

Check for updates

Optimal stomatal theory predicts CO₂ responses of stomatal conductance in both gymnosperm and angiosperm trees

Anna Gardner^{1,2} , Mingkai Jiang^{3,4} , David S. Ellsworth³ , A. Robert MacKenzie^{1,5} , Jeremy Pritchard^{1,2}, Martin Karl-Friedrich Bader⁶ , Craig V. M. Barton³ , Carl Bernacchi⁷, Carlo Calfapietra⁸, Kristine Y. Crous³ , Mirindi Eric Dusenge⁹, Teresa E. Gimeno^{10,11} , Marianne Hall¹² , Shubhangi Lamba¹³ , Sebastian Leuzinger¹⁴ , Johan Uddling¹³ , Jeffrey Warren¹⁵, Göran Wallin^{13,16} and Belinda E. Medlyn³

¹Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, UK; ²School of Biological Sciences, University of Birmingham, Edgbaston, B15 2TT, UK; ³Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; ⁴College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang Province, China; ⁵School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK; ⁶Department of Forestry and Wood Technology, Linnaeus University, Växjö 351 95, Sweden; ⁷USDA-ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA; ⁸Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano 05010, Italy; ⁹Western Centre for Climate Change, Sustainable Livelihoods and Health, Department of Geography, The University of Western Ontario, London, ON N6A 5C2, Canada; ¹⁰CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia 08193, Spain; ¹¹Basque Centre for Climate Change (BC3), Leioa 48940, Spain; ¹²Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund 223 62, Sweden; ¹³Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg 40530, Sweden; ¹⁴Auckland University of Technology, Institute of Earth and Oceanic Sciences, School of Applied Sciences, Private Bag 92006 (Mail No C-43), Auckland 1142, New Zealand; ¹⁵Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; ¹⁶Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK

Author for correspondence: A. Robert MacKenzie Email: a.r.mackenzie@bham.ac.uk

Received: 18 July 2022 Accepted: 17 October 2022

New Phytologist (2023) **237:** 1229–1241 **doi**: 10.1111/nph.18618

Key words: climate change, deciduous, evergreen, free-air CO_2 enrichment, photosynthesis, water-use efficiency.

Introduction

Stomata are small pores in vascular plant leaves that open and close to allow the passive exchange of gases between the atmosphere and a plant's internal surfaces. It has long been recognised that stomatal behaviour represents a fundamental compromise between carbon dioxide (CO₂) diffusion into the plant and simultaneous water loss (Cowan, 1982; Jones & Sutherland, 1991) such that maintaining stomatal opening, to allow CO_2 to diffuse into the sub-stomatal cavity, implies substantial diffusive water loss via transpiration. Stomatal opening is sensitive to both endogenous and external drivers (Brodribb

Summary

• Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (A_{net}) and minimise transpirational water loss to achieve optimal intrinsic water-use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO₂ (eCO₂), and whether it can capture differences in responsiveness among woody plant functional types (PFTs).

• We conducted a meta-analysis of tree studies of the effect of eCO_2 on iWUE and its components A_{net} and stomatal conductance (g_s). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf-air vapour pressure difference (D). We expected smaller g_s , but greater A_{net} , responses to eCO_2 in gymnosperms compared with angiosperm PFTs.

• We found that iWUE increased in proportion to increasing eCO_2 in all PFTs, and that increases in A_{net} had stronger effects than reductions in g_s . The USO model correctly captured stomatal behaviour with eCO_2 across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g_1) for the gymnosperm, compared with angiosperm, species.

- Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric $\rm CO_2$ conditions.

et al., 2009). Predicting stomatal responses to the environment is crucial as stomatal aperture determines both photosynthetic carbon gain and the rate of water loss in plants (Cowan & Farquhar, 1977), thus affecting intrinsic water-use efficiency (iWUE; the ratio of net photosynthetic CO₂ assimilation, A_{net} , to stomatal conductance to water vapour, g_s). Understanding the magnitude and drivers of iWUE in our changing climate is key to modelling and predicting global carbon and water cycles under a future climate (Walker *et al.*, 2020).

Atmospheric CO₂ concentration (C_a) directly affects stomatal aperture (Morison, 1987; Franks *et al.*, 2012). For example, Medlyn *et al.* (2001) reported that g_s was reduced by an average

© 2022 The Authors

New Phytologist © 2022 New Phytologist Foundation.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

of 21% in European forest trees with exposure to elevated CO_2 (eCO₂; +350 µmol mol⁻¹) across four types of CO₂ exposure facilities. Similarly, Ainsworth & Rogers (2007) reported g_s was reduced by an average of 19% in response to eCO₂ (+208 µmol mol⁻¹) in tree species growing in free-air CO₂ enrichment (FACE) experiments. This reduction in water use with rising CO₂ could have large-scale consequences, including increased resilience of vegetation to drought (Jiang *et al.*, 2021) and global increases in streamflow (Gedney *et al.*, 2006) contributing to increased greening in water-limited regions (Keenan & Williams, 2018).

However, not all species respond to eCO₂ to the same extent (Saxe et al., 1998), and there are species-specific stomatal responses to eCO₂ that are apparent among eCO₂ experiments (Saxe et al., 1998; Medlyn et al., 2001). For tree species, it has been observed that eCO₂-induced reductions in g_s are small or absent in gymnosperm species especially when compared with those in angiosperm species (Saxe et al., 1998; Medlyn et al., 2001; Klein & Ramon, 2019), which suggests that stomatal sensitivity to eCO_2 may vary with phylogeny (Brodribb et al., 2009; Lammertsma et al., 2011; Hasper et al., 2017). For example, in a meta-analysis of field-based chamber experiments on forest trees, Medlyn et al. (2001) found that the C_a response of g_s was significantly stronger in deciduous broadleaved angiosperm trees than in coniferous species (all gymnosperms), in the set of experiments examined, although they also noted that this difference was confounded with tree age. Recently, a meta-analysis conducted by Klein & Ramon (2019) also found a significant difference in stomatal responses to eCO₂ between gymnosperm and angiosperm species. In addition to g_s responses in isolation, there are also indications that iWUE (A_{net}/g_s) may respond differently to rising CO₂ between angiosperm and gymnosperm species. For example, it has been suggested that iWUE in gymnosperms may have a stronger positive response to eCO₂, compared with angiosperms, as a result of differences in leaf structure (Niinemets et al., 2011).

If there are indeed differences between angiosperm and gymnosperm, or more specifically between plant functional types (PFTs), in their stomatal responses to rising C_a , then it is important to capture these differences in vegetation models. Many vegetation models still employ a stomatal model of the form proposed by Ball et al. (1987), which was shown by Medlyn et al. (2011) to be consistent with the optimal stomatal theory put forward by Cowan & Farquhar (1977). This theory hypothesises that stomata behave in a manner that maximises CO₂ fixation through photosynthesis while minimising water loss via transpiration, by maximising the expression, $A_{net} - \lambda E$, where A_{net} is photosynthesis (μ mol CO₂ m⁻² leaf s⁻¹), E is transpiration (mol H₂O m⁻² leaf s⁻¹) and λ (µmol CO₂ mol⁻¹ H₂O) represents the marginal 'carbon cost of water use' to the plant (cf. Cowan & Farquhar, 1977). That is, the optimal stomatal conductance is that which maximises

 $\max(A_{net} - \lambda E)$ Eqn 1

Medlyn *et al.* (2011) showed that this theory, when coupled to a biochemical model of photosynthesis (Farquhar & von

Caemmerer, 1982), results in an expression for g_s (mol H₂O m⁻² leaf s⁻¹) that can be approximated as follows, also known as the unified stomatal optimisation (USO) model:

$$g_{\rm s} \approx 1.6 \left(1 + \frac{g_1}{\sqrt{D}}\right) A_{\rm net} / C_{\rm a}$$
 Eqn 2

where g_1 (kPa^{0.5}) is a collection of constant terms including an inverse dependence on λ , D is the leaf-air vapour pressure difference (kPa), 1.6 is the apparent ratio of the diffusion coefficients of water vapour and CO2, and gs and Anet are the functions of D and air temperature, T_{air} , as well as other physiological parameters. Note that here λ is defined according to Hari et al. (1986), and is the inverse of the original definition in Cowan & Farquhar (1977) and Medlyn et al. (2011). In addition, the empirical intercept term, go, added by Medlyn et al. (2011) is unnecessary here and is omitted for simplicity. As the marginal cost of water λ is unknown, the parameter g_1 is obtained in practice by fitting to data. Assuming the model parameter g_1 is constant, and under environmental conditions producing constant D, the USO predicts that the $A_{\rm net}/g_{\rm s}$ ratio, that is the intrinsic WUE (iWUE = A_{net}/g_s) should be proportional to the atmospheric CO2 concentration (Barton et al., 2012). This model has been used to predict stomatal responses successfully in several CO₂ manipulation experiments (e.g. Barton et al., 2012; De Kauwe et al., 2013; Gimeno et al., 2016).

There are several ways in which a differential response of g_s to C_a could be captured by the USO model. First, there may be a difference in the T_{air} or D at which measurements were made. The relative responsiveness of A_{net} and g_s can vary within an experiment depending on T_{air} or D. For example, A_{net} is more responsive to eCO_2 at high leaf temperatures (Long, 1991). Additional complications may occur if D differs between treatments. Barton et al. (2012) showed that iWUE was proportional to eCO_2 in *Eucalyptus saligna*, once treatment differences in D were taken into account. They also showed that the responsiveness of g_s to eCO₂ decreased at high D, when high T_{air} meant that photosynthesis was more responsive for biochemical reasons (Long, 1991). These mechanisms will be captured in the USO model, which incorporates an effect of D, especially when coupled to a photosynthetic biochemistry model that captures interactions with T_{air} and C_a (e.g. Duursma, 2015).

Second, a substantial increase in iWUE in response to eCO_2 can occur as a strong increase in A_{net} , with a marginal reduction in g_s , or a marginal increase in A_{net} and a strong reduction in g_s . Photosynthetic responses may be stronger in species that have a low g_1 and consequently a low intercellular CO₂. There is strong evidence that gymnosperm trees have a lower g_1 than angiosperm trees (e.g. Lin *et al.*, 2015), so this is a plausible mechanism for species or PFT differences. In addition, photosynthetic responses to eCO₂ are expected to be larger in species with thicker or denser leaves because thicker leaves have greater diffusive limitation of the transport of CO₂ to the sites of carboxylation, and so respond more positively to eCO₂ than species with thinner leaves (Niinemets *et al.*, 2011). This mechanism would explain a

difference between angiosperms and gymnosperm PFTs, but would also suggest a difference in responsiveness between evergreen and deciduous angiosperms, since evergreen species typically have thicker leaves (Wright *et al.*, 2004; Poorter *et al.*, 2009; Kattge *et al.*, 2011). These mechanisms would be captured in the model by specifying a different value of g_1 across species or PFTs.

Finally, it is also possible that the USO model does not accurately capture responses to eCO_2 in gymnosperm PFTs unless it is assumed that the slope parameter g_1 changes with treatment (i.e. g_1 is a function of C_a). For example, Uddling & Wallin (2012) found no decrease in g_s at eCO_2 in *Picea abies*. They found that the response of iWUE was considerably less than predicted from the optimal stomatal theory (Eqn 2) and that the slope parameter g_1 increased from 1.45 to 2.44 (kPa^{0.5}) between aCO_2 and eCO_2 treatments. This mechanism could potentially be captured in the model by specifying g_1 as a function of C_a .

In this paper, we examined the effect of eCO_2 on iWUE, g_s and Anet responses across a diverse set of field-based forest and tree plantation experiments of deciduous and evergreen angiosperms and evergreen gymnosperms. We focused on experiments with sufficient data available to evaluate the USO model (Eqn 2). A series of FACE and whole-tree chamber (WTC) experiments over the last two decades have contributed detailed datasets across a variety of species that include larger and older trees and ecosystem-scale experiments which provide the opportunity to re-examine stomatal responses to eCO2 (Ellsworth, 1999; Gunderson et al., 2002; Bernacchi et al., 2003; Uddling et al., 2009; Bader et al., 2010, 2016; Gimeno et al., 2016). We used these data to test whether there are differences in responsiveness of gs and iWUE between different PFTs, and to utilise the optimal stomatal theory to explore the reasons for these differences. We also use the data to test a number of other hypotheses arising from optimal stomatal theory. For example, the theory implies that the parameter g_1 will be lowest in plants with a relatively high marginal carbon cost of water and therefore low hydraulic conductance (Medlyn et al., 2011). Previous research shows that branch-level hydraulic conductance is relatively low in gymnosperms (Becker et al., 1999), compared with angiosperms, and may decline with tree age (Hubbard et al., 1999), suggesting that gymnosperms and older trees are likely to have a relatively high marginal carbon cost of water.

We hypothesised that (1) following USO, iWUE would increase in proportion to the CO₂ increase similarly across all species; (2) on average, g_s would decrease and A_{net} would increase in response to eCO₂, with A_{net} being the principal driver for increased iWUE; (3) the magnitude of change in A_{net} to eCO₂ would depend on *D*, with the response of A_{net} to eCO₂ larger at high *D*; and (4) the magnitude of change in both A_{net} and g_s to eCO₂ would depend on PFT, with A_{net} being more responsive and g_s being less responsive in evergreen gymnosperms, when compared with angiosperm PFT. We separate angiosperms into evergreen and deciduous groups to further test for differences in responsiveness associated with leaf morphology. We anticipated that differences in stomatal responses between PFTs (evergreen and deciduous angiosperm and evergreen gymnosperm) could be captured through the USO model, which accounts for variability in *D* and can be parameterised with different values of g_1 for different PFTs. We predicted that the optimal stomatal theory predicts that g_1 values will be lower in gymnosperms (Lloyd & Farquhar, 1994; Medlyn *et al.*, 2011; Lin *et al.*, 2015), compared with angiosperms, and older trees, compared with younger trees.

Materials and Methods

Datasets

To fit the optimal stomatal model, we need detailed individual leaf gas exchange measurements with supporting environmental data such as photosynthetic photon flux density (PPFD), leaf temperature (T_{leaf}), T_{air} and D. Some datasets, particularly those using open top chambers or branch bag (BB) approaches, were also used by Medlyn *et al.* (2001). We added available datasets from more recent major field-based eCO₂ experiments on field-grown plantation or forest trees, which largely used FACE or WTC approaches. Overall, 20 distinct datasets were obtained, covering 17 tree species at 16 separate field-based eCO₂ experiments across 13 study sites (Table 1).

The experiments differed in a number of ways, including but not limited to site climate, CO_2 fumigation treatment and experimental duration (Tables 1, 2). We selected data for which CO_2 concentration was the only treatment variable, and we excluded data collected under additional manipulative treatments such as nutrient, drought, temperature or ozone treatments. There were two factors common to all experiments: the experiments were conducted on freely rooted trees and all studies included at least two growing seasons. Medlyn *et al.* (2001) demonstrated high variability in stomatal responses in experiments running for less than half a year, particularly for those in pots. The one exception to this was the second Swiss Canopy Crane experiment, with *P. abies*, for which suitable data were only available from the initial 2 months after the start of CO_2 fumigation (Table 1). All experimental approaches were given equal weight in the meta-analysis.

The 17 study species were split into three PFTs: evergreen gymnosperm forest (EGF; n = 3), evergreen angiosperm forest (EAF; n = 3) and deciduous angiosperm forest (DAF; n = 11). The EAF PFT only included species of the Eucalyptus genus. In total, 3661 leaf gas exchange measurements were obtained. In each experiment, plants were grown at two atmospheric CO₂ concentrations which, across the experiments, had means of 383 and 628 µmol mol⁻¹, respectively (Table 2; Fig. S1). The experiments took place between 1993 and 2019 (or, in global average ambient C_a terms, from 357 to 411 µmol mol⁻¹), with the experimental duration ranging from 1 to 12 yr. All datasets consisted of either instantaneous spot measurements of A_{net} and g_s or CO2 response curves (i.e. A-Ci curves), from which the initial point at treatment CO2 level was taken. Measurements were made using several gas exchange systems, with the Li-6400 as the most common instrument (Li-Cor Inc., Lincoln, NE, USA). The datasets were split into three discrete categories of tree age: aged (> 80 yr old; n = 5), mature (10 < age < 80 yr old; n = 6) and sapling (< 10 yr old; n = 9) in addition to two categories of water condition (i.e. irrigated (n = 6) or non-irrigated (n = 14)).

Name	Species	PFT	Year(s) of sampling	Experimental set up	Longitude	Latitude	MAT (°C)	Plant age	Plant age category	Water condition category	Year(s) of CO ₂ exposure	Number of replicates	Primary reference
Glencorse_1, UK*	Picea sitchensis	EGF	1993	BB	−3.12°W	55.31°N	8.3	16	Mature	Not irrigated	4	9	Barton &
Flakaliden_1, Sweden*	Picea abies	EGF	1994–1995	BB	19.27°E	64.07°N	2.4	29	Mature	Not irrigated	4	Q	Roberntz & Stockfors
Duke FACE, USA (NC)	Pinus taeda	EGF	1998–2006	FACE	_79.09°W	35.97°N	14.8	15–23	Mature	Not irrigated	4-12	m	(1998) Ellsworth
Swiss Canopy Crane_2,	Picea abies	EGF	2009	webFACE	7.30°E	47.28°N	11.7	100	pio	Not irrigated	2 months	5	Bader
Javitzenanu Flakaliden_2, Sweden	Picea abies	EGF	2003–2004	WTC	19.27°E	64.07°N	2.4	45	Mature	Not irrigated	> 2	c	Uddling &
Glencorse_2, UK*	Betula pendula	DAF	1994	OTC	—3.12°W	55.31°N	8.3	0-4	Sapling	Not irrigated	4	9	Rey &
Gribskov, Denmark*	Fagus sylvatica	DAF	1996	BB	12.16°E	55.59°N	8.8	36	Mature	Not irrigated	2	4	Sigurdsson
ORNL, USA (TN)	Liquidambar	DAF	1999,	FACE	–84.20°W	35.54°N	14.8	20	Mature	Not irrigated	1,9 and 10	2	et al. (2002) Warren
Swiss Canopy Crane_1,	styracrifua Quercus petraea	DAF	2001 2001	webFACE	7.30°E	47.28°N	11.7	100	pio	Not irrigated	~	m d	et al. (2012) Bader
swilzeriand BIFoR FACE, UK	Fagus syivatica Quercus robur	DAF	2019	FACE	-2.03°W	52.80°N	6	175	pio	Not irrigated	4	n m	et al. (2010) Gardner
Rhinelander, USA (WI)	Betula	DAF	2005–2006	FACE	—89.05°W	45.06°N	9	6-8	Sapling	Not irrigated	7–8	ĸ	et al. (2021) Uddling
	papyritera Populus	DAF										m	et al. (2009)
POPFACE, Italy	tremuloides Populus nigra Populus	DAF DAF	2000	FACE	11.48°E	42.22°N	14	-	Sapling	Irrigated	~	6 12	Bernacchi et al. (2003)
Gunnarsholt, Iceland	euramericana Populus alba Populus	DAF DAF	1996	WTC	-20.13°W	6351°N	5.2	4	Sapling	Irrigated	m	4 12	Sigurdsson
Richmond_1, Australia	tricnocarpa Eucalyptus	EAF	2008–2009	WTC	150.44°E	–33.36°S	17.2	2	Sapling	Irrigated	2	ſ	et al. (2002) Barton
Richmond_2, Australia	Eucalyptus Eucalyptus	EAF	2010–2011	WTC	150.44°E	–33.36°S	17.2	15 months	Sapling	Irrigated	15 months	e	Quentin
EucFACE, Australia	Eucalyptus tereticornis	EAF	2013	FACE	150.44°E	-33.37°S	17.2	80	old	Not irrigated	6 months	m	Gimeno et al. (2016)

© 2022 The Authors New Phytologist © 2022 New Phytologist Foundation.

New Phytologist

					Measurement co	nditions			
				Total no. data	DPED	Temnerature		Mean C (μmol m	02 ol ⁻¹)
Experiment name	Species	Equipment	Measurement type	points	$(\mu mol m^{-2} s^{-1})$	(C)	D (kPa)	aCO ₂	eCO ₂
Glencorse_1, UK*	Picea sitchensis	ADC LCA3 + light source	A-Ci	116	800	18–35		326	657
Flakaliden_1, Sweden*	Picea abies	LI-Cor 6200 + light source	A-C	63	1000	5–24 (T _{air})	0-1.1	343	703
Duke FACE, USA (NC)	Pinus taeda	Li-Cor 6400 + light source	A-C _i and spot measurements	152	1500	10–31	0.69-2.95	364	563
SCC_2, Switzerland	Picea abies	Li-Cor 6400XT + light source	A-Ci	83	663–1804	I	0.4–7.1	369	527
Flakaliden_2, Sweden	Picea abies	Custom made gas exchange system	Automated cuvette	2010	1000–1995	8.5–37	0.26–6.3	342	665
Glencorse_2, UK*	Betula pendula	Li-Cor 6200 + home made light source	Spot measurements	135	1200	18.4–32.8	0.8-3.0	344	701
Gribskov	Fagus sylvatica	Ciras-1 + light source	Spot measurements	16	1000	25.6–29	1.7–3.2	347	700
ORNL, USA (TN)	Liquidambar styraciflua	Li-Cor 6400XT	A-C	115	1800	I	0.8–3.4	372	554
SCC_1, Switzerland	Quercus petraea	Li-Cor 6400 + light source	Spot measurements	68	1000	23–27	0.7–1.86	380	550
	Fagus sylvatica			98	1000	23–28	0.5-1.7	380	550
BIFoR FACE, UK	Quercus robur	Li-Cor 6800 + light source	A-Ci	43	1500	24–28	1.07–2.3	383	527
Rhinelander, USA (WI)	Betula papyrifera	Li-Cor 6400 + light source	Spot measurements	75	1800	23–38	0.9–3.8	365	557
	Populus tremuloides			74	1800	22–37	0.59-4.1	366	560
POPFACE, Italy	Populus nigra	Li-Cor 6400	Spot measurements	35	870-2000	21–34	0.84-2.88	368	565
	Populus euramericana			55	847–2000	21–35	0.57-2.7	355	562
	Populus alba			51	834-2000	25–35	0.68–3.4	356	566
Gunnarsholt	Populus trichocarpa	Li-Cor 6200 or Ciras-1	Spot measurements	44	1200	6–26	0.38–1.4	352	702
Richmond_1, Australia	Eucalyptus saligna	Li-Cor 6400XT + light source	Spot measurements	197	1000–1800	15-43	0.5–6.47	384	625
Richmond_2, Australia	Eucalyptus globulus	Li-Cor 6400XT + light source	Spot measurements	103	1800	19–39	0.8-4.9	390	627
EucFACE, Australia	Eucalyptus tereticornis	Li-Cor 6400XT + light source	Spot measurements	132	1800	18–39	0.7–6.2	398	544
'Experiment name' refer	s to the facility and locatio	n of the dataset. 'Equipment' refers to the	gas exchange equipment used t	to collect the	e data. 'Measurem	ient type' refers	to the measu	rements	
conducted in each datas	set. PPFD refers to photosy	nthetic photon flux density. Temperature	efers to leaf temperature (T_{leaf})	unless othe	rwise stated and is	shown as the ra	ange at which	_	
measurements were tak	en. D refers to the leaf-air	vapour pressure difference and is shown a	s the range at which measurem	ents were ta	ken. Mean CO ₂ r	efers to the mea	n CO ₂ treatm	ient in eit	her
the ambient CO ₂ (aCO ₂ * Experiments for which	 or elevated CO₂ (eCO₂) data were included in Me 	plots at each site. dlvn <i>et al.</i> (2001).							

14698

23, 4, Downloaded from https://nph.onlinelibtrary.wiley.com/doi/10.1111/nph.1868 by Statents Beredning, Wiley Online Library on [16/02/2023]. See the Terms and Conditions (https://onlinelibtrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; 0A articles are governed by the applicable Creative Commons License

Details of each experiment and measurement conditions are given in Tables 1, 2 respectively. Further information on each experiment can also be found in the individual references provided in Table 1.

The datasets were collected across prevailing environmental conditions which included a range of light (PPFD) and *D* conditions. As our hypotheses centre on *D* and not PPFD, we filtered out data measured at PPFD < 800 µmol m⁻² s⁻¹. The majority of our datasets were measured at a controlled value of saturating light; only two studies used variable light and were therefore subject to filtering (Bernacchi *et al.*, 2003; Uddling *et al.*, 2009). In the one dataset where *D* was not reported (Roberntz & Stockfors, 1998), we calculated a lower bound to *D* using data on air temperature (*T*_{air}) and relative humidity. In all other cases, leaf-to-air-*D* was used.

Data analysis

We first conducted a standard meta-analysis of the data. We then separated data into D bins to conduct a second meta-analysis accounting for differences in D among treatments and experiments. Finally, we fit the USO model to the data and explored model fits and fitted parameters.

For each experiment, we compiled the A_{net} , g_s , iWUE, C_a , D and T_{leaf} data and calculated the means, standard deviation and sample size under elevated and ambient (control) CO2 plots using the experiment replicates stated by each individual study. We calculated overall effects of eCO₂ in a weighted, mixedeffects model using the rma.mv function from the R package METAFOR (Viechtbauer, 2010). Plant functional type was a fixed factor and the potential dependency of studies within the same site (e.g. different species, different treatments) was accounted for by including study site and species as random effects. All response variables were log-transformed before analysis so that statistics investigate a potential power law relation. To quantify and standardise the CO₂ response ratios across varying ranges of CO_2 manipulation, we report data as a relativised value of CO_2 responses, that is a CO₂ normalised response ratio (r_c) as follows:

$$r_{\rm c} = \frac{\log_{\rm e}\left(\frac{X_{\rm e}}{X_{\rm a}}\right)}{\log_{\rm e}\left(\frac{C_{\rm e}}{C_{\rm a}}\right)}$$
 Eqn 3

where X_e and X_a represent the values of the response variables (iWUE, g_s and A_{net}) at ambient or lower CO₂ (C_a) and elevated or higher CO₂ (C_e) respectively. A value of $r_c = 1$ represents direct (linear) proportionality between a variable's CO₂ response and the change in CO₂. Values of $r_c \neq 1$ indicate sub- or superlinear responses, depending on whether $r_c < 1$ or $r_c > 1$ respectively. As $r_c \rightarrow 0$, the treatment effect approaches zero (i.e. $X_e = X_a$). We report uncertainties as 95% confidence intervals (CI) on r_c as calculated by the rma.rv function and significant responses were recognised if the CI did not overlap zero. Effect size measurements from individual studies in the meta-analysis were weighted by the inverse of the variance (Eqn 4).

$$\operatorname{var} = \frac{\operatorname{SD}_{C_{\mathrm{e}}}^{2}}{n_{C_{\mathrm{e}}}\overline{X}_{C_{\mathrm{e}}}^{2}} + \frac{\operatorname{SD}_{C_{\mathrm{a}}}^{2}}{n_{C_{\mathrm{a}}}\overline{X}_{C_{\mathrm{a}}}^{2}}$$
Eqn 4

New

Phytologist

where SD represents the standard deviation, n represents the number of experimental replicates, \overline{X} represents the mean, and $C_{\rm e}$ and $C_{\rm a}$ represent elevated and ambient $C_{\rm a}$. To examine the effect of D on the response ratios, we binned observations into 0.5 kPa bins of D for each species and dataset within measurement campaigns. The bin width was chosen such that it allowed sufficient data per bin (n = 3) to calculate a mean response within each D bin without losing resolution of the D response. For this analysis, we only included D bins that overlap among experiments (0.75–2.75 kPa). We constructed mixed-effects models for each PFT with sensitivity to CO₂ as the dependent variable. The D bin was taken as a fixed effect and study site and species as random effects. We report the statistically significant predictors.

We fitted the USO model (Eqn 2) to the measurements of gas exchange for each tree species and dataset within each measurement campaign. Note that we here do not use an intercept (g_0) in the model as it can bias the g_1 value (Duursma *et al.*, 2019). We obtained R^2 values for each study site and species by comparing the fitted predicted values to the observed values. To test for significant differences in g_1 (Eqn 2) between CO₂ treatments, we fitted the model using a dummy variable for treatment level. To test for significant differences in g_1 among PFT, tree age and water condition (as defined in Table 1), we constructed mixedeffects models using the rma.mv function from the R package METAFOR (Viechtbauer, 2010). Plant functional type, tree age category and water condition category were fixed effects and study site and species were random effects.

All analyses in this study were conducted using R v.4.0.2 (R Core Team, 2022). The datasets are publicly available (see 'Data availability').

Results

Mean responses to eCO_2

We found that eCO₂ significantly increased plant iWUE for all vegetation types (P < 0.001, Fig. 1a–c showing mean $\pm 95\%$ CIs). We could not disprove the hypothesis that the magnitude of the iWUE response is proportional to increase in CO₂; the mean r_c was not significantly different from 1 (overall mean $r_c = 0.89$ (95% CI: 0.79, 1.01)). This proportionality did not differ significantly among vegetation types (Table 3, 95% CIs = 0.78–1.27 for EAF, 0.73–1.02 for DAF, and 0.68–1.08 for EGF), supporting the prediction of the USO model that iWUE increases in proportion to the CO₂ increase, across all PFTs.

Across the range of eCO₂ experiments we analysed, stomatal response to eCO₂ had an overall mean response that was not significantly different from zero (mean $r_c = -0.09$ (95% CI: -0.26, 0.08)), indicating no mean reduction in g_s . Looking at the PFTs individually, there was a significant reduction in g_s with eCO₂ in EAF trees (P < 0.05, mean $r_c = -0.46$, (95% CI: -0.85,

Fig. 1 Estimated effect of eCO_2 on the mean response ratios, that is, a CO_2 normalised response ratio (r_c) of intrinsic water-use efficiency (iWUE; a–c), stomatal conductance (g_s ; d–f) and photosynthesis (A_{net} ; g–i) across different species and dataset (see Table 1). Each data point represents the mean effect size (overall log response, Eqn 3) of an individual study and species; error bars are the 95% confidence intervals (CI) across the true replicates (n = 2-12). In each plot, the mean (summary) effect size of all the studies for each plant functional type (PFT) is depicted at the bottom. We interpret the CO_2 effect at the 1.0 line (vertical dashed line in a–c) to be in proportion to the CO_2 increase (see main text) and the zero line (vertical dotted line in d–i) represents no significant CO_2 effect (i.e. no response reference line). Arrow in (i) represents data point that extend beyond the limits of the plot. Colours refer to PFT with green as evergreen angiosperm (EAF), blue as deciduous angiosperm (DAF) and orange as evergreen gymnosperm (EGF). The mean response ratios represent, on average, an increase in CO_2 from 383 to 628 µmol mol⁻¹.

Table 3 Between-group heterogeneity for the effect of eCO_2 treatment on iWUE, A_{net} and g_s .

Variable	Q _M	P-value
iWUE	0.77	0.67
g _s	4.24	0.12
A _{net}	1.99	0.37

Plant functional type (PFT; i.e. DAF, EAF and EGF) was used as a moderator in the multivariate linear mixed-effects model. Results were based on log-transformed response ratios. We tested whether plant responses to iWUE, g_s and A_{net} under eCO₂ were different between PFT. Q_M refers to the test statistic for the omnibus test of coefficients of PFT group effect, with P < 0.05 indicating significant differences between the PFTs. Response variables are as follows: intrinsic water-use efficiency (iWUE, mol CO₂ mol⁻¹ H₂O), stomatal conductance (g_s ; mol H₂O m⁻² s⁻¹) and photosynthetic rate (A_{net} ; µmol m⁻² s⁻¹) response ratios.

-0.06); Fig. 1g), but neither DAF nor EGF showed significant decreases in g_s with eCO₂ (mean $r_c = -0.05$ (95% CI: -0.23, 0.14) and 0.13 (95% CI: -0.37, 0.63) respectively; Fig. 1h,i).

However, a heterogeneity test (Viechtbauer, 2010) did not indicate a significant difference among PFTs in stomatal responses to eCO_2 (Table 3). As can be seen in Fig. 1, and in the CI ranges reported earlier, there is considerable variability in stomatal response across experiments within PFTs, meaning that there is relatively little power to detect differences among PFTs. Overall, however, this analysis does not confirm the hypothesised pattern of stronger g_s responses in angiosperm species than gymnosperm species.

Across all experiments, photosynthesis increased strongly under eCO₂ (overall response of $r_c = 0.82$, with 95% CI of 0.64–1.01; P < 0.001, Fig. 1g–i). The largest average photosynthetic response to eCO₂ occurred in the EGF (mean $r_c = 1.1$ (95% CI: 0.39, 1.79)), whereas this response in EAF and DAF was marginally lower (mean $r_c = 0.63$, (95% CI: 0.26, 1.00) and 0.81, (95% CI: 0.64, 0.97), respectively). Similar to g_s, however, statistical analysis did not indicate significant differences in the photosynthetic response to eCO₂ among PFTs (Table 3).

Table 4 Statistical output from the meta-analysis of the effect of leaf-air vapour pressure difference, *D*, on the intrinsic water-use efficiency (iWUE, mol CO₂ mol⁻¹ H₂O), stomatal conductance (g₅; mol H₂O m⁻² s⁻¹) and photosynthetic rate (A_{net} ; µmol m⁻² s⁻¹) response ratios.

	iWUE (r mol ⁻¹ F	$rac{1}{2}$ mol CO ₂ I ₂ O)	g _s (mol H₂O m⁻	⁻² s ⁻¹)	A _{net} (μmol m ⁻² s ⁻¹)	
PFT	Slope	P-value	Slope	P-value	Slope	P-value
DAF EAF EGF	0.22 0.22 0.13	< 0.001 0.075 0.021	0.14 0.50 –0.18	0.38 0.006 0.03	0.41 0.72 –0.10	< 0.001 < 0.001 0.24

Table shows the slope response to *D* and respective *P*-values among plant functional type (PFT) that are shown in Fig. 2. Significant *P*-values (P < 0.05) are shown in bold.

Did D affect responses to eCO_2 ?

Variability across experiments in stomatal responses to eCO_2 may potentially be related to differences in the range of *D* in each experiment (Fig. S2). We tested how responses to eCO_2 vary with *D* (Table 4; Fig. 2). Our expectation was that the response of iWUE to eCO_2 would not vary with *D*, whereas the eCO_2 response of A_{net} would increase, and the eCO_2 response of g_s would decrease, with increasing *D*. Our results differed from these expectations in several ways. Fig. 2a shows the CO_2 induced increase in iWUE generally increased with *D* across all PFTs (Table 4). More specifically, the effect of *D* on the iWUE response to eCO_2 was statistically significant for DAF (P < 0.001) and EGF (P < 0.05), and only EAF behaved in the way we expected.

We also found that the effect of D on the responses of A_{net} and g_s to eCO₂ differed among the three PFTs (P < 0.05; Fig. 2b,c; Table 4). For EAF, we found a significant effect of D on the g_s response to eCO₂ (P < 0.05; i.e. increase in D led to a smaller reduction in g_s in response to eCO₂), and a significant effect of D on the CO₂ response of A_{net} (P < 0.001). These responses cancelled each other out to yield no change in the CO₂ response of iWUE (Fig. 2a). For DAF, we found a significant positive effect of D on the CO₂ response of g_s , yielding an overall positive eCO₂ effect on iWUE. In contrast, for EGF, the effect of D on the CO₂ response of iWUE resulted from a significant effect of D on the A_{net} response to eCO₂ (P < 0.05), and no effect on the A_{net} response to CO₂.

Optimal stomatal model

To facilitate the interpretation of these differences among PFTs, we fitted the USO model (Eqn 2) to data from aCO_2 and eCO_2 treatments in all experiments (Figs 3, S3). The fitted model generally provided good explanatory power (median R^2 of 0.70). Fitted values of the g_1 parameter ranged from 1.4 to 7.9 kPa^{0.5}. The g_1 parameter was highest in the poplar species *Populus nigra* (7.9 kPa^{0.5} (with 95% CI of 6.3–9.4) and 6.7 kPa^{0.5} (with 95%)

CI of 5.6–7.9) for eCO₂ and aCO₂ respectively) and lowest in *P. abies* (1.4 kPa^{0.5} (with 95% CI of 1.3–1.49) and 1.45 kPa^{0.5} (with 95% CI of 1.42–1.49) both aCO₂ treatments in Flakaliden_1 and Flakaliden_2 respectively). We found that g_1 was significantly lower in EGF species than in DAF and EAF species (P < 0.0001, Fig. 3; Table S1). A lower g_1 value is suggested to lead to a larger response of A_{net} . In support of this, we found that the EGF species had both the lowest g_1 and the highest photosynthetic response to eCO₂.

For 17 of the 20 datasets, there was no significant difference between the g_1 parameters estimated for aCO₂ and eCO₂. However, we found that for all three datasets from boreal sites (*P. abies* trees measured at the Flakaliden site in Northern Sweden and *Populus trichocarpa* measured at the Gunnarsholt site in Iceland), estimated g_1 parameters were significantly higher under eCO₂. In addition, we found that g_1 was significantly higher in species that received supplemental water (P < 0.001) and decreased significantly with tree age (P < 0.05; Table S1).

Discussion

We quantified the relative responses of iWUE, g_s and A_{net} across a set of manipulative experiments on large trees (Table 1). We found that the mean response of iWUE was approximately proportional to eCO₂, as predicted by the USO model, and this response was similar across the three woody PFTs examined in the study. The results also showed that D had a significant effect on these responses to eCO₂ in angiosperms but not in gymnosperms, suggesting differing sensitivities to D between these PFTs. The use of the USO model allows these differences to be taken into account. Consistent with previous analyses (Medlyn *et al.*, 2011; Gimeno *et al.*, 2016), we found g_1 was not altered by eCO₂ in most experiments, implying that the optimal stomatal theory is largely successful in predicting the coupling of carbon uptake and water loss in field and forest grown trees under eCO₂. Differences in the response of g_s to CO_2 among PFTs were not statistically significant, in contrast to previous studies, but the tendency for a smaller response in gymnosperm species could be captured in the USO model through the lower g_1 values, which drive a larger A_{net} response.

Does iWUE respond in proportion to eCO₂?

The increases in iWUE with eCO_2 are comparable to those reported in meta-analyses of FACE experimental data in Ainsworth & Long (2005; mean $r_c = 1.2 \pm 0.33$). The results are also consistent with a meta-analysis of tree-ring isotopic data consisting of 422 tree species (Adams *et al.*, 2020), although experimental data of tree-ring isotopic analyses in two FACE experiments suggest much higher iWUE responses (Battipaglia *et al.*, 2013; mean $r_c = 1.4$ and 1.3 for Duke University and Oak Ridge National Laboratory, ORNL, respectively). A general review, compiling several different strands of evidence, concluded that most supported an r_c for iWUE close to one (Walker *et al.*, 2020). We conclude that the proportional increase in iWUE with eCO₂ is a reliable response which supports the

Fig. 2 The effect of *D* on the mean log response ratios for the CO_2 effect (r_c) on (a) intrinsic water-use efficiency (iWUE), (b) stomatal conductance (g_s) and (c) net photosynthesis (A_{net}) across the datasets. Each data point shows the mean response for each 0.5 kPa bin (*D* range of 0.75–2.75) per species per dataset. Symbols refer to dataset and colours refer to plant functional type (PFT) with green as evergreen angiosperm (EAF), blue as deciduous angiosperm (EAF) and orange as evergreen gymnosperm (EGF). Shaded areas are 95% confidence intervals.

optimisation theory that proposes A_{net} and g_s are well coupled to maximise C gain and minimise water loss to the plant (Medlyn *et al.*, 2011; De Kauwe *et al.*, 2013; Walker *et al.*, 2020). This result can therefore allow the prediction of the response of g_s to eCO₂ from the A_{net} response and vice versa.

Which is the primary response variable, A_{net} or g_s ?

We found increases in iWUE with eCO_2 were predominantly due to increased A_{net} rather than reductions in g_s . This conclusion is consistent with results from several previous meta-analyses of

Fig. 3 Fitted parameter with 95% confidence intervals for the unified stomatal optimisation (USO) model (g_1) for each CO₂ treatment per species and dataset, grouped by plant functional type (PFT). Colours indicate CO₂ treatment, with blue for ambient CO₂ (aCO₂) and red for elevated CO₂ (eCO₂). Symbols refer to the PFT with diamonds as deciduous angiosperm (DAF), squares as evergreen angiosperm (EAF) and circles as evergreen gymnosperm (EGF). *, Significant differences in g_1 between CO₂ treatments.

physiological responses of tree species, although the statistical significance of the reduction in g, varies across studies. Curtis & Wang (1998) found an increase in A_{net} of +54% compared with a non-significant reduction in g_s of -11%. Medlyn *et al.* (2001) found a statistically significant reduction of -14% in g_s compared to an increase in A_{net} of 51% (Medlyn *et al.*, 1999). Similarly, Ainsworth & Rogers (2007) found a statistically significant reduction of -20% in g_s compared with an increase in A_{net} of +45% in tree species. Our results, which include many additional high-quality datasets, show an even stronger influence of A_{net} . We express our findings as a relative response ratio to standardise for the difference in treatment CO₂ concentrations used in different experiments. We find a mean increase (r_c) of 0.82 in A_{net} and no statistical change in g_s (mean reduction of -0.09).

However, we also found the responses of both A_{net} and g_s to eCO₂ can be variable within an experiment, as a result of differences in environmental variables such as D and light. Barton *et al.* (2012) confirmed this finding experimentally at both leaf and whole-canopy scales in *E. saligna* trees and found photosynthetic responses to eCO₂ increased with increases in D. We observed differences in D sensitivity among PFTs for the responses of A_{net} and g_s to eCO₂ (Fig. 2). Changes in A_{net} due to eCO₂ were more responsive to D in angiosperms than in gymnosperms, suggesting a higher sensitivity of physiological processes to D in angiosperms compared with gymnosperms. Our findings show that D needs to be considered when comparing studies where D differs, supporting the use of the USO model to account for differences. It also highlights the limitations on inferences drawn in previous research regarding gymnosperm vs

1238 Research

angiosperm responses, as previous studies have generally not accounted for either differences or sensitivity in D when assessing the response of stomata to eCO₂. A further environmental variable that can alter the responses of both A_{net} and g_s is light. A limitation of our study is that we analysed only data with high PPFD (i.e. > 800 PPFD) to allow for comparisons between datasets. Under these conditions, we found strong photosynthetic responses to eCO₂, which may be diminished under lower PPFD (Bernacchi *et al.*, 2003; Uddling *et al.*, 2009; Bader *et al.*, 2016).

To avoid generalisations based on the mean responses of iWUE, Anet and gs due to the effects of differences in D, we recommend using the USO model to normalise iWUE to account for any effect of D. Consistent with the study hypotheses, we found that the optimal stomatal model successfully predicted g_s under both aCO_2 and eCO_2 and the g_1 parameter remained unchanged in response to eCO2 (Gimeno et al., 2016), with three exceptions (Fig. 3). The three cases where CO_2 treatment significantly affected g_1 were the two *P. abies* datasets at the Flakaliden site (northern Sweden) and P. trichocarpa at the Gunnarsholt site (Iceland). The two Flakaliden datasets came from two very different experiments (BB and WTC) carried out a decade apart, suggesting that although the response differs from other experiments, it may be a real effect at the Flakaliden site. The forest soil at Flakaliden is nutrient impoverished (Bergh et al., 1999), so nutrient limitations at the site may have had an effect on leaf physiology at the Flakaliden site and may explain the unusual response observed. This explanation is corroborated by the fact the g_1 parameter remained unchanged with eCO₂ in P. abies growing on fertile soil at the Swiss Canopy Crane site (Bader *et al.*, 2013). However, other sites also have highly nutrient-limited soils, including the EucFACE experiment. Alternatively, it is notable that all three exceptions were from boreal study sites, suggesting that trees in boreal climates may deviate in responses of stomata to eCO_2 . However, we only had three suitable datasets from boreal trees; it would be valuable to test this discrepancy in other boreal sites.

Other limitations of the database available for this study are that we only had one genus within the EAF group, all from one geographical location, and no data at all from the tropics. This motivates future experiments with a focus on a wider range of boreal species in addition to more EAF species, from different regions such as in tropical forests, to confirm the stomatal responsiveness with eCO_2 of these PFTs.

Overall, this study found that the optimal stomatal model was successful in characterising the response to eCO_2 across a wide range of experiments and suggests that the coupling between A_{net} and g_s remained unchanged to eCO_2 Hence, we can recommend that land surface models would benefit from using the g_1 parameter to characterise the behaviour of stomata to a changing environment. However, it is also important to recognise that we limited our dataset to conditions of *PPFD* > 800 µmol and D < 3 kPa to maximise comparability among datasets. It is possible that responses to CO_2 will differ at the leaf scale compared to canopy scale (Keenan *et al.*, 2016) as different light and *D* conditions prevail in the lower canopy (Crous *et al.*, 2020). Further work will be required to assess the model under different conditions, and test scalability to the canopy.

How should we model differences among PFTs?

Previously, research has suggested that physiological responses to eCO₂ differ among woody PFTs, with smaller iWUE and gs responses observed in gymnosperms than in angiosperms (Saxe et al., 1998; Medlyn et al., 2001; Niinemets et al., 2011; Klein & Ramon, 2019). One goal of this work was to evaluate how this difference among PFTs could be captured in the USO or similar stomatal models. In contrast to previous research, we found that the increases in iWUE with eCO₂ were broadly similar across the three PFTs examined in the study. When examining the analysis of this study with that of previous analyses, the main difference lies in the calculation of the responses. Previous analyses predominantly examined absolute responses to eCO2, in contrast to relative responses in this study. Therefore, starting stomatal values in previous analyses were generally lower in EGF than in both DAF and EAF species and likely influenced the conclusions (Klein & Ramon, 2019). The strength of this analysis is that we examined the relative responses using replicates, as stated by each individual dataset, as well as including the capacity to correct for D.

We also found no significant differences among PFTs in the eCO₂ responses of g_s (Fig. 1; Table 3). However, we did observe that the g_s response in the evergreen gymnosperms was least sensitive to eCO₂ and g_s was significantly reduced with eCO₂ in evergreen angiosperms. We also found that there was a tendency for EGF species to have a higher A_{net} response. This outcome may be a result of the fact that this PFT also had the lowest g_1 values,

consistent with other reviews of species differences in g_1 (Lin *et al.*, 2015). A low g_1 implies a low intercellular CO₂ concentration and thus a higher responsiveness of photosynthesis to rising CO₂. As A_{net} and g_s are coupled in the USO model, this will also result in a smaller responsiveness of g_s .

Conclusion

This study provides a large body of data collected over the last few decades that incorporates a number of tree species and experiments, including recent forest FACE experiments, which is a robust base to evaluate gs under elevated CO₂. It resolves some of the long-standing questions regarding stomatal behaviour in elevated CO_2 in woody species. The results show that the eCO_2 responses of iWUE, gs or Anet were not significantly different among three key PFTs (Table 3), which has importance to how large-scale models depict these responses (Kleidon, 2004). The results suggest that increases in A_{net} , rather than reductions in g_s , drove the increases in iWUE that occur with eCO₂ in all vegetation types. However, the results highlighted the importance of incorporating environmental factors, such as D, when comparing vegetation type. Our analysis of CO2 responses suggests that angiosperms were more responsive to D than gymnosperms (Fig. 2; Table 4).

With the exception of data from boreal study sites, the optimal stomatal model was successful in describing the stomatal behaviour with changes in atmospheric variables, such as with eCO_2 and D (Fig. 3). We highlight the areas where data representation needs improvement but conclude that a stomatal parameter such as g_1 can be implemented in ecosystem to land surface models as a reliable way to characterise the key aspects of stomatal behaviour that affect hydrology and land surface energy exchange will remain important as atmospheric CO_2 increases into the future.

Acknowledgements

AG gratefully acknowledges a studentship provided by the John Horseman Trust and the University of Birmingham. The BIFoR FACE facility is supported by the JABBS Foundation, the University of Birmingham and the John Horseman Trust. ARMK acknowledges support from the UK Natural Environment Research Council through grant NE/S015833/1. MJ and BEM acknowledge funding from the Australian Research Council (DE210101654, FL190100003).

Author contributions

AG, BEM and DSE conceived the paper, whilst AG was undertaking doctoral research supervised by ARMK and JP. AG wrote the paper with major contributions from BEM, DSE and MJ. AG, MK-FB, CVMB, CB, CC, DSE, KYC, MED, TEG, MH, SLamba, SLeuzinger, JU, JW and GW collected the data for this manuscript. AG organized the datasets under the supervision of BEM, DSE and MJ. MJ and AG designed and performed the statistical analyses, with input from BEM and DSE. AG and BEM wrote the first draft of the paper. AG, MJ, DSE, RMK, JP,

4698137, 2023, 4, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.111/nph.18618 by Statens Beredning, Wiley Online Library on [16/02/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

MK-FB, CVMB, CB, CC, KYC, MED, TEG, MH, SLamba, SLeuzinger, JU, JW, GW, BEM contributed to the interpretation of the results and intellectual input of this manuscript revision. All authors read and approved the submitted version.

ORCID

Martin Karl-Friedrich Bader D https://orcid.org/0000-0002-3742-9762

Craig V. M. Barton https://orcid.org/0000-0003-0085-0534 Kristine Y. Crous https://orcid.org/0000-0001-9478-7593 David S. Ellsworth https://orcid.org/0000-0002-9699-2272 Anna Gardner https://orcid.org/0000-0002-4625-9769 Teresa E. Gimeno https://orcid.org/0000-0002-1707-9291 Marianne Hall https://orcid.org/0000-0001-8430-6880 Mingkai Jiang https://orcid.org/0000-0002-9982-9518 Shubhangi Lamba https://orcid.org/0000-0003-0438-6134 Sebastian Leuzinger https://orcid.org/0000-0001-9306-5281 A. Robert MacKenzie https://orcid.org/0000-0002-8227-742X

Johan Uddling D https://orcid.org/0000-0003-4893-1915 Göran Wallin D https://orcid.org/0000-0002-5359-1102

Data availability

The data that support the findings of this study are publicly available via FigShare (doi: 10.6084/m9.figshare.21252609.v1).

References

- Adams MA, Buckley TN, Turnbull TL. 2020. Diminishing CO₂-driven gains in water-use efficiency of global forests. *Nature Climate Change* **10**: 466–471.
- Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. *New Phytologist* 165: 351–372.
- Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO₂]: Mechanisms and environmental interactions. *Plant, Cell & Environment* 30: 258–270.

Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C. 2013. Central european hardwood trees in a high-CO₂ future: synthesis of an 8-year forest canopy CO₂ enrichment project. *Journal of Ecology* 101: 1509–1519.

Bader MKF, Mildner M, Baumann C, Leuzinger S, Körner C. 2016. Photosynthetic enhancement and diurnal stem and soil carbon fluxes in a mature Norway spruce stand under elevated CO₂. *Environmental and Experimental Botany* 124: 110–119.

Bader MKF, Siegwolf R, Körner C. 2010. Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO₂ enrichment. *Planta* 232: 1115–1125.

Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. *Progress in Photosynthesis Research* 953: 221–224.

Barton CVM, Duursma RA, Medlyn BE, Ellsworth DS, Eamus D, Tissue DT, Adams MA, Conroy J, Crous KY, Liberloo M *et al.* 2012. Effects of elevated atmospheric [CO₂] on instantaneous transpiration efficiency at leaf and canopy scales in *Eucalyptus saligna. Global Change Biology* 18: 585–595.

Barton CVM, Jarvis PG. 1999. Growth response of branches of *Picea sitchensis* to four years exposure to elevated atmospheric carbon dioxide concentration. *New Phytologist* 144: 233–243.

- Battipaglia G, Saurer M, Cherubini P, Calfapietra C, Mccarthy HR, Norby RJ, Francesca Cotrufo M. 2013. Elevated CO₂ increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. *New Phytologist* 197: 544–554.
- Becker P, Tyree MT, Tsuda M. 1999. Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level. *Tree Physiology* 19: 445–452.

Bergh J, Linder S, Lundmark T, Elfving B. 1999. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. *Forest Ecology and Management* 119: 51–62.

Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA, Long SP. 2003. Photosynthesis and stomatal conductance responses of poplars to free-air CO₂ enrichment (PopFACE) during the first growth cycle and immediately following coppice. *New Phytologist* 159: 609– 621.

- **Brodribb TJ, McAdam SAM, Jordan GJ, Feild TS. 2009.** Evolution of stomatal responsiveness to CO₂ and optimization of water-use efficiency among land plants. *New Phytologist* **183**: 839–847.
- Cowan IR. 1982. Regulation of water use in relation to carbon gain in higher plants. *Physiological Plant Ecology* II: 589–613.

Cowan IR, Farquhar GD. 1977. Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology 31: 471–505.

- Crous KY, Campany CE, Lopez R, Cano F, Ellsworth D. 2020. Canopy position affects photosynthesis and anatomy in mature *Eucalyptus* trees in elevated CO₂. *Tree Physiology* 41: 206–222.
- Curtis PS, Wang X. 1998. A meta-analysis of elevated CO₂ effects on woody plant mass, form, and physiology. *Oecologia* 113: 299–313.
- De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T, Jain AK, Luo Y, Parton WJ, Prentice IC *et al.* 2013. Forest water use and water use efficiency at elevated CO₂: a model-data intercomparison at two contrasting temperate forest FACE sites. *Global Change Biology* 19: 1759–1779.
- Duursma RA. 2015. Plantecophys an R package for analysing and modelling leaf gas exchange data. *PLoS ONE* 10: e0143346.

Duursma RA, Blackman CJ, Lopéz R, Martin-StPaul NK, Cochard H, Medlyn BE. 2019. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. *New Phytologist* 221: 693–705.

Ellsworth DS. 1999. CO₂ enrichment in a maturing pine forest: are CO₂ exchange and water status in the canopy affected? *Plant, Cell & Environment* 22: 461–472.

Ellsworth DS, Thomas RB, Crous KY, Palmroth S, Ward E, Maier C, Delucia E, Oren R. 2012. Elevated CO₂ affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. *Global Change Biology* 18: 223–242.

Farquhar GD, von Caemmerer S. 1982. Modelling of photosynthetic response to environmental conditions. *Physiological Plant Ecology* II: 549–587.

Franks PJ, Leitch IJ, Ruszala EM, Hetherington AM, Beerling DJ. 2012. Physiological framework for adaptation of stomata to CO₂ from glacial to future concentrations. *Philosophical Transactions of the Royal Society B: Biological Sciences* 367: 537–546.

Gardner A, Ellsworth DS, Crous KY, Pritchard J, MacKenzie AR. 2021. Is photosynthetic enhancement sustained through three years of elevated CO₂ exposure in 175-year-old *Quercus robur? Tree Physiology*, C42: 130–144.

Gedney N, Cox PM, Betts R, Boucher O, Huntingford C, Stott PA. 2006. Detection of a direct carbon dioxide effect in continental river runoff records. *Nature* 439: 835–838.

Gimeno TE, Crous KY, Cooke J, O'Grady AP, Ósvaldsson A, Medlyn BE, Ellsworth DS. 2016. Conserved stomatal behaviour under elevated CO₂ and varying water availability in a mature woodland. *Functional Ecology* **30**: 700– 709.

Gunderson CA, Sholtis JD, Wullschleger SD, Tissue DT, Hanson PJ, Norby RJ. 2002. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (*Liquidambar styraciflua* L.) plantation during 3 years of CO₂ enrichment. *Plant, Cell & Environment* 25: 379–393.

Hari P, Makela A, Korpilahti E, Holmberg M. 1986. Optimal control of gas exchange. *Tree Physiology* 2: 169–175.

Hasper TB, Dusenge ME, Breuer F, Uwizeye FK, Wallin G, Uddling J. 2017. Stomatal CO₂ responsiveness and photosynthetic capacity of tropical woody species in relation to taxonomy and functional traits. *Oecologia* **184**: 43–57.

Hubbard RM, Bond BJ, Ryan MG. 1999. Evidence that hydraulic conductance limits photosynthesis in old *Pinus ponderosa* trees. *Tree Physiology* 19: 165–172.

Jiang M, Kelly JWG, Atwell BJ, Tissue DT, Medlyn BE. 2021. Drought by CO₂ interactions in trees: a test of the water savings mechanism. *New Phytologist* 230: 1421–1434.

Jones HG, Sutherland RA. 1991. Stomatal control of xylem embolism. *Plant, Cell & Environment* 14: 607–612.

- Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ *et al.* 2011. TRY – a global database of plant traits. *Global Change Biology* 17: 2905–2935.
- Keenan TF, Prentice IC, Canadell JG, Williams CA, Wang H, Raupach M, Collatz GJ. 2016. Recent pause in the growth rate of atmospheric CO₂ due to enhanced terrestrial carbon uptake. *Nature Communications* 7: 1–9.

Keenan TF, Williams CA. 2018. The terrestrial carbon sink. Annual Review of Environment and Resources 43: 219–243.

Kleidon A. 2004. Optimized stomatal conductance of vegetated land surfaces and its effects on simulated productivity and climate. *Geophysical Research Letters* 31: 1–4.

Klein T, Ramon U. 2019. Stomatal sensitivity to CO₂ diverges between angiosperm and gymnosperm tree species. *Functional Ecology* 33: 1411–1424.

Lammertsma EI, De Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F. 2011. Global CO₂ rise leads to reduced maximum stomatal conductance in Florida vegetation. *Proceedings of the National Academy of Sciences, USA* 108: 4035–4040.

Lin YS, Medlyn BE, Duursma RA, Prentice IC, Wang H, Baig S, Eamus D, De Dios VR, Mitchell P, Ellsworth DS *et al.* 2015. Optimal stomatal behaviour around the world. *Nature Climate Change* 5: 459–464.

Lloyd J, Farquhar GD. 1994. ¹³C discrimination during CO₂ assimilation by the terrestrial biosphere. *Oecologia* 99: 201–215.

Long SP. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO₂ concentrations: has its importance been underestimated? *Plant, Cell & Environment* 14: 729–739.

 Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Jach ME, Kellomäki S *et al.* 1999. Effects of elevated [CO₂] on photosynthesis in European forest species: a meta-analysis of model parameters. *Plant, Cell & Environment* 22: 1475–1495.

- Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E *et al.* 2001. Stomatal conductance of forest species after long-term exposure to elevated CO₂ concentration: a synthesis. *New Phytologist* 149: 247–264.
- Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, De Angelis P, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Global Change Biology* 17: 2134–2144.

Morison JI. 1987. Intracellular CO₂ concentration and stomatal response to CO₂. In: Zeiger E, Farquhar GD, Cowan IR, eds. *Stomatal function*. Stanford, CA, USA: Stanford University Press, 229–251.

Niinemets Ü, Flexas J, Peñuelas J. 2011. Evergreens favored by higher responsiveness to increased CO₂. *Trends in Ecology and Evolution* 26: 136–142.

Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. *New Phytologist* 182: 565–588.

Quentin AG, Crous KY, Barton CVM, Ellsworth DS. 2015. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed *Eucalyptus globulus* trees. *Tree Physiology* 35: 1249–1263.

R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/ [accessed 2 October 2022].

- **Rey A, Jarvis PG. 1997**. Growth response of young birch trees (*Betula pendula* Roth.) after four and a half years of CO₂ exposure. *Annals of Botany* **80**: 809–816.
- Roberntz P, Stockfors J. 1998. Effects of elevated CO₂ concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees. *Tree Physiology* 18: 233–241.

Saxe H, Ellsworth DS, Heath J. 1998. Tansley review no. 98 tree and forest functioning in an enriched CO₂ atmosphere. *New Phytologist* 139: 395–436.

Sigurdsson BD, Roberntz P, Freeman M, Næss M, Saxe H, Thorgeirsson H, Linder S. 2002. Impact studies on nordic forests: effects of elevated CO₂ and fertilization on gas exchange. *Canadian Journal of Forest Research* 32: 779–788.

Uddling J, Teclaw RM, Pregitzer KS, Ellsworth DS. 2009. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. *Tree Physiology* 29: 1367–1380.

Uddling J, Wallin G. 2012. Interacting effects of elevated CO₂ and weather variability on photosynthesis of mature boreal Norway spruce agree with biochemical model predictions. *Tree Physiology* **32**: 1509–1521.

Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor. Journal of Statistical Software 36: 1–48.

Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ *et al.* 2020. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO₂. New Phytologist 229: 2413–2445.

Warren JM, Jensen AM, Medlyn BE, Norby RJ, Tissue DT. 2015. Carbon dioxide stimulation of photosynthesis in *Liquidambar styraciflua* is not sustained during a 12-year field experiment. *AoB PLANTS7*: plu074.

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornellssen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. *Nature* 428: 821–827.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Fig. S1 Mean ambient CO_2 (a CO_2 ; blue) and elevated CO_2 (e CO_2 ; red) for each of the studies in the dataset.

Fig. S2 Histograms showing the counts of binned D (0.5 kPa) across the ambient CO₂ (blue) and elevated CO₂ (red) treatments for each of the studies in the dataset.

Fig. S3 Relationship between stomatal conductance (g_s) and an index based on the USO formulation calculated from *D*, A_{net} and CO₂ for each dataset (cf. Medlyn *et al.*, 2011).

Table S1 Between-group heterogeneity for the effect of plant functional type (PFT) (i.e. DAF, EAF and EGF), Tree age (i.e. Old, Mature and Sapling) and Water condition (i.e. Irrigated and Not irrigated) on g_1 (kPa^{0.5}) values.

Please note: Wiley is not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.

Research 1241