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Summary

� Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet)

and minimise transpirational water loss to achieve optimal intrinsic water-use efficiency

(iWUE). We tested whether this theory can predict stomatal responses to elevated atmo-

spheric CO2 (eCO2), and whether it can capture differences in responsiveness among woody

plant functional types (PFTs).
� We conducted a meta-analysis of tree studies of the effect of eCO2 on iWUE and its com-

ponents Anet and stomatal conductance (gs). We compared three PFTs, using the unified

stomatal optimisation (USO) model to account for confounding effects of leaf–air vapour

pressure difference (D). We expected smaller gs, but greater Anet, responses to eCO2 in gym-

nosperms compared with angiosperm PFTs.
� We found that iWUE increased in proportion to increasing eCO2 in all PFTs, and that increases

in Anet had stronger effects than reductions in gs. The USO model correctly captured stomatal

behaviour with eCO2 across most datasets. The chief difference among PFTs was a lower stom-

atal slope parameter (g1) for the gymnosperm, compared with angiosperm, species.
� Land surface models can use the USO model to describe stomatal behaviour under chang-

ing atmospheric CO2 conditions.

Introduction

Stomata are small pores in vascular plant leaves that open and
close to allow the passive exchange of gases between the atmo-
sphere and a plant’s internal surfaces. It has long been recognised
that stomatal behaviour represents a fundamental compromise
between carbon dioxide (CO2) diffusion into the plant and
simultaneous water loss (Cowan, 1982; Jones & Suther-
land, 1991) such that maintaining stomatal opening, to allow
CO2 to diffuse into the sub-stomatal cavity, implies substantial
diffusive water loss via transpiration. Stomatal opening is sensi-
tive to both endogenous and external drivers (Brodribb

et al., 2009). Predicting stomatal responses to the environment is
crucial as stomatal aperture determines both photosynthetic car-
bon gain and the rate of water loss in plants (Cowan & Far-
quhar, 1977), thus affecting intrinsic water-use efficiency
(iWUE; the ratio of net photosynthetic CO2 assimilation, Anet,
to stomatal conductance to water vapour, gs). Understanding the
magnitude and drivers of iWUE in our changing climate is key
to modelling and predicting global carbon and water cycles under
a future climate (Walker et al., 2020).

Atmospheric CO2 concentration (Ca) directly affects stomatal
aperture (Morison, 1987; Franks et al., 2012). For example,
Medlyn et al. (2001) reported that gs was reduced by an average
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of 21% in European forest trees with exposure to elevated CO2

(eCO2; +350 μmol mol−1) across four types of CO2 exposure
facilities. Similarly, Ainsworth & Rogers (2007) reported gs was
reduced by an average of 19% in response to eCO2

(+208 μmol mol−1) in tree species growing in free-air CO2

enrichment (FACE) experiments. This reduction in water use
with rising CO2 could have large-scale consequences, including
increased resilience of vegetation to drought (Jiang et al., 2021)
and global increases in streamflow (Gedney et al., 2006) con-
tributing to increased greening in water-limited regions (Keenan
& Williams, 2018).

However, not all species respond to eCO2 to the same extent
(Saxe et al., 1998), and there are species-specific stomatal responses
to eCO2 that are apparent among eCO2 experiments (Saxe
et al., 1998; Medlyn et al., 2001). For tree species, it has been
observed that eCO2-induced reductions in gs are small or absent in
gymnosperm species especially when compared with those in
angiosperm species (Saxe et al., 1998; Medlyn et al., 2001; Klein &
Ramon, 2019), which suggests that stomatal sensitivity to eCO2

may vary with phylogeny (Brodribb et al., 2009; Lammertsma
et al., 2011; Hasper et al., 2017). For example, in a meta-analysis
of field-based chamber experiments on forest trees, Medlyn
et al. (2001) found that the Ca response of gs was significantly
stronger in deciduous broadleaved angiosperm trees than in conif-
erous species (all gymnosperms), in the set of experiments exam-
ined, although they also noted that this difference was confounded
with tree age. Recently, a meta-analysis conducted by Klein &
Ramon (2019) also found a significant difference in stomatal
responses to eCO2 between gymnosperm and angiosperm species.
In addition to gs responses in isolation, there are also indications
that iWUE (Anet/gs) may respond differently to rising CO2

between angiosperm and gymnosperm species. For example, it has
been suggested that iWUE in gymnosperms may have a stronger
positive response to eCO2, compared with angiosperms, as a result
of differences in leaf structure (Niinemets et al., 2011).

If there are indeed differences between angiosperm and gym-
nosperm, or more specifically between plant functional types
(PFTs), in their stomatal responses to rising Ca, then it is impor-
tant to capture these differences in vegetation models. Many veg-
etation models still employ a stomatal model of the form
proposed by Ball et al. (1987), which was shown by Medlyn
et al. (2011) to be consistent with the optimal stomatal theory
put forward by Cowan & Farquhar (1977). This theory hypothe-
sises that stomata behave in a manner that maximises CO2 fixa-
tion through photosynthesis while minimising water loss via
transpiration, by maximising the expression, Anet – λE, where Anet
is photosynthesis (μmol CO2 m−2 leaf s−1), E is transpiration
(mol H2O m−2 leaf s−1) and λ (μmol CO2 mol−1 H2O) repre-
sents the marginal ‘carbon cost of water use’ to the plant (cf.
Cowan & Farquhar, 1977). That is, the optimal stomatal con-
ductance is that which maximises

max Anet–λEð Þ Eqn 1

Medlyn et al. (2011) showed that this theory, when coupled to a
biochemical model of photosynthesis (Farquhar & von

Caemmerer, 1982), results in an expression for gs (mol H2O m−2

leaf s−1) that can be approximated as follows, also known as the
unified stomatal optimisation (USO) model:

g s≈1:6 1þ g 1ffiffiffiffiffi
D

p
� �

Anet=C a Eqn 2

where g1 (kPa0.5) is a collection of constant terms including an
inverse dependence on λ, D is the leaf–air vapour pressure dif-
ference (kPa), 1.6 is the apparent ratio of the diffusion coeffi-
cients of water vapour and CO2, and gs and Anet are the
functions of D and air temperature, Tair, as well as other physio-
logical parameters. Note that here λ is defined according to Hari
et al. (1986), and is the inverse of the original definition in
Cowan & Farquhar (1977) and Medlyn et al. (2011). In addi-
tion, the empirical intercept term, g0, added by Medlyn
et al. (2011) is unnecessary here and is omitted for simplicity.
As the marginal cost of water λ is unknown, the parameter g1 is
obtained in practice by fitting to data. Assuming the model
parameter g1 is constant, and under environmental conditions
producing constant D, the USO predicts that the Anet/gs ratio,
that is the intrinsic WUE (iWUE = Anet/gs) should be propor-
tional to the atmospheric CO2 concentration (Barton
et al., 2012). This model has been used to predict stomatal
responses successfully in several CO2 manipulation experiments
(e.g. Barton et al., 2012; De Kauwe et al., 2013; Gimeno
et al., 2016).

There are several ways in which a differential response of gs to
Ca could be captured by the USO model. First, there may be a
difference in the Tair or D at which measurements were made.
The relative responsiveness of Anet and gs can vary within an
experiment depending on Tair or D. For example, Anet is more
responsive to eCO2 at high leaf temperatures (Long, 1991).
Additional complications may occur if D differs between treat-
ments. Barton et al. (2012) showed that iWUE was proportional
to eCO2 in Eucalyptus saligna, once treatment differences in D
were taken into account. They also showed that the responsive-
ness of gs to eCO2 decreased at high D, when high Tair meant
that photosynthesis was more responsive for biochemical reasons
(Long, 1991). These mechanisms will be captured in the USO
model, which incorporates an effect of D, especially when cou-
pled to a photosynthetic biochemistry model that captures inter-
actions with Tair and Ca (e.g. Duursma, 2015).

Second, a substantial increase in iWUE in response to eCO2

can occur as a strong increase in Anet, with a marginal reduction
in gs, or a marginal increase in Anet and a strong reduction in gs.
Photosynthetic responses may be stronger in species that have a
low g1 and consequently a low intercellular CO2. There is strong
evidence that gymnosperm trees have a lower g1 than angiosperm
trees (e.g. Lin et al., 2015), so this is a plausible mechanism for
species or PFT differences. In addition, photosynthetic responses
to eCO2 are expected to be larger in species with thicker or den-
ser leaves because thicker leaves have greater diffusive limitation
of the transport of CO2 to the sites of carboxylation, and so
respond more positively to eCO2 than species with thinner leaves
(Niinemets et al., 2011). This mechanism would explain a
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difference between angiosperms and gymnosperm PFTs, but
would also suggest a difference in responsiveness between ever-
green and deciduous angiosperms, since evergreen species typi-
cally have thicker leaves (Wright et al., 2004; Poorter et al., 2009;
Kattge et al., 2011). These mechanisms would be captured in the
model by specifying a different value of g1 across species or PFTs.

Finally, it is also possible that the USO model does not accu-
rately capture responses to eCO2 in gymnosperm PFTs unless it
is assumed that the slope parameter g1 changes with treatment
(i.e. g1 is a function of Ca). For example, Uddling &
Wallin (2012) found no decrease in gs at eCO2 in Picea abies.
They found that the response of iWUE was considerably less than
predicted from the optimal stomatal theory (Eqn 2) and that the
slope parameter g1 increased from 1.45 to 2.44 (kPa0.5) between
aCO2 and eCO2 treatments. This mechanism could potentially
be captured in the model by specifying g1 as a function of Ca.

In this paper, we examined the effect of eCO2 on iWUE, gs
and Anet responses across a diverse set of field-based forest and
tree plantation experiments of deciduous and evergreen angios-
perms and evergreen gymnosperms. We focused on experiments
with sufficient data available to evaluate the USO model (Eqn 2).
A series of FACE and whole-tree chamber (WTC) experiments
over the last two decades have contributed detailed datasets across
a variety of species that include larger and older trees and
ecosystem-scale experiments which provide the opportunity to
re-examine stomatal responses to eCO2 (Ellsworth, 1999; Gun-
derson et al., 2002; Bernacchi et al., 2003; Uddling et al., 2009;
Bader et al., 2010, 2016; Gimeno et al., 2016). We used these
data to test whether there are differences in responsiveness of gs
and iWUE between different PFTs, and to utilise the optimal
stomatal theory to explore the reasons for these differences. We
also use the data to test a number of other hypotheses arising
from optimal stomatal theory. For example, the theory implies
that the parameter g1 will be lowest in plants with a relatively
high marginal carbon cost of water and therefore low hydraulic
conductance (Medlyn et al., 2011). Previous research shows that
branch-level hydraulic conductance is relatively low in gym-
nosperms (Becker et al., 1999), compared with angiosperms, and
may decline with tree age (Hubbard et al., 1999), suggesting that
gymnosperms and older trees are likely to have a relatively high
marginal carbon cost of water.

We hypothesised that (1) following USO, iWUE would
increase in proportion to the CO2 increase similarly across all
species; (2) on average, gs would decrease and Anet would increase
in response to eCO2, with Anet being the principal driver for
increased iWUE; (3) the magnitude of change in Anet to eCO2

would depend on D, with the response of Anet to eCO2 larger at
high D; and (4) the magnitude of change in both Anet and gs to
eCO2 would depend on PFT, with Anet being more responsive
and gs being less responsive in evergreen gymnosperms, when
compared with angiosperm PFT. We separate angiosperms into
evergreen and deciduous groups to further test for differences in
responsiveness associated with leaf morphology. We anticipated
that differences in stomatal responses between PFTs (evergreen
and deciduous angiosperm and evergreen gymnosperm) could be
captured through the USO model, which accounts for variability

in D and can be parameterised with different values of g1 for dif-
ferent PFTs. We predicted that the optimal stomatal theory pre-
dicts that g1 values will be lower in gymnosperms (Lloyd &
Farquhar, 1994; Medlyn et al., 2011; Lin et al., 2015), compared
with angiosperms, and older trees, compared with younger trees.

Materials and Methods

Datasets

To fit the optimal stomatal model, we need detailed individual
leaf gas exchange measurements with supporting environmental
data such as photosynthetic photon flux density (PPFD), leaf
temperature (Tleaf), Tair and D. Some datasets, particularly those
using open top chambers or branch bag (BB) approaches, were
also used by Medlyn et al. (2001). We added available datasets
from more recent major field-based eCO2 experiments on field-
grown plantation or forest trees, which largely used FACE or
WTC approaches. Overall, 20 distinct datasets were obtained,
covering 17 tree species at 16 separate field-based eCO2 experi-
ments across 13 study sites (Table 1).

The experiments differed in a number of ways, including but
not limited to site climate, CO2 fumigation treatment and exper-
imental duration (Tables 1, 2). We selected data for which CO2

concentration was the only treatment variable, and we excluded
data collected under additional manipulative treatments such as
nutrient, drought, temperature or ozone treatments. There were
two factors common to all experiments: the experiments were
conducted on freely rooted trees and all studies included at least
two growing seasons. Medlyn et al. (2001) demonstrated high
variability in stomatal responses in experiments running for less
than half a year, particularly for those in pots. The one exception
to this was the second Swiss Canopy Crane experiment, with P.
abies, for which suitable data were only available from the initial
2 months after the start of CO2 fumigation (Table 1). All experi-
mental approaches were given equal weight in the meta-analysis.

The 17 study species were split into three PFTs: evergreen
gymnosperm forest (EGF; n = 3), evergreen angiosperm forest
(EAF; n = 3) and deciduous angiosperm forest (DAF; n = 11).
The EAF PFT only included species of the Eucalyptus genus. In
total, 3661 leaf gas exchange measurements were obtained. In
each experiment, plants were grown at two atmospheric CO2

concentrations which, across the experiments, had means of 383
and 628 μmol mol−1, respectively (Table 2; Fig. S1). The experi-
ments took place between 1993 and 2019 (or, in global average
ambient Ca terms, from 357 to 411 μmol mol−1), with the
experimental duration ranging from 1 to 12 yr. All datasets con-
sisted of either instantaneous spot measurements of Anet and gs or
CO2 response curves (i.e. A-Ci curves), from which the initial
point at treatment CO2 level was taken. Measurements were
made using several gas exchange systems, with the Li-6400 as the
most common instrument (Li-Cor Inc., Lincoln, NE, USA). The
datasets were split into three discrete categories of tree age: aged
(> 80 yr old; n = 5), mature (10 < age < 80 yr old; n = 6) and
sapling (< 10 yr old; n = 9) in addition to two categories of
water condition (i.e. irrigated (n = 6) or non-irrigated (n = 14)).
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Details of each experiment and measurement conditions are
given in Tables 1, 2 respectively. Further information on each
experiment can also be found in the individual references pro-
vided in Table 1.

The datasets were collected across prevailing environmental
conditions which included a range of light (PPFD) and D condi-
tions. As our hypotheses centre on D and not PPFD, we filtered
out data measured at PPFD < 800 μmol m−2 s−1. The majority
of our datasets were measured at a controlled value of saturating
light; only two studies used variable light and were therefore sub-
ject to filtering (Bernacchi et al., 2003; Uddling et al., 2009). In
the one dataset where D was not reported (Roberntz & Stock-
fors, 1998), we calculated a lower bound to D using data on air
temperature (Tair) and relative humidity. In all other cases, leaf-
to-air-D was used.

Data analysis

We first conducted a standard meta-analysis of the data. We then
separated data into D bins to conduct a second meta-analysis
accounting for differences in D among treatments and experi-
ments. Finally, we fit the USO model to the data and explored
model fits and fitted parameters.

For each experiment, we compiled the Anet, gs, iWUE, Ca, D
and Tleaf data and calculated the means, standard deviation and
sample size under elevated and ambient (control) CO2 plots
using the experiment replicates stated by each individual study.
We calculated overall effects of eCO2 in a weighted, mixed-
effects model using the rma.mv function from the R package
METAFOR (Viechtbauer, 2010). Plant functional type was a fixed
factor and the potential dependency of studies within the same
site (e.g. different species, different treatments) was accounted
for by including study site and species as random effects. All
response variables were log-transformed before analysis so that
statistics investigate a potential power law relation. To quantify
and standardise the CO2 response ratios across varying ranges of
CO2 manipulation, we report data as a relativised value of CO2

responses, that is a CO2 normalised response ratio (rc) as
follows:

r c ¼
loge

X e

X a

� �

loge
C e

C a

� � Eqn 3

where Xe and Xa represent the values of the response variables
(iWUE, gs and Anet) at ambient or lower CO2 (Ca) and elevated
or higher CO2 (Ce) respectively. A value of r c ¼ 1 represents
direct (linear) proportionality between a variable’s CO2 response
and the change in CO2. Values of r c≠1 indicate sub- or super-
linear responses, depending on whether r c < 1 or r c > 1 respec-
tively. As r c ! 0, the treatment effect approaches zero (i.e.
X e ¼ X a). We report uncertainties as 95% confidence intervals
(CI) on r c as calculated by the rma.rv function and significant
responses were recognised if the CI did not overlap zero. Effect
size measurements from individual studies in the meta-analysis
were weighted by the inverse of the variance (Eqn 4).

var ¼ SD2
C e

nC e
X C e

2 þ
SD2

C a

nC a
X C a

2 Eqn 4

where SD represents the standard deviation, n represents the
number of experimental replicates, X represents the mean, and
Ce and Ca represent elevated and ambient Ca. To examine the
effect of D on the response ratios, we binned observations into
0.5 kPa bins of D for each species and dataset within measure-
ment campaigns. The bin width was chosen such that it allowed
sufficient data per bin (n = 3) to calculate a mean response within
each D bin without losing resolution of the D response. For this
analysis, we only included D bins that overlap among experi-
ments (0.75–2.75 kPa). We constructed mixed-effects models
for each PFT with sensitivity to CO2 as the dependent variable.
The D bin was taken as a fixed effect and study site and species as
random effects. We report the statistically significant predictors.

We fitted the USO model (Eqn 2) to the measurements of gas
exchange for each tree species and dataset within each measure-
ment campaign. Note that we here do not use an intercept (g0) in
the model as it can bias the g1 value (Duursma et al., 2019). We
obtained R2 values for each study site and species by comparing
the fitted predicted values to the observed values. To test for sig-
nificant differences in g1 (Eqn 2) between CO2 treatments, we fit-
ted the model using a dummy variable for treatment level. To
test for significant differences in g1 among PFT, tree age and
water condition (as defined in Table 1), we constructed mixed-
effects models using the rma.mv function from the R package
METAFOR (Viechtbauer, 2010). Plant functional type, tree age cat-
egory and water condition category were fixed effects and study
site and species were random effects.

All analyses in this study were conducted using R v.4.0.2
(R Core Team, 2022). The datasets are publicly available (see
‘Data availability’).

Results

Mean responses to eCO2

We found that eCO2 significantly increased plant iWUE for all
vegetation types (P < 0.001, Fig. 1a–c showing mean � 95%
CIs). We could not disprove the hypothesis that the magnitude
of the iWUE response is proportional to increase in CO2; the
mean rc was not significantly different from 1 (overall mean
rc = 0.89 (95% CI: 0.79, 1.01)). This proportionality did not
differ significantly among vegetation types (Table 3, 95%
CIs = 0.78–1.27 for EAF, 0.73–1.02 for DAF, and 0.68–1.08
for EGF), supporting the prediction of the USO model that
iWUE increases in proportion to the CO2 increase, across all
PFTs.

Across the range of eCO2 experiments we analysed, stomatal
response to eCO2 had an overall mean response that was not sig-
nificantly different from zero (mean rc = −0.09 (95% CI: −0.26,
0.08)), indicating no mean reduction in gs. Looking at the PFTs
individually, there was a significant reduction in gs with eCO2 in
EAF trees (P < 0.05, mean rc = −0.46, (95% CI: −0.85,
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−0.06); Fig. 1g), but neither DAF nor EGF showed significant
decreases in gs with eCO2 (mean rc = −0.05 (95% CI: −0.23,
0.14) and 0.13 (95% CI: −0.37, 0.63) respectively; Fig. 1h,i).

However, a heterogeneity test (Viechtbauer, 2010) did not indi-
cate a significant difference among PFTs in stomatal responses to
eCO2 (Table 3). As can be seen in Fig. 1, and in the CI ranges
reported earlier, there is considerable variability in stomatal
response across experiments within PFTs, meaning that there is
relatively little power to detect differences among PFTs. Overall,
however, this analysis does not confirm the hypothesised pattern
of stronger gs responses in angiosperm species than gymnosperm
species.

Across all experiments, photosynthesis increased strongly
under eCO2 (overall response of rc = 0.82, with 95% CI of
0.64–1.01; P < 0.001, Fig. 1g–i). The largest average photo-
synthetic response to eCO2 occurred in the EGF (mean
rc = 1.1 (95% CI: 0.39, 1.79)), whereas this response in
EAF and DAF was marginally lower (mean rc = 0.63, (95%
CI: 0.26, 1.00) and 0.81, (95% CI: 0.64, 0.97), respectively).
Similar to gs, however, statistical analysis did not indicate sig-
nificant differences in the photosynthetic response to eCO2

among PFTs (Table 3).

Gunnarsholt, P. trichocarpa
BIFoR FACE, Q. robur
Gribskov, F. sylvatica

Swiss Canopy Crane_1, F. sylvatica
Swiss Canopy Crane_1, Q. petraea

ORNL FACE, L. styraciflua
POPFACE, P. alba

POPFACE, P. euramericana
POPFACE, P. nigra

Glencorse_2, B. pendula
Rhinelander, B. papyrifera

Rhinelander, P. tremuloides
DAF overall

EucFACE, E. tereticornis
Richmond_1, E. saligna

Richmond_2, E. globulus
EAF overall

Swiss Canopy Crane_2, Picea abies
Duke FACE, Pinus taeda

Flakaliden_2, Picea abies
Flakaliden_1, Picea abies

EGF overall

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 1 Estimated effect of eCO2 on the mean response ratios, that is, a CO2 normalised response ratio (rc) of intrinsic water-use efficiency (iWUE; a–c),
stomatal conductance (gs; d–f) and photosynthesis (Anet; g–i) across different species and dataset (see Table 1). Each data point represents the mean effect
size (overall log response, Eqn 3) of an individual study and species; error bars are the 95% confidence intervals (CI) across the true replicates (n = 2–12). In
each plot, the mean (summary) effect size of all the studies for each plant functional type (PFT) is depicted at the bottom. We interpret the CO2 effect at
the 1.0 line (vertical dashed line in a–c) to be in proportion to the CO2 increase (see main text) and the zero line (vertical dotted line in d–i) represents no
significant CO2 effect (i.e. no response reference line). Arrow in (i) represents data point that extend beyond the limits of the plot. Colours refer to PFT with
green as evergreen angiosperm (EAF), blue as deciduous angiosperm (DAF) and orange as evergreen gymnosperm (EGF). The mean response ratios repre-
sent, on average, an increase in CO2 from 383 to 628 μmol mol−1.

Table 3 Between-group heterogeneity for the effect of eCO2 treatment
on iWUE, Anet and gs.

Variable QM P-value

iWUE 0.77 0.67
gs 4.24 0.12
Anet 1.99 0.37

Plant functional type (PFT; i.e. DAF, EAF and EGF) was used as a
moderator in the multivariate linear mixed-effects model. Results were
based on log-transformed response ratios. We tested whether plant
responses to iWUE, gs and Anet under eCO2 were different between PFT.
QM refers to the test statistic for the omnibus test of coefficients of PFT
group effect, with P < 0.05 indicating significant differences between the
PFTs. Response variables are as follows: intrinsic water-use efficiency
(iWUE, mol CO2 mol−1 H2O), stomatal conductance (gs; mol H2O m−2 s−1)
and photosynthetic rate (Anet; μmol m−2 s−1) response ratios.
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Did D affect responses to eCO2?

Variability across experiments in stomatal responses to eCO2

may potentially be related to differences in the range of D in each
experiment (Fig. S2). We tested how responses to eCO2 vary
with D (Table 4; Fig. 2). Our expectation was that the response
of iWUE to eCO2 would not vary with D, whereas the eCO2

response of Anet would increase, and the eCO2 response of gs
would decrease, with increasing D. Our results differed from
these expectations in several ways. Fig. 2a shows the CO2-
induced increase in iWUE generally increased with D across all
PFTs (Table 4). More specifically, the effect of D on the iWUE
response to eCO2 was statistically significant for DAF
(P < 0.001) and EGF (P < 0.05), and only EAF behaved in the
way we expected.

We also found that the effect of D on the responses of
Anet and gs to eCO2 differed among the three PFTs
(P < 0.05; Fig. 2b,c; Table 4). For EAF, we found a signifi-
cant effect of D on the gs response to eCO2 (P < 0.05; i.e.
increase in D led to a smaller reduction in gs in response to
eCO2), and a significant effect of D on the CO2 response of
Anet (P < 0.001). These responses cancelled each other out to
yield no change in the CO2 response of iWUE (Fig. 2a). For
DAF, we found a significant positive effect of D on the CO2

response of Anet (P < 0.001) but no effect on the response of
gs, yielding an overall positive eCO2 effect on iWUE. In con-
trast, for EGF, the effect of D on the CO2 response of
iWUE resulted from a significant effect of D on the gs
response to eCO2 (P < 0.05), and no effect on the Anet
response to CO2.

Optimal stomatal model

To facilitate the interpretation of these differences among PFTs,
we fitted the USO model (Eqn 2) to data from aCO2 and eCO2

treatments in all experiments (Figs 3, S3). The fitted model gen-
erally provided good explanatory power (median R2 of 0.70). Fit-
ted values of the g1 parameter ranged from 1.4 to 7.9 kPa0.5. The
g1 parameter was highest in the poplar species Populus nigra
(7.9 kPa0.5 (with 95% CI of 6.3–9.4) and 6.7 kPa0.5 (with 95%

CI of 5.6–7.9) for eCO2 and aCO2 respectively) and lowest in P.
abies (1.4 kPa0.5 (with 95% CI of 1.3–1.49) and 1.45 kPa0.5

(with 95% CI of 1.42–1.49) both aCO2 treatments in Flakali-
den_1 and Flakaliden_2 respectively). We found that g1 was sig-
nificantly lower in EGF species than in DAF and EAF species
(P < 0.0001, Fig. 3; Table S1). A lower g1 value is suggested to
lead to a larger response of Anet. In support of this, we found that
the EGF species had both the lowest g1 and the highest photosyn-
thetic response to eCO2.

For 17 of the 20 datasets, there was no significant difference
between the g1 parameters estimated for aCO2 and eCO2. How-
ever, we found that for all three datasets from boreal sites (P. abies
trees measured at the Flakaliden site in Northern Sweden and
Populus trichocarpa measured at the Gunnarsholt site in Iceland),
estimated g1 parameters were significantly higher under eCO2. In
addition, we found that g1 was significantly higher in species that
received supplemental water (P < 0.001) and decreased signifi-
cantly with tree age (P < 0.05; Table S1).

Discussion

We quantified the relative responses of iWUE, gs and Anet across
a set of manipulative experiments on large trees (Table 1). We
found that the mean response of iWUE was approximately pro-
portional to eCO2, as predicted by the USO model, and this
response was similar across the three woody PFTs examined in
the study. The results also showed that D had a significant effect
on these responses to eCO2 in angiosperms but not in gym-
nosperms, suggesting differing sensitivities to D between these
PFTs. The use of the USO model allows these differences to be
taken into account. Consistent with previous analyses (Medlyn
et al., 2011; Gimeno et al., 2016), we found g1 was not altered by
eCO2 in most experiments, implying that the optimal stomatal
theory is largely successful in predicting the coupling of carbon
uptake and water loss in field and forest grown trees under eCO2.
Differences in the response of gs to CO2 among PFTs were not
statistically significant, in contrast to previous studies, but the
tendency for a smaller response in gymnosperm species could be
captured in the USO model through the lower g1 values, which
drive a larger Anet response.

Does iWUE respond in proportion to eCO2?

The increases in iWUE with eCO2 are comparable to those
reported in meta-analyses of FACE experimental data in Ains-
worth & Long (2005; mean rc = 1.2 � 0.33). The results are
also consistent with a meta-analysis of tree-ring isotopic data con-
sisting of 422 tree species (Adams et al., 2020), although experi-
mental data of tree-ring isotopic analyses in two FACE
experiments suggest much higher iWUE responses (Battipaglia
et al., 2013; mean rc = 1.4 and 1.3 for Duke University and Oak
Ridge National Laboratory, ORNL, respectively). A general
review, compiling several different strands of evidence, concluded
that most supported an rc for iWUE close to one (Walker
et al., 2020). We conclude that the proportional increase in
iWUE with eCO2 is a reliable response which supports the

Table 4 Statistical output from the meta-analysis of the effect of leaf–air
vapour pressure difference, D, on the intrinsic water-use efficiency (iWUE,
mol CO2 mol−1 H2O), stomatal conductance (gs; mol H2O m−2 s−1) and
photosynthetic rate (Anet; μmol m−2 s−1) response ratios.

PFT

iWUE (mol CO2

mol−1 H2O)
gs (mol
H2O m−2 s−1)

Anet

(μmol m−2 s−1)

Slope P-value Slope P-value Slope P-value

DAF 0.22 <0.001 0.14 0.38 0.41 <0.001
EAF 0.22 0.075 0.50 0.006 0.72 <0.001
EGF 0.13 0.021 −0.18 0.03 −0.10 0.24

Table shows the slope response to D and respective P-values among plant
functional type (PFT) that are shown in Fig. 2. Significant P-values
(P < 0.05) are shown in bold.
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optimisation theory that proposes Anet and gs are well coupled to
maximise C gain and minimise water loss to the plant (Medlyn
et al., 2011; De Kauwe et al., 2013; Walker et al., 2020). This
result can therefore allow the prediction of the response of gs to
eCO2 from the Anet response and vice versa.

Which is the primary response variable, Anet or gs?

We found increases in iWUE with eCO2 were predominantly
due to increased Anet rather than reductions in gs. This conclusion
is consistent with results from several previous meta-analyses of

Deciduous angiosperm
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ORNL FACE
POPFACE
Rhinelander
Swiss Canopy Crane_1
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Fig. 2 The effect of D on the mean log
response ratios for the CO2 effect (rc) on (a)
intrinsic water-use efficiency (iWUE), (b)
stomatal conductance (gs) and (c) net
photosynthesis (Anet) across the datasets.
Each data point shows the mean response for
each 0.5 kPa bin (D range of 0.75–2.75) per
species per dataset. Symbols refer to dataset
and colours refer to plant functional type
(PFT) with green as evergreen angiosperm
(EAF), blue as deciduous angiosperm (DAF)
and orange as evergreen gymnosperm (EGF).
Shaded areas are 95% confidence intervals.
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physiological responses of tree species, although the statistical sig-
nificance of the reduction in gs varies across studies. Curtis &
Wang (1998) found an increase in Anet of +54% compared with
a non-significant reduction in gs of −11%. Medlyn et al. (2001)
found a statistically significant reduction of −14% in gs com-
pared to an increase in Anet of 51% (Medlyn et al., 1999). Simi-
larly, Ainsworth & Rogers (2007) found a statistically significant
reduction of −20% in gs compared with an increase in Anet of
+45% in tree species. Our results, which include many addi-
tional high-quality datasets, show an even stronger influence of
Anet. We express our findings as a relative response ratio to stan-
dardise for the difference in treatment CO2 concentrations used
in different experiments. We find a mean increase (rc) of 0.82 in
Anet and no statistical change in gs (mean reduction of −0.09).

However, we also found the responses of both Anet and gs to
eCO2 can be variable within an experiment, as a result of differ-
ences in environmental variables such as D and light. Barton
et al. (2012) confirmed this finding experimentally at both leaf
and whole-canopy scales in E. saligna trees and found photosyn-
thetic responses to eCO2 increased with increases in D. We
observed differences in D sensitivity among PFTs for the
responses of Anet and gs to eCO2 (Fig. 2). Changes in Anet due to
eCO2 were more responsive to D in angiosperms than in gym-
nosperms, suggesting a higher sensitivity of physiological pro-
cesses to D in angiosperms compared with gymnosperms. Our
findings show that D needs to be considered when comparing
studies where D differs, supporting the use of the USO model to
account for differences. It also highlights the limitations on infer-
ences drawn in previous research regarding gymnosperm vs

angiosperm responses, as previous studies have generally not
accounted for either differences or sensitivity in D when assessing
the response of stomata to eCO2. A further environmental vari-
able that can alter the responses of both Anet and gs is light. A lim-
itation of our study is that we analysed only data with high
PPFD (i.e. > 800 PPFD) to allow for comparisons between data-
sets. Under these conditions, we found strong photosynthetic
responses to eCO2, which may be diminished under lower PPFD
(Bernacchi et al., 2003; Uddling et al., 2009; Bader et al., 2016).

To avoid generalisations based on the mean responses of
iWUE, Anet and gs due to the effects of differences in D, we rec-
ommend using the USO model to normalise iWUE to account
for any effect of D. Consistent with the study hypotheses, we
found that the optimal stomatal model successfully predicted gs
under both aCO2 and eCO2 and the g1 parameter remained
unchanged in response to eCO2 (Gimeno et al., 2016), with
three exceptions (Fig. 3). The three cases where CO2 treatment
significantly affected g1 were the two P. abies datasets at the
Flakaliden site (northern Sweden) and P. trichocarpa at the Gun-
narsholt site (Iceland). The two Flakaliden datasets came from
two very different experiments (BB and WTC) carried out a dec-
ade apart, suggesting that although the response differs from
other experiments, it may be a real effect at the Flakaliden site.
The forest soil at Flakaliden is nutrient impoverished (Bergh
et al., 1999), so nutrient limitations at the site may have had an
effect on leaf physiology at the Flakaliden site and may explain
the unusual response observed. This explanation is corroborated
by the fact the g1 parameter remained unchanged with eCO2 in
P. abies growing on fertile soil at the Swiss Canopy Crane site

D (kPa)

Richmond_2, E. globulus

Richmond_1, E. saligna

EucFACE, E. tereticornis

POPFACE, P. nigra
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Duke FACE, Pinus taeda

Glencorse_1, Picea sitchensis

Swiss Canopy Crane_2, Picea abies

Flakaliden_1, Picea abies

Flakaliden_2, Picea abies

*

*

*

seicepS,tesata
D

Fig. 3 Fitted parameter with 95%
confidence intervals for the unified stomatal
optimisation (USO) model (g1) for each CO2

treatment per species and dataset, grouped
by plant functional type (PFT). Colours
indicate CO2 treatment, with blue for
ambient CO2 (aCO2) and red for elevated
CO2 (eCO2). Symbols refer to the PFT with
diamonds as deciduous angiosperm (DAF),
squares as evergreen angiosperm (EAF) and
circles as evergreen gymnosperm (EGF).
*, Significant differences in g1 between CO2

treatments.
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(Bader et al., 2013). However, other sites also have highly
nutrient-limited soils, including the EucFACE experiment. Alter-
natively, it is notable that all three exceptions were from boreal
study sites, suggesting that trees in boreal climates may deviate in
responses of stomata to eCO2. However, we only had three suit-
able datasets from boreal trees; it would be valuable to test this
discrepancy in other boreal sites.

Other limitations of the database available for this study are
that we only had one genus within the EAF group, all from one
geographical location, and no data at all from the tropics. This
motivates future experiments with a focus on a wider range of
boreal species in addition to more EAF species, from different
regions such as in tropical forests, to confirm the stomatal respon-
siveness with eCO2 of these PFTs.

Overall, this study found that the optimal stomatal model was
successful in characterising the response to eCO2 across a wide
range of experiments and suggests that the coupling between Anet
and gs remained unchanged to eCO2 Hence, we can recommend
that land surface models would benefit from using the g1 parame-
ter to characterise the behaviour of stomata to a changing envi-
ronment. However, it is also important to recognise that we
limited our dataset to conditions of PPFD > 800 μmol and
D < 3 kPa to maximise comparability among datasets. It is pos-
sible that responses to CO2 will differ at the leaf scale compared
to canopy scale (Keenan et al., 2016) as different light and D con-
ditions prevail in the lower canopy (Crous et al., 2020). Further
work will be required to assess the model under different condi-
tions, and test scalability to the canopy.

How should we model differences among PFTs?

Previously, research has suggested that physiological responses to
eCO2 differ among woody PFTs, with smaller iWUE and gs
responses observed in gymnosperms than in angiosperms (Saxe
et al., 1998; Medlyn et al., 2001; Niinemets et al., 2011; Klein &
Ramon, 2019). One goal of this work was to evaluate how this
difference among PFTs could be captured in the USO or similar
stomatal models. In contrast to previous research, we found that
the increases in iWUE with eCO2 were broadly similar across the
three PFTs examined in the study. When examining the analysis
of this study with that of previous analyses, the main difference
lies in the calculation of the responses. Previous analyses predom-
inantly examined absolute responses to eCO2, in contrast to rela-
tive responses in this study. Therefore, starting stomatal values in
previous analyses were generally lower in EGF than in both DAF
and EAF species and likely influenced the conclusions (Klein &
Ramon, 2019). The strength of this analysis is that we examined
the relative responses using replicates, as stated by each individual
dataset, as well as including the capacity to correct for D.

We also found no significant differences among PFTs in the
eCO2 responses of gs (Fig. 1; Table 3). However, we did observe
that the gs response in the evergreen gymnosperms was least sensi-
tive to eCO2 and gs was significantly reduced with eCO2 in ever-
green angiosperms. We also found that there was a tendency for
EGF species to have a higher Anet response. This outcome may be
a result of the fact that this PFT also had the lowest g1 values,

consistent with other reviews of species differences in g1 (Lin
et al., 2015). A low g1 implies a low intercellular CO2 concentra-
tion and thus a higher responsiveness of photosynthesis to rising
CO2. As Anet and gs are coupled in the USO model, this will also
result in a smaller responsiveness of gs.

Conclusion

This study provides a large body of data collected over the last
few decades that incorporates a number of tree species and experi-
ments, including recent forest FACE experiments, which is a
robust base to evaluate gs under elevated CO2. It resolves some of
the long-standing questions regarding stomatal behaviour in ele-
vated CO2 in woody species. The results show that the eCO2

responses of iWUE, gs or Anet were not significantly different
among three key PFTs (Table 3), which has importance to how
large-scale models depict these responses (Kleidon, 2004). The
results suggest that increases in Anet, rather than reductions in gs,
drove the increases in iWUE that occur with eCO2 in all vegeta-
tion types. However, the results highlighted the importance of
incorporating environmental factors, such as D, when comparing
vegetation type. Our analysis of CO2 responses suggests that
angiosperms were more responsive to D than gymnosperms
(Fig. 2; Table 4).

With the exception of data from boreal study sites, the optimal
stomatal model was successful in describing the stomatal beha-
viour with changes in atmospheric variables, such as with eCO2

and D (Fig. 3). We highlight the areas where data representation
needs improvement but conclude that a stomatal parameter such
as g1 can be implemented in ecosystem to land surface models as
a reliable way to characterise the key aspects of stomatal beha-
viour that affect hydrology and land surface energy exchange will
remain important as atmospheric CO2 increases into the future.
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