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Abstract
Polyurethanes (PUs) are one of the most widely employed
classes of polymers, with a continuously increasing production
demand that is expected to reach around 21 million tons in
2022. Due to the simple polymerization process by which they
are produced, the versatility in PU chemistry, and the strong
inter/intramolecular interactions present between urethane
moieties, these robust materials can be used in diverse appli-
cations ranging from elastomers to foams. However, this high
versatility, combined with the high stability of the urethane bond
and the chemically cross-linked nature of most commercial
PUs, leads to long-lasting, potentially contaminating, PU waste
in landfill sites. While many strategies are under investigation to
improve the end-of-life options for polyurethanes, in this review
we focus primarily on the latest advances in the chemical and
biological routes for PU recycling. These two routes can
potentially allow for monomer recovery and reuse for further
synthesis of PUs, achieving materials with identical properties
to the virgin materials. Aside from reviewing the latest advances
in the field, we will highlight the importance of using life cycle
assessment (LCA) to find a truly sustainable solution to land-
filling and to incentivize the implementation of chemical and
biological recycling approaches at the industrial scale.
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Introduction
Polyurethanes (PUs) are one of the most important
classes of polymers [1], with a production demand ex-
pected to reach 21.3 million tons in 2022 [2]. Indeed, it
is thought that despite the current economic crisis the
PU market will grow from $67.27 billion in 2021 to
$78.01 billion in 2022 [3]. The commercial success of

this polymer family is the result of i) the simplicity and
fast reaction rates of the polymerization process, which
occurs by the nucleophilic addition of poly(isocyanates)
and polyols [4]; ii) the wide diversity of available poly-
ols, which allows for the adaption of PUs to a huge range
of applications ranging from coatings and/or adhesives to
sealants and/or elastomers [5]; iii) the self-blowing
ability of isocyanates in the presence of water, which
permits the production of foams and iv) the strong intra-
and intermolecular hydrogen bonding between urethane
groups, which promotes toughness and resilience [1,4].

Thus, polyurethanes are versatile materials that are
available in a wide range of forms depending on the
specific application. For example, in 2018, flexible and
rigid PUs foams made up 36% and 32% of the market
share, respectively, while coatings represented 14%,
elastomers 8%, adhesives and sealants 6%, and binders
had the lowest market share of 4% [6]. Additionally,
while the whole PUmarket size in 2021 was evaluated at
around 71.7 billion US$ in 2021 [7], the market of
thermoplastic PU consists of only 2.4 billion US$ [8],
being the vast majority of PU production related to

thermosets, which cannot undergo thermomechanical
recycling. Therefore, this review will emphasize PU
recycling approaches that can be used for both PU
thermosets and thermoplastic recycling, such as chem-
ical and biological depolymerization.

As with most polymeric materials, PUs are primarily
produced from non-renewable resources, which is
problematic considering the large production volumes. A
trending strategy to increase the sustainability of PUs
and to reduce our reliance on fossil resources is the
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2 Circular technologies for plastics (2023)
replacement of oil-based precursors with new precursors
derived from renewable resources, such as bio-based
isocyanates [9,10], and polyols [11e13], as well as
polyols based on CO2 [14e18]. While we believe that
this is an important trend to increase the sustainability
of the polyurethane production, it has been extensively
covered by previous reviews and will not be discussed
below [18e21].

Another way to increase the sustainability of PU pro-
duction is to move from our current linear PU production
model to a more circular one. Nowadays, most poly-
urethanes are discarded and placed into landfill after use.
In principle, polymers that contain backbones linked by
CeO and CeN bonds exhibit relatively low reaction
barriers and near-neutral reaction-free energies, which is
ideal for the chemical deconstruction of plastics. Even
so, the recycling of PUs is not as developed as the
deconstruction of polyethylene terephthalate (PET).

Most of the issues associated with PU recycling derive
from the chemically cross-linked nature of most
commercialized PUs (thermosets), and the high variety
of PU compositions that aremixed during waste disposal.
This makes it difficult to develop a universal method for
recycling different PU families [22e32].

Different options are available for treating PU-based
plastic waste including 1) mechanical recycling
through reuse in the polymer form, 2) thermo-chemical
recycling including energy recovery, and 3) chemical and

biological recycling to recover different building blocks.
While mechanical recycling could be of great interest in
the case of thermoplastic PUs and research in this di-
rection should continue, most polyurethanes are
commercialized as thermosets, which reduces consid-
erably the potential for mechanical recycling. While
some groups have taken advantage of the dynamic
character of urethane bonds for reshaping polyurethane
thermosets by a thermomechanical process [6,23,33],
[e] [39] achieving PUmelts with viscosities low enough
to allow extrusion is still highly challenging. For such
reasons, thermo-mechanical recycling approaches will

not be addressed deeply in this review.

To recycle PU thermosets by a “universal” method, one
can focus on thermo-chemical recycling. Thermo-
chemical recycling of PU waste is motivated by avoid-
ing environmental pollution while producing a valuable
product, that can be either energy, an energy carrier
(such as syngas or hydrocarbon fuels), or valuable
chemicals [40]. Moreover, the cross-linked nature of the
polymer does not have any impact on the recycling
process and the impact of the chemical nature of the PU

is limited in comparison to mechanical, chemical, and
biological recycling. However, the composition of the
waste stream as well as the scale of the plant should be
carefully considered to design an economically and
environmentally sustainable process [40].
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Another alternative to minimize the negative impact of
PUs on the environment, and to address the end-of-life
issues, is to develop a circular economy approach based
on chemical and biological depolymerization of poly-
urethanes [6,31,41e47]. The idea behind chemical and
biological recycling is to obtain virgin-like materials by
energy-efficient and environmentally benign processes
that can be implemented in the synthesis of poly-

urethanes or other polymers. From this perspective, we
will cover the most recent and relevant advances related
to the chemical and biological depolymerization of PUs,
Figure 1. Moreover, we will highlight the importance of
life cycle assessment (LCA) for the proper imple-
mentation of chemical and biological recycling
approaches.
PU depolymerization via chemical catalysis
Commercially available PUs generally contain different
functionalities besides the urethane bond, such as
esters, ethers, carbonates, and amides, derived from the
precursors used for PU production [4]. Therefore,

chemical depolymerization of polyurethanes can be
divided into two main approaches: Depolymerization
based on the cleavage/exchange of urethane bonds
[6,41,42,45,47e51] or depolymerization based on the
cleavage/exchange of chemical bonds of the precursors
used for PU production, such as esters [52e54].
Introducing labile functionalities into the PU back-
bone, such as hindered ureas [26,55,56], disulfides
[33,39,57e60], thiourethanes [22,27,30,61,62], acetals
[63e65], and so on, can also facilitate the effective
depolymerization of a given PU. However, when dealing

with complex waste streams, containing different types
of PUs, the depolymerization approaches based on non-
urethane chemistry are highly dependent on the
employed reagents and difficult to implement indus-
trially. Therefore, this review will primarily focus on
depolymerization reactions based on deconstructing
urethane bonds.

Regarding depolymerizations based on urethane chem-
istry, the most studied reactions are based on trans-
carbamoylation of the urethane group, with hydrolysis,

acidolysis, aminolysis, and alcoholysis (or “glycolysis”)
the most common types of transcarbamoylation re-
actions. Nevertheless, in the last decade process for PUs
depolymerization via catalytic hydrogenation reactions
have also been developed (Figure 2) [41,51].

The depolymerization of PUs via transcarbamoylation
consists of nucleophilic substitution reactions between
low molar mass diols, diamines, or water, and the elec-
trophilic carbon center of the urethane group
(Figure 2aec). As the reaction is highly energy-
demanding, catalysts and/or temperature are required

to enable effective depolymerization of PU via trans-
carbamoylation. Among the PU depolymerization
www.sciencedirect.com
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Figure 1

PU circular economy.

Figure 2

Examples of PU depolymerization via chemical catalysis (a) glycolysis [66], (b) aminolysis [67], (c) acidolysis [68], and (d) hydrogenolysis [69].
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approaches via transcarbamoylation, glycolysis is the
most widely investigated and is the only one currently

applied on an industrial scale [5,6,34,41,47,66]. The
reaction is carried out by mixing an excess of low molar
www.sciencedirect.com C
mass diols (i.e. ethylene glycol) to ground PUs in the
presence of catalysts and heating at T � 170 �C. The
products of the reaction are the recovered polyols (the
desired product), and lower molar mass hydroxyl-
urrent Opinion in Green and Sustainable Chemistry 2023, 41:100802
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terminated polycarbamates as byproducts [5,6,34,47].
Those are highly immiscible and tend to phase-separate
into two distinct phases: one phase is rich in polyol, and
the other is rich in excess diols and lower molar mass
polycarbamates. Therefore, this process is generally
referred to as split-phase glycolysis [5,6].

The polyol phase is recovered and used for PU produc-

tion, while secondary procedures are currently being
studied towards recovering valuable monomers such as
diamines from the polycarbamate-rich byproducts.
Although split-phase glycolysis is a well-established PU
chemical recycling process, it requires high temperatures
(T � 170 �C) and the contamination of the recovered
polyols with lower molar mass glycols means that further
purification procedures, such as distillation, are required
[66]. Those features, coupled with the large excess of
glycols needed to recycle PU thermosets (typically 1.5 kg
of glycol per kg of PU), increase the process carbon

footprint and have hindered the spread of glycolysis as a
widely employed method for recycling PUs [66].

To reduce the energy requirements in depolymerization
of PUs via glycolysis, organic base-catalyzedmethanolysis
has been proposed as an alternative. This method allows
for the recovery of the polyol and methanolic carbamates
with 85% yield, while employing reaction temperatures
below 65 �C [41]. Methanolic carbamates can then be
used for further PU production [49]. For example, Beran
et al. [49] reported the use of the polycarbamate

byproducts of glycolysis for production of adhesives,
which reduces the waste and carbon footprint associated
with PU glycolysis. As an alternative to reduce the
amount of glycol needed in PU glycolysis, the use of
lactam as a co-reactant of glycols was proposed by De Vos
et al. (Figure 2a) [66]. It was found by adding only 6 wt%
of lactam to the reaction mixture the amount of glycol
required was reduced from 60 wt% to 33 wt% without
decreasing the purity or yield of the recycled polyol [66].

Besides the use of diols, other reagents can also be used
to trigger the depolymerization of PUs. For instance,

aminolysis, which yields polyols and amine-terminated
polycarbamates, has been investigated to target PU
depolymerization under milder conditions [67,70,71].
For example, a urethane depolymerization conversion of
100% was achieved by the aminolysis of a segmented PU
with butylamine at 120 �C in a DMF/toluene solution
(Figure 2b) [67]. As amines are stronger nucleophiles this
process seems interesting in comparison to alcoholysis
[72], although research on aminolysis of PU has been less
investigated due to problems associated with potential
side reactions occurring in the amylolysis process [73].

On the other hand, hydrolysis together with acidolysis
also showed promising results in the literature. Never-
theless, one should consider that in both processes un-
stable carbamic acid is formed, which promotes the
Current Opinion in Green and Sustainable Chemistry 2023, 41:100802
formation of undesired CO2 as a byproduct [41,42].
Zahedifar et al. [47] recently reported that the time to
depolymerize PUs could be reduced from 2 h to 90 min
with water addition. In the same direction, acidolysis
may be the fastest PU depolymerization approach and
does not require solvents [68]. Grdadolnik et al. [68]
reported the acidolysis of PU foams with adipic acid in
bulk with temperatures ranging from 210 to 230 �C and

reaction times of 15e40 min, assisted by microwave
irradiation (Figure 2c). The polyols were fully recovered
together with carbamate-rich dicarboxylic acid byprod-
ucts [47].

Over the past few years, PU depolymerization driven by
catalytic hydrogenation has been investigated as a
promising approach for the upcycling of PUs, due to its
ability to depolymerize PU into valuable polyols and
diamines [6,51,69,74,75]. In contrast to traditional car-
boxylic reduction processes and transcarbamoylation,

catalytic hydrogenation is particularly attractive as it
does not produce stoichiometric byproducts (waste)
[74].

Schaub et al. [74] reported the depolymerization of PUs
via ruthenium-catalyzed hydrogenation. Several catalysts
were screened, with and without basic conditions, using
THF or toluene as solvent, with temperatures ranging
from 120 to 200 �C, and H2 pressure of 50 bar. For PUs
based on toluene diisocyanate or methylene diphenyl
diisocyanate and 1,6-hexanediol, the recovery of hexa-

nediol was as high as 85%, while recovery of the diamines
(toluene-diamine and methylene diphenyl-diamine) was
76%. Nevertheless, for commercial PUs the yield of
polyol and diamine recovery was significantly lower,
reaching a maximum of around 50% for an additive-free
PU foam, and around 24% for a PU sponge at extreme
conditions (H2 pressure of 100 bar, T = 200 �C). When
using manganese-based catalysts combined with H2

pressure of 60 bar, T = 200 �C, THF/toluene mixture,
and KOtBu as co-catalyst, the depolymerization yield for
a commercial PU was increased up to 90% [51].

Skrydstrup et al. [69] reported the catalytic hydroge-
nation of an end-of-life-cycle PU with commercial
iridium catalysts under milder conditions (T = 150 �C,
isopropanol, 30 bar of H2), Figure 2d. For flexible com-
mercial PU foams, up to 90% recovery of polyols and
diamines was achieved, while for rigid PU foams the
yield was lower, recovering only 24% of diamine [69]. On
the other hand, Baráth et al. [75] recently reported the
depolymerization of silicon-based polyureas via Ru- or
Mn-catalyzed hydrogenation. Yields of up to 84% of
aliphatic diamine and silicon-containing diamine were

obtained using a commercially available PNP-Ru cata-
lyst, H2 pressure of 50 bar, and a temperature of 165 �C.
Thus, catalytic hydrogenation of PUs has emerged as a
promising depolymerization approach for PUs, espe-
cially considering its capacity to recover not only the
www.sciencedirect.com
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polyol but also diamines that can be reused for diiso-
cyanate production.

Although significant advancement has been made with
chemical recycling strategies, significant improvement
is still required for proper PU waste management. For
instance, alcoholysis/glycolysis should target lower
energy requirements and reduction of the stoichio-

metric excess of glycols needed for high polyol recovery
efficiency [51,69,74,75]. The use of optimized cata-
lysts, and of additives that favor the interaction of the
nucleophile and the PUs should reduce both the
energy demand and the excess glycols needed for
depolymerization [41,42,47,66,68]. On the other hand,
in the case of hydrogenation, the organometallic cata-
lysts required for hydrogenation tend to be expensive
or are synthesized by complex procedures [76], offering
room for further improvement. Besides, we believe that
future research on the catalytic hydrogenation of PU

must target the use of green solvents and the reduction
of the energy requirement via higher catalytic effi-
ciency [69].
Depolymerization of PUs via biological
catalysis
Biotic degradation of PUs, performed either by micro-
organisms or by isolated enzymes, is the basis of the so-
called “bio-recycling” of PUs [77]. Microorganisms
secrete a set of enzymes that can catalyze PU
Figure 3

Examples of PUs via biological catalysis (a) fungi filament-assisted [78], (b) lip
assisted [104].

www.sciencedirect.com C
depolymerization [43,77]. Filamentous fungi usually
perform better than bacteria in depolymerization of PU
foams (Figure 3a) [78] because their filaments can
penetrate inside the pores providing stress, thus
combining biotic and abiotic degradation [44,77].
Recent developments have seen the identification of
new fungi, such as Embarria clematidis [79,80] or the
marine fungus Cladosporium haloterans [81,82], that are

able to degrade polyester-PUs. The released monomers
can be assimilated by the microorganisms which use
them as carbon sources to grow, leading to their miner-
alization with the release of H2O and CO2 in aerobic
environments [44,77]. This is aligned with great interest
to treat solid PU waste and avoid disposal or landfilling,
although does not allow for the recovery and valorization
of products of major importance from a circular economy
point of view [44,83].

Microorganisms can be present as single strains in cul-

tures, or as consortia, for example in soil or compost
[84]. Microbial communities isolated from PU waste
recovered in landfills have been used to biodegrade
commercial PU coatings or dispersions [85e87]. Inter-
estingly, growth of isolated members was much lower
than growth of the complete community, suggesting
synergistic effects between the different microbes [86].
Among the consortia, several bacteria such as Paracoccus
and Acinetobacter were identified as potential PU
degraders.
ase catalyzed [102], (c) mixed microbe-assisted [103], and (d) invertase

urrent Opinion in Green and Sustainable Chemistry 2023, 41:100802
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The ability of some insect larvae to ingest and biode-
grade different kinds of plastics, including PU, has also
received much attention lately. Larvae from Tenebrio
molitor and Zophobas atratus, colloquially called meal-
worms and superworms, respectively, have been used to
treat different kinds of PU wastes, including polyether-
and polyester-PU foams [88e93]. Larvae were able to
survive on a sole PU diet during the experiment time

(33e58 days), but lost weight, indicating that the PU
diet did not meet their nutrient requirements. Mass loss
of PU samples reach up to 67% [88], but the amount of
frass (i.e., the larvae excrements) is never quantified,
although it contains 40%e45% of PU that is not (fully)
degraded [91], thus precluding a true mass balance
calculation. The PU diet causes important changes in
the gut microbiome of the worms, with higher abun-
dance of some bacteria, such as Enterococcus and
Mangrovibacter [89,90], Lactococcus [93] or unclassified
Enterobacteriaceae [88,89,92], suggesting that they can

play a specific role in PU degradation.

Enzymes capable of degrading specific bonds in PU
materials can be produced and isolated after cloning and
overexpressing the relevant genes, as recently
performed with esterases from Pseudomonas [94,95] and
from the Antarctic bacterium Morexalla [96,97].
Although in the ideal case depolymerization of PUs
should focus on the urethane group, most of the inves-
tigated enzymes reported to date are only able to hy-
drolyze ester bonds. Thus, hydrolases (EC 3), and the

less frequently used oxidoreductases (EC 1), used to
degrade PUs have only been able to degrade polyester-
based urethanes. The enzymatic cleavage of urethane
bonds is more difficult to achieve. Esterases and pro-
teases or amidases have been reported to potentially
cleave urethane bonds. Different mechanisms are
involved since esterases cleave CeO bonds whereas
proteases cleave CeN bonds, but both can lead to the
formation of amines and OH groups with the release of
CO2 via an unstable carbamic or carbonic acid inter-
mediate. However, as pointed out by several authors
[43,77,98e100], most of the reported enzymes in the

literature able to break PUs were actually esterases, and
therefore are only able to hydrolyze the ester bonds in
polyester-PUs and do not lead to cleavage of the stron-
ger urethane bonds. Apart from hydrolases, oxido-
reductases such as laccases, have occasionally been
used in PU degradation. Activity on polyester- and
polyether-PU foams have recently been reported [101],
but without further insights into the molecular mecha-
nisms. Metagenomic analyses of microbial communities
able to biodegrade PU also revealed the presence of
genes coding for various dehydrogenase, mono- and

dioxygenase. Analysis of degradation products confirmed
the probable occurrence of PU degradation by oxidative
mechanisms [85], thus opening new perspectives for PU
enzymatic degradation beyond the classical use of
hydrolases.
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Analytical efforts are important to understand bio-
catalytic mechanisms [105]. The degradation of low
molar mass models containing ester or urethane linkages
is a good way to evaluate enzyme activity but does not
ensure that these enzymes will actually be able to
degrade the same bonds in PUs. Overall, the detection of
amines in the degradation products of PUs seems to be
the main quantitative way to confirm the hydrolysis of

the urethane linkage [77]. This has recently been shown
in the degradation of a polyester-PU by a cutinase [106].

In absence of true “urethanases,” the enzymatic degra-
dation of PUs remains mainly limited to polyester-PUs.
Unlike chemical depolymerization, which allows for the
recovery of polyols that can be reused in a closed-loop
recycling approach, biotic depolymerization leads to
the recovery of low molar mass diols [e.g., ethylene
glycol (EG), 1,4-butanediol (BDO)], diacids [e.g.,
succinic acid, adipic acid (AA)] or u-hydroxy acids [e.g.,
6-hydroxycaproic acid (6-HCA)], depending on the
nature of the polyester polyol used. The recovered
building blocks can then be used for the synthesis of
new polymers, or for the bioproduction of other
synthons of interest in an open-loop upcycling strategy
[43,46,98,107].

Thus, some building blocks obtained from the degra-
dation of PU foams based on a polycaprolactone (PCL)
diol by lipases from Candida antartica [108] have been
used to build second-generation polymers. Recovered 6-

HCA was successfully polymerized either by organo-
metallic or enzymatic catalysis and showed the potential
to be used with other recovered building blocks
containing urethane bonds (Figure 3b) [102]. This
successful example, however, points to the need for
purification of the recovered building blocks after PU
enzymatic depolymerization, as their incorporation
resulted in a net decrease of both the yields and molar
mass of the polymers.

The second upcycling approach is to find microbial
communities able to grow on the released monomers.

However, it is complex in the case of PUs because of the
toxicity of the released monomers, especially in the case
of aromatic amines produced by the cleavage of PUs
made with aromatic isocyanates [e.g., MDI, 2,4-toluene
diisocyanate (TDI)]. Recently, a strain of Pseudomonas
has for the first time been identified as able to grow on
2,4-toluene diamine (TDA), the diamine released from
PUs based on TDI, as the sole carbon and nitrogen
source [32,109]. However, when included in a mixed
microbial culture with other bacterial strains of the
Pseudomonas genus, the growth was inhibited by the

presence of TDA (Figure 3c) [103]. After selective
removal of TDA, the mixed culture was able to assimi-
late simultaneously the other PU monomers (EG, BDO,
and AA) for the production of rhamnolipids, which can
be used as biobased surfactants (Figure 3c) [103].
www.sciencedirect.com
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The potential of microorganisms or enzymes to degrade
PUs is high and with the continuous development of
biocatalysis in the recycling of plastics, it is clear that
sooner or later scientists will identify or achieve new
microorganisms or enzymes able to degrade PUs. How-
ever, current enzymes seem much more appropriate to
recycle PUs containing ester bonds. Therefore, one
potential strategy to facilitate biotic degradation may be

related to the incorporation of more appropriate mono-
mers for biotic assimilation. Thus, sugars have recently
been introduced as monomers in PU foams, allowing
their degradation by glycolytic enzymes (Figure 3d)
[104]. The introduction of an unsaturated chain
extender has also been shown to enhance the fungal
degradation of PU, because of possible oxidative attack
on the double bond by microorganisms [110]. Never-
theless, in order to implement bio-recycling strategies in
PU materials it is imperative to consider the large het-
erogeneity in PU formulations such as the chemical

structure, hydrophobicity, crystallinity, and Tg of the PU
[43,44,77]. Moreover, this bio-recycling should be much
more selective than it is at present, because yielding
multiple building blocks only further complicates the
already complex downstream processing of commercial
PU samples [43].
Figure 4

Examples of benefits of LCA methodologies (a) critical comparison between w
polyols [116], and (c) economic suitability of the recycling process [119].

www.sciencedirect.com C
Life-cycle assessment
The LCA methodology has been implemented in the

past to evaluate the environmental performance of
different mechanical recycling strategies to treat PU
waste against other end-of-life treatments such as
incineration and landfilling. [3]e[6] These studies re-
ported a reduction of greenhouse gas emissions besides
lower scores in other impact categories due to a decrease
in the demand for both non-renewable energy and raw
materials. It also emphasized the fatigue and loss in
properties of the recycled polyurethanes upon reproc-
essing cycles. This highlights the need for chemical or
biological recycling approaches for PU waste, aiming to

achieve upcycling and a truly circular PUplastic economy.

Therefore, despite the increasing amount of research
into different approaches to depolymerizing PUs, there
is still a lack of sustainability assessment to prove the
superiority of chemical recycling against the benchmark
end-of-life treatments of PU waste Figure 4a [111e
116]. This is probably a consequence of the early stage
of maturity of PU depolymerization technologies. As
such, there is no framework to support a process-
oriented Life Cycle Assessment (LCA) in its design

phase [114,117e119]. Furthermore, in the few reports
aste treatment procedures, (b) sustainability assessment of the recycled

urrent Opinion in Green and Sustainable Chemistry 2023, 41:100802
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in which product-oriented LCAs were implemented to
compare the environmental impact of recycled polyol-
based PUs against the crude oil-based one, the sample
containing 100% recycled polyol had even higher envi-
ronmental burdens than its virgin counterpart
(Figure 4b) [116,120]. This lower sustainability perfor-
mance of recycled polyol-based PU can be attributed to
several factors. For instance, higher amounts of iso-

cyanates and additives are added to compensate for the
effect of the lower quality of the recycled polyol in the
physical properties of the material, leading to higher use
of fossil fuels and higher energy consumption [120e
126]. Moreover, the energy consumption and emis-
sions derived from different stages of the product life-
cycle contribute to the higher environmental impact of
polyurethanes based solely on recycled polyols. This
includes additional energy-consuming stages such as PU
waste collection, transport, treatment of the PU scrap to
convert it into high-quality recycled feedstock (e.g.,

sorting, grinding), and the depolymerization process
itself [116]. However, LCA results also proved that
when using 50 and 75 wt% of recycled polyol content, a
better environmental performance was achieved in most
of the environmental impact categories, as compared to
the PU richer in virgin polyols (Figure 4b) [116].

Looking at these results, it is clear that research in
chemical and biological recycling should go hand in hand
with LCA methodology when defining the best depo-
lymerization technologies in terms of sustainability and

competitiveness (Figure 4c) [119]. However, assessing
circular economy developments by holistic methods is
complex. As some of us recently reviewed [126], large-
scale recycling of PUs can induce market changes that
are not always considered properly in LCA methods.
Moreover, the quality of the recycled product may play a
pivotal role, as due to their lower performance in some
cases a one-to-one substitution is not possible. Thus,
the LCA should include some correction factors to
introduce the variants which in many of the LCAs
remain somewhat unexplored.
Conclusions
The complexity of PUs waste streams in terms of
chemical structure, crystallinity, cross-linking density,
and soft-to-hard segment ratio is daunting in comparison
to other plastics. Thus, while for most plastics there is

an ideal recycling pathway, the structural diversity of
PUs makes it difficult to develop a universal recycling
process. In this perspective, we have elaborated on the
chemical and biological recycling of PU which could
potentially deliver virgin-like materials economically
and in an energy efficient manner. Taking into account
the relatively low reaction barriers and near-neutral
Gibbs free energy of reaction for CeO and CeN
bond-cleavage, different approaches have been
Current Opinion in Green and Sustainable Chemistry 2023, 41:100802
investigated to deconstruct PUs. However, it is impor-
tant to point out that the urethane group is not as
accessible as other carbonyls such as esters or carbonates
for chemical and biological recycling.

Indeed, in the field of chemical depolymerization rela-
tively harsh conditions are used to trigger depolymer-
ization reactors. In depolymerization via
transcarbamoylation great efforts have been devoted in
the literature to reduce the energy demands of the
depolymerization process by implementing specific
catalysts or by using specific compounds to enhance the
polyurethaneenucleophile interaction. While it seems
that these approaches may reduce the carbon footprint
of the PU, a proper life cycle analysis has not been
performed to assess the sustainability of such ap-
proaches. Besides transcarbamoylation, in the last few
years, catalytic hydrogenation of polyurethanes has
emerged as an interesting alternative for the chemical

recycling of PUs. Catalytic hydrogenation is particularly
attractive as it allows for the recovery of diamines and
polyols, reduces the number of byproducts, and does not
require a stoichiometric excess of chemical reagents.
However, research should be directed to develop less
energy-demanding, and solvent-free or green solvent-
based approaches for large-scale applications.

Analogously, the enzymatic degradation of PUs is also a
very promising strategy, as it is carried out under mild
conditions with substantially lower energy requirements

and allows for the recovery of valuable polyamines/
polyhydroxylated compounds. Still, research must be
carried to optimize enzymatic depolymerization pro-
cedures for commercial PU formulations. In particular,
future work should be directed towards targeting the
cleavage of urethane bonds. One potential strategy to
facilitate both the chemical and biological recycling of
polyurethanes could be related to development of
circular-by-design PUs that contain chemical bonds that
favor depolymerization. However, care must be taken
not to increase even more the complexity of the already
complex recycling of PU waste streams.

The input of specifications, such asmaterial performance
and sustainability metrics (LCA and TEA), in the ma-
terial flow analysis (MFA) at early stages is crucial to
develop approaches that could have a long term effect.
Nevertheless, this should not limit fundamental
research, which will remain critical to re-imagine what is
possible and identify the boundary conditions for future
development of the recycling of PUs. Therefore, the high
interest and investment in academic/industrial research
into PU recycling points towards a bright future in which

PUs are produced and used as part of a circular economy,
which can be achieved by turning “fake” recycling pro-
cesses into genuinely sustainable procedures.
www.sciencedirect.com
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