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H I G H L I G H T S  

• This paper evaluates a wind farm that feeds a electrlolyzer for producing hydrogen. 
• Both the spot power price and the wind capacity factor follow stochastic processes. 
• These processes show distinctive seasonalities along with mean reversion and jumps. 
• The paper uses Spanish data for parameter estimation, simulation and optimization. 
• Green hydrogen turns economically viable above 3 €/kg. Sensitivity analyses follow.  
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A B S T R A C T   

This paper evaluates the economic viability of a combined wind-based green-hydrogen facility from an investor’s 
viewpoint. The paper introduces a theoretical model and demonstrates it by example. The valuation model as
sumes that both the spot price of electricity and wind capacity factor evolve stochastically over time; these state 
variables can in principle be correlated. Besides, it explicitly considers the possibility to use curtailed wind 
energy for producing hydrogen. The model derives the investment project’s net present value (NPV) as a function 
of hydrogen price and conversion capacity. Thus, the NPV is computed for a given price and a range of capacities. 
The one that leads to the maximum NPV is the ‘optimal’ capacity (for the given price). Next, the authors estimate 
the parameters underlying the two stochastic processes from Spanish hourly data. These numerical estimates 
allow simulate hourly paths of both variables over the facility’s expected useful lifetime (30 years). According to 
the results, green hydrogen production starts becoming economically viable above 3 €/kg. Besides, it takes a 
hydrogen price of 4.7 €/kg to reach an optimal conversion capacity half the capacity of the wind park. The 
authors develop sensitivity analyses with respect to wind capacity factor, curtailment rate, and discount rate.   

1. Introduction. 

The 2015 Paris Climate Agreement aims to limit global warming this 
century to well below 2 degrees Celsius (preferably 1.5) compared to 
pre-industrial levels. This long-term goal puts pressure on signatory 
countries to achieve climate neutrality by mid-century. In response, 
every-five years they submit their intended climate policies (the so- 
called nationally determined-contributions, NDCs). After two succes
sive rounds of NDC pledges, the countries at the UN climate conference 
in Glasgow 2021 (COP26) committed to reducing 6.3 billion tonnes of 
greenhouse gas (GHG) emissions by 2030. This challenge in turn calls for 

transforming current production and consumption patterns, and shifting 
toward a circular economy. Energy supply is a priority sector in this 
regard. The share of electricity in particular is forecasted to increase 
sharply in the future; IEA [1]. 

Power generation can be decarbonized by using energy sources with 
low or no GHG emissions attached. Variable renewable energy (VRE) 
resources such as solar and wind belong in this family. Unfortunately, 
however, they are intermittent and uncertain. They strongly depend on 
local weather conditions, which are rather different across space and 
time. These characteristics complicate the engineering and the eco
nomics of harnessing them for power generation. Sinsel et al. [2] provide 
an overview of the challenges created by variable renewables and the 
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solution technologies available for addressing them. They find that 
flexibility technologies dominate grid technologies in terms of solution 
potential. 

Now, hydrogen shows considerable potential on both accounts: 
abatement of GHG emissions and penetration of VRE resources. On one 
hand, unlike fossil fuels it contains no carbon. Yet, just as them, it lends 
itself to a range of applications, e.g. in transportation, manufacturing, 
heat and power generation… Nonetheless, hydrogen is not a source of 
primary energy. It is an energy carrier: it requires a prior energy input to 
be produced; Nikolaidis and Poullikkas [3] provide a comparative 
overview of the main hydrogen production processes. Besides, hydrogen 
is able to store energy to be released gradually when required. Indeed, 
these special features render it a suitable complement to power supply 
from VRE resources like wind and solar. These sites can make use of 
surplus generation (thus decreasing curtailment) to produce hydrogen, 
which in turn allows reducing optimal VRE capacity investment; Stöckl 
et al. [4]. It is possible to exploit these synergies by combining an in
vestment in a VRE facility with a power-to-gas (PtG) facility. The first 
PtG system for this purpose was realized in 1991, though it is in the 21st 
century when the number of facilities has taken off. Gahleitner [5] re
views 41 realized projects between 1990 and 2012 and seven planned 
projects at the time. 

This combined system provides flexibility in three important di
mensions (Jaunatre [6]): (i) Time: the firm decides the optimal time to 
switch from one use (produce electricity for sale) to another (produce 
hydrogen instead), depending on their relative prices. (ii) Location: 
existing pipelines and shipping lines can transport energy in a chemical 
form (H2) thus replacing costly infrastructures for transporting elec
tricity. The former system not only reduces losses along the trans
portation process; it enables providing end-users located far away from 
VRE generation places with VRE as well. (iii) End use (‘sector coupling’): 
by changing the energy vector, otherwise hard-to-electrify sectors (e.g. 
industry, transport, buildings heating and cooling) can use VRE. Inte
grating these energy-consuming sectors with the power generation 
sector smooths fluctuations and reduces the need for electricity and CO2 
storages. Consequently, the energy system’s costs decrease and a larger 
share of VRE can be used; Schultes and Madlener [7]. They can use 
hydrogen as such (i.e. in fuel cells) or transform it into another substance 
(e.g. ammonia, methanol). 

The focus here falls on the first option: at any time, the manager of 
the wind power plant must choose between selling the power produced 

at the current price in the electricity market or, alternatively, feeding it 
to the electrolyzer for converting it into hydrogen. Thus, the authors 
address the valuation of the combined system. This is different from 
valuing the opportunity to invest in that system. Clearly, as the system’s 
profitability increases, the option to invest in it becomes more valuable. 
In options language, the system is the ‘underlying asset’ and the op
portunity to invest in it is the ‘derivative asset’. Potential investors in 
such a system have other ‘real options’ at their disposal, e.g. the option 
to delay investment, to modify the scale of the project, to close down 
temporarily, or to abandon it. The authors leave these real options aside. 

The authors adopt the viewpoint of a potential investor assessing a 
combined system like the above one from a financial perspective. 
Following Glenk and Reichelstein [8], the authors consider a polymer 
electrolyte membrane (PEM) electrolyzer. Although its CAPEX and 
operating costs are higher than those of alkaline electrolysis cells, PEM 
technology seems to be the leading technology because of its high effi
ciency and superior compatibility with the changing power produced 
from VREs; Shaner et al. [9], Jaunatre [5]. It is safe and reliable, and has 
good lifetime characteristics; Way et al. [10]. Besides, PEM-based 
hydrogen can be directly stored or linked to a pipeline due to its pres
sure; Touili et al. [11]. The authors assume that the system size is ‘small’, 
so it has no significant impact on electricity and hydrogen prices. The 
main investment criterion here is the Net Present Value (NPV) under 
uncertainty, i.e. the difference between the present value (PV) of ex
pected cash inflows and that of expected outflows. Computing the 
project NPV directly addresses the first question, namely whether the 
project is profitable or not under current circumstances. Nonetheless, a 
point estimate of the NPV is hardly enough. Sensible investors do not 
consider a single scenario nor a handful of possible scenarios, the less so 
when, as in this case, some state variables are correlated. So, what could 
happen with the project when considering a large number of possible 
scenarios? To this end, the authors run Monte Carlo simulation (Section 
5); the resulting distribution of project outcomes sheds much more in
formation on the system profitability than the point-estimate NPV. At 
the same time, sensible investors try to pinpoint the crucial assumptions 
behind the project NPV. Thus, the third question is: what are the con
sequences of changes (or forecast errors) in the key project variables on 
the NPV? Following standard practice, the authors address it by means 
of sensitivity analysis (Section 6). 

Nomenclature 

(i=Electricity spot price E;wind capacity factor (CF) 
βi

1 Constant 
βi

2 Deterministic trend 
βi

3 − βi
12 Yearly cycle parameters 

βi
13 − βi

18 Weekly cycle parameters 
βi

19 − βi
28 Daily cycle parameters 

αi Numerator of long run mean (α/κ)
κi Rate of reversion toward mean 
μi

j Mean jump 
σi Volatility of mean-reverting part 
σi

j Volatility of jump part 
λi Jump probability 
ρ Correlation coefficient 
γ Degradation rate 
dn Depreciation factor 
we Wind energy variable operating cost 
wh PtG variable operating cost 

FCe Wind energy fixed operating costs 
FCh PtG fixed operating costs 
pe

t Electricity price in hour t 
CFt Wind capacity factor in hour t 
ph

t Hydrogen price in hour t 
MW Megawatt 
MWh Megawatt-hour 
CM Contribution margin (€) 
kh PtG capacity relative to wind farm capacity 
ke Wind farm capacity (assumed 1 MW) 
TX Present value of corporate income taxes 
η Conversion rate 
SPe Wind power technology’s cost 
SPh Power to Gas (PtG) system price 
φ Unused share 
r Discount rate (WACC, real) 
rf Risk-free rate 
T Useful lifetime 
α Income tax rate 
NPV Net Present Value  
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1.1. Overview of the related literature. 

Van Benthem et al. [12] propose an options model to compute the 
value and timing strategy of an investment in a hydrogen infrastructure. 
With Japan in mind, a firm engages simultaneously in producing 
hydrogen from natural gas (via steam methane reforming, SMR, with 
carbon capture) and selling it in the retail market to drivers of fuel-cell 
vehicles (FCVs) which it also produces. Guerra et al. [13] look instead at 
the cost of producing hydrogen from the power grid via electrolysis. 
Given the major impact of power prices on this cost, they consider about 
7,200 industrial and commercial US retail rates. They find hydrogen 
production costs below 4$/kg in 20 us states (which makes hydrogen 
cost-competitive with gasoline and diesel vehicle fuel costs at some 
places). Stöckl et al. [4] too focus on how to decarbonize road-based 
passenger transportation in Germany, in this case by means of green 
hydrogen. Specifically, they use an open-source co-optimization model 
that minimizes the total system costs of providing electricity and 
electrolysis-based hydrogen at filling stations while explicitly consid
ering how green hydrogen interacts with the power sector. Talebian et 
al. [14] analyze the best support measures for easing the deployment of 
a green hydrogen supply chain aiming at light-duty passenger vehicles in 
British Columbia. Coppitters et al. [15] consider a wind-and-solar- 
powered hydrogen refueling station for a bus fleet in Belgium. 

Hydrogen can be put to other uses. Ishaq et al. [16] analyze a co- 
generation system that integrates a wind turbine with an electrolyzer 
and a fuel cell to provide both electricity and heat to a community of 25 
households. Farhat and Reichelstein [17] consider a polygeneration 
energy system (PES) that uses fossil fuels (coal and petcoke) as inputs 
and produces hydrogen as an intermediate product. The latter is either 
fed into a combined-cycle turbine unit for electricity generation or 
mixed with nitrogen to produce ammonia, the precursor material for 
making fertilizers (e.g. urea). They examine the economic competi
tiveness of a PES system in California. Klyapovskiy et al. [18] consider a 
system in Denmark where hydrogen is produced from renewable energy, 
and account for the flexibility provided by industrial plants via con
ventional demand response and Power-to-X capabilities (where X can 
denote ammonia, hydrogen, synthetic gases or liquid fuels). 

Closer to this paper, Kroniger and Madlener [19] evaluate the option 
to enhance a wind farm with an electrolyzer that uses excess electricity 
to produce hydrogen, which is then compressed and stored (‘power to 
gas’). With this upgrade, even if the wind farm is disconnected from the 
grid it can still operate, thus increasing its utilization rate. In addition, a 
fuel cell (or novel hydrogen gas turbine) is attached, so it can also 
engage in temporal arbitrage, purchasing power at low spot market 
prices to produce hydrogen and then re-electrifying at times of high 
prices. They develop a stochastic model that accounts for uncertain wind 
speed, spot market prices, and call of minute reserve capacity. These 
fluctuating input parameters are simulated via Monte Carlo. They result 
into stochastic cash flows and hence hourly profits, which are assumed 
to follow a geometric Brownian motion. Grueger et al. [20] similarly 
address the combination of wind farms with electrolyzers (‘power to 
gas’) and fuel cells (‘re-electrification’). These flexible combined sys
tems can in principle accommodate and/or reduce wind farm forecast 
errors and increase the system’s ability to provide secondary control 
reserve. Another double-way system is considered by Eypasch et al. [21]. 
Specifically, a stationary electricity storage system must meet demand in 
an industrial plant without disruption. Both wind farms and PV panels 
supply the electricity (supplemented from the power grid if necessary). 
Unlike previous papers, hydrogen is chemically stored in Liquid Organic 
Hydrogen Carriers, which is convenient for safe and lossless storage of 
hydrogen over long periods. Glenk and Reichelstein [8] develop an 
analytical framework that applies to general hybrid energy systems and 
yields necessary and sufficient conditions for their economic viability. 
The model includes an adjustment factor that accounts for covariances 
between renewable power generation (via capacity factor, i.e. the ratio 
between its actual power production and maximum possible 

production) and power market prices. 

1.2. Contribution. 

It is possible to identify some shortcomings in the related literature, 
e.g. a time horizon of a single year, deterministic (even fixed) com
modity prices, wind capacity factor running at its average value… In 
other instances, these variables are uncertain but the stochastic pro
cesses adopted are unable to account for the complex dynamics under
lying them. Sometimes optimization and/or simulation play only a 
limited role in the empirical applications. 

This paper contributes to this literature on several grounds. A major 
contribution is that both the electricity spot price and the wind capacity 
factor behave stochastically over time; see for example Abadie and 
Chamorro [22]. There is room for several seasonal patterns overlapping 
with mean reversion, continuous shocks, and discrete jumps. The model 
allows for the possibility that these variables are correlated. The authors 
propose specific stochastic processes for them, which comprise a 
deterministic part and a stochastic part. Later on, they estimate the 
underlying parameters of the two stochastic processes from (Spanish) 
official or publicly available data sources; this is another major contri
bution. The numerical estimates are then embedded into a valuation 
model that takes the expected system lifetime (30 years) into account on 
an hourly basis. Similarly relevant is a lower usage of formulas, the 
solution by Monte Carlo simulation (10,000 runs), determination of the 
optimal operation mode, and the corresponding optimal conversion 
capacity under uncertainty. This in turn allows derivation of the ex
pected NPV (and the probability distribution). A minor contribution is a 
different, more realistic specification of the corporate income tax. 

Section 2 introduces the valuation model. Section 3 provides some 
background on the data sample as a prior step toward parameter esti
mation and model simulation. Section 4 shows the empirical results in 
the base case. The information about the project NPV goes along with 
that on the optimal hydrogen conversion capacity and hydrogen pro
duction. The authors undertake a few sensitivity analyses in Section 5. 
Concluding remarks are in Section 6. 

2. Material and modelling. 

The section comprises three parts. Since the valuation model is ul
timately demonstrated by example, first there is a cursory look at the 
data to identify the most salient features that the model should account 
for. Next, this paper proposes a model for the stochastic behavior of the 
two sources of uncertainty. The electricity price and the capacity factor 
are assumed to behave in this particular way within the overall valua
tion model for the combined system in the third part. The latter draws on 
Glenk and Reichelstein [8] to some extent. Nonetheless, as mentioned 
earlier, there are several differences. 

2.1. Background data. 

In this paper there are two risk factors: a price (pe
t ) and a quantity 

(CFt). In principle, it could be possible to blend them from the very 
beginning. For instance, Schultes and Madlener [7] consider the 
(quarterly) revenue flow as a state variable. However, the paper here 
deals with them separately and over short periods of time (namely, 
hours). This is one possible way to sidestep the problem addressed by 
Reichelstein and Sahoo [23]: failure to capture any synergies between 
the capacity factor and the electricity price will generally lead to biases 
in the traditional LCOE (or LCOH) calculation. 

Our data include three sets of information, which can be downloaded 
from the publicly available database of the Spanish power transmission 
and distribution system operator, Red Eléctrica de España [24]: 
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a) Spanish hourly spot electricity price (pe
t ) (in €/MWh) for the period 

2016–2019, that is 35,064 hourly prices.  
b) Hourly electricity generation from Spanish onshore wind farms 

(MWh) for the same period.  
c) Monthly installed capacity (MW) of onshore wind farms from 

December 2015 to December 2019. The authors transform these 
monthly data into hourly data by linear interpolation. 

Drawing on (b) and (c) the authors compute the hourly capacity 
Factor. See Table 1. The average CF is 24.09 %, with a minimum of 0.51 

% and a maximum of 75.87 %. The 90 % confidence interval stretches 
from 5.90 % to 52.52 %. A number of Spanish wind farms are very old 
(up to 30 years), and they usually use wind turbines with low rated 
power. These facts quite possibly induce a downward bias on the 
average CF. To lessen this impact, in our calculations below (from Sec
tion 4.2.2. onwards) the authors apply a linear transformation to the 
original CF series. Specifically, the authors multiply the original 
numbers by a scalar, 0.38/0.2409, in order to raise the average to 38 % 
(more representative of recent parks, indeed the value for France, IEA 
[25] while keeping the stochastics of the original series intact. 

Fig. 1 shows power price over the period 2016–2019. A sizeable 
volatility coexists with sudden spikes and seasonal features (e.g. the high 
levels around January). 

Fig. 2 displays the evolution of the capacity factor; the underlying 
installed capacity of onshore wind farms can be found in APPENDIX B, 
Fig. B.1. Again the data show a high volatility along with abrupt swings 
and seasonal patterns. Under these circumstances day-ahead prediction 
is extremely prone to sizeable deviations from observed values; Han et 
al. [26]. Poor forecasting accuracy exacerbates the difficulty of keeping 
power balance within each period. The ensuing imbalances can lead to 
wind power curatilment (and/or load shedding). Similar wild patterns 
on an hourly basis for average days across the months of a year in 

Table 1 
Descriptive statistics of hourly electricity price (pe

t ) and capacity factor (CFt).   

Electricity Price (€/MWh) Capacity Factor 

Mean  49.214  0.2409 
Minimum  0.03 (2016/01/19)  0.0051 (2019/10/21) 
Maximum  101.99 (2017/01/25)  0.7587 (2016/01/11) 
Standard Deviation  14.3450  0.1415 
Skewness  − 0.4534  0.7730 
Excess Kurtosis  0.7700  0.0212 
5 % Percentile  23.0320  0.0590 
95 % Percentile  70.6700  0.5252  

Fig. 1. Hourly spot price of electricity in Spain, 2016–2019.  

Fig. 2. Hourly capacity factor in Spain, 2016–2019.  
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Toronto (Canada) can be found in Ishaq and Dincer [27]. 
Up to this point, the authors have looked at the data as a pair of two 

time series. Now the authors compute their average values over each of 
the 24 h of the day; see Fig. 3. Starting from 7:00 until 15:00 the power 
price is relatively high whereas the capacity factors is comparatively 
low. At other times, however, both decrease, or increase, or reach their 
maxima at about the same hour (20:00). 

There are other places where wind speeds over the day and/or the 
year turn out to be correlated with the power system’s load and 
wholesale price. Depending on its magnitude and sign, this correlation 
can make wind facilities at different locations either more or less valu
able. Fripp and Wiser [28] address the issue across a broad geographical 
area in the U.S. west. According to their results, the timing of wind has a 
moderate impact on their financial value in the wholesale power market 
(up to 4 % higher than the average market price for the best-timed 
power sites). Nonetheless, it has a substantial impact on their capacity 
factor (those sites could produce up to 30 %-40 % more power during 
the top 10 % peak-load hours than their average over the year). 
Jørgensen and Ropenus [29] look at Danish data and also find an inverse 
relationship between the hourly wholesale price of power and the con
current amount of wind generation. 

Further, Reuter et al. [30] find that an investor in a wind power plant 
will get an expected profit that is higher with a constant load factor (23 
%) than with a variable one (normally distributed around a mean of 23 
% with a standard deviation of 6 %): “this is caused by the link between 
aggregate supply and the electricity price”. Reichelstein and Sahoo [23] 
claim that, if the investor faces a price schedule that varies by time of 
day and possibly also by season, the failure to capture any synergies 
between the capacity factor and the electricity price will generally lead 
to biases in the calculation of life-cycle cost concepts (e.g. the levelized 
cost of electricity, LCOE, or hydrogen, LCOH). Nonetheless, they 
demonstrate that a levelized cost analysis remains appropriate for 
assessing the cost competitiveness of an intermittent power source, 
provided that the figure obtained from a traditional average LCOE 
calculation is adjusted by a multiplicative correction factor, which they 
term the ‘co-variation coefficient’. Specifically, they estimate co- 
variation coefficients of 0.87 and 0.92 for wind generation sites near 
Livermore, CA and Benicia, CA, respectively. Similarly, Glenk and 
Reichelstein [8] claim that “on the revenue side, the inherent intermittency 
of the renewable source and the continuous fluctuations in electricity prices 
demand to account for covariances between renewable power generation and 

market prices”. Their numerical calculations include a ‘co-variation co
efficient’ (namely 0.88) that “captures the variation between output and 
price”. 

2.2. Stochastic model for the risk factors. 

This paper focuses on the valuation of an investment project under 
uncertainty. Maximizing its value (from an investor’s viewpoint) draws 
on stochastic optimization methods. One of them is stochastic pro
gramming. In this approach, a huge number of different scenarios that 
comply with the probabilistic features of the uncertainties are consid
ered. The value of the asset is optimized in each of these scenarios. Then, 
the average or expected value is calculated. There are other methods, 
among them robust optimization. This approach leads to optimized so
lutions under a single scenario, namely the worst-case scenario. Robust 
design optimization aims at optimizing both the expected value and the 
standard deviation; Coppitters et al. [15]. Unlike the former, data-driven 
robust optimization does not assume a particular probability distribu
tion of the uncertain parameter(s). Instead, it draws on a so-called am
biguity set, which includes possible distributions. Zheng et al. [31] 
follow this approach to tackle uncertainties from both wind power and 
electricity price. The process is assisted by a multi-layer perception 
neural network. 

The authors here stick to stochastic programming. Regarding long- 
term valuation of energy assets, commodity prices tend to revert to
ward levels of equilibrium after an incidental change. This paper in
troduces a stochastic process that allows for mean reversion and discrete 
jumps in addition to random shocks (whether continuous or otherwise). 
This flexible specification accounts for different variability structures. 
Besides, several price models typical in the commodities literature are 
nested in it (depending on the values adopted by the underlying pa
rameters). These characteristics of generality and versatility lead us to 
assume the same process for the wind capacity factor. 

The authors propose a common process, T, for both sources of risk, 
which comprises a deterministic part, D, and a stochastic part, S, while 
allowing for correlation between the two sources: 

Ti
t = Di(t)+ Si

t (1)  

where i = {E,CF}. 
By assumption, the mathematical expectation of the stochastic part Si 

is zero. This suggests mean reversion over time; nonetheless, the mean 

Fig. 3. Average capacity factor and power price in Spain, 2016–2019.  
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level is going to change with the passage of time. Therefore, when it 
comes to forecasting, only Di is relevant: 

Di(t) = βi
1 + βi

2t+YCi(t)+WCi(t)+DCi(t) (2) 

Time (t) will be measured in years on an hourly basis. For instance, 
the first hour in 2016 is t = 1/366/24 because 2016 was a leap year; the 
first one in 2017 is t = 1 + (1/365/24). In addition to a constant, βi

1, and 
a time trend, βi

2t, the model for Di includes: 
a) A yearly cycle, YCi(t): it encompasses different seasonal compo

nents (annual, semi-annual, quarterly, semi-quarterly, …), as many as 
determined by statistical significance: 

YCi(t) =
∑5

j=1
[βi

1+2jsin(2jπt) + βi
2+2jcos(2jπt)] (3) 

Eq. (3) represents the yearly cycle with up to five sine and cosine 
components. If a specific coefficient turns out to be statistically non- 
significant (at standard confidence levels) in the estimation process it 
will be dropped. A number of model specifications and elimination 
procedures are available; see, for instance, Çanakoğlu and Adiyeke [32]. 

b) A weekly cycle, WCi(t), according to the day of the week: 

WCi(t) = βi
13D1(t)+ βi

14D2(t)+ βi
15D3(t)+ βi

16D4(t) + βi
17D5(t) + βi

18D6(t)
(4) 

In Eq. (4) there are six dummy variables. D1(t) equals 1 if it is 
Monday, and zero otherwise. D2(t) = 1 on Tuesdays, and zero otherwise; 
and so on for the six dummy variables. When the six dummies are zero it 
is Sunday. 

c) A daily cycle, DCi(t), based on the particular hours, with their 
own seasonalities: 

DCi(t) =
∑5

j=1
[βi

17+2jsin(2jπτ)/24 + βi
18+2jcos(2iπτ)/24] (5) 

Eq. (5) represents the daily cycle in hours. The index τ indicates the 
hour: τ = 1, 2,…, 24. 

In principle, there are 28 parameters in the deterministic part. As 
mentioned above, if any of them is not significant it will be eliminated, 
in which case the model is re-estimated again with less parameters. 

On the other hand, the stochastic part, Si
t, follows a continuous mean- 

reverting process with discrete jumps: 

dSE
t = (αE − κESE

t )dt+ σEdWE
t + JE(μE

j , σE
j )dqE

j (6)  

dSCF
t = (αCF − κCFSCF

t )dt+ σCFdWCF
t + JCF(μCF

j , σCF
j )dqCF

j (7)  

E(dWE
t dWCF

t ) = ρdt (8) 

Specifically, Equations (6)-(7) comprise three terms on the right 
hand. The first two of them constitute a so-called Ornstein-Uhlenbeck 
(OU) process; the third one is a Poisson process. Now, proceeding step by 
step in Eq. (14), the first term is a function of SE

t , while the other two are 
stochastic. Leaving the latter aside for a moment, the equation can be 
rewritten as dSE

t =
(
αE − κESE

t
)
dt = κE(αE

κE − SE
t )dt. Thus, the stochastic 

part of the electricity price tends toward αE/κE in the long term, with a 
reversion speed κE. If SE

t falls below its long-run quilibrium level the 
parenthesis will be positive, which induces an increase in its value 
(dSE

t > 0); and conversely: if SE
t rises above αE/κE the parenthesis will be 

negative, pushing SE
t downwards (dSE

t < 0). In sum, when SE
t departs 

from its long-term equilibrium (due to the impact of stochastic shocks, 
namely OU and jumps), the first term tends to restore the equilibrium 
(always subject to shocks). Besides, the higher the speed of reversion κE, 
the sooner SE

t approaches its equlibrium value. Now, the second term 
generates a continuous random behaviour (without jumps): the vola
tility of the mean-reverting process is σi; dWi

t is the increment to a 

standard Wiener process. The third term accounts for jumps in the 
electricity price with intensity λE (the mean rate of event occurrence); 
thus, if time is measured in years then λE jumps are expected per year. 
The jump size is normally distributed with mean μE

j and volatility σE
j . 

Here dqE
j is a Poisson process such that dqE

j = 1 with probability λEdt, 
and dqE

j = 0 with probability 1 − λEdt. The authors assume that dWE
t and 

dqE
j are independent. The same interpretation applies to Eq. (15) for the 

capacity factor. 
On the other hand, sometimes the power price and the capacity 

factor can move stochastically for common reasons. Equation (8) shows 
that these processes are correlated as measured by ρ. In principle one 
would anticipate that increases in supply will push the price downward 
(and conversely), i.e. a negative correlation. 

2.3. Model for the NPV of a green-hydrogen project. 

Glenk and Reichelstein [8] derive the expression for the NPV of a 
hybrid system with a VRE normalized capacity of ke = 1 kW and a PtG 
capacity of k*h (also measured in kW) which is to be optimally chosen 
(efficiently sized); that is, they compute the NPV of an optimized hybrid 
system, NPV(1, k*h). This system will be economically viable if its NPV is 
positive and higher than that of the renewable power system without 
PtG, i.e. NPV(1, 0), provided the latter is cost-competitive on its own: 

NPV
(
1, k*

h

)〉
max[NPV(1, 0); 0 ]. (9) 

The lowest hydrogen price for which the combined system makes 
economic sense (i.e. the above inequality applies) is the break-even price 
of hydrogen, p*h, which has a corresponding optimal PtG capacity k*h 
attached. They consider a time horizon of 1 year with hourly time steps 
and deterministic electricity price and capacity factor. 

The approach that the authors follow here for deriving the NPV is: 
NPV = PV(Pre-tax net cash flows) — PV(Income taxes) — PV(In

vestment costs) (10). 
The building blocks in our valuation framework are hourly cash 

flows. They start at the first hour of useful lifetime and run until the 
facility’s maturity at the end of year T: 

V0 =
∑8760×T

t=1
CMte− (r+γ)t/8760 − T ×

(
FCe + kh × FCh) (11) 

Here T is the expected lifetime of the hybrid system (the same for 
both the wind park and the electrolyzer). FCe and FCh denote the yearly 
fixed operating cost per capacity unit of the renewable power station 
and the PtG facility, respectively; for simplicity, both are assumed to 
grow at the same rate as the discount rate r (cost of capital). Instead, the 
contribution margin CM of the hybrid system is subject to both degra
dation at a rate γ and discount (back to the present) at the rate r. Here 
degradation affects the hybrid system’s contribution margin CM in 
monetary units. This is unlike Glenk and Reichelstein [8], where 
degradation impacts the system as such: a fraction of the capacity is lost 
in each subsequent year. Staffell and Green [33] look at UK’s 282 
onshore wind farms from 2002 to 2012 and find that wind turbines lose 
around 1.6 % of their output each year on average; they discuss several 
reasons for this decline. The authors assume that the wind plants are 
price takers in both the wholesale power market and the hydrogen 
market. kh stands for the capacity of the PtG system relative to the wind 
farm’s capacity, which is assumed to be ke = 1 kW (nonetheless, the 
numerical results in Sections 4 and 5 assume ke = 1 MW). 

The contribution margin in hour t, with t = 0, 1, 2,…, 8760× T, is: 

CMt = pe
t CFt +min(CFt, kh) × max

(
η
(
ph

t

− wh) − pe
t , 0

)
+min(φ × CFt, kh)η

(
ph

t − wh) (12) 

Where: 
pe

t is the electricity price in period t. 
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ph
t is the hydrogen price in period t. 

CFt is the capacity factor in period t. Depending on the institution 
collecting the data curtailment events may have been netted out previ
ously (thus leading to a lower figure) or not. 

η is the conversion rate of the electrolyzer, in kg H2/kWh. 
wh is the variable cost per kg H2. Steam methane reforming requires 

4.5 kg of water per kg H2 produced. Instead, water electrolysis takes 
about 10 kg H2O per kg H2; Mohsin et al. [34], Jaunatre [6]. 

φ is the unused share of the technical yield (e.g. because of curtail
ment); see APPENDIX A. Even when the grid operator complies with a 
mandate for preferential access to VREs, it is not possible to feed total 
wind energy into the grid all the time because of both local network and 
system-wide security issues, or negative residual load (Joos and Staffell 
[35]). Security-based limits lead to so-called ‘curtailment’; Steurer et al. 
[36]. Sometimes there are technical reasons behind it. For one, high 
wind occurrence can give rise to grid overload and this in turn lead to 
grid instabilities; Kroniger and Madlener [19]. At the same time, 
curtailment does not preclude wind operators from providing upward 
reserves. Thus, under optimal dispatch, wind has a role not only as 
provider of energy, but flexibility and system services as well; Yasuda et 
al. [37]. On other occasions, the reasons behind curtailment are 
economical. As just mentioned, curtailing VRE allows to avoid opera
tional costs for procuring systems reserve and regulating energy. Simi
larly, accommodating highly infrequent local and system-wide peaks in 
VRE feed-in would require costly investments in both grid and storage 
extension (in addition to their environmental implications). Yet, there 
are downsides to curtailment. The “missing” wind electricity under 
network congestion must be supplied somewhere else, e.g. conventional 
power plants, which has an impact on fuel consumption and the ensuing 
emissions. Bird et al. [38] identify a number of reasons for curtailment 
along with a variety of factors that affect the potential for curtailment. 

As shown in Eq. (12), hourly CMi comprises three items. The first one 
refers to wind electricity sold at the market price (note that the unit 
variable cost for the wind park is zero). At time t, at the very least, the 
firm will receive pe

t times the capacity factor available at that time; this 
does not necessarily mean that electricity will be actually produced. 
Regarding the second term, if producing hydrogen is more profitable 

than producing electricity then the firm will get an extra revenue worth 
the difference between both prices times the minimum of CFt and kh. The 
value of 1 kWh of electricity converted into hydrogen is η

(
ph

t − wh), 
which is to be compared with its value without conversion (pe

t ); the 
maximum capacity is given by min(CFt , kh). Therefore, in this case of a 
positive price gap, if CFt > kh then kh sets the limit to hydrogen pro
duction (and CFt − kh to power generation). This second term (the one in 
Glenk and Reichelstein [8]) encompasses the only two possible states: (i) 
when the park can feed its output into the power grid (and hence into the 
power market, so a choice between electricity and hydrogen must be 
made); (ii) when the output cannot be fed into the grid (for whatever 
reason, e.g. curtailment, so hydrogen is the only alternative). The au
thors separate both states in our model by adding a third term that 
explicitly accounts for state (ii). In other words, the third term shows the 
revenues from producing hydrogen with curtailed energy (i.e. energy 
that would never be used for power generation). Note that our CF data 
come from the power system operator, so presumably they are net of 
curtailment events. Thus, when wind power is curtailed the manager can 
seize upon the flexibility provided by the hybrid system: again, the 
conversion value of hydrogen η

(
ph

t − wh) will be earned up to the 
maximum capacity available, in this case min(φ × CFt , kh). We assume 
that all curtailed energy is used to produce hydrogen (up to the capacity 
limit). 

Using hourly time steps over a 30-year useful lifetime Eq. (3) 
becomes: 

V0 =
∑8760×30

t=1
CMte− (r+γ)t/8760 − 30 ×

(
FCe + kh × FCh) (13) 

Now, the taxable income in year n (with n = 1, 2,…, T) is: 

TIn =
∑8760×n

t=1+8760(n− 1)

CMte− γt/8760 −
(
FCe + kh × FCh)ern −

(
SPe + kh × SPh)dn.

(14) 

SPe is the investment cost of the wind park per capacity unit. 
SPh is the investment cost of the PtG system per capacity unit. 
dn is the depreciation factor in year n. If the firm follows a straight- 

line depreciation schedule over the useful lifetime then dn = 1/T; 
other options can be considered, e.g. accelerated depreciation. 

Note that the variable operating cost of the PtG system is included in 
Eq. (4) via wh, while that of the wind power plant is assumed to be zero. 
This is for simplicity; according to IRENA [39], the average O&M cost of 
onshore wind ranges from 0.006 $/kWh to 0.02 $/kWh for most of 
countries and projects. In Armijo and Philibert [40] it is set at 2 % of 
capex per year. In Coppitters et al. [15] it ranges between 18 and 36 
€/kw/year. 

The present value of income taxes is: 

TX = ∝
∑30

n=1
TIne− r(n+1) (15) 

α is the corporate tax rate (assumed constant). The authors assume 
that the corporate tax on year-n income is payed off in year n + 1. 

In sum, the net present value of the combined system is: 

NPV = V0 − TX −
(
SPe + kh × SPh) (16) 

This NPV is to be maximized by choosing a (optimal) value of kh. 

3. Data analysis 

The authors separate the parameter estimates of the stochastic var
iables on one hand and the parameter information for the valuation 
model on the other. 

Table 2 
Parameter estimates of the deterministic part of power price, DE(t). *.  

Parameter Coefficient Std. Dev. ** t value p value 

Constant β1  37.4135  0.9102  41.1000 <0.0001 *** 

Trend β2  2.8710  0.2894  9.9210 <0.0001 *** 

YC β3  − 4.98833  0.3579  − 13.94 <0.0001 *** 

YC β4  2.5441  0.4338  5.8650 <0.0001 *** 

YC β6  2.9652  0.4286  6.9180 <0.0001 *** 

YC β7  1.9372  0.3901  4.9660 <0.0001 *** 

YC β9  0.9340  0.4014  2.3270 0.02 ** 

YC β12  − 0.943505  0.4108  − 2.297 0.0216 ** 

WC β13  6.9148  0.8228  8.4040 <0.0001 *** 

WC β14  8.3514  0.9208  9.0690 <0.0001 *** 

WC β15  7.9039  0.9383  8.4230 <0.0001 *** 

WC β16  8.0250  0.9362  8.5710 <0.0001 *** 

WC β17  7.5614  0.9461  7.9920 <0.0001 *** 

WC β18  3.6903  0.8470  4.3570 <0.0001 *** 

DC β19  − 3.55065  0.1013  − 35.05 <0.0001 *** 

DC β20  − 1.46278  0.0813  − 18.00 <0.0001 *** 

DC β21  − 4.15963  0.0754  − 55.17 <0.0001 *** 

DC β22  1.9441  0.0527  36.8600 <0.0001 *** 

DC β23  − 0.231774  0.0421  − 5.506 <0.0001 *** 

DC β24  − 0.0901982  0.0386  − 2.335 0.0196 ** 

DC β25  0.6183  0.0295  20.9400 <0.0001 *** 

DC β26  − 0.558351  0.0280  − 19.92 <0.0001 ***  

* Variables whose coefficients show statistical significance below 1% have 
been deleted. 

** HAC standard deviations, with bandwidth 24 (Bartlett Kernel). Source: 
Authors calculations. Note: Asterisks denote statistical significance at levels: 

*** 0.1%; ** 1%. 
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3.1. Risk factors. 

3.1.1. Estimation. 
Given that the first year in the sample (2016) is a leap year, the first 

hour of the time series corresponds to t = 1/366/24. For 2017, 2018, 
and 2019 the hourly increments are 1/365/24. Looking ahead, for 
getting a forecast, it is necessary to know the time t that corresponds to 
every hour in the year, the day of the week (for the dummy variables) 
and the hour of the day (for the index τ). The numerical estimates of βi

k 
(k = 1, 2, …, 28) are taken to Eqs. (1) - (3), and these in turn to Eq. (2). 

Table 2 shows the parameter estimates of the deterministic part of 
electricity price (DE(t)). The constant is 37.41 €/MWh, and the price 
grows by 2.871 €/MWh every year. The YC parameters describe the 
yearly cycle. All of the parameters of the weekly cycle WC are statisti
cally significant. The DC parameters show the hourly behavior within a 
day. 

Table 3 shows the parameter estimates of the deterministic part of 
capacity factor (DCF(t)). The mean CF is 24.0865 %. In this case, there 
seems to be no time trend. None of the parameters of the weekly cycle 
WC is significant; CF does not change depending on the day of the week. 

Parameters in Tables 2 and 3 are estimated by ordinary least squares 
(OLS). Standard errors are robust to heteroskedasticity and autocorre
lation (HAC) following Newey and West [41]. Now, just to avoid any 
false sense of stability in our risk factors, Fig. 4 displays the hourly 
power price and capacity factor as forecasted by the model with the 
above estimates for a single month, namely January 2016. 

DCF(t)(red line) displays an hourly cycle with 31 peaks and troughs; 
any additional yearly cycle is harder to grasp. There is a similar hourly 
cycle for DE(t) (blue line) along with a weekly cycle. Note again that the 
authors account only for those variables which are statistically signifi
cant (at the 1 % level). 

Regarding the stochastic part, Si
t, for estimation purposes the time 

lapse dt is approximated by Δt = 1/(365 × 24). Table 4 shows the 
parameter estimates of both SE

t and SCF
t . 

3.1.2. Simulation. 
Typically there is a relationship between the number of random in

puts, simulated paths, and step frequency. For example, Kroniger and 

Table 3 
Parameter estimates of deterministic part of capacity factor, DCF(t).  

Parameter Coefficient Std. Dev. * t value p value 

Constant β1  24.0865  0.313063  76.94 0.0000 *** 
YC β3  4.32189  0.435859  9.916 0.0000 *** 
YC β4  6.06835  0.449503  13.5 0.0000 *** 
YC β7  − 1.57587  0.427123  − 3.69 0.0002 *** 
YC β11  1.0867  0.429792  2.528 0.0115 ** 
DC β19  − 1.71387  0.117623  − 14.57 0.0000 *** 
DC β20  2.01344  0.119096  16.91 0.0000 *** 
DC β21  0.208998  0.053937  3.875 0.0001 *** 
DC β22  − 0.44134  0.051197  − 8.62 0.0000 *** 
DC β23  − 0.17697  0.032812  − 5.393 0.0000 *** 
DC β24  0.282881  0.032886  8.602 0.0000 *** 
DC β25  0.058774  0.025405  2.314 0.0207 ** 
DC β28  − 0.06573  0.02226  − 2.953 0.0031 ***  

* HAC standard deviations, with bandwidth 24 (Bartlett Kernel). Source: Au
thors calculations. Note: Asterisks denote statistical significance at levels: *** 
0.1%; ** 1%. 

Fig. 4. Forecast deterministic hourly capacity factor and power price for January 2016.  

Table 4 
Parameter values of stochastic components Si

t and confidence intervals.  

Electricity (SE
t ) Capacity Factor (SCF

t ) 

Parameter Value 90 % Interval Parameter Value 90 % Interval 

αE 1290.842 1082.825–1498.859 αCF 389.896 206.011–573.782 
κE  133.2616 149.495–117.028 κCF  58.066 68.551–47.581 
μE

j  − 0.66366 − 0.793 - − 0.535 μCF
j  − 0.174 − 0.249 - − 0.099 

σE  151.6248 149.165–154.045 σCF  106.989 103.935–109.958 
σE

j  4.370776 4.26–4.479 σCF
j  1.971 1.882–2.057 

λE  1942.015 1832.972–2051.058 λCF  2225.522 1906.091–2544.953  
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Madlener [19] consider three sources of uncertainty, perform 10,000 
simulation runs where an iteration step takes one hour, over a 24 h in
terval. In Grueger et al. [20], a single risk factor is simulated over one 
year with quarter-hourly time steps (i.e. 35,040 steps). In our case, the 
authors run 1,600 simulations that stretch over 30 years with hourly 
time steps (thus, 262,992 steps; there are 8 leap years from 2020 to 
2049). Each simulation involves (correlated) time paths for the elec
tricity price and the capacity factor. Farhat and Reichelstein [17] 
simulate a real-life performance following a different approach: they 
look at a price series over a particular year and assume that it will repeat 
itself every year throughout the facility’s lifetime. 

The stochastic parts, SE(t) and SCF(t), in actual data have a correla
tion coefficient of − 0.4570. Their simulated correlated samples have a 
coefficient of − 0.4578, which is very close to the observed figure. 
Table 5 shows the simulated correlation coefficient along with two 
confidence intervals (Long [42]). 

3.1.3. Spot prices, futures prices, and present values. 
There are two basic approaches to valuing the present value of a 

future, uncertain cash flow. One consists in adjusting simultaneously for 
risk and time through a single discount rate (which must be commen
surate with the perceived level of risk). The other one proceeds in two 
steps. First, the uncertain cash flow undergoes a ‘haircut’ (in the in
vestor’s eyes) by translating its mathematical expectation or average 
value (a statistical construct) into its so-called ‘certainty equivalent’ (an 
economic construct, which depends on the investor’s behavior toward 
risk, usually risk aversion). Thus, the average or expected payoff from a 
lottery ticket (that pays either $200 or 0 with probabilities 50 %-50 %) is 
$100, but a particular investor may be indifferent between the lottery 
ticket (which pays $100 on average) and, say, $94 for certain. Next, 
since the time dimension still remains as such, these $94 must be dis
counted back to the present; yet, the rate to be used now is the risk-free 
interest rate (as opposed to the higher, risk-adjusted rate above). Since 

using the risk-free rate amounts to leaving any consideration for risk 
aside, this practice is in effect consistent with investors that are neutral 
towards risk. 

Electricity is actively traded on futures markets. For instance, today 
(time 0) there is available a contract for delivery of 1 MWh every hour in 
2026 in exchange for a fixed amount of money, the futures price. Futures 
prices are not the spot prices expected to prevail in the physical or actual 
world in the future, which are harder to estimate (because of the risk 
premium embedded in actual prices). Finance textbooks show that the 
futures price for a given maturity is equal to the spot price expected to 
apply at that time if market agents are risk neutral. Thus, the futures 
price provides the expected value of the future spot price in a risk- 
neutral world; consequently, it can be discounted back to the present 
at the risk-free interest rate. In the case of the euro zone, this rate is 
typically the interest rate on the 10-year German government bond. 

Further, nowadays trade on electricity is not restricted to just one 
single futures contract; there are several ones, with different delivery 
(maturity) dates and corresponding futures prices. Therefore, it is 
possible to fit a curve to the discrete futures prices observable in the 
market for a set of maturities (e.g. March, June, September, December in 
a given year). Unfortunately, however, there are electricity futures 
contracts for delivery up to five years ahead, while the hybrid system’s 
expected lifetime (valuation horizon) is 30 years. 

In view of this, the authors take yearly futures contracts (SPEL Base 
Futures Year) from 2020 to 2026, and set the 2026 price as fixed for all 
subsequent years through 2049. At the same time, the authors compute 
the yearly average of the simulated spot power prices from 2020 to 
2049. Drawing on these two series the authors compute the implied 
yearly discount factors; see Fig. 5. It shows the spot prices anticipated to 
apply in the future (blue line) and the futures prices adopted in this 
study (brown line). For these two series to be consistent with each other 
the former must be multiplied by the discount factors underlying the 
black line; their product yields the futures prices. Take, for example, the 
year 2049, when the forecast spot price is about 140 €/MWh and the 
futures prices has been kept flat at some 42 €/MWh. Setting the latter 
equal to the value of the former discounted back to 2020 at some rate ρ 
the authors get: 

42.25 = 139.66 × e− 29.5×ρ→e− 29.5×ρ =
42.25
139.66

= 0.3025→ρ = 0.0405

≈ 4.05%.

Table 5 
Simulated correlation coefficient between stochastic parts and confidence 
intervals.  

Correlation 
coefficient 

Lower bound 
(95 %) 

Upper bound 
(95 %) 

Lower bound 
(90 %) 

Upper bound 
(90 %)  

− 0.4570  − 0.4674  − 0.4465  − 0.4657  − 0.4482  

Fig. 5. Yearly futures prices, simulated spot prices, and implied discount factors.  
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The average value of ρ over the valuation horizon turns out to be 
7.14 %. 

Next, as shown in Fig. 6, the authors fit a fourth-degree polynomial to 
the earlier discount factors. The resulting continuous curve (a declining 
function of time) allows derive discount factors for any maturity needed, 
even at an hourly scale. The authors use these factors to compute risk- 
adjusted values of the simulated electricity price series (to be multi
plied later by the electricity output). As usual, the further into the future, 
the lower the present value. In our view, it can be hard to calculate a 
discount factor for the CF. Anyway since it is a mean-reverting process 
(dominated by the deterministic part) the risk should be relatively lower 
and offset in the long run. 

Both Figs. 5 and 6 consider a time horizon that encompasses the 
expected lifetime of the project (30 years). At this macro scale, every
thing seems to evolve smoothly over time. However, this smooth 
appearance can be misleading. Now, Fig. 7 focuses on a much shorter 
horizon, namely a single month in a particular year: January 2030. At 
this micro scale, smoothness all but disappears. Randomness is all 
around emanating from the stochastic part in the spot price of elec
tricity. The blue line depicts the simulated path in the physical, real 
world. The red line, instead, applies the appropriate discount factor to 
the former series; it shows the power prices that would be observed in 
the futures markets (consistent with those spot prices). Again, for these 

spot prices to be consistent with the futures prices, discount factors must 
follow suit. 

3.2. Input data for the NPV model. 

Table 6 shows the values of the main input variables. The estimate of 
SPe is an average of Overnight costs for onshore wind generating tech
nology (>= 1 MW) in a sample of countries (Austria, Belgium, Denmark, 
Finland, France, Italy, Netherlands, Norway, and Sweden), IEA [25]. It is 
in line with the estimates in Armijo and Philibert [40] for wind turbines 
Nordex N100-3.3 Class 1 (1,200 $/kW) and Vestas 90–2 Class 2 (1,300 
$/kW). It is somewhat lower than 1,367 €/kW used by Glenk and 
Reichelstein [8]; Duan et al. [43] assume 1,319 $/kW. IRENA [44] an
ticipates the total installed cost to drop further in the coming decades. It 
also forecasts that ongoing advancements in wind technology and 
project siting will further improve capacity factors. 

The values of SPh, η, T, α, γ, dn, we, wh, Fe, and Fh are the same as in 
Glenk and Reichelstein [8]. Nonetheless, there are a variety in the 
related literature. For example, the expected lifetime of the wind farm is 
25 years in Duan et al. [43]. That of the PtG plant in Schultes and 
Madlener [7] is 23 years, and 16 years in Way et al. [10]. The lifetime of 
the hybrid system in Aguado et al. [45] is 20 years, instead of 30 years 
for both facilities as here. The PtG plant’s lifetime is related to the 

Fig. 6. Statistical fit to yearly discount factors.  

Fig. 7. Simulated power price in the physical world and the risk-neutral world, January 2030.  
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electrolyzer stack lifetime (i.e. operating hours) and the utilization rate. 
Thus, Way et al. [10] look at PEM technology and assume a lifetime of 
70,000 h. This translates into 7.99 years if the electrolyzer is operated at 
an average utilization rate of 100 %; instead, at 50 % utilization rate the 
earlier lifetime translates into around 16 years. In some instances, the 
same variables are stated in different units. Thus, Schultes and Madlener 
[7] express the operation expenditures of the PtG plant as a percentage 
of the specific investment costs per year. Similarly, here CFe is 38.00 
€/kW but 26.22 $/kW in Duan et al. [43]. 

Regarding η, typical PEM electrolyzers reach conversion efficiencies 
in the range 65 % to 83 % (based on hydrogen’s higher heating value); 
Gahleitner [5]. Way et al. [10] assume it is 70 %, the same as in Armijo 
and Philibert [40]. Touili et al. [11] consider an electrolyzer that con
sumes 53 kWh in order to produce 1 kg of hydrogen which is equivalent 
to 75 % efficiency; this means a conversion factor of 1/53 = 0.018868. 
Mohsin et al. [34] claim 53.4 kWh, or a factor 1/53.4 = 0.01873. Our 
rate here, 0.019, implies that 52.63 kWh are required to produce 1 kg 
H2. In Eypasch et al. [21] electrolysis efficiency ranges from 60 % to 84 
%; they eventually adopt a conservative value of 65 %, the same as 
Grueger et al. [20]. In Mohsin et al. [34] it is between 56 % and 75 %. 
Green et al. [46] consider both 63 % and 74 % in their analysis. 

Concerning CFt , Duan et al. [43] use for Spain an annual mean wind 
capacity factor of 0.32; IRENA [39] reports an average of 27 % in 2010 
and 38 % in 2020. According to Coppitters et al. [15] it is 23.1 % for 
Belgian onshore wind farms; they consider a range between 20 % and 26 
%. These numbers are well below those reported by Armijo and Philibert 
[40] for the best sites in Argentine and Chile, where CF reaches up to 
52.7 %. The unused share (φ) in Kroniger and Madlener [19] goes from 
0.012 to 0.26 with an average of 0.139 for Germany over 2004–2011. 
For Scottish onshore farms, the volume-weighted average curtailment 

Table 6 
Main parameter values.  

Symbol Variable Value Reference 

SPe Wind power technology’s cost 1,200 €/kW IEA (2020) 
SPh Power to Gas (PtG) system 

price 
2,287 €/kW Glenk-Reichelstein  

[7] 
η Conversion rate 0.019 Kg/ 

kWh 
Glenk-Reichelstein  
[7] 

CFt Wind capacity factor Stochastic  
φ Unused share 0.0774 Appendix A 
pe

t Electricity price Stochastic  
r Discount rate (WACC, real)* Time varying  
rf Risk-free rate 0 European Central 

Bank 
T Useful lifetime 30 years Glenk-Reichelstein  

[7] 
α Income tax rate 35 % Glenk-Reichelstein  

[7] 
γ Degradation rate 0.0080 Glenk-Reichelstein  

[7] 
dn Depreciation factor 1/16 Glenk-Reichelstein  

[7] 
we Wind energy variable 

operating cost 
0.00 €/Kwh Glenk-Reichelstein  

[7] 
wh PtG variable operating cost 0.10 €/Kg Glenk-Reichelstein  

[7] 
FCe Wind energy fixed operating 

costs 
38.00 €/kW Glenk-Reichelstein  

[7] 
FCh PtG fixed operating costs 45.00 €/kW Glenk-Reichelstein  

[7] 

* The authors have discounted our (simulated) future electricity prices with 
different discount factors (see Fig. 6 in Section 3.1.3) so as to make them 
consistent with (observed) electricity prices in futures markets. The latter must 
be discounted at the risk-free rate, in our case the 10-year German Treasury 
bond, which is essentially zero right now. Concerning the future hydrogen price 
the authors have no particular clue; whatever it happens to be, the authors as
sume that the future price discounted back to the present equals its current price, 
ph

t .  
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during 2012–2016 was 10.61 %; instead, Germany’s average over the 
same period was 2.98 % (Joos and Staffell [35]). 

As for the WACC, it must be a real rate (rather than nominal), 
because LCOE or LCOH are measured in constant monetary units; 
Reichelstein and Sahoo [23]. It must also be after tax (instead of pre- 
tax), since the authors adopt the viewpoint of potential investors. 
Aguado et al. [45] adopt 3 % for Spain. Glenk and Reichelstein [8] use 4 
% for Germany and 6 % for Texas; Shaner et al. [9] use 12 % for solar in 
the U.S.; Touili et al. [11] assume 6 % for solar in Morocco. In Armijo and 
Philibert [40] the WACC ranges between 7 % and 10 % for a hybrid 
solar/wind system in Argentine and Chile. Stöckl et al. [4] use an interest 
rate 4 % for Germany in 2030. Coppitters et al. [15] use a range between 
5 and 7 % for Belgium. Kroniger and Madlener [19] assume the IRR to be 
4 % for Germany. Talebian et al. [14], instead, opt for 10 % in British 
Columbia. Grueger et al. [20] adopt an interest rate of 5 % for Germany 
in 2013. Eypasch et al. [21] set the rate of interest and the depreciation 
period at 12 % p.a. and 15 years for infrastructural investment cost 
calculations for a BMW Group production site located in Germany. The 
depreciation of capital investment on all the equipment is calculated by 
the annuity method to distribute the capital expenditure over the life
time of the equipment. For stack exchange, an expense of 60 % of capital 
cost after 8 years is included; stack exchange is required only once 
during the considered depreciation period of the complete system of 15 
years. Glenk and Reichelstein [8] adopt a linear depreciation schedule 
over 16 years for Germany (i.e. 6.25 % per year). Van Benthem [12] for 
Japan: 7 % risk-adjusted discount rate (WACC); 4 % risk-free interest 
rate. Schultes and Madlener [7]: risk-free interest rate of 12 %. Duan et 
al. [43]: discount rate of 7 % in determining the cost of capital recovery 
for the technologies considered; the same as in Guerra et al. [13]. Steffen 
[47] overviews the spectrum of estimation methods and numerical es
timates for the private cost of capital for VRE projects in 46 countries in 
2009–2017. For onshore wind, the 2017 average WACC for OECD 
countries is 7.3 %, and 10.4 % for non-OECD. IRENA [39] shows an 
average WACC that declines from 7.5 % in 2010 to 5 % in 2020 for OECD 
countries and China (the figures are 10 % and 7.5 %, respectively, for the 
rest of the world). 

4. Results. 

4.1. Combined project NPV. 

4.1.1. Our estimates. 
As Glenk and Reichelstein [8] point out, each assumed hydrogen 

price triggers a unique maximizing capacity choice, k*
h. In this regard, 

the authors aim at deriving a surface that displays the NPV attached to 
pairs of hydrogen prices and PtG capacities under the assumption that 

both the power market price and the wind capacity factor evolve sto
chastically over time. Optimal conversion capacities are those which 
maximize NPV for each hydrogen price. The authors run 1,600 simu
lations with hourly time steps that stretch over 30 years. Each simulation 
involves (correlated) time paths for pe

t and CFt. Simulation results allow 
compute not only average or expected values (e.g. the NPV). They allow 
to derive the frequency or probability distribution (‘risk profile’) as well, 
which conveys a deeper understanding of the investment project and 
enables investors to compute other metrics typically used in project 
evaluation (e.g. the value at risk, VaR). 

In the following numerical results the wind farm’s capacity is set at 
ke = 1 MW. The authors adopt a wind capacity factor of 38 % (which 
corresponds to France; IEA [25]). The resulting project value is NPV =
894,165 € per MW of wind capacity. Thus, the wind facility is profitable 
on its own (kh = 0). The CF is the subject of a sensitivity analysis later on; 
changes in the average level reflect the overall (age-based) efficiency of 
the wind park. 

Table 7 shows the hybrid system’s NPV (in €) for different pairs of 
PtG capacity (first column) and hydrogen price (first row). The yellow 
shade identifies the highest NPV (and k*

h) for a given ph. At the high end, 
when ph = 4 €/kg the authors get k*h = 0.40 MW (i.e. 40 % of the 
normalized wind capacity ke = 1 MW). Instead, for a low ph = 3.2 €/kg 
the optimal capacity is small, k*h = 0.10 MW. 

Fig. 8 displays the NPV as a function of both ph and kh. Above ph = 3 
€/kg the authors observe that moving from a wind facility alone (kh = 0) 
to a hybrid system increases the project’s NPV (green edge furthest to 
the right). Henceforth, with ph = 3.0 €/kg and 3.1 €/kg the NPV de
creases monotonically, turning to negative for kh above 0.7 MW. 
Nonetheless, starting from ph = 3.2 €/kg and upward there is some scope 
for higher NPVs accompanied by bigger PtG capacities but up to a point 
(yellow area at the top); in the hydrogen price range considered here, 
k*h never surpasses 0.31 MW. Above this threshold the NPV declines. On 
the other hand, the NPV remains positive even with kh = 1.0 MW pro
vided the hydrogen price is ph = 3.7 €/kg at least. 

4.1.2. Comparison with the related literature. 
How do these numbers compare with previous results in the litera

ture? Glenk and Reichelstein [8] apply their model to wind parks in 
different contexts over a time horizon of 1 year (i.e. 365 × 24 = 8,760 h). 
They find hydrogen break-even prices of 3.23 €/kg H2 in Germany and 
3.53 $/kg H2 in Texas. In both cases the power price used is time 
invariant (0.0318 €/kWh in Germany and 0.0255 $/kWh in Texas). 
Armijo and Philibert [40] get a lower estimate of about 2 $/kg for hybrid 
wind/solar plants in some sites of Argentine and Chile. 

Hosseini et al. [48] reports the cost of hydrogen from various pro
duction processes. Natural gas reforming entails a cost of 1.03 $/kg; 

Fig. 8. Hybrid system’s NPV (in €) as a function of hydrogen price and PtG capacity.  

L.M. Abadie and J.M. Chamorro                                                                                                                                                                                                            



Applied Energy 337 (2023) 120881

13

wind electrolysis, instead, incurs a cost of 6.64 $/kg. Note that the ef
ficiency of the former process falls in the range [70–85 %], while in the 
latter it is [50–70 %]. Nikolaidis and Pollikkas [3] provide a hydrogen 
cost from wind electrolysis in the range 5.89–6.03 $/kg, and 2.08 $/kg 
from natural gas reforming (both costs in 2005-dollars). More recently, 
Jaunatre [6] estimates the cost of hydrogen from fossil fuels between 1 
and 1,5 €/kg, while that of renewable hydrogen ranges between 3 and 6 
€/kg depending on the VRE source. Thus, it is about 5–6 €/kg from wind 
power, and 3–5 €/kg from solar PV. Coppitters et al. [15] provide a 
similar comparison. Coal gasification sets the lower bound with a range 
1.11–1.35 €/kg. For wind hydrogen the cost ranges between 4.40 and 
5.00 €/kg. These costs can be pushed down by increasing the production 
scale and decreasing the purity requirement, but not enough for 
renewable hydrogen to be cost-competitive with fossil-based hydrogen. 
To reach parity requires support via public policy. 

4.2. Optimal conversion capacity and hydrogen production. 

4.2.1. Our estimates. 
Fig. 9 shows how the optimal PtG capacity increases as the hydrogen 

price gets higher. kh essentially takes off for hydrogen above 3.1 €/kg. 
From that price level on, it follows a step-by-step path. The same applies 
to the hybrid project’s NPV. There is clearly a first part of mild growth, 
followed by a second one of strong growth from 3.2 €/kg onwards. 

As can be expected, the amount of hydrogen produced goes hand in 
hand with the deployment of the PtG capacity. See Fig. 10. The profile 
resembles pretty much those in Fig. 8. 

4.2.2. Comparison with the related literature. 
Glenk and Reichelstein [8] find a hydrogen break-even price of 3.23 

€/kg H2 in Germany, with a corresponding optimal PtG capacity smaller 
than ours (0.10 kW), namely k*h = 0.01 kW. 

Note anyway that their calculations proceed in increments of 0.01 
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Fig. 10. Hydrogen production with efficiently sized PtG capacity.  
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kW, while our increments are 0.05 kW. The authors consider 0.01 kW 
increments in Table A2 in the APPENDIX C for comparison purposes. 
According to our results, for ph = 3.2 €/kg the optimal capacity is k*h =

0.07 kW, somewhat smaller than in the previous paragraph. In a sense, 
the authors reach the same qualitative result as Glenk and Reichelstein 
[8]: production of green hydrogen can be cost competitive with small- 
and medium-scale fossil hydrogen production (above 3 €/kg H2), but not 
with large-scale supply (below 2.5 €/kg H2). 

5. Sensitivity analyses. 

Now, the authors undertake three sensitivity analyses. The first two 
address the consequences of changes (or forecast errors) in two key 
project variables, both of them related to the wind energy. The third one 
involves a different valuation approach. Specifically, instead of resorting 
to time-varying discount rates in the risk-neutral world, the authors 
adopt a constant, risk-adjusted discount rate applying in the physical 
world, which is in line with standard practice in the related literature. 

5.1. Average wind capacity factor. 

First, the authors analyze the impact of hydrogen price on kh under 
different values of CF. Remember that at any time the authors keep the 
stochastics of the original Spanish time series but the average value is 
not the original one (24.09 %) but a higher one to better capture young 
wind parks instead of the older ones. Thus, along with the average un
derlying our previous estimates (38 %) the authors also consider two 
other, lower ones. Intuition suggests that recent wind facilities should be 
better suited for exploiting PtG synergies via higher conversion 
capacities. 

As shown in Fig. 11, the lowest CF is associated with the lowest curve 
(as seen from the horizontal axis). This means that, for any hydrogen 
price considered, the optimal conversion capacity is lowest when CF is 
lowest (namely 32 %). Then, as the latter rises to 35 %, for ph above 3.3 
€/kg the optimal kh increases and remains above the earlier curve over 
the price range considered. When CF is highest (38 %), for any ph above 
3.1 €/kg the optimal capacity is even higher than before and remains 
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steadily so. In sum, the higher the average wind CF, the higher the 
optimal PtG capacity for a given hydrogen price. 

Alternatively, looking from the vertical axis, the right-most curve 
(CF = 32 %) suggests that the optimal deployment of PtG capacity re
quires the highest hydrogen prices. When the average wind CF grows to 
35 % deploying a given conversion capacity is less demanding in terms 
of ph. The positive kh takes off at the same ph = 3.2 €/kg as before (there 
is actually a positive minimum of kh because of curtailment), but now it 
increases more forcefully and evolves above the former curve. An 
additional improvement in average CF to 38 % brings about a similar 
impact: kh starts at a slightly lower ph, then the new curve overlaps with 
the 35 % curve, just to evolve above it beyond 3.6 €/kg. Summing up, 
the higher the average wind CF, the lower ph needs to be for a given 
optimal conversion capacity. 

5.2. Wind power curtailment rate. 

Next, the authors address the impact of wind power curtailment on 
the relationship between ph and kh; see Fig. 12. Up to now, the authors 
have adopted a rate of 7.74 %; here the authors also consider a 0 rate. 
The difference between the two patterns turns up at the bottom 
hydrogen prices, i.e. when the room for the conversion technology 
cannot be taken for granted. In this regard, a positive rate of curtailment 
‘helps’ the early deployment of PtG capacity (in the end, it is a way to 
avoid wasting valuable power away). In other words, if the full technical 
yield from the wind park can be taken to the power market, doing so 
seems to be the optimal decision under the prevailing circumstances. 
Nonetheless, for higher hydrogen prices, deploying PtG capacity makes 
economic sense whether curtailment is zero or 7.74 %; the two patterns 
overlap. 

5.3. A constant risk-adjusted discount rate. 

Last, following standard practice, the authors consider a flat discount 
rate over the whole valuation horizon (as opposed to our time-varying 
discount factors and underlying rates). In the related literature, the 
after-tax WACC takes on a number of different values; see Section 4. 
Here the authors adopt a rate r = 5.1 %, the one for onshore wind France 
(Steffen [47]); note that in our calculations above the average rate over 
the 30-year period is 7.14 %. In principle, a lower rate will increase the 
value of the hybrid project (indeed, of any long-lived technology, the 
more so for capital-intensive ones). Hence, it would seem that, by 
making the PtG capacity more attractive, this should pave the way for its 
(relatively) earlier deployment. Nonetheless, a lower rate also changes 
the time distribution of that value: most of it accrues (relatively) less in 
the first years and more in the far ahead years. This in turn can have an 
impact on firm’s incentives when deciding which timeline to invest over. 

The pattern of PtG deployment turns out to be different in Tables 7 
and 8. Thus, starting from the lowest hydrogen prices, for both ph = 3.0 
and 3.1 €/kg the optimal conversion capacity is the same, namely 0.05 Ta
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Table A1 
shows the full set of results. Standard deviations are robust to heteroscedasticity 
(HC1 variant).  

Table A1. Coefficient Stad. Dev z p value  

Wind share  0.154797  0.0232622 6.654  <0.0001 *** 
Mean of dep. 

vble.  
3.247859  S.D. of dep. vble.  3.231059 

Sum of 
squared 
residuals  

613.5796  S.D. of regression  3.096317 

R-square  0.546773  Adjusted R-square  0.546773 
F(1, 64)  44.28184  p value (F)  7.49e-09 
Log- 

likelihood  
− 165.1910  Akaike’s criterion  332.3820 

Schwarz’s 
criterion  

334.5564  Hannan-Quinn 
criterion  

333.2399  
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kW; this happens in both Tables. Now, for ph = 3.2 €/kg the optimal kh 
increases from 0.05 kW to 0.10 in Table 7, but remains stuck at 0.05 kW 
in Table 8. More in general, optimal conversion capacities tend to be 
bigger (for the same hydrogen prices) in Table 7 than in Table 8. In other 
words, the downward yellow stairs are further to the left in Table 7 than 
in Table 8. This suggests that a fixed discount rate r = 5.1 % is 
hampering the deployment of PtG facilities (relative to the time-varying 
discount rates in the base case). 

On the other hand, the project value is higher with the constant, 
relatively lower rate r = 5.1 %. For one, the wind park alone goes from a 
NPV = 894,165 € in Table 7to 1,011,085 € now, an increase of 13 %. In 
the bottom-right corner (kh = 1.0 kW, ph = 4.0 €/kg) the hybrid project’s 
NPV jumps from 503,964 € in Table 7 to 510,015 € in Table 8, a 1.2 % 
rise. 

Table A2 
Hybrid system’s NPV (in €) for different pairs of hydrogen price and PtG capacity (0.01 kW increments).   

ph = 3.0 3.1 3.2 3.3 3.4 3.5 

kh = 0 894,165 894,165 894,165 894,165 894,165  
0.01 966,754 972,065 977,418 982,802 988,208  
0.02 1,028,226 1,038,415 1,048,685 1,059,011 1,069,377  
0.03 1,073,097 1,087,577 1,102,177 1,116,859 1,131,601  
0.04 1,099,205 1,117,334 1,135,619 1,154,015 1,172,489  
0.05 1,109,517 1,130,759 1,152,191 1,173,759 1,195,422  
0.06 1,109,976 1,133,996 1,158,238 1,182,637 1,207,144  
0.07 1,105,866 1,132,511 1,159,406 1,186,473 1,213,662  
0.08 1,100,157 1,129,371 1,158,860 1,188,534 1,218,340  
0.09 1,093,959 1,125,723 1,157,785 1,190,044 1,222,438  
0.10 1,087,554 1,121,859 1,156,481 1,191,310 1,226,274  
0.11 1,080,981 1,117,822 1,154,992 1,192,376 1,229,896  
0.12 1,074,226 1,113,608 1,153,314 1,193,238 1,233,295  
0.13 1,067,275 1,109,201 1,151,435 1,193,882 1,236,461  
0.14 1,060,110 1,104,585 1,149,343 1,194,297 1,239,377  
0.15 1,052,722 1,099,742 1,147,021 1,194,467 1,242,028  
0.16 1,045,094 1,094,657 1,144,454 1,194,379 1,244,397  
0.17 1,037,206 1,089,316 1,141,623 1,194,016 1,246,473  
0.18 1,029,042 1,083,702 1,138,513 1,193,363 1,248,237  
0.19 1,020,583 1,077,800 1,135,107 1,192,403 1,249,675  
0.20 1,011,811 1,071,590 1,131,387 1,191,119 1,250,768  
0.21     1,251,500 1,313,419 
0.22     1,251,853 1,316,065 
0.23     1,251,810 1,318,286 
0.24     1,251,352 1,320,068 
0.25     1,250,460 1,321,392 
0.26     1,249,118 1,322,242 
kh = 0.27     1,247,306 1,322,597  
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Fig. A1. Share of wind energy and wind curtailmente ratio in several European countries.  
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6. Concluding remarks 

Hydrogen is key to the transition toward a low-carbon economy. 
Electrolytic production of green hydrogen in particular has sizeable 
potential to reduce GHG emissions. However, when evaluated from the 
viewpoint of a potential corporate investor, prospects fall short of this 
potential. Thus, a number of papers that focus on decarbonizing power 
generation come to this conclusion. 

Nonetheless, to assess properly these results it is necessary to pay 
attention to the details. For instance, considering hourly time steps over 
a single year is not unusual. Sometimes commodity prices are assumed 
to be fixed over time, or the wind capacity factor runs at its average 
value. Other papers acknowledge the uncertain character of these var
iables but adopt stochastic processes that are unable to account for the 
complex dynamics underlying them. Regarding the empirical applica
tions, typically optimization and/or simulation play a limited role. 

This study introduces a stochastic model for both the electricity spot 
price and the wind capacity factor. These state variables show distinc
tive seasonalities, e.g. yearly, weekly, and daily cycles. Further, these 
cycles overlap with mean reversion and jumps. The stochastic processes 
here thus account for both continuous and discrete shocks. We separate 
the whole dynamics into a deterministic part and a stochastic part. The 
model is then estimated for a wind park in Spain. Later on, the numerical 
estimates are framed within a valuation model that encompasses the 
whole expected lifetime of the facility (30 years) on an hourly basis; this 
allows compute the facility’s NPV. Note that the manager of the wind 
park must decide at every hour whether to sell the electricity in the spot 
market or transforming it into hydrogen. As usual, if the manager is to 
maximize the value of the facility then she must manage it optimally 
every hour. This paper performs 10,000 simulation runs; each of them 
involves the former hourly optimization over a 30-year horizon. 

According to our results, green hydrogen production starts becoming 
economically viable above 3 €/kg. Right now, large-scale facilities can 
produce fossil-based hydrogen at a cost in the range 1.5–2.5 €/kg. 
Consequently, green hydrogen seems unable to compete; it can be cost 
competitive with small- and medium-scale hydrogen supply at best. 

Regarding the sensitivity analyses, intuition suggests that, for a given 
hydrogen price, as the average wind capacity factor increases, the 
optimal PtG capacity should increase, and conversely. Thus, for a given 
ph = 3.2 €/kg, the optimal conversion capacity is 0.10 kW when the 
average CF is 38 %, but it drops to 0.05 kW if the latter falls to 35 %. 
Similarly, it seems that a significant rate of curtailment should 
contribute to deploying PtG capacity. This is indeed the case: for ph = 3.2 
€/kg, with zero curtailment the optimal conversion capacity is 0 kW, but 
if curtailment grows to 7.74 % the latter rises to 0.10 kW. As for the 
discount rate, this paper finds that, for ph = 3.2 €/kg, a time-varying rate 

of 7.14 % on average is associated again with an optimal conversion 
capacity of 0.10 kW, but a flat rate of 5.1 % leads to a lower capacity, 
namely 0.05 kW. This may perhaps come as a surprise. In principle, a 
lower discount rate should raise the value of a long-lived PtG facility 
thus easing its (relatively) earlier adoption. Yet there is a subtle impact: 
most of the increase in value accrues (relatively) more in the distant 
future, and not so much in the near future. Firms can well have this in 
mind when deciding the optimal time to invest. 

These results, as usual, are subject to some qualifications. For 
instance, in a number of day-ahead markets there are penalties for 
prediction errors leading to imbalances in the real-time operation of the 
system. This is a particular concern in the case of wind energy; Zheng et 
al. [31]. Nonetheless, this is overlooked here. Similarly, here it is 
implicitly assumed that there is a single owner of all of the facilities 
involved (or, at least, that the owners fully cooperate and behave as 
such). However, those facilities can belong to different owners. In this 
case, if the whole infrastructure is to be assembled, it can be essential to 
design a fair or reasonable profit allocation rule; Wang et al. [49]. Again, 
this paper does not address this issue. 

On the other hand, a number of parameter values are assumed to 
remain fixed over 30 years. Since the technology for producing 
hydrogen from RES via electrolysis is in its infancy, this assumption is 
especially restrictive; think, for instance, of conversion efficiencies and 
facilities’ costs. As the technology diffusion leaves the formative phase 
behind, market adoption will accelerate thanks to learning effects and 
returns to scale (thus entering the so—called growth phase). In princi
ple, it is possible to perform a sensitivity analysis with respect to any one 
underlying variable. However, when it comes to green hydrogen, 
players actually face a threefold coordination challenge: simultaneously 
ramping up hydrogen supply, end-use applications (i.e. demand), and 
transport infrastructure; Odenweller et al. [50]. This study refrains from 
following this broader approach (which calls for going beyond sensi
tivity analysis) and instead restricts itself to a narrower one. 

Similarly, the authors neglect the potential systemic impacts of 
adding hydrogen electrolyzers to the energy system. Thus, Green et al. 
[46] find that their large-scale adoption will raise the average price of 
electricity and change the optimal mix of power stations. In this sense, 
the authors perform a partial equilibrium analysis. Further, the word 
‘system’ can be pushed to a higher level, namely by considering cross- 
border transmission interconnections. In our case, the Iberian penin
sula continues to be an ‘electric island’ to some extent; Abadie and 
Chamorro [22]. In principle, isolated systems with (relatively) high 
wind penetration need additional backup capacity for long periods 
(when the wind does not blow) than systems that benefit from strong 
interconnectors. Consequently, all else equal, the cost of hydrogen will 
be higher in systems like Spain; Greiner et al. [51], Korpas and Greiner 

Fig B1. Installed generation capacity of onshore wind farms in Spain, 2016–2019.  
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[52]. 
Some venues for future research include: (1) the impact of increased 

spot power prices since the spring of 2021 on the production of green 
hydrogen in the short term; (2) the analysis of this impact on a cross 
section of countries (Spain, France, Germany, Italy, Belgium, and the 
Netherlands); (3) the impact of futures electricity prices on the pro
duction of green hydrogen in the long term; (4) extending the model 
with additional stochastic variables, e.g. curtailment rate; (5) extending 
the model with an additional industrial facility, e.g. a steel mill, or a 
cement producer; (6) analysis of the effect of changes in alternative 
policy measures to support the development of the hydrogen economy. 
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Appendix A 

This section explains the process behind the particular value of wind energy’s curtailment rate, namely 7.74 %. The authors draw on Yasuda et al. 
(2022), “Table 1: Statistical data for wind curtailment in European countries”. The authors collect the data of “Energy share of wind in a given country/area 
[%]” and “Curtailment ratio of wind energy in a given country/area [%]” wherever both series are available (Denmark, Germany, Northern Ireland, Italy, 
Spain and UK) over the period 2009–2020 (in total, 65 observations). See Fig. A1. 

Next, the authors estimate a linear regression model with the curtailment ratio as independent variable. An obvious assumption is that the straight 
line starts from the origin. The outcome is: 

Curtailment ratio = 0.154797 × Wind share 

Though not shown here, sample data suggest similar shares of wind energy in several countries, e.g. Germany, Spain and the U.K., about 25 % in 
2020. The authors anticipate that this share will increase further in the future. Looking far ahead, a share of 50 % implies a curtailment ratio of 7.74 %, 
the level used in our above calculations. The authors undertake a sensitivity analysis in Section 6.2. 

Appendix B 

Fig. B.1 shows the evolution of onshore wind farms installed capacity in the four years. 
Fig. B.1 suggests three different deployment phases. The longest one is the initial period, when wind capacity barely increases. The second one goes 

from summer 2018 to summer 2019, and is characterized by a consistent, mild growth. Yet, it is in the last four months of 2018 that capacity sharply 
rises. 

Appendix C 

Table A2 
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