. The final section contains publications that have not been covered
here but that are closely related to the research topics of the thesis.

Part Il: SENSITIVE DATA DETECTION AND CLASSIFICATION

1. Naiara Perez, Laura Garcia-Sardifia, Manex Serras and Arantza del Pozo (2019). “Vi-
comtech at MEDDOCAN: Medical Document Anonymization”. In: Proceedings of
the Iberian Languages Evaluation Forum (IberLEF 2019) co-located with 35th


http://ceur-ws.org/Vol-2421/MEDDOCAN_paper_8.pdf
http://ceur-ws.org/Vol-2421/MEDDOCAN_paper_8.pdf
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Conference of the Spanish Society for Natural Language Processing (SEPLN 2019)
(Bilbao, Spain, 24th Sept. 2019). CEUR Workshop Proceedings, pp. 696-703

Indezxed in Scopus

This paper contains Vicomtech’s working notes for the MEDDOCAN chal-
lenge. It is the keystone of Chapter 4, which could be seen as an extended
version of these working notes.

Aitor Garcia-Pablos, Naiara Perez and Montse Cuadros (2020a). “Sensitive data de-
tection and classification in Spanish clinical text: experiments with BERT". In: Pro-
ceedings of the 12th Language Resources and Evaluation Conference (LREC 2020)
(Conference cancelled). European Language Resources Association, pp. 4486-4494

GGS: Class 3 Rating B

Indexed in Scopus

This paper describes the experiments carried out with the NUBES-PHI cor-
pus, as well as the post-challenge evaluation of BERT with the MEDDO-
CAN corpus. These contributions have served to finish off Chapter 4 and
build the foundation for Chapter 5. However, the experimental design of
Chapter 5 is not that reported in the paper, having used different evalu-
ation metrics and performed additional experiments, in order to maintain
internal coherence with Chapter 4.

Part lll: TERM IDENTIFICATION

3.

Naiara Perez (2017). "Mapping of Electronic Health Records in Spanish to the Uni-
fied Medical Language System Metathesaurus”. MA thesis. Univertiy of the Basque
Country (UPV/EHU), pp. 1-87

In the Master’s thesis we described the initial version of UMLSmapper and
compared it indirectly to MetaMap (Aronson, 2001, 2006). An updated
description of this version of UMLSmapper is given in Chapter 7. The
experimentation reported in this publication has not been included in this
work, as we have since performed more informative tests on a gold standard
corpus (Chapter 8).

Naiara Perez, Montse Cuadros and German Rigau (2018). "Biomedical term nor-
malization of EHRs with UMLS". In: Proceedings of the 11th International Confer-
ence on Language Resources and Evaluation (LREC 2018) (MiyazaKi, Japan, Tth—
12th May 2018). European Language Resources Association, pp. 2045-2051

GGS: Class 3 Rating B

Indexed in Scopus

This paper is a summarised version of the Master’s thesis.


http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.552.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.552.pdf
http://hdl.handle.net/10810/23025
http://hdl.handle.net/10810/23025
http://www.lrec-conf.org/proceedings/lrec2018/summaries/509.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/509.html
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Naiara Perez, Pablo Accuosto, Alex Bravo, Montse Cuadros, Eva Martinez-Garcia,
Horacio Saggion and German Rigau (2020). “Cross-lingual semantic annotation of
biomedical literature: Experiments in Spanish and English”. In: Bioinformatics 36.6,
pp. 1872-1880

JCR™ 2020: Impact Factor 6.937, Q1 (3/58 in Mathematical & Computational Biology)
SJR 2020: Impact Factor 3.599, Q1 (8/2,196 in Computer Science Applications)

Indexed in Web of Science and Scopus

This paper is the result of a collaboration with the Natural Language Pro-
cessing Group (TALN) of the University Pompeu Fabra (UPF). Here, we
compare several pipelines for biomedical term identification in Spanish, in-
cluding UMLSmapper. Most of work and results described in Chapter 7 and
Chapter 8—except the experiments over English text—are summarised in
this publication.

Part IV: NEGATION AND UNCERTAINTY DETECTION

Salvador Lima-Lopez, Naiara Perez, Montse Cuadros and German Rigau (2020a).
“NUBes: A corpus of negation and uncertainty in Spanish clinical texts". In: Pro-
ceedings of the 12th Language Resources and Evaluation Conference (LREC 2020)
(Conference cancelled). European Language Resources Association, pp. 5772-5781

GGS: Class 3 Rating B

Indexed in Scopus

This paper describes the process of creating the NUBes corpus and its
outcome. These contributions have been reported in Chapter 10. The paper
also includes a preliminary set of experiments with the corpus, which serve
as baseline of the experiments in Chapter 11.

Naiara Perez, Montse Cuadros and German Rigau (n.d.). “Negation and speculation
processing: a study on cue-scope labelling and assertion classification in Spanish
clinical text”. Under review as a journal article.

This paper recounts the experimentation of Chapters 11 and 12 about ap-
proaching the detection of negation and speculation as sequence labelling
and sequence classification problems, respectively.

Other related publications

8.

Montse Cuadros, Naiara Perez, I[ker Montoya and Aitor Garcia-Pablos (2018). “Vi-
comtech at BARR2: Detecting biomedical abbrebiations with ML methods and


http://dx.doi.org/10.1093/bioinformatics/btz853
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10.

11.

12.

13.

dictionary-based heuristics”. In: Proceedings of the 3rd Workshop on Evalua-
tion of Human Language Technologies for Iberian Languages (IberEval 2018)co-
located with 34th Conference of the Spanish Society for Natural Language Pro-
cessing (SEPLN 2018) (Sevilla, Spain, 18th Sept. 2018). CEUR Workshop Proceed-
ings, pp. 322-328

Indezxed in Scopus

Salvador Lima-Lépez, NaiaraPerez, Laura Garcia-Sardifna and Montse Cuadros
(2020b). "HitzalMed: Anonymisation of clinical text in Spanish”. In: Proceedings of
the 12th Language Resources and Evaluation Conference (LREC 2020) (Confer-
ence cancelled). European Language Resources Association, pp. 7038-7043

CORE 2020: Rank C

Indezxed in Scopus

Aitor Garcia-Pablos, Naiara Perez and Montse Cuadros (2020b). “Vicomtech at
CANTEMIST 2020". In: Proceedings of the Iberian Languages Evaluation Forum
(IberLEF 2020) co-located with 36th Conference of the Spanish Society for Natu-
ral Language Processing (SEPLN 2020) (Online, 23rd Sept. 2020). CEUR Workshop
Proceedings, pp. 489498

Indexed in Scopus

Aitor Garcia-Pablos, NaiaraPerez and Montse Cuadros (2020c). "Vicomtech at
eHealth-KD challenge 2020: deep end-to-end model for entity and relation extrac-
tion in medical text". In: Proceedings of the Iberian Languages Evaluation Forum
(IberLEF 2020) co-located with 36th Conference of the Spanish Society for Natu-
ral Language Processing (SEPLN 2020) (Online, 23rd Sept. 2020). CEUR Workshop
Proceedings, pp. 102-111

Indezxed in Scopus

Salvador Lima-Lopez, Naiara Perez and Montse Cuadros (2021). "Grammatical error
correction for Spanish health records”. In: Procesamiento del Lenguaje Natural 66,
pp. 121-132

SJR 2020: Impact Factor 0.149, Q4 (1,334/2,196 in Computer Science Applications)
Dialnet Metrics 2019: Impact Factor 0.377, Q1 (6/70 in Linguistics)
FECYT Certificate of Excellence 2020: Q1 (2/52 in Linguistics)

Indexed in Web of Science and Scopus

Aitor Garcia-Pablos, Naiara Perez and Montse Cuadros (2021a). "Vicomtech at
eHealth-KD challenge 2021: deep learning approaches to model health-related
text in Spanish”. In: Proceedings of the Iberian Languages Evaluation Forum
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(IberLEF 2021) co-located with the Conference of the Spanish Society for Natu-
ral Language Processing (SEPLN 2021) (Online, 21st Sept. 2021). CEUR Workshop
Proceedings, pp. 712-724

Indexed in Scopus

14. Aitor Garcia-Pablos, Naiara Perez and Montse Cuadros (2021b). “Vicomtech at
MESINESP2: BERT-based multi-label classification models for biomedical text in-
dexing".In: Proceedings of the Working Notes of CLEF 2021 - Conference and Labs
of the Evaluation Forum (Online, 21st=24th Sept. 2021). CEUR Workshop Proceed-
ings, pp. 102-111

Indexed in Scopus

15. Naiara Perez, Aitor Alvarez, Arantza del Pozo, Andrés Arbona, Oihane Ibarrola,
Marta Suarez, Pedro de la Pefia Tejada and Itziar Cuenca (2022). "ESAN: Automat-
ing medical scribing in Spanish”. In: Proceedings of the Annual Conference of the
Spanish Association for Natural Language Processing: Projects and Demonstra-
tions (SEPLN-PD 2022) co-located with the Conference of the Spanish Society
for Natural Language Processing (SEPLN 2022) (A Corufia, Spain, 21st-23rd Sept.
2022). CEUR Workshop Proceedings, pp. 10-13

Indexed in Scopus

13.3 Future Work

As future work, we envision two distinct avenues of research.

On the one hand, there is the line of research related to the study of practical-
ities and viability issues that emerge when attempting to bring this technology
to end users in the environment of interest (i.e., hospitals, healthcare centres).
In this sense, the intrinsic evaluations presented in this thesis should be comple-
mented with extrinsic tests that measure to what extent these tools—either alone
or in combination—can help accelerate, improve, or even enable new processes in
real healthcare practice and research.

Along these lines, there is the specific question of how to better bring the
presented tools together into one system of clinical IE, particularly with regards
to the tasks of term identification and of negation and uncertainty detection. This
problem raises new pragmatic questions, such as how to handle antonymy and
complex negated terms for which specific codes exist in the knowledge base of
interest (e.g., “IUD not visible” corresponds to the concept identifier C1698536
[71] in the UMLS, but not all negated concepts have a code).

Furthermore, future research should investigate efficient methods for inte-
grating the machine learning life-cycle into production healthcare settings. Due
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to the dynamism of the sector, techniques such as online learning are crucial for
continually improving systems and keeping them updated.

On the other hand, the rapid advances of the NLP field in the last few years
provide new opportunities to improve and extend the presented work.

In this respect, the results obtained in sensitive data detection and categori-
sation with Multilingual BERT [23] can in all probability be improved upon by
fine-tuning more appropriate LMs that have been made available since then (e.g.,
the clinical ROBERTa LM for the Spanish language by Carrino et al. [2021]). Fu-
ture work should also address techniques for document anonymisation once the
sensitive data has been detected and categorised. Of particular interest in NLP
is the automatic suggestion of surrogate data. Current approaches are based on
language and domain specific gazetteers (Lima-Lépez et al., 2020b; Emelyanov,
2021), a dependency that may be eliminated with pre-trained LMs.

With respect to term identification, the naive, lexically motivated approach
presented here responds to the self-imposed restrictions of not requiring anno-
tated data nor being dependent on external NER tools. The most recent re-
lated work (i.a., Wajsbiirt et al., 2021; Yuan et al., 2022) employ more advanced
techniques based on continuous word and/or graph embeddings and bi-encoders
(Reimers et al., 2019); but these works have oracle term annotations as starting
point, so their application in our use case is not straightforward. As future work,
we should explore ways to incorporate them into our system in order to overcome
its many limitations.

As for negation and uncertainty, multi-task learning offers a new avenue of
research. In this setup, the tasks of cue and scope detection and assertion clas-
sification would be learned jointly by the same model in separate classification
heads, possibly benefiting one another. Interestingly, Hartmann et al., 2021 find
that learning to classify events into the affirmed or negated categories as an auxil-
iary task to negation scope resolution does not help and can even be detrimental.
However, their setup exploits a different corpora per task and those corpora in-
volve different languages. Furthermore, they do not look into how the task of
negation scope resolution affects assertion classification.

Following the paradigm shift in the NLP community (P. Liu et al., 2021; Sun
et al., 2022), future work may address all these problems with yet other emergent
approaches, such as sequence-to-sequence and/or prompt-based learning, lever-
aging perhaps bigger language models (e.g., GPT3 [T. B. Brown et al., 2020],
BART [Lewis et al., 2020], T5 [Raffel et al., 2020]). In this regard, while several
works (Ettinger, 2020; Kassner et al., 2020) demonstrate that language models
are not good at capturing how negation changes the meaning the sentences they
appear in, others (Warstadt et al., 2019; Y. Zhao et al., 2020) found evidence
for some form of encoding of negation at the syntactic level (to the best of our
knowledge, similar studies have not been conducted in regard to speculation). As
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the processing of negation and speculation, as addressed in this work, is rather
influenced by syntax than by semantics—i.e., the objective of the proposed sys-
tems is, in a nutshell, to decide if, not how, certain parts of a given sentence are
affected by the presence of a cue—, these new paradigms may be found to be
viable and even competitive for these tasks, as have been for others.
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Appendix A

MEDDOCAN category labels

In order to improve the readability of this document, we renamed the official
labels of MEDDOCAN’s sensitive data categories. The correspondences are listed

below:

Table A.1: Official and renamed labels of MEDDOCAN category labels

Label (and abbreviation) in this document

Official MEDDOCAN label

Territory (Ter)

Date (Dat)

Patient’s age (Age)
Patient’s name (Pat)
Patient’s sex (Sex)
Street (Str)

Country (Ctr)
Patient’s ID (Pid)
E-mail address (Ema)
License ID (Lid)
Insurance ID (Iid)
Hospital (Hos)
Patient’s relative (Kin)
Institution (Ins)
Episode ID (Eid)
Phone number (Pho)
Patient’s profession (Job)
Fax number (Fax)
Other (0th)
Outpatients clinic (C1i)
Doctor’s ID (Did)

TERRITORIO

FECHAS
EDAD_SUJETO_ASISTENCIA
NOMBRE_SUJETO__ASISTENCIA
SEXO_SUJETO_ ASISTENCIA
CALLE

PAIS

ID_SUJETO__ASISTENCIA
CORREO__ELECTRONICO
ID_TITULACION_PERSONAL_ SANITARIO
ID_ASEGURAMIENTO

HOSPITAL

FAMILIARES SUJETO__ASISTENCIA
INSTITUCION
ID_CONTACTO__ASISTENCIAL
NUMERO__TELEFONO

PROFESION

NUMERO_FAX
OTROS_SUJETO_ASISTENCIA
CENTRO_SALUD
ID__EMPLEO_PERSONAL_SANITARIO







Appendix B
MEDDOCAN confusion matrices

This appendix contains the confusion matrices of the 4 systems presented in
Chapter 4: The MEDDOCAN challenge, namely, spaCy (Table B.1), CRF (Table
B.2), NCRF++ (Table B.3), and BERT (Table B.4).

The confusion matrices are computed at token-level, ignoring the BILOU
tag. The values have been normalised by row and presented as percentages (i.e.,
each row sums 100% of the true labels). The column N indicates the number of
tokens for each row in absolute terms. The rows and columns are ordered by the
frequency of each category in the corpus (counted in number of spans).

As is usual in NER-like problems, all the systems manage to detect and cat-
egorise the most frequent categories with similar levels of success. The biggest
differences lie in the least represented categories, located at the southeast quad-
rants of the matrices. The most remarkable difference in this area is that BERT’s
column Outside (0) is less populated in comparison to the other’s, which means
that BERT misses fewer sensitive data than the other compared systems.

Beyond that, eye-catching confusions have to do with semantically related
or lexically similar categories, such as outpatients clinics (C1i) and institutions
(Ins), phone numbers (Pho) and fax numbers (Fax), or identification numbers.
All the systems commit these errors to varying degrees. Another common error is
the confusion of mentions of a patient’s relative (Kin) for the patient’s age (Age),
which is triggered by mentions of the age of a patient’s relative, not of the patient
themselves. Finally, although the matrices do not show it due to the normalisation
of the values, the confusion of the categories territory (Ter), country (Ctr) and
street (Str) is frequent as well, which is expected because they co-occur in the
corpus in a sequential fashion very often.
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MEDDOCAN confusion matrices

Table B.1: Confusion matrix of the spaCy model in the MEDDOCAN challenge. Note that this
confusion matrix has been split into two parts for convenience.

predicted

N ‘ Ter Dat Age Pat Doc Sex Str Ctr Pid Ema Lid

Ter 1,090 00.09 00.00 00.00 01.83 00.37 00.00 00.00 00.00
Dat 779 00.00 00.00 00.13 00.00 00.00 00.00 00.00 00.00
Age 1,021 00.00 00.00 EEBE®sEN 00.00 00.20 00.00 00.00 00.00 00.00 00.00 00.00
Pat 780 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Doc 1,693 | 00.00 00.00 00.00 00.00 EeiH*ES® 00.00 00.00 00.00 00.00 00.00 00.00
Sex 461 00.00 00.00 00.22 00.00 00.00 00.00 00.00 00.00 00.00
Str 2,941 00.31 00.00 00.00 00.00 00.03 00.00 00.00 00.00 00.00 00.00
Ctr 370 | 00.81 00.27 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Pid 290| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Ema 271 00.00 00.00 00.00 00.00 00.00 00.00 03.32 00.00 00.00

Lid 683| 00.29 00.00 00.00 00.00 00.00 00.00 00.29 00.00 00.00 00.00
Iid 588| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.17 00.00 00.00
Hos 560 | 00.18 00.00 00.00 00.00 00.00 00.00 01.43 00.71 00.00 00.00 00.00
Kin 131 00.00 01.53 03.05 00.00 00.00 00.76 00.00 00.00 01.53 00.00 00.00
Ins 250 | 02.00 00.00 00.00 00.00 00.40 00.00 01.60 00.40 00.00 00.00 00.00
Eid 39| 00.00 00.00 00.00 00.00 02.56 00.00 00.00 00.00 00.00 00.00 00.00
Pho 67| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Job 21 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Fax 15| 06.67 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 06.67 13.33
O0th 12| 00.00 00.00 00.00 00.00 00.00 25.00 00.00 00.00 00.00 00.00 00.00
g Cli 32| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
b 0 117K| 00.01 00.00 00.35 00.00 00.00 00.00 00.04 00.02 00.00 00.00 00.00
Iid Hos Kin Ins Eid Pho Job Fax Oth Cli 0
Ter 1,090| 00.00 00.09 00.00 00.55 00.00 00.00 00.00 00.00 00.00 00.00 02.29
Dat 779 00.00 00.39 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 01.93
Age 1,021 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 04.21
Pat 780 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.26
Doc 1,693| 00.00 00.00 00.00 00.06 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Sex 461 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 01.08
Str 2,941 00.00 00.78 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 01.12
Ctr 370 | 00.00 00.00 00.00 01.08 00.00 00.00 00.00 00.00 00.00 00.00 02.43
Pid 290| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 03.45
Ema 271 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.74
Lid 683| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Iid 588 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Hos 560 | 00.00 00.00 04.46 00.00 00.00 00.00 00.00 00.00 00.00 01.61
Kin 131 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 | 38.93
Ins 250 | 00.00 00.80 00.00 [47.60 | 00.00 00.00 00.00 00.00 00.00 00.00 [47.20
Eid 39| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Pho 67| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 05.97
Job 21 00.00 00.00 00.00 00.00 00.00 00.00 42.86 00.00 00.00 00.00

Fax 15| 00.00 00.00 00.00 00.00 00.00  33.33 00.00 [40.00 00.00 00.00 00.00
O0th 12| 00.00 00.00 08.33 00.00 00.00 00.00 00.00 00.00 00.00 00.00
g Cli 32| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 09.38
& 0 117K| 00.00 00.02 00.00 00.01 00.00 00.00 00.00 00.00 00.00 00.00 EeiEB*]
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Table B.2: Confusion matrix of the CRF model in the MEDDOCAN challenge. Note that this
confusion matrix has been split into two parts for convenience.

predicted

N ‘ Ter Dat Age Pat Doc Sex Str Ctr Pid Ema Lid

Ter 1,090 00.00 00.09 00.00 00.00 01.65 00.46 00.00 00.00 00.00
Dat 779 00.26 00.00 00.00 00.13 00.00 00.00 00.00 00.00 00.00
Age 1,021 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Pat 780 | 00.00 00.00 00.00 00.90 00.00 00.00 00.00 00.00 00.00 00.00
Doc 1,693 00.00 00.00 00.00 00.00 BeEKOBN 00.00 00.24 00.00 00.00 00.00 00.00
Sex 461 00.00 00.00 00.00 00.00 00.00 EeEEtd 00.00 00.00 00.00 00.00 00.00
Str 2,941 00.44 00.00 00.00 00.00 00.17 00.00 00.00 00.00 00.00 00.00
Ctr 370 | 00.27 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Pid 290 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Ema 271 00.00 00.00 00.00 00.00 00.00 00.00 03.32 00.00 00.00

Lid 683 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Iid 588 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.17 00.00 00.00
Hos 560 | 00.00 00.00 00.00 00.00 00.89 00.00 01.43 00.00 00.00 00.00 00.00
Kin 131 00.00 00.00 06.11 00.00 00.00 00.76 00.00 00.00 00.00 00.00 00.00
Ins 250 | 01.60 00.00 00.00 00.00 00.00 00.00 01.20 00.00 00.00 00.00 00.00
Eid 39| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Pho 67| 08.96 04.48 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Job 21 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Fax 15 00.00 13.33 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Oth 12 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
g Cli 32 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
£ 0 117K 00.01 00.01 00.01 00.00 00.01 00.00 00.02 00.00 00.00 00.00 00.00
Iid Hos Kin Ins Eid Pho Job Fax Oth Cli 0
Ter 1,090| 00.00 00.37 00.00 00.18 00.00 00.00 00.00 00.00 00.00 00.00 03.85
Dat 779 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 04.36
Age 1,021 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 03.23
Pat 780 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.51
Doc 1,693 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.71
Sex 461 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 01.52
Str 2,941 00.00 00.14 00.00 00.20 00.00 00.00 00.00 00.00 00.00 00.00 01.87
Ctr 370 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 04.59
Pid 290 | 01.03 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 05.86
Ema 271 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Lid 683 00.44 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.15
Iid 588 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Hos 560 | 00.00 00.00 02.14 00.00 00.00 00.00 00.00 00.00 00.00 07.50
Kin 131 00.00 00.00 [38.93 00.00 00.00 00.00 00.00 00.00 00.00 00.00

Ins 250 | 00.00 00.00 00.00 30.00 00.00 00.00 00.00 00.00 00.00 00.00 HEE)
Eid 39 00.00 00.00 00.00 00.00 gweE 00.00 00.00 00.00 00.00 00.00 00.00
Pho 67| 00.00 00.00 00.00 00.00 00.00 Fg@&GESE 00.00 00.00 00.00 00.00 14.93
Job 21 00.00 00.00 00.00 00.00 00.00 00.00 14.29 00.00 00.00 00.00
Fax 15 00.00 00.00 00.00 00.00 00.00 26.67 00.00 40.00 00.00 00.00 20.00
Oth 12 00.00 00.00 08.33 00.00 00.00 00.00 00.00 00.00 00.00 00.00
g Cli 32 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 09.38
8 0 117K 00.00 00.00 00.00 00.01 00.00 00.00 00.00 00.00 00.00 00.00 EeiEEeE]
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MEDDOCAN confusion matrices

Table B.3: Confusion matrix of the NCRF++ model in the MEDDOCAN challenge. Note that this
confusion matrix has been split into two parts for convenience.

predicted
N ‘ Ter Dat Age Pat Doc Sex Str Ctr Pid Ema Lid
Ter 1,090 00.09 00.00 00.09 00.00 00.00 01.83 00.55 00.00 00.00 00.00
Dat 779 00.00 EekgER 00.26 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Age 1,021 00.00 00.00 EeEMEN 00.00 00.00 00.10 00.00 00.00 00.00 00.00 00.00
Pat 780 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Doc 1,693| 00.00 00.00 00.00 00.00 00.06 00.12 00.00 00.00 00.00 00.00
Sex 461 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Str 2,941 00.20 00.00 00.00 00.00 00.07 00.00 00.00 00.00 00.00 00.00
Ctr 370| 01.62 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Pid 290| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Ema 271 00.00 00.00 00.00 00.00 00.00 00.00 03.32 00.00 00.00
Lid 683| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Iid 588| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.17 00.00 00.00
Hos 560 | 00.18 00.71 00.00 00.00 01.25 00.00 00.71 00.00 00.00 00.00 00.00
Kin 131 00.00 00.00 10.69 00.00 00.00 02.29 00.00 00.00 00.00 00.00 00.00
Ins 250 | 01.20 00.00 00.00 00.00 00.00 00.00 10.80 00.00 00.00 00.00 00.00
Eid 39| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Pho 67| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 08.96
Job 21 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 04.76 00.00 00.00
Fax 15| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
O0th 12| 00.00 00.00 00.00 00.00 00.00 16.67 00.00 00.00 08.33 00.00 00.00
g Cli 32| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
b 0 117K| 00.01 00.00 00.03 00.00 00.01 00.00 00.03 00.00 00.00 00.00 00.00
Iid Hos Kin Ins Eid Pho Job Fax Oth Cli 0
Ter 1,090| 00.00 00.00 00.00 00.83 00.00 00.09 00.00 00.00 00.00 00.00 01.74
Dat 779 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 02.05
Age 1,021 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 01.18
Pat 780 00.00 00.00 00.13 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.13
Doc 1,693| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.18
Sex 461 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.87
Str 2,941 00.00 00.00 00.00 00.14 00.00 00.00 00.00 00.00 00.00 00.00 00.61
Ctr 370 | 00.00 00.00 00.00 00.27 00.00 00.00 00.00 00.00 00.00 00.00 02.70
Pid 290| 01.03 00.00 00.34 00.00 00.00 00.00 00.00 00.00 00.00 00.00 04.83
Ema 271 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 02.95
Lid 683| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Iid 588 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Hos 560 | 00.00 00.00 01.96 00.00 00.00 00.00 00.00 00.00 00.00 02.32
Kin 131 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 '32.06
Ins 250 | 00.00 02.80 00.00 [39.20 00.00 00.00 00.00 00.00 00.00 00.00 [46.00
Eid 39| 00.00 00.00 00.00 00.00 gmKeE 00.00 00.00 00.00 00.00 00.00 00.00
Pho 67| 00.00 00.00 00.00 00.00 00.00 EeHEON 00.00 00.00 00.00 00.00 10.45
Job 21 00.00 00.00 00.00 00.00 00.00 00.00 14.29 00.00 00.00 00.00
Fax 15| 00.00 00.00 00.00 00.00 00.00 - 00.00 140.00 00.00 00.00 00.00
O0th 12| 00.00 00.00 08.33 00.00 00.00 00.00 00.00 00.00 00.00 00.00
g Cli 32| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 15.62 09.38
& 0 117K| 00.00 00.00 00.00 00.01 00.00 00.00 00.00 00.00 00.00 00.00 EeiEe]
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Table B.4: Confusion matrix of the BERT model in the MEDDOCAN challenge. Note that this
confusion matrix has been split into two parts for convenience.

predicted
N ‘ Ter Dat Age Pat Doc Sex Str Ctr Pid Ema Lid
Ter 1,090 00.00 00.09 00.00 00.00 01.01 00.46 00.00 00.00 00.00
Dat 779 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Age 1,021 00.00 00.00 00.00 00.10 00.00 00.00 00.00 00.00 00.00
Pat 780 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Doc 1,693 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Sex 461 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Str 2,941 00.34 00.00 00.00 00.00 00.07 00.00 00.00 00.00 00.00
Ctr 370 | 00.00 00.00 00.00 00.54 00.00 00.00 00.00 00.00 00.00
Pid 290 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Ema 271 00.00 00.00 00.00 00.00 00.00 00.00 03.32 00.00 00.00
Lid 683 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Iid 588 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.17 00.00 00.00
Hos 560 | 00.18 00.00 00.00 00.00 00.00 00.00 01.07 00.00 00.00 00.00 00.00
Kin 131 00.00 00.00 07.63 00.76 00.00 02.29 00.00 00.00 02.29 00.00 00.00
Ins 250 | 00.80 00.00 00.00 00.00 00.00 00.00 04.00 00.40 00.00 00.00 00.00
Eid 39 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 02.56
Pho 67| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Job 21 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 09.52 00.00 00.00
Fax 15 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Oth 12 00.00 00.00 08.33 00.00 00.00 08.33 00.00 00.00 16.67 00.00 00.00
g Cli 32 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
£ 0 117K 00.01 00.00 00.02 00.00 00.00 00.01 00.02 00.00 00.01 00.00 00.00
Iid Hos Kin Ins Eid Pho Job Fax Oth Cli 0
Ter 1,090 | 00.00 00.00 00.00 00.28 00.00 00.09 00.00 00.00 00.00 00.00 00.73
Dat 779 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.26
Age 1,021 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.10
Pat 780 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Doc 1,693 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.06
Sex 461 00.00 00.00 00.22 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.43
Str 2,941 00.00 00.17 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.34
Ctr 370 | 00.00 00.00 00.00 00.27 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Pid 290 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.34
Ema 271 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Lid 683 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Iid 588 00.00 00.00 00.00
Hos 560 00.00 00.00 00.89
Kin 131 00.00 00.00 19.08
Ins 250 00.00 00.00 24.40
Eid 39 00.00 00.00 00.00
Pho 67 00.00 00.00 01.49
Job 21 00.00 00.00 14.29
Fax 15 00.00 00.00 00.00
Oth 12 00.00 00.00 08.33 00.00 00.00 00.00 '33.33 00.00 00.00 00.00 25.00
g Cli 32 00.00 00.00 00.00 09.38 00.00 00.00 00.00 00.00 00.00 EElEFH 00.00
8 0 117K 00.00 00.00 00.01 00.02 00.00 00.00 00.01 00.00 00.00 00.00 Eeik:]







Appendix C

NUBes: medical specialities
and EHR sections

Table C.1 contains the average frequency per every 100 tokens of each sensitive
data category in the NUBES-PHI corpus. The upper table section breaks down
this information into medical specialities, while the lower section does the same
for Electronic Health Record (EHR) sections.

As can be seen, reports from Obstetrics and Gynaecology (OBG) contain
remarkably more sensitive information than the other specialities in relative
terms—it contains particularly more doctor names (Doc)—, followed by Thoracic
Surgery (TS) and Ophthalmology (OPH). Opposite this spectrum are specialities
Plastic Surgery (PS) and Odontology (ODO). It must be noted, however, that the
documents belong to the same hospital, and the number of doctors that authored
them is unknown to us; in addition, some specialities are hardly represented in
the dataset. It is then possible that these number simply describe the mannerisms
of a few doctors. Perhaps more interestingly, Treatment Notess (TNo) and Chief
Complaint (CC) are the sections that contain more sensitive information (double
the average). Treatment Notes (TNo) abounds particularly with dates (Dat) and
doctor names (Doc) in comparison to the other sections, while Chief Complaint
(CC) has the most mentions of age of patients (Age) and sex of patients (Sex).
Physical Examination (PE) is the section with least sensitive information in this
comparison.

Table C.2 describes the distribution of negation and speculation annotations
in the NUBES corpus, also by medical speciality (upper table section) and EHR
section (lower table section). When analysed over medical specialities, Plastic
Surgery (PS) and Neurology (N) reports stand out in particular for their high
usage of speculative expressions; negation, on the other hand, is most frequent,
in relative terms, in Cardiovascular Diseases (CD) reports (ignoring the least
frequent specialities). Regarding the EHR sections, text under the Diagnostic
Tests (DXT) section contributes the most negation and speculation examples,
followed by History of Present Illness (HPI) and PE, while TNo hardly contain
any of these phenomena.
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Table C.1: Average sensitive data frequency per every 100 tokens by category and medical
speciality (upper section), and EHR section (lower section). Doc = number of documents; Len =
average document length in tokens. Ave = average of all medical specialities or EHR sections. The
rest of abbreviations and acronyms are defined in the glossary at the end of this document.

Doc Len Dat Fac Age Doc Sex Kin Loc Pat Job Con Oth

OBG 394 15.76 [EEEJ 0.55 0.05 [1:09" 0.02 0.00 0.05 0.00 0.00 0.00 0.00
TS 18 25.17 [2HW0N 0.00 0.44 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OPH 241 23.65 [1.29 1.1 0.18 0.02 0.02 0.00 0.02 0.00 0.00 0.00 0.00
HaH 925 120.72 [1.15 0.51 0.24 0.25 0.14 0.07 0.03 0.06 0.00 0.00 0.01
U 463  68.51 [1.60 0.59 0.10 0.08 0.04 0.01 0.02 0.00 0.00 0.00 0.00
OTO 536 35.96 0.97 0.29 0.14 0.31 0.12 0.01 0.02 0.00 0.01 0.00 0.01
ICU 219 7328 095 0.29 0.19 0.04 0.06 0.03 0.02 0.00 0.00 0.00 0.00
Ave 73.55 0.78 0.28 0.19 0.13 0.07 0.05 0.02 0.01 0.01 0.00 0.01
GCU 1,021 59.99 0.92 0.28 0.07 0.10 0.00 0.02 0.02 0.00 0.00 0.00 0.00 |1.42
CD 513  92.74 0.47 0.08 0.59 0.09 0.07 0.04 0.01 0.00 0.01 0.00 0.00 1.37

GE 4 40.00 0.62 0.00 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.25
GS 394 108.46 0.51 0.17 0.17 0.11 0.12 0.03 0.01 0.00 0.01 0.00 0.00 1.14
OR 393 79.61 0.39 0.11 0.22 0.03 0.17 0.02 0.02 0.00 0.10 0.00 0.02 1.08
IM 507 112.46 0.47 0.12 0.21 0.07 0.05 0.06 0.02 0.00 0.00 0.00 0.01  1.00
VS 3 4133 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81
N 5562 135.37 0.28 0.11 0.04 0.03 0.02 0.09 0.02 0.00 0.00 0.00 0.00 0.58
AN 16 25.88 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.48
PS 805 14.39 0.22 0.08 0.04 0.03 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.42

ODO 15 8.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TNo 686  84.90 0.60 0.01 0.60 0.00 0.00 0.02 0.00 0.00 0.02 0.01
CC 1,878 25.78 0.66 0.56 1.19 0.18 0.48 0.04 0.03 0.00 0.00 0.00 0.01
HPI 1,664 78.27 0.85 0.22 0.16 0.04 0.11 0.10 0.04 0.01 0.03 0.00 0.01
Ave 73.55 0.78 0.28 0.19 0.13 0.07 0.05 0.02 0.01 0.01 0.00 0.01
hx 118 39.36 0.93 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95
PNo 1,677 125.48 0.47 0.22 0.08 0.07 0.01 0.03 0.01 0.02 0.00 0.00 0.00 0.91
DXT 376 90.62 0.59 0.06 0.07 0.04 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.80
PE 620 51.63 0.40 0.11 0.01 0.06 0.00 0.03 0.02 0.03 0.00 0.00 0.01 0.67
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Table C.2: Average negation and uncertainty marker frequency per every 100 tokens, by category

and medical speciality (upper section), and by EHR section (lower section). Doc = number of

documents; Len = average document length in tokens. Ave = average of all medical specialities or
EHR sections. The rest of abbreviations and acronyms are defined in the glossary at the end of this

document.

Doc Len Neg NSyn NLex NMph Unc ULex USyn
CD 513 92.74 0.39 047 0.27 0.27 0.00
OR 393 79.61 0.33 0.06 0.57 0.56 0.01
N 552 135.37 0.38 028 091 090 0.01
U 463 68.51 0.49 0.12 0.58 0.58 0.00
GS 394  108.46 0.30 0.26 0.50 0.50 0.00
OTO 241 35.96 0.19 0.10 0.32 0.32 0.00
GE 4 40.00 0.00 0.00 0.00 0.00 0.00
AN 16 25.88 0.00 0.00 097 097 0.00
Ave 73.81 0.35 0.19 0.50 0.49 0.00
TS 18 25.17 0.00 0.00 0.00 0.00 0.00
M 507  112.46 0.44 0.10 0.46 0.46 0.00
OBG 394 15.76 0.34 0.00 0.37 0.37 0.00
ICU 219 73.28 0.31 0.07 0.33 0.32 0.01
PS 805 14.39 0.13 0.02 | 1.09 1.09 0.00
HaH 925  120.72 0.36 021 031 031 0.01
GCU 1,021 59.99 0.32 0.07 0.51 0.51 0.00
ODO 15 8.07 0.00 0.00 0.83 0.83 0.00
OPH 536 23.65 0.33 0.30 0.02 0.02 0.11 0.11 0.00
VS 3 41.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DXT 376 90.62 0.15 0.04 0.01
HPI 1,664 78.27 0.33  0.17 0.52  0.00
PE 620 51.63 0.17  0.18 0.60 0.01
PNo 1,677  125.48 0.50  0.30 . 0.52  0.00
Ave 73.81 0.35 0.19 0.50 0.49 0.00
CC 1,878 25.78 0.25 0.11 034 0.33 0.00
hx 118 39.36 0.15 0.02 0.06 0.06 0.00
TNo 686 84.90 0.20 0.00 0.03 0.03 0.00







Appendix D

NUBes-PHI confusion matrices

Table D.1: Confusion matrices of spaCy for the classification task on NUBes-PHI. The matrices
have been computed with token-level predictions without taking the BIO tags into account.

(a) Model trained on the MEDDOCAN corpus

predicted
N ‘ Dat Fac Age Tim Doc Sex Kin Loc Pat Job Oth 0
Dat 1,479]39.76 00.00 00.81 00.00 00.00 00.00 00.14 00.61 00.00 00.00 00.27
Fac 557(02.15 12.57 00.00 00.00 00.00 00.00 00.18 00.36 00.00 00.00 00.00
Age 574 00.00 00.00-00‘00 00.00 00.00 00.00 00.00 00.35 00.00 00.00 40.94
Tim 407 |06.14 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 EeEH:(H
Doc 401 |00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.25 00.25 00.00 00‘00
Sex 71100.00 00.00 00.00 00.00 00.00 01.41 00.00 00.00 00.00 00.00 16.90
Kin 441 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 40.91
Loc 26 | 00.00 07.69 00.00 00.00 00.00 00.00 00.00 03.85 00.00 00.00 00.00
Pat 141 00.00 00.00 00.00 00.00 00.00 00.00 28.57 00.00 00.00 00.00 00.00
Job 17| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
g 0Oth 1]00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
& 0 103K | 00.07 00.02 00.00 00.00 00.00 00.01 00.08 00.05 00.02 00.00 00.00
(b) Model trained on NUBes-PHI
predicted
N ‘ Dat Fac Age Tim Doc Sex Kin Loc Pat Job Oth 0
Dat 1,479 01.35 00.68 00.14 00.00 00.00 00.00 00.00 00.00 00.00 05.00
Fac 557 00.00 00.54 00.00 00.00 00.90 00.18 00.00 00.00 10.05
Age 574 00.00 00.00 00.00 00.00 00.00 00.00 00.00 02.09
Tim 407 |00.74 00.00 00.00 00.00 00.00 00.00 00.00 00.00 04.18
Doc 401 |00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 05.49
Sex 71 (00.00 00.00 00.00 00.00 I 00.00 00.00 00.00 00.00 00.00 00.00
Kin 441 00.00 00.00 00.00 00.00 00.00 00.00 geb¥SN 00.00 00.00 00.00 00.00 04.55
Loc 26 | 00.00 15.38 00.00 00.00 00.00 00.00 00.00 26.92 00.00 00.00 00.00
Pat 14 00.00 00.00 00.00 00.00 07.14 00.00 00.00 07.14 21.43 00.00 00.00
Job 171 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 11.76 00.00 EePZ:
g Oth 1/00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 E=Ke[0]
8 0 103K |00.06 00.03 00.00 00.01 00.01 00.00 00.01 00.00 00.00 00.00 00.00 EeiE:}
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Table D.2: Confusion matrices of NCRF-+ for the classification task on NUBes-PHI. The matrices
have been computed with token-level predictions without taking the BIO tags into account.

(a) Model trained on the MEDDOCAN corpus

predicted
N ‘ Dat Fac Age Tim Doc Sex Kin Loc Pat Job Oth 0

Dat 1,479-00.00 00.81 00.00 00.00 00.00 00.07 00.07 00.00 00.00 00.00 47.94
Fac  557|00.00 18.49 00.00 00.00 00.00 00.00 00.00 01.80 00.54 00.00 00.00 FrgeEiy
Age 574 |00.00 00.00-00.00 00.00 00.00 02.96 00.17 00.00 00.00 00.00 | 36.76
Tim  407|00.74 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 ReiWAS
Doc  401|00.00 00.00 00.00 00.00 01.50 00.00 03.74 00.00 01.00 00.00 00.00
Sex 71100.00 00.00 00.00 00.00 00.00 22.54 00.00 00.00 00.00 00.00 11.27
Kin 44100.00 00.00 00.00 00.00 00.00 04.55 00.00 00.00 00.00 00.00 | 36.36
Loc 26 | 00.00 00.00 00.00 00.00 00.00 00.00 00.00 30.77 00.00 00.00 00.00
Pat 141 00.00 00.00 00.00 00.00 00.00 00.00 28.57 14.29 00.00 00.00 00.00
Job 17| 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
g 0Oth 1|00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
£ 0 103K |00.04 00.04 00.00 00.00 00.00 00.00 00.09 00.07 00.00 00.00 00.01

(b) Model trained on NUBes-PHI

predicted
N ‘ Dat Fac Age Tim Doc Sex Kin Loc Pat Job  0Oth 0

Dat 1,479 01.49 00.68 00.14 00.00 00.00 00.00 00.00 00.00 00.00 03.31
Fac 557 00.00 00.72 00.00 00.18 00.90 00.36 00.00 00.00 05.21
Age 574 |00.00 00.35 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.87
Tim 407 | 00.98 00.00 96.81 00.00 00.00 00.00 00.00 00.00 00.00 02.21
Doc  401|00.00 02.00 00.00 00.00 00.25 00.00 00.00 00.00 00.00 00.00 02.00
Sex 71100.00 00.00 00.00 00.00 1()[U 00.00 00.00 00.00 00.00 00.00 00.00
Kin 44100.00 00.00 00.00 00.00 02.27 00.00 gEEMEHN 00.00 00.00 00.00 00.00 04.55
Loc 26 | 00.00 19.23 00.00 00.00 00.00 00.00 00.00 34.62 07.69 00.00 00.00 | 38.46
Pat 14| 07.14 00.00 00.00 00.00 07.14 00.00 00.00 00‘0000.00 00.00 14.29
Job 17 |100.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 05.88 00.00 EeEN®~
g 0Oth 1]00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 E={e)
£ 0 103K|00.12 00.03 00.01 00.07 00.00 00.00 00.01 00.00 00.00 00.00 00.00 LR




Appendix E

Transformers vocabulary
overlap with NUBes

Table E.1 describes the Transformers models tested in Chapters 11 and 12 in
terms of their vocabulary overlap with NUBES. For comparison purposes, the
same table reports the vocabulary overlap with SFU Reviewgp-NEG (Jiménez-
Zafra et al., 2018c), a corpus of product reviews in Spanish.

SHA is the percentage of unique words in the corpus that is covered by the
vocabulary. WSHA is the percentage of all the words in the corpus (i.e., frequency
weighted unique words) that is covered by the vocabulary, after removing stop-
words. Similarly, UNK is the percentage of unique words in the corpus for which
the tokenizer yielded the special token [UNK] (or analogous) and WUNK is the
frequency weighted UNK (without stopwords).

The models are shown by weighted coverage in the NUBES corpus in de-
scending order. As can be seen, the greatest vocabulary coverage, provided by
SpanBERTa [26], is 28.47%. That is, 28.47% of the set of words occurring in
NUBES have their own embedding. When weighted by word frequency, the cov-
erage rises to 69.67% of the corpus. The worst model in this regard is, unsur-
prisingly, SciBERT (Beltagy et al., 2019)—a monolingual English model—, with
just 6.02% vocabulary overlap with NUBES.

Table E.1: Vocabulary coverage by the pre-trained language models

Vocab NUBes SFU Reviewgp-NEG

SHA WSHA UNK WUNK SHA WSHA UNK WUNK

SpanBERTap,se Cased 50,265 28.47 69.67 0.00 0.00 55.44 86.47 0.00 0.00
IXAmBERT g4se Cased 119,101 25.63 66.84 0.73 0.31 49.10 79.41 0.55 1.12

BETOpggse Cased 31,002 21.72 62.25 0.78 0.37 41.05 77.12 0.30 0.73
RoBERTapg,sc BNE 50,262 26.17 51.71 0.00 0.00 51.42 63.13 0.00 0.00
mBERT p4s. Cased 119,547 12.97 50.56 0.00 0.09 25.32 63.75 0.04 0.34

XLM-RoBERTapggse 250,002 14.40 38.68 0.00 0.00 26.00 49.65 0.00 0.00
SciBERT scivocap Cased 31,116  6.02 29.93 0.24 0.25 7.99 33.12 0.11 0.29







Appendix F

Hyperparameters of the negation
and uncertainty detection models

Table F.1: Hyperparameteres of the neural sequence taggers and text classifiers. Values between
squares brackets are options or ranges for the hyperparameter optimisation. Any hyperparameter
not reported here takes the default value given by the corresponding training API.

(a) NCRF++ sequence tagger (from [Lima-Lopez et al., 2020a])

Hyperparameter Value Hyperparameter Value
Character emb. dimensions 30 Batch size 16
Character CNN layers 1 Optimiser SGD
Character hidden dimensions 50 Learning rate 0.005
Word emb. dimensions 300 Lo regularisation le-8
Word bi-LSTM layers 1  Weight decay 0.001
Word hidden dimensions 200 Momentum 0
Dropout rate 0.5 Maximum epochs 40
(b) Flair sequence tagger and text classifier
Hyperparameter Value Hyperparameter Value
Pre-trained word emb. MWES  Batch size [8, 16, 32]
Pre-trained Flair emb. es-forward, Optimiser SGD
es-backward Learning rate [0.05 - 0.15]
bi-LSTM/GRU layers 1 Minimum learning rate le-4
Hidden dimensions (128, 256]  Weight decay (0.0 - 0.05]
Dropout rate [0.0-0.5] Maximum epochs 60
(c) Transformer sequence taggers and text classifiers
Hyperparameter Value Hyperparameter Value
Pre-trained model see Table 11.3  Learning rate [le-5 - le-4]
Batch size 8  Warmup steps [0 - 500]
Maximum input length 220  Weight decay 0.0 to 0.3
Optimiser AdamW  Maximum epochs 30







Appendix G

Additional metrics for the experiments
on negation and uncertainty detection

This appendix contains complementary result metrics of the experiments in
Chapter 11: Ezperiments in cue and scope detection (Tables G.1 through G.4)
and Chapter 12: Ezperiments in assertion classification (Tables G.5 and G.6).

Table G.3 reports the performance of the sequence labelling models in terms
of the metrics described by Morante et al. (2012a) for the *SEM 2012 shared task
on resolving the scope and focus of negation, later also employed in the NEGES
workshops (Jiménez-Zafra et al., 2018a, 2019), among others. The evaluation
script is publicly available from the official website of the shared task [72]. Notice
that the script is prepared to count one type of cues and one type of scopes
(namely, negation cues and scopes). In order to report separate scores for negation
and speculation, we post-processed the outputs of the systems to contain just
negation or uncertainty predictions, then applied the evaluation script.

The table includes the results of Hartmann et al. (2021), who tackle the
resolution of negation scopes. Their supervised variant, consisting of a fine-tuned
mBERT, outperforms all of our systems when looking at the detection of negation
scopes. It must be noted, however, that our models target 3 more entity types
jointly (namely, negation cues, and speculation cues and scopes).

Table G.4 reports the performance of the sequence labelling models in terms
of the metric described by Solarte Pabén et al. (2022), to which we refer as
‘BIO-weighted token-level’ scores throughout this work. In principle, the only
difference between the mBERT model reported here and that of Solarte Pabén
et al. (2022) (sp in the table) is the optimisation of some hyperparameters (see
Section 11.2.2.4), whose impact is most noticeable for uncertainty scopes, the
most challenging category of all.
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Table G.1: Precision results for cue and scope detection in the FuLL test set. The best and
second-best scores are highlighted in bold and dotted underlines, respectively. N is the number of
training examples.

1/3% train set (N=169) Full train set (N=13,802)

o NCue NSco UCue USco " NCue NSco UCue USco
NCRF++ 0.738 0.853 0.678 0.297 0.276 0.894 0.955 0.879 0.875 0.732
Flair+fT 0.777 0.895 0.737 0.615 0.365 0.887 0.954 0.878 0.834 0.736
BETO 0.764 0.857 0.723 0.766 0.430 0.900 0.960 0.899 0.864 0.736
SpanBERTa  0.743 0.877 0.662 0.717 0.331 0.895 0.954 0.897 0.843 0.735
MarIA 0.735 0.858 0.695 0.593 0.395 0.911 0.966 0.902 0.864 0.785
IXAmBERT 0.795 0.897 0.790 0.712 0.409 0.901 0.960 0.889 0.867 0.759
mBERT 0.770 0.891 0.728 0.704 0.354 0.897 0.961 0.887 0.839 0.760
XLM-R 0.777 0.874 0.758 0.692 0.422 0.897 0.956 0.891 0.843 0.766
SciBERT 0.751 0.864 0.697 0.732 0.190 0.888 0.958 0.867 0.847 0.750

Table G.2: Recall results for cue and scope detection in the FuLL test set. The best and second-best
scores are highlighted in bold and dotted underlines, respectively. N is the number of training
examples.

1/3% train set (N=169) Full train set (N=13,802)

W NCue NSco UCue USco I NCue NSco UCue USco
NCRF++ 0.511 0.702 0.582 0.055 0.052 0.868 0.950 0.852 0.825 0.667
Flair4+fT 0.620 0.812 0.640 0.335 0.155 0.897 0.966 0.877 0.865 0.745
BETO 0.708 0.866 0.733 0.515 0.255 0911 0.966 0.900 0.875 0.782
SpanBERTa 0.646 0.854 0.638 0.430 0.150 0.901 0.966 0.890 0.858 0.750
MarIA 0.683 0.852 0.703 0.477 0.220 0.910 0.969 0.893 0.887 0.777
IXAmBERT 0.674 0.814 0.690 0.532 0.265 0.902 0.970 0.887 0.863 0.750
mBERT 0.666 0.842 0.675 0.475 0.198 0.899 0.959 0.887 0.863 0.760
XLM-R 0.689 0.855 0.697 0.495 0.263 0.914 0.967 0.901 0.885 0.795

SciBERT 0.617 0.855 0.595 0.383 0.080 0.893 0.960 0.869 0.875 0.750




207

Table G.3: “SEM F1 scores for cue and scope detection in the FuLL test set. The best and
second-best scores are highlighted in bold and dotted underlines, respectively. We refer the reader
to Morante et al. (2012a) for an explanation of each metric. We include the results of Hartmann

et al. (2021), who tackle the resolution of negation scopes: SU is a supervised mBERT model, while
ZS ST4¢ refers to zero-shot performance of a mBERT model trained on the BioScope corpus
(Vincze et al., 2008) and the SFU Review Corpus (Konstantinova et al.,, 2012).

Negation Speculation
Cues Scopes Glob CNS Cues Scopes Glob CNS

CM NCM Token CM NCM Token
NCRF++ 94.68 88.38 88.85 90.51 88.67 81.54 84.68 75.39 75.60 75.52 75.00 64.41
Flair+{T 95.38 89.49 90.01 91.58 89.38 83.22 85.71 77.89 78.69 78.67 77.83 69.71
BETO 95.78 90.86 91.76 93.27 90.88 85.42 86.44 80.32 81.07 81.62 80.32 74.41
SpanBERTa 95.50 90.63 91.37 92.81 90.57 84.81 85.19 78.18 78.97 79.86 77.92 70.59
MarlA 96.31 91.42 92.03 93.17 91.48 85.78 86.72 80.32 80.91 82.36 80.13 72.94
IXAmBERT 96.06 90.32 90.94 92.81 90.47 84.72 85.93 78.47 79.87 81.53 78.42 70.00
mBERT 95.49 90.62 91.20 92.51 90.66 84.89 86.19 78.83 79.80 79.31 78.64 71.47
XLM-R 95.77 90.98 91.66 93.24 90.97 85.42 86.58 80.71 81.85 83.02 80.77 74.12
SciBERT 95.40 89.05 89.74 91.83 89.21 82.51 86.19 77.83 78.83 79.58 77.65 70.00
SU - - - 95.66 - - - - - - - -
ZS STcat - - - 90.24 - - - - - - _ _

Table G.4: BIO-tag weighted token-level scores (from Solarte Pabdn et al. [2022]) for cue and

scope detection in the FuLL test set. The best and second-best scores are highlighted in bold and
dotted underlines, respectively. mBERT g p is the system presented by Solarte Pabon et al. (2022).

NCue NSco UCue USco
P R Fy P R F P R Fy P R F
NCRF++ 0.95 094 095 093 0.88 090 087 0.82 0.85 0.84 0.69 0.76
Flair+{T 095 0.97 096 092 090 091 0.84 087 086 0.80 0.79 0.79
BETO 0.95 0.97 096 094 092 0.93 086 0.88 0.87 0.80 0.84 0.82
SpanBERTa 0.95 0.97 096 094 091 092 085 087 086 0.80 0.82 0.81
MarlA 0.97 0.97 0.97 0.95 091 0.93 0.88 0.88 0.88 0.84 0.82 0.83
IXAmBERT 0.96 0.97 096 094 091 093 086 087 087 0.85 0.78 0.81
mBERT 096 096 096 094 091 092 086 087 086 0.80 0.81 0.81
mBERT gp 095 093 095 090 0.8 0.88 0.86 0.83 0.84 0.75 0.70 0.72
XLM-R 095 0.97 096 093 0.92 093 085 0.89 087 0.82 0.85 0.84
SciBERT 0.95 096 096 092 091 091 086 0.88 0.87 081 0.81 0.81
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Table G.5: Precision results for assertion classification. The best and second-best scores are
highlighted in bold and dotted underlines, respectively. N is the number of training examples.

FuLL test MAN test

1/3% train (N=148) Full train (N=12,108) Full train (N=12,108)

o abs pos o abs pos w abs pos
NegEx 0.643 0.631 0.711 0.583 0.579 0.597 0.945 0.950 0.925
Flair+fT 0.167 0.200 0.000 0.874 0.867 0.891 0.978 0.982 0.962
BETO 0.607  0.805 0.345 0.915 0.916 0.914 0.987 0.995 0.965
SpanBERTa  0.790 0.808 0.672 0.906 0.910 0.896 0.984 0.990 0.966
MarIA 0.655 0.770 0.316 0.924 0.921 0.933 0.987 0.995 0.965
IXAmBERT 0.748 0.800 0478 0.906 0.911 0.895 0.981 0.990 0.955
mBERT 0.666 0.803 0.421 0.909 0.910 0.907 0.988 0.995 0.969
XLM-R 0.636  0.820 0.272  0.906 0.893 0.938 0.991 0.994 0.984
SciBERT 0.666 0.841 0.224 0.908 0.906 0.914 0.986 0.989 0.977

Table G.6: Recall results for assertion classification. The best and second-best scores are
highlighted in bold and dotted underlines, respectively. N is the number of training examples.

FuULL test MAN test

1/3% train (N=148) Full train (N=12,108)  Full train (N=12,108)

w abs pos W abs pos o abs pos
NegEx 0.651  0.780 0.350 0.825 0.885 0.685 0.841 0.895 0.679
Flair+fT 0.002 0.002 0.000 0.906 0.920 0.873 0.903 0.921 0.850
BETO 0.616  0.665 0.503 0.954 0.972 0.914 0.957 0.963  0.939
SpanBERTa  0.566  0.715 0.218 0.950 0.965 0.914 0.950 0.952  0.945
MarIA 0.534 0.670 0.218 0.950 0.961 0.924 0.956 0.963 0.936
IXAmBERT 0.482 0.617 0.168 0.944 0959 0909 0.935 0.945 0.905
mBERT 0.607  0.672  0.457 0.962 0.970 0.944 0.958 0.961 0.951
XLM-R 0.658 0.804 0.315 0.963 0.978 0.929 0.965 0.975 0.936

SciBERT 0.349 0450 0.112 0.947 0.959 0919 0.948 0.961 0.911
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Pat patient’s name
Pho phone number
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Str street
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Tim time
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PP prepositional phrase
R relative clause

S clause

V verb

VP verb phrase



	List of Figures
	List of Tables
	Abstract
	Laburpena
	Acknowledgements
	I INTRODUCTION
	Introduction
	Background

	II SENSITIVE DATA DETECTION AND CLASSIFICATION
	Background and literature review
	The MEDDOCAN challenge
	Experiments with health records

	III TERM IDENTIFICATION
	Background and literature review
	The UMLSmapper prototype
	Experiments with the Mantra GSC

	IV NEGATION AND UNCERTAINTY DETECTION
	Background and literature review
	1.00[1]N1.00[1]U1.00[1]B.83[.72]`e.83[.72]`s: A clinical corpus of negation and uncertainty
	Experiments in cue and scope detection
	Experiments in assertion classification

	V CONCLUSIONS
	Conclusions

	APPENDICES
	MEDDOCAN category labels
	MEDDOCAN confusion matrices
	NUBes: medical specialities and EHR sections
	NUBes-PHI confusion matrices
	Transformers vocabulary overlap with NUBes
	Hyperparameters for negation and uncertainty detection
	Additional metrics for negation and uncertainty detection

	Bibliography
	Online Resources and References
	List of Abbreviations

