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Laburpena

Fisikaren helburu nagusienetako bat inguruan dugun materiaren sailkapena da.
Horretarako jarrai daitekeen irizpide zabalduenetako baten arabera, hiru multzo
ezberdinetan sailka dezakegu materia: gas, likido edo solido gisa, hain zuzen ere [ikus
1.1(a) irudia]. Besteak beste, likido eta (bereziki) solidoen propietateak aztertzeaz ar-
duratzen den fisikaren alorrari Materia kondentsatuaren fisika deritzo.

Multzo hauetako batean barneratu bezain laster, sailkapen hau labur geratzen da.
Solidoen kasuan, propietateak sistema batetik bestela aldatzen direla ikusten dugu,
sailkapen-irizpide zehatzago baten beharra dugula ohartzen garelarik. Aukeretako bat
solidoak metal edo isolatzaile gisa klasifikatzea da, kanpo eremu elektriko baten er-
aginpean duten jokaeraren arabera: baldintza horietan korronte elektrikoa garraiatzen
badute, metalak direla diogu, isolatzaileak bestela [ikus 1.1(b) irudia].

1980an K. v. Klitzing eta haren kolaboratzaileek egindako aurkikuntza batek age-
rian utzi zuen sailkapen hau ere ez dela nahikoa: integer Hall efektu kuantiko (HEK)
delakoa behatu zuten [1]. Bi dimentsioko elektroi gas bat planoarekiko perpendiku-
larra den kanpo eremu magnetiko baten eraginpean jartzean behatzen den efektu bat
da hau. Druderen eredu erdi-klasikoaren arabera, zeharkako erresistibitateak eremu
magnetikoaren intentsitatearekiko proportzionala izan behar luke; behaketa esperimen-
talen arabera, ordea, lautadak (plateau deritzenak) ageri dira aipaturiko menpekotasuna
adierazten duen kurban, 1.2 irudiak ikus daitekeen moduan. Halaber, menpekotasun
hau harritzekoa den zehaztasunaz deskriba daiteke lautada bakoitzari zenbaki arrun bat1

esleituz. Bi urte beranduago, 1982an, J. Thouless eta haren kolaboratzaileek frogatu
zutenez, zenbaki arrunt hau Chern zenbakiarekin (TKNN aldaezin bezala ere ezaguna)
bat dator, integer HEK efektu topologikoa delarik. Aurkikuntza hauek isolatzaile trib-
ial eta topologikoen artean bereizteko beharra azpimarratu zuten [ikus 1.1(c) irudia].
Era honetan, integer HEKaren aurkikuntzak hasiera eman zion isolatzaile topologikoen
ikerkuntzari.

Hamarkada batzuk geroago, 2005 eta 2006 urteetan, C. Kane eta E. J. Melek alde
batetik [2,3], A. B. Bernevig eta S. C. Zhangek bestetik [4,5], spin Hall efektu kuantikoa
aurkitu zuten, isolatzaile topologikoen eremuari behin-betiko bultzada emanez. Inte-
ger HEKan ez bezala, spin HEKan kanpo eremu magnetikoa ez da funtsezko osagaia,
spin-orbita akoplamendua (SOC) baita bandak topologikoak izatea ahalbidetzen duen
faktorea. Hori dela eta, spin HEKa elementu astuneko HgTe/CdTe geruzaz osaturiko
sistemetan behatu zen aurrenekoz [5, 6]. Efektu hau aurkitu eta berehala, haren oinar-
rian dagoen topologiak hiru dimentsioko sistemetan duen gauzatzea ikertu zen [7–9],
topologia ahul eta sendo arteko bereizketa proposatu zelarik.

Materialaren erdiguneko topologiaren gauzatze exotikoenetako bat gainazal egoera

1Ingeleraz zenbaki arruntei integer deritze. Bertatik dator integer Hall efektu kuantiko izendapena.
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metalikoen presentzia da [10]. Esate baterako, Chern isolatzaile topologikoek gainazal
egoera egonkor kiralak dituzte lotuta; spin HEKaren fase topologiaren kasuan, aldiz,
gainazal egoerak bikoteka agertzen dira eta ongi zehazturiko spin zenbaki kuantikoa
dute. Kristalaren erdiguneko fase topologikoa bezalaxe, gainazal egoerak ere iraunkorrak
dira perturbazio adiabatikoen aurrean, hots, energia gap-a ixten ez duten eta fasea
babesten duten simetriak errespetatzen dituzten perturbazion aurrean. Ezaugarri honek
isolatzaile topologikoak interesgarri bilakatzen ditu zenbait aplikazio teknologikotarako,
adibidez: spintronika, konputazio kuantiko eta supereroaleen alorrean [11].

Spin HEK aurkitu eta 3-dimentsiotara hedatu bezain laster, material topologikoen
aurresate eta karakterizazio esperimentalak atentzio handia bereganatu zuen. Es-
fortzu honek hainbat material topologikoren aurkikuntza izan zuen ondorio, esaterako
Bi1−xSbx [12], Bi2Se3, Bi2Te3 eta Sb2Te3 [13,14]. Aldi berean, esfortzu handia dedikatu
zitzation topologia eta simetrien arteko erlazioaren ikerkuntzari. Hasteko, barne-motako
simetriek (denbora alderantzizkaketa kasu) fase topologikoak hainbat klasetan bereizi
ditzaketela aurkitu zen eta dimentsio desberdinetan ageri diren klaseen katalogo bat
plazaratu zen, ten-fold way bezala ezaguna [15–17]. Ondoren, kristal-motako simetriek
(biraketek, esaterako) topologian izan dezaketen rola aztertu zen. Bi paper nagusi joka
ditzaketela ondorioztatu zen: Alde batetik, fase topologikoen diagnosia erraztu deza-
kete [18]. Bestetik, simetria talde batek izan ditzakeen fase topologiko klaseen anizta-
suna aberas dezakete, halako faseak babestu zein bereizteko duten gaitasuna dela eta.
Kristal-motako simetriek babesten dituzten faseei krista-motako isolatzaile topologiko
(topological-crystalline insulators ingeleraz) deritze [19, 20] eta egoera metalikoak izan
ditzakete fasea babesten duen simetriak finko utzitako gainazaletan.

Kristal-motako isolatzaileen familia tipiko bat mirror-Chern2 isolatzaile deritzanak
dira [21–23]. Planoarekiko islapenak Hilberten espazioa bitan banatzen du, azpiespazio
bakoitza simetriaren autobalio bati dagokiolarik. Horrela, azpiespazio bakoitzean Chern
fase bat gauza daiteke. Nahiz eta denbora alderanzketa simetriak Chern zenbaki osoa
zero izatera behartu, azpiespazio desberdinetako faseek ezin dute elkar deuseztatu, is-
lapen simetriak babesten baititu.

Beste kristal-motako isolatzaile topologiko klase ezagun bat ordena-altuko isolatza-
ile topologikoak dira (higher-order topological insulators, ingeleraz). Hauen berezita-
suna gainazal egoeretan aurki dezakegu: d-dimentsiotan definituriko ohiko isolatzaile
topologikoek egoera metalikoak (d − 1)-dimentsioko gainazaletak dituzten bitartean,
ordena-altuko isolatzaile topologikoek (d − 2)-dimentsioko ertz (d = 3) edo erpine-
tan (d = 2) erpinetan dituzte. Familia honetako material ezagunenetako bat Bismuto
kristala da [24].

Nahiz eta 2000 eta 2010eko hamarkadetan zehar komunitate zientifikoak isolatza-
ile topologikoen azterketari dedikaturiko esfortzua handia izan, material topologikoen

2Euskarazko hitzez-hitzeko itzulpena ispilu-Chern isolatzaile litzateke. Izen hau ematen zaie fase
hauek babesten dituen simetria plano batekiko islapena delako. Ingeleraz mirror-reflection gisa izen-
datzen dira simetria hauek.
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iragarpen eta aurkikuntza astiro zihoazen. Alderdi teorikoari dagokionez, mantsota-
sunaren kausa nagusia material batek fase topologikorik ote duen aurresateko metodo
sistematiko eta orokor baten falta zen. Izan ere, material bakoitzaren analisiak proze-
dura propio bat eska zezakeen. Gainera, orduko metodoak kalkulatzen zailak di-
ren aldaezin topologikoetan oinarritzen ziren, oro har. Arazo honen soluzioa aipa-
turiko hamarkadaren bigarren zatian argitaraturiko bi formalismoren eskutik etorri
zen: kimika topologikoaren kuantiko (KTK) [25–27] eta simetrian oinarrituriko adier-
azle topologikoen formalismoen [28, 29] eskutik, alegia. Aipatu formalismoek topolo-
gia eta kristal-motako simetrien arteko deskribapen orokorra eskaintzen dute, 230
talde-espazialentzako aplikagarria dena, SOCarekin nahiz gabe. Orokortasun honi es-
ker, formalismo hauek ab initio simulazioekin konbinatu ahal izan ziren eta material
topologikoen iragarpen zein analisia izugarri azeleratu ziren. Azelerazio honen erakusle
da [30] artikuluan aurkezturiko analisia. Ikerkuntza honetan, ab initio metodo bidez
26.938 material inorganikoren banda egiturak kalkulatzen dituzte, ondoren egitura hauek
KTKaren bidez aztertuz material topologikoak aurkitzeko asmoz. Bilaketaren emaitzen
arabera, azterturiko materialen %12 isolatzaile topologikoak dira.

KTK formalismoaren abaintaila nagusienetako bat posizioen espazioarekin man-
tentzen duen erlazio estua da. Izan ere, posizioen espazioan kokaturiko orbitalek
elkarrekiko espazioan elektroi bandak nola induzitzen dituzten deskribatzen du, banda
errepresentazio izeneko egitura matematikoen kontzeptua medio [31–33]. Harreman
hau bereziki interesgarria da elkarrekintza sendoko materialen ikuspuntutik, errazagoa
baita sarritan halako materialak posizioen espazioan definituriko irudi batean oinarrituz
deskribatzea.

Nahiz eta hasiera batean KTK formalismoa soilik ordena magnetiko gabeko sa-
reetzako izan baliogarri, berehala hedatu zuten material magnetikoen deskribapena es-
kaintzeko gain izan zedin [34]. Simetrian oinarrituriko topologiaren adierazleen formal-
ismoa ere antzera osatu zuten [35].

Orainarte aurkeztutako ikerkuntza, metodo eta formalismo denek ezaugarri berdina
dute komunean: partikula independenteen hurbilketa dute oinarrian. Esate bater-
ako, Chern zenbakia bezalako aldaezinak kalkulatzeko erabiltzen diren adierazpenak
partikula-bakarreko uhin funtzioen menpe idatzi ohi dira; KTK edo simetria adiera-
zleen formalismoen funtsa partikula-bakarreko hamiltondarraren simetria autobalio edo
errepresentazio laburtezinei buruzko ezagutza da. Dena den, onartu beharra dago ma-
terial orotan pairatzen dutela elektroiek Coulomben elkarrekintza bidezko aldaratzea,
hein batean edo bestean. Zenbait konposatutan elkarrekintza hau ahula izan daitekeen
arren, beste zenbait sistemen kasuan haien natura gobernatzera hel daitezke, adibidez:
Kondo materialen [36] edo Mott isolatzaileen [37] kasuan.

Zilegi da material batek elektroi-elektroi elkarrekintza izatea ohikoa ote den geure
buruari galdetzea. Fisika atomikoaren ikuspuntutik, elektroien arteko elkarrekintza
bereziki sendoa izango da eletroiak nukleoaren inguruko eremu txiki batean lokalizatuta
daudenean. Bi faktorek eragiten dute lokalizazio honetan: Alde batetik, elementuaren
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zenbaki atomikoa zenbat (hots, protoi kopurua) eta handiagoa izan, elektroiek jasango
duten elkarrekintza elektrostatikoa orduan eta sendoagoa izango da; beraz, lokalizazioa
orduan eta handiagoa izango da, elektroiek elkarri eragioten dioten aldarapena sendoa
izango delarik. Hau da, besteak beste, 5f -orbitaletako elektroiek elkarrekintza sendoak
pairatzearen arrazoia. Bestalde, eletroien lokalizazioa nabarmenagoa da l = n − 1 mo-
mentu angeluar orbitaleko egoeretan (non n zenbaki kuantiko nagusia den), haien zati
erradialak ez baitu nodorik3; horrenbestez, elektroien arteko elkarrekintza sendoa izan
ohi da 4f eta 3d-orbitaletan. Irizpide honen laburpena 1.3 irudian dago adierazita. 3d-
orbitalek presentzia nabarmena izan dezakete trantsizio-metalak dituzten konposatue-
tan; kobredun materialen familiak, esaterako, bereziki interesgarriak dira Mott fisikaren
zein tenperatura-altuko supereroankortasunaren alorretan [38]. Era berean, 4f eta 5f -
orbitalek paper garrantzitsua joka dezakete, hurrenez hurren, lantanido eta aktinidoz
osaturiko konposatuetan. Halakoak dira Kondo eta fermioi astuneko materialak [39,40],
adibidez.

Isolatzaile topologikoen ikerkuntzan elektroi-elkarrekintzak izan dezakeen gar-
rantzia ez da berria. C. Kane eta E. J. Melek grafenoan spin EHK aztertu zute-
nean jada kontsideratu zuten elkarrekintza honek izan dezakeen eragina [2]. Beste lan
batzuk, berriz, elkarrekintzek gainazal egoeretan izan dezaketen eragina aztertzean zen-
tratu ziren [41]. Lan hauen balioa ukaezina den arren, ez dute topologiak elkarrekintza
sendoko materialetan duen gorpuztearen irudi oso bat eskaintzen.

2000ko hamarkadaren amaiera aldera, elkarrekintzek topologian duten eragina
aztertzeko partikularki interesgarria den ikuspuntu bat proposatu zen. Perspektiba
honen oinarrian Greenen funtzioak daude, elkarrekintzadun sistemen kasuan partikula
bakarreko kitzikapenen dinamikari buruzko informazioa duten funtzioak, alegia. Hasiera
batean, proposamenaren funtsa aldaezin topologikoak Greenen funtzioen menpe idaztea
zen, partikula-bakarreko uhin funtzioen menpe idatzi beharrean. Halere, erdietsi-
tako adierazpenak zenbakizko metodoetan inplementatzeko konplikatuegiak zirela eta,
Z. Wang eta haren kolaboratzaileek elkarrekintzadun problema partikula independen-
teen alegiazko sistema baten problemara laburtzea proposatu zuten [42, 43]. Elka-
rrekintza gabeko sistema honen hamiltondarrari hamiltondar topologiko deritzo eta
Greenen funtzioa maiztasun zehatz batean (ω = 0) ebaluatuz eraiki daiteke. Zen-
bait baldintzapean berezko eta alegiazko sistemak topologia berdina dutela kontuan
edukiz [44], berezko materialaren topologia sailkatzeko metodoa sinplea da: hamilton-
dar topologikoari elkarrekintza gabeko sistemen topologia ikertzeko eskuragarri ditugun
metodoak aplikatzea.

Nahiz eta esfortzu handia dedikatu zaion elkarrekintza sendoko isolatzaile
topologikoen bilaketari, aurkitutako material kopurua elkarrekintza ahuleko kasutik ur-
run dago oraindik. Aurkituriko halako kristalen artean Na2IrO3 [45], SmB6 [46–54] eta
elkarrekiko biraturik dauden grafenozko bi geruzaz osaturiko sistemak [55–58] daude.

3Zati erradialaren nodo kopurua n − l − 1 da, non n zenbaki kuantiko nagusia den eta l momentu-
angeluar orbitalari dagokion zenbaki kuantikoa.
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Azaldu dugun moduan, elkarrekintza gabeko isolatzaile topologikoen aurkikuntzak ere
antzeko egora bat bizi izan zuen, KTKaren proposamenarekin arazoa gainditu eta
topologia uste zena baino ohikoagoa dela konprobatu zen arte [30]. Honela, argi geratu
zen arazoaren kausa simetria eta topologiaren arteko erlazioa behar bezala deskribatzen
duen metodo baten falta zela. Antzekotasun honek tesi honetan KTKaren formalismoak
elkarrekintza sendoko kristalen kasuan izan dezakeen aplikazioa ikertzera animatzen
gaitu.

Tesi hau hiru atal nagusitan dago banatuta. Lehenengo atalean, elkarrekintza
gabeko sistemen topologia dugu aztergai. Bigarren atalean, KTK formalismoa elkar-
rekintza sendoko materialen familia batean aplikatzen dugu: 4f -orbital lokalizatudun
lantanidoz osaturiko fermio-astuneko materialetan. Hirugarren atalean, KTK formal-
ismoa elkarrekintza sendoko sistemen analisira hedatzeko modu bat aztertzen dugu,
Greenen funtzioak eta hamiltondar topologikoa direla medio.

Jarraian, tesiaren emaitzak laburtuko ditut:

Banda egituren topologiaren deskribapen alternatiboa, garraio adiabatikoa
ulertzeko ikuspuntu geometrikoan oinarritua. Perspektiba honenpean topologia-
ren azterketan funtsezkoak diren Berriren fase eta Wilsonen lakioak nola ageri diren
frogatu dugu. Ondoren, kargaren lokalizazio eta Wilsonen lakioen arteko erlazioa landu
dugu, banda-bakarreko kasura mugatu gabe. Erlazio hau biziki hezigarria da, banden
izaera topologikoa karga lokalizatzeko eragozpen gisa interpretatu ohi baita [59],
bereziki KTKaren argitalpenaz geroztik. Izatez, Wilsonen lakioen espektruko har-
ilketak4 kargaren lokalizaziorako oztopo direla frogatzen dugu, baita Chern zenbakia
antzera interpretatzen ere. Horretaz gain, kristal-motako simetriek Wilsonen lakioaren
espektrua nola baldintzatzen duten aurkezten dugu.

Ab initio banda egituren simetria-autobalio eta errepresentazio laburtezinen
kalkulurako kode ireki baten garapena. Python programazio hizkuntzan idatzi-
tako kode honi IrRep izena eman diogu eta ab initio simulazioen bidezko materialen
topologiaren azterketari egin diogun kontribuzioa da. IrRep-en bidez lortzen dugun in-
formazioa KTK formalismoa jarraituz azter daiteke ondoren. Formalismo hau belazaxe,
edozein 230 talde espazialen kasuan aplika daiteke IrRep, SOC akoplamenduarekin zein
gabe. Orokortasun honi esker, material topologikoak aurresan eta aztertzeko metodo
sistematiko bat aplikatzea ahalbidetzen du gure kodeak, ab initio simulazio eta KTK
formalismoaren arteko zubi gisa jokatzen duelarik.

Une honetan, IrRepek ab initio kode erabilienentzako interfazeak ditu, VASP [60],
Abinit [61, 62], QE [63] eta Wannier90 [64] kodeentzako interfazeak, hain justu ere.
Horretaz gain, interfaze berrien eta funtzio berrien inplementazioa errazteko moduan
izan da egituratua, hau bere garapenerako onuragarria izango delakoan.

4Ingelerazko winding hitza harilketa gisa itzuli dugu, Wilsonen lakioaren autobalioak ardatz baten
inguruan harilkatuko balira bezala dirudi eta.
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Kimika topologiko kuantikoak fermioi-astuneko materialetan duen ap-
likazioaren esplorazioa. Fermioi-astuneko materialetan, elektroi arteko elkarrekintza
sendoa izan ohi da, 4f eta 5f -orbital lokalizatudun lantanido zein aktinidoz osatuak
baitaude. Bertan, kuasipartikulan oinarrituriko deskribapena onartzen duten zenbain
fase identifikatu ditugu, baita KTK formalismoa haietan aplikatu ere. Horrela, banda
zabal eta ia-lauen arteko eragin-trukeari KTK formalismoaren ikuspuntutik begiratuz,
fase topologikoen sorrera analizatu dugu. Orainarte garatutako analisien aldean, gure
azterketaren abantaila nagusia kristal-motako simetria denak maila berean inplemen-
tatzen dituela da, ezein simetria era berezian tratatuz. Orokortasun hau dela eta, aipatu
faseak KTK formalismoaren menpe aztertzeak topologiaren sailkapen xeheago bat esku-
ratzea ahalbidetzen digu. Ekarpen honek fermioi-astuneko materialen fase topologikoen
sailkapena bultzatuko duelakoan gaude, fase berrien identifikazioa bideratuz eta aurretik
burututako materialen sailkapenen berrikusketa motibatuz.

Analisi metodo hau ab initio kalkuluekin konbinatu dugu SmB6 materiala
aztertzeko. SmB6 isolatzaile topologiko bortitz bat dela ondorioztatu ahal izan
dugu honela. Gainera, erdietsi dugun fase topologikoa aurreko lanek lortutako klasi-
fikazioarekin bat badator ere, gure sailkapena zehatzagoa da. Topologiaren sorrerari
dagokionez, 4f eta 5d-orbitaletatik induzituriko banden hibridazioaren bidez interpreta
daitekeela ondorioztatu dugu.

Kimika Topogiko Kuantikoaren bidez Greenen funtzioak aztertzean oinar-
ritzen den metodoaren aplikazioa Hubbarden Diamanteen Katearen anal-
isian. Proiektu hau KTK formalismoa elkarrekintza sendoko sistemen analisirako he-
datzeko saiakera baten parte da. Saiakeraren funtsa Greenen funtzioak medio eraikitzen
den hamiltondar topologikoa KTK formalismoaren bidez aztertzea da. Bertan, metodo
hau sistema zehatz batean aplikatu dugu: Hubbarden Diamanteen katean (HDK).

Analisia hiru pausutan bereizi dugu: Lehenik eta behin, elkarrekintza gabeko ka-
sua aztertu dugu, uneoro erreferentzia gisa izan duguna. Bigarren, Matrize Dinamikoen
Birnormalizazio Talde (DMRG, ingeleraz) eta Monte Carlo Bariazionalaren bidezko
kalkuluak erabili ditugu, partikula-anitzeko aldaezin topologikoekin batera, elkarrek-
intzadun kasuko fase diagrama determinatu eta fase bakoitza sailkatzeko. Informazio
hau erreferentzia gisa harturik, fase diagramaren kalkulu eta topologiaren sailkapena
aztergai dugun Greenen funtzioetan oinarrituriko metodoaren bidez errepikatu dugu.

Atera dugun ondorioetako bat metodoaren aplikagarritasunaren ingurukoa da.
Elkarrekintzadun faseen sailkapen topologikorako egokia dela ondorioztatu dugu, fase
hauek partikula independenteen hurbilketaren barnean deskriba daitezkeen faseren bati
adiabatikoki konekta daitezkeen bitartean. Are gehiago, horrelako faseen azterketa sis-
tematiko eta eraginkorrerako bidea dela ikusi dugu.

Halaber, HDKko Mott isolatzaile fasea metodoaren aplikagarritasunetik at dagoela
ikusi dugu; beraz, ezin dugu ziurtatu hamiltondar topologikoan oinarrituriko metodo hau
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baliogarria denik aztergai dugun fasea elkarrekintza gabeko inongo faseri konektatuta ez
dagoenean. Aipatu Mott fasearen kasuan, oztopoa auto-energiak ω = 0 maiztasunean
duen dibergentzia da. Honelako faseen sailkapenak partikula-anitzeko Greenen funtzioen
erabilera exijitzen du, [65] kolaborazioan azaltzen dugun moduan.

HDKaren fase diagramari dagokionez, mota desberdineko faseetan aberatsa dela
ikusi dugu. Elkarrekintza gabe, limite atomikodun bi fase isolatzaile (AI eta OAL izen-
datuak5) eta fase metaliko bat behatu ditugu. Elektroi-elektroi elkarrekintza kontsider-
atzean, AI eta OAL faseek isolatzaileak izaten jarraitzen dute eta kuasipartikulen bidez
deskriba daitezke; metala, berriz, Mott isolatzaile bilakatzen da.

Spin-orbita akoplamenduak sistemaren fase diagraman duen eragina ere aztertu
dugu. Gure emaitzen arabera, AI eta OAL faseetan eragina txikia bada ere, inplikazio
garrantzitsua du metal fasean, isolatzaile bilakatzen baitu. SOCak eragindako isolatza-
ile honi SAI (SOC atomic insulator, ingeleraz) izena eman diogu. Horretaz gain, elek-
troien arteko elkarrekintza eta SOC akoplamendu arteko norgehiagoka behatu dugu
HDK katean.

5Ingeleraz, atomic insulator (isolatzaile atomiko) eta obstructed-atomic Limit (oztopaturiko limite
atomiko) izendatu ditugunak. Bien arteko desberdintasuna kargaren lokalizazioa da.
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1 Introduction

The classification of matter is one of the principal tasks of physics. The most widely
known criterion consists in classifying materials among three groups: solids, liquids or
gases [see Fig. 1.1(a)]. Condensed Matter physics is indeed the field of physics which
takes care, among other duties, of investigating the properties of liquids and, especially,
solids.

As soon as we dive deeper into one of these groups, this classification scheme turns
out to be too broad. In particular, we soon become conscious that the properties of a
solid might vary from system to system, which creates the need to adopt a more detailed
classification for them. A possibility is to label a solid either as a metal or an insulator,
depending on its behavior under an external electric field: if under that condition the
(bulk of the) system carries charge current, we say that it is a metal; otherwise, we label
it as an insulator [see Fig. 1.1(b)].

In 1980, one of the most striking discoveries manifested the necessity for an even
more detailed criterion to classify insulators: K. v. Klitzing et al. reported for the first
time the integer quantum Hall effect (QHE) [1]. In this effect, a two dimensional electron
gas is subjected to an off-plane magnetic field. While Drude’s theory predicts that the

Gases Liquids Solids

(a) Solids(b) (c)

Insulators

Metals

Insulators

Topological

Trivial

Figure 1.1: Historical classification of matter, with the focus on topological insulators.
(a) In general terms, matter can be classified in three main groups: gas, liquid or solid.
(b) Solids can be further classified as insulators or metals, depending on their behavior
under an electric field. (c) In modern condensed matter field, insulators can be further
labeled as trivial or topological.
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Figure 1.2: Dependence of the transverse resistivity on the magnetic field in the integer
QHE. Source: [68].

transverse resistivity should be proportional to the strength of the magnetic field [66],
experimental evidences show plateaus in this dependence [see Fig. 1.2]. Furthermore,
it turns out that the relation is governed, with a surprising accuracy, by a factor that
takes an integer value for each plateau. Two years later, in 1982, D. J. Thouless et
al. demonstrated that this integer number is a topological invariant, known currently
as Chern number or TKNN invariant [67]. These discoveries emphasized the need for
a more meticulous classification of insulators which consists in differentiating between
topological and trivial insulators [see Fig. 1.1(c)]. Furthermore, the integer QHE was
the first step in the research on topological insulators, and the beginning of the field
known as topological condensed matter physics.

The discovery by C. Kane and E. J. Mele [2, 3] – and by A. B. Bernevig and S.
C. Zhang [4, 5] – of the quantum spin Hall effect gave a firm push to the topological
consensed matter physics. Unlike the integer QHE, an external magnetic field is not
required to realize the quantum spin Hall effect. The key ingredient for the band topol-
ogy in this case is the spin-orbit coupling (SOC) effect. Consequently, the quantum
spin Hall effect was first predicted [4, 5] and then observed [6] in systems consisting of
HgTe/CdTe layers. Soon after the discovery of the quantum spin Hall phenomenon, the
basic topology of this effect was extended to three dimensions, yielding a classification
based on weak and strong topological indices [7–9].

One of the most exotic manifestation of the bulk’s band topology is the presence of
gapless boundary states [10]. For instance, Chern insulators display chiral edge modes
prevented from backscattering, whereas quantum spin Hall insulators show pairs of spin-
filtered gapless edge modes dubbed helical modes. As well as the topology of the bulk,
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these boundary modes are robust against adiabatic perturbations, i.e. perturbations
which neither close the bulk gap nor break any protecting symmetry. Featuring such
boundary states turns topological insulators into promising platforms not only for the
achievement of a fundamental understanding of topological phenomena, but also for
practical applications in fields like spintronics, quantum computation or superconduc-
tivity [11].

The prediction and experimental characterization of topological materials, together
with the analysis of the robustness of edge states, attracted intense attention during
the years following to the discovery of the quantum spin Hall effect and its extension
to three dimensions. This effort lead to the discovery of some topological materials,
like Bi1−xSbx [12], Bi2Se3, Bi2Te3 or Sb2Te3 [13, 14]. In parallel, the interplay between
symmetries and topology also attracted notable consideration. The study of the role
played by internal symmetries in topology led to a catalog of topological classes in
many dimensions [15–17], known as the ten-fold way classification. Concerning crystal
symmetries, they might play two roles: On the one hand, they might facilitate the
diagnosis of topology; for instance, inversion eigenvalues might be used to simplify the
identification of strong and weak topological phases in centrosymmetric crystals [18].
On the other hand, crystal symmetries might enrich the variety of topological phases
that a symmetry group can host, owing to their capacity to protect topological phases
from adiabatic deformations and to differentiate between distinct phases. An insulator
whose phase is protected by a crystal symmetry is called topological-crystalline insulator
(TCI) [19]. These insulators show gapless modes in the boundaries left invariant by the
protecting symmetry. A pedagogical introduction to TCIs can be found in Refs. [20].

A prototypical family of TCIs are mirror-Chern insulators [21], which have been
identified in actual materials like SnTe [22,23]. Basically, the Hilbert space of a system
with mirror symmetry can be split into two, so that each subspace has in correspondence
an eigenvalue of the reflection operation, and hosts a Chern insulator phase. Even if
time-reversal symmetry forces the sum of Chern numbers of both subspaces – that is,
the total Chern number – to vanish, mirror symmetry protects the value of each of this
individual invariants, and hence protects the topological phase.

Another type of TCIs that have attracted much attention recently are the so-called
higher-order topological insulators (HOTIs) [69]. These materials are known for their
particular bulk-boundary correspondence: while a typical topological insulator in a d-
dimensional lattice shows gapless modes in certain boundaries of (d − 1)-dimensions,
HOTIs display gapless modes in (d − 2)-dimensional boundaries. Three-dimensional
HOTIs show gapless hinge-modes, while the gapless states are corner modes in HOTIs
defined in two dimensions. Bismuth is famous for being the first material realization of
a HOTI, which was supported by theoretical and experimental evidences [24].

Although intense effort was devoted in the past decades to the investigation of
topological insulators and this effort was reflected in the development of the conceptual
understanding of these systems, the prediction and identification of topological phases
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in actual materials was slow. Regarding the theoretical aspect of the problem, its main
cause was the lack of a general and systematic approach for the prediction of band
topology in materials. The analysis of every material and every phase could require its
own method, which used to consist in the numerically subtle calculation of topological
invariants. The parallel development of the formalisms of topological quantum chemistry
(TQC) by B. Bradlyn et al. [25–27] and symmetry-based indicators of topology [28, 29]
set the solution to this problem. Each of these frameworks describes the interplay
between crystal symmetries and band topology based on an approach that is applicable
on the same footing to all 230 space groups, with and without SOC. This feature allowed
for the implementation of both formalisms together with ab initio simulations of band
structures, which turned out to be a systematic method for the analysis of topological
materials.

The development of these ab initio based methods accelerated the diagnosis and
classification of topological materials. A work that emphasizes this acceleration is the
high-throughput search of topological materials in an extense list of 26,938 high-quality
materials performed in Ref. [30] via the combined application of TQC and Density
Functional Theory (DFT) calculations. This search identified as topological insulators
the 12 per cent of the materials included in the database, and thus suggested that band
topology is more common than previously believed. Therefore, both the consideration
of crystal symmetries and the implementation of an effective TQC-based method took
down the idea that topological materials were scarce. Alternative searches based on the
formalism of symmetry-indicators of topology yielded similar results [70,71].

An advantage of the formalism of TQC is that not only provides us with a powerful
framework for the diagnosis of topological phases, but also with a description of how
bands in reciprocal space inherit their properties from localized Wannier functions in
real space. This description is based on the concept of band representation introduced
by J. Zak [31–33], which is basically the representation of the space group induced from
a set of Wannier orbitals located in the lattice. This strong connection with a real-space
picture of the crystal makes the TQC framework particularly interesting for a theory to
explain the topology of interacting materials.

Despite the fact that TQC was first devised for non-magnetic (grey) space groups,
it was later extended to crystals showing magnetic order [34]. Moreover, inspired by
success of the aformentioned high-throughput search performed for paramagnetic mate-
rials, a similar search for topological phases in magnetically-ordered compounds was also
carried out based on magnetic TQC [72]. The formalism of symmetry-based indicators
of topology was also extended to account for magnetic space groups [35].

All the research, methods and formalisms mentioned above have something in com-
mon: they have been developed within the framework of the independent-electron ap-
proximation. For instance, the expressions for the Berry connection, Wilson loops and
invariants like the Chern number are written in terms of single-particle wave functions;
TQC and the formalism of symmetry-based indicators of topology are also rooted in the
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symmetry eigenvalues and irreducible representations corresponding to the eigenstates
of the single-particle Hamiltonian. Nevertheless, the reality is that Coulomb interac-
tion is present in all materials. Whereas, the independent-electron picture might be
adequate for materials where electron-electron interactions are weak, in some systems
these effects are strong enough to govern their physics, e.g. in Kondo materials [36] or
Mott insulators [37]. It is therefore vital and natural to address the effect that electron
interactions might have in topological insulators.

Figure 1.3: Kmetko-Smith diagram illustrating the tendency towards electron local-
ization in d and f -orbitals. Source: [38].

We might ask ourselves how common the presence of strong electron interactions in
actual materials is. From an atomistic point of view, the Coulomb interaction between
electrons tends to be large in orbitals which are very localized around the nucleus. There
are two main factors which influence the localization: on the one hand, the bigger the
atomic number of the atom, the stronger the attraction felt by electrons, and hence the
more localized are the electrons around the nucleus; this is the reason why electrons in
5f -orbitals tend to feel strong Coulomb repulsion between them. On the other hand,
the localization tends to be bigger in orbitals with l = n − 1 quantum number for the
orbital-angular momentum, since the number of nodes in the radial part of the wave
function is given by n − l − 1, and the smaller the number of nodes, the closer the
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charge is from the nucleus; accordingly, repulsion between electrons tends to be large
in 4f and 3d-orbitals. These arguments are illustrated in Fig. 1.3. 3d-electrons play
an important role in many compounds, like in cuprates, which attract intense attention
for being platforms to study Mott physics and high-temperature superconductity [38].
Lanthanide and actinide elements containing 4f and 5f -orbitals are also common in
a variety of compounds, e.g. heavy-fermion insulators and Kondo materials [39, 40].
This discussion emphasizes the need to consider the effect of electron interactions in
topological insulators.

C. Kane and E. J. Mele already realized the importance of electron interactions in
their seminal work about the quantum spin Hall effect in graphene [2]. They concluded
that electron-electron repulsion strengthens the spin-orbit coupling, which enlarges the
spectral gap.

Other works focused on the effect of electron interaction on surface states [41], which
turns out to be especially interesting for potential technological applications. However,
such an approach is not suitable to achieve a picture of the influence of interactions over
the bulk topology.

A particularly promising direction where interactions were consider consists in an-
alyzing the topology via single-particle Green’s functions. This approach is motivated
by the fact that Green’s functions contain information about the dynamics of particle
excitations in interacting media; moreover, they become equivalent to the single-particle
Hamiltonian in the non-interacting limit, which ensures that the topology of independent
electrons is properly recovered in this limit. This research direction was begun with the
proposal of expressions for certain topological invariants written in terms of Green’s func-
tions [73–75]. The limited practical applicability of these expressions, which stems from
their complicated form, motivated an alternative approach based on a mapping of the
interacting problem to an auxiliary non-interacting system. This mapping is performed
by constructing an independent-particle Hamiltonian, dubbed topological Hamiltonian,
out of single-particle Green’s function of the original interacting system. Z. Wang et
al. proposed that the topology of the genuine interacting system could be determined
by diagnosing the topology of the topological Hamiltonian via the aformentioned con-
ventional methods developed within the independent-particle framework [42, 43]. The
extension of this approach to account for the role of crystal symmetries in the topology
was still to be explored when I began working on this thesis.

In spite of the the intense effort devoted to the search of topological materials, the
number of predicted strongly interacting topological compounds is very scarce compared
to the weakly-interacting case. Examples of interacting topological materials include
Na2IrO3 [45], SmB6 [46–54] and twisted-bilayer graphene [55–58]. As we explained
above, a similar situation regarding non-interacting topological insulators was solved by
the proposal of TQC, which lead to the conclusion that topology is more common than
previously thought [30], and thus pointed out that the source of the problem was the lack
of a formalism able to describe in detail the interplay between crystal symmetries and
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topology. This encourages us to investigate in this work the applicability and possible
extension of TQC to interacting crystals.

1.1 General objectives and structure
The objectives of this thesis are the following:

Description of an alternative formulation of band topology, based on a
geometrical approach to adiabatic transport. This formulation is based on the
work we presented in Ref. [76], and allows us to explore the capacity of Wilson loops for
diagnosing band topology. Furthermore, we provide a mathematical relation between
non-trivial band topology and obstruction to charge localization in crystals, which is
especially interesting since this interpretation is widely accepted [25,28,59] nowadays.

Development of an open-source software to calculate symmetry eigen-
values and irreducible representations of Bloch states in ab initio band
structures. As we mentioned, the TQC based analysis of ab initio band structures
is a powerful method for the theoretical classification and prediction of topological
materials. Motivated by the scarcity of numerical tools available for such an analysis,
we have developed the code IrRep: a Python software that calculates the symmetry
eigenvalues and irreducible representations of wave functions obtained via ab initio
simulations. We reported this development in Ref. [77]. Unlike other codes with
similar capabilities [78, 79], the applicability of IrRep is not limited to a single DFT
code, as it contains interfaces to the most popular DFT softwares, namely VASP [60],
Abinit [61, 62], QE [63], and to the post-processing tool Wannier90 [64]. Furthermore,
it is built upon the idea of keeping the interaction with the user as simple as possible,
and written with a structure that facilitates the implementation of new features and
interfaces.

Exploration of the application of topological quantum chemistry to heavy-
fermion insulators. Heavy-fermion insulators are strongly-interacting systems due
to the presence of lanthanide and actinide elements with localized 4f and 5f -orbitals
in their chemical composition. We have focused here on interacting phases which
admit a description in terms of quasiparticle bands. By applying TQC to their
analysis, we have derived a description of the origin of topological bands as the result
of the interplay between dispersive 5d and (almost-)flat 4f -bands. This approach (i)
allows for a rigorous classification that accounts on an equal footing for the role of all
crystal symmetries of the space group, (ii) has lead us to a new and more exhaustive
classification of the topology in SmB6, and (iii) explains the origin of topology in SmB6

in terms of the hybridization-mediated interplay of bands.
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Application to the Hubbard diamond chain of the TQC based analysis of
single-particle Green’s functions. Encouraged by the approach consisting in the
analysis of topology in interacting phases through Green’s functions [42, 43, 73–75], we
consider the extension of the method to account for all crystal symmetries, and test it
in the Hubbard diamond chain. After solving the phase diagram with state-of-the-art
numerical methods and many-body topological invariants, we explore the classification
of the interacting phases by analyzing the spectrum of single-particle Green’s functions
within the framework of TQC. This work, whose results we reported in Ref. [80], led us
to (i) a picture of the applicability and limitations of the approach, (ii) the identification
of a new type of interacting topological phase, namely Mott atomic limits, which might
serve as atomic limits for a future extension of TQC to interacting phases. In addition,
we have studied the Hubbard diamond chain with SOC, which allows us to gain insight
about the interplay between SOC effects and electron interactions.

This manuscript is separated in three main parts: Part I is devoted to the pre-
sentation of our contributions to the field of band topology in non-interacting systems.
Within this part, chapter 3 contains our alternative perspective to look into band topol-
ogy, while chapter 6 consists of the description of the code IrRep. Part II accommodates
the analysis of heavy-fermion insulators in terms of TQC. Finally, Part III contains our
work on the extension of TQC to interacting systems in terms of single-particle Green’s
functions. The theoretical background of each contribution is included in the corre-
sponding part.
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Part I

Topology of non-interacting
band insulators

27



We will begin this part by introducing in chapter 2 the fundamentals of band theory,
namely the independent-electron approximation and Bloch’s theorem. In chapter 3, we
will present one of the works published during this thesis, which consists in a formulation
of the theory of band topology from a geometrical point of view for adiabatic transport.
This chapter will also serve as an introduction to band topology. In chapter 4, we will
provide the basic knowledge about group theory needed to follow the discussions included
in this work. Chapter 5 could be seen as a continuation of the previous section, since it
contains a formal description of topological quantum chemistry which is indeed based on
group theory considerations. Finally, chapter 6 contains a complete characterization of
IrRep, a Python software we have developed to calculate the irreducible representations
of electron bands.
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2 Independent electrons in pe-
riodic lattices

This brief chapter is devoted to the introduction of the basic concepts about electrons in
periodic lattices. We will begin by introducing the independent electron approximation,
which is the cornerstone of the theory of topological band structures. Then, we will
describe the fundamental features of the energy levels and states of electrons in periodic
crystals, namely that the energy levels form a discrete spectrum called band structure
and that the corresponding wave functions are delocalized in the crystal. In the way,
we will define important concepts like Bloch’s theorem, the reciprocal lattice and the
Brillouin zone.

2.1 Independent-electron approximation
Let us consider a crystal made of M ions, whose positions are given by vectors R1,
R2,..., RM . The electronic Hamiltonian of such a system contains three terms:

H = −
∑
i

1

2
∇2

i +
∑
i

∑
j ̸=i

1

|ri − rj |
+
∑
i

V (ri,R1,R2, ...,RM ), (2.1)

where ri indicates the position of the ith electron and the indices i and j run over all
electrons in the system. We set ℏ = m = e = 1 in the expressions given in this section to
keep the notation simple. The first term is the kinetic energy of electrons. The second
one is the electron-electron Coulomb interaction and the third term is the attractive
Coulomb interaction between electrons and ions. Since the mass of electrons is ∼ 104

smaller than the mass of ions, we can consider that they adapt almost immediately to
lattice distortions. This fact motivates us to treat the array of ions as a static lattice,
where the positions of ions play the role of parameters, rather than degrees of freedom.
This assumption is called Born-Oppenheimer approximation. Accordingly, the electron-
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2 Independent electrons in periodic lattices

ion interaction acts as a static potential where the only degrees of freedom correspond
to the position of the electron. Let us thus stop indicating the positions of ions:

H = −
∑
i

1

2
∇2

i +
∑
i

∑
j ̸=i

1

|ri − rj |
+
∑
i

V (ri). (2.2)

Note that the electron-electron interaction couples the degrees of freedom of different
electrons, so that the dynamics of an electron depends on the rest of electrons. This fact
makes the calculation of eigenvalues and eigenvectors of the Hamiltonian in Eq. (2.2)
one of the most challenging and crucial problems of condensed matter physics. In math-
ematical terms, the electron-electron interaction prevents us from writing the electronic
Hamiltonian as a sum of single-electron Hamiltonians. For instance, let us consider that
the electron interaction is weak enough to neglect it. Then, the electronic Hamiltonian
becomes:

H = −
∑
i

1

2
∇2 +

∑
i

V (r) =
∑
i

Hi, (2.3)

where Hi = −∇2/2 + V (r) is the single-electron Hamiltonian. The eigenvalues of the
Hamiltonian in Eq. (2.3) are constructed as sums of eigenvalues of Hi; similarly, the
eigenstates of H are constructed as products of the eigenstates of Hi. Therefore, ne-
glecting the electron-electron interaction reduces the eigenvalue/eigenstate problem of
H to that of Hi.

The key question is the following: is neglecting the electron-electron interaction
always a good approximation? Unfortunately, the answer is no. This approximation
breaks down for the so-called strongly correlated systems, as it does not lead to a
realistic description of their electronic properties. Nevertheless, it works well for a big
number of materials. Furthermore, it sets a starting point to later study the effect of
strong correlations. The investigation of the electronic structure of weakly-interacting
materials is therefore an important task of condensed matter physics.

2.2 Eigenstates and spectrum of the single-particle
periodic Hamiltonian

From now on, let us denote H the independent-particle Hamiltonian Hi, i.e. Hi → H:

H = −1

2
∇2 + V (r). (2.4)

We might wonder about how the spectrum and eigenstates of H look like. Even
though the details depend on the actual material, there are some features that are
common to all crystals. Let us anticipate some of them.
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2.2 Eigenstates and spectrum of the single-particle periodic Hamiltonian

The bound states of the hydrogen atom form a discrete energy spectrum and they
are localized on the actual position of the atom. In the next step of complexity, atoms
get together to form molecules. The energy levels of molecules are also discrete, but
the corresponding states are not localized on a single atom. Instead, they might contain
contributions from many atoms, which physically means that there is a finite probability
to find an electron around different sites. In the same spirit, when atoms form a crystal
arrangement, we might expect that the spectrum of H will also be discrete and that the
corresponding eigenstates might be delocalized through the whole crystal.

Let us now support our intuition with mathematically rigorous arguments. An
important difference between molecules (or an isolated atom) and a crystal is that, in
the later, atoms form a periodic arrangement. For the sake of simplicity, let us consider a
1D chain of atoms that repeats N times with periodicity a, as illustrated in Fig. 2.1(a).
Note that the length L of the chain is Na. The fact that the pattern is periodic means
that the electron-ion potential V (r) [alsoH] in Eq. (2.4) is invariant under the translation
by a distance a, i.e. V (r − a) = V (r). As a consequence, H must commute with the
operator Ta corresponding to the translation by a distance a: [H,Ta] = 0. Therefore,
there exists a set of functions ψk(r) that are at the same time eigenstates of H and Ta:

Hψk(r) = ϵkψk(r),

Taψk(r) = φkψk(r),
(2.5)

We consider now that the translation is applied N times:

TNa ψk(r) = φNk ψk(r). (2.6)

On the other hand,
TNa ψk(r) = ψk(r −Na). (2.7)

Since we are more interested in the bulk of the system than on the boundaries, we
can adopt periodic boundary conditions by assuming that the N th site of the lattice
is identical to the beginning of the chain, as it is illustrated in Fig. 2.1(b). Then,
ψk(r −Na) = ψk(r), and Eqs. (2.6) and (2.7) to be compatible:

φk = ei2πn/N = ei(2πn/L)a = eik·a, (2.8)

where n = 0, ...,N − 1 and k = 2πn/L. Therefore, there exist N different states ψk(r),
so that each of these has in correspondence the eigenvalue eik·a of translation Ta and
an energy level ϵk. The set of energy levels ϵk forms thus a discrete spectrum, as we
anticipated.

It is not difficult to extend this result to higher dimensions. For instance, let
us say that in 3D the primitive lattice translations are given by vectors a1, a2 and
a3. Each of these translations has in correspondence a set of eigenvalues ei(2πni/Li)ai ,
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2 Independent electrons in periodic lattices

(a) (b)

Figure 2.1: (a) 1D chain of periodicity a considered for the demonstration of Bloch’s
theorem. (b) Illustration of periodic boundary conditions for a 1D chain of N = 5 cells
and length L = 5a.

where ni = 0, ...,Ni and Li is the length of the crystal along the ith-direction. Since
translations commute1, the eigenvalue of the operator of a general lattice translation
t = m1a1 +m2a2 +m3a3 is:

φk(t) = ei(2πn1/L1)·m1a1ei(2πn2/L2)·m2a2ei(2πn3/L3)·m3a3 . (2.9)

Let b1, b2 and b3 denote the dual vectors of a1, a2 and a3, which are defined as to
satisfy the following relations:

bi · aj = 2πδij . (2.10)

The vectors bi form the so-called reciprocal lattice. We can then rewrite the transla-
tion eigenvalue in Eq. (2.9) as:

φk(t) = eik·t, (2.11)

where k = n1/N1 b1 + n2/N2 b2 + n3/N3 b3. In conclusion, the eigenstates of the
Hamiltonian of an electron in a periodic lattice are labeled by k. This vector belongs
to the reciprocal space where the reciprocal lattice formed by vectors bi is defined.
Like in the 1D case, two vectors k and k′ which differ by a vector G =

∑3
i=1 nibi (with

ni = 0, ...,Ni−1) of the reciprocal lattice have in correspondence the same eigenvalues of
translation and are hence equivalent, in the sense that they have in correspondence the
same state ψk(r). This equivalence relation allows us to adopt as domain of definition of
k a connected region centered around the origin k = 0 which contains all non-equivalent
k-vectors but not equivalent vectors. When this region is chosen to have the same point
group symmetries as the crystal, it is called 1st Brillouin zone (BZ). Another possible
choice is a parallelepiped with a vertex sitting at the origin whose edges are parallel and
equal in length to b1, b2 and b3. Even if these choices do not coincide for many crystals,
we will refer as Brillouin zone to any region defined in either of this forms.

In order to look in more detail into the form of a state ψk(r), let us suppose that it
can be written as ψk(r) = exp(−ik · r)uk(r). If we consider the action of the translation

1In terms of group theory, the group of translations is abelian.
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2.2 Eigenstates and spectrum of the single-particle periodic Hamiltonian

by a vector t of the Bravais lattice, which is given by the operator Tt:

Ttψk(r) = ψk(r − t) = exp(ik · t) exp(−ik · r)uk(r − t). (2.12)

On the other hand, ψk(r) is an eigenstate of Tt with eigenvalue (2.11), which sets
the following constrain on uk(r):

uk(r − t) = uk(r). (2.13)

We have thus shown that the eigenstates of the periodic Hamiltonian can be written
as the product of a plane wave and a function with the same periodicity as the Bravais
lattice. This result is known as Bloch’s theorem.

The probability P (r) for an electron in the state ψk(r) to be found around the
position r is given by P (r) = |uk(r)|2. This probability has thus the same periodicity
as the lattice of atoms, which means that the electron is delocalized through the whole
crystal, as we predicted based on our intuition.

Let us summarize the key ideas presented in this section. First, we have shown
that every eigenstate ψk(r) of the Hamiltonian of an electron in a periodic lattice has
in correspondence a vector k. This vector belongs to the reciprocal space; furthermore,
it can be chosen to belong to the BZ. The energy levels ϵk corresponding to the states
ψk(r) are discrete2 and form a band structure defined in reciprocal space. Second,
we have given a proof of Bloch’s theorem, which states that ψk(r) can be written as
ψk(r) = exp(−ik · r)uk(r), where uk(r) is a function with the same periodicity as the
crystal lattice. An electron sitting on such a state is delocalized through the whole
crystal, rather than being bound to a particular atom.

2It should be mentioned that, in practical terms, it is often considered that the energy levels ϵk form
a continuum, based on the thermodynamic limit where the number of cells is taken to infinity (N → ∞).
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3 Alternative derivation of
band topology from a geomet-
rical perspective of adiabatic
transport

In this chapter, we will present the result of a collaboration with Dr. Barry Bradlyn, from
the University of Illinois Urbana-Champaign. It consists in an alternative perspective to
look into the topology of band structures. Basically, we will show how Berry phases and
Wilson loops arise within the framework of adiabatic transport, to later focus on their
capacity for diagnosing topology and their relation with the localization of electrons in
crystals.

The content of the chapter is organized in the following way: In Sec. 3.1, we will
present the Berry connection and holonomy in terms of adiabatic transport. The way in
which adiabatic transport relates to the band structure of crystals will also be explained.
Then, in Sec. 3.2, we will come in contact with the physical consequences of the Berry
phase by relating it to the electric polarization in a one-dimensional chain. Wannier
and hybrid-Wannier functions will be introduced in Sec. 3.3, which will allow us to get a
grasp on the relation between real-space localization of charge and Berry phases. Finally,
Sec. 3.4 will be devoted to Wilson loops; apart from giving a definition for them, we will
show how symmetries set constrains on them. Moreover, we will give a demonstration
of the capacity of Wilson loops for differentiating topologically distinct sets of bands,
and we will show how the fact that topological bands present an obstruction to charge
localization manifests itself in the Wilson loop.
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Figure 3.1: The concept of adiabatic transport is applicable to band structures defined
in the reciprocal space of a periodic system, where the vector k in the Brillouin zone
plays the role of the set of parameters λ. In this figure, we show an example of such an
application: the blue bands form the family of states R(k) in the image of the projector
P (k), which are separated from states belonging to the rest of bands (black).

3.1 Parametric Hamiltonians and parallel transport

We will start this section by presenting the formalism of adiabatic transport quite gener-
ally, where the concepts of parallel transport, Berry connection and holonomy defined in
parameter space will arise. The point of view we will adopt is slightly more geometrical
than that given in introductory books – more details about this approach can be found
in Refs. [81, 82]. Then, we will show how these concepts apply in a particular example:
spin-1/2 in a magnetic field. Finally, we will show that the set of Bloch Hamiltonians
written as a function of crystal momentum k forms the kind of parametric family of
Hamiltonian considered in the quantum adiabatic theorem.

3.1.1 Adiabatic transport

Let us assume that the Hamiltonian H of our system depends on a set of parameters λi,
i.e. H = H(λ1, λ2, · · · , λM ), where i = 1, · · · ,M . We can think that every particular
choice of these parameters is represented by a vector λ = (λ1, λ2, · · · , λM ) which belongs
to a smooth space M of dimension M called parameter space. When considering the
application to crystals, the role of parameter space and λ will be played by the Brillouin
zone and vectors k belonging to it, respectively.

We can also consider that our Hamiltonian forms a family of parametric Hamil-
tonians {H(λ), λ ∈ M}. We will take H(λ) to have a discrete spectrum for every λ.
Furthermore, let us suppose we have a collection of N states
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3.1 Parametric Hamiltonians and parallel transport

R(λ) = { |ψn(λ)〉 , n = 1, ..., N}, (3.1)

so that
H(λ) |ψn(λ)〉 = En(λ) |ψn(λ)〉 , (3.2)

and that there exists a ∆ > 0 such that for every λ and |φ〉 /∈ R(λ) satisfying H(λ) |φ〉 =
E(λ) |φ〉 we have

min
n

|E(λ)− En(λ)| ≥ ∆, (3.3)

i.e. our family R(λ) is gapped from all other states in the spectrum for all λ ∈ M.
At the same time, we can define the hermitian operator P (λ) as

P (λ) =
1

2πi

∮
C(λ)

1
z −H(λ)

dz, (3.4)

where C(λ) is a contour in the complex plane enclosing all the En(λ) and no other
eigenvalues of H(λ). The fact that our family of states is gapped allows us to choose
such a contour. We denote |ϕi〉 an eigenstate of H(λ) with energy Ei(λ) and let us act
on this state with P (λ):

P (λ) |ϕi〉 =
1

2πi

∮
C(λ)

dz

z − Ei(λ)
|ϕi〉 =

{
|ϕi〉 if Ei(λ) ∈ C(λ),

0 otherwise.
(3.5)

where we have applied Cauchy’s integral theorem. It immediately follows from Eq. 3.5
that P 2(λ) = P (λ), i.e. P (λ) is idenpotent. Therefore, P (λ) is a projection opera-
tor. Apart from idenpotence, the following properties also follow from the definition in
Eq. (3.4):

Property 1: [H,P (λ)] = 0,

Property 2: P (λ) |ψn(λ)〉 = |ψn(λ)〉, ∀λ ∈ M and |ψn(λ)〉 ∈ R(λ),

Property 3: rank P (λ) = N .

On the one hand, by virtue of these properties, P (λ) could have been defined in
terms of the states R(λ) as:

P (λ) =

N∑
n=1

|ψn(λ)〉〈ψn(λ)| . (3.6)

On the other hand, it is clear that R(λ) span the image of P (λ) and hence we could
define our set of states R(λ) from P (λ):

R(λ) = Im[P (λ)]. (3.7)
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It is not particularly relevant that P (λ) was defined from a Hamiltonian. What
is important is that we have a well defined family of states and a projection onto the
subspace spanned by these. Indeed, the formalism we will introduce below holds equally
well for projectors onto families of quantum states, projectors onto the tangent spaces
of manifolds, as well as more general fiber bundles [83,84].

In the language of projectors, the well-known adiabatic theorem takes a particularly
geometrical form, first illustrated by Kato [85]: consider a path λ(t), t ∈ [0, τ ] in the
parameter space M, such that τ → ∞ (∆τ >> 1) for fixed endpoints of the path. Notice
that t can be interpreted as a scalar playing the role of time. Then the quantum adiabatic
theorem is the statement that the exact projector P (t) at time t is approximately equal
to our projector P (λ(t)) onto the space spanned by R(λ(t)):

P (t) = U(t)P (0)U†(t) ≈ P (λ(t)), (3.8)

where U(t) is the time-evolution operator corresponding to the Hamiltonian H(λ(t)).

We might ask ourselves how could the projector P (t) be different from P (λ(t)). Let
us suppose that at t = 0 the operator P (λ(0)) is the projector onto the states R(λ(0))

we are interested in, i.e. P (0) = P (λ(0)) =
∑N

n=1 |ψn(0)〉〈ψn(0)|. At time t > 0, after
the system is taken along the path parametrized by λ(t), the operator P (t) could in
principle contain projections into states |ψn(λ(t))〉 /∈ R(λ(t)) and thus be different from
P (λ(t)). In other words, the space into which P (t) projects might be different from
R(λ(t)). The quantum adiabatic theorem in Eq. (3.8) consists in assuming that, as the
system is driven along a path in parameter space, the exact projector P (t) does not
involve projections out of R(λ(t)) and can thus be substituted by P (λ(t)).

Following Kato’s approach [85], let us introduce an adiabatic evolution operator
UA(t) which drives the evolution of P (λ(t)):

P (λ(t)) = UA(t)P (0)U
†
A(t). (3.9)

In order to obtain an expression for UA(t), we will first derive the differential equa-
tion that it satisfies. Let us for that differentiate in both sides of Eq. (3.9) and apply
the identity UAU̇

†
A = −U̇AU

†
A, which follows from the unitarity of UA(t):

iṖ = i
[
U̇AP (0)U

†
A + UAP (0)U̇

†
A

]
= i
(
U̇AU

†
AUAP (0)U

†
A − UAP (0)U

†
AU̇AU

†
A

)
=
[
iU̇AU

†
A, P

]
.

(3.10)

By applying the property PṖP = 0, it can be shown [76] that Eq. (3.10) is satisfied by
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t = t5 t4 t3 t2 t1 t0

∆t

Figure 3.2: Time-slicing adopted in the discretization of the path ordered exponential
of Eq. (3.14), for N = 5. Note that time increases to the left.

any UA(t) which also satisfies the following equation:

U̇AU
†
A = [Ṗ , P ] + f(H(λ)). (3.11)

Eq. (3.11) is the differential equation for UA(t) that we were looking for. Here, f(x) is an
arbitrary function of x. Choosing f(x) = x leads to an adiabatic evolution operator that
correctly accounts for the dynamical phase individual states acquire during evolution
[82, 86]. For this choice it is possible to derive an expression of the difference between
UA(t) and U(t) [82]:

U†A(t)U(t)− 1 = O(1/τ). (3.12)

This equation is a quantitative expression for the quantum adiabatic theorem stated
in Eq. (3.9): when the time needed to complete the path in parameter space is large
(τ → ∞), the evolution governed by U(t) may be substituted by the adiabatic evolution
described by UA(t). Equivalently, the exact projector P (t) can be substituted by the
projector P (λ(t)) into the subspace R(λ(t)).

Since we are interested primarily in the behavior of the subspace R(λ), however,
we can make the simpler choice f = 0. This leads to the following simplified differential
equation for the adiabatic evolution operator:

U̇A = [Ṗ , P ]UA ≡ AsUA. (3.13)

The solution of this equation is a path-ordered exponential:

UA(t) = Pe
∫ t
0
Asdt

′
≡ lim

∆t→0
eAs(tN )∆teAs(tN−1)∆t . . . eAs(t0)∆t, (3.14)

where tN = t, tj = j∆t and j = 0, ..., N (see Fig. 3.2). Note that since

Asdt = [∂λP, P ] · λ̇(t)dt = [∂λP, P ] · dλ, (3.15)

the integral expression for UA(t) is independent of the rate at which t is varied, and
only depends on the particular adiabatic path from the initial point λi = λ(t = 0) to
the final point λf = λ(t) in parameter space. Thus, UA is a geometric quantity and it
is purely determined from the geometry of the projectors P (λ).

This discussion becomes even nicer if we restrict our attention to states |φ(λ)〉 ∈
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

Im[P (λ)]. Consistent with the facts that P (λ) = UAP (0)U
†
A and P (λ) |φ(λ)〉 = |φ(λ)〉,

we have
|φ(λ)〉 = UA |φ(0)〉 . (3.16)

This looks like the time-evolution of states in the Schrödinger picture, with UA playing
the role of time-evolution operator. Differentiating this expression yields:

∂λ |φ(λ)〉 = ∂λUA |φ0〉 = [∂λP, P ] |φ(λ)〉 = [∂λP, P ]P |φ(λ)〉 , (3.17)

and hence
[∂λ − (∂λP )P ] |φ(λ)〉 = 0. (3.18)

Eq. (3.17) is known as the parallel transport equation. It tells us that under adiabatic
evolution, the projection of states into the subspace of interest does not change; thus it is
a generalization of transporting a vector along a curve such that the angle of the vector
with a line tangent to the curve is constant. The quantity [∂λP, P ]P [or equivalently,
(∂λP )P ] is known as the adiabatic (Berry) connection, analogous to the Christoffel
Levi-Civita connection in General Relativity. Note also that the adiabatic connection is
precisely As = (∂λP )P from Eq. (3.15).

This operator form of the connection is closely related to the more conventional
form, which expresses Eq. (3.17) in a fixed coordinate system: let {|ψn(λ)〉} be a basis
for Im[P (λ)], with n = 1, ..., N , so that P (λ) can be written as in Eq. (3.6). Then, by
applying |φ(λ)〉 =

∑N
n=1 an(λ) |ψn(λ)〉 in Eq. (3.18):

0 = ∂λ |φ〉 − (∂λP ) |φ〉

=

N∑
n=1

[
(∂λan) |ψn〉+ an |∂λψn〉 − an |∂λψn〉 −

N∑
m=1

|ψm〉 〈∂λψm|ψn〉 an

]

=

N∑
n=1

[
∂λan +

N∑
m=1

〈ψn|∂λψm〉 am

]
|ψn〉 = 0,

(3.19)

where we have applied the relation 〈∂λψm|ψn〉 = −〈ψm|∂λψn〉 to go from the second
line to the third line, and we have suppressed the explicit dependence on λ of coefficients
and states for the sake of clarity. Since the states {|ψn(λ)〉} form a basis of the subspace
Im[P (λ)], they are linearly independent, which means that a linear combination of them
could be zero if and only if all the coefficients are zero. The parallel transport equation
then implies

∂λan − i

N∑
m=1

Anm(λ)am = 0, (3.20)

where Anm(λ) = i 〈ψn|∂λψm〉 is the usual Berry connection. Whether we use As or
Anm depends on whether we view our adiabatic transformation as acting on basis vectors
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3.1 Parametric Hamiltonians and parallel transport

or coordinate functions: when we use As, we view the adiabatic transformation as a
unitary operator on the (basis) states of our Hilbert space. Contrarily, we use Anm

when we view the adiabatic transformation as a matrix acting on the coordinate vector
for a state in the space

R =
⋃
λ

Im[P (λ)]. (3.21)

Both approaches contain equivalent information when restricted to the subspaces
Im[P (λ)]. However, note that we must find a differentiable basis for Im[P (λ)] in order
to define Anm(λ), while no such choice is needed to define As(λ).

In terms of coordinates, we can solve Eq. (3.20) to find:

an(λ) =
[
Pei

∫ λ
0

A(λ′)·dλ′
]
nm
am(0) ≡Wnm(λ)am(0). (3.22)

In particular, by choosing |φ(0)〉 = |ψm(0)〉 in Eq. (3.16) and applying Eq. (3.22), we
derive:

〈ψn(λ)|UA|ψm(0)〉 =Wnm(λ). (3.23)

The matrix W is not invariant under U(N) basis rotations. In fact, it transforms in the
following way under the basis transformation represented by the matrix U(λ) ∈ U(N):

W
′

nm(λ) = [U†(λ)UAU(0)]nm, (3.24)

Nevertheless, this expression becomes a similarity relation if we consider a closed path
with |ψn(λ)〉 = |ψn(0)〉. This implies that for closed paths the spectrum of W is basis
independent. We call the matrix W for a closed path the holonomy of the adiabatic
connection around that path.

We will now derive a particularly useful expression for W (λ) that does not depend
on the basis states. Let us for that define the operator W(λ) as:

W(λ) ≡ P (λ)UAP (0), (3.25)

which implements the parallel transport on R. Eq. (3.23) shows that W(λ) and W (λ)

share the same nonzero spectrum in the fixed basis1 {|ψn(λ)〉}. Furthermore, Wnm can
be understood as a matrix element of W in the subspace R.
Note that since P (λ) = UA(λ)P (0)U

†
A(λ), we can write

W(λ) = P (λ)UA(λ)P (0) = UA(λ)P (0)U
†
A(λ)UA(λ)P (0) = UA(λ)P (0). (3.26)

By taking a derivative and using Eq. (3.13) for UA, we deduce that W(λ) satisfies the

1W is an operator defined in the subspace of interest R. In other words, we can write its matrix
elements only for states |ψn⟩ ∈ R. In contrast, W is defined in the whole Hilbert space. However,
matrix elements ⟨ψl(λ)|W|ψs(0)⟩, where |ψl⟩ or |ψs⟩ do not belong to R, are zero.
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

differential equation

∂λW(λ) = [∂λP, P ]W(λ), with W(0) = P (0). (3.27)

Looking at this differential equation and comparing it to ∂λUA(λ) = [∂λP, P ]UA(λ),
one might think that W(λ) and UA(λ) should be the same operator. However, since
the initial conditions for W(λ) and UA(λ) are different, this is not the case. To find an
expression for W(λ), let us first note that the infinite product

V (λ) = lim
∆λ→0

P (λ)P (λ−∆λ)P (λ− 2∆λ) . . . P (∆λ)P (0) ≡
λ←0∏
λ′

P (λ′) (3.28)

satisfies the same initial condition as W(λ), i.e. V (0) = P (0). To prove that it also
satisfies Eq. (3.27), we first take the derivative of V (λ) to find

∂λV = lim
∆→0

V (λ+∆)− V (λ)

∆
= lim

∆→0

P (λ+∆)− P (λ)

∆
V (λ) = [∂λP (λ)]V (λ).

(3.29)

Using P (λ)V (λ) = V (λ) along with the relation P (λ)[∂λP (λ)]P (λ) = 0 (which we have
already met before), we find that

∂λV = [∂λP, P ]V,

V (0) = P (0).
(3.30)

Since W(λ) and V (λ) satisfy the same ordinary differential equation and initial
condition, they are the same operator. Thus we conclude that

W(λ) =

λ←0∏
λ′

P (λ′). (3.31)

Finally, since the matrix W (λ) is obtained by restricting W(λ) to the subspace R of
states, we deduce that the matrix elements of Eq. (3.31) between states in R give W (λ).

Summing up, in this section we have first derived the parallel transport equation for
the adiabatic evolution of a system through a path in parameter space, and defined the
operator form of the Berry connection As(λ) in this context. We have also derived an
alternative expression for the Berry connection in terms of coefficients of the expansion,
in a fixed basis, of a state in R. Then, we have defined the operator W (λ), whose
spectrum in the subspace R is gauge invariant for closed paths in parameter space.
Last, we showed how W(λ) can be written in terms of the projectors P (λ).

Before moving on, let us show how the concepts of adiabatic transport apply to a
particularly useful example: a spin-1/2 system under the influence of a magnetic field.
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Figure 3.3: (a) general description of the magnetic field of constant magnitude involved
in the problem (blue), a general path that the field can follow over the surface of the
sphere (green) and the parametrization of the path in terms of the polar angle θ and
azimutal angle φ (red). (b) The particular path (θ(t), φ(t)) ∈ {(π/2, 2πt) | t ∈ [0, 1]}
studied in the text.

3.1.2 Example: Spin-1/2 in a magnetic field
Let us consider a magnetic field B(t) of constant magnitude |B(t)| = B0, whose direction
rotates adiabatically with time. This means that, if we draw B(t), it traces out a
continuous path over the surface of a sphere of radius B0. We can write:

B(t) = B0B̂(t). (3.32)

in terms of a unit vector B̂(t).
Let us write this vector in polar coordinates, which will be useful when specifying

paths in the parameter space of the problem [e.g. as indicated in Fig. 3.3(a)]:

B(t) = B0(sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)). (3.33)

The dynamics of a spin-1/2 particle under the influence of this magnetic field can be
described by a Zeeman-like Hamiltonian:

H(t) = −µB(t) · σ, (3.34)

where only the spin contributes to the energy. Here σ = (σx, σy, σz) is the vector of Pauli
matrices. Note that the Hamiltonian of any gapped two-level system can be written in
this form, modulo an overall energy shift. Therefore, the following discussion will be
applicable to any two-level system, regardless of its physical origin.

Looking at the Hamiltonian (3.34), we see that we can consider the direction B̂(t)

of the magnetic field as the parameter determining a family of parametric Hamiltonians.
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

That is, according to the notation adopted in this section, we can write λ = B̂. From
Eq. (3.33), we see that our parameter space has dimension two: we need only specify
θ and ϕ in order to uniquely determine B̂. Thus, our parameter space is the two-
dimensional sphere S2, with coordinates

M = S2 = {(θ, φ) : θ ∈ (0, π), φ ∈ (0, 2π)}. (3.35)

We take the subspace of interest at time t to be the low-energy eigenspace of the
Hamiltonian H(t). The projection operator onto this subspace can be written as

P (t) = 1/2(1 − B̂(t) · σ), (3.36)

where 1 is the 2 × 2 identity matrix. This can be seen by considering a frame that
rotates together with the field and has the z-axis pointing along B̂(t). In such a frame,
the Hamiltonian takes the simple form H(λ) = −µB0σz. Note that we can equivalently,
write the projector in terms of the value of λ reached at time t: P (t) = 1/2(1 − λ · σ).

Now that we have the projector, we want to calculate the adiabatic evolution oper-
ator UA(λ) for a particular path in parameter space. We will do so in two steps. First,
we will compute the Berry connection As. Second, we will solve Eq. (3.13). Starting
with the first step, we apply our definition of Berry connection to find

A(i)
s (λ) = [∂λi

P (λ), P (λ)]

= [−1/2σi, 1/2(1 −
∑
j

λjσj)]

=
1

4

∑
j

λj [σi, σj ]

=
i

2

∑
jk

ϵijkλjσk. (3.37)

Here, ϵijk is the Levi-Civita symbol, and the indices i, j and k in the sums run over
the three Cartesian directions. In the derivation, we have made use of the commutation
relation [σi, σj ] = 2i

∑
k ϵijkσk satisfied by Pauli matrices. Then, by substitution into

Eq. (3.13), we see that the dynamics of the adiabatic evolution operator is governed by

U̇A(λ) = λ̇ ·As(λ)UA(λ) =
i

2

∑
ijk

ϵijkλ̇iλjσkUA(λ). (3.38)
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For the sake of clarity, we will write this once explicitly in cartesian components:

U̇A(λ) =
i

2
λ̇ · (λ× σ)UA(λ) (3.39)

=
i

2
[λ̇x(λyσz − λzσy) + λ̇y(λzσx − λxσz) + λ̇z(λxσy − λyσx)]UA(λ). (3.40)

The next step is to integrate this expression to write UA(t) as a path ordered
exponential. To go further, we can consider a particular path (θ(t), φ(t)) in parameter
space. Consider the following curve:

(θ(t), φ(t)) = (π/2, 2πt), t ∈ [0, 1], (3.41)

which corresponds to starting with B(0) pointing along the positive x-axis, rotating
its tip once around the equator, and returning to the initial point. We sketch this in
Fig. 3.3(b). Writing this path in terms of the vector λ(t), we have

λ(t) = (cos 2πt, sin 2πt, 0). (3.42)

Taking a time derivative yields

λ̇(t) = 2π(− sin 2πt, cos 2πt, 0). (3.43)

Consequently, Eq. (3.38) becomes

U̇A(λ) = −iπσzUA. (3.44)

Now, we can solve this equation, obtaining the adiabatic evolution operator:

UA(t) = exp{−iπtσz} = cos (πt)1 − i sin (πt)σz. (3.45)

Let us show how UA(t) acts on the initial state |ψ(0)〉 = |−〉x belonging to the subspace
defined by the image of the projector P (0),

|ψ(0)〉 = |−〉x =
1√
2

[
1

−1

]
. (3.46)

Acting with the adiabatic evolution operator, we find that the state at t is

|ψ(t)〉 = UA(t) |ψ(0)〉 =
1√
2

[
cos (πt)− i sin (πt)

− cos (πt)− i sin (πt)

]
, (3.47)

which can be written in the basis of {|+〉x , |−〉x} as

|ψ(t)〉 = cos (πt) |−〉x − i sin (πt) |+〉x . (3.48)
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

Notice that, although at t = 1 we reach the initial point in parameter space, the state
acquires an adiabatic (Berry) phase |ψ(1)〉 = − |ψ(0)〉. In conclusion, when we adiabat-
ically evolve over a closed loop in parameter space, the final state may not be the same
as the initial state.

Eq. (3.48) can be interpreted in two equivalent ways. First, we may take the per-
spective where we view the initial state as

|ψ(0)〉 = a−(0) |−〉x + a+(0) |+〉x , (3.49)

with a+(0) = 0 and a−(0) = 1. Comparing Eq. (3.48) to Eq. (3.49), we conclude that
UA(t) has evolved the coefficients of the expansion in this way:

a+(0) = 0 → a+(t) = −i sin (πt),
a−(0) = 1 → a−(t) = cos (πt).

(3.50)

We will refer to this view of adiabatic evolution as the active convention: the expansion
coefficients of the state evolve, but the basis stays fixed.

To motivate the second point of view, let us return to Eq. (3.48). By looking
carefully at it, one might worry that the evolution is non-adiabatic, since |ψ(t)〉 has a
component proportional to |+〉x and hence seems to be outside the image of the projector
of interest. To understand this, recall that P (t) in Eq. (3.36) is not the projector into
|+〉x, but into the state of lower energy of H(t), i.e. into |−〉B̂(t). At the same time, the
expression for |ψ(t)〉 in Eq. (3.48) coincides with the expansion of |−〉B̂(t):

|ψ(t)〉 = |−〉B̂(t) , (3.51)

and so we see that the state |ψ(t)〉 belongs to the image of P (t). In other words, when
an initial state |ψ(0)〉 is evolved adiabatically, the state |ψ(t)〉 at time t may have a
component out of the image of a projector P (t′) for other times t′, but it will not have
any component out of the image of P (t). This way of understanding the evolution,
which consists in including the time-dependence in the basis states rather than in the
coefficients, is called the passive convention. Applying this convention is equivalent to
working with a frame that rotates together with the field, keeping the positive sense of
the z-axis pointing towards the direction of B(t).

Let us summarize both conventions explained here and mentioned previously in
the text: in the active convention the coefficients of the expansion of the initial state
are time-dependent, while in the passive convention the basis states taking part in the
expansion are time-dependent. It is important to realize that both points of view are
equivalent.

In this example, we have worked with a two-level system in which the subspace of
interest is spanned by a single state. Nevertheless, the formalism of adiabatic transport
is also applicable to the case in which the dimension of the image of the projectors is
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larger than one. In that case, there would be at least one additional eigenstate |ψn(t)〉
of H(t) in the image of P (t). The reason for including such a state may be, for example,
that it shares degeneracy with the lower state |−〉B̂(t) considered originally, at some
point in parameter space. This occurs frequently when the states of interest are Bloch
eigenstates, as we will see below.

3.1.3 Parametrization of Bloch’s Hamiltonian
In the previous section, we have studied the adiabatic transport of quantum states when
the system is driven over a path in parameter space. However, the parameter space
was treated in general terms. On the other hand, our main focus is on the adiabatic
transport in the context of electrons in solids. We thus introduce here the parameter
space of this problem and how a family of parametric Hamiltonians arises naturally.

As we explained in Sec. 2.2, Bloch’s theorem allows us to label each eigenstate of
the single-particle Hamiltonian H of a solid by a pair of quantum numbers (n,k), where
n is a band-index and k is the crystal momentum belonging to the first Brillouin zone
(BZ). The time-independent Schrödinger equation takes the form

Hψnk(r) = Enkψnk(r). (3.52)

Since every eigenfunction can be written as ψnk(r) = eik·runk(r), where unk(r) is
function with the periodicity of the lattice, we can rewrite Eq. (3.52) as an equation for
the periodic parts:

H(k)unk(r) = Enkunk(r) (3.53)

where we have introduced the operator representation of the Bloch Hamiltonian,

H(k) = e−ik·rHeik·r. (3.54)

Often it will be convenient to work with the matrix elements of the Bloch Hamil-
tonian projected into some fixed basis of tight-binding orbitals. Letting |unk〉 denote
the column vector we obtain by expanding unk(r) in a fixed tight-binding basis, we can
write

H(k) |unk〉 = Enk |unk〉 , (3.55)

in the tight-binding approximation, where H(k) should be understood as a matrix. In
this chapter, we will always use the ket notation to denote Bloch functions expanded in
the space of tight-binding basis vectors to avoid confusion. Eqs. (3.53) and (3.55) were
derived by noting that states are indexed by their crystal momentum k and separating
the Hamiltonian into blocks of different k. However, we can equally well consider the
Bloch Hamiltonian H(k) as a function of k. The set

{H(k), k ∈ Brillouin zone} (3.56)
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then forms the sort of family of parametric Hamiltonians considered in the quantum
adiabatic theorem. Indeed, k plays the role of the vector of parameters λ of the previous
section and the BZ is the parameter space of the problem.

3.2 Berry phase and polarization
In the following section, we will adopt a more practical point of view to show how the
adiabatic variation of k is related to the response of the real-space distribution of charge
to an electric field (i.e. the polarization). For that, we will restrict ourselves to one-
dimension and we will closely follow the approach of Refs. [87,88]. Let us start with the
Bloch Hamiltonian in Eq. (3.53) for a 1D crystal with periodic potential V (x+a) = V (x):

H(k)unk(x) =

[
1

2m
(p+ k)2 + V (x)

]
unk(x) = Enkunk(x). (3.57)

We define our projectors by means of eigenstates |ψnk〉 of the Hamiltonian:

P (k) =

N∑
n=1

|ψnk〉〈ψnk| =
N∑

n=1

∫
u∗nk(x)unk(x

′)eik(x
′−x) |x′〉〈x| dxdx′, (3.58)

Now, let us assume that P (k) is the projector onto the N “occupied” bands of an
insulating crystal, and that there is a spectral gap of magnitude ∆ > 0 separating these
bands from others in the spectrum. Consider the effect of a small uniform electric field,

E = − ∂

∂t
(−E0t) = −∂A(t)

∂t
. (3.59)

The vector potential A(t) appears in the Hamiltonian through the minimal-coupling:

H(k, t) =
1

2m
[p+ k − qA(t)]2 + V (x) ≡ 1

2m
[p+ k(t)]2 + V (x) = H(k(t)), (3.60)

where k(t) = k+qE0t, and q is the charge of the electron (we work in units where c = 1).
Thus, the problem of an electron moving under the influence of a constant electric field
maps to a problem of evolution within a parametric family of Hamiltonians. For instance,
|qE0|−1 plays the role of τ from the previous lecture; if we take |qE0| << ∆, we can
apply the adiabatic theorem.

We find then that for an initial state ψnk(x) = eik·xunk(x), the final state under
adiabatic evolution is

ψnk(t)(x) = eik·xWmn(t)umk(t)(x), (3.61)

with Wnm(t) = Pei
∫ t
0
Anm(t′)dt′ the matrix elements of the operator W, and Anm =

i
∫
unk(x)∂kumk(x) dx. We see that the Berry phase captures the evolution of the wave
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functions in the presence of an electric field2.

We can go further and relate W (t) to the position operator. To do so, let us consider
our system to have length L, with periodic boundary conditions. The average position
is related to the following expectation value:

〈P〉 = 〈Ψ0|e2πiX̂/L|Ψ0〉 ≡ 〈Ψ0|P|Ψ0〉 , (3.62)

Here |Ψ0〉 is the Slater determinant ground state for an insulator in which every |ψnk〉
is occupied, and X̂ is the position operator. In second quantization, we can write
|ψnk〉 = c†nk |0〉, where

c†nk =

∫ L

0

dxψnk(x)c
†
x,

{cx, c†x′} = δ(x− x′),

〈ψnk|ψmk′〉 = δnmδkk′ .

(3.63)

In this language, the position operator X̂ can be written as

X̂ =

∫ L

0

dxxc†xcx. (3.64)

Taking this expression into account and applying the anticommutation relations in
Eq. (3.63), it follows that:

PcxP
−1 = e−2πix/Lcx, (3.65)

and hence
PcnkP

−1 =

∫ L

0

dxψ∗nk(x)e
−2πix/Lcx ≡ c̃nk. (3.66)

Using this and applying the fact that the Slater determinant ground state can be written

2Note that, as we have considered the adiabatic evolution UA derived from Eq. (3.13), we have
neglected the dynamical phase that can be acquired by the wave functions. See Ref. [82] for more
details.
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as |Ψ0〉 =
∏

nk c
†
nk |0〉:

〈P〉 = 〈0|
∏
nk

cnkP
∏
mk′

c†mk′ |0〉

= 〈0|
∏
nk

cnk
∏
mk′

c̃†mk′ |0〉

= det
(
〈ψnk|ψ̃mk′〉

)
= det

(∫ L

0

dxψ∗nk(x)ψ̃mk′(x)

)

= det

(∫ L

0

dxu∗nke
−ik·xumk′ei(k

′+2π/L)·x

)
.

(3.67)

The determinant appears owing to the application of Wick’s theorem. By considering a
lattice translation, we see ψ̃mk′ is a Bloch-wave with crystal momentum k′+2π/L. Then,
these overlaps vanish unless k′ = k − 2π/L due to conservation of crystal momentum:

〈P〉 =
∏
k

det

[∫ L

0

dxu∗nkum(k−2π/L)

]
= det[W (2π)], (3.68)

where we have considered the limit L→ ∞ and identified W by comparing this expres-
sion to Eq. (3.31), together with the property det(A) det(B) = det(AB). Therefore, the
gauge invariant determinant of W along a closed path in the BZ is related to the mean
center of charge in the unit cell. This connection between the determinant of W and the
position operator suggests that there may be a deep connection between the geometry
of adiabatic evolution and localization of electrons in solids.

In order to make this relation more clear, we explore it in terms of a physical
quantity: the polarization density. Let us show that log(〈P〉) is indeed the physical
polarization density Pe of the crystal, defined by Maxwell’s equations to satisfy:

Ṗe = Jbound = q 〈v〉 . (3.69)

In order to show this, we will act with P on |Ψ0〉:

P |Ψ0〉 = eiγ

|Ψ0〉+ i
2π

L

∑
j ̸=0

|Ψj〉 〈Ψj |X|Ψ0〉+ . . .

 =

= eiγ

|Ψ0〉+ 2π
∑
j ̸=0

|Ψj〉
〈Ψj |v|Ψ0〉
Ej − E0

+ . . .

,
(3.70)

where we used 〈Ψj |v|Ψ0〉 = i/L 〈Ψj |[H,X]|Ψ0〉 = i/L(Ej − E0) 〈Ψj |X|Ψ0〉. Here
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3.3 Wannier functions and charge localization

γ = Im log〈Ψ0|P|Ψ0〉 is the adiabatic (Berry) phase. Note that this shows that P |Ψ0〉
is parametrically related (via perturbation theory) to the constant electric field state
treated before. Let us now assume we have a time-dependent perturbation that varies
adiabatically. We can then look at the change in 〈P〉 to lowest order in perturbation
theory. We have that:

d

dt
Imlog 〈P〉 = dγ

dt
= Im

1

〈Ψ0|P|Ψ0〉

(
〈Ψ̇0|P|Ψ0〉+ 〈Ψ0|P|Ψ̇0〉

)
. (3.71)

In the adiabatic limit, 〈ψ̇0|ψ0〉 = 0 from the parallel transport equation (3.17), so:

d

dt
Imlog 〈P〉 = 2π

∑
j ̸=0

1

Ej − E0

(
〈Ψj |v|Ψ0〉 〈Ψ̇0|Ψj〉+ 〈Ψj |Ψ̇0〉 〈Ψ0|v|Ψj〉

)
. (3.72)

But the right-hand side is precisely 〈v〉 expanded to first order in perturbation theory,
multiplied by 2π. This shows that the Berry phase Im log detW is, up to a multiplica-
tive factor of q/2π, the physical polarization density. This connection between Berry
phase and electronic position can be made even more precise through the exploration of
Wannier functions and hybrid Wannier functions, as we will now show.

3.3 Wannier functions and charge localization
While Bloch’s theorem tells us that the eigenstates of periodic Hamiltonians are delocal-
ized, we know that electronic systems are built out of localized functions coming from
atomic orbitals. How do we recover these functions? Motivated by this issue, we will
introduce Wannier and hybrid Wannier functions and show how the Berry phase and
holonomy are connected to charge localization.

To begin, let us take a projector P where Im(P ) is spanned by the Bloch states
{ψnk(r)} for all k in the Brillouin zone and n = 1, · · · , Nocc, which satisfy the boundary
conditions

ψn(k+G)(r) = ψnk(r), (3.73)

for all G in the reciprocal lattice. Furthermore, let us assume there exists some periodic
gauge transformation U(k) ∈ U(N) such that the functions ψ̃nk(r) =

∑N
m=1 Unmψmk(r)

are analytic in k (and therefore differentiable in k to any order). Then, we can form
Wannier functions via the following expressions:

WnR(r) =
1√
N

∑
k

e−ik·Rψ̃nk(r) ≈
V√

N (2π)3

∫
dk e−ik·Rψ̃nk(r), (3.74a)

ψ̃nk(r) =
1√
N

∑
R

WnR(r)eik·R. (3.74b)
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

where R denotes vectors belonging to the Bravais lattice, N the number of unit cells in
the system, and V is the volume. From Eq. (3.74b), we see that:

∣∣∣∂nki
ψ̃nk(r)

∣∣∣ = ∣∣∣∣∣ 1√
N

∑
R

(iRi)
n WnR(r)eik·R

∣∣∣∣∣ ≤ 1√
N

∑
R

|Rn
i WnR(r)|, (3.75)

which shows that if WnR(r) decays faster than any power of (r − R), ψ̃nk(r) will be
smooth in k to any order. The localization of Wannier functions is thus a necessary
condition for obtaining smooth functions ψ̃nk(r) upon taking the Fourier transform. It
is possible to show [89, 90] a converse to this as well: as long as ψ̃nk(r) is an analytic
function of k, then the Wannier functions WnR(r) will decay exponentially as |r−R| →
∞. As we will see later in the text, this relation between the existence of a gauge
that allows us to construct smooth functions in reciprocal space and the localization
of Wannier functions is one of the cornerstones of the framework of topology in band
structures [59,91,92].

Exponentially localized Wannier functions satisfy a variety of nice properties, such
as

Property 1: 〈WnR|WmR′〉 = δnmδRR′ .

Property 2:
Nocc∑
n=1

∑
k

|ψ̃nk〉〈ψ̃nk| =
Nocc∑
n=1

∑
R

|WnR〉〈WnR|.

Property 3: Wn(R+R′)(r) =WnR(r −R′).

The first property means that Wannier functions form an orthonormal set; in the
second property, we see that they span the same subspace of the Hilbert space as the
band eigenstates from which they are constructed via (3.74a); finally, the third point
means that the Wannier functions are distributed periodically through the lattice, so
that it is enough to work with the Wannier functions in one unit cell (with one fixed R).
On the whole, localized Wannier functions form a complete basis that turns out to be
convenient to build a quantitative position space picture of the occupied subset of states
in a crystal. In this spirit, Wannier functions are good candidates to study phenomena
that are more intuitively understood in position space; particularly, charge localization
and pumping. As an example of this, let us reinterpret our expression Eq. (3.68) for 〈P〉
in the 1D case in terms of Wannier functions. Applying (3.22), we get:

Im log 〈P〉 = Im log(detW )

= tr

∮
dk A(k)

= i

Nocc∑
n=1

∫ 2π

0

dk

∫
cell

dxu∗nk(x)∂kunk(x),

(3.76)
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3.3 Wannier functions and charge localization

where Nocc is the number of states in Im[P (k)]. Working in the convention where

ũnk(x) =
√
N e−ik·x ψ̃nk(x) =

∑
R

eik·(R−x) WnR(x). (3.77)

(in this convention the Bloch functions ũnk are normalized to one within a single unit
cell) and integrating over the whole space rather than over the unit cell, Eq. (3.76)
becomes (recall we work in units where the lattice constant is equal to one):

Im log 〈P〉 = i

N

Nocc∑
m=1

∫
dx

∫ 2π

0

dk
∑
RR′

e−ik·(R−x) W ∗mR(x)∂k

[
eik·(R

′−x)WmR′(x)
]
+ 2πn

=
2π

N

Nocc∑
m=1

∑
R

∫
dx (x−R)W ∗mR(x)WmR(x) + 2πn

=
2π

N

Nocc∑
m=1

∑
R

∫
dxx W ∗m0(x)Wm0(x) + 2πn

= 2π

Nocc∑
m=1

〈Wm0|x|Wm0〉+ 2πn,

(3.78)

thus, we see that writing q/(2π)Im log 〈P〉 in terms of Wannier functions leads us to
a precise real-space interpretation of the polarization density: it is the displacement of
the average charge center from the origin of the unit cell. Here, n is an integer given by
the winding number 2πn = i

∮
tr
[
U†(k)∂kU(k)

]
dk, of the unitary transformation that

converts from the original basis unk to the smooth basis ũnk, and shows that the Berry
phase is only defined mod 2π. Eq. (3.78) re-expresses the 2π gauge ambiguity of the
Berry phase as an ambiguity of the charge center by an integer number of unit cells.

Until now, we have related the trace of the Berry phase to the average many-body
position, but is it possible to get a grasp on the position of a single particle? Using our
knowledge of adiabatic transport, we can go further and relate the position operator to
the Berry phase, without the need for the trace over occupied bands. Before we tackle
this problem, let us define a kind of functions that will turn out to be useful for this
task: the hybrid Wannier functions. These functions are related to the smooth states
ψ̃nk(r) via the following expression:

WnR⊥(r,k∥) =
1√
N⊥

∑
k⊥

e−ik⊥·R⊥ ψ̃nk(r). (3.79)

Whereas Wannier functions are localized in all directions, hybrid Wannier functions are
localized along the direction denoted by ⊥ and delocalized in ‖. This property manifests
itself in Eq. (3.79) in the fact that the Fourier transform is taken only along the direction
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

⊥.

Let us now take a state |f〉 =
∑

nk fnk |ψnk〉 ∈ Im(P ) and look at the action of the
projected position operator PxP on it. Taking matrix elements in the basis of Bloch
functions, we have

〈ψnk′ |PxiP |f〉 =
Nocc∑
m=1

∑
k

〈ψnk′ |xi|ψmk〉 fmk

=

Nocc∑
m=1

∑
k

fmk

∫
dxxiψ

∗
nk′(x)ψmk(x)

=
1

N

Nocc∑
m=1

∑
k

∫
dx fmku

∗
nk′(x)umk(x)e

i(k−k′)·x xi

=
1

N

Nocc∑
m=1

∑
k

∫
dx fmku

∗
nk′(x)umk(x)(−i)∂ki

[
ei(k−k

′)·x
]

= i∂k′
i
fnk′ + i

1

N

Nocc∑
m=1

∑
k

fmk

∫
dx [u∗nk′(x)∂ki

umk(x)]e
i(k−k′)·x.

(3.80)

Unless otherwise noted, we will use the convention that repeated indices are summed
over from this point forward. Finally, we can rewrite the integral over x in the last term
as an integral over a single unit cell, using∫

dx [u∗nk′(x)∂ki
umk(x)]e

i(k−k′)·x =
∑
R

∫
cell

dx [u∗nk′(x+R)∂kiumk(x+R)]ei(k−k
′)·(x+R)

=
∑
R

ei(k−k
′)·R

∫
cell

dx [u∗nk′(x)∂ki
umk(x)]e

i(k−k′)·x

= −iδkk′Ai
nm(k)

(3.81)

whereAi
nm are the matrix elements of the Berry (adiabatic) connection in the ki direction

between occupied bands n and m. Putting this all together, we find

〈ψnk′ |PxiP |f〉 = i∂k′
i
fnk′ +Ai

nm(k′)fmk′ . (3.82)

We see that −iPxP acts as the adiabatic covariant derivative that appears in our parallel
transport equation (3.20). We can go further and also look for eigenstates of Px⊥P ,
which corresponds to looking for states satisfying

Px⊥P |ψ〉 = φ |ψ〉 . (3.83)
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3.3 Wannier functions and charge localization

Let us take a trial solution of the form

|ψ〉 = e−ik⊥φWmn(k⊥)fn0 |ψmk〉 , (3.84)

and check if it satisfies Eq. (3.83). Here, k⊥ is the component of k along the direction
denoted by ⊥. The matrix Wnm(k⊥) is the familiar holonomy matrix, given in terms of
Eq. (3.23), with the path given by a straight line from k0 = 0 to k⊥/(2π)G⊥, with G⊥
the reciprocal lattice vector in the ⊥ direction. Since |φ〉 ∈ Im(P ), the coefficients in
Eq. (3.84) should satisfy Eq. (3.82), thus substituting |φ〉 in Eq. (3.83) yields:[

δmℓ∂k⊥ − iA⊥ℓm(k⊥)
][
e−ik⊥φWmn(k⊥)fn0

]
= −iφe−ik⊥φWℓn(k⊥)fn0, (3.85)

We know from the properties of W that the coefficients Wmn(k⊥)fn0 satisfy the parallel
transport equation in Eq. (3.20):[

δℓm∂k⊥ − iA⊥ℓm(k⊥)
]
Wmn(k⊥)fn0 = 0, (3.86)

which allows us to arrive at the right hand side on Eq. (3.85) and make sure that the
equality holds. We have therefore shown that any function that can be expanded as
Eq. (3.84) is a good candidate to be an eigenfunction of the projected position operator.
However, we must still ensure that our choice of boundary conditions in Eq. (3.73) is
preserved, i.e. that

e−i2πφWmn(2π)fn0 = fm0. (3.87)

Thus we must choose the vector formed by the coefficients {fn0} to be an eigenvector
of W (2π) with eigenvalue e2πiφ. In conclusion,

The spectrum of PxiP matches the spectrum of
1

2π
Im logWmn(k0 → k0 +Gi).

Note that we now have a more precise information about the real-space properties
of a single electron, as we have shown how to extract information about the spectrum
of the single-particle (projected) position operator from the holonomy W . However, we
know that the eigenfunctions of an operator can also contain useful information about
it. This fact motivates us to go on to calculate also the eigenfunctions of PxiP .

Note first that our choice of k0 = 0 as the intial point for our coefficients fn0 was
arbitrary. Let us denote Wk0

(G⊥) the adiabatic evolution from k = k0 to k = k0+G⊥.
Let Q(k0) denote the matrix containing in each column an eigenvector of Wk0(G⊥), so
that Wk0

nm(G⊥)Qmj(k0) = ei2πφjQnj(k0). Since Wk0
nm drives the evolution of Qnj(k0),

we deduce that:
Qnj(k0 +

k⊥G⊥
2π

) =Wk0
nm(

k⊥G⊥
2π

)Qmj(k0). (3.88)
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(a) (b)

ϕ

k1

a2 a2 a2

Figure 3.4: Eigenvalues of the holonomy W k1,k2=0(G2) for a set of 2 bands in a
honeycomb lattice model [93,94]. (a) Spectrum as a function of k1, where vertical lines
indicate different choices of k1; two eigenvalues correspond to each choice, denoted by
the solid circle and ring. (b) Interpretation of eigenvalues in terms of hybrid Wannier
centers.

This implies that e−ik⊥φjQnj(k⊥) is periodic in k⊥, and so satisfies Eq. (3.87). As a
consequence, the following function is an eigenfunction of Px⊥P with eigenvalue φj+R⊥:

WjR⊥(r,k∥) =

∫ Nocc∑
n=1

dk⊥ e
−ik⊥(φj+R⊥)Qnj(k)ψnk(r). (3.89)

Notice that the form of this function coincides with the expression of a hybrid Wan-
nier function introduced in Eq. (3.79). Furthermore, since an eigenstate of Px⊥P is
maximally localized in the x⊥-direction, and we saw in Eq. (3.75) that this requires
smoothness of derivatives with respect to k⊥, we conclude that Q(k) is constructed
to ensure that derivatives of

∑
nQnj(k)ψnk(r) are smooth3 with respect to k⊥. In

conclusion,

Eigenfunctions of Px⊥P are hybrid Wannier functions
localized maximally in the x⊥-direction, whose charge
centers coincide with the eigenvalues of Px⊥P .

Consider the example of Fig. 3.4, where we show the holonomy and hybrid Wannier
function centers for two bands in two dimensions. In (a) we show the eigenvalues of the
holonomy matrix W k1,k2=0(G2) – the holonomy along the G2 direction as a function
of k1. In (b) we show the location in position space of the corresponding centers of
hybrid Wannier functions. These functions are maximally localized in the direction
of the primitive lattice vector a2. When k1 = 0, both centers are located a distance
a2/2 from the center of the hexagon, corresponding to the eigenvalues ϕ/2π = ±0.5 of

3The Berry connection cancels any discontinuity arising from degeneracies among states in Im(P ).
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3.3 Wannier functions and charge localization

the holonomy. As we start increasing k1, the centers move towards the center of the
hexagonal unit cell; at this point, there is a net electrical polarization in the unit cell.
Finally, when k1/2π = 1/2, both charge centers meet at the center of the hexagon.

To conclude, we have now seen how the Berry phase and holonomy encode informa-
tion about charge localization in real space. First we have shown that the determinant
of the adiabatic evolution operator gives the average charge center in a unit cell; then,
we have gone further and we have derived the relation between the spectrum of the
holonomy and the (single particle’s) projected position operator; finally, we have con-
cluded that the eigenfunctions of the projected position operator in a certain direction
are hybrid Wannier functions maximally localized in that direction and interpreted the
eigenvalues of the projected position operator as charge centers of hybrid Wannier func-
tions. We will conclude this section with an example: the Rice-Mele chain.

3.3.1 The Rice-Mele chain
We consider a 1D inversion symmetric crystal, with lattice vector a = ax̂. Our basis will
be formed by s and px-like functions localized on each lattice site, as drawn in Fig. 3.5.
While we will investigate the symmetry properties of W systematically in Sec. 3.4.1, we
will show here that inversion symmetry has a profound effect on the Berry phase. If UI

is a unitary representation of inversion, then the following properties hold:

Property 1: UIPU
−1
I = P ,

Property 2: UIPxPU
−1
I = −PxP .

The second property follows from the fact that the position operator x is odd under
inversion. This property implies that eigenvalues of PxP come in pairs ±aφ/(2π) + νa

(ν ∈ Z appears due to the lattice ambiguity), where φ relates to the eigenvalue of the
holonomy matrix W (2π) via Eq. (3.87). Consequently, only eigenvalues φ ∈ {0, π} –
which correspond to hybrid Wannier functions at the center and borders of the unit cell,
respectively – can be unpaired. In particular, it follows for a single band that:

det W (2π) = ±1 ⇒ 〈Wn0|x|Wn0〉 =

{
0

a/2
mod a. (3.90)

In other words, inversion symmetry quantizes the polarization. This can also be under-
stood in a simple qualitative form: in the case of a single band, there is only one charge
center in the unit cell. In 1D there are only two sites on which this charge center could
sit without breaking inversion symmetry: x = 0 and x = a/2, i.e. those corresponding
to Eq. (3.90).

Let us see this in action in our inversion symmetric chain, whose band structure
contains two bands instead of one. As we mentioned, we take as basis states φs(x−R)

and φp(x−R) sitting at the origin of the unit cell (see Fig. 3.5), where:
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unit cell ts tsp

tp1a
1b

Figure 3.5: Schematic representation of the Rice-Mele model, where the basis formed
by s (blue spheres) and px-orbitals (black) is shown. The choice of unit cell is indicated
with dashed lines.

φs(x−R) = 〈x|sR〉 ,
φp(x−R) = 〈x|pR〉 .

(3.91)

Let c†sR and c†pR be the creator operators for states |sR〉 and |pR〉, respectively, so that

|sR〉 = c†sR |0〉 ,

|pR〉 = c†pR |0〉 .
(3.92)

We consider the following nearest-neighbor tight-binding Hamiltonian to investigate
the topological properties of the chain’s band structure:

H =
∑
R

ϵ(c†sRcsR − c†pRcpR)

+
∑
R

1

2

[
tsp

(
c†sRcpR+1 − c†sRcpR−1

)
+ t∗sp(c

†
pR+1csR − c†pR−1csR)

]
+
∑
R

∑
σ=s,p

tσ(c
†
σRcσR+1 + c†σR+1cσR).

(3.93)

Note that this Hamiltonian is invariant under inversion symmetry4. This feature will
allow us to investigate the interplay between inversion and topology. Moreover, we can
take the Fourier transform cσk = N−1/2

∑
R e
−ik·RcσR of the annihilation operators,

which allows us to write the Hamiltonian in reciprocal space as

H =
∑
k

[
c†sk c†pk

]
H(k)

[
csk
cpk

]
, (3.94)

with

H(k) = ϵσz + t(1)sp σy sin k + (ts − tp)σz cos k + (ts + tp)1 cos k + t(2)sp σx sin k. (3.95)

4This is not the most general inversion-symmetric Hamiltonian that can be written with hoppings
to nearest-neighbors. In particular, there is no symmetry forcing the on-site energies of both orbital
species to be equal. However, there is not need to consider such a generalization as this simple model
is enough to capture the physics we want to discuss.
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3.3 Wannier functions and charge localization

For simplicity, we will take ts = −tp = t/2 , as this eliminates terms proportional to the
identity matrix. From the parity and distribution of orbitals in the lattice, it follows
that the action of inversion on H(k) can be described by the matrix σz:

σzH(k)σz = H(−k). (3.96)

In addition to inversion, we can impose time-reversal symmetry. For spinless sys-
tems (or systems in which spin-orbit coupling can be neglected), time-reversal acts in
position space as complex conjugation, i.e. T = K. Then, it has the following effect on
annihilation operators of Bloch states:

T cσkT = N−1/2
∑
R

eik·RcσR = cσ,−k, (3.97)

with the corresponding action on creation operators. This means that time-reversal
symmetry imposes the condition H(k) = H∗(−k) on the Hamiltonian, which requires
t
(2)
sp = 0 to be satisfied. The spectrum ofH(k) with time-reversal and inversion symmetry

is finally given by:
Ek = ±

√
(ϵ+ t cos k)

2
+ [t

(1)
sp ]2 sin2k (3.98)

In the simple case that t(1)sp ≡ t, the model has two gapped “flat-band” limits:

Limit 1: t = t
(1)
sp = 0 ⇒ Ek = ±|ϵ|.

Limit 2: ϵ = 0, t = t
(1)
sp ⇒ Ek = ±|t|.

Since bands look very similar in both limits, we might think that both band
structures are identical. This will turn out to be a naive statement as we now look into
each limit in more detail.

Limit 1: trivial phase

The Hamiltonian adopts the following form in this limit:

H(k) = |ϵ|σz, (3.99)

whose eigenfunctions and corresponding periodic parts are:

ψk±(x) =
1√
N

∑
R

eik·Rφ(s,p)R(x) ≡ φ(s,p)k(x),

uk±(x) =
√
N e−ik·xφ(s,p)k(x).

(3.100)

Here, we have denoted by − the lower band, which contains the Bloch waves φpk(x)

constructed from p-orbitals. On the other hand, the eigenfunctions on the upper band
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

are indicated by + and coincide with the Bloch waves constructed as Fourier transforms
of the s-orbitals.

After a bit of algebra, it can be shown that the Berry connection As(k) for the state
built-up from s-orbitals is

As(k) = i

∫
cell

dxu∗k+(x)∂kuk+(x)

= N
∫
cell

dx eikxφ∗sk(x)∂k
[
e−ikxφsk(x)

]
=

∫
cell

∑
RR′

dx (x−R)eik(R−R
′)φ∗sR′(x)φsR(x).

(3.101)

The corresponding Berry phase γs is obtained by integrating over the BZ:

γs =

∫ 2π

0

dk As(k)

=

∫ 2π

0

dk

∫
cell

dx
∑
RR′

(x−R)eik(R−R
′)φ∗sR′(x)φsR(x)

=
∑
R

∫
cell

dx (x−R)φ∗sR(x)φsR(x)

=

∫
dxxφ∗s0(x)φs0(x)

= 0.

(3.102)

We could have anticipated this result: as ψk+(x) = φsk(x), the Fourier transform
in Eq. (3.74a) yields the Wannier function WR+(x) = φsR(x) for the upper band. More-
over, since Wannier functions coincide with hybrid Wannier functions in 1D, the Berry
phase coincides with the charge center of φsR(x), which sits at the origin of the unit
cell, i.e. at x = 0.

Note also that we could have simplified our lives by working in the strict tight-
binding limit in which orbitals are taken to be Dirac’s deltas: φsR(r) ∝ δ(r − R) and
φpR(r) ∝ δ′(r−R), where δ(r) and δ′(r) are even and odd under inversion, respectively;
in that case, we would have:

ukσ(x) = e−ikx
∑
R

eikRφσR(x) =
∑
R

φσR(x), independent of k. (3.103)

This means that, in the strict tight-binding limit, the Berry connection can be evaluated
by using only the Bloch coefficients of the eigenstates (which in this case are unity).
We did not have to be so drastic as to assume our basis orbitals were delta functions to
get this result; more generally, we can define the tight-binding limit to be the case
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3.3 Wannier functions and charge localization

where 〈φσR|r|φσR′〉 ∝ δRR′ . In this case, the Berry phase can be evaluated entirely in
terms of the Bloch coefficients. However, when the position operator has off-diagonal
terms in the basis of orbitals, derivatives of Bloch functions constructed from these
orbitals also contribute to the calculation of the Berry connection, so it is not enough
to consider only the coefficients and their derivatives. This result is general, rather
than a particular feature of the Rice-Mele chain.

Limit 2: topological phase

Even though the bands are flat also in this limit, the Hamiltonian of the system
does depend on k:

H(k) = t(cos kσz + sin kσy), (3.104)

and the periodic parts of its eigenstates are the following:

ψk+(x) =
[
cos k/2 i sin k/2

] [φsk(x)

φpk(x)

]
,

ψk−(x) =
[
sin k/2 −i cos k/2

] [φsk(x)

φpk(x)

]
.

(3.105)

Despite being normalized and orthogonal between them, the states in Eq. (3.105) are
not suitable for our adiabatic transport formalism, as they do not obey periodic-
boundary conditions in reciprocal space [95]. For instance, it is easy to check that
ψ2π+(x) = −ψ0+(x) (the same holds for the other eigenstate). This pathology can be
fixed by including a factor exp(ik/2) in the expressions for the eigenstates. The states
constructed this way carry on being eigenstates of the Hamiltonian and they satisfy
periodic-boundary conditions. Their periodic parts are the following:

uk+(x) = eik/2
√
N e−ikx

[
cos k/2 i sin k/2

] [φsk(x)

φpk(x)

]
,

uk−(x) = eik/2
√
N e−ikx

[
sin k/2 −i cos k/2

] [φsk(x)

φpk(x)

]
.

(3.106)

We can now go on to repeat the calculation of the Berry phase γ+ for the states on
the upper band. We assume that we are working in the tight-binding limit and begin
by computing the Berry connection A+(k) for the column vector |uk+〉 of expansion
coefficients:

A+(k) = i 〈uk+|∂kuk+〉 = i
[
cos k/2 −i sin k/2

] [−1/2 sin k/2

i/2 cos k/2

]
− 1/2 = −1/2.

(3.107)
Then, combining this with our expression for the Berry phase γ+, we can show that in
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

the tight-binding limit:

γ+ =

∫ 2π

0

dk A+(k) = −π (3.108)

and thus the center of charge for the corresponding Wannier function is γ+a/(2π)

mod a = a/2, where we have restored a as lattice constant. The Wannier centers
are pinned at a/2 because symmetry quantizes the polarization, as we will see later.

Note that the actual eigenvalues of the Hamiltonian did not enter the calculation
of Berry phases, but only the eigenstates did. These points out that the topology of
bands is encoded in the states, rather than in the shape of bands. As a consequence,
the topology of our bands (their Berry phases) can not change without modifying the
states, which requires closing the gap between lower and upper bands. For instance, let
us imagine we begun with the system in the flat-band limit 2 and we started tuning
slowly the hopping parameters in our Hamiltonian. The bands would probably stop
being flat, but the Berry phase would stay pinned at a/2 as long as the gap between
both bands does not close. In this sense, we say that the Berry phase is robust under
adiabatic variations of the parameters that control the dynamics of the system.

Diagnosing topology with inversion

Quantizing the Berry phase is not the only role that inversion symmetry could play
in the Rice-Mele chain. Let us show how inversion could also be used to diagnose the
topological phase without calculating the Berry phase. This analysis will allow us to get
a flavor of the interplay between symmetries and topology, even though this aspect will
be investigated in more detail in Secs. 3.4.1 and chapter 5.

First, recall the action of inversion on the Bloch states constructed from s and
px-like orbitals is the following:

UI |φs,k〉 = |φs,−k〉 ,
UI |φp,k〉 = − |φp,−k〉 .

(3.109)

It follows from this action, together with Eqs. (3.100) and (3.105), that the eigenstates
of the Hamiltonian transform in the following way:

Limit 1:

UIψΓ±(x) = ±ψΓ±(x),

UIψX±(x) = ±ψX±(x).
(3.110)

Limit 2:

UIψΓ±(x) = ±ψΓ±(x),

UIψX±(x) = ∓ψX±(x).
(3.111)
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Figure 3.6: Flat bands of the Rice-Mele Hamiltonian in the two limits discussed in the
text, with the inversion eigenvalues at Γ and X labeled. (a) Limit 1. (b) Limit 2.

These expressions show how bands in the Rice-Mele model inherit their symmetry prop-
erties from s and px-like states sitting in real space. The flat bands obtained in both
limits and the inversion eigenvalues of the corresponding eigenstates at Γ and X are
illustrated in Fig. 3.6.

Note that all the combinations of inversion eigenvalues that a band can have at Γ

and X (in 1D) are shown in Fig. 3.6. We deduce that bands whose inversion eigenvalues
are identical at both high-symmetry points have Berry phase γ = 0 [Fig. 3.6(a)], whereas
the Berry phase is γ = π for bands with different inversion eigenvalues [Fig. 3.6(b)].
This criterion allows us to determine the Berry phase of the bands by looking at their
inversion eigenvalues, without calculating any integral.

Let us interpret this result in terms of elementary band representations, even if this
discussion might look a bit premature until we reach chapter 5. Consulting the Bilbao
Crystallographic Server [96–98], we find that the inversion eigenvalue distribution in
limit-I matches what we would expect from orbitals at the 1a Wyckoff position trans-
forming in the Ag + Au (s and p-orbitals) representation of inversion. We denote this
as the (Ag ↑ G)1a ⊕ (Au ↑ G)1a band representation – corresponding to s (Ag) and
p (Au) orbitals at the origin of the unit cell (the 1a position). Similarly, the inversion
eigenvalues in limit-II match what we would expect for s and p orbitals at the 1b Wyckoff
position, which we denote as the (Ag ↑ G)1b ⊕ (Au ↑ G)1b band representation corre-
sponding to s (Ag) and p (Au) orbitals half a lattice constant away from the origin of
the unit cell (the 1b position). In fact, it can be demonstrated that the Wannier states
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

constructed by applying Eq. (3.74a) coincide with those mentioned above5.
The fact that bands in limit-I and limit-II have different Berry phases and symme-

try properties makes these limits distinguishable, i.e. we can say that they belong to
distinct phases. A particularly interesting property of bands in the second phase is that
the charge centers of the corresponding Wannier functions sit away from the position
occupied by the original s and p-orbitals. This fact motivates us to refer to the phase
in limit-II as an obstructed atomic limit.

There are two aspects of the transition between limit-I and limit-II that deserve a
discussion. First, note that such a transition is accompanied by the displacement of the
charge centers from the atomic 1a position to position 1b, half a unit cell away; this
generates a dipole moment of ea/2. Second, this transition can not be achieved without
either closing the gap between upper and lower bands or breaking inversion symmetry; a
transition that gives up any of these two constrains is said to be non-adiabatic. However,
it would be possible to drive the transition without closing the gap if we gave up inversion
– adding a term t′σx cos k with t′ ∈ R (to preserve time-reversal symmetry) would do
the job. It is in this spirit that these phases are said to be protected by inversion.

We conclude this section by mentioning that we will come back to the Rice-Mele
chain later in the text, as we will use it as the starting point to model the quantum Hall
effect (QHE) in topological (lattice) insulators.

3.4 Wilson loops of topological bands
In this section, we will define the Wilson loop and show how symmetries may constrain
its spectrum. Then, we will learn that Wilson loop windings can be interpreted as an
obstruction to constructing maximally localized Wannier functions and give an alter-
native interpretation in terms of the Chern number and gauge discontinuity. We will
finish the section by exploring the obstruction in two models: the Thouless pump and
the Kane-Mele model.

3.4.1 Wilson Loops and Symmetries
In previous sections, we have seen how adiabatic transport of Bloch functions reveals
interesting information about the localization properties of (hybrid) Wannier states. In
addition, we have seen in a particular model (Rice-Mele) that spatial symmetries like
inversion can place constraints on the eigenvalues of the holonomy W, and hence on the
position of charge centers. We will now explore this relation in more generality.

For the remainder of these notes, we will work with Bloch functions as if they were
obtained from a tight-binding model. Our starting point is thus a set of orthogonal tight-

5All bands in 1D could be induced from Wannier functions, if we only focus on their symmetry
eigenvalues. This follows from the point that Wannier functions are the eigenfunctions of the projected
position operator. We will demonstrate in Sec. 3.4.2 that this does not hold in higher dimensions.
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3.4 Wilson loops of topological bands

binding orbitals φσR(r), where σ denotes a collection of quantum numbers describing
degrees of freedom within the unit cell, such as position within the unit cell, orbital type,
or spin. The Bloch functions χσk(r) corresponding to these orbitals can be constructed
via the following Fourier transform:

χσk(r) =
1√
N

∑
R

eik·(R+rσ)φσR(r). (3.112)

The eigenfunctions ψnk(r) of the Hamiltonian can then be expanded as linear combina-
tions of these Bloch waves as

ψnk(r) =
∑
σ

uσnkχσk(r) =
1√
N

∑
σR

uσnke
ik·(R+rσ)φσR(r). (3.113)

Finally, the periodic part unk(r) of the eigenfunctions reads:

unk(r) =
∑
σR

uσnkφσR(r)e−ik·(r−R−rσ). (3.114)

The periodicity of the eigenstates ψnk(r) as k → k +G implies that

uσnk+G = e−iG·rσδσσ′uσ
′

nk ≡ [V −1(G)]σσ′uσ
′

nk. (3.115)

In principle, the Berry connections computed from uσnk and unk(r) generally differ out-
side the tight-binding limit. In spite of this, both connections obey the same symmetry
constraints, because uσnk and unk(r) transform under isomorphic representations of the
crystal symmetry group. The geometry of adiabatic transport of the uσnk is itself inter-
esting, since they are eigenstates of the parametric family of matrix Hamiltonians

hσσ′(k) =

∫
ddr φ∗σk(r)H(k)φσ′k(r), (3.116)

where we have (re)-introduced φσk(r) = N−1/2
∑

R φσR(r)e−ik·(r−R−rσ). In matrix
notation, the Schrödinger equation for uσnk becomes

h(k)

u
1
nk

u2nk
...

 = Enk

u
1
nk

u2nk
...

 . (3.117)

For the rest of these notes we will focus on the parallel transport of the projectors
[P (k)]σσ′ =

∑N
n=1 u

σ∗
nku

σ′

nk. We will denote |unk〉 the column vector of coefficients uσnk,
so that P (k) =

∑N
n=1 |unk〉〈unk|. Let us consider the holonomy matrix WC along a
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

(a) (b)

Brillouin zone

Figure 3.7: Different types of paths that could be considered in a 2D BZ. The path
C1 in green is contractible, while the C2 and C3 in orange are non-contractible. (a)
The non-contractible paths cross the boundaries of the BZ, whereas the C1 is contained
entirely within the boundaries of the BZ. (b) The BZ becomes a torus when we glue the
borders based on the periodicity of the boundaries. The topology of the torus impedes
shrinking the non-contractible paths to a point.

smooth contour C in the BZ given by

Wnm
C =

〈
unkf

∣∣WC |umk0〉 =
〈
unkf

∣∣ C∏
k

P (k) |umk0〉 , (3.118)

where C starts at k0 and ends at kf . By construction, each projector is invariant under
a U(N)-valued gauge transformations U(k) at each k,

U(k)P (k)U†(k) = P (k). (3.119)

As such, by defining |u′

nk〉 = Unm(k) |umk〉, the holonomy matrix WC transforms into
W ′C in the following way:

W
′

C = U†(kf )WCU(k0), (3.120)

thus, like all adiabatic transport, the spectrum of WC is gauge invariant only when C is
a closed curve. The holonomy WC for a closed loop C is referred to as Wilson Loop.

For simple (i.e. contractible) closed curves like C1 in Fig. 3.7, this is the end of the
story. However, recall that the Brillouin zone is topologically a d-dimensional torus due
to the imposed periodic-boundary conditions, which allows us to draw non-contractible
cycles like C2 and C3 in Fig. 3.7. Such curves cross the boundary of the BZ and thus
can not shrink to a point. The simplest non contractible curves we can think of are
linear and wind only once [see Fig. 3.8(a)]. They are given analytically by
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3.4 Wilson loops of topological bands

(a) (b)
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Figure 3.8: Paths in the BZ for a Wilson loop. (a) The simplest nontrivial closed path
given in Eq. (3.121), winding once and parallel to a primitive reciprocal lattice vector g.
(b) A simple nontrivial path k′

0 → k′
0 + g with basepoint k′

0, and an alternative path
with basepoint at k0.

Cg = {k0 + g t | t ∈ [0, 1]}, (3.121)

where g denotes a primitive reciprocal-lattice vector. Recall also from Sec. 3.3 that eigen-
values of WCg give the charge centers of hybrid Wannier functions that are exponentially
localized in the direct-lattice direction that is not orthogonal to g. When considering the
Wilson loop along a closed curve, we need to make sure that the constrain in Eq. (3.115)
set by our periodic-boundary gauge is satisfied:

Wnm
Cg = 〈unk+g|WCg |umk〉 = 〈unk|V (g)WCg |umk〉 . (3.122)

This means that the parallel transport along the closed and non contractible cycle Cg is
described by the Wilson loop:

Wg,k0 = V (g)

k0+g←k0∏
k

P (k), (3.123)

whose nonzero eigenvalues are gauge invariant and correspond in the tight-binding limit
to the centers of hybrid Wannier functions localized in the r · ĝ direction.

What is the role of the basepoint k0? Consider the paths k′
0 → k′

0 + g and k0 →
k0 + g [see Fig. 3.8(b)], whose basepoints are shifted in the ĝ-direction. Writing the
Wilson loop Wmn

g,k′
0

as a product of projectors and applying the unitary property of V (g)

leads to:

Wmn
g,k′

0
=Wml

k′
0+g←k0+g W

lp
g,k0

W pn
k0←k′

0
= [W †k0←k′

0
]ml W lp

g,k0
W pn

k0←k′
0
. (3.124)

which is a similarity relation where the holonomy matrix Wk0←k′
0

plays the role of a
unitary gauge transformation. This demonstrates that Wilson loops Wg starting from
basepoints that differ in the ĝ direction share the same spectrum, although they generally
have different matrix elements. The choice of the basepoint is therefore irrelevant for
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

the calculation of hybrid Wannier centers.
Note however that in 2 and 3 dimensions the Wilson loop Wg will still depend

on the components of the basepoint that are perpendicular to ĝ. Let us for instance
consider that we decompose the basepoint k into two components k∥ and k⊥ that are
respectively parallel and perpendicular to ĝ, so that k = (k∥,k⊥); we can then omit
k∥ as it is physically irrelevant, but the Wilson loop matrix still depends on k⊥, i.e.
Wg,k =Wg(k⊥).

We will now focus on the action of space group symmetries. A space group symmetry
operation h = {R|v} acts on the vector of coefficients uσnk as

uσnk → Uσσ′
(R)uσ

′

n(Rk)e
−i(Rk)·v ≡ Sσσ′

k uσ
′

n(Rk). (3.125)

Here, U(R) is the matrix of R in the representation that describes the transformation
of the degrees of freedom denoted by σ (orbital angular momentum, spin and site
within the unit cell). Let us focus on two important cases: inversion and time-reversal
symmetry.

Inversion symmetry:

Let us study in general terms the transformation under inversion symmetry of the
Wilson loop operator Wg(k⊥). According to Eq. (3.125), under inversion the projector
P (k) transforms as

UIP (k)U
†
I = P (−k). (3.126)

Writing out the Wilson loop operator as a product of projectors:

UIWg(k⊥)U†I = lim
δ→0

UIV (g)P (g,k⊥)P (g − δ,k⊥) . . . P (0)U †I . (3.127)

Having in mind that UI is unitary, we insert the identity U †IUI between V (g) and
P (g,k⊥):

UIWg(k⊥)U†I = lim
δ→0

UIV (g)U†IP (−g,−k⊥)P (−g + δ,−k⊥) . . . P (0). (3.128)

where we have applied Eq. (3.126). We need to work out the relation between UI and
V (g). On the one hand

P (g,k⊥) = V †(g)P (0,k⊥)V (g) = V †(g)UIP (0,−k⊥)U †IV (g); (3.129)
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g′

g
Wg(k

′)

W+
g (−k′)

Figure 3.9: In black, the graphical discretization of the Wilson loop Wg(k
′) applied

in the derivation of the effect of inversion and time-reversal on it. In blue, the Wilson
loop W†g(−k′) to which it is related by these symmetries.

on the other hand

P (g,k⊥) = UIP (−g,−k⊥)U †I = UIV (g)P (0,−k⊥)V †(g)U†I . (3.130)

Then, Eqs. (3.129) and (3.130) to be consistent, we must have:

UIV (g)U†I = V †(g) = V (−g). (3.131)

Applying this back in Eq. (3.128) yields:

UIWg(k⊥)U†I = lim
δ→0

V (−g)P (−g,−k⊥)P (−g + δ,−k⊥) . . . P (0)

=W †g (−k⊥).
(3.132)

In conclusion, inversion relates Wg(k⊥) and W†g(−k⊥) via a similarity relation (see
Fig. 3.9) and hence forces them to share the same spectrum. This constrain becomes
particularly restrictive for inversion-invariant momenta6 k⊥ ≡ −k⊥, as it implies that
the spectrum of Wg(k⊥) is real. We illustrate in Fig. 3.10(a) the shape of the Wilson
loop spectra constrained by inversion.

Time-reversal symmetry:

We could expect the influence of time-reversal symmetry T on the Wilson loop to
be similar to that of inversion, because both symmetries map k to −k. Nevertheless,
unlike inversion, time-reversal symmetry is an antiunitary operation that acts on the
coefficients as the complex-conjugate operation (spinless case). Let us consider its action
on the Wilson loop:

6The symbol ≡ denotes equivalence module a reciprocal lattice vector.

69



3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport
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Figure 3.10: Example Wilson loop spectra of spinless systems with (a) inversion sym-
metry (b) time-reversal symmetry.

T Wg(k⊥)T −1 = T V (g)P (g,k⊥)P (g − δ,k⊥) . . . P (0)T −1

= V (−g)T P (−g,−k⊥)P (−g + δ,−k⊥) . . . P (0)

= W−g(−k⊥).

(3.133)

If T was unitary, this equation would be a similarity relation imposing the same con-
strains as inversion. It instead forces the spectra of Wg(k⊥) and W−g(−k⊥) to be
related by complex conjugation. Fig. 3.10(b) sketches the shape of a Wilson loop con-
strained by time-reversal symmetry.

For spinful particles, the constrain becomes particularly interesting at inversion-
invariant momenta7, as it forces each eigenstate of Wg(k⊥) to be doubly-degenerate
(Kramers degeneracy). Let us emphasize that this is not the case of inversion, whose
effect is to form pairs of complex-conjugate eigenvalues (unless they are real).

A similar analysis can be carried out for any symmetry operation [99], which may
be helpful to investigate the constraints that symmetries place on Wilson loop spectra
in more complicated space groups. Nevertheless, we will only make use of time reversal
and inversion symmetry in what follows.

To contextualize these results, let us return to the 1D Rice-Mele chain. According to
our analysis, inversion symmetry forces eigenvalues of Wg to be real or come in complex
conjugate pairs. Since there exists a single occupied band, the nonzero eigenvalue λ of
Wg should be real, and so it must be either 1 or -1; equivalently: (2iπ)−1 log λ = 0, 1/2.

7Inversion-invariant points, which satisfy −k ≡ k, are often referred to as time-reversal invariant
momenta (TRIM). We will adopt this naming from now on.
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3.4 Wilson loops of topological bands

Now, we have a wider picture of how inversion symmetry quantizes hybrid Wannier
centers in 1D. In systems defined in more dimensions, we do not have this quantization
for generic k⊥, because k⊥ 6≡ −k⊥ in general. However, we gain something amazing:
the possibility for finding topologically distinct spectra for Wg(k⊥) as a function of
k⊥.

Let us briefly comment on the consequence that the constrain set by time-reversal
symmetry has on the topology, which could serve to motivate the discussion in the next
section. As we illustrate in Fig. 3.10(b), time-reversal symmetry forces the spectrum of
the Wilson loop Wg(k⊥) to be symmetric with respect to the k⊥ = 0 axis. Owing to this
fact, the curve corresponding to a single eigenvalue can not wind as k⊥ goes through the
whole BZ. Indeed, having an odd number of eigenvalues which wind requires breaking
TR symmetry.

3.4.2 Wilson Loop Winding and Wannier Obstruction

To further motivate this discussion, let us recall that in 1D, the notions of Wannier and
hybrid Wannier functions coincide. Thus, in the tight-binding limit in 1D, the Wannier
centers coincide with (2πi)−1 times the logarithm of eigenvalues of the Wilson loop Wg

(mod a). In higher dimensions, this is not generically the case even in the tight-binding
limit, because projected position operators along different directions need not commute,

[PxiP, PxjP ] 6= 0. (3.134)

In such cases, it is not possible to simultaneously diagonalize all the projected position
operators. In other words, generally it is not possible to find functions that are simul-
taneous eigenstates of projected positions along multiple directions. To see how this
can happen, let us take a trial state |f〉 =

∑
n,k fnk |ψnk〉 belonging to Im(P ). From

Eq. (3.82), we have

[PxiP, PxjP ] |f〉 =
∑

k,mnl

(
i∂iA

j
nm − i∂jA

i
nm +Ai

nlA
j
lm −Aj

nlA
i
lm

)
fmk |ψnk〉

= i
∑
k,mn

Ωij
nm(k) |ψnk〉 fmk,

(3.135)

where
Ωij

nm(k) = ∂iA
j
nm(k)− ∂jA

i
nm(k)− i[Ai(k), Aj(k)]nm (3.136)

is the Berry-curvature tensor. We read in Eq. (3.135) that the Berry curvature tensor
must vanish for all k for there to exist a basis in which PxiP and PxjP are simultane-
ously diagonal. This means that, in general, hybrid Wannier functions – eigenstates of
a single PxiP – will not coincide with maximally localized Wannier functions – orbitals
designed to be as localized as possible in all directions. Thus, we must take care to
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(a) (b)
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Figure 3.11: (a) Path considered in the statement of Ambrose-Singer theorem in
Eq. (3.137). (b) Sphere M = M1 ∪M2 considered as closed manifold for the definition
of the (first) Chern number.

distinguish between hybrid Wannier centers and Wannier centers. This distinction will
turn out to be particularly important because, while unique hybrid Wannier functions
exist for any gapped projector, Wannier functions are not unique and may not even
be exponentially localizable (while respecting symmetries). Eq. (3.135) suggests a deep
relation between topology and the possibility for finding hybrid Wannier functions that
are exponentially localized in different directions. We will devote the remaining of the
section to unveiling this relation.

We begin by exploring how the Wilson loop contains information about the Berry
curvature tensor. This relation between the holonomy of the connection and its cur-
vature is given by the Ambrose-Singer theorem. We consider a parallelogram in the
Brillouin zone with sides of infinitesimal length [see Fig. 3.11(a)]; according to Ambrose-
Singer theorem, the leading order term in the Taylor series of the Wilson loop along the
boundary of the parallelogram is related to the Berry curvature via

iΩ12
nm(k0)δk1δk2 = logW4W3W2W1 +O

(
δk3
)
. (3.137)

Let us neglect the O
(
δk3
)

terms and take the trace on both sides of the equation:

i trΩ12
nm(k0)δk1δk2 = log det{W4W3W2W1}+O

(
δk3
)
. (3.138)

Here, we have applied the property tr logW = log detW . There are two reasons for
taking the trace: On the one hand, it will lead to the definition of an important topo-
logical invariant, namely the Chern number. On the other hand, it will be helpful to get
over the issue of non-commutativity of the matrices Wi on the right-hand side, specially
when going beyond infinitesimal parallelograms.

We first focus on the left-hand side of Eq. (3.138). Due to the cyclic property
tr(AB) = tr(BA), the commutator in Eq. (3.136) does not contribute to the trace.
This simplification reduces the trace of the Berry curvature to the curl of the Berry
connection, so that we are left with an integral which gives the flux of ∇×A(k) through
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3.4 Wilson loops of topological bands

our parallelogram. Furthermore, we can add up a series of infinitesimal Wilson loops to
create a path that encloses a finite region M of the BZ, like in Fig. 3.12(b):

1

2π

∫
M

tr
(
Ω12
)
dk1 dk2 =

1

2π

∫
M

(∂k1 trA2 − ∂k2 trA1) dk1 dk2

=
1

2π

∮
∂M

trA · dl ,
(3.139)

where subscripts of the Berry connection denote directions in reciprocal space. Here, we
have used Stokes theorem8 to turn the integral giving the flux of the Berry curvature
Ω(k) through M into the line integral of the Berry curvature A(k) along its boundary
∂M . If M is a closed manifold (such as a plane “bounded” by reciprocal lattice vectors
g1 and g2 in the 2D Brillouin zone), this integral vanishes modulo gauge discontinuities
in trA(k).

As an example of this statement, we consider M to be the sphere of Fig. 3.11(b).
We denote M1 and M2 the upper and lower patches of this sphere, respectively. The
wave functions defined on M1 and M2 must match at the equator, up to a unitary
gauge transformation U(k):

|ψM2

nk 〉 = Unm(k) |ψM1

mk 〉 . (3.140)

This implies that, at the equator, the Berry connections A1(k) and A2(k) are related
via

A2 = U †A1U + iU †∇U, (3.141)

and their traces by

trA2 = trA1 + i tr
(
U†∇U

)
= trA1 −∇φ, (3.142)

where we have defined φ = Im log detU as the sum of the phase of the eigenvalues of
U . Note that the traces of both the connections would be the same if there was not
any gauge discontinuity at the equator between the wave functions of M1 and M2. We
finally find that the integral of the Berry curvature over the sphere is

1

2π

∫
M

tr(Ω) d2k =
1

2π

∫
M1

tr(Ω) d2k +
1

2π

∫
M2

tr(Ω) d2k

=
1

2π

∫
∂M

tr(A1) · dl−
1

2π

∫
∂M

tr(A2) · dl

=
1

2π

∫
∂M

∇φ · dl .

(3.143)

8When the subspace of interest contains more than one band, Ambrose-Singer theorem might not be
equivalent to Stokes’s theorem [76].
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It is now clear that the integral in Eq. (3.139) vanishes for closed regions if there
is not any discontinuity in the gauge. Moreover, the fact that the gauge U(k) must be
periodic in the reciprocal lattice constrains this integral to be an integer number ν. This
integer is known as the first Chern number:

1

2π

∫
M

tr(Ω) · d2k = ν ∈ Z. (3.144)

The Chern number is a topological invariant of states defined on the closed manifold
M. The only way to change the value it takes is to close the gap between the manifold
of states in the image of our projectors and the rest of states.

We have figured out how the Chern number arises from the flux of the Berry cur-
vature through a closed surface by working out the left-hand side of Ambrose-Singer
theorem. We now focus on the right-hand side to relate the Chern number to the Wil-
son loop spectrum.

Let us consider the 2D plane {(k1g1, k2g2) | k1, k2 ∈ [0, 1]} in the BZ and Wilson
loops Wg2

(k1) and Wg2
(k1 + ∆k) (see Fig. 3.12). There are two practical problems

to apply Ambrose-Singer theorem in Eq. (3.137) to this path: First, the length of the
boundary is not infinitesimal; we can overcome this problem by dividing the region in
infinitesimal parallelograms. Second, the right-hand side of the equation would involve
a product of matrices Wi that is hard to simplify owing to the fact that these matrices
do not commute; the determinant in Eq. (3.138) solves this problem. All in all, this
equation applied to the aforementioned 2D plane reads:

i

∫
M

tr(Ω) d2k +O(∆k2) = log det
(

. . .
)

= log det
[
Wg2(k1 + δk1)W

†
g2
(k1)

]
,

(3.145)

where M is the region between the two loops, and . . . schematically represents
dividing region M into Wilson loops evaluated on plaquettes, as shown in Fig. 3.12(b).
Note that we have gotten rid of all horizontal segments in this figure thanks to the
determinant. In the limit δk → 0 the change in log det(Wg2

) is dominated by tr(Ω):

∂k1
log detWg2

(k1) = i

∫
dk2 Ω

12(k), (3.146)

and so
1

2πi

∫
dk1 ∂k1

log detWg2(k1) = ν. (3.147)

The integral in this expression is the number of times the sum of hybrid Wannier centers
winds across the entire unit cell and ν is the Chern number – we will explore this inter-
pretation in more detail in the following section. This expression gives as an alternative
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Figure 3.12: (a) Wilson loop spectrum for a system with Chern number ν = 1. (b) In
blue, Wilson loops along g2 at k1 and k1+δk1. Taking the logarithm of the determinant
in Eq. (3.145) allows us to close the path in the border of the BZ and apply Stokes
theorem. It also makes the contribution of the black segments vanish.

to Eq. (3.144) for calculating the Chern number of a group of bands. For example, in
the case sketched in Fig. 3.12(a), we have two centers winding upwards while only one
winds downwards, so the Chern number is ν = 2− 1 = 1.

The Chern number defines classes of insulating Hamiltonians which cannot be de-
formed into each other without closing a gap, since

i)
∫
trΩ d2k, being an integer, cannot change under small perturbations of the Hamil-

tonian.

ii) Periodicity of both the hybrid Wannier centers and the Brillouin zone implies that
eigenvalues of the Wilson loop cannot smoothly unwind.

This means that projectors with different values of ν are topologically distinct.
In terms of bands, two sets of bands with different values for the Chern number can not
be deformed one into the other without closing the gap with other bands. In this spirit,
the Chern number is robust against deformations that do not close gap.

Whereas we mentioned in the case of the Rice-Mele chain that the eigenvalue of the
Wilson loop could be changed without closing the gap if we give up inversion symmetry,
here we have not considered such a possibility. The reason for not considering it is
that symmetries do not play any role in the robustness of the Chern number’s value.
Indeed, we have not considered any symmetry when defining the Chern number from
Ambrose-Singer theorem nor deriving an interpretation for it.
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

A part from the interpretation as pumping of hybrid Wannier centers, the Chern
number admits another interpretation in terms of an obstruction to charge localization.
Recall the way we originally defined the Chern number for the sphere above: we showed
that A1(k) and A2(k) (the Berry connections in either patch of the sphere) are related
by a gauge transformation at the intersection of the two patches, and the Chern number
is indeed the nontrivial winding number of this gauge. But the unitary matrix of the
gauge transformation U(k) cannot wind if it is globally defined. Thus, the Chern number
can only be nonzero when there fails to exist a global smooth gauge choice for the
wavefunctions. In particular, there fails to exist a smooth gauge U(k) which would
allows us to construct Bloch waves ψ̃nk(r) satisfying Eq. (3.75), i.e. a gauge leading to
exponentially localized Wannier functions. In conclusion, a non-zero value for the
Chern number is a Wannier obstruction.

We have intepreted the Chern number in two ways: as the pumping of hybrid
Wannier centers and as the obstruction to constructing exponentially localized Wannier
functions out of our bands. Both interpretations can be connected by noting that if an
eigenvalue eiθn of the Wilson loop winds ν times, then the hybrid Wannier functions
|WnR2(k1)〉 and |WnR2(k1 + g1)〉 have centers of charge which differ by ν unit cells.
As a consequence of this lack of periodicity in k1, hybrid Wannier functions can not be
Fourier transformed to get exponentially localized Wannier functions.

In the following section, we will present an example of a “Chern insulator” that
will help us to internalize the interpretation of the Chern number as winding of hybrid
Wannier centers, namely the Thouless pump.

3.4.3 The Thouless pump
In this section, we will present a model for a topological insulator with a non-vanishing
Chern number. Although we will introduce it as an extension of the Rice-Mele model,
it can be understood as a 2D system with broken time-reversal (TR) symmetry.

Recall our simplified tight-binding Hamiltonian for the Rice-Mele chain,

h(k1) = (ϵ+ t cos k1)σz + t sin k1σy, (3.148)

where we have renamed k → k1. We showed in Sec. 3.3.1 that when t < ϵ, the eigenvalue
of the Wilson loop for the valence band is 1, while for t > ϵ it is −1. Let us imagine
that ϵ and t depend on a periodic parameter denoted k2, which goes from −π → π

and is odd under inversion and TR symmetry. We can then rewrite the Hamiltonian as
h(k1, k2). If we can ensure that inversion symmetry is preserved and that h(k1, 0) has
Wg1 = 1 while h(k1, π) has Wg1 = −1, then we will have a model which, at a minimum,
pumps the (hybrid) Wannier centers from R1 = 0 to R1 = 1 as a function of k2; such a
model would have9 ν = −1. Note that this requires breaking TR symmetry, since this

9Assuming g1 and g2 form a right-handed coordinate system
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3.4 Wilson loops of topological bands

symmetry forces the Wilson loop matrices Wg1(k2) and Wg1(−k2) to be isospectral10.
To satisfy these requirements, we can take

h(k1, k2) = a[(1 + cos k1 + cos k2)σz + sin k1σy + sin k2σx], (3.149)

which at k2 = 0 and k2 = π becomes

h(k1, 0) = a[(2 + cos k1)σz + sin k1σy],

h(k1, π) = a[cos k1σz + sin k1σy].
(3.150)

We see that as a function of k2, the Hamiltonian h(k1, k2) interpolates between a 1D
inversion symmetric chain (Rice-Mele chain) Hamiltonian with valence band inversion
(σz) eigenvalues11 (−−) at k2 = 0 and one with valence band inversion eigenvalues
(−+) at k2 = π. In terms of the eigenvalue of the Wilson loop for the valence band, this
implies that

W1(k2 = 0) = +1,

W1(k2 = π) = −1.
(3.151)

Thus, Im logWg1(k2) has the spectrum shown in Fig. 3.13, which corresponds to the
Chern number ν = −1. According to our discussion, this indicates that there is an
obstruction to constructing exponentially localized Wannier functions, and a topological
distinction between projectors.

Note that the σx term in h(k1, k2) plays two important roles. First, it ensures the
existence of a gap for all k1 and k2. Second, as we mentioned, it breaks TR symmetry and
allows Wg1(k2) and Wg1(−k2) to have different spectra, thus allowing for the winding
in the Wilson loop spectrum.

Two comments about this model are in order:

1. While inversion symmetry simplifies the analysis by pinning W1(0, π) to ±1, it is
not necessary to define the Chern number. The winding of the Wilson loop spec-
trum – and hence the Chern number – is robust to inversion symmetry breaking.

2. Recall from Sec. 3.2 that a small electric field applied in the R2 direction will
adiabatically shift k2. From Fig. 3.13 , we see that this will adiabatically shift
the hybrid Wannier centers in the R1 direction, generating a current. Therefore,
ν governs the quantization of the Hall conductance.

We have seen that when det(W ) winds, i.e. when ν 6= 0, there is an obstruction
to constructing exponentially localized Wannier functions, and hence also a topological

10We can also prove the bulk-boundary correspondence: the spectrum of PxP can be deformed to
the spectrum of a surface potential θ(x− x0) [100,101].

11The first sign corresponds to the high-symmetry point Γ, while the second sign to X.
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

(a) (b)

Figure 3.13: Wilson loop eigenvalue of the valence band in the model for the Thouless
pump. Notice that, as it was explained in detail in Sec. 3.4.1, inversion symmetry
requires the spectrum to be antisymmetric about k2 = 0.

distinction between projectors. In the presence of additional symmetries, we can gener-
alize this significantly by looking at the entire spectrum of the Wilson loop rather than
just its determinant. As we saw earlier, symmetries may protect degeneracies in the
Wilson loop spectrum and when this happens, individual Wilson loop eigenvalues may
wind, even if the determinant of the Wilson loop is trivial (ν = 0). Then, adiabatic
deformations that preserve symmetries cannot deform the spectrum of W to a spec-
trum consistent with any atomic limit. These topological-crystalline phases include
concepts such as mirror Chern insulators (Wilson loop eigenvalue crossings protected by
mirror symmetry eigenvalues) and TR-invariant topological insulators (Wilson crossings
protected by Kramers theorem). To conclude, we will examine the simplest example of
the latter, by means of the Kane-Mele model.

A note about inversion and the role of k2 is in order before we go on. Whereas
we claimed in Sec. 3.3.1 that the phases of the Rice-Mele chain are protected by
inversion, we have driven here the system through a transition between both phases
without closing neither breaking inversion. The key to solve this paradox is to realize
that the Hamiltonian for the Thouless pump in Eq. (3.149) does not correspond to
at 1D chain, but to the 2D system shown in Fig. 3.14. Indeed, even though k2 was
introduced as the interpolation parameter corresponding to the term proportional to
σx and ϵ(k2), the constrains set by inversion to these prevents us from interpreting
them as hopping parameters anymore. The Hamiltonian in Eq. (3.149) for the Thouless
pump corresponds to a 2D arrangement of s and p-orbitals at the origin of a lattice
of space group P 1̄, with the following on-site parameters ϵα = 〈α(0)|H|α(0)〉 and
nearest-neighbor hopping parameters tαβ(R) = 〈α(R)|H|β(0)〉 (α, β = s, p):
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3.4 Wilson loops of topological bands

Figure 3.14: 2-dimensional lattice representation for the Thouless pump, with the
minimal (symmetry independent) intercell hopping parameters. Cicles (lobes) denote s
(px) orbitals. The rectangle is the primitive unit cell.

ϵs = a, tss(R) = 2a, tsp(1, 0) = −2a,
ϵp = −a, tpp(R) = −2a, tsp(0, 1) = −2ia.

Here R is a vector connecting an orbital to any of its nearest neighbors and a ∈ R. Note
that the responsible for breaking TR symmetry is the hopping between s and p-orbitals
along the direction [0, 1], as it is given by a complex number.

3.4.4 Kane-Mele model
Let us consider the lattice of pz orbitals sitting on a honeycomb structure, whose sym-
metry group is the layer group p6/mmm – isomorphic to space group 191 when we
forget about translations in the z-direction. We choose a = 1 as lattice constant and
the following basis vectors for the Bravais lattice:

e1 =
1

2
(
√
3,−1),

e2 =
1

2
(
√
3, 1).

(3.152)

In this basis, the positions of the honeycomb lattice sites are given (within the unit cell)
by

qA =
1

3
e1 +

1

3
e2,

qB =
2

3
e1 +

2

3
e2.

(3.153)

Although we distinguish the sites in the unit cell by A and B as if they belonged to two
different types of sites, they do not form completely independent sublattices. In fact,
some symmetries of the space group (like the 6-fold rotation) map the sites A into B,
and viceversa.
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

(a) (b)

Figure 3.15: (a) Choice of unit cell for the honeycomb lattice. Circles denote sites
where pz orbitals sit. (b) Reciprocal lattice and Brillouin zone corresponding to that
choice. The circles correspond to maximal k-points.

A basis for the reciprocal lattice corresponding to the choice in Eq. (3.152) is

g1 = 2π(1/
√
3,−1),

g2 = 2π(1/
√
3, 1).

(3.154)

The Bravais lattice and reciprocal lattice described here are shown in Fig. 3.15. We
would like to write a tight-binding Hamiltonian to investigate the band structure of
the honeycomb lattice and its topology. This Hamiltonian should be consistent with
the symmetries of the group p6/mmm. We begin by defining our tight-binding basis
orbitals as

φR,α,s(r) = φ(r −R− qα)|s〉, (3.155)

where R is the vector of the lattice that denotes the unit cell, α ∈ {A,B} denotes the
“type of the site” (often called sublattice), and |s〉 the spin state s =↑, ↓. We can write
down the spin-independent nearest-neighbor Hamiltonian for these orbitals as:

H = t
∑
R,s

[
c†R,B,scR,A,s + c†R−e2,B,scR,A,s + c†R−e1,B,scR,A,s

]
+ h.c. (3.156)

Note that the spin-up and spin-down channels remain uncoupled in this Hamiltonian.
In other words, the Hamiltonian is block-diagonal in the spin degree of freedom. Fur-
thermore, both spin subspaces have in correspondence the same Hamiltonian.

Fourier transforming the creation and annihilation operators through the relation

c†k,α,s =
∑
R

eik·(R+qα)c†R,α,s (3.157)
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(a) (b)

Figure 3.16: (a) Bands corresponding to the Kane-Mele model for the honeycomb
lattice. Dashed lines correspond to the Hamiltonian without SOC in Eq. (3.156), while
solid lines show the band structure with SOC (λ/t = 0.06) (b) Eigenvalues of Wg2

(k1)
for the band structure with SOC (λ/t = 0.06).

yields the following matrix expression for the Hamiltonian:

H(k) =

[
0 Q(k)

Q†(k) 0

]
⊗ s0, (3.158)

where s0 is the 2 × 2 identity matrix in the space of spins and
Q(k) = t

[
ei2π(k1+k2)/3 + ei2π(−2k1+k2)/3 + ei2π(−2k2+k1)/3

]
. Here k1 and k2 are compo-

nents of k along the directions of g1 and g2, correspondingly, so that k = k1g1 + k2g2.
Fig. 3.16(a) shows the spectrum of H(k) along lines connecting the high-symmetry
points Γ = (0, 0), M = (1/2, 0) and K = (2/3, 1/3) in the Brillouin zone (given in
reduced coordinates). At these points, the Hamiltonian reduces to

H(Γ) = 3tσx ⊗ s0, (3.159)
H(M) = (t/2σx −

√
3/2 tσy)⊗ s0, (3.160)

H(K) = 0. (3.161)

We have introduced the Pauli matrices σ which act in the basis of A,B sublattice states.
As it can be seen in Fig. 3.16(a) and Eqs. (3.159)-(3.161), the Hamiltonian is gapped at
Γ and M , while H(K) [and its time-reversed partner H(K ′)] has a linearly-dispersing
fourfold-degenerate Dirac point at E = 0

Inversion symmetry is represented as σx ∝ h(Γ) at the Γ point. Let us illustrate
the derivation of the matrix for inversion at M = (1/2, 0). We denote |χA(k)〉 , |χB(k)〉
the Bloch states obtained by Fourier-transforming the basis orbital states at A and B
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3 Alternative derivation of band topology from a geometrical perspective of adiabatic transport

lattice sites, respectively. The action of inversion on these states at M is the following:

I |χA(M)〉 = |χB(−M)〉 = e−ig1·qB |χB(M)〉 , (3.162)
I |χB(M)〉 = |χA(−M)〉 = e−ig1·qA |χA(M)〉 . (3.163)

(3.164)

Accordingly, the matrix for inversion in this basis is:

I(M) =

[
0 e−ig1·qA

e−ig1·qB 0

]
= −σx/2 +

√
3/2σy. (3.165)

which is proportional to H(M) and thus commutes with it. After simultaneously di-
agonalizing H(M) and I(M), we conclude that the lowest bands at Γ have inversion
eigenvalues (−,−), whereas at M they have inversion eigenvalues (+,+)12. Based on
these inversion eigenvalues and TR symmetry, we can determine13 the eigenvalues of
the Wilson loop matrix Wg2(k1) at k1 = 0 and k1 = π:

Wg2(0) = −σ0,
Wg2

(π) = σ0,
(3.166)

where the degeneracy is due to T 2 = −1 (or in this case, simply spin conservation).
If we could gap the Dirac points at K,K ′ while preserving TR symmetry, in such

a way that the lower two bands form an isolated set, the Wilson loop spectrum of
this set would be the one shown in Fig. 3.16(b): each hybrid Wannier function center
would wind, leading to a Wannier obstruction. However, in this case we could sacrifice
TR symmetry to form non-winding hybrid Wannier functions that do not transform
locally under TR symmetry. Hence this phase is protected by TR symmetry. Also, since
crossings in the spectrum of Wg2

(k1) are protected only at Γ and M , the Wilson loop
can generically either wind once or not at all, meaning that we can characterize the
phases by a Z2 invariant.

We need to show that we can open such a gap at K,K ′, without breaking TR
symmetry. As Kane and Mele showed [2], this requires spin-orbit coupling, which can
be included via the following term:

Hso = −iλ
∑

<<RR′>>

sσσ
′

z νRR′

(
c†ARσcAR′σ′ + c†BRσcBR′σ′

)
. (3.167)

Here sz is the z−directed Pauli matrix in the basis of spin states, νRR′ = (d1 ×
d2)z/|d1 × d2|, where d1 and d2 are the nearest-neighbor vectors along the bonds that

12It has been assumed that t > 0. If t < 0 was considered, bands would be switched and the analysis
would be analogous.

13The proof falls out of the range of these notes, but it can be found in Refs. [94,102].
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the electron should traverse to go from the site in R′ to the site in R. In particular, at
the K points, we have:

H(K) =

[
sz 0

0 −sz

]
, (3.168)

thus, the desired gap is opened by adding the spin-orbit term. This opening of the gap
is shown in Fig. 3.16(a), where λ/t = 0.06 has been considered for the case with SOC.
Fig. 3.16(b) shows the winding of Wilson loops corresponding to the two lower bands
in the case with SOC.

Let us conclude with a note about the role of inversion symmetry. Even though
inversion symmetry allowed us to deduce the Z2 invariant characterizing this phase, it
is not necessary for protecting the topology: the Wannier obstruction needs only TR
symmetry. Without inversion symmetry, however, we need to do more work to deduce
that the Kane-Mele model is topologically nontrivial.
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4 Group Theory and band
structures

In the previous section we gained insight into the topology of band structures, from
the particular perspective of adiabatic transport. We showed that their topological
properties are encoded in the spectra of Wilson loops, which can serve to diagnose and
classify the actual topological phase of a set of bands. Indeed, Berry phases and Wilson
loops were the essential components in the toolkit used to diagnose topology in the early
years of the research on topological phases of matter. Furthermore, Wilson loops provide
us with an elegant framework to interpret non-trivial topology in terms of obstruction
of charge localization.

Even though the topology of simple models can be investigated successfully by
looking into Wilson loops’ spectra, this approach turns out to be inefficient to study the
topology of bands in real materials. The main drawback of this approach consists in
the elevated numerical cost of the calculation of Wilson loops. This calculation is done
by applying the expression in Eq. (3.31) for the Wilson loop as a product of projectors,
which requires computing first the eigenstates of H(k) in a fine grid of the path [103].
The number of products of eigenstates involved in these computation grows rapidly
with the number of connected bands and the number of k-points in the grid, so the
computation demands usually a big amount of memory.

Another drawback comes from the rich variety of non-trivial loops that could be
defined in reciprocal space (for dimensions greater than one). Every loop might lead
to a Wilson loop with a unique spectrum and not all Wilson loops might be insightful
to investigate the topology. We hence need to decide which Wilson loop is worth the
numerical effort of its calculation. This pick requires generally having some intuition
about the nature of the problem even before we start with the probe.

The formalism called topological quantum chemistry [25,26], which emerged in 2017,
set a new viewpoint to investigate the topology of bands. According to it, the topological
phase hosted by a set of bands can be diagnosed by studying the symmetry properties of
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its Bloch states at k-points of maximal symmetry of the BZ. This method requires thus
the calculation of the eigenstates of H(k) only for a few k-vectors, in contrast to the
Wilson loop based approach. Moreover, the numerical cost of the calculation of Bloch
states’ symmetry properties (irreducible representations) grows linearly with the number
of bands, whereas the cost of the product of two projectors grows as the square of the
number of bands. Besides being numerically cheaper, the TQC formalism accounts for
the interplay between topology and the symmetries of the lattice in general terms.

It is due to its capacity to get over the limitations the Wilson loop based approach
suffers from that TQC has become one of the standard frameworks for the diagnosis
of topology in band structures. In fact, this method has been applied for a systematic
search of topological insulators in the Inorganic Crystal Structure Database [30,72,104],
which unveiled that twelve percent of the discovered inorganic materials are topological
insulators. Not only whole sets of valence bands have been classified with the TQC
framework, but also the smaller disconnected groups of bands [104] – those lying above
the Fermi level, for instance. These TQC based investigations proved that topological
insulators and bands are not as uncommon and scarce as it was though.

This chapter is devoted to presenting the TQC formalism, which has been widely
used in the works that form this manuscript and the collaborations held during this
thesis. We will begin by introducing the group theory concepts that form the basis of
the TQC framework, namely reducible and irreducible representations (irrep) of finite
groups, and their application to band structures of periodic crystals. These concepts have
also been applied to construct models compatible with the symmetry of certain lattices
and are vital to understand our contribution to the search of topological materials: the
software IrRep.

4.1 Reducible and irreducible representations of fi-
nite groups

A comment on the notation and perspective adopted for this section is in order before
we begin. Since group theory has been applied in this thesis mainly in the context
of quantum mechanics, we adjust the notation, definitions and examples given in this
chapter to this field. However, group theory is widely applied in many different fields of
physics, as its applicability is not restricted to quantum mechanical problems.

We say that a transformation is a symmetry of a system if it leaves invariant the
equations of motion associated to it. Most of the symmetries can usually be spotted
following geometrical considerations. This is indeed the case of crystal symmetries,
which are on the focus of TQC.

A set of symmetries forms a group if its elements satisfy certain properties under an
internal composition rule, namely the composition must be associative and the set must
contain the inverse for every element, in addition to the neutral element. A group is
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said to be finite if its number of elements is finite, and the number of elements of a finite
group is called order of the group. The groups of symmetries which leave molecules
invariant, also known as point groups, are an example of a family of finite groups.
Moreover, some groups are continuous (Lie groups), whereas the groups we will focus
on throught this work are discrete. The reason for this is that we are interested in the
application of group theory to crystals, whose symmetry groups are finite.

Although the properties of finite groups can be studied at an abstract level, the
discussion becomes more interesting when we consider their representations in certain
space. Let us consider the Hilbert space HN of dimension N which is spanned by the
states {|ψ1〉 , . . . , |ψN 〉}. We say that the representation G of dimension N of the group
G is defined in HN if a N × N matrix D(g) can be put in correspondence to every
element g ∈ G, in such a way that these matrices obey the group composition law1:

∀g1, g2 ∈ G, D(g1g2) = D(g1)D(g2). (4.1)

The space HN and states |ψi〉 are then said to be the space and basis states of the
representation D, respectively. Note that the dimension of the representation coincides
with the dimension of the space it is defined in. The matrices of the representation
describe the action of the group on its basis states, i.e. how the states in the basis
transform under the action of the group:

g |ψi〉 = Dji(g) |ψj〉 , (4.2)

where g ∈ G. Once the matrices of the representation are settled, the transformation of
a generic state |ψ〉 =

∑N
i=1 ci |ψi〉 is determined:

g |ψ〉 =
N∑
i=1

cig |ψi〉 =
N∑

j,i=1

Dji(g)ci |ψj〉 . (4.3)

Analogously as in the adiabatic transport of a spin-1/2 under a magnetic field
[Sec. 3.1.2], this equation can be implemented in two ways: On the one hand, we can
consider that symmetries act on the coefficients ci, which transform as column-vectors
with the matrix D(g):

c′j =

N∑
i=1

Dji(g)ci. (4.4)

On the other hand, it can be considered that symmetries act on the basis states as in
Eq. (4.2):

1The formal definition for a representation of a group is not restricted to Hilbert spaces. Represen-
tations can indeed be defined in many other vector spaces, like the euclidean R3-space.
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|ψ′i〉 =
N∑
i=1

Dji(g) |ψj〉 . (4.5)

Both implementations lead to Eq. (4.3) and are hence equivalent. In the following of
the manuscript, we will stick to the transfromation in Eq. (4.5).

Let HM be a subspace of HN of dimension M , where M < N . HM is said to be an
invariant subspace if all states belonging to it fall back in HM under the action of the
elements in G, i.e. if it is closed under G:

∀g ∈ G and ∀ |ϕ〉 ∈ HM , g |ϕ〉 ∈ HM . (4.6)

If a non-trivial invariant subspace HM of HN exists, the representation D defined in
HN is reducible; otherwise, if the space in which a representation is defined can not be
divided into smaller invariant non-trivial subspaces, the representation is irreducible.

The matrices of a reducible representation show a characteristic shape when the
basis states are chosen and sorted in a particular way. Let us choose as the first M
states those states |ψ1〉 , . . . , |ψM 〉 which span the invariant subspace HM – these states
are said to be adapted to the symmetry of the representation DM defined in HM .
The rest of states in the basis are the states |ϕ1〉 , . . . , |ϕN−M 〉 which belong to HN−M ,
i.e. the subspace orthogonal to HM . It follows from the invariance of HN and the
orthogonality between this subspace and HN−M that all matrix elements 〈ϕj |g|ψi〉 = 0,
for ∀g ∈ G. It then stems from the unitarity2 of the representation D that 〈ψi|g|ϕj〉 = 0

for ∀g ∈ G, which means that HN−M is also an invariant subspace. As a consequence,
the matrices D(g) are block-diagonal with this choice of the basis:

D(g) =



DM (g)

DN−M (g)


. (4.7)

The block corresponding to HM is indeed the matrix of the representation DM (g) defined
in this subspace, while the other block correspond to the representation defined in the
invariant subspace HN−M .

Let us consider as an example the point group C4v and the Hilbert space formed
by the p-orbitals |px〉, |py〉 and |pz〉. The group C4v contains eight symmetry operations
[see Fig. 4.1(a)]. In particular, it contains the 4-fold (counter-clockwise) rotation C+

4

and the mirror reflection M11̄, which maps the space coordinate x to y and x to y. The
2All the representations we work with are unitary, as we require the conservation of the states’ norm.
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action of these symmetries on the p-orbitals is given by:

C+
4 |px〉 = |py〉 M11̄ |px〉 = |py〉 ,

C+
4 |py〉 = − |px〉 M11̄ |py〉 = |px〉 ,

C+
4 |pz〉 = |pz〉 M11̄ |pz〉 = |pz〉 .

This action is illustrated in Fig. 4.1(b). Note that the px and py-orbitals remain in the
xy-plane as these symmetries act on them. The subspace spanned by these orbitals is
thus invariant under the group3 C4v. Its orthogonal subspace, which is spanned by the
pz-orbital, is also invariant. Indeed, the matrices of the representation D corresponding
to these symmetries and basis states have the block-diagonal shape of Eq. (4.7):

D(C+
4 ) =

0 −1 0

1 0 0

0 0 1

 , D(M11̄) =

0 1 0

1 0 0

0 0 1

 . (4.8)

The 2 × 2 blocks here are the matrices of the representation E defined in the sub-
space spanned by px and py-orbitals, wheareas the element in the lower-right corner
corresponds to the unidimensional representation A1 of the pz-orbital. Both of these
representations are irreducible because the corresponding Hilbert spaces can not be split
into smaller invariant subspaces. We then say that the representation D is decomposed
into the irreps E and A1 as:

D = E ⊕A1. (4.9)

Coming back to the general discussion, the space of a reducible representation
D might in general be split in several invariant subspaces which can not be further
divided into smaller invariant subspaces. Each of this small subspaces hosts then an
irrep Di of dimension di of the group. Furthermore, different subspaces might have in
correspondence the same irrep. The number of times an irrep Di takes part in this
decomposition is called the multiplicity of that irrep, and we denote it mi. Once we
determine the multiplicity of all irreps, we can write:

D =
⊕
i

miDi(di). (4.10)

This expression is the decomposition of a reducible representation of a group into irreps
and plays a vital role in this thesis. The matrices of D will be diagonal by blocks after
the decomposition, such that neither of the blocks can be divided into smaller blocks.

3The rest of symmetries of C4v also satisfy this property, since they can be obtained through the
composition of C+

4 and M11̄. These symmetries form a (non-unique) set of generators of C4v .
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Figure 4.1: (a) Symmetry operations of the point group C4v. Solid lines indicate
mirror planes. The black square denotes the 4-fold and 2-fold rotations with respect to
the z-axis (perperdicular to the plane). (b) and (c) show the action of C+

4 and M11̄ on
the basis of p-orbitals, respectively.

The diagonal of D will contain mi identical di×di blocks corresponding to the irrep Di:

D(g) =



. . .

. . .

Di

Di

Dimi blocks


. (4.11)

In practice, the reducible representation D and irreps Di are known from the begin-
ning, and the problem of the decomposition consists in determining the multiplicity mi

of each irrep. This determination might be straightforward for the simple cases where
the dimension of D is small or we possess a clear picture of its Hilbert space – like in
the example of the group C4v given above. However, an efficient method to solve the
problem is in order for more complicated scenarios, like the application in numerical
approaches. Such a systematic approach can be derived based on the orthogonality
properties and is based on the application of the following formula to determine the
multiplicity of each irrep in the decomposition:

mi =
1

||G||
∑
g∈G

χ∗(g)χi(g). (4.12)
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||G|| stands here for the order of the group G, while χ and χi stand for the characters
of the representations D and Di, respectively. The character of a representation is the
set of traces corresponding to its matrices. χ(g) and χi(g) are thus the traces for g.

4.2 Wigner’s theorem: the form of the Hamiltonian
We have shown that the matrices of symmetries corresponding to reducible representa-
tions become diagonal by blocks when the representation is decomposed into irreps and
the basis of states is chosen wisely. This provides us with interesting information about
the symmetry properties of the basis states which span our Hilbert space. Nevertheless,
since crystal symmetries are not related to physical observables, we might wonder if they
have any relationship with measurable quantities like the energy levels of the system.

We will now unveil the way in which crystal symmetries set constrains on the energy
spectrum of the system. In particular, we will demonstrate that the decomposition of
a reducible representation into irreps determines the degeneracy of the energy levels
and allows us to classify the states corresponding to each energy level. It should not
however be surprising to discover such a relationship, since we have already shown that
symmetries allow us to split the Hilbert space into independent subspaces.

As we mentioned before, a transformation g is a symmetry of a system if it leaves
the Schrödinger equation invariant. This invariance condition can be recast as the com-
mutativity between the Hamiltonian Ĥ of the system and the operator Tg corresponding
to the symmetry4:

ĤTg = TgĤ. (4.13)

Let us consider that the basis we choose for the Hilbert space of the problem trans-
forms as the representation D of the symmetry group G. The invariance Eq. (4.13) of
the Hamiltonian can the be expressed in matrix form:

HD(g) = D(g)H. (4.14)

In conclusion, once a basis of states spanning the Hilbert space is chosen, the in-
variance of the Hamiltonian with respect to the symmetry transformations of a group
is equivalent to the commutativity between the matrices of Hamiltonian and the repre-
sentation of the group.

We now explain, in terms of representations, the constrains set by symmetries on
the matrix elements of the Hamiltonian. Let us for that consider that D(g) has the
quasidiagonal form corresponding to its decomposition into irreps. There are two types
of matrix elements of H: those between states which transform as different irreps, those
involving states of equivalent irreps. For the sake of simplicity, let us restrict ourselves

4We will denote the Hamiltonian operator as Ĥ and keep H to denote its matrix form when there is
a risk of mixing them up.

91



4 Group Theory and band structures

to the case in which only two irreps take part in the decomposition of D(g), namely
the irreps D1 and D2 – note that there is no loss of generality in this assumption, as
the problem can be considered the restriction of the Hilbert space to the union of sub-
spaces corresponding to these two irreps. The matrices of D(g) have the aformentioned
quasidiagonal shape:

D(g) =

[
D1(g)

D2(g)

]
, (4.15)

whereas the matrix of the Hamiltonian has the following form, in the analogous block
based structure:

H =

[
H11 H12

H†12 H22

]
, (4.16)

where H11, H22 and H12 are blocks of size d1 × d1, d2 × d2 and d1 × d2, respectively
(with di the dimension of the irrep Di). Then, by virtue of Eq. (4.14):[

H11 H12

H†12 H22

]
=

[
D†1(g)H11D1(g) D†1(g)H12D2(g)

D†2(g)H
†
12D1(g) D†2(g)H22D2(g)

]
. (4.17)

According to Schur’s second lemma [105], a matrix M satisfying D1M = MD2 should
vanish if D1 and D2 are non-equivalent irreps. Therefore, the off-diagonal block H12

vanishes and Eq. (4.17) reduces to:[
H11

H22

]
=

[
D†1(g)H11D1(g)

D†2(g)H22D2(g)

]
. (4.18)

Moreover, Schur’s first lemma [105] states that any matrix which commutes with
all the matrices of an irrep must be proportional to the identity matrix, thus

H11 = E11d1
,

H22 = E21d2 .
(4.19)

where 1di is the identity matrix of dimension di. Three important results stem from
this: First of all, the eigenstates and energy levels of the Hamiltonian can be labeled by
irreps of the symmetry group. Second, the degeneracy of the energy level corresponding
to every irrep (of multiplicity one) is equal to the dimension of the irrep. Thirdly, the
matrix of the Hamiltonian is diagonal by blocks.

There is a third possibility in Eq. (4.17), namely that D1 and D2 are equivalent
irreps. This corresponds to the case where there is an irrep of multiplicity greater than
one in the decomposition of D. Based again on Schur’s first lemma, every block in

92
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Eq. (4.16) must be proportional to the identity matrix:

H =

[
h111d1

h121d1

h∗121d1 h221d1

]
, (4.20)

where h11, h22 ∈ R and h12 ∈ C. Let us consider as basis the sets of symmetry-adapted
states {|ψ1〉 , |ψ2〉 , . . . , |ψd1〉} and {|ϕ1〉 , |ϕ2〉 , . . . , |ϕd1〉}, which do not mix between them
under any symmetry, i.e. each set is closed under the group. If we sort these states as

{|ϕ1〉 , |ψ1〉 , |ϕ2〉 , |ψ2〉 . . . , |ϕd1
〉 , |ψd1

〉}, (4.21)

the matrix for H takes the following quasidiagonal structure:

H =


h11 h12
h∗12 h22

h11 h12
h∗12 h22

. . .

 , (4.22)

where the same block repeats itself d1-times along the diagonal of the matrix. As a
consequence, an irrep of multiplicity mi and dimension di has in correspondence mi

energy levels (different, in principle) of degeneracy di. However, calculating the energy
levels of such an irrep requires further diagonalization of the corresponding mi × mi-
block.

Even if Eqs. (4.22) and (4.11) might look similar, in general it is not possible to
achive the block diagonal form in both the matrices of the representation and the matrix
of H. The reason for this is that these quasidiagonal forms require sorting differently
the states in the basis. In other words, the ordering that leads to Eq. (4.22) does not
turn the matrices of the representation into block-diagonal form.

All in all, we have shown that the decomposition into irreps of the symmetry repre-
sentation D defined in the Hilbert space determines the form of the Hamiltonian, which
is quasidiagonal for certain choice of the basis states. Every irrep of dimension di and
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multiplicity mi will hence have in correspondence di identical blocks of shape mi ×mi:

H =



. . .

. . .

Hi

Hi

Hidi blocks
of shape mi ×mi


. (4.23)

This result is known as Wigner’s theorem and it turns out to be a powerful tool to
deal with analytical models for systems. The key considerations that follow immedi-
ately from this block-diagonal form are the following: First, every energy level has in
correspondence an irrep, which describes the transformation of the corresponding states
under the symmetry group. This irrep can be used as a label of the energy level. Sec-
ond, every irrep Di of dimension di and multiplicity mi in the decomposition of the
representation D has in correspondence mi energy levels of degeneracy di.

We must mention that the dimension of the irrep determines the minimum degen-
eracy of the corresponding energy level, i.e. the degeneracy we would observe if the
Hamiltonian was the most general one compatible with the symmetry of the group. In
practical terms, however, we often find degeneracies greater than the dimensions of ir-
reps involved in it. This is called accidental degeneracy, as it does not stem from the
constrains set by symmetries, and it might be caused by different reasons.

On the one hand, accidental degeneracies are common when working with simplified
models for systems. Usually, the number of parameters included in such models is kept
simple enough to explore clearly a certain aspect of the system. When choosing the
parameters to be included, those responsible for the absence of accidental degeneracy
might be left out. This is indeed common when constructing tight-binding models for
crystals: the most general Hamiltonian compatible with the symmetries of the lattice
would not suffer from accidental degeneracies, but it might require including a big num-
ber of hoppings. Since working with that many tunneling amplitudes is impossible, only
hoppings to certain (relatively) close neighbors are considered, based on the fact that the
capacity of an electron to hop between two atoms decreases with the distance between
these atoms. Accidental degeneracies in the band structure arise often as the price to
be paid for this simplification. As the root of the problem suggests, the way to get rid
of these degeneracies is to include additional hoppings, e.g. to further neighbors.

On the other hand, accidental degeneracies might be the consequence of a particular
choice for the parameters. For example, a certain choice of values of hopping parameters
might lead to band-touching points. As soon as the values differ slightly from that
particular choice, accidental degeneracies vanish. This scenario is often dubbed fine-
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tuning.
It is worth mentioning that, even though all accidental degeneracies might be gapped

out by including in the model additional parameters and choosing them carefully, getting
rid of some of them might be hard. For instance, it is sometimes complicated to get rid
of band crossings between bands of different irreps.

4.3 Group theory for periodic crystals
The group theory concepts introduced in the previous chapters are directly applicable to
point groups, which are symmetry groups of molecules, for example. The application of
these concepts to symmetry groups of periodic crystals is, nevertheless, not straightfor-
ward. Let us for instance think about the size of the Hamiltonian. On the one hand, the
Hilbert space of a molecule is relatively small. For example, a molecule formed by four
atoms, each with a single orbital, has in correspondence a Hilbert space of dimension
four and a 4× 4 Hamiltonian matrix. On the other hand, a crystal formed as a periodic
arrangement of N such atoms has a Hilbert space of dimension N . This number tends
to be of the order of Avogadro’s number, i.e. N ∼ 1023. Writing down such a N × N

Hamiltonian, and applying Wigner’s theorem to it, are clearly an unrealistic goals.
Another immediate problem is that, whereas point groups contain a finite number

of symmetries, the group of a periodic crystal is not finite. This is due to the fact
that it includes all translation by vectors of the Bravais lattice, which account for the
periodicity of the crystal pattern.

Since periodic crystals are indeed the main focus of our work, we will devote this
section to a detailed explanation of how the theory of representations and Wigner’s
theorem are applied to these systems.

4.3.1 Space groups and translation subgroups
The symmetry group of an ideal crystal, also known as the space group of the crystal,
is formed by the transformations that leave the crystal pattern invariant. In other words,
every transformation in this group maps any point of the crystal to an equivalent point.

Let G denote a space group. A general symmetry g ∈ G can be written as a point
group symmetry R followed by a translation v: g = vR. Through this text, we will use
the more convenient Seitz notation [106], according to which the space group operation
g can be denoted as g = {R|v}.

The main characteristic of the symmetry of a periodic crystal is that its crystal
pattern repeats itself periodically. In other words, crystals have discrete translational
symmetry. As we mentioned in Sec. 2.2, this translation symmetry is described by the
Bravais lattice formed by the vectors that leave the crystal invariant. A vector t of the
Bravais lattice can be written in terms of the primitive lattice vectors a1, a2 and a3 of
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the lattice:
t = n1a1 + n2a2 + n3a3. (4.24)

where n1, n2, n3 ∈ Z. Since the combination of two lattice vectors is always another
lattice vectors, the translations by vectors of the lattice form a group that is indeed the
translation subgroup T of the space group G, i.e. T ⊂ G.

The space group G can be written as a coset decomposition with respect to its
translation subgroup T as:

G = T ∪ g1T ∪ · · · ∪ gnT. (4.25)

The elements g1, g2, . . . , gn are referred to as the coset representatives of the decom-
position. It should be mentioned that the set of coset representatives is finite and
non-unique, as the composition of a coset representative and any translation of T yields
an equally valid set. There exist two different types of space groups, depending on the
possible choices of coset representatives: if the coset representative can be chosen to be
point group symmetries, the space group is said to be symmorphic. In contrast, if
every valid choice of representatives involves at least a symmetry whose translational
part does not vanish, the space group is non-symmorphic. Such a representative could
be a screw rotation or a glide reflection, and could be written as gi = {Ri|vi}, where
vi does not belong to the Bravais lattice. Pm3̄m, Fm3̄m and Pmm2 are examples of
symmorphic space groups, while Pbam, P4/mbm and P42/mbc are non-symmorphic
groups.

Non-symmorphic symmetries can protect band crossings which lead to exotic nodal
lines. In fact, while working on this thesis, I took part in a collaboration which showed
that glide reflections are able to protect coplanar-elliptical nodal lines in some non-
symmorphic space groups [107, 108]. We will look into this work in more detail in
Sec. 6.3.2.

Let us for now know focus on the translation subgroup. When two or more transla-
tions are applied in a row, the order in which they are considered is clearly non-relevant.
In other words, the subgroup of translations is an abelian group. A particularly in-
teresting property of abelian groups is that all their irreducible representations are
one-dimensional – this property follows from the fact that the matrices of their rep-
resentations should also commute. A basis state |ϕ〉 of an irrep τ of T satisfies then:

t̂ |ϕ〉 = τ(t) |ϕ〉 , (4.26)

where t̂ is the operator corresponding to the translation by the vector t of the Bravais
lattice and τ(t) is a unimodular complex number. The basis states of the irreps of
T are therefore eigenstates of translations. Since τ is one-dimensional, the elements
corresponding to the generators a1,a2 and a3 of T can be written as τ(ai) = exp(iθi).
A generic translation t = n1a1 + n2a2 + n3a3 ∈ T is then represented by the following
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expression:
τ(t) = τ(a1)

n1τ(a2)
n2τ(a3)

n3 = eiθ1n1eiθ2n2eiθ3n3 , (4.27)

Therefore, τ is determined by the triplet (θ1, θ2, θ3). We can achieve a more convenient
expression by saving these numbers in a vector defined as:

k = θ1g1 + θ2g2 + θ3g3, (4.28)

where the vectors gj satisfy gj · ai = 2πδij – notice that this is the definition for the
primitive vectors of the reciprocal lattice. Then, Eq. (4.27) can be written as:

τ(t) = eik·t. (4.29)

We have hence reached an alternative derivation of Bloch’s theorem, which is given
from a group theory perspective. Each irrep of the translation subgroup of an space
group can be labeled by a vector k in the BZ and its basis state |ψk〉 is the Bloch state
corresponding to k. Moreover, the matrix element of a translation t ∈ T for this state
is the well-known phase in Eq. (2.11) obtained when acting on a Bloch state with this
translation:

t̂ |ψk〉 = eik·t |ψk〉 . (4.30)

The reason why the irreps of T are interesting is the following: as we mentioned
in Sec. 4.2, the Hamiltonian of a system commutes with the operators of its symmetry
transformations. Especially the Hamiltonian of a periodic crystal commutes with all
t̂ ∈ T . This allows us to choose Bloch waves as the basis for the Hilbert space of the
problem, which turns the matrix H of the Hamiltonian into diagonal by blocks, so that
each block H(k) corresponds to a k in the BZ. We can then study independently the
spectrum and eigenstates of each H(k). In particular, we could apply Wigner’s theorem
to each H(k), but this requires identifying first the symmetry group of H(k).

4.3.2 Star and little group of a vector k

We know that the symmetry group of the Hamiltonian H is the space group G, but
we are now interested in the symmetry group of H(k). We will identify this group and
discuss the transformation properties of the vector k.

For the remaining of the discussion about the application of group theory to pe-
riodic crystals, we adopt the aformentioned basis of the Hilbert space H. This choice
corresponds to dividing H in subspaces Hk which are invariant under the translation
subgroup:

H = Hk1
⊕Hk2

⊕ · · · ⊕ HkN , (4.31)

where N is the number of vectors in the BZ. This expression stands for the fact that a
representation of G defined in H subduces a reducible representation of the translation
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subgroup. Whereas H is closed under G, a subspace Hk is not, in general. Such a
subspace is closed under a subgroup Gk ⊂ G which contains the symmetry operations
that leave the vector k invariant (up to translations by vectors of the reciprocal lattice):

Gk = {{R|v} ∈ G | Rk = k +G}, (4.32)

where G is a vector of the reciprocal lattice5. This group is called little group of k,
and plays an important role in the application of Wigner’s theorem to band structures
of crystals, since it is also the symmetry group of H(k).

Now, let us look into the actual transformation of a Bloch state |ψk〉 ∈ Hk under
the space group. We define for that |ψ′〉 = g |ψk〉, where g = {R|v} ∈ G. In order to
identify this new state, let us act on it with a translation t̂ ∈ T :

t̂ |ψ′〉 = {E|t}{R|v} |ψk〉 = {R|v}{E|R−1t} |ψk〉 = exp
(
ik ·R−1t

)
|ψ′〉

= exp(iRk · t) |ψ′〉 .
(4.33)

Here E denotes the identity element. We have therefore obtained that the transformation
of a Bloch state |ψk〉 under a symmetry operation is described entirely by the action of
the symmetry’s rotational part on the vector k of the state:

{R|v} |ψk〉 = |ψRk〉 . (4.34)

The star of k is defined as the set of vectors in the BZ related to it by the sym-
metries of the space group:

star(k) = {Rk ∈ BZ | ∀{R|v} ∈ G}. (4.35)

Even thought the space group contains an infinite number of elements, the number of
vectors in the star of k is finite. In fact, this number can not be greater than the number
of coset representatives in the decomposition in Eq. (4.25) of G with respect to T . It
can be shown that the little groups of all vectors in star(k) are isomorphic, so they
have equivalent irreps. Furthermore, the matrices H(k) and H(Rk) are connected by a
similarity relation, which means that they have the same spectrum. In other words, the
energy levels of bands are identical for all k ∈ star(k).

4.3.3 Irreducible representations of the little group of k

Before we apply Wigner’s theorem to periodic crystals, let us comment on the derivation
of the irreps of the little group Gk. The issue in this derivation is that Gk is not a finite

5The reason for defining the equivalence modulo a vector G of the reciprocal lattice is that k and
k + G have in correspondence the same irrep of the translation subgroup, thus also the same Bloch
state.
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group. The idea behind the way to tackle the problem is to set a relationship between
the irreps of Gk and certain point group.

Since the little group Gk is a subgroup of the space group G which also includes all
translations by vectors of the Bravais lattice, it can also be decomposed in cosets with
respect to the same translational subgroup T :

Gk = T + gk1T + · · ·+ gkmT. (4.36)

This decomposition might involve only some of the coset representatives in the decompo-
sition in Eq. (4.25) of the space group. For symmorphic space groups, the representatives
here form a point group Ḡk dubbed little cogroup of k. The action of every element
g ∈ Gk can then be obtained by applying a symmetry R ∈ Ḡk, followed by a translation
t ∈ T , so that g = {R|t}. The representation Dk for such a symmetry is the following,
with the choice of basis for Hk adopted above in Eq. (4.31):

Dk({R|t}) = exp(ik · t)D̄k(R), (4.37)

where D̄k is the matrix for the representation of Ḡk. Especially, if D̄k is chosen to be
an irrep of Ḡk, then Dk is also an irrep of Gk. In conclusion, the irreps of a little group
are in one to one correspondence to the irreps of its little cogroup, for symmorphic space
groups.

If the space group is non-symmorphic, the coset representatives in Eq. (4.36) do not
form a point group, as the second powers of glide reflections and certain powers of screw
rotations give rise to translations belonging to T . In this case, the little cogroup is formed
by the rotational parts of the coset representatives. Deriving the irreps of the little group
from those of the little cogroup is not as straightforward as for symmorphic groups,
especially for vectors k lying on the surface of the BZ. It is nevertheless possible to follow
a procedure based on a similar idea to derive the irreps of the little group [105,109].

In practical terms, we will not have to construct the irreps of little groups. They
can be found in the Bilbao Crystallographic Server [96]. We can then decompose the
representatation Dk of Gk in terms of these irreps as:

Dk =
⊕
i

mk
i D

k
i , (4.38)

where Dk
i is an irrep of Gk with multiplicity mk

i . The multiplicity of each irrep can be
calculated by applying the magic formula in Eq. (4.12), where the sum is in practice
taken only for the coset representatives in Eq. (4.36):

mk
i =

1

||Ḡk||

M∑
j=1

[χk(gkj )]
∗χk

i (g
k
j ). (4.39)
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Here, χk and χk
i denote the traces of Dk and Dk

i , while M is the number of coset
representatives in Eq. (4.36).

According to Wigner’s theorem, the matrix H(k) of the Hamiltonian will be diag-
onal by blocks in the basis of states adapted to the symmetry of the irreps of Gk. Each
irrep Dk

i of dimension dki will then have in correspondence dki identical blocks of size
mk

i ×mk
i . It follows from this block-diagonal structure that each irrep is related to mk

i

different (modulo accidental degeneracy) energy levels of degeneracy dki . Note that this
allows us to identify each eigenvalue of H(k) by the irrep it corresponds to.

Let us point out how narrowing the choice of the basis of the Hilbert space led
to the block diagonal structure of H(k). This procedure was performed in two steps.
First, we divided the Hilbert space H into subspaces Hk that are invariant under the
translation subgroup: H = Hk1

⊕Hk2
⊕ . . .HkN , where N is the number of vectors in

the BZ. Each of these subspaces is spanned by Bloch states, which are basis states of
irreps of the translation subgroup. With this split of the Hilbert space and choice of
basis, the matrix H(k) becomes diagonal by blocks and each block corresponds to a Hk

[see Fig. 4.2a]. Second, we realized that each of these blocks subduces a representation
of the little group Gk that is (generally) reducible. Therefore, choosing for each Hk a
basis of Bloch states that are also adapted to the symmetries of the irreps of Gk splits
each block into smaller blocks [see Fig. 4.2(b)].

Notice that, even if an eigenstate |ψk〉 of Hk is also an eigenstate of the Hamiltonian
H of the whole crystal, it does not transform as an irrep of the space group, but as an
irrep of Gk. Nevertheless, it is possible to choose the eigenstates of H to transform
as irreps of the space group, by building them up as linear combinations of the states
|ψk〉 , |ψgk〉 , . . . in the star of k – the fact that these states are degenerate, which follows
from the similarity relation connecting the Hamiltonians of the vectors in the same star,
allows us to make this choice. This property is not exclusive to single-electron Hamilto-
nians of crystals in reciprocal space; it is indeed a characteristic of any Hamiltonian that
can be written as the sum of smaller Hamiltonians acting on disconnected subspaces of
the Hilbert space.

4.4 Spinful particles and double groups
We have not mentioned the spin degree of freedom so far. In fact, the group theory
concepts introduced until now are valid regardless of whether the particles are spinful
or spinless. Explaining how spin enters the theory of symmetry representations might
however be worth it, as the main focus of our work in on electrons, which are spinful
particles. This aspect is indeed vital to include spin-orbit coupling effects in tight-binding
models, like in Sec. 10.5.

Spinful and spinless particles have different transformation properties and the rep-
resentations we work with must account for these differences. In order to illustrate this
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(a)


. . .
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(b)
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Figure 4.2: Block-diagonal form of the matrix H of a crystal. (a) Form obtained when
the Bloch states are chosen for the basis of the Hilbert space H. Each block corresponds
to a subspace Hk of a definite k. (b) When the states adapted to the symmetry of the
irreps of Gk are chosen as basis for each Hk, the block corresponding to each of these
subspace generally divides into smaller blocks (grey squares), according to Wigner’s
theorem.

point, let us come back to the example of the point group C4v and consider an elec-
tron on a px-orbital, denoted as |px〉. This state acquires a π-phase under the two-fold
rotation C2z with respect to the z-axis. So after applying this rotation twice in a row:

C2
2z |px〉 = (−1)2 |px〉 = |px〉 . (4.40)

Even if this transformation might look reasonable for vectors, it contradicts the fact
that fermions (like the electron) acquire a π-phase under 2π-rotations. The root of the
problem is that the state |px〉 describes only the particle’s space degrees of freedom. To
account efficiently for the spin, we need to include it as a degree of freedom in our basis of
the Hilbert space. A state in this basis could then be denoted as |ψiσ〉, where i describes
the space degrees of freedom, while σ stands for the spin. Such a state transforms as
follows under a symmetry operation g = {R|v}:

g |ψiσ〉 =
∑
σ′j

Dji(g)Sσ′σ(R) |ψjσ′〉 . (4.41)

Here, D is the matrix of the representation that describes how space degrees of freedom
transform, whereas S is the representation as which the spin transforms, often called
spin representation. We can thus consider that the transformation of the spinful
basis states is described by the product representation D̄ = D × S, whose matrices are
constructed as the Kroenecker product between the matrices of D and S. Such “spinful
representations” are often dubbed double-valued representations.
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Let us come back to the example of the px-orbital above. The matrix of C2z in the
spin representation is:

S(C2z) = exp(iσzπ/2) = iσz, (4.42)

where σz is the third Pauli matrix. The transformation of the spinful px-orbital under
a 2π-rotation over the z-axis is then:

C2
2z |pxσ〉 = (−1)2i2 |pxσ〉 = − |pxσ〉 , (4.43)

so we get the correct transformation.
Notice that now a rotation Cθ by an angle θ differs from Cθ+2π. Strictly speaking,

double-valued representations are not representations of the symmetry groups we have
considered so far, but of groups that are twice as large as them due to the fact that 2π-
rotations should be distinguished from the identity for spinful particles. These enlarged
groups are known as double groups.

For systems with weak SOC, the electron could be considered a spinless particle and
the symmetry analysis could be restricted to single-valued representations. The study of
the symmetry properties of phonons [110] and photons [111] could also be performed in
terms of single-valued representations. However, the dependence of the Hamiltonian on
the spin can not be neglected for some systems. This is the case for materials containing
heavy elements with strong spin-orbit coupling. Indeed, this effect turns out to be
vital to understand or reproduce some insulating phases [2, 3] . Moreover, considering
electrons as spinful particles has also lead to the prediction of high-degeneracy crossings
of bands [112].

4.5 Time-reversal symmetry in group theory
Everything we have explained so far in this chapter has been based on groups contain-
ing crystal symmetries. Unlike these symmetries, time reversal (TR) is an antiunitary
transformation that has profound effects on the band structure of crystals. In fact,
it is responsible of the Kramers degeneracy of bands and it can protect topological
phases [11]. Here, we will comment on the implementation of TR symmetry in group
theory.

TR symmetry enters the theory of symmetry representation as an anti-unitary
transformation which reverses the spin. Regarding the crystal structure, it reverses lo-
cally the direction of magnetic moments. Apart from leaving the array of ions invariant,
any symmetry in the space group must also leave now the magnetic moments unaltered.

Let us denote by θ the operator of TR and by G the space group corresponding
to a certain arrangement of ions, without considering the magnetic moments – the kind
of space groups considered so far, also known as Fedorov groups or type-I Shubnikov
groups. If the crystal is not magnetically ordered, the combination of unitary crystal
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symmetries and TR forms antiunitary symmetries which leave the ions’ positions invari-
ant. After considering TR symmetry, the space group M of the system is twice as large
as G:

M = G+ θG. (4.44)

This kind of space groups are called grey groups or type-II Shubnikov groups.
When the crystal shows certain magnetic ordering, only some of the transformations

in Eq. (4.44) leave invariant at the same time the arrangement of ions and the magnetic
moments. For example, it might happen that the two-fold rotation C2z does not belong
to the space group, while θC2z does. These space groups corresponding to magnetically
ordered crystals are known as black and white groups (they include both type-III and
IV Shubnikov groups). All in all, there exist 1651 magnetic space groups.

Motivated by the fact that we have considered only magnetically non-ordered crys-
tals in this work, we will concentrate our discussion on how the theory of representations
is modified to include TR symmetry in grey groups. Let us choose as our starting point
the irreducible representation ∆ of the space group group G defined in the Hilbert space
of dimension N spanned by the states |ψi〉. Then, for every g ∈ G:

g |ψi〉 =
N∑
j=1

∆ji(g) |ψj〉 . (4.45)

We shall write this equation for short in the following form:

g |ψ〉 = ∆(g) |ψ〉 , (4.46)

where |ψ〉 denotes the basis formed by the states |ψi〉. Under TR symmetry, these states
turn into the states |ϕi〉, which we also denote for short as |ϕ〉:

|ϕ〉 = θ |ψ〉 . (4.47)

It can be shown that the transformations g ∈ G leave also the subspace of |ϕ〉
invariant. In addition, the transformations g̃ ∈ θG map the states |ψ〉 into |ϕ〉, and the
states |ϕ〉 into |ψ〉. The space H2N formed as the union of the spaces spanned by all
these states is hence invariant under the grey group M = G+ θG. The action of M on
the states |ψ, ϕ〉 ∈ H2N is described by the following matrices [109]:

D∆(g) =

[
∆(g) 0

0 ∆∗(θ−1gθ)

]
∀g ∈ G,

D∆(g̃) =

[
0 ∆(g̃θ)

∆∗(θ−1g̃) 0

]
∀g̃ ∈ θG.

(4.48)

These set of matrices forms the corepresentation D∆ of M constructed from the irrep
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∆ of G. A corepresentation is the analogous to a representation within the context of
magnetic groups containing antiunitary symmetries. The reason why it is not called sim-
ply “representation” is that its matrices do not obey the multiplication law in Eq. (4.1)
rigorously for all pairs of symmetries in M .

If the space H2N admits a split into non-trivial invariant subspaces, the corepresen-
tation D∆ will be reducible. In other words, the corepresentation is reducible if there
exists a change of basis in H2N for which both matrices in Eq. (4.48) turn into block
diagonal, for every pair of unitary and antiunitary operations in M . Otherwise, it will
be irreducible.

It turns out that whether D∆ is reducible or irreducible depends on the irrep ∆

of G it was derived from. We can distinguish between three types of representations:
type 1 (real), −1 (pseudoreal) and 0 (complex). If ∆ is a type 1 single-valued or type
−1 doble-valued irrep of G, the space H2N can be divided into two invariant subspaces
of dimension N , so the corepresentation D∆ is reducible. In the rest of cases, the
corepresentation induced from ∆ is irreducible, thus it will have in correspondence an
energy level of degeneracy 2N , upon application of Wigner’s theorem.

In practical terms, the irreps of unitary groups G and their corresponding classifi-
cation as type 1, −1 or 0 irreps can be found in the literature [96,109]. This information
allows us to predict the degeneracy of the corresponding energy levels upon inclusion
of TR symmetry. Moreover, the irreducible corepresentations of magnetic point groups
and (little groups of) magnetic space groups have been recently included in the Bilbao
Crystallographic Server [34, 72].
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In Sec. 3, we learnt that topological properties of bands are encoded in their wave func-
tions. We also proved the existence of a relationship between symmetries and topology,
which manifested itself as constrains set by symmetries on the spectrum of Wilson loops.
Moreover, the description of the way in which representations of little groups of vectors
k are related to wave functions of bands was given in Sec. 4. However, we have not set
yet a general relationship between symmetries and topology valid for all space groups.
In this section, we will marry the concepts explored in both Secs. 3 and 4 by introducing
the formalism named topological quantum chemistry. This theory provides us with an
efficient recipe to diagnose the topology of a set of bands from its little group irreps,
besides giving us a deep insight into how bands inherit their symmetry properties from
localized states in real space.

Since it was published in 2017 [25–27], TQC has become a widely used formalism
to investigate the topology of band structures. On the one hand, its combination with
ab initio techniques forms a powerful method to diagnose topology in actual materials;
this method has been recently applied to search for topological phases in big material-
databases [30, 72, 104]. On the other hand, TQC turned out to be a useful tool for
identifying space groups and crystals which might host particular topological phases,
and for engineering models to look into these phases [94,113,114].

The original works by J. Zak [31–33] set in the 1980s the ground for the development
of the actual TQC formalism. In this works, J. Zak explored how Wannier functions
sitting in real space induce bands in reciprocal space; in particular, he described the way
in which these bands inherit their little group representations from the transformation
properties of Wannier functions. Bands induced from exponentially localized (in real
space) Wannier functions are said to have an atomic limit; equivalently, in the language
used in Sec. 3, a set of bands has an atomic limit if it is possible to construct via
Eq. (3.74) exponentially localized Wannier functions that respect the space group. J.
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Zak further realized that space groups might host a rich variety of atomic limits, which
stems from the existence of many special positions in the unit cell and types of Wannier
functions.

The formalism was complemented later by B. Bradlyn et al. to deal with the
topology of bands [25–27]. This extension is rooted in the idea that trivial bands have
an atomic limit; notice that this concept is in accordance with our discussion about
Wannier obstruction discussed in Sec. 3.4.2. Moreover, elementary band representations
were defined in these works as building blocks of atomic limits. The process of checking
if a set of bands has an atomic limit is then equivalent to determining if it can be
expressed as an integer combination of EBRs. This task was further simplified as the
authors derived and tabulated the EBRs for all single and double-valued space groups,
together with the corresponding irreps of little groups.

This chapter is divided into two sections. First, we will introduce the concept of
band representations of a space group, and we will derive expressions for their matrices
in both real and reciprocal space. The conditions to be satisfied by a representation
corresponding to a set of bands will also be described in detail. Then, a rule to diagnose
topological sets of bands from the symmetry representations of their little groups will
be described, besides a general classification of topological states that could be detected
with this criterion.

5.1 Band representations
A real-space defined representation of the space group G requires a basis that is closed
under all its symmetries. We will construct such a basis starting from a handful of
Wannier functions and this basis will then be enlarged as symmetries take the states out
of it.

Let us consider as our starting point a set of Wannier functions |Wiq(0)〉 sitting
at the position q. The index i = 1, . . . , dim(ρ) labels the orbital degrees of freedom of
the Wannier function, while the vector r = 0 indicates the cell the site belongs to. We
choose these functions to transform as the irrep ρ of its site-symmetry group Gq:

g |Wiq(0)〉 =
dim(ρ)∑
j=1

ρji(g) |Wjq(0)〉 , (5.1)

where g ∈ Gq [see App. B].
We now consider a symmetry gα ∈ G which takes the site q to qα = gq within the

same unit cell. This transformation maps the Wannier functions at q to states sitting
at qα:

gα |Wiq(0)〉 = |Wiqα(0)〉 . (5.2)

Our initial basis is hence open under such symmetry operations. In order to achieve a
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basis closed under the whole space group, we include in our basis the Wannier functions
sitting on the n sites of the Wyckoff position which belong to the same cell as q.

Furthermore, the elements in the translation subgroup T of G take these states to
other cells. This forces us to extend the basis with states related to the already included
ones by vectors of the Bravais lattice:

t̂ |Wiq(0)〉 = |Wiq(t)〉 . (5.3)

On the whole, the real-space basis we consider is formed by N × dim(ρ)× n states
|Wiqα(t)〉. This basis is already closed under the space group G, since any element of
this group can be generated as {E|t}gαg. This corresponds to writing G through the
following coset decompostion:

G = (Gq ∪ g1Gq ∪ · · · ∪ gnGq)T. (5.4)

Let us derive the transformation of the basis states under an arbitrary element
h = {R|v} ∈ G:

h |Wiqα(t)〉 = h{E|t} |Wiqα(0)〉 = {E|Rt}hgα |Wiq(0)〉 . (5.5)

Based on Eq. (5.4), we can write hgα = {E|tβα}gβg, where g ∈ Gq and tβα = hqα−qβ .
Notice that the vector tβα accounts for the fact that h might move the site qα to the
site qβ belonging to a different unit cell. Then,

h |Wiqα
(t)〉 = {E|Rt}{E|tβα}gβg |Wiq(0)〉

=

dim(ρ)∑
j=1

ρji(g)
∣∣Wjqβ

(Rt+ tβα)
〉
.

(5.6)

Writing this expression in matrix form yields the representation as which the chosen set
of Wannier functions transforms. This representation of the space group G is said to
be induced from the irrep ρ of the site-symmetry group of the Wyckoff position, and is
dubbed band representation. We will often denote this band representation

ρG = (ρ ↑ G)WP , (5.7)

where the subscript WP stands for the actual Wyckoff position from which it was in-
duced. For example, (A1 ↑ G)2c would indicate the band representation of G induced
from Wannier functions which sit at the sites of Wyckoff position 2c and transforms as
the irrep A1 of their site-symmetry groups.
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5.2 Band representations in reciprocal space

Since the real-space expression of Eq. (5.6) is rarely used in practice, we will skip the
step of writing it to derive its reciprocal space form. To this end, we consider the change
to a basis of Bloch states constructed via the Fourier transform of the Wannier functions:

|Wiqα(k)〉 = N−1/2
∑
t

exp(ik · t) |Wiqα(t)〉 . (5.8)

where k is chosen as a vector of the BZ. It follows from Eq. (5.6) that the action of a
symmetry h = {R|t} ∈ G on these Bloch states is:

h |Wiqα(k)〉 = exp[i(Rk) · tβα]
dim(ρ)∑
j=1

ρji(g)
∣∣Wjqβ

(Rk)
〉
. (5.9)

In reciprocal space, every matrix of the band representation is formed by N × N
blocks of dimension n× dim(ρ):

ρRk,k
jqβ ,iqα

(h) = exp[i(Rk) · tβα]ρji(g). (5.10)

This is the expression for the matrix elements of the band representation in reciprocal
space. Even though each of these blocks should have in correspondence a pair of vectors
(Rk,k), we will omit the label Rk, as we will focus for each k on the symmetries of its
little group Gk.

Let us now concentrate on a particular k point of the BZ. The matrices ρk in
Eq. (5.10) form a representation of the little group Gk, which we ρG ↓ Gk. This
representation is generally reducible and can thus be decomposed in terms of irreps Dk

i

of Gk via (4.38):
ρG ↓ Gk =

⊕
i

mk
i D

k
i . (5.11)

Recall that, while ρG ↓ Gk describes the transformation of Bloch states defined
in Eq. (5.8), the eigenstates |ψnk〉 of the Hamiltonian H(k) transform as irreps of Gk.
According to our discussion in Sec. 4.3.3, the degeneracy of each energy level at k is
related to the dimension of an irrep in Eq. (5.11) and the symmetry properties of the
corresponding eigenstates are described by the matrices of the irreps themselves. At the
same time, as the derivation of the band representation above reveals, these irreps are
inherited from the transformation properties of the Wannier functions in real space. All
in all, we conclude that the irreps of little groups of a set of bands with an atomic limit
are inherited from the real-space transformation properties of the Wannier functions
they originate from.
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(a)

(b)

Figure 5.1: (a) Illustration of the vectors kα, kβ and (the intermediate vector) kl

considered in the text. (b) BZ corresponding to the wallpaper group of P4mm. Γ, X
and M are the maximal k-points. Σ denotes the vectors in the line connecting Γ to M
and its irreps are determined by the irreps at maximal k-points.

5.3 Compatibility relations
At this point, we might wonder if any arbitrary combination of irreps of little groups
yields a band structure. It turns out that these irreps must satisfy some compatibility
relations. These relations can be interpreted as the constrains set by symmetries on the
connectivity of the bands or little group irreps.

We consider two points kα and kβ with non-trivial little groups Gkα
and Gkβ

,
respectively. Let us pick a vector kl belonging to a line of lower symmetry which connects
these vectors [see Fig. 5.1a]. The little group Gkl

is a subgroup of both Gkα and Gkβ
, i.e.

Gkl
⊂ Gkα

, Gkβ
. Therefore, for the band structure to be consistent, the representations

of Gkα
and Gkβ

corresponding to the blocks ρkα and ρkβ must both subduce the same
representation of Gkl

:

(ρG ↓ Gkα) ↓ Gkl
= (ρG ↓ Gkβ

) ↓ Gkl
. (5.12)

This consistency relation reveals that the irreps of little groups corresponding to a set
of bands are not independent. It turns out that the irreps in a finite number of k-points
determine the irreps in the rest of the BZ. These primal points are the maximal k-
points of the BZ (see App. B). Therefore, to characterize a set of bands it is enough to
determine the irreps of little groups at the maximal k-points; the irreps in the rest of
symmetry-lines, planes and points can be then be obtained by applying the compatibility
relations for the space group. These compatibility relations can be found in tables [96].
See Fig. 5.1b for an example.

It is important to realize that, whereas the connectivity of the irreps of little groups
is determined by the compatibility relations, the actual energy levels are not constrained.
In other words, how energy energy levels labeled by irreps are sorted from smaller to
larger energy is not specified by any symmetry consideration. This in fact depends on
the system’s microscopic details.

Let us suppose we wish to determine if a set of bands, whose states transform as
the representation ρ of the space group, satisfies the compatibility relations. Let kj be
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a maximal k-vector and mi
kj

the multiplicity of the ith irrep of its little group Gkj
in

the decomposition of the representation of our set of bands. These multiplicities can be
represented as a data vector B

B = (m1
k1
,m2

k1
, · · · ,mN1

k1
,m1

k2
, · · · )T , (5.13)

whose size N is equal to the total number of irreps in all maximal k-points. We will
now follow a description based on Ref. [115]. Furthermore, let us denote kα and kβ two
maximal k-vectors. The representations of the little groups Gkα

and Gkβ
subduced by

ρ could be decomposed as:

ρ ↓ Gkα
=

Nα∑
i=1

mi
kα
ρikα

, (5.14)

ρ ↓ Gkβ
=

Nβ∑
i=1

mi
kβ
ρikβ

. (5.15)

where ρikα
and ρikβ

are irreps of the little groups of kα and kβ , respectively. Let kl be
a vector in a line connecting kα and kβ . Every irrep in Eqs. (5.14) and (5.15) subduces
a representation of Gkl

that is generally reducible:

ρikα
↓ Gkl

=
Nkl∑
j=1

cijkα,kl
ρjkl

, (5.16)

ρikβ
↓ Gkl

=
Nβ∑
i=1

cijkβ ,kl
ρjkl

. (5.17)

The integers c here are the multiplicities of the decomposition. We have not denoted
them m because they are not related to the decomposition of our initial set of bands B,
unlike the multiplicities in Eqs. (5.14) and (5.15). The data vector B will respect the
compatibility relations along kl if the expressions we obtain by applying Eqs. (5.16) and
(5.17) in Eqs. (5.14) and (5.15) match:

Nkl∑
j=1

mi
kα
cijkα,kl

=

Nkl∑
j=1

mi
kβ
cijkβ ,kl

. (5.18)

It is convenient to construct a matrix Ckα,kβ ,kl
comp with the multiplicities c. Every column

of this matrix has in correspondence an irrep of Gkl
, while every row is related to an

irrep of a maximal k vector. Indeed, the element in the jth column corresponding to ρikα

contains the integer cijkα,kl
, whereas the element corresponding to ρikβ

contains −cijkβ ,kl
.

The compatibility relations in Eq. (5.18) can then be written efficiently as:

B · Ckα,kβ ,kl
comp = 0. (5.19)
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Furthermore, we can construct the matrix Ccomp by stacking along the directions of
columns the matrices Ckα,kβ ,kl

comp for all paths kl connecting all pairs of maximal vectors
kα and kβ . Our initial set of bands respects then all compatibility relations if its data
vector B satisfies:

B · Ccomp = 0. (5.20)

The convenience of this method resides in the fact that the matrix Ccomp depends
only on the space group, rather than on the particular set of bands we are investigat-
ing. Therefore, once this matrix has been constructed, checking if a particular isolated
set of bands satisfies the compatibility relations reduces to calculating the product in
Eq. (5.20).

5.4 Composite and elementary band representations
The composition of band representations consists in the stacking of the correspond-
ing bands in the band structure of the Hamiltonian. A representation is said to be a
composite band representation if it can be written as the sum of two smaller band
representations. In contrast, band representations which are not composite are called
elementary band representations. It turns out that only irreps of site-symmetry
groups of sites in maximal WPs induce EBRs1. Therefore, whereas the number of band
representations of a space group is infinite, the number of EBRs is finite. Indeed, the
EBRs of all space groups were computed in Ref. [25] and a catalogue of them is can be
found in the Bilbao Crystallographic Server [96].

EBRs of a space group can thus be interpreted as the basic building-blocks of bands
representations; in other words, EBRs form a basis for the space of bands connected to
atomic limits of a space group. Any band representation ρG of a space group G can be
decomposed in terms of its EBRs:

ρG =
⊕
i

Ci ρ
i
G, (5.21)

where ρiG denotes an EBR of G.
An EBR is said to be decomposable if its bands can be separated into two or

more disconnected sets which respect the compatibility relations independently. As an
example illustrate the concept of decomposable EBR, let us choose the band structure
studied in Ref. [94]. We consider the EBR (A1 ↑ G)3c of the wallpaper group of P6mm
(hexagonal lattice). The irreps at maximal k-points of this EBR can be distributed into
two sets: {Γ1,M1,K1} and {Γ5,M3⊕M4,K3}. These irreps can be connected such that
each set satisfies the compatibility relations independently. As a consequence, the EBR

1This is the reason why considered for Wannier functions transforming as irreps of the site-symmetry
group as starting point for the derivation of band representations. Band representations can be induced
from both reducible or irreducible representations, but only the later lead to EBRs.
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can be split into two separated groups of bands, each hosting the irreps of one of this
sets.

Notice that, if an EBR is decomposable, at least one of the set of bands it splits
into is not a band representation. Therefore, there exist set of bands which do not have
an atomic limit.

5.5 Topological bands in TQC
By construction, band representations have in correspondence bands originated from ex-
ponentially localized Wannier functions, that is, bands connected to an atomic limit. In
contrast, bands whose states do not transform as band representations are not adiabat-
ically connected to any atomic limit and are therefore topological bands. According
to this criterion, whether a set of bands is topological might be checked by decomposing
its representation in terms of EBRs, like in Eq. (5.21). If any of the coefficients Ci is
negative or fractional, the bands are topological.

Two types of topological bands can be distinguished immediately by looking at the
coefficients:

• If any of the coefficients in a fractional number, the bands host a stable topo-
logical phase.

• If the coefficients which are not positive integer are negative integers, the bands are
fragile topological [93, 116]. Fragile bands could be made trivial upon stacking
with certain trivial set of bands.

A more detailed classification of topological bands can be found in Ref. [117].
Let us come back to the example given in the previous section. We mentioned that

the EBR (A1 ↑ G)3c of the wallpaper group P6mm can be divided into two sets of
separated bands with irreps {Γ1,M1,K1} and {Γ5,M3 ⊕M4,K3} at maximal k-points.
It turns out that the first of these sets of irreps corresponds to the EBR (A1 ↑ G)1a.
The second set of irreps can consequently be written in terms of the EBRs of the group
as (A1 ↑ G)3c 	 (A1 ↑ G)1a, and corresponds therefore to a set of fragile bands.

It must be mentioned that, having a set of irreps that coincides with those of
a band representation is necessary but not enough for the set of bands to be trivial.
Such a set of bands might still have non-trivial topology that is invisible to crystal
symmetries [118]. Furthermore, in some space groups two sets of bands with identical
irreps could be topologically different, even if these irreps coincide with those of an
atomic limit. Analyzing the spectrum of Wilson loops operators is often the way to
unveil topology in such cases. The power of TQC resides in the opposite case: if the
irreps of a set of bands do not match with the irreps of any band representation, the set
of bands is topological.
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5.6 Diagnosing topology from little group irreps

In this section, we will put forward a way to calculate the coefficients of decomposition
in Eq. (5.21) once the irreps at maximal k-points have been calculated. The description
given here follows the discussion in Ref. [115].

Let us suppose we wish to determine the decomposition in terms of EBRs of a
set of bands whose irreps at maximal k-points are represented by the data vector B
[see Eq. 5.13]. Moreover, we consider the matrix EBR, whose element EBRji contains
the multiplicity of the jth irrep in the decomposition of the ith EBR into irreps of the
maximal k-points. Note that EBR is generally a rectangular matrix of N rows and
NEBR columns, where NEBR is the number of EBRs in the space group.

The representation of our set of bands can be written as a linear combination of
EBRs:

EBR ·X = B, (5.22)

where X is the vector of coefficients of the decomposition. The Smith decomposition of
the matrix EBR allows us to simplify this set of diophantine equations and to identify a
way to check the constrains set by symmetries on B. According to this decomposition,
the matrix EBR is related to a diagonal matrix ∆ of the same size via the equation:

EBR = L−1 ·∆ ·R−1, (5.23)

where L and R are unimodular NEBR ×NEBR and N ×N matrices, respectively. Note
that these matrices depend only on the EBRs of the space group and are independent
of B – the same matrices take part in the decomposition of any set of bands. ∆ is
called the Smith normal form of the matrix EBR. In some space groups, some EBRs
can be written in terms of other EBRs with integer coefficients, even though they are
fundamentaly different EBRs. In other words, some EBRs might have in correspondence
the same set of irreps. The rank of EBR might thus be smaller than the number of
EBRs, i.e. rank(EBR) < NEBR. As a consequence, the number of non-zero elements
in the diagonal of ∆ is equal to rank(EBR). The matrix ∆ has hence the following
structure:

∆ii = 0 if i > rank(EBR),

∆ij = 0 otherwise.
(5.24)

By substituting Eq. (5.23) in Eq. (5.22), we reach:

∆ · Y = C, (5.25)

where Y = R−1 · X and C = L · B. Solving this set of equations is generally simpler
than Eq. (5.22).
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5 Topological quantum chemistry

It should be mention that, when rank(EBR) < N , the solution is not unique. In
other words, when some of the EBRs share the same set of irreps, the decomposition of
a set of bands in terms of EBRs is not unique.
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6 IrRep: irreducible represen-
tations of ab initio band
structures

Density Functional Theory is the state-of-the-art approach to calculate band structures
of materials. Its numerical implementation provides us with a systematic method to
calculate the energy levels and wave functions of the single-electron Hamiltonian H(k)

of a crystal. The keys of the success of DFT are its (relatively) low numerical cost and
availability of softwares to implement it. Accordingly, DFT postulated soon itself as a
candidate to become the standard method for the calculation of bands whose topology
would later be classified with TQC.

An immediate obstacle for the combined action of DFT and TQC is that, while
TQC diagnoses the topology of bands from their irreps, DFT codes lack generally of the
possibility to calculate these irreps. To fix this problem, we have developed the code
IrRep, which calculates the irreps of ab initio band structures. This contribution bridges
the gap between the theoretical foundation and practical implementation of TQC.

IrRep is a robust, open source Python that interfaces directly with 3 of the most
widely used DFT softwares: the Vienna Ab initio Simulation Package (VASP) [60],
Abinit [61,62] and Quantum Espresso (QE) [63]. IrRep can also read input files in Wan-
nier90 (W90) [64] format (.win, .eig, _UNK), prepared by interfaces like pw2wannier90.
This allows IrRep to be used with any code that has a W90 interface, such as SIESTA
[119]. Furthermore, IrRep has been structured in a user friendly format allowing the
implementation of routines to interface with any other plane-wave based code.

Although similar codes have recently been developed for VASP [78] and QE [79],
IrRep is the only code that does not restrict the user to a single DFT program. More-
over, our code follows the same notation as the popular Bilbao Crystallographic Server
(BCS) [96] to identify the irreps, which avoids confusion coming from the lack of an
official standard notation, especially for spin-orbit coupled systems. Tables of irreps are
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DFT
data

Read
crystal structure

Determine
space group

Calculate
traces

Identify
irreps

Parse
wave functions

Separate
eigenvalues

Write
output

irrep
tables

cell
transformation

Input OutputProcessing

Figure 6.1: Schematic illustration of IrRep’s workflow, showing its the three main
parts: input, processing and output. The running process flows from left to right. The
small text-boxes indicate stages of the process, while the text without boxes correspond
to auxiliary data and calculations for a particular stage.

encapsulated within the code package, so that IrRep can assign irreps to wave functions
without extra input from the user. The output is written in a form that is compatible
with the CheckTopologicalMat tool of the BCS [30, 104]. As additional functionality,
IrRep can separate bands by eigenvalues of certain symmetry operator and calculates
the Z2 and Z4 topological indices of time-reversal symmetric band structures [2]. The
code evolved from the routines written for Ref. [120] to determine the eigenvalues of
screw rotations. At a testing level, the code was used in Refs. [121–125] for topological
quantum chemistry, and in Refs. [126,127] to analyze the dipole selection rules for opti-
cal matrix elements. In Sec. 6.1 we will go through the workflow of the code, explaining
in detail every stage of it. Sec. 6.2 will be devoted to several examples, illustrating the
capabilities of IrRep code for the analysis of symmetry and topology.

6.1 Workflow of IrRep code

We introduce in this section the workflow of the IrRep code and describe its main
functionalities and the particularities of the interface to each DFT software. The running
process can be divided into three main parts (see Fig. 6.1): (i) parsing of the DFT data
given as input to IrRep; (ii) processing of the data to obtain the desired information;
(iii) writing this information as output. Each of this part can further be split in stages,
which will be explained thoroughly in the following.
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6.1 Workflow of IrRep code

6.1.1 Reading DFT data and input parameters
To keep the interaction with the user simple, IrRep reads as much needed information as
possible from the DFT code’s output files. Only parameters determining the user-defined
task should be given in the command line (CLI) in the format

irrep -<keyword1 >=<value1 > -<keyword2 >=<value2 > ...

Alternatively, parameters may be set in YAML or JSON format in an input file passed
to IrRep via the parameter config, as we show in the following lines:

irrep -config=input_filename.yml

The most important input parameters and their default values are described in Tab. 6.1.
This information can be accessed by calling to IrRep’s help interface in the CLI:

irrep --help

Depending on the DFT code used to calculate wave functions, a different interface should
be chosen to parse the corresponding DFT output files (see Tab. 6.2). The interfaces are
selected with the keyword code; currently, it includes interfaces to VASP [60], Abinit [61,
62] and QE [63]. It can also read the input files for W90 [64], which allows IrRep to be
used with the multiple codes that support the Wannier90 interface.

Once keywords are set in the CLI, the code parses the DFT data files passed as
input (see Tab. 6.2). In essence, the lattice vectors, positions of atoms and the energies
and wavefunctions of electronic states are read in this way (see Sec. 6.1.3 for details).
The step of reading the DFT data is naturally different for each DFT software, since
each of them saves its output in a particular fashion – each DFT code might use a
different data structure, different units, etc. This is why every DFT software has its
own interface in IrRep. Nevertheless, once the information is parsed, it is stored in an
object of class Bandstructure which is independent of the ab initio code used. Thus,
if an interface to a new ab initio code is needed, one has to simply implement another
constructor for the Bandstructure class.

Although most keywords are self-explanatory, the meaning of the keywords refUC
and shiftUC requires some elaboration. The expectation values of symmetry operations
depend on the choice of unit cell for the crystal. Whereas IrRep calculates the traces
of symmetries for the unit cell parsed from DFT data, the user might be interested in
obtaining them for a different unit-cell choice. If that is the case, the user can specify
through refUC and shiftUC the transformation from the DFT cell to the cell of interest
and IrRep will accordingly compute the traces of symmetry operations for both settings.

Let {a1,a2,a3} denote the basis vectors of the cell adopted for the DFT calculation
and {c1, c2, c3} those of the setting the user is interested in. refUC is used to provide
IrRep with the 3×3 matrix M relating both bases of vectors, according to the following
expression

(c1 c2 c3)
T =M(a1 a2 a3)

T (6.1)
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Keyword Function Default
code DFT code:

vasp, espresso, abinit, wannier90
vasp

fWAV VASP wave functions’ file WAVECAR
fPOS VASP crystal structure’s file POSCAR
fWFK Abinit wave functions’ file Mandatory if code=abinit
prefix Variable prefix in QE calculation

or seedname in W90
Mandatory if code=espresso
or code=wannier90

IBstart First band to be considered First band in DFT calculation
IBend Last band to be considered Last band in DFT calculation
spinor Whether wave functions are

spinors or not
False (mandatory for vasp)

Ecut Plane wave cutoff (in eV).
Usually, a value around 50 eV
yields accurate results

Cutoff used for
the DFT calculation

kpoints Indices of k-points at which
irreps must be computed

All k-points

kpnames Labels of k-points at which
irreps must be computed

None, not needed to calculate
traces but mandatory to assing
irreps to them

refUC Transformation of basis vectors 3× 3 identity matrix
shiftUC Shift of origin (0, 0, 0)
onlysym Stop after finding symmetries False
isymsep Indeces of symmetries

to separate eigenstates
None

ZAK Calculate Zak phases False
WCC Calculate wannier charge centers False
EF Fermi energy to shift energy levels 0.0 eV
degenThresh Threshold used to decide if

bands are degenerate
10−4 eV

config Path of YML or JSON file
with input parameters

None, read input parameters
from CLI

searchcell Check if the transformation
leads to the conventional cell

False

Table 6.1: Principal keywords to fix running options with IrRep and their function.
If no value is set for parameters that are None by default, they and the functions cor-
responding to them will be ignored. Boolean parameters work as flags (for example,
spinor is set to True by passing -spinor to the command irrep in the CLI.)

interface -code= files
VASP vasp POSCAR and WAVECAR
Abinit abinit *_WFK

QE espresso *.save/data_file_schema.xml
and *.save/wfc*.dat

Wannier90 wannier90 *.win, *.eig, UNK*

Table 6.2: Files read by IrRep depending on the chosen interface.
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6.1 Workflow of IrRep code

Figure 6.2: The two choices considered for the unit cell of the C-centered monoclinic
structure. Conventional (primitive) basis vectors are indicated in black (blue). The
conventional unit cell is marked by solid black lines, while the primitive cell is dashed
blue.

Similarly, shiftUC describes the shift (p1, p2, p3) of the DFT unit cell’s origin ODFT

with respect to the origin of the user’s cell Oc:

ODFT = Oc + (p1 p2 p3) · (c1 c2 c3)
T (6.2)

In order to illustrate the use of these keywords, we work out the example of the
C-centered monoclinic structure. Let us suppose the DFT cell is defined by the vectors
{c1, c2, c3} in Fig. 6.2, but the user wants the traces in the cell delimited by {a1,a2,a3}.
The relation between both bases is the following:

c1 = a1 + a2,

c2 = −a1 + a2,

c3 = a3.

Notice also that the origins of both cells are related by the shift 0.3c3. Then, the
keywords refUC and shiftUC should be used with arguments

-refUC=1,1,0,-1,1,0,0,0,1 -shiftUC=0,0,0.3

When a basis transformation is applied, the lattice vectors of both and symme-
try operations will be printed for both settings. For instance, the following lines
illustrate the symmetry operations (only identity and inversion) printed by the
code for the example of a crystal in the C-centered structured worked out above:
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Space group C2/m (# 12) has 4 symmetry operations

### 1
rotation : | 1 0 0 | rotation : | 1 0 0 |

| 0 1 0 | (refUC) | 0 1 0 |
| 0 0 1 | | 0 0 1 |

translation : [ 0.0000 0.0000 0.0000 ]
translation (refUC) : [ 0.0000 0.0000 0.0000 ]
axis: [0. 0. 1.] ; angle = 0 , inversion : False

### 3
rotation : | -1 0 0 | rotation : | -1 0 0 |

| 0 -1 0 | (refUC) | 0 -1 0 |
| 0 0 -1 | | 0 0 -1 |

translation : [ 0.0000 0.0000 0.0000 ]
translation (refUC) : [ 0.0000 0.0000 0.6000 ]
axis: [0. 0. 1.] ; angle = 0 , inversion : True

Let us comment on the role played by the cell transformation when the user wants
to identify the irreps of little groups. This identification in performed by calculating the
traces of symmetry operations and matching them to the characters of irreps read from
a set of reference tables included in the code. This reference characters are defined for
a particular choice of unit cell, dubbed conventional cell. Therefore, IrRep must get
to know the transformation to the conventional cell in order to assign little-group irreps
to bands.

The transformation to the conventional cell can be passed to IrRep via the input
parameters refUC and shiftUC. Alternatively, IrRep will take the charge of determining
the transformation automatically if the user sets the parameter -searchcell, instead
of refUC and shiftUC.

6.1.2 Determination of the space group

The next step after parsing DFT data files is to determine the space group. Basis vectors
and atomic positions are for that passed to the Python library spglib [128], whose routine
get_symmetry_dataset gives the space group’s number and symbol. This function also
returns the coset representatives of the decomposition of the space group with respect to
the translation subgroup [see Eq. (4.25)]. At this point, if the flag onlysym in Tab. 6.1
was set, IrRep prints the crystal structure and aforementioned coset representatives and
then stops. This utility can be useful for VASP even before running the DFT calculation
to make sure that the configuration described in POSCAR really matches the assumed
space group.
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6.1 Workflow of IrRep code

6.1.3 Reading wave functions
In VASP, Abinit and QE, eigenstates |ψnk〉 of H(k) are expanded in a basis of plane
waves |k +G〉:

|ψnk〉 =
∑
G

Cnk(G) |k +G〉 , (6.3)

where the sum runs over all the reciprocal lattice vectors G whose energy is smaller than
a cutoff, i.e. ℏ2(k +G)2/2me < Ecut. The cutoff coincides with the value indicated by
the user if a value for Ecut in Tab. 6.1 was set in the CLI; otherwise, it will be the
cutoff used in the DFT calculation. After testing the code with different systems, we
have noticed that usually a value Ecut ∼ 50 eV yields accurate results, since the most
dominant coefficients in Eq. (6.3) correspond to short G. After the application of the
cutoff, the eigenstates |ψnk〉 are normalized.

If the DFT calculation ran with PAW pseudopotentials [129–131], the expansion
Eq. (6.3) gives the smooth pseudo-wavefunctions |ψ̃nk〉, which are related to the all-
electron wavefunctions |ψnk〉 by a linear transformation |ψnk〉 = T |Ψ̃nk〉. Since |ψ̃nk〉
and |ψnk〉 transform under symmetry operations in the same way, IrRep works with the
pseudo-wavefuncions.

In the Wannier90 input files (UNK*) the wavefunctions are written on a real-space
grid. In that case we perform a fast Fourier transform (FFT) to obtain the coefficients
Cnk(G) of Eq. (6.3).

6.1.4 Calculation of traces
Inequivalent irreps have different characters. In this sense, the character is a feature
that identifies unambiguously the irrep. Therefore, the identification of irreps of bands
is preceded in IrRep by the calculation of the traces of symmetry operations.

We will now describe the calculation of the expectation value of symmetries in the
little group of k. Since the transformation of |ψnk〉 under translations is trivial, we need
only iterate through the coset representatives gki in Eq. (4.36). Let us consider a coset
representative g = {R|v} ∈ Gk; the calculation of the expectation value 〈ψnk|g|ψnk〉
depends on whether the DFT calculation was performed on scalar or spinor wave func-
tions:

(i) Scalar wavefunctions:

〈ψnk|g|ψnk〉 =
∑
GG′

C∗nk(G
′)Cnk(G) 〈k +G′|g|k +G〉 . (6.4)

From the transformation property of plane-waves,

g |k +G〉 = e−i(Rk+RG)·v |Rk +RG〉 , (6.5)
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6 IrRep: irreducible representations of ab initio band structures

together with their orthogonality property,

〈k +G′|k +G〉 = δG′,k−k′+G, (6.6)

it follows that Eq. (6.4) is reduced to:

〈ψnk|g|ψnk〉 =
∑
G

C∗nk(Rk − k +RG)Cnk(G) (6.7)

(ii) For spinor wavefunctions |ψnk〉 = ( |ψ↑nk〉 |ψ
↓
nk〉)T the expected value involves

summing over spin indices:

〈ψnk|g|ψnk〉 =
∑
σσ′

Sσσ′(R) 〈ψσ
nk|g|ψσ′

nk〉 , (6.8)

where 〈ψσ
nk|g|ψσ′

nk〉 is computed by means of Eq. (6.7) and S(R) is an SU(2) matrix
corresponding to R.

Once the expectation value is computed, IrRep adds the values obtained for de-
generate eigenstates (flag degenThresh in Tab. 6.1). Each of these sums is the trace
χk(g) of a matrix Dk(g) belonging to the representation Dk defined in the subspace of
degenerate eigenstates.

6.1.5 Identification of irreducible representations
The code identifies the representation Dk corresponding to each set of degenerate states
by means of the magic formula in Eq. (4.12):

mk
i =

1

||Ḡk||

M∑
j=1

[χk(gkj )]
∗χk

i (g
k
j ). (6.9)

The characters χk
i of irreps of Gk in this formula were obtained from the BCS [96] and

are provided with the IrRep module. As it is indicated in Fig. 6.1, IrRep will both
retrieve the characters of irreps and transform the character χk to the conventional cell
before applying the magic formula.

Notice that the representation Dk might in general if the degeneracy of the corre-
sponding states is accidental. In that case, the multiplicities of at least two irreps will
be different from zero.

At this point, IrRep will print the non-vanishing multiplicities obtained with the
magic formula for each set of degenerate states, together with the character of Dk. If
traces of symmetry operations in the conventional cell differ from those in DFT cell,
they will be printed for both settings.
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By default, the procedure is performed for all the bands calculated by the DFT
code. Nevertheless, the user can set values for IBstart and IBend in order to consider
only bands in the range [IBstart,IBend]. This can be used to noticeably shorten the
calculation time. Moreover, for the selected set of bands, the smallest direct and indirect
gaps with respect to higher bands will be printed. For centrosymmetric crystals, the
number of inversion-eigenvalue inversions (band inversions) and the Z2 index [8,18] will
also be calculated and written. In Sec. 6.2.1, we show an example of the output generated
by IrRep where all these features are represented.

6.1.6 Separation by symmetry eigenvalues

When writing the traces or the multiplicities of irreps, the code can separate the states
by their eigenvalues with respect to a certain symmetry operation. The index of the
symmetry must be specified via the keyword isymsep for that (see Tab. 6.1). The
energies will also be written in a file according to this separation. This data turns out
to be useful if the DFT calculation was done for an ordered set of k-points following
a certain path in the BZ, as it allows for the study to the role of symmetries in the
protection of band crossings [120].

IrRep also contains routines to calculate the Zak phase and Wannier charge centers
of a given set of bands (see keys ZAK and WCC in Tab. 6.1). These functionalities
work stably only for calculations employing norm-conserving pseudopotentials, and Ecut
should not be specified in the command line – the DFT cutoff will be used. With the
PAW method, due to the lack of consideration of the all-electron wavefunction, the
results for symmetry separation and ZAK phase might be unreliable.

6.1.7 Writing the output

Finally, IrRep will return its output to the user. The output will be written in the CLI
and it can be captured in plain text format. The output will also be printed in a JSON
format file called irrep-output.json from which it can be easily parsed by downstream
codes.

Furthermore, IrRep also writes a file trace.txt, which can be passed directly to
the program CheckTopologicalMat of BCS [30, 104], in order to get information about
(physical) elementary band representations and symmetry-based indicators [25, 28, 29]
to diagnose the band topology. Owing to this feature, the combination between IrRep
and this BCS software forms a powerful toolkit for the diagnosis and classification of
topological bands in crystals.
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6 IrRep: irreducible representations of ab initio band structures

Figure 6.3: Crystal structure of CuBi2O4. (a) Unit cell, with Cu, Bi and O atoms in
green, blue and red, respectively. (b) BZ and irreducible BZ (red), with high-symmetry
points.

6.2 Example materials
In this section, we present the application of IrRep to two material examples, with
different symmetries and topology, and analyzed by different DFT codes. With these
examples, we cover the main functionalities of the code and also the subtlety related
to the transformation between primitive and conventional cells. Input files to generate
the DFT data and input files that may be used to run IrRep for these examples can be
found in the Github repository of the code [132].

6.2.1 Irreducible representations in CuBi2O4

First, we show the application of IrRep to CuBi2O4. This material has been observed in
a tetragonal paramagnetic crystal structure characterized by the non-symmorphic space
group P4/ncc (No. 130) [133,134]. Its crystal structure and BZ are shown in Fig. 6.3.

An interesting aspect of CuBi2O4 is found in reciprocal space: the little group of
point A=(1/2, 1/2, 1/2), in the corner of the BZ, has only one (double-valued) IR. The
dimension of this irrep is 8, which leads to an unusually large 8-fold degeneracy of the en-
ergy levels. This feature makes CuBi2O4 promising for the realization of high-degeneracy
unconventional fermions [112, 135]. Moreover, due to the fact that the number of elec-
trons in the unit cell is not a multiple of 8, this IR forces CuBi2O4 to be a filling-enforced
semimetal.

We have calculated the band structure of CuBi2O4 with Abinit, both treating spin
trivially (scalar calculation) and including spin-orbit corrections (spinor calculation). A
plane-wave cutoff of 500 eV and cold smearing [136] were used in the calculation. The
BZ was sampled with a grid of 5× 5× 7. Lattice parameters and atomic positions were
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Figure 6.4: Band structure of CuBi2O4 (a) without SOC included. Inset: bands
in line ∆ (connecting Γ to X) separated according to the eigenvalue of symmetry
{mx|1/2, 0, 1/2} in the little group: solid (dashed) corresponds to eigenvalue −1 (+1).
(b) Band structure of CuBi2O4 with SOC included.

Γ X M Z R A
Γ+
4 ⊕ Γ+

2 ⊕ Γ−4 ⊕ Γ−2 X2⊕X1 M4⊕M3 2Z1 R1R2 A3A4

2Γ̄6 ⊕ 2Γ̄8 2X̄3X̄4 2M̄5 2Z̄5Z̄7 R̄4R̄4 ⊕ R̄3R̄3 Ā5Ā5

Table 6.3: Irreps at maximal k-points of the partially-filled set of bands of CuBi2O4.
In the second (third) row, irreps of the calculation without (with) SOC included are
listed.

taken from the topological quantum chemistry database of materials [25, 30, 104]. The
exchange-correlation term was approximated through General Gradient Approximation,
in the Perdew Burke Ernzerhof [137] parametrization and PAW pseudopotentials were
taken from Pseudo Dojo database [138, 139]. Ab initio band structures are shown in
Fig. 6.4. Output files of IrRep are available in the examples folder of IrRep’s official
Github repository [132].

In the rest of the analysis, we focus on the partially-filled isolated set of bands cut
by the Fermi level. Irreps of wave functions at maximal k-points can be calculated by
running the following lines (case without SOC):

irrep -code=abinit -kpnames=GM,X,M,Z,R,A
-Ecut=100 -fWFK=CuBi2O4 -spinor_WFK
-IBstart=289 -IBend=296 -EF=auto

The set of irreps obtained in this way are written in Tab. 6.3. The following lines
illustrate part of the output for the point R= (0, 1/2, 1/2) – even though the little group
of R contains many coset representatives, only two of them (represented by indices 1
and 6) are shown here for brevity.
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k-point 5 : [0. 0.5 0.5] (in DFT cell)
[0. 0.5 0.5] (after cell trasformation)

number of states : 8

Energy | degeneracy | irreps | sym. operations
| | | 1 6

-0.10 | 4 | -R4(2.0) | 4.0+0.0j 0.0+0.0j
-0.06 | 4 | -R3(2.0) | 4.0+0.0j 0.0+0.0j
inversion is # 9
number of inversions -odd Kramers pairs : 2
Gap with upper bands : 2.02

As we explained in Sec. 5, analyzing these set of irreps within the framework of TQC
could allow us to gain deep insight into the chemistry of the bands and the system.
The irreps in Tab. 6.3 are consistent with the EBR induced from Wannier functions
sitting in Wyckoff position 4c: (B ↑ G)4c in the case without SOC, (1Ē2

2Ē2 ↑ G)4c with
SOC. These bands are hence induced from Wannier functions transforming under the
site-symmetry group as a combination of dx2−y2 and dxy orbitals.

Let us illustrate also the separation of bands in terms of the eigenvalues of a par-
ticular symmetry operation. Notice that the little group of every k-point in the line ∆

(which connects Γ to X) contains the glide symmetry gx = {mx|1/2, 0, 1/2}. As a result,
wave functions of bands in this line can be chosen to be eigenstates of gx and can thus
be distinguished by their eigenvalue under this symmetry. IrRep can separate bands in
terms of this eigenvalue by running it with the option isymsep= 14, which is the index
corresponding to gx:

irrep -code=abinit -Ecut=100 -fWFK=CuBi2O4 -scalar_WFK
-IBstart=145 -IBend=148 -isymsep=13

The index of gx can be derived beforehand by running the option onlysym (see
Tab. 6.1). The result is shown in the inset of Fig. 6.4(a), where bands with eigenvalue
−1 (+1) of gx are indicated in solid (dashed). We conclude from this result that the
crossings between dashed and solid bands are protected by gx and thus cannot be gapped
out without breaking this symmetry. Such criteria can be used to systematically study
symmetry protected band crossings [120].

6.2.2 Bismuth: high order topological insulator
In this example, we will present the calculation of Z2 and Z4 indices with IrRep. For
that, we will work with a particularly interesting and well-known material: bismuth.

In the presence of only time-reversal symmetry (TRS), an insulator can belong to
either the trivial or the topological phase. The system cannot undergo a transition from
one phase to the other if the gap is not closed or TRS is not broken in the process. In
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(a) (b)

Figure 6.5: a) Crystal structure of Bi in space group R3̄m. Black lines delimit the
conventional unit cell, whose basis vectors are {ci}i=1,2,3. Blue lines delimit the primitive
unit cell used in the DFT calculation. b) Brillouin zone corresponding to the primitive
cell and TRIM (one from each star of k-points).

this spirit, the topology of the system can be characterized by a Z2 invariant [2, 3, 8],
which is -1 (+1) in the topological (trivial) phase. With inversion, the Z2 invariant
can be calculated by multiplying the inversion eigenvalues of Kramers pairs of occupied
bands at all time-reversal invariant momenta (TRIM) [18]. In the topological case, we
say that the system has a band-inversion.

Crystal symmetries may enrich the topology of time-reversal invariant insulators,
giving access to new phases, some of which can not be detected by the Z2 index. This
is the case for bismuth in space group R3̄m: the Z2 index has value +1, which means
that the ground state corresponding to the occupied bands in Bi is a trivial insulator as
per its Z2 index, according to the discussion above. However, in Ref. [24] it was shown
that the ground state belongs to a higher-order topological phase, characterized by a Z4

index equal to 2. Here, we will reproduce with IrRep this analysis.
The bands of Bi calculated with VASP for the primitive unit cell are shown in

Fig. 6.6a. The calculation included spin-orbit corrections and was performed with a
cutoff of 520 eV for the plane-wave basis, together with a Gaussian smearing. The
BZ was sampled with a grid of 7 × 7 × 7 k-points. We used PBE prescription as
an approximation for the exchange-correlation term and PAW pseudopotentials [137].
Fig 6.6b shows the bands separated by eigenvalues of the three-fold rotation C3z using
IrRep’s option isymsep.

Space group R3̄m (No. 166) belongs to the rhombohedral family, in which con-
ventional and primitive unit cells do not match [see Fig. 6.5a]. Consequently, IrRep
will need the transformation to the conventional cell in order to identify the irreps of
energy levels. Even though we could let the code calculate refUC and shiftUC automat-
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6 IrRep: irreducible representations of ab initio band structures

Figure 6.6: Band structure of Bi in space group R3̄m. Since blue and red bands do
not touch, we will ignore the electron-hole pockets and speak of occupied (blue) and
unoccupied (red) bands. (a) Inversion eigenvalues at TRIM are indicated in green. (b)
Bands along C3z-invariant line Λ, which connects T to Γ; solid and dashed bands have
C3z eigenvalues -1 and exp(±iπ/3), respectively.

ically, we will set them manually to illustrate them on a practical example. The relation
between the basis vectors of the primitive (DFT) and conventional cells [expressed by
Eq. (6.1)] is the following form:

(c1, c2, c3)
T =

1 −1 0

0 1 −1

1 1 1

 (a1,a2,a3)
T . (6.10)

Accordingly, we pass this information to IrRep by specifying the parameter
-refUC=1,-1,0,0,1,-1,1,1,1 in the CLI. There is no need to specify shiftUC, as the
origins of both unit cells sit at the same position. The following lines show how IrRep
prints a description of symmetry operations, in particular the 3-fold rotation {C3z|0},
in the settings before and after applying the transformation of the unit cell:

### 2

rotation : | 0 0 1 | rotation : | 0 -1 0 |
| 1 0 0 | (refUC) | 1 -1 0 |
| 0 1 0 | | 0 0 1 |

spinor rot. : | 0.500-0.866j -0.000-0.000j |
| 0.000-0.000j 0.500+0.866j |

spinor rot. (refUC) : | 0.500-0.866j -0.000-0.000j |
| 0.000-0.000j 0.500+0.866j |

translation : [ 0.0000 0.0000 0.0000 ]
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translation (refUC) : [ 0.0000 0.0000 0.0000 ]

axis: [0. 0. 1.] ; angle = 2/3 pi, inversion : False

To make sure that the transformation is correct, one has to check whether matrices
and translation vectors after the change of basis match with those in the table file of
the corresponding space group. Alternatively, they can be compared to matrices and
translations in the GENPOS application of the BCS [97].

The next step is to calculate the irreps of occupied bands at maximal k-points
(Tab. 6.4). For that, we call IrRep with the keywords written in the following lines:
irrep -spinor -code=vasp -kpnames=T,GM,F,L -Ecut=50 -EF=auto

-refUC=1,-1,0,0,1,-1,1,1,1 -IBstart=5 -IBend=10

T Γ F L
T̄9 ⊕ T̄8 ⊕ T̄6T̄7 2Γ̄8 ⊕ Γ̄4Γ̄5 F̄3F̄4 ⊕ F̄5F̄6 ⊕ F̄5F̄6 L̄5L̄6 ⊕ L̄3L̄4 ⊕ L̄5L̄6

Table 6.4: Irreps at maximal k-points calculated with IrRep for the last 6 occupied
bands of Bi. In each k-point, irreps are written from left to right in ascending energy
order, e.g., T̄6T̄7 is higher in energy than T̄8.

With the knowledge of the IRs and their inversion eigenvalues [see Fig. 6.6(a)], we
conclude that the total number of Kramers pairs with −1 inversion eigenvalues in the
occupied bands is even, thus the Z2 index is z2 = +1. However, there are two band
inversions between Γ and T that the Z2 invariant cannot detect, as they involve a pair
of inversion-odd eigenvalues which cancel each other upon considering the product of
such eigenvalues. Indeed, this double band-inversion leads to the Z4 invariant z4 = 2,
since the number of Kramers pairs of −1 inversion eigenvalues is equal to 2 mod 4. This
means that Bi is a higher-order topological insulator (HOTI) [24]. The value of the Z4

index and number of −1 inversion eigenvalues are, by default, calculated and printed
by IrRep; in the following line, we show the way in which they are printed by the code,
together with information about the direct and general gaps:1

Number of inversions-odd Kramers pairs IN THE LISTED KPOINTS: 6 Z4=2
Minimal direct gap: 0.08857033154551353 eV
Indirect gap: -0.1886089499035215 eV

6.3 Publications using IrRep
Currently, the article where we published IrRep has been cited in another 9 articles
[140–148]. However, it might have been used without been cited in other works, as the

1Here the gap refers only to the maximal k-points included in the calculation. In general, the real
gap might be smaller (and even might close) at some arbitrary point away from high-symmetry points.
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Figure 6.7: Evolution of the bulk gap in terms of buckling parameter for (a) bis-
muthene, (b) antimonene and (c) arsenene. (d) Buckled-hexagonal crystal structure
considered for the monolayers. Source: [121].

code was made available for use before its article was published. In this section, we will
comment on the use of IrRep in some of the collaborations we have hold while we were
working on this thesis.

6.3.1 Fractional corner charges in spin-orbit coupled crystals, by
F. Schindler et al. [121]

This work was developed in collaboration with the group of Titus Neupert, from the
University of Zurich. All corner charge distributions that might be hosted by 2D spinful
crystals in any point group are identified in project. The correspondence between every
corner charge configuration and the topology of the bulk is also established, based on
Wilson loop invariants and symmetry-based indicators of topology [28]. In addition,
formulas for the calculation of corner charges from symmetry eigenvalues of Bloch wave
functions are provided in the text. These framework is then tested on buckled arsenic
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and antimony monolayers.
IrRep enters this work in the numerical analysis of bismuth, antimony and arsenic

monolayers. These materials share a hexagonal crystal structure similar to graphene’s
honeycomb lattice, but the two ions in the primitive unit cell are at different height
(buckled), as it is shown in Fig. 6.7(d). The single-particle bulk-electronic structure
and Bloch states at maximal k-points of these compounds were obtained via VASP [60],
within the DFT framework. As the buckling parameter is varied by means of in-plane
strain, the materials undergo phase transitions accompanied by the closing and reopening
of the bulk gap. IrRep was then used to calculate the irreps and symmetry eigenvalues
of valence bands in each of the gapped phase. The knowledge about irreps was used
to identify each topological phase, according to the criterion introduced in Sec. 5.5 and
Eq. (5.21). The eigenvalues of symmetry operations served as data to calculate the
corner charges for the crystals in symmetry-respecting open geometries.

6.3.2 Novel family of topological semimetals with butterflylike
nodal lines, by X. Zhou et al. [107]

This article is the result of a collaboration held with the group of Nicholas Kioussis,
from the California State University.

A specific family of semimetals hosting exotic nodal lines is identified in this work.
The nodal lines of this materials consist on concentric intersecting coplanar ellipses
(CICE), and are a manifestation of symmetry-protected crossings of bands happening
in certain planes of the BZ. Moreover, the space groups of crystals that might realize
these nodal lines are determined by identifying the symmetries required to protect the
corresponding band crossings. Regarding the practical realization of CICEs, a model
exhibiting such nodal structures is provided in the text. In addition, ZrX2 (X=P,As),
Tl2GeTe5, CYB2 and Al2Y3 are proposed as candidates to host these nodal lines.

As it is natural, IrRep was used in the analysis of the material candidates. The band
structures and Bloch states at maximal k-points were obtained via DFT first-principle
calculations for these materials. As Fig. 6.8(b) and (e) show for ZrAs2 and Tl2GeTe5,
these band structures seem to display the band crossings which give raise to the CICE.
We used IrRep to rule out the possibility for having small gaps and corroborate that the
bands do cross each other. For that, we first determined with IrRep the irreps at the
maximal k-points connected by the symmetry lines where the crossings take place. We
then determined by subduction the irreps of bands at the symmetry lines. Two bands
can cross each other at a point k of the line only if their wave functions transform as
different irreps of the little group of k.

This criterion follows from Wigner’s theorem [introduced in Secs. 4.2 and 4.3.3]: If
both bands had in correspondence the same irrep, the block(s) H(k) of the Hamiltonian
corresponding to this irrep would contain off-diagonal elements for a (general) basis
of states adapted to the symmetry of the irrep. The presence of these off-diagonal
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Figure 6.8: Evolution of the bulk gap in terms of buckling parameter for (a) bis-
muthene, (b) antimonene and (c) arsenene. (d) Buckled-hexagonal crystal structure
considered for the monolayers. Source: [107].

components forces the eigenvalues of H(k) to be different2.

6.3.3 Prediction of double-Weyl points in the iron-based super-
conductor CaKFe4As4, by N. Heinsdorf et. al.

This work was developed in collaboration with the groups of Roser Valentí (Goethe
University, in Frankfurt), Rafael M. Fernandes (University of Minnesota) and Cristian
D. Batista (University of Tennessee Knoxville).

This work puts forward the possibility for realizing double Weyl points in
CaKFe4As4, based on a methodological approach which consists of the combination
of symmetry analysis of bands, ab initio calculations and low-energy modeling. In fact,
depending on the relative magnitudes of the magnetic field, crystal potential and SOC,
Weyl points with different charges could arise in the band structure.

The work begins with an ab initio based analysis of the suitability of CaKFe4As4
to double-Weyl points. In particular, the effect of SOC on the degeneracies of bands is
studied in terms of symmetry representations. Fig. 6.9(a)-(b) show schematically the
effect of SOC observed in the ab initio simulations. The role of IrRep in this work is the

2Whether such off-diagonal terms are present of not is a matter of the microscopic parameters of the
Hamiltonian. Their absence requires fine-tuning of these parameters, which is unrealistic within the
DFT framework and in actual materials
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Figure 6.9: Evolution of the bulk gap in terms of buckling parameter for (a) bis-
muthene, (b) antimonene and (c) arsenene. (d) Buckled-hexagonal crystal structure
considered for the monolayers. Source: [107].

calculation of irreps of bands on the k-points Γ, M (π, π, 0) and A (π, π, π) of the BZ,
both with and without SOC. This data was then interpreted in terms of the capacity of
SOC to split bands.

6.4 Conclusion
IrRep is a Python code for the calculation of irreducible representations of DFT
calculated bands at high-symmetry points. It is a powerful tool for the detection
and classification of topological sets of bands and materials, applicable with calcu-
lations performed both with or without SOC and using unit cells that might be
non-conventional. Its structure keeps the implementation of interfaces to plane-wave
DFT codes simple; currently, it is compatible with VASP, Abinit, Quantum Espresso
and any code that has an interface to Wannier90 (which covers most of the popu-
lar DFT codes). Additionally, routines for separating bands based on an eigenvalue
of certain symmetry operation are included. IrRep can be freely downloaded from
https://github.com/stepan-tsirkin/irrep and/or installed with pip and its offi-
cial webpage can be found in http://irrep.dipc.org/; the repository also contains
examples, including the analysis of CuBi2O4 that we have presented in this work to
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illustrate the utility of the code.
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7 Valence fluctations in heavy-
fermion materials

Heavy-fermion materials, first discovered in 1965 [149], are widely known for displaying
high density of states close to the Fermi level, and for their electrons behaving as slow
particles. Since they often lie on the frontier between magnetic and non-magnetic sys-
tems, they have usually been considered as testbed to understand the interplay between
magnetic and electronic phenomena in crystals. In particular, heavy-fermion systems
became a typical platform for the study of Kondo physics, as they contain the ingredi-
ents present in Anderson’s microscopic model for the formation of magnetic moments
in crystals [150]. Moreover, they have attracted considerable attention as platforms to
host spintronic applications or high-temperature superconductivity [39].

The interesting properties of heavy-fermion materials stem from their chemical com-
position. They contain rare-earth or actinide1 elements, whose valence electrons popu-
late spatially-localized f -orbitals. Electrons suffer from strong repulsive interactions in
these orbitals, which influences many properties of heavy-fermion materials. The effect
of interactions on the valence fluctuations of lanthanide ions is especially important, as
this property turns out to be crucial for the understanding of the electronic features of
the compounds. We will thus dedicate this chapter to describing valence fluctuations
in heavy-fermion systems. This will help us to decide in which scenarios could TQC be
applied to these materials.

The valence of a lanthinide element in a heavy-fermion compound can be defined as
the number of electron in its 4f -states. On the one hand, we could expect the valence to
be stable, as the overlap of these orbitals with those of neighboring ions is small owing to
their spatial confinement. On the other hand, the 4f -shell tends to be close in energy to
5d-states, which might facilitate transitions of electrons between these shells, and hence

1We will focus our discussion on actinide compounds, since the spatial localization is more consider-
able in 4f -orbitals than in 5f -states. This decision can be supported based on difficulties to actually
work experimentally with actinides. Anyway, the possibility for actinide materials to display a behavior
similar to that discussed in this chapter should not be discarded, in principle.
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7 Valence fluctations in heavy-fermion materials

allow the valence to fluctuate.
The Anderson model [150] is suitable to capture valence fluctuations as it includes

all these ingredients. The (minimal) Hamiltonian of the Anderson model can be written
in the following form:

H = H5d−bands +
∑
ij,σσ′

[Viσ,jσ′ d†iσfjσ′ + h.c.] +
∑
iσ

Eiσf
†
iσfiσ +U

∑
i

f†i↑fi↑f
†
i↓fi↓. (7.1)

Here, H5d−bands is the independent-electron Hamiltonian for the 5d-states. fiσ (diσ) is
the operator which annihilates an electron from the 4f (5d)-orbital labeled by quantum
numbers i and spin σ. The third term accounts for the on-site energy of the 4f -states.
V is the matrix describing the hybridization between 4f and 5d-orbitals. Since off-site
hoppings between 4f -orbitals are not included, fluctuations in the valence can only take
place through transitions mediated by V . The last term is the Hubbard interaction. It
accounts for the on-site Coulomb repulsion between electrons by setting a energy penalty
U for each 4f -orbital containing two electrons. The decision for including electron
interactions only for the 4f -states is motivated by the fact that 5d-orbitals are broader
in space.

In order to gain a grasp on how Hubbard interactions can affect the valence, let
us focus first on the case of a single impurity with a pair of spinful f -states. Al-
though the Hubbard interaction term has been chosen to be diagonal in the orbital
indices in this work, for this discussion it is convenient to consider that it has the form:
U
∑

ij f
†
i↑fi↑f

†
j↓fj↓, i.e. it adds a penalty every time a pair of electrons is added to the

4f -shell of a site. In the non-interacting limit (U = 0), there is not any restriction on
the occupation of an arbitrary site, apart from Pauli’s exclusion principle. This means
that if we take a snapshot of the site at an arbitrary time, the probability for observ-
ing it with no electrons, a spin-up electron, a spin-down electron or two electrons, is
identical. All these configurations contribute to the valence of the lanthanide ion. In
the strongly interacting case with a large value for U , the configuration where the site
hosts two electrons is energetically unfavorable, as it requires paying an energy penalty
U . Therefore, only three out of the four possible states of the impurity contribute to the
average occupation. The valence is hence constrained by strong-electron interactions.

Let us extend this discussion to the case we are interested in: a crystal containing a
periodic arrangement of lanthanide ions. We will now describe qualitatively the evolution
of both the chemical potential µ and valence of 4f -orbitals, in terms of the number of
electrons per unit cell n. For that, we denote nf the average number of electrons (per
cell) in the 4f -orbitals, and we consider first the scenario without hybridization (V = 0)
illustrated in Fig. 7.1. Assuming that Ef is above the bottom of the 5d-bands, µ
increases progressively as these states get filled. Meanwhile, 4f -states remain empty
(nf = 0).

When the number n reaches a certain critical value nc1, electrons begin to populate
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Figure 7.1: Schematic representation of valence fluctuations, for the case without
hybridization (V = 0). (a) DOS of bands induced from 5d-orbitals, kept featureless for
the sake of simplicity. (b) Energy levels of 4f -orbitals, at Ef , 2Ef+U, . . . (c) Evolution of
the chemical potential µ as the number of electrons per unit cell n is increased. Plateaus
correspond to mixed-valence states, whereas the lines where µ increases correspond to
integral-valence configurations.

4f -states, while the chemical potential is pinned to µ = Ef – the system is on the f0−f1
plateau in Fig. 7.1(c). Some of the lanthanide ions host an electron in the 4f -states and
the rest are empty, thus the ionic configuration lies between f0 and f1. In other words,
the average valence nf takes a non-integer value nf ∈ (0, 1). This is the mixed-valence
case.

Once all ions contain an electron in the 4f -states, the mean valence reaches an
integer value (nf = 1). If we keep on injecting electrons into the lattice, they will again
populate 5d-states, while the mean valence will be pinned at nf = 1. In this stage, the
system is said to be in an integral-valence configuration. Increasing n further, the
system will undergo other mixed and integer-valence configurations.

The effect of strong interactions should be emphasized. If the interaction strength
U was small compared to the rest of parameters in Eq. (7.1), mixed-valence states would
not be a mixture of ions in only two successive configurations. For example, the first
plateau in Fig. 7.1(c) would also involve ions in f2, f3, . . . configurations, rather than
only f0 and f1.

At this point, we could classify lanthanide compounds as mixed or integral-valence
materials. However, an important ingredient is missing in the discussion above: the
hybridization between 5d and 4f -orbitals. As a result of this coupling, the plateaus’
corners in Fig. 7.1(c) become rounded, and the difference between mixed and integral-
valence configurations is not sharp anymore. Therefore, the system can lie either deep in
the mixed-valence regime, deep in an integral-valence regime or belong to the nearly-
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integral valence region. In this last case, the average valence is neither exactly an
integer nor takes a value midway between two integral numbers.

Notice that the occupation and average valence are not the same. The occupation
of the 4f -orbitals is a dynamical quantity; indeed, it fluctuates between two valence
states, and at particular time, it might differ from site to site. It is in this sense that
the valence is said to fluctuate in some heavy-fermion materials. The average valence,
in contrast, is the mean value of the occupation of 4f -states taken for the whole lattice.
Unlike the occupation, it can take non-integer values. It must be mentioned that, in this
work, we only consider homogeneous systems, i.e. crystals where the average occupation
respects the symmetries of the space group.

Once the mechanism behind valence fluctuation is understood, we can focus on the
electronic properties. As we mentioned, valence electrons populate 4f and 5d-states in
lanthanide elements, which are usually close in energy. This feature tends to manifest
itself in reciprocal space as the presence of 4f and 5d-bands in the region around the
chemical potential. The interplay between these bands, mediated by hybridization and
SOC effects, could then lead to topological phases.

Before we tackle the analysis of topology in these materials, we have to build a
more precise picture about the description of their electronic structure, in particular,
about the applicability of TQC for their analysis. We will now explain separately the
limits in which the electronic structures of mixed and integral-valence systems admit a
description in terms of quasiparticles.

7.1 Mixed-valence materials
Many-mixed valence materials can be described in terms of quasiparticles. In order to
convince ourselves about this statement, we will describe briefly the approach presented
in Ref. [151].

We consider the Anderson model in Eq. 7.1, restricted to a model made up of a pair
of spinful 5d-orbitals and another pair of 4f -states:

H =
∑
k,σ

ϵ(k) c†kσckσ +
∑
R,σ

Eff
†
R,σfR,σ −

∑
k,σ

v(k)(c†k,σfk,σ + h.c.)

+ U
∑
R

f†R,↑fR,↑f
†
R,↓fR,↓. (7.2)

where c†k,σ creates a state on the 5d-band, f†R,σ a particle in the 4f -orbital of the cell R,
and f†k,σ a Bloch state corresponding to 4f -orbitals. Although specific aspects of ϵ(k)
and v(k) are not considered here, we assume that the (flat) 4f -bands cut through the
dispersive 5d-band, which is common to happen in heavy-fermion materials due to the
tendency of 5d-orbitals to induce bands with large dispersion [see Fig. 7.2].
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Figure 7.2: Band structure of the non-interacting part of the Anderson model in
Eq. (7.2), with ϵ(k) = cos k. Solid lines correspond to the case without hybridization
[v(k) = 0], while dashed lines are the bands for v(k) = 0.3.

The eigenstates of the non-interacting part in Eq. (7.2) are given by:

E±(k) =
Ef + ϵ(k)±

√
[ϵ(k)− Ef ]2 + 4|v(k)|2

2
. (7.3)

Owing to the hybridization v(k), the band structure splits into upper and lower bands
separated by a gap, whose energy levels are E+(k) and E−(k), respectively. The creation
operator for the states in the lower band is the following:

ψ†σ,k =
1√
2
[c†k,σ + a0(k)f

†
k,σ], (7.4)

where
a0(k) =

2v(k)

Ef − ϵ(k) +
√
[ϵ(k)− Ef ]2 + 4|v(k)|2

. (7.5)

The many-body ground state of the system is then a Slater determinant of the states in
the lower band:

Ψ†0 =
∏
k,σ

ψ†k,σ =
∏
k,σ

1√
2
[c†k,σ + a0(k)f

†
k,σ]. (7.6)

In order to unveil the nature of the ground state in the strongly interacting case,
let us motivate the variational approach proposed in Ref. [151]. If we expanded f†k,σ
in terms of the real-space creation operators, we would realize that Ψ†0 contains ions in
the f2 configuration. At the same time, we know that the effect of a strong Hubbard
interaction U is to get rid of these terms involving f2 ions. We could then consider
as ansatz for the variational method an operator obtained by applying the projector∏

R(1 − nR,↑nR,↓) to Eq. (7.6). Moreover, we could substitute a0(k) by a function
a(k), which plays the role of variational parameter. This substitution stands for the
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redistribution of electrons when interactions are included. All in all, the variational
operator considered for the ground state is:

Ψ† =
∏
R

(1− nR,↑nR,↓)
∏
k,σ

1√
2
[c†k,σ + a(k)f†k,σ]. (7.7)

It turns out that the optimum a(k) has the same expression as Eq. (7.5), but v(k)
and Ef should be substituted by renormalized expressions for hybridization and f -levels
energy, respectively. This result suggests that many mixed-valence materials might be
described in terms of quasiparticles, and the application of TQC to them might therefore
be straightforward.

7.2 Kondo insulators
In order to explore the applicability of TQC out of the mixed-valence case, we will
focus on the integral-valence case and look into its physics. We will comment on a
renormalization group approach which simplifies the Anderson model Hamiltonian to
an insightful expression, known as Kondo Hamiltonian. Then, we will identify the limit
where the solution of this Hamiltonian admits a description in terms of quasiparticles.

We consider first the Anderson model for a single magnetic impurity, and we will
later comment on the extension to case where lanthanide ions form a lattice. For a
moment, let us neglect the presence of 5d-electrons in the Anderson Hamiltonian, i.e.
we neglect the first two terms in Eq. 7.1. There are then three energy levels in the
model: when Ef < 0, |f↓〉 and |f↑〉 are the states with lowest energy E = Ef , followed
by the empty and double-occupation states of energy E = 2Ef + U , respectively. Since
at the integral-valence case all lanthanide ions are at half-filling 2, we expect valence
fluctuations to be present in the low-energy limit of order 10K only virtually – the reason
for considering this order of magnitude will be clear later on. This insight encourages
us to integrate out valence fluctuations from the Anderson Hamiltonian in Eq. (7.1).

This renormalization group approach is dubbed Schrieffer-Wolff transformation
[152]. In order to understand its essence, let us break it down into steps, as it is illustrated
in Fig. 7.3. Adopting the Anderson model as starting point already stands for getting
rid of superfluous features shown in red. Once in the Anderson model, we first notice
that processes involving two electrons in the impurity require an energy gain of the order
U , which is usually ∼ 1, 10 eV for lanthanides [40]. We could therefore set an energy
cutoff D′ < Ef +U and fold the key effects lying at frequencies ω > D′ to the low-energy
spectrum, so that they do not anymore take part on it explicitly. Similarly, since we are
interested in the physics happening at a scale smaller than Ef , we can repeat this step
by setting a new cutoff D′′ < Ef < D′, which allows us to integrate out transitions to

2For simplicity, we will consider that each site contains only two f -orbitals.
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7.2 Kondo insulators

Figure 7.3: Renormalization group concept behind Schrieffer-Wolff transformation.
Integrating out valence fluctuations in the Anderson model leads to the Kondo Hamil-
tonian, where they enter as virtual processes mediating spin-flips. Source: Ref. [38].

the empty configuration of the ion.

Let us describe the Schrieffer-Wolff transformation in more mathematical terms. For
that, we consider a basis which allows us to write down the matrix of the Hamiltonian
in the following block structure:

H =

[
HL V

V † HH

]
, (7.8)

where HL is the block of elements between states where f -orbitals contain one electron,
HH is the block for doubly-occupied and empty configurations of the ion, and V is the
hybridization matrix responsible for valence fluctuations. The renormalization follows
by aiming a canonical transformation, driven by the matrix S, which decouples the low
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and high-energy subspaces:

eSHe−S =

[
H̃L

H̃H

]
. (7.9)

The steps to integrate out doubly-occupied and empty configurations of f -orbitals are
thus given at once im the Schrieffer-Wolff transformation. Expanding S in powers of
the hybridization parameter v and neglecting terms O(v3) – and higher-order terms –
leads3 to the following the following expression for the low-energy Hamiltonian H̃L:

H̃L =
∑
k,σ

ϵk c
†
kσckσ + Ef f

†
σfσ +

∑
kk′,αβ

J(k,k′)c†kαck′βσαβ · Sf , (7.10)

where Sf is the spin operator for the f -orbital. This expression is widely know as
Kondo Hamiltonian. It describes the low-energy interplay between 5d-electrons and
electrons localized in 4f -orbitals. According to it, 5d-electrons suffer from scattering off
the impurities and, as a result, both their crystal momentum might change and the spin
of the 4f -electron might flip.

Usually, the dependence on momentum of the coupling constant J(k,k′) is ne-
glected. The last term in Eq. (7.10) describes then a point like interplay between the
impurity and the spin density of 5d-orbitals which favors their ferromagnetic alignment
(J > 0). The analysis of this scattering lead Jun Kondo to an explanation of the resis-
tance minimum observed in many metals upon lowering of temperature [36]. It turns
out that, at low temperature, the local moments of the f -orbital are screened by the
5d-electrons and the electron fluid can be described as a Fermi liquid.

When an array of impurities is considered, like in the case of a heavy-fermion crys-
tals, Kondo scattering turns into a coherent effect which conserves crystalline momenta.
Consequently, as temperature is lowered, the resistivity reaches a maximum and drops
then to zero with the typical behavior corresponding to Fermi liquids.

Nevertheless, in the lattice case, local moments tend to polarize the conduction
sea, which gives raise to the RKKY interaction [38, 153]. This interaction interaction
between localized spins favors the antiferromagnetic ordering, and therefore competes
with the Kondo interaction. When the RKKY interaction dominates over the Kondo
effect, the ground state of the lattice is antiferromagnetic. However, when the Kondo
interaction is the dominant effect, the system might behave as a paramagnetic Fermi
liquid. This later case, which we dub Kondo lattice, might be particularly suitable for
hosting topological phases describable in terms of TQC.

In the case of a dominant Kondo interaction, two different regimes separated by
a critical temperature TK can be identified. For T > TK , the system shows magnetic
order, while local moments get screened by conduction electrons for T < TK , yielding
a ground state without magnetic ordering. TK is called Kondo temperature, and it

3See Ref. [38] for rigorous expressions and a detailed derivation.
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is usually of the order of ∼ 10 K. Valence fluctuations involve changes in energy of the
order of U ∼ 1, 10 eV and Ef ∼ 1 eV, which are much larger than the energy scale of
∼ 1 meV set by TK for Kondo physics. Therefore, the Schrieffer-Wolff transformation
should be interpreted as a renormalization procedure which allows integrating out the
features of the Anderson’s model that lie out of the energy range set by TK .

It turns out that Kondo lattices might display a variety of behaviors [40]. Here,
we are particularly interested in Kondo insulators. These Kondo lattices behave as
metals with an array of localized magnetic moments at T > TK . Upon cooling to
T < TK , they turn into insulators whose electronic structure can be described in terms
of quasiparticle bands. As explained in Refs. [40, 49], the fact that Kondo insulators
behave as Fermi liquids can be interpreted in the following way: In the strong-coupling
limit, where Kondo interaction is the dominant term in Eq. (7.10) and the rest can
be neglected, the ground state of the lattice corresponds to a spin singlet in each site,
formed as the coupling of an electron in a f -orbital to a conduction electron. If we
remove an electron from a site, we break the corresponding singlet. A small but finite
hopping term in the non-interacting part of Eq. (7.10) would then allow the unpaired
electron of the site to propagate through the crystal – a similar argument follows for
particle-like excitations. Therefore, particle and hole excitations propagate through the
Kondo lattice (at T < TK) as quasiparticles.
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istry for heavy-fermion insu-
lators

The discovery of topological insulators was one of the most inspiring developments in
condensed matter physics in the last decades. The first proposal by C. Kane and E. J.
Mele for the realization of the quantum spin Hall effect in a two-dimensional lattice [2,3],
and the later generalization by L. Fu et al. to three-dimensions [7, 18], stimulated
an intense research on topological band structures and an extensive identification of
topological materials. While initially the focus was on topological phases protected by
time-reversal (TR) symmetry, the development of the topological quantum chemistry
(TQC) formalism set a framework to study the interplay between crystal symmetries and
topological phases. TQC provides a recipe to explain how bands in a crystal inherit their
symmetry properties from exponentially-localized Wannier functions in real space. The
combination of TQC and the symmetry-based indicators of topology [28,29] constitutes a
powerful tool to investigate topological crystalline insulators. However, it remains largely
unexplored to which extent could these formalisms be extended to describe topology in
strongly-correlated electrons. In order to explore the possibilities of TQC beyond band
topology in weakly-interacting systems, in the present work we apply TQC to a canonical
class of correlated systems, namely heavy-fermion materials without magnetic order.

Heavy-fermion materials [154–158] are intermetallic compounds of rare earth metals
and actinideswith localized f and dispersive d bands near the Fermi surface. A most
discussed type of heavy-fermion material are Kondo insulators [154,158], which undergo
a transition into a paramagnetic phase when the temperature is lowered below a critical
value. The corresponding paramagnetic insulator can be described in terms of highly
renormalized f-electrons that hybridize with conduction electrons to form a filled band
of quasiparticles. Importantly, while these materials are strongly interacting electron
systems, their excitations and ground states can nevertheless be regarded as adiabatically
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8 Topological quantum chemistry for heavy-fermion insulators

connected to noninteracting band insulators, as long as the phase sits far enough from the
quantum-critical point [159,160]. Alternatively, if the mean occupation of the f -orbitals
is not close from an integer value, the systems are classified as mixed valent. Even
though both kinds of systems have been intensively analyzed during the last decades
and preliminary research has been done on their topological properties [46, 48–50, 161],
there is still a lack of a methodology for the general classification of topological phases
in heavy fermion materials in the insulating state.

In this work, we present a TQC based analysis of the origin of topology in the
quasiparticle band structure of non-magnetic heavy-fermion insulators. We identify
three fundamental cases where the interplay between dispersive d-bands and heavy f -
bands might lead to topological band structures. Our analysis is valid with and without
spin-orbit corrections and general for all 230 space groups. This implementation of
TQC allows for a rigorous classification of topological phases in these materials, as it
considers all crystal symmetries of the space group on an equal footing. Furthermore,
it is applicable to classify the topological phase of any disconnected set of bands, which
might turn out to be useful to predict boundary states.

The first material we consider as testbed is the prototypical mixed-valence insulator
SmB6. By applying our formalism to it, we diagnose and classify the topology of its ab
initio band structure (and discuss how effects of band renormalizations due to electron
correlation may affect this classification). Although previous works predicted that SmB6

could be a topological insulator protected by TR-symmetry [46,48–51] or a mirror-Chern
insulator [162,163], we show that its band structure corresponds to a strong-topological
insulator with z4πm = 3 and z8 = 5 indicators. This more precise classification is the
result of accounting not only for inversion and TR-symmetry, but also the full crystal
symmetries of the structure.

The structure of this chapter is the following: In Sec. 8.1, we discuss in terms of TQC
how the hybridization between bands might produce topological valence bands in the
band structure of heavy-fermion insulators. The origin of topology in the band structure
of SmB6 is then investigated in Sec. 8.2, and the actual topological phase is classified
based on symmetry-indicators of topology. We finish the chapter by summarizing the
results and commenting on our outlook for this contribution to the field of heavy-fermion
insulators.

8.1 Types of hybridization-driven topological phases
in heavy-fermion materials

A set of Wannier functions is said to be closed if the action of the space group on it does
not transform any of them into a state that is not included in the set. A closed set of
Wannier functions forms a basis for a representation of the space group called band rep-
resentation [31–33]. If a set of bands transforms as a band representation (in reciprocal
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8.1 Types of hybridization-driven topological phases in heavy-fermion materials

space), it is said to have an atomic limit. Furthermore, a band representation whose
atomic limit can not be broken down into smaller atomic limits is dubbed elementary
band representation (EBR).

According to the formalism of topological quantum chemistry [25–27], if a set of
band does not have and atomic limit, it is topological. Determining that a set of bands
does not have an atomic limit is then sufficient to show that they are topological bands.
This can be inferred from its little group irreducible representations (irreps) at maximal
k-points of the BZ: when this set of irreps can not be written as a linear combination of
EBRs where the coefficients of all EBRs are positive integers of zero, the bands do not
have an atomic limit, and are hence topological.

A remarkable feature of mixed valence and (magnetically non-ordered) Kondo insu-
lators containing lanthanide elements is that the low energy part of their quasiparticle
band structure is dominated by the presence of dispersive and heavy bands. Heavy
bands transform as a band representation induced from localized 4f -orbitals of the
lanthanide element, while the band representation of dispersive bands is induced from
spatially extended 5d-orbitals of the same element. Another property of these materials
is the fluctuating occupation of 4f -orbitals, which is a consequence of electron-hopping
transitions between these and 5d-orbitals.

Moreover, in the case of topological heavy-fermion materials, the dispersive 5d-
bands are cut by the (almost) flat 4f -bands. Due to the hybridization between orbitals,
the irreps of the corresponding band representations redistribute among valence and
conduction bands. Then, if the irreps belonging to valence bands can not be written as
a linear combination of EBRs with positive-integer (or zero) coefficients, the material
hosts a topological phase.

Although the hybridization can not be tuned arbitrarily in an actual material, it
will be helpful to consider here that we can switch it on and off in order to gain insight
of the interplay between dispersive and heavy bands. We consider as starting point the
band structure without hybridization, where the bundle of heavy 4f -bands intersects the
set of dispersive 5d-bands. Let us denote ρf and ρd the band representations induced
from the 4f and 5d-orbitals, respectively. In the absence of hybridization, even if these
representations might share the same irreps, it is possible to relate every irrep to one of
them

When the hybridization is considered, irreps of ρd and ρf redistribute among valence
and conduction bands. Depending on manner they reorganize themselves, it is possible
to distinguish between three cases of hydridization-driven topology in heavy-fermion
insulators.

8.1.1 Combination of band representations
This case, illustrated in Figs.8.1(a) and (b), corresponds to insulators where the irreps
of valence bands can not be identified as a set stemming exclusively from neither ρd nor
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Figure 8.1: Schematic illustrations of the three types of mechanism to explain topo-
logical phases in non-magnetic heavy-fermion insulators. Bands in blue are topological.
Circles (squares) indicate irreps which can be related to ρd (ρf ) when the hybridization
is unconsidered. (a) and (b) illustrate the case described in Sec. 8.1.1 with and with-
out considering the hybridization, respectively. (c) and (d) sketch the case explained
in Sec. 8.1.2, before and after including the hybridization in the analysis, respectively.
(e) and (f) show an example for the case in introduced in Sec. 8.1.3, with and without
considering the 4f -bands in the discussion.
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ρf . We say that the irreps of valence bands are combination of irreps which belonged
to ρd and ρf before considering the hybridization.

Identifying this scenario is particularly simple if every irrep in can be related with
either ρd or ρf , i.e. if these band representations have different irreps. This is the case
for symmorphic crystals where lanthanide ions sit on inversion centers, like SmB6. In
such a material, irreps of ρd and ρf have opposite parity at inversion-invariant maximal
k-points.

8.1.2 Split of the band representation induced from 5d-orbitals
The hybridization-driven transition might be different when the band representation
ρd is decomposable, that is when it admits a separation into smaller disconnected sets
of bands such that each subset satisfies independently the compatibility relations of
the space group. The hybridization with heavy bands could then disconnect ρd, and a
topological subset of bands coming out of the split could become part of the valence
states. It is important to realize that, in group theory grounds, this case does not
require the combination of irreps at maximal k-points introduced in the previous case.
See Figs. 8.1(c) and (d) for an illustration of this case.

This type of transition might be particularly prone to yielding fragile topological
phases. To understand this point, let us consider that the irreps of the 5d-bands split
by the hybridization coincides with the irreps of an EBR ρ. The separation of this set
of dispersive bands can then be written as

ρ = ρc ⊕ ρv, (8.1)

where ρc and ρv are subsets which become part of the conduction and valence states,
respectively. At least one of these subsets must be topological, since otherwise ρ would
not be an EBR. In particular, if ρc has an atomic limit, then ρv is fragile topological
as it can be written as ρv = ρ 	 ρd, i.e. as a linear combination of EBRs with integer
coefficients, where at least one of the coefficient is negative.

8.1.3 Topology induced by filling-matching
Let us suppose that ρd is decomposable and that the band structure would be metallic
in the absence of 4f -bands. This happens when the chemical potential cuts through a
set of 5d-bands, which are thus partially filled. Due to the contribution of the 4f -shell to
the total number of electrons, the chemical potential might move to the region between
two disconnected sets of bands. The bands below the chemical potential might then
host a topological phase.

Let us consider the example illustrated in Figs. 8.1(e) and (f). The band represen-
tation of 5d-bands is separated in two sets of bands. The lower set is two-fold degenerate
and topological, while chemical potential cuts through the upper set of bands, as the
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(a) (b)

Figure 8.2: Crystal structure of SmB6. a) Primitive unit cell. Sm atoms are shown
in red (Wyckoff position 1a), while B atoms are shown in green. b) First BZ, where
maximal k-points are indicated in red.

contribution of the 5d-shell to the number of electrons per unit cell is Nd = 3. Let
us denote ρ̃d the representation of the lower topological set of bands. If the 4f -shell
contributes Nf = 1 electron per unit cell, the total number of electrons per primitive
cell (Nd +Nf = 4) is even. The system might consequently be an insulator, such that
the valence bands are formed by a set of states transforming as ρ̃d and some additional
bands which do not trivialize this representation. As a result, the system is a topological
insulator.

Notice that the hybridization between 4f and 5d-orbitals is not vital for the system
to be an insulator. The contribution of both shells to the number of electrons and the
actual connectivity of the corresponding bands are in fact the responsible for leading to
a topological insulating phase.

8.2 Topological band structure of SmB6

In this chapter, we will investigate the band structure of SmB6 in terms of TQC. SmB6

crystallizes in a primitive cubic structure in the space group Pm3̄m (No. 221). The unit
cell and BZ of the crystal are shown in Fig. 8.2(a) and (b), respectively. This compound
is a mixed-valence semiconductor predicted to be topologically non-trivial at T < 30 K
by theoretical calculations and experiments [46, 48–50, 161]. We will begin by looking
into the orbital character of the region around the Fermi level and by determining the
topology of the valence bands by means of ab initio calculations. Then, we will work
out the crystal-field split 5d and 4f -orbitals suffer from, in order to determine the irreps
of their band representations. The information obtained in these two steps will be used
in the third step to investigate the origin of the topological phase in terms of TQC.
Finally, we present a minimal tight-binding model which captures the topological phase
obtained within the framework of DFT.
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8.2 Topological band structure of SmB6

8.2.1 Ab initio band structure

The ground state electron density and band structure of SmB6 have been calculated
with self-consistently with VASP [164]. The details of the calculation can be found
in appendix C.1. According to our DFT calculations, the average occupation of the
4f -shell of Sm in the ground state is nf = 5.5, which indicates that the valence of Sm
fluctuates between 4f5 and 4f6 configurations. SmB6 is, therefore, a mixed-valence
insulator. This result is in good agreement with previous works [52,165–167]. The cause
of this fluctuation is the proximity in energy of samarium’s 4f and 5d-shells, which
allows electrons to hop between these orbitals. SmB6 is thus a mixed-valence compound
where 4f -states play the role of localized orbitals, whereas 5d-states act as overlapping
orbitals.

The low-energy part of the band structure of SmB6 is dominated by bands induced
from samarium’s 5d and 4f -orbitals. Fig. 8.3(c) shows the weight of Sm’s 5d-states on
the bands. According to this data, the set of 5d-bands are located well above the Fermi
level. Nevertheless, one of these bands comes down to −2 eV in the line connecting Γ to
X. Furthermore, the 4f -orbitals induce heavy (quasi)bands which lie close to the Fermi
level and cut through this 5d-band [see Fig. 8.3(d)].

Fig. 8.3(a) shows the band structure of SmB6 calculated with pseudopotentials
which do not include 4f -states as valence electrons, whereas the band structure in
Fig. 8.3(b) includes the bands induced from these localized orbitals. This data is com-
patible with the fact that the band going down from 2 eV to −2 eV between Γ and X
is a 5d-band. Moreover, it corroborates that the heavy bands in the region around the
Fermi level are induced from 4f -orbitals. The 5d-band is split by the hybridization with
4f -bands, such that the valence band looks to be formed out of the gluing of 5d and
4f -bands. This fact suggests the origin of topology in SmB6 is the hybridization-driven
combination of band representations explained in Sec. 8.1.1.

The origin of the gap separating valence and conduction bands is more complicated.
On the one hand, Fig. 8.3(b) shows SmB6 would be a metal if 4f -bands were not present
around the Fermi level, thus the hybridization between these and 5d-states contributes
to the material being an insulator. On the other hand, the highest valence and lowest
conduction bands belong to the subset of J = 5/2 and J = 7/2-bands originated from
the separation by SOC of the bundle of 4f -bands. These subsets split further due to
the crystal field and combine between them, yielding to the gap that separates them.
Therefore, the reason for the DFT band structure of SmB6 to be an insulator is the
interplay between SOC, the crystal field felt by 4f -states, and the hybridization between
these and 5d-states.

In order to determine if the valence bands are topological, we have calculated with
the software IrRep [77] their irreps of little groups at maximal k-points of the BZ, which
are shown in Fig. 8.4(a) and collected in Tab. 8.1. It turns out that this set of irreps can
not be written as a linear combination of EBRs with positive or zero integer coefficients.
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8 Topological quantum chemistry for heavy-fermion insulators

Figure 8.3: (a) and (b) show the band structure of SmB6 around the Fermi level (red
dashed line), with and without including the 4f -states of Sm, respectively. The inset
in (a) demonstrates that valence and conduction states are separated by a gap of the
order of ∼ 10 meV. (c) and (d) show the weight of samarium’s d and f -orbitals in the
bands, respectively. A dispersive d-band crosses the manifold of heavy f -bands in the
line Γ-X-M.

154



8.2 Topological band structure of SmB6

Table 8.1: Irreps of bands in SmB6 calculated with IrRep from ab initio bands. The
irreps above (below) the horizontal line correspond to states in the conduction (valence)
bands. Moreover, black and orange irreps belong to the band representation induced
from 4f -orbitals. The irreps in blue and orange are those which allow us to understand
the non-trivial topology in terms of a band inversion [see Figs. 8.4(a)-(b)].

Γ X M R
Γ̄10 X̄9 M̄8 R̄11

Γ̄8 X̄8 M̄9 R̄9

Γ̄9 X̄9 M̄9

Γ̄11 X̄8 M̄8

X̄9

Γ̄11 X̄9 M̄8 R̄11

Γ̄9 X̄8 M̄9 R̄9

X̄7 M̄8

As a result, the valence bands host a topological phase according to the formalism of
TQC. Furthermore, we have computed the values for the symmetry-based indicators
of topology [28, 29] via the software CheckTopologicalMat of the BCS [30, 104], which
yields the weak indicators (z2w,1, z2w,2, z2w,3) = (1, 1, 1) and z4πm = 3, also the strong
indices z2 = 1, z4 = 1 and z8 = 5. SmB6 is therefore a strong-topological insulator, in
accordance to our DFT calculations.

Our topological classification is compatible with previous works which predicted
SmB6 to be a strong-topological insulator [46–54]. Nonetheless, while previous clas-
sifications are based on the calculation of the weak (z2w,1, z2w,2, z2w,3) and strong z2
invariants [7, 8, 18], our diagnosis incorporates additional indicators which take indeed
values that indicate non-trivial topology. We have therefore obtained a more rigorous
classification as our analysis includes all crystal symmetries on an equal footing.

8.2.2 Band representations induced from 5d and 4f-orbitals of
samarium

To determine the irreps of little groups of maximal k-points corresponding to the band
representations of samarium’s 5d and 4f -states, we will work out the split these shells
suffer owing to the crystal-field.

If samarium atoms were isolated from their environment, the 4f and 5d-orbitals
would be 10 and 14-fold degenerate, and they would transform as the irreducible repre-
sentations D−3 ⊗D+

1/2 and D+
2 ⊗D+

1/2 of the symmetry group O(3), respectively – Dp
J is

an irrep of O(3), where J and p are the parity, and D+
1/2 is the spin-representation. How-

ever, in SmB6, samarium sits at WP 1a whose coordinates are (0, 0, 0). The symmetry
group leaving this position invariant is lowered to G1a = m3̄m, thus 4f and 5d-orbitals
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(b) (c)

(a)

Figure 8.4: (a) Band structure of SmB6 with the irreps of bands induced from 4f -
states of samarium. The 5d-band which crosses the bundle of 4f -bands is indicated in
yellow. Irreps induced taking part in the band inversion are indicated in blue (induced
from d-orbitals) and orange (f -orbitals). (b) Sketch to illustrate the position of 5d and
4rf -bands before considering their hybridization. The irrep X̄9 (orange) comes from the
4f -states, whereas X̄7 (blue) has its origin in the 5d-states. (c) Sketch showing how the
hybridization opens a gap between 4f and 5d bands. As a result of of the gap opening,
the irrep X̄9 (X̄7) belongs to the conduction (valence) bands of the insulator. The Fermi
energy is marked by the red-dashed line in all the three figures.
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transform now as the representations of G1a subduced by D−3 ⊗D+
1/2 and D+

2 ⊗D+
1/2,

i.e. (D−3 ⊗D+
1/2) ↓ G1a and (D+

2 ⊗D+
1/2) ↓ G1a, respectively.

Regarding 4f -orbitals, their representation (D−3 ⊗D+
1/2) ↓ G1a is reducible and can

be decomposed as the direct sum of irreps of G1a:

(D−3 ⊗D+
1/2) ↓ G1a = Ē1u(2)⊕ 2Ē2u(2)⊕ 2F̄u(4). (8.2)

where the numbers between brackets indicate the dimensions of the irreps – degeneracy
of the corresponding states. The 14-fold degenerate 4f -shell is thus split into three
groups of 2-fold degenarate and two groups of 4-fold degenerate states. Each of these
set of degenerate states induces Bloch waves that transform as an EBR of Pm3̄m. The
irreps at maximal k-points of these EBRs are the following:

(Ē1u ↑ G)1a : {Γ̄8, R̄8, M̄9, X̄8}, (8.3a)
(Ē2u ↑ G)1a : {Γ̄9, R̄9, M̄8, X̄9}, (8.3b)
(F̄u ↑ G)1a : {Γ̄11, R̄11, M̄8 ⊕ M̄9, X̄8 ⊕ X̄9}. (8.3c)

These result further corroborates the fact that the heavy-bands around the Fermi
level are 4f -bands, since they have in correspondence these set of irreps as Fig. 8.4(a).

Similarly, the representation D+
2 ⊗ D+

1/2 corresponding to the 5d-shell is also re-
ducible:

(D+
2 ⊗D+

1/2) ↓ G1a = Ē2g(2)⊕ 2F̄g(4). (8.4)

The 10-fold degeneracy is split into a group of 2-fold and two groups of 4-fold degenerate
states. Each of the irreps of G1a in Eq. 8.4 induces an EBR of Pm3̄m as the WP 1a is
maximal. The irreps at maximal k-points of these EBRs are the following:

(Ē2g ↑ G)1a : {Γ̄7, R̄7, M̄6, X̄7}, (8.5a)
(F̄g ↑ G)1a : {Γ̄10, R̄10, M̄6 ⊕ M̄7, X̄6 ⊕ X̄7}. (8.5b)

Since the space group is symmorphic and samarium sits at an inversion center, the
irreps of band representations induced from this element inherit the parity of the orbital.
For instance, the irreps of the band representation induced from 4f -orbitals [Eqs. (8.3a)-
(8.3c)] are odd under inversion, whereas those of the band representation induced from
5d-orbitals [Eqs. (8.5a) and (8.5b)] are even. This allows us to relate each irrep to either
of the band representations and facilitates the analysis of the origin of topology.

8.2.3 Origin of the topology of SmB6 in terms of TQC
In order to gain deep insight into the origin of topology in SmB6, we will now construct
a simplified picture of the band structure which captures values for the symmetry-
indicators of the phase. This simplification will facilitate us to interprete the topology
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in terms of the TQC based perspective explained in Sec. 8.1.
The first simplification is based on the idea that unoccupied bands do not contribute

to the topological classification of the insulator. This provides us with freedom to leave
out of the discussion some conduction bands. In particular, even if the conduction
bands of irreps {Γ̄8, X̄8, M̄9, R̄8}, {Γ̄9, X̄9, M̄8, R̄9} and {Γ̄11, X̄8 ⊕ X̄9, M̄8 ⊕ M̄9, R̄11}
are crossed by the 5d-band and hybridize with it, they do not play any significant
role in the determination of symmetry-based indicators of the topology of valence
bands. Their irreps coincide indeed with set of irreps of the band representation
(Ē1u ↑ G)1a ⊕ (Ē2u ↑ G)1a ⊕ (F̄u ↑ G)1a. Therefore, we can leave these 4f -bands out
of the discussion.

Concerning valence bands, the set of irreps {Γ̄9, X̄9, M̄8, R̄9} coincides with the
irreps of the EBR (E2u ↑ G)1a. Consequently, this set of irreps makes no contributions
to the values of symmetry-indicators which classify the topological phase of valence
electrons, and we hence get rid of them.

The set of 5d-bands also admits a simplification. Fig. (8.3) shows that it is a single
5d-band which is intersected by the bundle of heavy bands. In an scenario without
hybridization, this band would have the irrep X̄7 indicated in blue in Fig. (8.4)(a) and
would be connected to the irreps Γ̄10, X̄6 and X̄7 at X, and M̄6 and M̄7 at M. This
fact motivates us to simplify the set of 5d-bands by considering only the band with the
mentioned irreps.

All at all, we are left with a simplified band structure containing the 4f and 5d-
bands whose irreps coincide with the set of irreps of the EBRs (F̄u ↑ G)1a and (F̄g ↑ G)1a,
respectively. It must be mentioned that this simplification does not imply that these
bands stem from the orbitals which induce the aformentioned EBRs; generally, the four
4f -bands (5d-bands) might be originated as a combination of many EBRs in Eq.(8.7)
[Eq. (8.6)].

Without hybridization, one of the 5d-band would go down when moving from Γ to
X and the 4f -bands would intersect it, as shown in Fig. 8.4(b). The hybridization would
then separate the bands, as depicted in Fig. 8.4(c). See appendix C.2 for a discussion
about the possibility for having crossing in other symmetry lines and planes. The lower
band would then be a combination of both band representations, in the sense that it
would contain at Γ an irrep originated from the 4f -orbitals (Γ̄11), while its irrep X̄7 at
X would stem from 5d-orbitals. This supports the idea that the topology is produced
by the hybridization-driven combination of band representations described in Sec. 8.1.1.
Moreover, the irreps of the valence band would be {Γ̄11, X̄8 ⊕ X̄9, M̄8 ⊕ M̄9, R̄11}. This
set of bands does not have an atomic limit and is hence topological. It has indeed in
correspondence the same values for the symmetry-indicators of topology as the whole
set of ab initio bands discussed in Sec. 8.2.1. Notice that exchanging X̄7 by X̄9 in the
valence bands, which is equivalent to avoiding the inversion between 5d and 4f -bands,
trivializes the occupied states.
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8.2 Topological band structure of SmB6

8.2.4 Tight-binding model for SmB6

In this section, we present a minimal tight-binding model that captures the key topo-
logical aspects of the band structure of SmB6. The model is based on the simplified
band structure derived in the previous section. Besides providing a picture of the micro-
scopic details of electron-hopping amplitudes, it will serve us to give a demonstration of
the effectiveness of the TQC guided exploration of topological phases in heavy-fermion
insulators.

We consider eight spinful Wannier functions sitting at WP 1a. Four of them trans-
form as the irrep F̄g under the action of the site-symmetry group G1a = m3̄m, while
the rest transform as the irrep F̄u. The EBRs (F̄g ↑ G)1a and (F̄u ↑ G)1a induced from
these contain the irreps present in the simplified band structure derived above.

In order to deal efficiently with the constrains set by symmetries on the parameters
of the model, it is convenient to consider the decomposition of these spinful representa-
tions as the product of the spin representation S = Ē1g and a spinless representation:

F̄g = Eg ⊗ S, (8.6)
F̄u = Eu ⊗ S. (8.7)

We denote the tight-binding basis states |pR,i,σ〉, where R is the lattice vector of
the unit cell, p = g, u stands for the parity of the corresponding irrep, i = 1, 2 labels
the state within the basis of the irrep Ep and σ is the spin-degree of freedom – for
example, |gR,2,↑〉 is the basis state of F̄g in the cell R constructed as the product of the
second basis state of Eg and the ↑-spin state. The transformation of these states under
a symmetry h ∈ m3̄m is described by the following expression:

h |pR,i,σ〉 = [Ep(h)]i′i Sσ′σ(h)
∣∣p(hR),i′,σ′

〉
, (8.8)

where Ep(g) is the matrix of h in the representation Ep. We will use greek letters to
denote the degrees of freedom corresponding to the irreps, except for the parity. The
matrix of h in Eq. (8.8) will be written accordingly as Vα′α = [Ep(h)]i′iSσ′σ(h), with
α = (iσ) and α′ = (i′σ′).

We now consider the matrix elements of the Hamiltonian in the basis of tight-binding
states defined in real space. Let us denote these elements

Hpα,p′α′(R) =
〈
pR,α

∣∣H∣∣p′0,α′

〉
, (8.9)

Here, we only consider amplitudes for hoppings from the unit cell at the origin. Am-
plitudes involving other unit cells can be obtained from Eq. 8.9 through translations
by vectors of the lattice. The fact that the Hamiltonian must be invariant under the
symmetries of the space group, together with Eq. (8.8), leads to the following relation
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8 Topological quantum chemistry for heavy-fermion insulators

between hopping amplitudes:

Hpβ,p′β′(hR) = Vβα(h)Hpα,p′α′(R)V †α′β′(h). (8.10)

For some symmetry operations, this relation could further set constrains on some matrix
elements, reducing the number of independent parameters needed to account for them.
Apart from the on-site energy ϵf of the f -states (p = u), we consider f − f and d − d

hopping elements up to next-nearest neighbors (NNN):

ϵf = ϵ 1,

T11,p(R
NN ) = tNN

11,p 1,

T12(R
NN ) = tNN

12 1,

T11,p(R
NNN ) = tNNN

11,p 1,

T12(1, 1, 0) = tNNN
12 1 + i t̃NNN

12 σz,

(8.11)

where ϵ, tNN
11,p, tNN

12 , tNNN
11,p , tNNN

12 and t̃NNN
12 are real-valued scalar parameters governing

the strength of the matrix elements, and p denotes the parity of the orbital.
We also include nearest-neighbor (NN) hybridization between f and d-states:

V11(au) = i vσu. (8.12)

Here, u is the unit vector along one cubic unit cell’s principal axes and a is the lat-
tice parameter. Eqs. (8.11) and (8.12) show only one of the matrices of each hopping
amplitude. The rest of matrices can be generated by applying the transformation in
Eq. (8.10) for the generators of m3̄m.

Fig. 8.5 shows the tight-binding band structure of SmB6 with the same ordering of
irreps as the ab initio bands in Fig. 8.4(a). The lower two connected bands correspond
to a strong-topological insulator with the same z4πm = 3 and z8 = 5 as the DFT valence
states. In conclusion, the tight-binding model presented here is able yield valence bands
with the same values for the symmetry-based indicators of topology as those obtained
via ab initio calculations. It also gives us a qualitative picture of the magnitude of
hopping amplitudes in SmB6.

8.3 Discussion and Conclusions
In this work, we have presented a TQC-based analysis of topological phases in non-
magnetic heavy-fermion insulators. We have indeed described three cases where the
interplay between 4f and 5d-states in mixed-valence and Kondo insulators might lead
to topological phases. Our approach is valid for crystals in any of the 230 space groups,
both with and without spin-orbit corrections. In addition, since it accounts for the role
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8.3 Discussion and Conclusions

(a) (b)

Figure 8.5: Tight-binding band structure of SmB6 with tNN
11,g/ϵ = −1/4, tNNN

11,g /ϵ =

1/16, tNNN
12,g /ϵ = 0.7/8 and tNNN

12,u /ϵ = −0.02. The rest of hopping parameters are chosen
to be zero. (a) Bands without hybridization between f and d-orbitals. (b) Bands with
hybridization v = 0.03. Valence bands have the same irreps as the DFT bands, and
hence the same values for the symmetry-based indicators of topology.

of all crystal symmetries, it allows for a detailed classification of topological phases which
is not restricted to just a particular subset of symmetries of the system.

Owing to this strengthened capacity for diagnosing and classifying topological
phases, our approach might motivate intensive search of topological phases in heavy-
fermion systems. This search which might lead to the discovery of novel topological
materials as well as to diagnosing as non-trivial some phases that had been previously
classified as trivial.

We have tested our method on SmB6. While state-of-the-art methods beyond DFT
provide an accurate description of the electronic properties [52, 165], DFT calculations
already capture the mixed-valence behavior of the system. Moreover, our approach
suggests that SmB6 hosts a strong-topological phase diagnosed by z4 = 1, z4πm = 3 and
z8 = 5 symmetry indicators, in addition to the well known weak and strong indicators
for topological insulators [7,8,18]. We hence have achieved a more rigorous classification
than previous theoretical studies which rely only on the weak and strong-invariants
[46,52] or the mirror-Chern number [162]. The analysis was also performed with modified
Becke-Johnson (MBJ) potential [168], which yields the same topological classification,
although the separation between J = 5/2 and J = 7/2 manifolds of bands is bigger
than that observed in Fig. 3(a). This suggests MBJ might be a good candidate to
capture the separation between J = 5/2 and J = 7/2 manifolds, without the need
for tuning artificially the strength of SOC [169]. Furthermore, we demonstrated that
topology originates in SmB6 as a result of the combination of irreps of 5d and 4f -bands
mediated by hybridization. We have in addition presented a tight-binding model for
SmB6 which captures both the symmetry-indicators of topology corresponding to the
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8 Topological quantum chemistry for heavy-fermion insulators

material’s valence bands, and the interplay between dispersive and heavy-bands which
leads to the topology.

Due to the large multiplicity of f -shells, the number of heavy bands around the
Fermi level is usually large in heavy-fermion materials. As a consequence, the hybridiza-
tion between these and dispersive bands might open several gaps below and above the
Fermi level. Surface states might arise to connect the sets of disconnected topologically
inequivalent bulk-bands on the boundary of the crystal and many of these surface states
might be accessible to experimental probes owing to their proximity to the Fermi level.
Our TQC based analysis might turn out to be helpful for the prediction of such surface
modes, since it makes possible to classify every isolated set of bands separately.

It remains unexplored to which extent holds the applicability of TQC to interacting
phases that are not adiabatically connected to band-insulators [80], e.g. Mott insula-
tors. We suggest however that the inclusion of magnetic elementary band correpresen-
tations [34] could make our formalism applicable to magnetic topological heavy-fermion
materials, as long as their electronic structure can be described in terms of quasiparticle
bands.
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Table 8.2: Irreps for the 32 representations ρ̃(V B) that respect the compatibility
relations and their symmetry-based indicators of topology. The remaining (not shown)
32 configurations are complementary to these, as they can be obtained by substracting
the listed bands to the whole representation (F̄g ↑ Pm3̄m)1a ⊕ (F̄u ↑ Pm3̄m)1a. Bands
with an odd value of the Z8 indicator are strong topological.

Γ R X M Z4 Z8

Γ̄11 R̄10 X̄6 ⊕ X̄7 M̄6 ⊕ M̄7 0 6
Γ̄11 R̄10 X̄6 ⊕ X̄7 M̄6 ⊕ M̄9 2 5
Γ̄11 R̄10 X̄6 ⊕ X̄7 M̄8 ⊕ M̄7 2 1
Γ̄11 R̄10 X̄6 ⊕ X̄7 M̄8 ⊕ M̄9 0 0
Γ̄11 R̄10 X̄6 ⊕ X̄9 M̄6 ⊕ M̄7 1 1
Γ̄11 R̄10 X̄6 ⊕ X̄9 M̄6 ⊕ M̄9 3 0
Γ̄11 R̄10 X̄6 ⊕ X̄9 M̄8 ⊕ M̄7 3 4
Γ̄11 R̄10 X̄6 ⊕ X̄9 M̄8 ⊕ M̄9 1 3
Γ̄11 R̄10 X̄8 ⊕ X̄7 M̄6 ⊕ M̄7 1 5
Γ̄11 R̄10 X̄8 ⊕ X̄7 M̄6 ⊕ M̄9 3 4
Γ̄11 R̄10 X̄8 ⊕ X̄7 M̄8 ⊕ M̄7 3 0
Γ̄11 R̄10 X̄8 ⊕ X̄7 M̄8 ⊕ M̄9 1 7
Γ̄11 R̄10 X̄8 ⊕ X̄9 M̄6 ⊕ M̄7 2 0
Γ̄11 R̄10 X̄8 ⊕ X̄9 M̄6 ⊕ M̄9 0 7
Γ̄11 R̄10 X̄8 ⊕ X̄9 M̄8 ⊕ M̄7 0 3
Γ̄11 R̄10 X̄8 ⊕ X̄9 M̄8 ⊕ M̄9 2 2
Γ̄11 R̄11 X̄6 ⊕ X̄7 M̄6 ⊕ M̄7 2 4
Γ̄11 R̄11 X̄6 ⊕ X̄7 M̄6 ⊕ M̄9 0 3
Γ̄11 R̄11 X̄6 ⊕ X̄7 M̄8 ⊕ M̄7 0 7
Γ̄11 R̄11 X̄6 ⊕ X̄7 M̄8 ⊕ M̄9 2 6
Γ̄11 R̄11 X̄6 ⊕ X̄9 M̄6 ⊕ M̄7 3 7
Γ̄11 R̄11 X̄6 ⊕ X̄9 M̄6 ⊕ M̄9 1 6
Γ̄11 R̄11 X̄6 ⊕ X̄9 M̄8 ⊕ M̄7 1 2
Γ̄11 R̄11 X̄6 ⊕ X̄9 M̄8 ⊕ M̄9 3 1
Γ̄11 R̄11 X̄8 ⊕ X̄7 M̄6 ⊕ M̄7 3 3
Γ̄11 R̄11 X̄8 ⊕ X̄7 M̄6 ⊕ M̄9 1 2
Γ̄11 R̄11 X̄8 ⊕ X̄7 M̄8 ⊕ M̄7 1 6
Γ̄11 R̄11 X̄8 ⊕ X̄7 M̄8 ⊕ M̄9 3 5
Γ̄11 R̄11 X̄8 ⊕ X̄9 M̄6 ⊕ M̄7 0 6
Γ̄11 R̄11 X̄8 ⊕ X̄9 M̄6 ⊕ M̄9 2 5
Γ̄11 R̄11 X̄8 ⊕ X̄9 M̄8 ⊕ M̄7 2 1
Γ̄11 R̄11 X̄8 ⊕ X̄9 M̄8 ⊕ M̄9 0 0





Part III

Approach to interacting
topological insulators through
the analysis of single-particle
Green’s functions in terms of

topological quantum chemistry
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In this part, we will present our research towards the extension of TQC formalism
to interacting systems. In particular, we show our work on an approach which consists
in analyzing the spectra of single-particle Green’s functions within the TQC framework,
via the topological Hamiltonian.

The content of this part is organized according to the following structure: In chap-
ter 9, the theoretical framework is introduced. The concepts of Green’s functions, spec-
tral function, topological Hamiltonian and cluster perturbation theory are explained
there. Then, the Hubbard Diamond Chain and the analysis of its topological phases
are presented in chapter 10. In particular, we report the results probing the weakly-
relativistic phase diagram via the TQC based analysis of Green’s functions, using as
benchmark a classification obtained via state-of-the-art methods and many-body topo-
logical invariants. This analysis is followed by the study of the effect of SOC, and the
interplay between this relativistic correction and strong interactions.

166



9 Single-particle Green’s func-
tions of many-body systems

In quantum mechanics, the Green’s function of an independent particle system is de-
fined as the propagator that describes the time-evolution of the wave function. Once the
Green’s function of the system is calculated by solving its equation of motion, it can be
used to obtain an expression for the wave-function as a function of time, as long as its
value is know for a previous time. This way of proceeding leads to the path-integral for-
mulation of quantum mechanics [170]. In the context of many-particle physics, Green’s
functions are defined as quantum amplitudes for processes which consist in the propa-
gation of a particle and/or hole excitation. If the propagation takes place in interacting
media, the dynamics of the excitation will be influenced by interactions, and this influ-
ence will be captured by the Green’s function. This motivates us to consider Green’s
functions as fundamental objects to investigate ways to classify topology in interacting
systems.

9.1 Definition and basis transformation

The (retarded) single-particle Green’s function is defined, for fermions1, as:

Gν,ν′(t, t′) = −iθ(t− t′)
〈
{cν(t), c†ν′(t

′)}
〉
. (9.1)

where θ(t− t′) is the Heaviside function and c†ν(t) is the operator in Heisenberg’s picture
which creates a particle at a state labeled by ν.

A variety of different single-particle Green’s functions can be defined, like the ad-
vanced, the greater and the lesser Green’s functions. Here, we stick to the retarded

1The definition for bosons is obtained by substituting the anticommutator by a commutator. Since
we are interested in the application to electron systems, we restrict here to the case of fermions. Nev-
ertheless, many definitions given through the text are easily generalized for bosons.

167



9 Single-particle Green’s functions of many-body systems

Green’s function because they are the ones which express propagation forward in time
and reduce to the propagators of independent-particles in the path-integral formulation
of quantum mechanics. The expectation value 〈·〉 denotes the thermal trace over the
eigenstates of the Hamiltonian:

〈A〉 = tr[exp(−βHA)]
tr[exp(−βH)]

, (9.2)

where β = (kBT )
−1 and H is considered within the grandcanonical ensemble. In the

limit of zero-temperature, only the ground state contributes to the trace. Moreover, since
time-dependent Hamiltonians are out of the focus of our work, the Green’s functions we
deal with do not depend on both t and t′, but on their difference t − t′. We will hence
simplify our notation by choosing t′ = 0.

Notice that these Green’s functions are many-body objects, as they describe the
propagation of a single-particle governed by a many-body Hamiltonian which could
include interactions between particles. Furthermore, the thermal trace involves many-
body states, thus the propagation takes place in a many-body environment.

Let us now consider the basis transformation ψ†(ν) =
∑

µ 〈µ|ν〉 a†µ. The expression
relating the Green’s function in both bases is:

G(r, r′, t) =
∑
µµ′

〈ν|µ〉Gµµ′(t) 〈µ′|ν′〉 . (9.3)

In particular, let us illustrate the transformation from real to reciprocal space.
We consider that the states in our real-space basis are Wannier functions created by
the operators c†R,α, where R is a lattice vector denoting the cell the Wannier function
belongs to, and α denotes the rest of degrees of freedom (like the spin, orbital type and
site within the cell). The reciprocal-space states, which are created by operators c†k,α
are related to those in real-space through the following Fourier transform:

c†k,α =
1√
N

∑
R

eik·R c†R,α, (9.4a)

c†R,α =
1√
N

∑
k

e−ik·R c†k,α, (9.4b)

where N is the number of unit cells in the lattice. According to Eq. (9.3), the relation
between the Green’s function’s real and reciprocal space expressions is:

Gαβ(k, t) = N−1
∑
RR′

eik·(R−R
′)Gαβ(R,R

′, t). (9.5)

The fact that the Green’s function depends only on k, instead of on k and k′, follows
from the invariance under translations by vectors of the Bravais lattice – Gαβ(R,R

′, t)
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9.2 Single-particle Green’s function

can not depend on R or R′, but on their difference R−R′.
In addition, we can define the Fourier transform from time t to frequency ω, and

vice versa, as:

Gν,ν′(ω) =

∫ ∞
−∞

dt ei(ω+iη)tGν,ν′(t), (9.6a)

Gν,ν′(t) = (2π)−1
∫ ∞
−∞

dω e−iωtGν,ν′(ω), (9.6b)

(9.6c)

Here, η is a positive real number introduced ad hoc to ensure convergence of the integral.
The limit η → 0+ is usually consider at the end of the calculations.

9.2 Single-particle Green’s function

Let us consider the application of the Fourier transform to Green’s function of inde-
pendent electrons. For crystals where electron-electron interactions are negligible, the
single-particle Green’s function takes the following form in the basis of eigenstates of
the Hamiltonian H(k) [171]:

G(0)
n,n(k, t) = −iθ(t)e−iϵn(k)t, (9.7)

where ϵn(k) is an eigenvalue of H(k) and n is the band index. As t goes to infinity, this
function keeps oscillating with an undamped amplitude, so the integral in Eq. (9.6a)
would not converge without including the term iη. The Fourier transform from time to
frequency reads:

G(0)
n,n(k, ω) =

∫ ∞
−∞

dt ei(ω+iη)t(−i)θ(t)e−iϵn(k)t = 1

ω + iη − ϵn(k)
. (9.8)

The poles of the independent-electron Green’s function are located, in the frequency
axis, at the values for ω which coincide with the eigenstates ϵn(k) of the Hamiltonian.
They indeed sit slightly below the real-frequency axis for the retarded Green’s function,
due to the term iη included to ensure convergence of the Fourier transformation.

This form of the Green’s function is valid for systems which can be described in
terms of independent particles. In the case of systems for which these independent
particles are quasiparticles rather than the genuine constituents (e.g., electrons), the
expression for the single-particle Green’s function is similar to Eq. (9.8), but the “renor-
malized” quasiparticle energy substituting the ϵn(k).
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9 Single-particle Green’s functions of many-body systems

9.3 Lehmann representation

The Lehmann representation of the Green’s function consists in expressing it in terms
of the many-body eigenstates of the Hamiltonian. This representation will be useful to
explore some properties of the Green’s function, such as the hermiticity. It will also help
us to interpret its poles.

We begin the derivation by writing the thermal trace in Eq. (9.1) explicitly for a
general basis of states labeled by ν:

Gν,ν′(t) = −iZ−1θ(t)
∑
n

e−βEn [ 〈n|cν(t)c†ν′ |n〉+ 〈n|c†ν′cν(t)|n〉], (9.9)

where En is the energy of the eigenstate |n〉 of the Hamiltonian. Let us include the
completeness relation 1 =

∑
n′ |n′〉〈n′| between the creation and annihilation operators:

Gνν′(t) =− iZ−1θ(t)
∑
n,n′

e−βEn [ 〈n|cν(t)|n′〉 〈n′|c†ν′ |n〉+ 〈n|c†ν′ |n′〉 〈n′|cν(t)|n〉]

=− iZ−1θ(t)
∑
n,n′

e−βEne−i(En′−En)t 〈n|cν |n′〉 〈n′|c†ν′ |n〉

− iZ−1θ(t)
∑
n,n′

e−βEne−i(En−En′ )t 〈n|c†ν′ |n′〉 〈n′|cν |n〉

(9.10)

where we have used the expression cν(t) = exp(iHt)cν exp(−iHt) for the time-
dependence of the annihilation operator. By applying the Fourier transform in
Eq. (9.6a):

Gνν′(ω) = Z−1
∑
n,n′

e−βEn

[
〈n|cν |n′〉 〈n′|c†ν′ |n〉
ω + iη − (En′ − En)

+
〈n|c†ν′ |n′〉 〈n′|cν |n〉
ω + iη − (En − En′)

]
(9.11)

The first fraction in the sum describes the propagation of particle excitations, while the
second term corresponds to hole excitations. Each of these fraction is a reminder of the
independent-electron Greens function in Eq. (9.8). The fundamental difference is that,
instead of having a single pole, the single-particle Green’s function of an interacting
system is a sum of a plethora of poles. Furthermore, the denominator of each pole can
now be smaller than one, unlike in the independent-electron case. As we will show later,
when introducing the spectral function, that the number in the denominator can be
interpreted as its weight.

In order to reach further in the interpretation, let us consider the T = 0 limit, where
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9.4 Spectral function

only the ground state |Ψ0〉 (of energy E0) contributes to the thermal trace2:

Gνν′(ω) =
∑
n

[
〈Ψ0|cν |n〉 〈n|c†ν′ |Ψ0〉
ω + iη − (En − E0)

+
〈Ψ0|c†ν′ |n〉 〈n|cν |Ψ0〉
ω + iη − (E0 − En)

]
(9.12)

We focus first on the particle contribution, for which the states |n〉 are eigenstates
of H belonging to the subspace HN+1 of the Hilbert space, where N is the number of
particles in the system. The pole of the non-interacting Green’s function splits into a
plethora of poles upon inclusion of interactions, each pole corresponding to an eigenstate
of the Hamiltonian and having as weight the overlap of that eigenstate with the state
generated by adding to (extracting from) the ground state a particle at the state labeled
by ν′ (ν). When the weight of a pole is zero, it does not contribute to the Green’s
function. This discussion is similarly applicable to the hole contribution, but the states
|n〉 belong to the subspace HN−1 of the Fock space.

Concerning the location of poles, those corresponding to particle excitations sit on
the positive side of the frequency axis, whereas the poles of hole excitations are on the
negative side. This property stems from the fact that, by definition, En > E0 for both
cases, and holds only in the T = 0 limit. At finite temperature, other states apart from
the ground state might take part in the thermal trace. These states make contribute
with particle (hole) poles located at negative (positive) frequencies.

9.4 Spectral function

The spectral function A(k, ω) is the physical quantity defined as:

A(k, ω) = −π−1 ImG(k, ω). (9.13)

To motivate the interpretation of the spectral function, let us first calculate its
expression for the case of independent particles via Eq. (9.8):

A(0)
n (k, ω) = −π−1 ImG(0)

n,n(k, ω) = δ(ω − ϵn(k)). (9.14)

The Dirac’s delta arises upon taking the limit η → 0+. We read from this result that
a particle in the state labeled by n can be added to the ground state only with energy
ω = ϵn(k). The spectral function A

(0)
n (k, ω) can hence be interpreted as the energy

resolution for a particle created in the state labeled by n, that is, like a density of states
resolved for a certain quantum state.

We will now give three evidences to convince ourselves about this interpretation.
Let us begin by deriving the spectral function for the interacting Green’s function in

2We will consider that the ground state is non-degenerate, as this is the case of insulators
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9 Single-particle Green’s functions of many-body systems

Eq. (9.11):

Aνν′(ω) = Z−1
∑
n,n′

e−βEn [ 〈n|cν |n′〉 〈n′|c†ν′ |n〉 δ(ω − (En′ − En))

+ 〈n|c†ν′ |n′〉 〈n′|cν |n〉 δ(ω − (En − En′))]. (9.15)

First, we calculate the integral of Aν,ν′(k, ω) for all frequencies:∫ ∞
−∞

dωAν,ν′(k, ω)

= Z−1
∑
n,n′

e−βEn [ 〈n|cν |n′〉 〈n′|c†ν′ |n〉+ 〈n|c†ν′ |n′〉 〈n′|cν |n〉]

= Z−1
∑
n

e−βEn 〈n|{cν , c†ν′}|n〉

= δν,ν′ . (9.16)

The spectral function Aν(k, ω) is thus normalized so that its integral is equal to the
number of electrons the state labeled by ν can host. Second, it is easy to check that
Aν(k, ω) > 0 for ∀ω ∈ R and ∀k ∈ BZ. Third, it can be show [171] that the mean-number
of particles in the state labeled by ν is:

〈nν〉 =
〈
c†νcν

〉
=

∫ ∞
−∞

dωAν(k, ω)nF (ω). (9.17)

where nF (ω) is the Fermi-Dirac distribution function. The spectral function is playing
the role of a density of states in this expression.

The three arguments given here corroborate that the spectral function Aν(k, ω) can
be interpreted as a ν-resolved density of states. Therefore, the complete density of states
ρ(ω) of a system can be obtained from the trace of the spectral function:

ρ(ω) = N−1
∑
k

trA(k, ω). (9.18)

N is the number of unit cells here. In conclusion, the density of states of the system can
be extracted from the single-particle Green’s function via the spectral function. This
quantity can be used, for example, to determine if the system is an insulator and to
calculate its gap.

9.5 Matsubara Green’s functions
Until this point, our focus has been on retarded Green’s functions. These Green’s
functions describe the propagation of excitations forward in time, and allow for the de-
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termination of important quantities, such as the particle number. Nevertheless, in the
condensed matter physics, it is common to find texts written in terms of a kind of more
abstract Green’s functions, called imaginary-time Green’s functions. There are mainly
two reasons for this: first, imaginary-time Green’s functions admit a perturbative ex-
pansion which can be worked out in terms of Feynman diagrams. In addition, sums over
frequencies – which often arise in diagramatic expansions – can be efficiently mapped
to sums over poles of imaginary-time Green’s functions, which facilitates their compu-
tation. Furthermore, retarded Green’s functions can be derived from imaginary-time
functions by analytical continuation.

Although imaginary-time Green’s functions are not fundamental to understand our
work, we offer here a brief introduction to them, which is intended to serve as a reference
of the basic properties of these Green’s functions. This decision is motivated by three
points: First, the introduction of the self-energy feels more natural in the context of
imaginary-time Green’s functions, as it is a quantity defined usually in the language of
Feynman diagrams. Second, most of the seminal works about the topological Hamilto-
nian are written in terms of these Green’s functions, and we would like to be consistent
with this notation. Third, we feel that it is sensible to present – at least briefly – these
type of Green’s functions in a thesis about an application of Green’s functions in con-
densed matter physics, since they are commonly find in the literature, e.g. in the first
works about cluster perturbation theory.

We will begin defining single-particle imaginary-time Green’s functions and listing
some of their remarkable properties, to then derive their frequency-regime expression.
Finally, we will present the Lehmann representation for these Green’s functions and
their connection to retarded Green’s functions.

9.5.1 Definition and properties
The imaginary-time formalism is based on the substitution3 of it → τ , which is moti-
vated by the similarity between the operator exp(−βH) and the time-evolution operator
exp(−iHt). This substitution permits the expansion of both operators as time-ordered
exponentials in the interaction picture, and leads hence to a simplified expression for
the Green’s function [171]. This expression can then be expanded conveniently within a
perturbation theory approach, and computed (approximately) via Feynman diagrams.
For a deeper look into this method, we refer to Refs. [38, 171,172].

The single-particle imaginary-time Green’s function, also called Matsubara Green’s
function, is defined as:

Gν,ν′(τ) = −
〈
T̂ cν(τ), c

†
ν′(0)

〉
, (9.19)

where the expectation value and T̂ denote the thermal trace in Eq. (9.2) and time-
3This substitution has no physical meaning. It must be interpreted as a purely mathematical trick

applied just for convenience.
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ordering, respectively. If we expand the ordering in time, this expression reads:

Gν,ν′(τ) = −θ(τ)
〈
cν(τ)c

†
ν′(0)

〉
+ θ(−τ)

〈
c†ν′(0)cν(τ)

〉
. (9.20)

We will now prove two properties of Matsubara Green’s functions which have impor-
tant consequences when their transformation to frequency-regime is considered. First of
all, let us study the convergence of Gν,ν′(τ). We concentrate for that on the τ > 0 case:

Gν,ν′(τ > 0) = −Z−1 tr
(
e−βHeτHcνe

−τHc†ν′

)
(9.21)

= −Z−1
∑
n

e−(β−τ)En 〈n|cνe−τHc†ν′ |n〉 (9.22)

where En and |n〉 are eigenvalues and eigenstates of the HamiltonianH. The convergence
of this function is not ensured for τ > β = (kBT )

−1, because the exponential in the
sum grows fast as the energies of the excited states keep increasing. It can be similarly
shown that this result applies also for τ < −β. The convergence of Gν,ν′(τ) is therefore
ensured only for the domain τ ∈ (−β, β). Accordingly, we consider that the domain of
the Matsubara Green’s function is restricted to this region.

The second property of interest is the (anti)periodicity. Let us consider that the
function Gν,ν′(τ + β) for τ < 0:

Gν,ν′(τ + β) = −Z−1 Tr
[
e−βHe(τ+β)Hcνe

−(τ+β)Hc†ν′

]
= −Z−1 Tr

[
e−βHc†ν′e

τHcνe
−τH

]
=
〈
T̂ cν(τ)c

†
ν′

〉
= −Gν,ν′(τ). (9.23)

This property is written shortly as4:

Gν,ν′(τ + β) = −Gν,ν′(τ), −β < τ < 0. (9.24)

9.5.2 Fourier transform to Matsubara frequencies

The transformation of Matsubara Green’s functions from time to frequency-regime is
worked out in this section. Unlike in the case of retarded Green’s functions, the trans-
formation here is driven by a Fourier series of discrete frequencies, since the domain of

4The Matsubara Green’s function is periodic, instead of antiperiodic, for bosons.
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(a) (b)

Figure 9.1: Illustration of the periodicity/antiperiodicity of the Matsubara Green’s
function for (a) bosons and (b) fermions.

τ was chosen to be the interval τ ∈ (−β, β):

Gν,ν′(n) =
1

2

∫ β

−β
dτ eiπnτ/βGν,ν′(τ). (9.25)

Let us consider now the antiperiodicity property proved in the previous section:

Gν,ν′(n) =
1

2

∫ β

0

dτ eiπnτ/βGν,ν′(τ) +
1

2

∫ 0

−β
dτ eiπnτ/βGν,ν′(τ)

=
1

2

∫ β

0

dτ eiπnτ/βGν,ν′(τ) + e−iπn
1

2

∫ β

0

dτ eiπnτ/βGν,ν′(τ − β)

=
1

2
(1− e−iπn)

∫ β

0

dτ eiπnτ/βGν,ν′(τ). (9.26)

The factor (1− e−iπn) vanishes for n even. In conclusion, the frequency-regime expres-
sion for the Matsubara Green’s function involves discrete frequencies ωn which are odd
multiples of π/β. The transformation between imaginary time to frequency reads finally:

Gν,ν′(iωn) =

∫ β

0

dτ eiωnτGν,ν′(τ), (9.27)

Gν,ν′(τ) =
1

β

∞∑
n=−∞

e−iωnτGν,ν′(iωn). (9.28)

The frequencies ωn are known as Matsubara frequencies. Notice that the sepa-
ration between successive values for ωn depends on the temperature. In fact, it decreases
together with temperature, and become continuous in the T = 0 limit.
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9.5.3 Relation between Matsubara and retarded Green’s func-
tions

The connection between retarded and Matsubara Green’s functions is better identified by
comparing their Lehmann representation. We demonstrated that the retarded Green’s
function can be written as [Eq. (9.11)]:

Gνν′(ω) = Z−1
∑
n,n′

e−βEn

[
〈n|cν |n′〉 〈n′|c†ν′ |n〉
ω + iη − (En′ − En)

+
〈n|c†ν′ |n′〉 〈n′|cν |n〉
ω + iη − (En − En′)

]
. (9.29)

Following the same steps as those given in Sec. 9.3 to derive this equation, a similar
representation can be obtained for the Matsubara Green’s function:

Gνν′(iωn) = Z−1
∑
n,n′

e−βEn

[
〈n|cν |n′〉 〈n′|c†ν′ |n〉

iωn + iη − (En′ − En)
+

〈n|c†ν′ |n′〉 〈n′|cν |n〉
iωn + iη − (En − En′)

]
(9.30)

The comparison between Eqs. (9.29) and (9.30) indicates that both the retarded
Green’s function Gν,ν′(ω) and the Matsubara Green’s function Gν,ν′(iωn) can be ob-
tained from the same function G(z) defined as:

Gνν′(iω) = Z−1
∑
n,n′

e−βEn

[
〈n|cν |n′〉 〈n′|c†ν′ |n〉
z + iη − (En′ − En)

+
〈n|c†ν′ |n′〉 〈n′|cν |n〉
z + iη − (En − En′)

]
, (9.31)

where z is a complex variable. This function G(z), called analytical continuation
of G(ω) and G(iωn), is analytical in the whole complex plane, except on the real axis.
In fact, G(iωn) is obtained by evaluating G(z) in discrete values of the imaginary axis,
whereas the retarded function G(ω) is generated by substituting in G(z) values for z
which are infinitesimally close to the real axis, i.e. G(ω) = G(z → ω+ iη). Furthermore,
G(z) is unique, in the sense that any other analytical continuation function should be
identical to it [171].

In conclusion, once the Matsubara Green’s function G(iωn) has been calculated,
the retarded Green’s function G(ω) can be obtained as G(ω) = G(ωn → ω + iη). This
turns out to be handy in practice, as the Matsubara Green’s function tends to be easier
to calculate.

9.6 Topological invariants from Green’s functions:
topological Hamiltonian

Green’s functions are considered in this work as a tool to investigate the topology of
interacting systems. In this section, we will introduce the calculation of topological
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invariants and diagnosis of topological phases in terms of Green’s functions, using the
so-called topological Hamiltonian.

The first topological invariants proposed in terms of single-particle Green’s functions
stemmed from topological-field theory methods [73–75]. The major drawback of these
invariants is that their application in numerical approaches turns out to be complicate, as
they require the evaluation of complex expressions involving Green’s funtions. In 2012,
Z. Wang et al. [42,43] proposed a shortcut to overcome this difficulty, which consists in
the diagnosis of topology via the Green’s function at zero frequency. This alternative
method simplifies the investigation of the topology in two aspects: On the one hand,
it does not require the Green’s function to be computed for all frequencies, but only at
ω = 0. On the other hand, it allows for the application of tools which are known for
their use in the non-interacting case, like Wilson loops and EBRs – already introduced
in this work.

The key insight which motivated this shortcut was the realization that the Green’s
function G(k, iωn) is connected to the quantity [iωn − G−1(k, 0)]−1, via the following
mapping [42]:

G(k, iωn, λ) = (1− λ)G(k, iωn) + λ[iωn −G−1(k, 0)]−1, (9.32)

where λ ∈ [0, 1] is a parameter driving the mapping. Under certain conditions, this
connection is smooth, meaning that both ends share the same topological properties.
Furthermore, the topological phase of [iωn −G−1(k, 0)]−1 is determined by its value at
iωn = 0, i.e. by G(k, 0). Summarizing, when a certain set of conditions are satisfied, .

As it was explored in Ref. [44], which is the result of a collaboration with Dominik
Lessnich and other members of the group of Dr. Roser Valentí, if G(k, iωn) satisfies the
following conditions, the study of its topology can be tackled by exploring G(k, 0):

I. The spectral function A(k, ω) has a finite gap around ω = 0. This means that the
ground state is non-degenerate with respect to one particle/hole excitations. We
further assume that it is completely non-degenerate.

II. G(k, 0) is non-singular, i.e. neither of its eigenvalue vanishes.

It should be mentioned that we assume that the ground state, apart from being non-
degenerate, respects the symmetries of the lattice. This assumption leaves some systems
out of the scope of this work, for example, crystals with magnetically ordered ground
states where the moments lower the symmetry of the lattice, as their ground states
display lower symmetry than the Hamiltonian.

For the remaining of this section, we restrict ourselves to the physics at T = 0.
In this limit, the Lehmann representation in Eq. (9.30) is simplified to the following
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expression 5:

Gνν′(iω) = Z−1
∑
n

[
〈0|cν |n〉 〈n|c†ν′ |0〉
iω − (En − E0)

+
〈0|c†ν′ |n〉 〈n|cν |0〉
iω − (E0 − En)

]
. (9.33)

The condition-I above ensures that E0 6= En, for all eigenstates |n〉 of the Hamil-
tonian with N ± 1 particles, where N is the number of particles in the ground state
of energy E0. Consequently, the Green’s function at iω = 0 is hermitian, as it can be
shown from Eq. (9.33):

[Gν′ν(0)]
∗ = Z−1

∑
n

[
〈n|c′†ν |0〉 〈0|cν |n〉
−(En − E0)

+
〈n|cν |0〉 〈0|c†ν′ |n〉
−(E0 − En)

]
= Gνν′(0) (9.34)

Based on its hermiticity, Z. Wang et al. proposed using HT (k) = −G−1(k, 0),
dubbed the topological Hamiltonian, as an effective independent-particle Hamilto-
nian whose topology could be explored via conventional methods used for non-interacting
systems. As we showed in chapters 3 and 5, these methods involve either the calculation
of Wilson loops of occupied bands or the irreducible representations of such states. Let
us denote |α(k)〉 and eigenstate of HT (k) with eigenvalue µα(k):

HT (k) |α(k)〉 = µα(k) |α(k)〉 . (9.35)

The state |α(k)〉 is said to be a right zero (R-zero) if µα(k) < 0, while it is called left
zero (L-zero) if µα(k) > 0. R-zeros play the role of occupied states in the analysis of
the topological Hamiltonian.

Expressions for invariants proposed within the framework of topological band the-
ory could be computed for the R-zeros of the topological Hamiltonian. Based on the
connection in Eq. (9.32), it can be demonstrated that some of these invariants match
with the aformentioned invariants derived in terms of topological-field theories, and are
hence numerically more accessible alternatives to them. For example, the Chern number
calculated for the R-zeros [42] matches with the hard-to-apply invariant N2 proposed in
Ref. [74]. Similarly, applying Fu-Kane’s criterion to R-zeros [43] leads to a value for the
invariant P3 derived in Ref. [74] for time-reversal symmetric interacting systems.

Transitions between topologically different phases (in the same symmetry group)
require changing the topology of the set of R-zeros via the exchange of states with L-
zeros. In analogy with the non-interacting case, this involves closing the gap between R
and L-zeros, which can not happen while A(ω,k) remains vanishing in a region around
A(ω,k) [44]. Such a transition violates the condition I above for the applicability of the
topological Hamiltonian. In addition, there exists another mechanism for the transition

5An alternative demonstration can be found in Ref. [44]
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between different topological phases, which is absent for non-interacting systems. This
phase transition consists in the violation of condition II: as the parameters governing
the system are tuned, an eigenvalue of G(k, 0) vanishes at some point – equivalently, an
eigenstate µα(k) of HT (k) becomes diverging – and the topological Hamiltonian becomes
ill defined. As we go on tuning the parameters, G(k, 0) turns again into a non-singular
matrix, and the set of R-zeros hosts a topological phase different from the initial one.
This mechanism was reported in an analysis of the phase transition in the interacting
Su–Schrieffer–Heeger model [44].

The fact that HT (k) works as an effective Hamiltonian whose topology can be
explored via techniques developed for non-interacting systems encouraged us to consider
also the application of TQC to it. The first step in such an approach was to demonstrate
that the symmetry group ofHT (k) is the space group of the system – for non-degenerated
ground states which preserve all symmetries of the Hamiltonian. Furthermore, HT (k)

transforms under the symmetries in the same fashion as non-interacting Hamiltonians
[44]. The formalism theory of symmetry representations and TQC can thus be applied
straightforwardly to the topological Hamiltonian.

The rest of the section is devoted to shedding some light on the physical interpre-
tation of the topological Hamiltonian. The discussion given below is inspired mainly
by the ideas reported in Ref. [173]. Let us write the Green’s function G(k, iω) in the
following way, in terms of the independent-particle part H0(k) of the Hamiltonian:

G(k, iω) =
1

iω −H0(k)− Σ(k, iω)
, (9.36)

Σ(k, iω) denotes here the self-energy of the electron. The self-energy can be defined
as the sum of scattering diagrams that can not be split into two pieces by cutting a
single propagator [38, 171], within the context of a perturbation theory based approach
to Green’s functions. Since such an approach lies out of the scope of this work, we
could define the Σ(k, iω) as the the difference between the inverse of interacting and
non-interacting single-particle Green’s functions:

Σ(k, iω) = G−1(k, iω)−G−10 (k, iω), (9.37)

where G0(k, iω) = [iω − H0(k)]
−1 is the Green’s function for independent particles

[Eq. (9.8)]. This expression points out the fact that the information about interactions
contained in the Green’s function is encoded in Σ(k, iω).

According to Eqs. (9.36), the topological Hamiltonian can be written in the following
form, in terms of the self-energy:

HT (k) = H0(k) + Σ(k, 0). (9.38)

This expression suggests that HT (k) could be interpreted as an effective Hamiltonian
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that describes the renormalized-quasiparticle bands, but this perspective turns out to be
a bit naive. The states |ψα(k)〉 corresponding to the quasiparticles of the system would
indeed be eigenstates of H0(k) + Σ(k, ω) [173]:

[H0(k) + Σ(k, ωα)] |ψα(k)〉 = ωα(k) |ψα(k)〉 . (9.39)

In this expression for the spectrum of quasiparticles, the self-energy depends (self-
consistently) on the eigenvalue ωα(k), unlike in the topological Hamiltonian’s spectrum
where it is restricted to the value ω = 0. Therefore, HT (k) is not the Hamiltonian
corresponding to the quasiparticles of the system. It might be instead interpreted as
the Hamiltonian of an auxiliary non-interacting system with the same topology as the
genuine interacting system6. In fact, in Ref. [173], it was shown that for the interacting
Thouless Pump’s model [Sec. 3.4.3] the quasiparticle Hamiltonian fails to capture the
topology, while the topological Hamiltonian turns out to be successful.

Another point which might be obscure about the topological Hamiltonian is the
following: taking into account that particle/hole excitations can not propagate at ω = 0

as A(k, ω) = 0 in a region around ω = 0, how could the topology be captured by
the Green’s function at this frequency? It is captured because zero-energy boundary
states are described by states which are, at the same time, eigenstates of HT (k) and
the quasiparticle Hamiltonian with ωα = 0 in Eq. (9.39), i.e. the projections onto the
boundaries of these two Hamiltonians match, and the information about zero-energy
boundary states is hence captured by HT (k).

9.7 Cluster perturbation theory: a method to calcu-
late Green’s functions

We briefly introduce cluster perturbation theory (CPT) and its implementation to obtain
single-particle Green’s functions for Hubbard models on a lattice. The basic idea behind
CPT is to divide the lattice into a superlattice of clusters. The Hubbard model on
each cluster is solved exactly, whereas the hoppings between sites belonging to different
clusters are treated perturbatively. More details about the method and its applicability
can be found in Refs. [175–179].

We consider the general form of the Hubbard Hamiltonian:

H =
∑
rr′σ

trσ,r′σc
†
rσcr′σ +

∑
r

Unr↑nr↓. (9.40)

where c†rσ (crσ) creates (annihilates) an electron with spin σ at site r and trσ,r′σ is the
hopping amplitude of an electron with spin σ from site r′ to r.

6This interpretation of the topological Hamiltonian resembles the idea of the Kohn-Sham Hamiltonian
in DFT [174].
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The kinetic term of Eq. (9.40) can be written in a form that shows the tiling of the
lattice into clusters:

H =
∑
ij

c†i t
(i,j)cj +

∑
r

Unr↑nr↓, (9.41)

where i, j = 1, ..., L with L the number of clusters in the crystal. t(i,j) is here the block
of the hopping matrix containing terms which couple sites of the cluster ξi to those of
cluster ξj , and cj is the column-vector of annihilation operators corresponding to sites
in cluster ξj . The Hamiltonian H(i) of a particular cluster is obtained by choosing from
Eq. (9.41) the kinetic and interaction terms that involve only sites within the cluster ξi.
Mathematically, this corresponds to taking a block matrix t(i,i) in the diagonal of the
hopping matrix:

H(i) = c†i t
(i,i)ci +

∑
r∈ξi

Unr↑nr↓. (9.42)

The ground-state of H(i) is calculated with exact diagonalization [178,180] and used to
construct the cluster Green’s function G(i)(iω):

G(i)(iω) =
[
iω − t(i,i) − Σ(i)(iω)

]−1
, (9.43)

where Σ(i)(iω) is the self-energy of ξi. The main approximation of CPT consists in
constructing the lattice self-energy Σ(iω) as direct sum of cluster self-energies, i.e., as a
block diagonal matrix where each block is the self-energy of a cluster:

Σ(iω) =
⊕
i

Σ(i)(iω). (9.44)

The Dyson equation relating the lattice Green’s function G(iω) and self-energy Σ(iω)

reads:
[G(iω)]−1 = iω − t− Σ(iω), (9.45)

where t is the hopping matrix. Combining Eqs. (9.43), (9.44) and (9.45) leads to the
following expression for G(iω):

[G(iω)]−1 =
⊕
i

[G(i)(iω)]−1 − tinter. (9.46)

Here, tinter denotes the matrix obtained by removing the blocks in the diagonal of the
hopping matrix t, i.e. the hopping matrix including only terms that couple different
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clusters. Written in matrix form, Eq.(9.46) reads:

[G(iω)]−1 =


[G(1)(iω)]−1 −t(1,2) · · · −t(1,L)

−t(2,1) [G(2)(iω)]−1 · · · −t(2,L)

...
... . . . ...

−t(L,1) −t(L,2) · · · [G(L)(iω)]−1

 .
CPT inherits its name from the fact that Eq. (9.46) can be derived by isolating tinter in
Eq. (9.41), treating it as a perturbation to the rest of terms and conserving only first
order terms [176,181].

The Green’s function G(iω) in Eq. (9.46) is written in real-space. However, our
focus is on the calculation of the Green’s function in reciprocal space, G(k, iω), as the
topological Hamiltonian and the k-resolved spectral function A(k, ω) are related directly
to it. Due to the technicalities of the lattice’s tiling into clusters, calculating G(k, iω)
from Eq. (9.46) turns out to be more subtle than just taking a Fourier transform to
reciprocal space. In the rest of this section, we go meticulously through this process.

We denote γ the Bravais lattice of the crystal and Γ the superlattice formed by the
tiling into clusters (γ ⊂ Γ). When all clusters are of the same kind, that is, when all
H(i) are related by a translation of γ, a supercell containing a single cluster may be
chosen [see Figs. 9.2(a) and Fig. 9.2(b)]; otherwise, the primitive supercell of Γ will
contain more than one primitive cells of γ. Let r and r̃ indicate lattice vectors of γ and
Γ, respectively. Every vector r can be decomposed in a univocal form as r = r̃ + R,
where R is a vector of γ. The notation is illustrated in Fig. 9.3(a) .

Furthermore, we denote c†r = c†r̃,R the operator which creates an electron in the site
r – we will not indicate other degrees of freedom, like the site of the WP, the orbital
type or spin, for the sake of simplicity in the notation. We adopt the Fourier transform
in Eq. (9.4a) to represent this creation operation in reciprocal space:

c†k = N−1/2
∑
r

eik·r = N−1/2
∑
r̃,R

eik·(r̃+R), (9.47)

where N is the number of primitive unit cells in γ. In general terms, treating the
coupling between clusters as a perturbation might break the translation symmetry of
γ; for example, in the case shown in Fig. 9.2(b), the diamond-diamond coupling within
the cluster is treated in exact grounds, while it is considered perturbatively when it
connects different clusters. Therefore, within CPT, the lattice Green’s function could
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a)

b)

c)

Figure 9.2: Different clusters and supercells of diamond-like chains. Supercells are
marked with black lines, clusters with blue lines. a) Diamond chain, where a cluster
contains a single diamond, and a supercell contains a single cluster. b) Diamond chain,
with a cluster containing two diamonds and a supercell containing a single cluster. c)
Diamond-like chain, constructed by placing successively two different diamonds. Each
cluster contains a single diamond and the smallest supercell that can be chosen contains
two clusters.
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a)

b)

r
r̃ R

k
k̃

K

Figure 9.3: Illustration of the notation. (a) Example of a possible choice of the supercell
(blue) in the HDC, where the unit cell is marked in grey, (b) Reciprocal structure, with
the BZ in grey and sites of the superlattice denoted by blue dots.

have elements between different k-vectors:

G(k,k′) =
1

N
∑
r,r′

Gr,r′eik·re−ik
′·r′

=
1

N
∑
r̃,r̃′

R,R′

Gr̃R,r̃′R′eik·(r̃+R)e−ik
′·(r̃′+R′), (9.48)

where Gr̃R,r̃′R′ is a form of writing Gr,r′ based on the decomposition r = r̃ +R – the
dependence on frequency will be omitted.

However, the invariance under translations of γ is not completely broken in CPT.
The method preserves invariance with respect to translations by vectors of Γ. The
lattice Green’s function calculated by CPT [Eq. (9.46)] is hence diagonal when a Fourier
transform with the reciprocal lattice of Γ is considered:

Gr̃R,r̃′R′ =
1

NΓ

∑
q

GR,R′(q)eiq·(r̃−r̃
′) (9.49)

where q denotes a vector in the BZ of Γ and GR,R′(q, q′) ∝ δq,q′ . This expression
is midway between full reciprocal and real space expressions: reciprocal space between
clusters (q) and real space within a cluster (R,R′). In CPT, the lattice Green’s function
in Eq. (9.46) is usually calculated in this representation. Substituting Eq. (9.49) in
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Eq. (9.48) leads to:

G(k,k′) =
NΓ

N
∑
R,R′

∑
q

GR,R′(q)e−ik·Reik
′·R′

×

(
1

NΓ

∑
r̃

ei(q−k)·r̃

)(
1

NΓ

∑
r̃′

ei(−q+k′)·r̃′

)
(9.50)

We consider the unambiguous decompositions k = k̃+K and k′ = k̃′ +K ′, where
k̃ and k̃′ belong to the BZ of Γ, whereas K and K ′ to the reciprocal lattice of Γ. The
terms between parentheses simplify then to:

1

NΓ

∑
r̃

ei(q−k)·r̃ = δq,k̃, (9.51)

which yields the following expression when it is applied to Eq. (9.50):

G(k,k′) =
NΓ

N
∑
R,R′

GR,R′(k̃)e−ik·Reik
′·R′

δk̃,k̃′ . (9.52)

The identity k̃ = k̃′ holds for N/NΓ vectors in the BZ of γ, which differ by vectors qs of
the reciprocal lattice of Γ, such that δk̃,k̃′ =

∑N/NΓ

s=1 δk−k′,qs
. According to this identity,

and applying the fact that the Green’s function in Eq. (9.46) satisfies GR,R′(k̃) =

GR,R′(k) due to the invariance under translations by vectors of Γ, Eq. (9.52) can be
rewritten as:

G(k,k′) =
NΓ

N

N/NΓ∑
s=1

∑
R,R′

GR,R′(k)e−ik·Reik
′·R′

δk−k′,qs . (9.53)

This is the exact expression for the lattice Green’s function within CPT, in reciprocal
space. As aformentioned, the fact that it contains off-diagonal elements in k and k′ is a
consequence of the (potential) translation-symmetry breaking from the original lattice γ
to the superlattice Γ. This property is thus an artifact of the CPT method – the genuine
lattice Green’s function must depend only on k. Based on this idea, the off-diagonal
terms are neglected in CPT by choosing qs = 0, which leads finally to the following
expression:

G(k, iω) =
NΓ

N
∑
R,R′

GR,R′(k, iω) e−ik·(R−R
′). (9.54)

This expression is known as the periodization formula. Let us summarize the proce-
dure followed to calculate the single-particle Green’s function G(k, iω) within the CPT
framework. First, the lattice is tiled into clusters, and the cluster Green’s function is
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9 Single-particle Green’s functions of many-body systems

calculated by neglecting couplings between these blocks. These hopping terms are then
included as a perturbation of the rest of terms in the Hamiltonian, to calculate the
Green’s function GR,R′(q, iω) via Eq. (9.46). After that, the periodization formula in
Eq. (9.54) is used to obtain the k-resolved single-particle Green’s function G(k, iω).

Once G(k, iω) is obtained, the spectral function A(k, ω) can be calculated by taking
its imaginary part, according to Eq. (9.13). The spectral function can be used to diagnose
if the system is an insulator or a metal. It can also be used to determine the chemical
potential, by matching its integral to the number of electrons; for example, at zero
temperature and half filling, the chemical potential µ is determined by:∫ µ

−∞
dω ρ(ω) = 1/2. (9.55)

where ρ(ω) relates to the spectral function via Eq. (9.18).
It is interesting to emphasize that two approximations are involved in the CPT

approach: on the one hand, hoppings between clusters are included as perturbations in
the Hamiltonian. The precision of this approximation can be improved by increasing the
size of clusters, as this is equivalent to increasing the number of hopping terms treated in
exact grounds. On the other hand, even if the CPT Green’s function is in not diagonal
in k-indices, we get rid of the blocks out of the diagonal and consider only those in the
diagonal. This approximation is needed when the supercell is bigger than the primitive
cell of the original lattice, so its impact on the quality of the results is minimized by
considering a tiling which does not require a supercell structure. Whether such a tiling
is realistic or not depends on the actual crystal structure of the material.
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10 Hubbard Diamond Chain

The division between the interacting and non-interacting view on topology got reinforced
as the characterization and classification of topological phases advanced substantially
over the past years. In particular, the role of symmetries, both of spatial (crystalline)
and of global type (e.g., time reversal) has been explored thoroughly in parallel in both
domains [25,28,29,66,182].

A typical approach to classify topological phases of interacting matter is based on
many-body invariants extracted, for instance, from the ground-state wave function [183].
A major drawback of this approach is, however, its impracticability to diagnose topo-
logical phases in real systems due to the complicated mathematical treatment of the
invariants beyond the simplest cases. This problem is overcome efficiently in the classifi-
cation of non-interacting topological phases. As it was explained in part I, although the
topology can be diagnosed in terms of topological invariants also in this case, symmetry-
indicators [28,29] or TQC based approaches turn out to be more efficient for that task –
at least when crystal symmetries can help classifying the phase. This fact motivates us
to seek methods for classifying interacting topological phases alternative to topological
invariants.

The purpose of this work is to explore the applicability and practicability of the
TQC framework to diagnose symmetry-protected topological phases in interacting ma-
terials; specifically, we analyze the spectrum of single-particle Green’s functions within
the framework of TQC to investigate and detect certain interacting topological phases.
We tackle this problem by invoking the concept of topological Hamiltonian [42,173,184],
which is defined as the inverse of the single-particle Green’s function at zero frequency.

As a proof of principle, we apply our approach to the example of a Hubbard chain
of spinful electrons, namely the Hubbard diamond chain (HDC). This model is simple
enough to allow us to calculate its phase-diagram through a combination of numerical
methods and analytical invariants, yet it is rich enough to display different phases to
test our approach, such as atomic and obstructed atomic limits which are connected
adiabatically to band insulator phases, and a Mott insulator. The phase diagram of
the model is calculated first with infinite Dynamical Matrix Renormalization Group
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10 Hubbard Diamond Chain

(iDMRG) [185, 186] and Variational Monte Carlo (VMC) [187–190] simulations. In
addition, a many-body invariant capable of differentiating between all its phases is pre-
sented [191]. The computed phase diagram serves then as a reference to test our TQC
and GF based method. The single-particle GFs are calculated within cluster perturba-
tion theory [175–177,179].

The analysis of the results shows that, in contrast to the mathematical difficulties
in the calculation of many-body invariants when considering models beyond the sim-
plest ones, the TQC Green’s function – based approach may be a candidate to become
a systematic method to characterize the topology of interacting insulating phases in
material-specific models, at least for the cases when they are adiabatically connected to
non-interacting phases. We also discuss explicitly the case of the SPT Mott phases.

The chapter is organized as follows: the HDC is introduced in Sec. 10.1. Its non-
interacting phase diagram is described in detail in Sec. 10.2, while Sec. 10.3 is devoted
to the analysis of the interacting phase diagram, which is used as reference when testing
the GF based approach in Sec. 10.4. Finally, Sec. 10.5 contains the analysis of the HDC
with SOC corrections. The conclusions obtained for each of these cases will be presented
at the end of the corresponding section.

10.1 Extended Hubbard diamond chain

As illustrated in Fig. 10.1(a), the HDC consists of a one-dimensional periodic arrange-
ment (along x) of diamonds whose symmetries form the space group Pmmm (No. 47).
The lattice sites are at Wyckoff positions 2i and 2m, and each of them contains a pair of
spinful s-orbitals. These orbitals induce eight Kramers degenerate bands in reciprocal
space. We will focus on the case of four electrons per unit cell, i.e. the half-filling case.

The model’s Hamiltonian includes three different hopping parameters: (i) an intra-
cell nearest-neighbor hopping t1, (ii) an intracell next-nearest-neighbor coupling t2, and
(iii) an intercell coupling t3. Onsite electron-electron correlations are included through
a Hubbard term whose strength is controlled by the Hubbard parameter U . The full
Hamiltonian, in the absence of spin-orbit coupling, is given by:

H =− t3
∑
σ,j

(
c†1,j,σc3,j+1,σ + h.c.

)
+
∑
α,β

c†α,j,σ Tαβ cβ,j,σ

+ U
∑
α,j

nα,j,↑nα,j,↓ + µ
∑
α,j,σ

c†α,j,σcα,j,σ, (10.1)

where c†α,j,σ (cα,j,σ) creates (annihilates) an electron of spin σ at site α ∈ {0, 1, 2, 3} of
the cell labeled by j = 1, . . . ,N , where N denotes the number of unit cells and µ is the
chemical potential – it is chosen such that the system is at half-filling. The matrix Tαβ
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Figure 10.1: a) Atomic configuration of the extended diamond chain. The unit cell is
marked with the grey background, WPs 1a and 1b are denoted with crosses and atomic
sites at WPs 2i and 2m with solid black circles. The enumeration of orbitals adopted
to write the Hamiltonian is also shown. Intracell hoppings t1 and t2 are indicated in
black and blue lines, respectively, while intercell hopping t3 is indicated in red. Black
lines and circular arrow in the left diamond denote reflection planes and 2-fold rotation
with respect to the z-axis, respectively. b)-d) Dominant coupling parameters for three
different limiting cases: (b) t2 � t1, t3, (c) t3 � t1, t2, (d) t1 � t2, t3.
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10 Hubbard Diamond Chain

that contains the intracell couplings t1 and t2 has the form

T = −


0 t1 t2 t1
t1 0 t1 t2
t2 t1 0 t1
t1 t2 t1 0

 . (10.2)

Actually, the HDC model can be understood as a one-dimensional version of the
two-dimensional square lattice considered by Yao and Kivelson [192].

10.2 Non-interacting HDC
In this section, we study the phase diagram of the HDC without interaction, i.e. for the
Hamiltonian in Eq. (10.1) with U = 0. Each phase will be studied in two steps: First,
the symmetry properties of the single-particle band structure will be interpreted within
in terms of band representations. Then, the many-body wave function of the ground
state will be derived, and its transformation under the space group will be discussed.

Since the non-interacting Hamiltonian does not include spin-orbit corrections, we
can base our symmetry analysis on the single-valued space group Pmmm. SOC correc-
tions will be discussed in detail in Sec. 10.5. Furthermore, we will follow the notation
for the irreps adopted in the Bilbao Crystallographic Server [96–98].

The orbitals in our model transform as the irrep A1 of the corresponding site-
symmetry groups, which are isomorphic to the point group1 [see Fig. 10.1(a)]. These
orbitals induce the band representation ρ = (A1 ↑ G)2i ⊕ (A1 ↑ G)2m of the space
group. Moreover, representations of little groups of the points Γ and X subduced by
this representation can be decomposed as

ρ : {2Γ+
1 ⊕ Γ−3 ⊕ Γ−4 , 2X

+
1 ⊕X−3 ⊕X−4 }. (10.3)

The analytical phase diagram of the non-interacting Hamiltonian is shown in
Fig. 10.2 for t2/t1, t3/t1 > 0. It contains two gapped2 phases and a metallic phase.
Let us comment briefly on the derivation of the phase diagram: We started from the
Bloch states constructed from the considered s-orbitals. First, focused on the maximal
k-points Γ and X, and calculated the states adapted to the symmetry of their little
group irreps taking part in Eq. (10.3). Then, the change to the basis formed by these
symmetry-adapted states was applied simplify the Hamiltonians H(Γ) and H(X) to
block-diagonal form, according to Wigner’s theorem. This step leaded to analytical
expressions for the energy levels corresponding to the irreps Γ−3 ,Γ

−
4 , X

−
3 and X−4 ,

1Note that C2v is a subgroup of D2h, where D2h is the point group of an isolated diamond.
2In the actual context of this system, we say that a phase is gapped if its ground state is non-

degenerate. In particular, in the noniteracting case, the band structures of gapped phases have valence
and conduction bands separated by a gap.
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Figure 10.2: Phase diagram of the non-interacting diamond chain model at half-filling,
the blue color represents the AI phase, red the OAL and grey the metallic phase.
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Figure 10.3: Band structure of the HDC for U = 0, where the lowest occupied band has
been omitted as it is disconnected from the rest and it contains the irreps {Γ+

1 , X
+
1 } in

the studied range of parameters. (a) AI phase (t2/t1 = 1.2, t3/t1 = 0.2). (b) Transition
point between the AI and OAL phases (t2/t1 = 1.2, t3/t1 = 0.264). (c) OAL phase
(t2/t1 = 1.2, t3/t1 = 0.3). (d) Metallic phase (t2/t1 = 0.8, t3/t1 = 0.2).

which are moreover linear in the hopping parameters. Analytical expressions were
also obtained for the rest of irreps by further diagonalizing the corresponding 2 × 2

blocks. Finally, the realizable phases and boundaries between them were determined
by studying the different possible arrangements (in energy) of irreps and the conditions
set by them on the hopping parameters.

Atomic Insulator (AI) phase

In the limit t1 → 0, sites at WP 2i and WP 2m are decoupled. The sites at WP 2m

form local dimers, while sites at WP 2i are connected along the periodic x direction and
form a one-dimensional chain that can be adiabatically connected to the Su-Schrieffer-
Heeger (SSH) chain. Particularly, when t3 � t2, sites at WP 2i form a chain that can
be connected to the trivial SSH chain. This mapping is corroborated by the TQC based
analysis of the band structure: The valence bands transform in the composite band
representation 2(A1 ↑ G)1a, with occupied little group representations 2Γ+

1 and 2X+
1
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10 Hubbard Diamond Chain

[Fig. 10.3(a)]. This representation can be induced from two Wannier functions whose
charge centers are at the WP 1a and transform like s-orbitals under the action of the site-
symmetry group of this site. Since the band representation of the occupied band of the
trivial SSH-chain can also be induced by identical Wannier functions, we conclude that
the occupied subspace of the diamond chain’s spectrum can be adiabatically connected
to two copies of the trivial SSH-chain and we classify this phase as an atomic insulator
(AI).

Let us now derive the wave function of the many-body ground state of the chain
in the AI phase in order to determine its symmetry properties. Since sites belonging to
different diamonds (unit cells) are decoupled, the single-particle Hamiltonian H of the
chain is a sum of Hamiltonians of diamonds:

H =
∑
j

−t2(c†0,jc2,j + c†1,jc3,j) + h.c. =
∑
j

(Hj,h +Hj,v), (10.4)

where Hj,2i and Hj,2m are the Hamiltonians for the dimers formed by sites at WPs 2i and
2m, respectively. The Hamiltonian of the diamond in the jth-cell is then Hj,2i +Hj,2m.
We can thus construct the 2-particle3 ground state of the diamond from the single-
particle ground states of these dimer Hamiltonians.

Each of the dimer Hamiltonians coincides with the well-known Hamiltonian of the
H+

2 molecule. Their ground states are hence bonding states, whose creation operators
are the following:

ψ†j,2i = 1/
√
2(c†0,j + c†2,j), (10.5a)

ψ†j,2m = 1/
√
2(c†1,j + c†3,j). (10.5b)

These states transform as the trivial representation A1 of the point group D2h of the
diamond, which means that they are mapped to themselves – without acquiring any
phase – under any transformation of D2h. A more detailed description can be found in
Appendix D.4.

Moreover, the states in Eqs. (10.5a) and (10.5b) are also eigenstates of the diamond’s
Hamiltonian. Accordingly, the creator operator for the 2-particle ground state of the
diamond can be constructed as the Slater determinant of these dimer’s ground states:

O†j = ψ†j,2iψ
†
j,2m. (10.6)

Finally, the 2N -particle ground state of the chain is created by the operator:

ψ†AI =
∏
j

O†j , (10.7)

3As the Hamiltonian is diagonal in spin indices and the blocks of both spin indices are identical, we
can solve for one of the spins and consider then that we have two copies of it.
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10.2 Non-interacting HDC

where the product runs over all diamonds in the chain.
Let us comment on the transformation properties of this ground state under the

space group. First, we consider translations. Any pair of operators O†i and O†j satisfies
the commutation relation [O†i ,O

†
j ] = 0, as each of them is formed by an even number of

single-particle creation operators. Therefore, ψ†AI is left invariant under all translation.
Regarding the rest of symmetries, we can restrict to analyzing the action of the

generators of D2h – this is equivalent to considering the coset representatives of the
decomposition of the space group with respect to its translation subgroup. We choose
these generators to be the mirror reflection My, the two-fold rotation C2z and inversion
I. The action of My on ψ†AI is trivial, as it leaves all diamonds invariant:

Myψ
†
AIM

−1
y = ψ†AI . (10.8)

The action of C2z and I might, however, be less trivial.

gψ†AIg
−1 = g . . .O†−1O

†
0O
†
1 . . . g

−1 = . . .O†1O
†
0O
†
−1 . . . (10.9)

for g = C2z,My. Nevertheless, the right-hand side of this equation turns out to be again
ψ†AI due to the commutativity between creators of diamonds’ ground states.

All in all, we have shown that the 2N -body ground state of the HDC in the AI
phase is left invariant by all symmetries in the space group,i.e. it transforms as its
trivial representation A1.

The 4N -particle ground state is build up as the product of two copies of the 2N -
body ground state in Eq. (10.7), each copy corresponding to one of the subspaces of
spin.

Ψ†AI =
∏
j

O†j↑O
†
j↓. =

∏
j,σ

1

2
(c†0,j,σ + c†2,j,σ)(c

†
1,j,σ + c†3,j,σ). (10.10)

This ground state also transforms as the trivial representation A1 of the space group
Pmmm.

Obstructed atomic limit (OAL)

When t3 is the dominant hopping term (t3 � t1, t2), the chain formed by orbitals
at WP 2i can be mapped to the SSH chain in the topological phase, as these sites
form dimers connected across neighboring unit cells [Fig. 10.1(c)]. We thus expect the
sites at WP 2i to contribute to the occupied subspace with a band of the same nature.
This insight is again confirmed from the viewpoint of TQC framework: the valence
bands transform in the (A1 ↑ G)1a ⊕ (A1 ↑ G)1b band representation with little group
representations 2Γ+

1 and X+
1 ⊕ X−3 [10.3(c)]. Particularly, the band with little group

irreps Γ+
1 and X−3 can be induced from s-like Wannier functions whose charge-center is

in the WP 1b, i.e. its states transform as the EBR (A1 ↑ G)1b. This representation is
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10 Hubbard Diamond Chain

then connected to the one corresponding to valence band of the topological SSH-chain
by considering the lowering of the symmetry from the space group Pmmm of the HDC
to the space group P 1̄ of the SSH-chain. On the basis of both this similarity with the
topological SSH-chain and the fact that the band with irreps Γ+

1 and X−3 is induced
from an empty WP, we identify the phase at t3 � t2, t1 as an obstructed atomic limit
(OAL). Notice that the remaining valence band, whose little group irreps are Γ+

1 and
X+

1 , is induced from the WP 2m – just as in the AI phase.
Even though irreps of valence bands are identical at Γ for both the AI and OAL

phases, this resemblance does not hold for the X-point. There, the irrep X+
1 of the

highest-valence band in the AI phase is substituted by the irrep X−3 in the OAL phase.
Since these irreps have different two-fold rotation Ĉ2z and reflection M̂x [which maps
a point (x, y, z) to (−x, y, z)] symmetry eigenvalues, it is not possible to connect these
phases by a path in which the gap between valence and conduction bands does not close,
without breaking these symmetries. Furthermore, they are phases distinguished by this
symmetries.

Let us now derive the 4N -particle ground state of the HDC in the OAL phase. For
this phase, the single-particle Hamiltonian of the chain is connected to:

H =
∑
j

[−t3c†3,j+1c
†
1,j + h.c.︸ ︷︷ ︸

Hj

+(−t2)(c†0,jc2,j + c†1,jc3,j + h.c.)︸ ︷︷ ︸
Hj,AI

], (10.11)

with t3 � t2. HAI,j is the Hamiltonian of the diamond in Eq. (10.4), and its ground state
is the bonding state created by the operator ψ†j,2i in Eq. (10.5a). Hj is the Hamiltonian
of the dimers formed by the sites at WP 2i, via the shortest intercell connections. Its
ground state ϕ†j,2i is therefore the bonding state centered on the border of between the
j and j + 1 unit cells:

ϕ†j,2i = 1/
√
2(c†1,j + c†3,j+1). (10.12)

The energy levels of the bonding states created by ϕ†j,2i and ψ†j,2i are −t3 and t2, respec-
tively. These state are indeed the two lowest-energy eigenstates of the Hamiltonian in
Eq. (10.11), as the energy levels of the antibonding states are both positive. Therefore,
the 2-particle ground state of Hj +Hj,AI is created by ψ†j,2iϕ

†
j,2i.

The 2N -ground state ψ†OAL of the chain can then be constructed through the prod-
uct of this creation operators:

ψ†OAL =
∏
j

ψ†j,2iϕ
†
j,2i =

∏
j

1/2(c†0,j + c†2,j)(c
†
1,j + c†3,j+1). (10.13)

This creation operator is already invariant under all symmetries in the space group
Pmmm, owing to the fact that it is the product commuting pairs of single-particle
creation operators.

Finally, the creation operator for the 4N -particle ground state of the HDC in the
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10.3 Topology of the interacting HDC

OAL is the product of two copies of Eq. (10.13), each copy corresponding to a spin
index:

Ψ†OAL =
∏
j,σ

1/2(c†0,j,σ + c†2,j,σ)(c
†
1,j,σ + c†3,j+1,σ). (10.14)

In conclusion, the 4N -particle ground state of the HDC in the OAL also transforms as
the trivial representation A1 of the space group Pmmm.

Metallic phase

For the last limiting case, where t1 is the dominant hopping (t1 � t2, t3) as it is
shown in Fig. 10.1d, the ground-state of a single-diamond is degenerate. Since t3 is
negligible, it follows from this degeneracy that the many-body ground-state of the HDC
chain is also degenerate and therefore metallic, as it is confirmed by the presence of four
partially filled bands in the band structure of Fig. 10.3d, where the Fermi energy is
pinned at the flat band (with little group representations Γ−4 and X−4 ).

10.3 Topology of the interacting HDC
In this section, we will first calculate numerically the phase diagram of the interacting
HDC. Then, we will present a mirror-reflection based invariant capable of differentiating
between all the phases in the diagram.

10.3.1 Phase diagram of HDC for finite U
Both VMC and DMRG [in the matrix product state (MPS) formulation] are state-of-
the-art techniques which are employed to approximate the ground state wave function
of quantum many-body Hamiltonians. DMRG is one of the most prominent numerical
method for the study of strongly-correlated one-dimensional systems, and has success-
fully been applied to a large variety of quantum models [193]. The MPS Ansätze can
efficiently encode low-entangled quantum states, with systematically improvable ac-
curacy. On the other hand, the VMC method applied in the present work relies on
relatively simple variational wave functions, made of mean-field fermionic state supple-
mented by Jastrow correlators [187]. Despite its intrinsically biased nature, the VMC
method represents a reliable tool for the study of the phase diagram of systems of in-
teracting electrons beyond the perturbative limit, as in the case of Mott transitions in
Hubbard-like models.

The DMRG based approach followed in this work to calculate the phase diagram
of the interacting HDC consists in computing the ground-state wave function first, and
exctracting from it the correlation length ξ [Eq. (D.2)] then. This procedure is motivated
by the fact than ξ could be used as an indicator of the degeneracy of the ground state,
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Figure 10.4: Phase diagram of the interacting diamond chain for U/t1 = 0.4 and U/t1
= 1 at half-filling determined from the calculation of the correlation length ξ in iDMRG
(color map), as well as data points obtained by VMC at t2/t1 = 0.8 and t2/t1 = 0.5 for
various t3/t1 indicating whether the system is in a metallic (crosses) or an insulating
(circles) phase. The phase boundaries of the non-interacting phase diagram are given
by the white, dashed lines.

as it takes a finite value for gapped phases, whereas it diverges (numerically) in metallic
phases [194].

Based on this idea, we scanned the region of interest of the parameter space, cal-
culating with iDMRG the correlation length at each point on it. The phase diagrams
obtained this way for U/t1 = 0.4 and U/t1 = 1 are shown in Fig. 10.4 [see Appendix
D.1 for additional calculations].

For t2/t1 > 1 and finite interaction U , the transition from the AI to OAL remains
but slightly shifts to larger values of t3/t1 when increasing U/t1 (see also Fig. D.1 of
Appendix D.1). Since all single-particle bands are either completely filled or empty in the
gapped AI and OAL phases at U = 0, a small finite U only induces a renormalization
of the electron bands without any drastic change. In analogy with the spinful SSH
chain [191], both the AI and OAL phases are also smoothly connected to gapped valence
bond analogues appearing at large U , without change of ground-state symmetry. As a
result, the interacting analogues of the AI and OAL phases are each smoothly connected
to a non-interacting atomic limit.
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The t2 < t1 region requires deeper analysis for relatively small U . On the one hand,
although formally the correlation length ξ diverges at the phase boundaries, in our data
it is bounded by the maximal bond dimension. On the other hand, iDMRG tends to per-
form poorly for metallic or close-to-metallic systems, as it can be seen in Fig. D.1(a). We
have therefore performed VMC simulations as well in order to corroborate the iDMRG
results in the region where the metallic phase is observed (t2/t1 < 1). Our variational
approach is based on Jastrow-Slater wave functions as described in Appendix D.2. The
regions of gapped (insulator) and gapless (metallic) phases as determined by VMC are
shown in Fig. 10.4 as circles and crosses, respectively.

The t2/t1 < 1 and t3/t1 � t2/t1 region shows a particularly interesting behavior.
The metallic phase present in the non-interacting phase diagram is substituted by a
gapped phase upon addition of electron interaction. This origin of the insulator phase
suggests that it could be a Mott phase. Moreover, this gapped phase preserves all the
symmetries of the space group Pmmm. Increasing t3/t1, the system either undergoes
a transition into an intermediate metallic phase or, for sufficiently large values of U , it
enters the OAL phase directly from the MI phase (compare the results for U/t1 = 0.4
and U/t1 = 1 in the region t2/t1 = 0.8 and 0 < t3/t1 < 1 in Fig. 10.4). With increasing
U , the MI replaces an increasing proportion of the metallic region of the non-interacting
model, while the extent of the bordering OAL phase remains largely unchanged.

10.3.2 Mott SPT phase and Many-Body Invariants

In this section, we establish the MI phase as an SPT phase and analyze the topology of
the interacting phases in the HDC through many-body invariants.

We demonstrated in Sec. 10.2 that the many-body ground states of both the AI
and OAL phases transform trivially under all symmetries of the space group. This is, in
fact, a general property of all non-degenerate wave functions of even number of electrons
with TRS which can be written as Slater determinants of single-particle wave functions.
In order to prove this property, let us consider the non-degenerate Slater determinant
of even number of particles created by:

Ψ†SD =
∏
i

c†i , (10.15)

where c†i creates a particle in a state that belongs, at the same time, to the spectra of
the single-particle Hamiltonian and a certain g ∈ Pmmm, with eigenvalue λg,i. Due to
TRS θ, the operator θc†iθ−1 corresponds to an energetically degenerate eigenstate of g
with eigenvalue λ∗g,i. Since the many-body state is assumed to be non-degenerate, these
two levels must be either both occupied or both unoccupied, that is, either they both
are present or they both are absent in Eq. (10.15). However, the product of operators
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always transforms trivially:

Uhc
†
i (T c

†
iT
−1)U−1h = |λh,i|2 c†i (T c

†
iT
−1), (10.16)

since |λh,i|2 = 1, where Uh is the representation of h. In other words, any state described
by a single Slater determinant transforms trivially provided all single-particle levels are
either empty or fully occupied with both spin up and spin down. This condition is
satisfied by all states that can be adiabatically connected to a non-interacting gapped
state of spinful particles with time-reversal symmetry, in particular the AI and OAL
phases. However, it is not applicable to the MI-phase, since the corresponding wave
function is not a Slater determinant of single-particle wave functions. This fact enables
its ground state to transform non-trivially under the space group, and we could take
advantage of it to differentiate the phase from the AI and OAL.

As the symmetry properties (and topology) of the ground state can not change
as long as the gap remains opened, we are free to choose specific points in the phase
diagram for the study of each phase. In particular, let us consider for convenience the
limit t3 = 0, t2/t1 � 1 and small finite U > 0 for to elucidate the ground state of
the MI phase. The Hamiltonian H of the chain is a sum of single-diamond interacting
Hamiltonians Hd,i:

H =
∑
j

∑
α,β

c†α,j,σ Tαβ cβ,j,σ + U
∑
α

nα,j,↑nα,j,↓


︸ ︷︷ ︸

Hd,i

=
∑
j

Hd,j , (10.17)

where i labels the unit cell. As a consequence, we can construct the 4N -particle ground
state of the interacting Hamiltonian H as the product of 4-particle ground states of Hd,j .
The creation operator for such a 4-particle ground is:

O†MI,j =
1√
2

(
c̃†π

2 ,j,↑c̃
†
π
2 ,j,↓ − c̃†−π

2 ,j,↑c̃
†
−π

2 ,j,↓

)
c̃†0,j,↑c̃

†
0,j,↓. (10.18)

where c̃†k,j,σ = 1/2
∑

α exp(ikα)c†α,j,σ are Fourier-transformed creation operators defined
within a single diamond. Notice that O†MI,j is not a single Slater determinant. Further-
more, it is odd with respect to two-fold rotations about the x- and y-axis (denoted C2x

and C2y), as well as mirroring in the yz- and xz-planes (denoted Mx and My); in other
words, it transforms as the irrep B1g of the space group.

Finally, the many-body ground-state wave function of the chain in the MI-phase is
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created by:

Ψ†MI =
∏
j

O†MI,j

=
∏
j

1√
2

(
c̃†π

2 ,j,↑c̃
†
π
2 ,j,↓ − c̃†−π

2 ,j,↑c̃
†
−π

2 ,j,↓

)
c̃†0,j,↑c̃

†
0,j,↓.

(10.19)

From the transformation properties of O†AI , it follows that Ψ†MI is an eigenstate
with eigenvalue (−1)N (with N the number of diamonds in the chain) for any symmetry
operation of Pmmm whose rotational part is C2x, C2y,Mx or My. Consequently, the
many-body ground state of the chain in the MI phase transforms as the irrep B1g when
the number of diamonds is odd. It can hence be distinguished from the trivial (AI) and
obstructed (OAL) phases by, e.g., the mirror reflection eigenvalue of its ground-state: the
observable 〈Mx〉Ψ0 = 〈Ψ0|Mx|Ψ0〉. Nevertheless, these many-body expectation values
can not distinguish the MI phase when N is even. They are unable to differentiate even
between the AI and the OAL phase.

We circumvent this obstacle in the diagnosis by considering the expectation-values
of partial mirror reflection operations proposed in Refs. [191,195] to diagnose interacting
topological phases in systems with mirror symmetry (see Appendix D.3 for details on
the case of the SSH model). We denote Mx;I(θ) the operator which acts as the Mx

mirror reflection twisted by U(1) symmetry on the states j = 1, . . . , L belonging to the
interval I:

M̂x;I(θ) : c
†
α,j,σ 7−→ ie−iθc†β,L−j+1,−σ [B]βα , (10.20)

while it leaves invariant the sites out of I.
Tab. 10.1 contains the values of 〈Mx,I(θ)〉Ψ0

calculated for the ground states of
the AI, OAL and MI phases corresponding to the operators in Eqs. (10.10), (10.14) and
(10.19), respectively. When θ = π/2 and odd L, the expectation value of the partial
mirror operator takes the values 1, 0 and -1, i.e. a different value in each of the gapped
phases. Therefore, the value of this ground-state expectation value provides us with a
sharper diagnosis of the three gapped phases than 〈Mx〉Ψ0

4.
A comment on the form of computing the expectation values 〈Mx〉 and 〈Mx,I(θ)〉

for the AI and OAL is in order: These expectation values were calculated for the non-
interacting many-body ground state operators in Eqs. (10.10) and (10.14), rather than
for interacting ground states. This is justified by the fact that the non-interacting
AI and OAL phases are adiabatically connected to their non-interacting counterparts.
Indeed, according to this fact, the creation operators of these interacting ground states

4It should be mentioned that, as Mx,I(θ) is not rigorously a symmetry of the system, its expectation-
value might change continuously within a given phase. Nevertheless, provided the correlation length
remains short, the values it might adopt in each phase are expected to remain close enough from the
ideal values in Tab. 10.1 to still allow us to identify the phase [191,195,196].
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Phase 〈Mx〉Ψ0
〈Mx,I(θ)〉Ψ0

AI 1 exp
[
−iQI(θ − π

2 )
]

OAL 1
1

4
exp

[
−iQI(θ − π

2 )
]
cos2 θ

MI (−1)N exp
[
−iQI(θ − π

2 )
]
(−1)

L

Table 10.1: Expectation values of the reflection operator and U(1)-twisted partial
reflection operator evaluated for the ground states created the operators in Eqs. (10.10),
(10.14) and (10.19). QI denotes the average total charge enclosed within the interval I.

can be written like Eqs. (10.10) and (10.14), by substituting the single-particle creation
operators by those of quasiparticles with identical symmetry properties.

The MI phase in the HDC chain is not adiabatically connected to any non-
interacting atomic limit, yet it can be continued to a state with no entanglement between
the unit cells (the limit t3 → 0). A similar case was illuminated in Refs. [192,197]. Moti-
vated by the similarity between these “local” Mott phases and the atomic limits of TQC,
we coin the term Mott atomic limit to refer to gapped phases whose wave functions
can not be written as Slater determinants of single-particle states, but as a product of
entangled many-body states localized within the unit cell. The Hubbard diamond thus
enriches the possible building blocks of quantum matter, and motivates the expansion
of possible atomic limits to include Mott atomic limits.

10.4 Diagnosing topology from Green’s functions
We explore now to which extent the topology of the interacting phases in the HDC model
can be identified by analyzing the spectra of single-particle Green’s functions in terms of
TQC. For that, we calculate the Green’s functions via cluster perturbation theory and
invoke the concept of a topological Hamiltonian.

Whereas iDMRG and VMC are powerful methods to solve the ground state of many-
body low-dimensional interacting systems, calculating Green’s functions with them is
not straightforward. CPT is a technique for calculating the Green’s function of Hub-
bard models of strongly-correlated electrons. It consists in dividing the lattice into a
(super)lattice of clusters and treating the couplings between clusters at leading order in
perturbation theory. Since the Hubbard diamond chain is suitable for the clustering in
diamonds, we could expect CPT to give accurate results.

We choose as a cluster a 4-site diamond (grey region in Fig. 10.1a). With this
choice, the 4-particle ground state of the diamond is calculated exactly for the interacting
Hamiltonian, by setting t3 = 0. The next step is to use this ground state to compute the
Green’s function of the cluster. Finally, the Green’s function of the chain is obtained by
considering a small t3 and promoting the cluster Green’s function. The spectral function
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Figure 10.5: (a) Labeling of the paths considered in the CPT calculations over the
iDMRG/VMC phase diagram obtained with U/t1 = 1.0. (b), (c) and (d) show the
evolution of the charge gap ∆/t1 along the different paths as a function of the hopping
parameter for different values of the u = U/t1. A cluster containing a single unit cell
has been used in CPT calculations.

can be extracted from the imaginary part of the Green’s function.
We first check the reliability of the CPT results for the interacting HDC at half-

filling. For that, we calculate the charge gap ∆/t1 along the three paths on the phase
diagram shown in Fig. 10.5(a), for different values of the interaction strength U . In
agreement with iDMRG and VMC results, we identify four phases: a metallic phase
and three insulator phases characterized by the presence of a charge-gap in the spectral
function.

The insulating phase at finite U , t2/t1 < 1 and t3/t1 � 1 shows a spectral function
with a charge gap originated by the formation of upper and lower Hubbard bands (see
Fig. 10.6c). Hubbard bands are the typical feature of Mott insulators. This corroborates
that local electron-electron interactions are responsible for a metal-to-Mott insulator
transition in the HDC. The remaining two insulating phases are reminiscent of the non-
interacting AI and OAL phases. The corresponding spectral functions suggest moreover
that they are correlated insulators [see Figs. 10.6(a) and (b)] describable in terms of
quasiparticles. As U increases, phase transition between both phases is shifted towards
larger values of t3/t1 [Fig. 10.5(b)], which is in good agreement with the results of
iDMRG and VMC calculations.

At t2/t1 < 1, and moderate values of U a metallic phase appears in a narrow region
of intermediate t3/t1 values, between the Mott insulator and the interacting OAL phase
(see Fig. 10.5c). Furthermore, this gapless region is shifted to larger values of t3/t1 as
the Hubbard-U parameter is increased – within the range of values considered for U .
Even if these metallic phase and tendency are also observed via iDMRG and VMC, they
survive to larger values of U in CPT calculations. The reason for this discrepancy could
be that, according to our choice of cluster, t3 is treated as a perturbation in our CTP
approach, while it might become significant for the region where the transition between
MI and OAL phases takes place.

Now that the capacity of CPT for capturing all the insulating phases of the HDC
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Figure 10.6: CPT spectral functions A(ω, k) calculated for U/t1 = 1 at the marked
cicles in Fig. 10.5a. The Fermi-level is shown with dashed lines. Each spectral function
is normalized to satisfy

∫
dω
∑

k A(ω, k) = 1, where the integral runs over the whole
frequency domain. (a) AI (t2/t1 = 1.2, t3/t1 = 0.1), (b) OAL (t2/t1 = 1.2, t3/t1 = 0.7)
, (c) MI (t2/t1 = 0.5, t3/t1 = 0.4), (d) Metallic phase (t2/t1 = 0.8, t3/t1 = 0.8).

has been checked, we construct the topological Hamiltonian and proceed with the deter-
mination of the topological nature of the AI and OAL insulating phases. The use of the
topological Hamiltonian in this region is justified by the fact that G(0, k) is non-singular
for these insulating phases. In Fig. 10.7, we show the bands of the topological Hamilto-
nian for both phases at U/t1=1 together with their little group irreps at Γ and X. We
note that the irreps of the occupied bands at small (large) values of t3/t1 [Figs. 10.7(a)
and (b), respectively] coincide with those of the non-interacting AI (OAL) phases (com-
pare with Fig. 10.3a and c, respectively), which corroborates that these interacting
insulating phases are adiabatically connected to the non-interacting ones.

The MI phase, on the contrary, deserves special attention. In section 10.3.2 it
was shown that there is not smoothly connected to any non-interacting limit. The
Green’s function obtained via CPT in this phase is singular at ω = 0. The origin of
this divergence is indeed the self-energy, which also diverges at ω = 0, as it is shown in
Fig. 10.8 for t2/t1 = 0.5, t3/t1 = 0.4 and U/t1 = 1.0. In such a situation, the topological
Hamiltonian is not applicable and the EBR description cannot be pursued.

We conclude that the TQC based analysis of the spectra of single-particle Green’s
functions (via the topological Hamiltonian) provides a possible new avenue to character-
ize correlated insulating phases, as far as they are smoothly connected to non-interacting
limits. This excludes Mott phases which require a characterization beyond the single-
particle Green’s functions. Albeit this limitation, the approach can be straightforwardly
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Figure 10.7: Spectrum and irreps of the topological Hamiltonian in the correlated
insulating phases for U/t1 = 1 in a) the AI phase (t2/t1 = 1.2, t3/t1 = 0.1) and b) the
OAL phase (t2/t1 = 1.2, t3/t1 = 0.7). The lowest occupied band has been omitted.
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Figure 10.8: Sum of the absolute value of the real part of self-energy’s eigenvalues
σi(ω, k) in the MI phase. The drastic increase close to ω = 0 is identified as a divergence
of the self-energy.
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applied to diagnose the topology of many correlated insulating phases in real materi-
als, in contrast to many-body invariants which can be computed only for very specific
models due to the analytical and numerical complexity of their calculation.

Moreover, motivated by the fact that the MI phase is connected to the limit of
interacting-decoupled diamonds localized in the unit cell, we have introduced the concept
of Mott atomic limits. These are insulator many-body phases whose ground state is
induced from interacting clusters of electrons localized in the unit cell. In Ref. [65],
which is the result of a collaboration held later with the group of Drs. Titus Neupert
(University of Zurich) and Roser Valentí (Goethe University), Mott atomic limits have
been defined properly and proposed as the generalization of non-interacting limits to the
study of interacting topological insulators. The representation theory for two-particle
Green’s functions has also been developed in the mentioned work, and its capacity for
fully classifying two-particle Mott atomic limits has been demonstrated [65].

10.5 HDC with spin-orbit coupling
While the spin-degree of freedom of electrons was effectively ignored in the previous
analysis of the HDC, it is known that SOC corrections turn out to be significant in
many materials. Here, we consider the reconsider the HDC with spinful electrons.

Because of the capacity of SOC for breaking the degeneracy of energy levels and
bands, this effect is often responsible for gapped phases in materials that would be
otherwise metallic. Based on this intuition, we could expect SOC to split the partially-
filled bands in the metallic phase of the U = 0 HDC [see Fig. 10.3(d)] into two sets of
filled and empty bands, leading to an insulator phase.

On the other hand, the Mott insulator phase is originated in the HDC as a result
of interactions on the metallic phase: When on-site electron interactions are considered,
electrons tend to distribute themselves in such a way that Wannier functions inducing
the partially-filled bands host on average a single electron.

Taking these two point into account, we could ask ourselves the following question:
could we hope to observe the Mott phase in the HDC with SOC? The investigation
presented in this section sheds light on this question. We begin by introducing the way
to account for the spin of electrons in the model for the HDC. Then, we study the effect
of this correction on the phase diagram. Finally, we focus on a particular point within
the metallic phase of the HDC and analyze the interplay between SOC and interactions
on it.

10.5.1 Model for spinful electrons in the HDC
Two ingredients of the model presented in Sec. 10.1 should be changed to account for
the spin of the electrons: the transformation properties of Wannier functions in the unit
cell, and the hopping parameters.
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0

1

2

3

Figure 10.9: Hoppings included in the spinful model for the HDC. The actual matrix
forms of the couplings are given in Eqs. (10.21), (10.22) and (10.22).

According to the discussion in Sec. 4.4, the action of symmetries on the spin-degree
of freedom should be taken into account. The transformation of spin-indices is described
by the matrices of SU(2). Since the symmetry group of the chain contains operations
which map spin-up to spin-down, there is a priori no reason to restrict the analysis to
only one of the spin subspaces.

Regarding the hoppings included in the model, the possibility for having couplings
between spin-up and spin-down states should be considered, in principle. An efficient
way to deal with this possibility is to consider that the hopping terms t1, t2 and t3 of the
spinless model are now 2× 2 matrices, instead of scalars. Let us denote these matrices
t̃1, t̃2 and t̃3. The starting point to determine the form of the hoppings compatible with
the space group is to consider that all hopping terms in the unit cell are different5, as
shown in Fig. 10.9.

Next, we concentrate on the unit cell containing the origin, and to the check how
the generators6 of D2h relate the hopping elements between them. The constrains set
by time-reversal symmetry and the hermiticity of the Hamiltonian should also be taken
into account.

By following this approach, we concluded that the most general spinful hopping
matrices compatible with the symmetries of the HDC are the following:

t̃2 = t2 1, (10.21)
t̃3 = t3 1, (10.22)

t̃
(10)
1 = t̃

(21)
1 = t̃

(32)
1 = t̃

(03)
1 =

[
t1 0

0 t∗1

]
, (10.23)

where t2, t3 ∈ R and t1 ∈ C. In conclusion, the spinful model for the HDC contains one
more parameter than the spinless model, which is precisely Im t1. For the rest of the
analysis, we equivalently express t1 as t1 = |t1| exp(iϕ), and consider |t1| and ϕ ∈ [0, 2π]

5Like in the spinless case, we restrict ourselves to the case where the hopping matrices where there
is a single hopping matrix t̃2.

6As aformentioned, we would have to go through all the generators of the space group (except lattice
translations). In the case of Pmmm, as it is a symmorphic space group, this is equivalent to checking
the action of the generators of D2h, which is the group formed by the coset representatives in Eq. (4.25).
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SV irrep Γ+
1 Γ−3 Γ−4 X+

1 X−3 X−4
DV irrep Γ̄5 Γ̄6 Γ̄6 X̄5 X̄5 X̄6

Table 10.2: Relation between irreps of little groups in the spinless (SV) and spinful
(DV) cases. Every irrep of the spinless case can be considered to turn into the irrep that
is below it when the model accounts for the spin. We are not being rigorous with the
notation, as we are not using physically-irreducible irreps for the spinless case; trivial
spin degeneracy should indeed be assumed for that case.

the parameters of the model. Despite ϕ being a cyclic parameter, not being related to
the magnitude of t1 and the spin subspaces being decoupled, we will interpret ϕ as the
“strength” of the SOC, since ϕ = 0 represents the spinless case.

These expressions for the hopping matrices lead to the most general spinful Hamil-
tonian in Eq. (10.1) compatible with the symmetries of the system. We see that, within
this hopping range, it is not possible to couple spin-up and spin-down indices, so they
keep on being good quantum numbers for the non-interacting part. Notice however that
the blocks of the Hamiltonian are not identical anymore for both spin subspaces, unlike
in the spinless case.

Concerning the notation for the application of representation theory to the study
of the band structure, we would have to work with double-valued groups, which account
properly for the transformation of the spin. Equivalently, we can restrict ourselves to
the symmetries of single-valued groups, but adopting the notation for irreps of double-
valued groups. The set of irreps at Γ and X of the band representation induced from
spinful s-orbitals in WPs 2i and 2m is:

(Ē ↑ G)2i ⊕ (Ē ↑ G)2m : {2Γ̄5 ⊕ 2Γ̄6, 2X̄5 ⊕ 2X̄6}. (10.24)

10.5.2 Phase diagram for the spinful-indepentent electron HDC
Once the model for spinful electrons has been established, we turn our attention to
the effect of ϕ on the phase diagram. Like in the spinless case, we apply at Γ and X
changes to bases adapted to the symmetry of irreps in Eq (10.24). This allows us to
derive analytical expressions for the actual energy level of each irrep, which facilitates
the identification and classification – via TQC – of the phases. Furthermore, it turns
out that ϕ enters these expressions always in terms of sin2 ϕ or cos2 ϕ, thus it is enough
to consider ϕ ∈ [0, π/2].

In order to understand the evolution of the phase diagram under ϕ, it is convenient
to keep in mind how the relation between irreps used in both the spinless and spinful
cases. This relation can be found in Tab. 10.2:

The nature of the AI and OAL phases does not change upon inclusion of SOC. As
it is shown in Fig. 10.10, the band structures are reminiscent of the spinless AI and
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(a)
AI OAL

(b)

Figure 10.10: Band structures of the spinfull HDC for different values of ϕ. The
red-dashed line indicates the chemical potential (calculated for ϕ = 0). The lowest
valence band, with irreps {Γ̄5, X̄5}, is omitted in the plots. (a) AI phase (t2/|t1| = 1.2,
t3/|t1| = 0.2), with X̄5 as the irrep of the last valence band at X. (b) OAL phase
(t2/|t1| = 1.2, t3/|t1| = 0.3), where X̄6 is the irrep of the last valence band at X.

Γ(0, 0, 0)− Σ(k, 0, 0) X(1/2, 0, 0)− Σ(k, 0, 0)

Γ−3 → Σ1 X−3 → Σ1

Γ−4 → Σ4 X−4 → Σ4

Γ̄6 → Σ̄5 X̄6 → Σ̄5

Table 10.3: Compatibility relations for irreps of little groups in the line Σ connecting
Γ to X.

OAL, and remain connected adiabatically to these. We will consequently refer to these
spinful phases as AI and OAL.

Regarding the metallic phase, remember that its band structure displayed in the
spinless case a partially-filled set of bands cut by the chemical potential [see Fig. 10.3(d)].
These bands separate when a finite ϕ ∈ (0, π/2) is considered in the spinful model, as
shown in Fig. 10.11(a), and the system turns into an insulator. This metal-to-insulator
transition can be understood in terms of irreps of little groups and their compatibility
relations, shown in Tab. 10.3: The bands are partially-filled for ϕ = 0 because the
irreps Γ−3 and Γ−4 subduce to different irreps Σ1 and Σ4 in the Γ-X line, allowing them
to be connected. For a finite ϕ, these bands have the same irrep Γ̄6 at Γ, and they thus
subduce to the same irrep Σ̄5 in the line. The hybridization between bands transforming
as the same irrep opens then a gap between them, leading to a band structure without
partially-filled bands.

We now tackle the classification of the insulator phase obtained by adding spin to
the system. The irreps of its valence bands are Γ̄5 and Γ̄6 at Γ, X̄5 and X̄6 at X. The
corresponding representation has two atomic limits: On the one hand, it can be written
as (Ēg ↑ G)1a ⊕ (Ēu ↑ G)1a, which corresponds to the induction from spinful s-like and
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(a) (b)

Figure 10.11: Band structures of the spinfull HDC for values of t2 and t3 that yield
a metallic phase in the spinless case (t2/|t1| = 0.8, t3/|t1| = 0.2). The red-dashed line
denotes the chemical potential, which lies at zero energy for the ϕ = 0 case. (a) Band
structures for different values of ϕ. The set of patially-filled bands separates in two,
leading to the spectrum of an insulator. (b) Band structure with ϕ = π/2.

Phase Irreps of valence bands
AI 2Γ̄5, 2X̄5

OAL 2Γ̄5, X̄5 ⊕ X̄6

SAI Γ̄5 ⊕ Γ̄6, X̄5 ⊕ X̄6

Table 10.4: Irreps of little groups at maximal k-points for the valence bands of each
insulator phase, in the spinful HDC.

p-like orbitals sitting in WP 1a – the center of the cell [Fig. 10.12(a)]. On the other
hand, it could be decomposed as (Ēg ↑ G)1a⊕ (Ēu ↑ G)1a, which corresponds to placing
the same kind of orbitals in WP 1b – border of the unit cell [Fig. 10.12(b)]. We will
refer to this insulator phase as SOC-driven atomic insulator (SAI).

The parameter ϕ has also influence on the lines where transitions between topo-
logically different phases happen, as it is shown in Fig. 10.13. As ϕ is increased, the
transition between AI and OAL phases is shifted to smaller values of t3/|t1|, while that
between the SAI and OAL phases takes place at larger values. The maximum varia-
tion with respect to the spinless case is achieved at ϕ = π/4. If we keep increasing
this parameter, the phase-transition lines move the other way around, until the SAI is
substituted back by a metal at ϕ = π/2.

The metallic phases at ϕ = 0 and ϕ = π/2 are not identical, although the band
structures of both phases contain partially-filled bands. The difference is spotted by
looking at these bands’ irreps in Γ and X. These irreps are 2Γ̄6 and 2X̄6 for the ϕ = 0

metallic phase [Fig. 10.11(a)], whereas they are 2Γ̄5 and 2X̄5 for the metal at ϕ = π/2

[Fig. 10.11(b)]. Accordingly, partially-filled bands of these metallic phases have different
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10.5 HDC with spin-orbit coupling

(a)

1a 1b

(b)

+- +-

Figure 10.12: Possible atomic limits for the valence bands of the insulator obtained
from the metal phase upon consideration of spin. s-like (p-like) orbitals are indicated in
orange (blue). Atomic positions are marked with gray-dashed circles, and the unit cell
coincides with box. (a) Induction from orbitals in WP 1a. (b) Induction from WP 1b.
The orbitals sitting on the left border of the cell have been omitted.

Metal

(a) (b) (c)Φ=π/4 Φ=π/2Φ=0

Metal

OALOALOAL

Figure 10.13: Phase diagram of the spinful HDC for different values of ϕ. (a) ϕ = 0.
(b) ϕ = π/4. (c) ϕ = π/2; the metallic phase here is different to that with ϕ = 0,
because the irreps of the partially-filled bands are different (see Fig. 10.11).

atomic limits: while they are induced from a pair of spinful s-like orbitals sitting in WP
1a for ϕ = 0, the orbitals are p-like at ϕ = π/2 (also in WP 1a). Based on this difference
in the nature of the orbitals, we might expect electron interactions to drive these metal
phases to topologically different Mott insulators.

10.5.3 Interplay between SOC and electron interactions
For the rest of this chapter, we focus on gaining insight into the interplay between SOC
and electron-electron interactions.

In the spinless model, we observed that electron interactions tend to drive the metal
phase to a Mott insulator, while their effect is just a renormalization of bands in phases
that were already insulators with U = 0 (AI and OAL). Therefore, upon addition of
interactions, we could hope to observe Mott phases only at ϕ = 0 and ϕ = π/2, and a
renormalization of bands in the AI, OAL and SAI phases for 0 < ϕ < π/2.

Let us consider the point with t2/|t1| and t3/|t1| = 0 in the phase diagram, where
the system is metallic for ϕ = 0 and ϕ = π/2. We will study the influence of ϕ and the
interaction strength U on the system. The reason for choosing t3 = 0 is that, as the
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(a) (b)Mott-I

SAI SAI

Mott-II Mott-I Mott-II

Figure 10.14: Exact diagonalization based calculations of a single diamond with
t2/|t1| = 0.5. (a) Gap between the 4-particle ground state and first excited state en-
ergy of the diamond. (b) Expecation value of Mx reflection computed for the 4-particle
ground state of the diamond.

diamonds making up the chain are decoupled, we can restrict the analysis to one of them.
We have solved for the ground state and its energy level with exact diagonalization, also
for the energy level of the first excited states. The difference in energy between the
ground and first excited states is shown in Fig. 10.14(a). The gap is finite where the
phase is supposed to be the SAI, that is, where ϕ is the dominant parameter. It is
also finite on the ϕ = 0 and ϕ = π/2 axes, where the system is expected to be in the
Mott phase. However, we observe that transitions between Mott and SAI phases do
not happen in the immediate vicinity of the these axes – as soon as we move out of
them. Instead, it seems that the Mott phases survive when the interaction strength U

dominates over ϕ.
In order to clarify this point, we consider the mirror symmetry Mx. We showed in

Sec. 10.3 that its expectation value is +1 for any ground state which can be written as
a Slater determinant, while it could take other values in the Mott insulator phases. It is
therefore a good candidate to identify the nature of the observed phases. Fig. 10.14(b)
shows precisely the expectation value 〈Mx〉 computed for the ground state of the dia-
mond. We see that 〈Mx〉 = +1 for the SAI phase, as it is adiabatically connected to
a band insulator (with SOC). However, 〈Mx〉 = −1 for the gapped phases around the
ϕ = 0 and ϕ = π/2 axes, which corroborates that they are Mott insulator phases.

In conclusion, we have shown that accounting for the spin of electrons enriches the
phase diagram of the HDC. Upon addition of SOC, the AI and OAL just suffer from a
renormalization of bands, while the metallic phase turns into an atomic insulator (SAI).
Furthermore, at ϕ = π/2, we have identified a metallic phase that is not connected
to the gapless phase we had without SOC. These phases lead to Mott insulators upon
consideration of local electron interactions. In fact, a deeper analysis of these Mott
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10.5 HDC with spin-orbit coupling

phases might be promising, as they could belong to topologically distinct classes based
on the fact that they originate from different metallic band structures. Finally, we
have observed that the Mott phase survives to small values of ϕ, which suggests that
relativistic effects and strong interactions might compete in certain group of materials.
This tendency was reported in some Iridium based pyrochlore oxides [198].
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11 Conclusions and outlook

It is time to summarize the results of this work and comment on the direction that
future work could follow. Since the thesis is formed by four main projects, we will
devote a section to each of them.

Band topology from a geometrical perspective of adiabatic transport. We
have presented an alternative point of view to look into topology of band structures. In
particular, we have shown how Berry phases and Wilson loops arise within the framework
of adiabatic transport. Then, we have described the relationship between Wilson loops
and localization of electrons, and shown the capacity of these mathematical objects for
diagnosing topological phases in isolated sets of bands. This perspective is not limited
to the single-band case, since it is directly applicable to the case where the set of states
to be investigated contains multiple bands.

Although we got a grasp on the way symmetries constrain Wilson loops, there
is still a lack of a general study about relationship between Wilson loops and crystal
symmetries. In fact, determining and tabulating the constraints that crystal symmetries
set in Wilson loops for any 230 space groups would be interesting. Such a map of Wilson
loops would facilitate the identification of which Wilson loop is able to identify a certain
topological phase in a system. Furthermore, this analysis could help us gain insight
about the surface and edge states that a material with a certain topological phase
might display, since Wilson loops’ spectra are closely related to boundary modes [10].

IrRep: irreducible representations of ab initio band structures. The software
IrRep constitutes our contribution to the DFT based analysis of topological materials. It
allows for a systematic calculation of symmetry eigenvalues and irreps of ab initio bands,
as it works for all 230 non-magnetic space groups, with and without SOC. Currently, it
includes interfaces to VASP, Quantum Espresso, Abinit and Wannier90, but its source
code is structures in a form that facilitates the development of new interfaces.

Many additional features could be considered to be implemented in the future.
First, we could consider implementing the calculation of irreducible correpresentata-
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tions of magnetic groups, as the data needed for it is already available in the Bilbao
Crystallographic Server [34, 72]. Secondly, including the possibility for computing the
decomposition in terms of EBRs of the representation of a set of bands might be worth
it, at least for space groups where the decomposition can be written unambiguously.
Another interesting development would be to write interfaces for other DFT codes,
like SIESTA [119] or the software MPB for the simulation of photonic crystals’ band
structures [199].

Topological quantum chemistry for heavy-fermion insulators. We have pre-
sented a TQC based analysis of the origin of topology in paramagnetic heavy-fermion
insulators, which include mixed-valence and Kondo insulators. This approach consists
in applying TQC to investigate how valence bands inherit their topological aspects from
the interplay between dispersive 5d and almost-flat 4f -bands. The analysis is appli-
cable to the 230 non-magnetic space groups, with and without SOC. One of the main
advantages of this approach is that it allows for a rigorous classification of topological
phases which accounts for all crystal symmetries on an equal footing. Accordingly, the
application of TQC to heavy-fermion insulators might lead to a renewed effort in the
investigation of topological phases in this family of compounds, and therefore to the
identification of new topological materials.

The approach has been tested with a particular material, SmB6, for which it has lead
to a more detailed classification of the material than in previous works. Moreover, we
have concluded that the origin of topology in SmB6 can be interpreted as the formation
of valence bands mediated by the combination of irreps from 4f and 5d-bands.

Based on the fact that 4f -states tend to induce a relatively large number of bands,
we conjecture that interplay between these and dispersive bands might yield to several
disconnected sets of topological bands close to the Fermi level. On the boundaries of
the material, these sets might be connected by midgap states. Furthermore, due to
the proximity of these surface states to the Fermi level, they might be accessible to
experimental probes. Our TQC based analysis might turn out to be helpful for the
prediction of such surface modes, since it makes possible to classify every isolated set of
bands separately.

Considering irreducible correpresentations of magnetic space groups [34] would
be a promising next step for this project. We might hope that this implementation
could allow for the characterization of topological phases in magnetically-ordered
heavy-fermion insulators. In fact, the applicability of TQC to the rest of phases showing
up in Kondo materials remains unexplored, as an option for future work.

Hubbard diamond chain. In this chapter, we have explored the possibility for ex-
tending the TQC formalism to interacting systems by applying it to the analysis of
single-particle Green’s functions. The approach has been tested in a particular system:
the HDC. We have concluded that the TQC based analysis of Green’s functions’ spectra
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is an efficient method for the identification and classification of the nature of interacting
phases, as long as they are adiabatically connected to band insulators. The efficiency of
the approach consists in the fact that it can be implemented numerically in a systematic
way, in contrast to the computation of many-body topological invariants.

Our analysis illustrates that the Mott phase of the HDC is excluded from the
applicability of the method, owing to the divergence of the self-energy at zero frequency
in this phase. We conjectured that this phase requires the knowledge of 2-particle
Green’s functions, which has been confirmed in a later collaboration [65]. Moreover, the
fact that this many-body phase stems from the diamond defined within the unit cell
encouraged us to dub Mott atomic limits to such phases. Mott atomic limits have been
classified in more detail in Ref. [65].

Although we focused here on the example of the one-dimensional HDC with space
group Pmmm, the method we introduced can be easily extended to interacting systems
and materials with other space groups and/or higher dimensions. This is advanta-
geous with respect to many-body invariants calculations which are often not achievable
for material-specific models due to the mathematical complexity of such a framework.
Some possible direct extensions of the present work to materials are the two-dimensional
version of the diamond chain (the square-octagon lattice) recently discussed in the con-
text of organic networks [200], or the Shastry-Sutherland lattice materials which include
insulating and metallic families [201]. Applying the formalism to materials in two and
three dimensions requires calculating the Green’s function and irreps of the topological
Hamiltonian in four and eight high-symmetry points in the BZ, respectively, and to
work with space groups that contain more symmetry operations and therefore are richer
in EBRs. Since irreps of little groups in high-symmetry points and EBRs of all space
groups are already available [96, 98], the extension of TQC we are proposing to real
materials is of practical use and may lead to new insights in the quest for diagnosing
topology in interacting systems.

Regarding the HDC, we have identified (without SOC) two atomic limits which are
connected to non-interacting insulators (AI and OAL), and a metal phase that turns
into a Mott insulator upon consideration of electron interactions. Specifically, we have
demonstrated that the Mott phase is a symmetry protected topological phase which is
not adiabatically connected to any band insulator. When SOC corrections are included
in the model, the metal phase becomes an insulator (SAI) with an atomic limit that
differs from the AI and OAL. Moreover, we have observed that the Mott phase survives
to the addition of moderate SOC, which suggests that relativistic effects and electron
interactions might compete in a certain class of materials, in accordance to Ref. [198].

To conclude, let us comment on the possible direction that (our) future efforts might
follow in order to achieve a definitive extension of TQC to interacting systems. First of
all, investigating the divergence of the self-energy in the Mott phase could be interesting.
It might yield to a deeper insight on the nature of the Mott insulators and lead to a
solution that would allow to a successful diagnosis of topological Mott phases through
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single-particle Green’s functions. Second, the discovery of the fact that higher-particle
Green’s functions can detect topological Mott phases might motivate the development
of efficient numerical techniques for the calculation of two-particle Green’s functions –
for example, an extension of CPT to such Green’s functions. Third, since the addition
of SOC leads to two metal phases whose partially filled bands have different atomic
limits, the HDC might be a promising platform for the investigation about Mott atomic
limits. Finally, the demonstrated usefulness of Green’s functions might turn out to be
encouraging for the development of ways to avoid the wannierization in the calculation
of Green’s functions.
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A Abbreviations

Abbreviation Definition
QHE Quantum Hall effect
TCI Topological-crystalline insulator
TQC Topological quantum chemistry
WP Wyckoff position
EBR Elementary band representation
DFT Density Functional Theory
CLI Command line interface

CICE Concentric intersecting coplanar ellipses
MI Mott insulator
SAI SOC-driven atomic insulator
HEK Hall efektu kuantikoa
KTK Kimika topologiko kuantikoa
HDK Hubbarden diamante katea
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B Group theory definitions

Definition 1 : The site-symmetry group, or stabilizer group, of a site q is the group of sym-
metries Gq which leave q fixed. Gq is indeed a subgroup of the space group G (i.e.
Gq ⊂ G) which does not include lattice translations. The site-symmetry group Gq

is said to be maximal if there does not exist a group H such that Gq ⊂ H ⊂ G.

Definition 2 : The crystallographic orbit of a site q is the set of positions {gq | g ∈ G} related
to it by the symmetry operations of the space group G. Notice that the orbit of
every site is infinite owing to the infinite number of translations in G.

Definition 3 : The Wyckoff position of a site classifies the elements of its orbit which belong
to the primitive unit cell. The multiplicity of a Wyckoff position is given by the
number of elements in it, i.e. the number of positions within the primitive unit
cell that are symmetrically equivalent to the original site.

Definition 4 : A Wyckoff position is said to be a maximal if the site-symmetry group of any of
its site is a maximal.
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C Topological quantum chem-
istry for heavy-fermion insu-
lators: supplemental material

C.1 Details of DFT calculations

The Vienna Ab Initio Simulation package [164] has been used to perform the ab initio
calculations of SmB6. A plane-wave cutoff of 500 eV was used in the self-consistent cal-
culation of the ground-state density and the BZ was sampled with a grid of 9×9×9. Spin-
orbit corrections have been included in the calculations. Lattice parameters and atomic
positions were taken from Ref. [202] and the General Gradient Approximation was used
for the exchange-correlation term in the Perdew Burke Ernzerhof [137] parametrization.
We employed the software IrRep [77] to calculate the irreps of little groups at maximal
k-points. The data obtained from this package has been analyzed with the software
CheckTopologicalMat [30, 104] to compute the topological-invariants.

C.2 Excluding potential band-crossings on high-
symmetry lines, planes and generic points

In this appendix, we comment on the potential existence of accidental band crossings
between valence and conduction bands in SmB6. For that, we first need to show how
symmetries constrain the form of the Hamiltonian on a k-point in the BZ.

Let Ĥ(k) be the Hamiltonian operator restricted to bands that potentially cross at
particular k-point. We consider that the states on these bands transform as the same
pirrep Dk, as otherwise they could not hybridize. Ĥ(k) can be written in the following
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form:
Ĥ(k) =

∑
ij

hij(k) |i〉〈j| , (C.1)

where |i〉 and |j〉 run over the states adapted to the symmetry of the pirrep of bands
that (potentially) cross. For a symmetry operation gk in the little group of k:

g−1k Ĥ(k)gk =
∑
ij

hij(k)g
−1
k |i〉〈j| gk

=
∑
ijmn

hij(k)[D
k†(gk)]mi |m〉〈n|Dk

jn(gk)
(C.2)

Since Ĥ(k) must commute with all the operations in the little group of k, the matrix
elements hij(k) must satisfy the following equation:

hmn(k) =
∑
ij

[Dk†(gk)]mihij(k)D
k
jn(gk) (C.3)

Eq. (C.3) might set constrains on the matrix elements hij(k) and therefore, describes
how crystal symmetries determine the form of Ĥ(k).

Let θ be the matrix of an antiunitary symmetry in the little group of k. The matrix
in the pirrep Dk of such a symmetry can be written as the combination of a unitary
matrix U and the complex conjugation operator K, i.e. Dk(θ) = UK. Ĥ(k) should also
commute with θ, which imposes the following constrain on the matrix elements hij(k):

h∗mn(k) =
∑
ij

U †mihij(k)Ujn (C.4)

In the rest of this appendix, we will go case by case through all symmetry-lines and
planes in the BZ. We will derive the most general form of Ĥ(k) that is compatible with
the symmetry of the little group of each on each line and plane by applying Eqs. (C.3)
and (C.4), to later argument that the probability for having gap-closing points is zero.
Finally, we will discard the existence of crossings in generic k-points.

Line ∆ : (0, ky, 0)

The closing of the gap between valence and conduction bands would involve a touching
of states that transform as the pirreps ∆̄6. We denote |i〉 and |j〉 the symmetry-adapted
states of one of the ∆6 pirreps and |i′〉 and |j′〉 those of the other ∆6 pirrep.

Let us consider the matrix elements hii(∆), hii′(∆) and hij(∆) in Eq. (C.1). Instead
of checking case by case the constrains set by all symmetries in G∆, it is sufficient
to consider only the action of the generators (see Tab. C.1). In particular, applying
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Eq. (C.3) for the four-fold rotation C4y:

hij = −ihij ⇒ hij = 0. (C.5)

In the same spirit, hi′j′ = hij′ = hi′j = 0. The action of the reflection mz:

hii = hjj ,

hii′ = hjj′ .
(C.6)

In addition, hi′i′ = hj′j′ and hi′i = hj′j . Since the points in the plane ∆ are
not time-reversal invariant, we cannot choose this operation as the antiunitary repre-
sentative. Nevertheless, we can select the combination of inversion and time-reversal
symmetry, i.e. IT , which does belong to the little group. By applying the action of
the unitary part U of IT (see Tab. C.1) in Eq. (C.4), we obtain the constrain that all
matrix elements of Ĥ(∆) must be real functions. Altogether, the most general form of
the matrix H(∆) compatible with the symmetries in the basis {|i〉 , |i′〉 , |j〉 , |j′〉} is the
following:

H(∆) =


a(ky) b(ky) 0 0

b(ky) a′(ky) 0 0

0 0 a(ky) b(ky)

0 0 b(ky) a′(ky)

 , (C.7)

where a(ky), a′(ky) and b(ky) are real functions whose particular shape depends on the
microscopic details of the crystal. The eigenvalues of this matrix are

E±(k) =
1

2
[a(ky) + a′(ky)]±

√
1

2
[a(ky)− a′(ky)]2 + b2(ky). (C.8)

The square root in Eq. (C.8) should vanish to have a band crossing. This requires
a(ky) = a′(ky) and b(ky) = 0 to be satisfied simultaneously. The first condition is met
at the intersection ky of two curves, whereas the second equation defines the point k′y.
The coincidence ky = k′y requires fine-tuning of the material’s microscopic features, thus
it is impossible that two bands that transform as ∆̄6 cross.

Since the Hamiltonian corresponding to ∆̄7 bands is identical to (C.7), it is impos-
sible to have a crossing between ∆̄7 bands without the infinitely-accurate tunning of the
system’s microscopic parameters.

Line T: (1/2, 1/2, kz)

The generators of the little cogroup of a point (1/2, 1/2, kz) in the line-T are shown in
Tab. C.2, together with their matrices in the representations T̄6 and T̄7. Since matrices
are identical to those of the generators of the little group G∆ in Tab. C.1, the form of the
most general Hamiltonian compatible with GT is that given in (C.7). Therefore, having
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Table C.1: Matrices for the generators of the little cogroup of G∆ in the representations
∆̄6 and ∆̄7.

pirrep {4+010|000} {m001|000} T {I|000}

∆̄6

(
ei3π/4 0
0 e−i3π/4

) (
0 eiπ/4

ei3π/4 0

) (
0 −1
1 0

)
∆̄7

(
e−iπ/4 0

0 eiπ/4

) (
0 e−i3π/4

e−iπ/4 0

) (
0 −1
1 0

)

Table C.2: Matrices for the generators of the little cogroup of GT in the representations
T̄6 and T̄7.

pirrep {4+001|000} {m100|000} T {I|000}

T̄6

(
ei3π/4 0
0 e−i3π/4

) (
0 eiπ/4

ei3π/4 0

) (
0 −1
1 0

)
T̄7

(
e−iπ/4 0

0 eiπ/4

) (
0 e−i3π/4

e−iπ/4 0

) (
0 −1
1 0

)

crossings between bands that transform as the same pirrep in the line-T is improbable.

Line Λ : (k, k, k)

We show in Tab. C.3 the generators of the little cogroup of the points in the line-Λ and
their matrices in the irreducible representations Λ̄4, Λ̄5 and Λ̄6. It is straightforward to
show that the form of the Hamiltonian for two bands that transform as Λ̄6 is identical
to (C.7). Therefore, in practical terms, two bands that transform as Λ̄6 cannot cross.

Let us now look into the potential crossing of two bands that transform as the
pirrep Λ̄4Λ̄5. We consider the basis {|4〉 , |4′〉 , |5〉 , |5′〉}, where |4〉 and |4′〉 are states
adapted to the symmetry of Λ̄4 whereas |5〉 and |5′〉 are adapted to Λ̄5. It is clear from
Tab. C.3 that the states of Λ̄4 and Λ̄5 cannot have matrix elements between them, i.e.
h45 = h45′ = h4′5 = h4′5′ . Consequently, we can write the matrix of Ĥ(Λ) as

H(Λ) =

(
h1 0

0 h2

)
, (C.9)

where h4 and h5 are 2× 2 blocks corresponding to the Λ̄4 and Λ̄5 irreducible represen-
tations, respectively. The subspaces spanned by the states adapted to these irreducible
representations are not invariant under the IT , which means that these operation con-
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Table C.3: Matrices for the generators of the little cogroup of GΛ in the representations
Λ̄4, Λ̄5 and Λ̄6.

irrep {3+111|000} {m11̄0|000} T {I|000}

Λ̄6

(
e−iπ/3 0

0 eiπ/3

) (
0 −1
1 0

) (
0 −1
1 0

)
Λ̄4 1 −i

Λ̄5 −1 i

nects both subspaces. Indeed, the matrix of IT takes the following off-diagonal form:

Λ̄4Λ̄5(IT ) =

(
0 −1
1 0

)
, (C.10)

where 1 is the 2 × 2 identity matrix. By applying (C.9) and (C.10) in (C.4) yields the
constrain h5 = h∗4. Altogether, the most general form of H(Λ) compatible with the
symmetries of the little group is

H(Λ) =


a(ky) b∗(ky) 0 0

b(ky) a′(ky) 0 0

0 0 a(ky) b(ky)

0 0 b∗(ky) a′(ky)

 , (C.11)

The eigenvalues of (C.11) are given by

E±(k) =
1

2
[a(ky) + a′(ky)]±

√
1

2
[a(ky)− a′(ky)]2 + |b(ky)|2. (C.12)

The crossing of both bands requires a(k) = a′(k), Re{b}(k) = 0 and Im{b}(k) = 0

to be satisfied at the same k. As these conditions require fine-tuning of the microscopic
details of the system, the probability for a crossing of two Λ̄4Λ̄5-bands is zero.

Generic points

The little group of a generic point only contains the antiunitary symmetry IT , appart
from the identity. As this group has a single pirrep ḠP 2ḠP 2, we have to focus on the
crossing between two bands that transform as this pirrep. Let us denote |1〉 and |2〉 the
states on the first band, while |1′〉 and |2′〉 those on the second band. Furthermore, we
choose as basis the set of states sorted as {|1〉 , |1′〉 , |2〉 , |2′〉}. The Hamiltonian Ĥ(GP )
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can be written in this basis in the following form:

H(kx, ky, kz) =

(
h11 h†21
h21 h22

)
. (C.13)

Moreover, the matrix of IT in ḠP 2ḠP 2 is

ḠP 2ḠP 2(IT ) =

(
0 −1

1 0

)
. (C.14)

Then, Eq. (C.4) takes the following form:(
0 1
−1 0

)
H(kx, ky, kz)

(
0 −1
1 0

)
,= [H(kx, ky, kz)]

∗ (C.15)

The eigenvalues of this matrix are

E±(k) =
1

2
[a(k) + a′(k)]

±
√

[a(k)− a′(k)]2 + |b(k)|2 + |c(k)|2.
(C.16)

There will be a crossing of bands at a point k if the conditions a(k) = a′(k),
Re[b(k)] = 0, Im[b(k)] = 0, Re[c(k)] = 0 and Im[c(k)] = 0 are satisfied simultane-
ously. Since this would require fine-tuning of the parameters that govern the system,
the probability for having a crossing of bands on a generic k-point is zero.

In conclusion, having crossings between bands that transform as the same pirrep in
symmetry-lines and planes is impossible in practical terms, as it would require fine-tuning
of the system’s microscopic parameters. The probability for having band crossings in
generic k-points is also zero. As a consequence, all the phases in Tab. 8.2 correspond
to insulators, including the DFT band structure of SmB6.
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D.1 DMRG calculations

The Density Matrix Renormalization Group (DMRG) algorithm is one of the most pow-
erful and unbiased numerical methods for one-dimensional and quasi one-dimensional
systems [203]. Our calculations have been performed using the infinite DMRG (iDMRG)
method [185], which is an extension of standard DMRG to infinite systems, as imple-
mented in the TeNPy package [204].

We initialize the algorithm on a two-diamond unit cell as the half-filled product
state |Ψ〉0 = | ↓, ↓, ↑, ↑, ↓, ↓, ↑, ↑〉, with the sites ordered as given in Fig. 10.1. From
there, we build a matrix product state (MPS) representation of the form

|Ψ〉 =
∑

j1...jN

M [1]j1M [2]j2 . . .M [N ]jN |j1, j2, . . . , jN 〉, (D.1)

where each M [n]jn is a χn × χn+1 matrix, and N the number of sites. We employ
the commonly used two-site update, which sweeps through the system and iteratively
optimizes the matrices by minimizing the energy locally with respect to our Hamiltonian,
keeping the number of electrons fixed. The procedure is repeated until the convergence
criteria are fulfilled (∆E < 10−10 eV and ∆S < 10−4 UNIT).

Having calculated the ground-state, we compute the correlation length, which, in
the DMRG context, is defined as

ξ = − N

log |η2|
, (D.2)

with η2 denoting the second largest eigenvalue of the transfer matrix T [204]. While
gapped phases are characterized by a finite correlation length, metallic phases, have a
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Figure D.1: iDMRG calculations for the HDC model showing the correlation length
ξ for Hubbard interaction strengths a) U/t1 = 0.4, b) U/t1 = 1.0, c) U/t1 = 2.0 and d)
U/t1 = 4.0. The maximal bond dimension is set to χ = 128.

diverging ξ [194]. The resulting phase diagrams are presented in Fig. D.1. The non-
interacting phase diagram as shown in Fig. 10.2 is certainly recognizable in the DMRG
results.

Although formally, the correlation length ξ diverges at the phase boundaries, it
only assumes a large finite value in our data, since it is bounded by the maximal bond
dimension, which is set to χ = 128. For metallic, or close-to-metallic systems, DMRG
performs generally poorly, resulting in points that are not fully converged close the lower
phase boundary for U = 0.4 in Fig. D.1a).

For t2 = 0 and t3 � t1, we expect a Mott-insulating phase for any finite value of
U . Increasing the Hubbard interaction, the short-range correlated Mott region in the
lower left hand corner of the phase diagram extends further to the right. Increasing
t3, the system either undergoes a transition into an intermediate metallic phase or, for
sufficiently large values of U , it enters the OAL phase directly. The exact value of U at
which the intermediate phase is completely suppressed is hard to pinpoint, due to the
strong drift observed in the data.

Fixing t2/t1 = 0.3 and U/t1 = 1.0, we plot the correlation length ξ and the entan-
glement entropy S against t3/t1 for different maximal bond dimensions χ in Fig. D.2.
With increasing χ, we note that the position of the peak tmax shifts to higher values of
t3/t1 as shown in the inset of the figure. Extrapolating this behavior to infinitely large
values of χ suggests that the Mott-metal transition is suppressed, and the system enters
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Figure D.2: Correlation length ξ (solid line) and entanglement entropy S (dashed line)
plotted against t3/t1 for U/t1 = 1.0 and t2/t1 = 0.3 for different values of χ.

the OAL phase directly.

Using finite DMRG, we calculate the charge gap crossing the AI-OAL phase bound-
ary at t2/t1 = 1.2 with U/t1 = 1.0 on a chain of 20 diamonds (80 sites). As in the
non-interacting case, we observe a closure of the charge gap at the transition.

D.2 Variational Monte Carlo calculations

To strengthen our results for the phase diagram of the diamond chain, we also perform
variational Monte Carlo (VMC) calculations in the region of the phase diagram in which
the metallic phase is observed (t2/t1 < 1). Our variational approach is based on Jastrow-
Slater wave functions of the form

|Ψvar〉 = JnJs|Φ0〉, (D.3)

in which long-range Jastrow correlators, Jn and Js, are applied onto an uncorrelated
fermionic state, |Φ0〉, to introduce non-trivial electron-electron correlations. This class
of variational states has been shown to accurately describe both metallic and Mott
insulating phases in one dimension [188]. The variational Ansatz of Eq. (D.3) features
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long-range density-density and spin-spin Jastrow factors,

Jn = exp

∑
i,j

∑
α,β

vα,i;β,jnα,inβ,j

 , (D.4)

Js = exp

∑
i,j

∑
α,β

uα,i;β,jS
z
α,iS

z
β,j

 , (D.5)

and the non-interacting state |Φ0〉. Although the simplest choice for |Φ0〉 is the ground-
state of the Hamiltonian with U = 0, here we adopt a more general scheme, in which
we consider the ground-state of an auxiliary quadratic Hamiltonian [187].

H0 =
∑
i,j

∑
α,β

[∑
σ

tα,i;β,j c
†
α,i,σcβ,j,σ +H.c.

+∆α,i;β,j (c†α,i,↑c
†
β,j,↓ + c†β,j,↑c

†
α,i,↓) +H.c.

]
+∆AF

∑
j

∑
α

[
eiπ(j+α)c†α,j,↑cα,j,↓ +H.c.

]
. (D.6)

H0 contains hopping terms (tα,i;β,j) and singlet pairing terms (∆α,i;β,j) up to fifth-
neighbors, and a Néel magnetic field (∆AF). In order to minimize the variational energy
of the trial state, all the parameters of H0 and the Jastrow pseudopotentials (vα,i;β,j ,
uα,i;β,j) are optimized by means of the stochastic reconfiguration technique [187,205].

When scanning the phase diagram of the diamond chain, we can discriminate be-
tween metallic and insulating phases by computing two distinct observables. On the
one hand, we can evaluate the density-density structure factor N(q) = 〈n−qnq〉var,
where nq = N−1

∑
j,α nα,j exp(iqj) is the Fourier transform of the density operator and

〈· · · 〉var indicates the expectation value with respect to the variational state (D.3). The
absence (presence) of a charge gap is signalled by the linear (quadratic) behavior of N(q)

for q → 0 [188, 189, 206]. On the other hand, we can compute the expectation value of
the localization parameter introduced in Ref. [207], namely

zL =

〈
exp

2πi

N

∑
j,α

jnα,j

〉
var

. (D.7)

In the thermodynamic limit, |zL| → 0 in a metallic phase, while |zL| → 1 in an insulating
phase [188] (see Fig. D.3 for an example).

We performed VMC calculations for U/t1 = 0.4 and U/t1 = 1, t2/t1 = 0.5 and
t2/t1 = 0.8, and different values of t3/t1. The results are reported in Fig. 10.4, on top
of the DMRG phase diagram.
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Figure D.3: Localization parameter zL [Eq. (D.7)] computed by variational Monte
Carlo for U/t1 = 0.4 and t2/t1 = 0.8. Left panel: |zL| for a system of N = 40 diamonds
(160 sites) and different values of t3/t1. We observe a metallic phase (|zL| ≈ 0) sand-
wiched between two insulating phases (finite |zL|). Right panel: finite size scaling of
|zL| at t3/t1 = 0.1 (insulator), 0.8 (metal), 1.4 (insulator).

D.3 Benchmarking the topological invariants with
the Su-Schrieffer-Heeger model

Let us consider the fixed point Su-Schrieffer-Heeger (SSH) model described by the Hamil-
tonian

H(α) =

N−1∑
j=1

b†jaj+1 + e−iαb†Na1 + h.c (D.8)

where we have inserted a U(1) flux by twisting the boundary conditions by e−iα. Let
us define basis transformed fermions as

f†
j+ 1

2

=
1√
2
(b†j − a†j+1),

f̃†
j+ 1

2

=
1√
2
(b†j + a†j+1), (D.9)

for j = 1, . . . , N − 1 and

f†1
2

(α) =
1√
2
(b†N − e−iαa†1),

f̃†1
2

(α) =
1√
2
(b†N + e−iαa†1), (D.10)
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then the groundstate takes the form

|Ψ(α)〉SSH =
∏
j

f†
j+ 1

2

|0〉, (D.11)

where
∏

j f
†
j+1/2 = f†1/2(α)f

†
3/2 . . . f

†
N−1/2. First we compute the groundstate eigenvalue

for the mirror operator M̂x which has the following action

M̂x :

[
a†

b†

]
j

7→
[
b†

a†

]
N−j+1

. (D.12)

therefore, it can be immediately read off that

M̂x :

[
f†
j+ 1

2

f†1
2

(α)

]
7→

[
−f†

N−j+ 1
2

−e−iαf†1
2

(−α)

]
, (D.13)

using which one can explicitly show that

SSH〈Ψ(α)|M̂x|Ψ(α)〉SSH = (−1)
N
2 (N−1)+1 cos(α). (D.14)

This quantity by itself does not carry topological information. Furthermore when α = 0,
the quantity still depends on N itself and not just its parity. Instead as shown in
Ref. [ [196]], one may define a many-body invariant as

γSSH := e
∮
dαSSH⟨Ψ(α)|∂α|Ψ(α)⟩SSH

=
SSH〈Ψ(π)|M̂x|Ψ(π)〉SSH

SSH〈Ψ(0)|M̂x|Ψ(0)〉SSH
= −1. (D.15)

Further, it is known that the interaction classification of class A insulators with
additional mirror reflection symmetry with M2

x = +1 is given by the cobordism group
Ω2

pinC(pt.) = Z4. Therefore the above many-body invariant is not capable of detecting
such a classification. In order to capture the refined interacting classification, the partial
reflection operation may be used. We consider the U(1)-twisted partial mirror reflection
operator M̂x,I(θ) which acts on the interval I containing sites j = 1 to j = L. The
operator acts as

M̂x,I(θ) :

[
a†

b†

]
j

7→ e−iθ
[
b†

a†

]
L−j+1

. (D.16)

230



D.4 Analysis of a single diamond

While the action of M̂x,I(θ) in the bond basis takes the form

M̂θ,I : f†1
2

7→
(
b†N − e−iθb†L

)
/
√
2

: f†
L+ 1

2

7→
(
e−iθa†1 − a†L+1

)
/
√
2

: f†
j+ 1

2

7→ −e−iθfL−j+ 1
2
, (D.17)

for j ∈ [1, . . . , L − 1]. For all other operators, the partial reflection acts trivially. The
partial reflection eigenvalue can be computed as
⟨ΨSSH |M̂θ,I |ΨSSH⟩ =

= ⟨0|fN− 1
2
. . . f 1

2
M̂θ,If

†
1
2

f†3
2

. . . f†
L− 1

2︸ ︷︷ ︸
L−1

f†
L+ 1

2

f†
L+ 3

2

. . . f†
N− 1

2︸ ︷︷ ︸
N−L−1

M̂−1
θ,I M̂θ,I |0⟩

= (−1)L−1e−i(L−1)θ ⟨0|fL+ 1
2
f 1

2
fN− 1

2
. . . f 3

2
f†
L− 1

2

. . . f†3
2︸ ︷︷ ︸

L−1

f†
L+ 3

2

. . . f†
N− 1

2︸ ︷︷ ︸
N−L−1

M̂θ,I

(
f†1

2

f†
L+ 1

2

)
M̂−1

θ,I M̂θ,I |0⟩

= (−1)L−1+
∑L−2

n=1 1e−i(L−1)θ ⟨0|fL+ 1
2
f 1

2
M̂θ,I

(
f†1

2

f†
L+ 1

2

)
M̂−1

θ,I M̂θ,I |0⟩

=
1

4
(−1)

L
2
(L−1)e−i(L−1)θ ⟨0|fL+ 1

2
f 1

2

(
b†N − e−iθb†L

)(
e−iθa†1 − a†L+1

)
|0⟩

=
i

2
e−iLθ sin θ(−1)L(L−1)/2, (D.18)

where we have used the shorthand Mθ,I for Mx,I(θ). It can be seen that for θ = ±π/2
and L even, the partial reflection operation produces a phase of ±i which is a topological
diagnostic of Z4 = Ω2

pinC . Conversely, if we consider odd L i.e site-centred inversion we
obtain Arg

(
SSH〈Ψ|M̂θ,0|Ψ〉SSH

)
∈ {0, π} which implies a Z2 invariant.

D.4 Analysis of a single diamond
In this Appendix we show the application of TQC to the Green’s function of a single
diamond, which may serve as checkpoint to test our approach before tackling the periodic
chain. We have calculated the single-particle Green’s function and spectral function of
the diamond with exact diagonalization at representative points within the AI, metal
and Mott phases. We have also computed the topological Hamiltonian and analyzed its
spectrum in the framework of TQC.

D.4.1 Atomic insulator
The point representing the AI phase is located at t2/t1 = 1.5. The single-particle
spectrum, of the diamond with U = 0 is shown in Fig. D.4a, while Figs. D.4b and
Figs. D.4c show the spectral function and Green’s function with U/t1 = 1, respectively.
The electronic structure with U 6= 0 is adiabatically connected to the U = 0 limit, as the
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peaks in the spectral function and poles in the Green’s function retain the features of
the non-interacting electronic structure in Fig. D.4a. Accordingly, the lowest (highest)
two levels in the spectrum of the topological Hamiltonian also have in correspondence
wave functions transforming as irreps Γ+

1 (Γ−3 and Γ−4 ).

The single-particle spectrum in the AI phase (equivalently, the spectrum of the
topological Hamiltonian) can be interpreted in terms of the quantum physics of the H+

2

molecule, since the Hamiltonian HAI
diam of the diamond in the AI phase is adiabatically

connected to the following limit:

HAI
diam = −t2

∑
σ

c+1σc3σ − t2
∑
σ

c+0σc2σ + h.c. (D.19)

In order to interpret the symmetry properties of the spectrum in Fig. D.4a, let us
write the point group D2h of the diamond as two slightly different coset decompositions:

D2h ={E,Mz, C2x,My} ∪ I{E,Mz, C2x,My}, (D.20a)
{E,Mz, C2y,Mx} ∪ I{E,Mz, C2y,Mx}. (D.20b)

The first term on the right of Eq. (D.19) is the Hamiltonian of a H+
2 molecule formed

by the two sites of the diamond that are on the x-axis in Fig. 10.1a. Its ground state
is dubbed bonding state and it is even with respect to the both cosets in Eq. (D.20a),
thus it transforms as the irrep Γ+

1 . The excited state is known as anti-bonding state due
to the node positioned between both sites and it is even with respect to the first coset
in Eq. (D.20a) and odd under the second, so it transforms as the irrep Γ−3 . Both states
are spatially distributed along the x-axis joining the sites.

The second term on the right of Eq. (D.19) is also the Hamiltonian of a H+
2 dimer,

but composed by the two sites of the diamond that are out of the x-axis. Accordingly,
its eigenstates spread on the direction normal to the x-axis. Whereas its bonding state is
even with respect to all the symmetries in D2h and transforms as Γ+

1 , the anti-bonding
state is odd under the operations in the second coset of Eq. (D.20b) and transforms as
Γ−4 .

The anti-bonding states coincide with the states transforming as Γ−3 and Γ−4 in the
single-particle spectrum shown in Fig. D.4a and they are degenerate in energy, as both
terms in Eq. (D.19) share the same coupling constant t2. Considering that t1 does not
vanish in the whole AI phase, bonding states will hybridize and as a result, neither of
the states transforming as Γ+

1 in Fig. D.4a will be pure bonding states nor they will be
degenerate in energy.
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Figure D.4: Analysis of the single diamond in the AI phase with t2/t1 = 1.5. (a)
Single-particle spectrum with U = 0, where the bonding states whose combinations give
raise to states transforming as Γ+

1 and anti-bonding states transforming as Γ−3 and Γ−4
are shown. (b) and (c) show the traces of single-particle spectral function and Green’s
function computed with U/t1 = 1, respectively.
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Figure D.5: Analysis of the diamond with t2/t1 = 0.5. (a), (b) and (d) show the
single-particle spectrum and traces of the spectral function and Green’s function in the
metal phase with U = 0, while (c) and (e) contain the traces of the spectral function
and Green’s function in the Mott phase with U/t1 = 1.

D.4.2 Metal and Mott phases
We choose t2/t1 = 0.5 with U = 0 as the point representing the metallic phase. As it can
be seen in the single-particle spectrum in Fig. D.5a, the levels corresponding to irreps
Γ−3 and Γ−4 are not separated by a gap. Accordingly, the spectral function in Fig. D.5b
and Green’s function in Fig. D.5d contain a peak and a pole at ω = 0, respectively. The
spectrum of the topological Hamiltonian is also characterized by the absence of a finite
gap between the second and third levels [44].

The single-particle spectral function computed with U/t1 = 1.0 (Fig. D.5c) shows
the formation of Hubbard bands giving raise to a charge gap in the Mott phase and each
Hubbard band has in correspondence a pole in the Green’s function (Fig. D.5e). The
symmetric distribution of these poles around ω = 0 forces the Green’s function to have
eigenvalues that vanish at that frequency, giving raise to a singularity in the topological
Hamiltonian HT = −G−1(0).
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