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Summary
This Ph.D. thesis studies the physical properties of magnetic impurities and spin
chains on s´wave superconductors. This is an important field of research that has
acquired particular importance in recent years thanks to technological advances in
the study of superconducting surfaces at the atomic level. Within the last decade,
an important effort in creating and measuring the properties of spin chains on
superconductors has been led by the search of Majorana bound states. In partic-
ular, this thesis studies two superconductors (Pb and β-Bi2Pd) and atomic and
molecular magnetic impurities that are controllably manipulated on their surface.
In addition to experiments, the thesis also deals with theoretical studies of topo-
logical phases and under what conditions Majorana bound states can be found.

In 1957, Bardeen, Cooper, and Schrieffer proposed the first microscopic theory
able to describe the phenomena of superconductivity, the BCS theory [1]. This
theory is based on the idea that below a critical temperature, electrons near the
Fermi surface couple, creating the so-called Cooper pairs [2]. In conventional su-
perconductors, electrons form pairs with opposite spin, this type of coupling is
known as s´wave superconductivity. Consequently, when an external magnetic
field is applied, it will favor the alignment of the two spins; when the strength of
the magnetic field is larger than the coupling interaction between the electrons,
the Cooper pairs break, and superconductivity is suppressed.

However, at microscopic scales, the interplay between superconductivity and mag-
netic interactions gives rise to interesting phenomena. In particular, as indepen-
dently described by Yu [3], Shiba [4], and Rusinov [5] in the 1960s, the presence
of a single magnetic impurity on a superconductor results in states inside the
superconducting gap, known as Yu-Shiba-Rusinov (YSR) states. These in-gap
quasi-particle states show electron and hole components. Phenomenologically,
YSR states can be understood as a local weakening of the coupling between the
electrons in Cooper pairs.

Technical advances in recent decades have enabled the study of systems at the
atomic level. In particular, scanning tunneling microscopy (STM) [6] has become
a vital tool for studying YSR states. The sub-atomic spatial resolution achieved
by STM allows to prove the local density of states of single magnetic atoms and
molecules. Using this technique, YSR could be first experimentally observed on
Mn and Gd atoms deposited on Nb(100) in 1997 [7].
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This thesis is devoted to the study of magnetic impurities on superconducting
surfaces using theoretical and experimental tools. In recent years, the study of
such systems has been motivated by the search for non-trivial topological states
of matter. Indeed, magnetic chains on superconductors have been proposed as
potential platforms for the emergence of topological states at the edges of finite
systems, known as Majorana fermions [8], [9].

In 1937, Ettore Majorana theoretically discovered Majorana fermions (or Ma-
joranas for short) [10]. These particles are their own antiparticle. This unique
feature results in Majoranas having non-Abelian exchange statistics, i.e., upon
their exchange, the total wave function is subject to a unitary operation, meaning
that, in general, exchange operations of Majorana fermions do not commute. Con-
sequently, their primary interest comes from their potential application in quantum
computation. Theoretically proposed protocols that utilize Majorana fermions as
building blocks receive the name of topological quantum computers [11], [12]. One
of the main drawbacks of current quantum computers is the loss of coherence due
to interactions with the environment and local perturbations. However, thanks
to the unique properties of Majoranas, topological quantum computers encode in-
formation in a non-local way, making these states immune to local disorder and
decoherence.

In 2001, Alexei Kitaev developed a simple model where Majorana fermions can
emerge [13]. The author proposed a finite 1-D chain of spin-less fermions (or sites).
Each site can be expressed as a pair of Majoranas. This pairing can involve Majo-
ranas within the same site (trivial state of the chain), or it may couple Majoranas
from neighboring sites (topological state of the chain). In the latter case, two
Majoranas are left unpaired at the edges of the chain. The two unpaired Majo-
ranas form one fermionic state, even if they are spatially delocalized. Because of its
localization to the edges, this pair gets the name of Majorana bound states (MBS).

The pairing interaction responsible for Cooper pairs makes superconductors nat-
ural candidates for experimental realizations of the Kitaev model. However, as
mentioned above, the model requires the fermionic quasiparticles to be spinless,
and superconductors with such characteristics have never been observed in nature.
Within the last decade, several approaches have been proposed to effectively create
spinless superconductors that can host MBS [14]–[18]. These models include three
main ingredients: s´wave superconductivity, magnetic Zeeman interactions, and
spin-orbit coupling (SOC).

Spin chains on superconducting surfaces with high SOC are a promising plat-
form. This approach has been developed in the context of STM and the study of
YSR states. The atomic manipulation techniques developed with this tool allow
crafting default-free atomic chains of several tens of atoms [19]. Attempts to create
MBS with this approach have been reported in recent years [20]–[25]. However,
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the unambiguous detection of MBS in the lab still remains a challenge.

In this thesis, we aim to develop a theoretical model using realistic parameters
able to reproduce real experimental results and simulate the emergence of MBS.
Additionally, we experimentally study, with the aid of STM, magnetic molecules
on a superconducting surface. As such, the thesis is organized into two main parts:
the first part (chapters 1, 2, and 3) focuses on theoretical and numerical results.
The second part (chapters 4 and 5) is devoted to the experimental results obtained
with STM.

In the first part of the thesis, we develop a theoretical model in the free-electron
approximation using Green’s functions [26], [27] to simulate magnetic impurities
on a bulk superconductor. We model a 2-D superconducting array, the impurities
(assuming classical spins) are then located in selected sites of the discrete array and
added as a perturbation to the system using Dyson’s equation. In this framework,
we can easily compute the local density of states. The resulting calculation, using
realistic parameters, shows YSR states. We analyze the results for single and two
impurities (dimers) in a finite 2-D superconductor. The relative spin orientation in
dimers results in drastically different spectra, as ferromagnetic (FM) dimers show
hybridization between the YSR states, whereas anti-ferromagnetic (AFM) dimers
have a single-atom behavior [28]. This situation is affected when SOC is added
to the calculation [29]. Using the same approach, we study spin chains of several
tens of atoms. The calculation shows edge states at zero energy in good agreement
with the presence of MBS. We further support this possibility by analyzing the
spin polarization of the in-gap states [30].

Next, we use the same model to analyze experimental data of Cr atomic chains
deposited on the superconductor β-Bi2Pd [31]. Two different chain geometries are
considered, the results of our calculations agree with the overall measured spectra.
We find a drastically different spin arrangements between the two chains. Further-
more, according to our calculations, one configuration presents promising results
for the emergence of MBS in longer chains (only 4-atom chains could be crafted
in the experiment). However, the unambiguous determination of the topological
origin of these edge states requires the computation of the topological invariant.
To that end, we develop a procedure to evaluate the winding number of the system
Hamiltonian starting from the real-space Green’s function used to model the spin
chains [32]. Moreover, we show that it is possible to compute the winding number
starting from a finite system and using solely numerical calculations. Finally, we
study the effect of the finite size of the chains. We find an oscillatory behavior in
the energy of the edge states, the obtained period can be rationalized as a moiré
pattern emerging from the electronic interactions in the superconductor and the
discreteness of the model lattice [33].
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In the second part of this work, we conduct an experimental study of a system
candidate to show YSR states using low-temperature STM with superconducting
tips. We study molecular arrays of nickelocene (Nc), a magnetic molecule with
spin S “ 1, deposited on a Pb (111) single crystal. Nickelocene, previously stud-
ied on metallic surfaces [34], [35], shows a significant inelastic signal product of a
molecular spin-flip process. We could not find evidence of in-gap states in this sys-
tem in the tunneling regime. Nevertheless, the use of superconducting tips allows
us to measure slight differences in the magnetic anisotropy energy of individual
molecules. With this information, we could unravel the absorption of the molecules
with respect to the Pb (111) surface [36]. We further studied individual molecules
attached at the apex of the tip by bringing the tip close to the superconducting
sample. In this regime, we could measure low-resistance tunneling processes in the
superconductor-insulating-superconductor junction. Finally, we deposit Fe atoms
in this system, single Fe atoms on Pb surfaces show YSR states [37]. When de-
posited on Nc layers, some Fe atoms seem to migrate below the molecules creating
Nc+Fe complexes, this new structure shows YSR states in the tunneling regime.

In summary, this Ph.D. thesis aims to improve our understanding of the phys-
ical properties of magnetic impurities in superconducting surfaces. In particular,
the emergence of MBS and their behavior in spin chains. To this end, we use
theoretical and experimental techniques to study Cr atomic chains on the super-
conductor β-Bi2Pd, and nickelocene molecules deposited on a Pb(111) crystal.
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Resumen
Esta tesis doctoral estudia las propiedades físicas de impurezas magnéticas y ca-
denas de espines en superconductores de onda s. Éste se trata de un importante
campo de investigación que ha adquirido especial relevancia en los últimos años
gracias a los avances tecnológicos en el estudio de superficies superconductoras a
nivel atómico. En la última década, un importante esfuerzo en la fabricación y
medida de las propiedades de las cadenas de espines en superconductores ha es-
tado motivado por la búsqueda de estados ligados de Majorana. En particular,
esta tesis estudia dos superconductores (Pb y β-Bi2Pd) e impurezas magnéticas
atómicas y moleculares que se manipulan de forma controlada en su superficie.
Además de los experimentos, la tesis también aborda estudios teóricos de las fases
topológicas y en qué condiciones se pueden encontrar estados ligados de Majorana.

En 1957, Bardeen, Cooper y Schrieffer propusieron la primera teoría microscópica
capaz de describir los fenómenos de la superconductividad, la teoría BCS [1]. Esta
teoría se basa en la idea de que por debajo de una temperatura crítica, los elec-
trones cercanos a la superficie de Fermi se acoplan, creando los llamados pares de
Cooper [2]. En superconductores convencionales, los pares de Cooper están com-
prendidos por electrones con espín opuesto, este tipo de acoplamiento se conoce
como superconductividad de onda s. En consecuencia, cuando un campo mag-
nético externo es aplicado, éste favorecerá la alineación de los dos espines; cuando
la intensidad del campo magnético es mayor que la interacción de acoplamiento,
los pares de Cooper se rompen y la superconductividad desaparece.

Sin embargo, a escalas microscópicas, la interacción entre superconductividad e
interacciones magnéticas da lugar a fenómenos interesantes. En particular, como
describieron de manera independiente Yu [3], Shiba [4] y Rusinov [5] en la década
de 1960, la presencia de una impureza magnética en un superconductor da lugar
a estados dentro de la banda prohibida superconductora (o gap superconductor),
conocidos como estados Yu-Shiba-Rusinov (YSR). Estos estados de cuasipartícu-
las muestran componentes de electrón y hueco. Fenomenológicamente, los estados
YSR pueden ser interpretados como un debilitamiento local del acoplamiento entre
los electrones que forman los pares de Cooper.

Los avances técnicos de las últimas décadas han permitido el estudio de sistemas
a nivel atómico. En particular, el microscopio de efecto túnel (STM, por sus si-
glas en inglés) [6] se ha convertido en una herramienta vital en el estudio de los
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estados YSR. La resolución espacial subatómica alcanzada por el STM permite
medir la densidad local de estados en átomos y moléculas magnéticas individuales.
Utilizando esta técnica, fue posible observar estados YSR experimentalmente por
primera vez en átomos de Mn y Gd depositados sobre Nb(100) en 1997 [7].

Esta tesis está dedicada al estudio de impurezas magnéticas en superficies su-
perconductoras utilizando herramientas teóricas y experimentales. En los últimos
años, el estudio de estos sistemas ha estado motivado por la búsqueda de esta-
dos topológicos no triviales de la materia. En particular, cadenas de impurezas
magnéticas en superconductores se han propuesto como plataformas potenciales
para la creación de estados topológicos en los bordes de sistemas finitos, conocidos
como fermiones de Majorana [8], [9].

En 1937, Ettore Majorana descubrió teóricamente los fermiones de Majorana (o
Majoranas para abreviar) [10]. Estas partículas son su propia antipartícula. Esta
particular característica hace que los Majoranas tengan estadísticas de intercambio
no abelianas, es decir, al intercambiarlas, la función de onda total es sujeta a una
operación unitaria, lo que significa que, en general, las operaciones de intercambio
de Majoranas no conmutan. En consecuencia, su principal interés proviene de
su potencial aplicación en computación cuántica. Los protocolos propuestos que
utilizan fermiones de Majorana como componentes básicos reciben el nombre de
ordenadores cuánticos topológicos [11], [12]. Una de las principales limitaciones
de los ordenadores cuánticos actuales es la pérdida de coherencia debido a las in-
teracciones con el entorno y las perturbaciones locales. Sin embargo, gracias a las
propiedades únicas de los Majoranas, los ordenadores cuánticos topológicos codif-
ican la información de forma no local, lo que hace que estos estados sean inmunes
al desorden local y a la decoherencia.

En 2001, Alexei Kitaev desarrolló un modelo sencillo en el que pueden emerger
fermiones de Majorana [13]. El autor propuso una cadena 1-D finita de fermiones
(o sitios) sin espín. Cada sitio se puede expresar como un par de Majoranas. Este
emparejamiento puede involucrar Majoranas dentro del mismo sitio (estado trivial
de la cadena), o puede acoplar Majoranas de sitios vecinos (estado topológico de
la cadena). En este último caso, dos Majoranas quedan no apareados en los bor-
des de la cadena, éstos forman un estado fermiónico aunque estén espacialmente
deslocalizados. Debida a esta localización en los bordes, este par recibe el nombre
de estados ligados de Majorana (MBS, en inglés).

La interacción de emparejamiento responsable de los pares de Cooper convierte
a los superconductores en candidatos naturales para realizaciones experimentales
del modelo de Kitaev. Sin embargo, como ya se ha mencionado, el modelo requiere
que las cuasipartículas fermiónicas carezcan de espín. Superconductores con tales
características nunca se han observado en la naturaleza. En la última década,
se han propuesto varios modelos para crear eficazmente superconductores sin es-
pín que puedan albergar MBS [14]–[18]. Estos modelos incluyen tres ingredientes
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principales: superconductividad de onda s, interacciones magnéticas de Zeeman y
acoplamiento espín-órbita (SOC, en inglés).

Las cadenas de espines en superficies superconductoras con SOC constituyen una
plataforma prometedora. Este enfoque se ha desarrollado en el contexto del STM
y el estudio de los estados YSR. Las técnicas de manipulación atómica desarrol-
ladas con esta herramienta han permitido la elaboración de cadenas atómicas sin
defectos y longitudes de varias decenas de átomos [19]. En los últimos años se
han reportado tentativas de crear MBS con este enfoque [20]–[25]. Sin embargo,
la detección inequívoca de MBS en el laboratorio sigue siendo un reto.

En esta tesis pretendemos desarrollar un modelo teórico con parámetros realistas
capaz de reproducir resultados experimentales y simular MBS. Además, estudi-
amos experimentalmente, con ayuda del STM, moléculas magnéticas sobre una
superficie superconductora. De esta manera, la tesis está organizada en dos partes
principales: la primera parte (capítulos 1, 2, y 3) se centra en los resultados teóri-
cos y numéricos. La segunda parte (capítulos 4 y 5) está dedicada a los resultados
experimentales obtenidos con STM.

En la primera parte de la tesis, desarrollamos un modelo teórico en la aproxi-
mación de electrones libres utilizando funciones de Green [26], [27] para simular
impurezas magnéticas en un superconductor. Modelizamos una matriz discreta
superconductora bidimensional, y situamos impurezas magnéticas (asumiendo es-
pines clásicos) en sitios seleccionados de la matriz. Su efecto es incluido como
una perturbación al sistema utilizando la ecuación de Dyson. En este marco,
podemos calcular fácilmente la densidad local de estados. El cálculo resultante,
utilizando parámetros realistas, muestra estados YSR. Analizamos los resultados
para una y dos impurezas (dímeros) en un superconductor bidimensional finito.
La orientación relativa de los espines en los dímeros da lugar a espectros drástica-
mente diferentes: los dímeros ferromagnéticos (FM) muestran hibridación entre los
estados YSR, mientras que los dímeros antiferromagnéticos (AFM) muestran un
comportamiento similar al de átomos aislados [28]. Esta situación se ve afectada
cuando se añade SOC al cálculo [29]. Utilizando este mismo enfoque, estudiamos
cadenas de espín de varias decenas de átomos. El cálculo muestra estados de borde
a energía cero, en buen acuerdo con la presencia de MBS. Apoyamos aún más esta
posibilidad mediante el análisis de la polarización de espín de los estados dentro
del gap [30].

A continuación, utilizamos el mismo modelo para analizar datos experimentales
de cadenas atómicas de Cr depositadas en el superconductor β-Bi2Pd [31]. Se con-
sideran dos cadenas con geometrías diferentes, los resultados de nuestros cálculos
concuerdan con los espectros medidos. Los cálculos indican una textura de espín
drásticamente diferente entre las dos cadenas. Además, según nuestros cálculos,
una de las configuraciones presenta resultados prometedores para la aparición de
MBS en cadenas más largas (en el experimento sólo se pudieron elaborar cade-
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nas de hasta 4 átomos). Sin embargo, la determinación inequívoca del origen
topológico de estos estados de borde requiere el cálculo del invariante topológico.
Para ello, desarrollamos un procedimiento para evaluar el índice (winding num-
ber) del sistema a partir de la función de Green en el espacio real utilizada para
modelizar las cadenas de espín [32]. Además, demostramos que es posible calcular
el índice a partir de un sistema finito y utilizando únicamente cálculos numéricos.
Finalmente, estudiamos el efecto del tamaño finito de las cadenas. Encontramos
un comportamiento oscilatorio en la energía de los estados de borde. El período
obtenido puede ser racionalizado como un patrón de moiré producto de las inter-
acciones electrónicas en el superconductor y de la red discreta del modelo [33].

En la segunda parte de este trabajo, realizamos un estudio experimental de un
sistema candidato a mostrar estados YSR utilizando STM de baja temperatura
con puntas superconductoras. Estudiamos islas moleculares de niqueloceno (Nc),
una molécula magnética con espín S “ 1, depositada sobre un monocristal de Pb.
El niqueloceno, previamente estudiado en superficies metálicas [34], [35], mues-
tra una gran señal inelástica producto de un proceso de spin-flip molecular. No
pudimos encontrar evidencias de estados dentro del gap superconductor en este
sistema en el régimen de túnel. No obstante, el uso de puntas superconductoras
nos permite medir ligeras diferencias en la energía de anisotropía magnética de
moléculas individuales. Con esta información, pudimos descifrar la absorción de
las moléculas con respecto a la superficie de Pb (111) [36]. También estudiamos
moléculas individuales absorbidas en el vértice de la punta, acercando la punta a la
muestra superconductora. En este régimen, pudimos observar procesos de túnel a
baja resistencia en la unión superconductor-aislante-superconductor. Finalmente,
depositamos átomos de Fe en este sistema, los átomos de Fe individuales sobre
superficies de Pb muestran estados YSR [37]. Cuando se depositan sobre islas de
Nc, algunos átomos de Fe parecen migrar bajo las moléculas creando complejos
Nc+Fe, esta nueva estructura muestra estados YSR en el régimen de túnel.

En resumen, esta tesis doctoral pretende mejorar nuestra comprensión de las
propiedades físicas de las impurezas magnéticas en superficies superconductoras.
En particular, la formación de MBS y su comportamiento en cadenas de espín.
Para ello, utilizamos técnicas teóricas y experimentales para estudiar cadenas
atómicas de Cr sobre el superconductor β-Bi2Pd, y moléculas de niqueloceno de-
positadas sobre un cristal de Pb(111).
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Outline
The contents of this thesis are organized as follows:

• Chapter 1 gives an introduction to the topic of MBS in consed matter sys-
tems, in particular, spin chains on superconductors.

• In chapter 2 we present the mean-field model using Green’s function formal-
ism utilized to model magnetic impurities on superconductors.

• Chapter 3 compiles the main results obtained with the model presented in
the previous chapter.

• Chapter 4 reviews the working principle of STM. In particular, the use of
superconducting tips.

• In chapter 5, we examine the STM measurements obtained on Nc deposited
on Pb (111).

Finally, this thesis contains conclusions and outlook for the presented work as well
as an appendix sections where details are given for concrete aspects of our work.
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1 Majorana fermions in spin
chains.
1.1 Topology in condensed matter systems

Topology in condensed matter physics has gained increasing attention in recent
decades. In mathematics, topology is the branch that studies the geometrical prop-
erties that remain invariant under continuous, smooth deformations. The recent
connection between topology and physics comes from the topological properties
that can be found in the band structure of periodic quantum systems. Since the
1970’s topology has been used to theorize and describe new and exotic physical
phenomena [38], [39].

A major breakthrough came in 1982 with the discovery of the quantum Hall effect
(QHE) [40]. Just like in the classical Hall effect, a transverse current is measured
in a metallic system subject to an applied voltage and external magnetic field.
However, in the QHE, researchers found that, as the magnetic field increased, the
conductance of the transverse current increased in discrete jumps. They were able
to relate the different conductance steps with an integer number called a topolog-
ical invariant [38], [41].

Since then, topology and topological invariants were used to characterize other
exotic phases of matter, most prominently topological insulators [42]. In 2016, the
Nobel Prize in Physics was awarded to physicists who contributed to the develop-
ment and description of topological phases of matter [38].

The notion of topological phases has been extended to other systems, such as
topological superconductors. In this state of matter, one of the most important
consequences is the emergence of Majorana fermions. These are zero-energy quasi-
particles with equal electron and hole components, implying that it is a particle
identical to its own anti-particle [11], [41], [43], [44]. Using common terminology,
we call these zero-energy excitations, Majorana fermions despite the fact that they
present non-Abelian statistics. Majorana fermions are of special interest in the de-
velopment of topological quantum computing, as their non-Abelian statistics lay
in the core of fault-tolerant quantum computation [11], [12], [44].
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Chapter 1. Majorana fermions in spin chains.

In the present chapter, we will review some basics of topological states of mat-
ter and topological invariants, with special interest in the emergence of Majorana
fermions as described in the Kitaev model [13]. We will see how this toy model
can be realized in superconducting systems under the right conditions.

1.1.1 Majorana fermions

In 1937 Ettore Majorana proposed an alternative form for the Dirac equation [10].
This representation, using real wave functions, implies that the described parti-
cle, unlike electrons and positrons, it is its own anti-particle. Today, these are
known as Majorana fermions. Neutrinos were proposed as candidates for Majo-
rana fermions. In high energy and particle physics, their detection still remains a
challenge [45], [46].

The search for Majorana fermions has, in recent years, expanded to the field of
condensed matter physics. In this context, Majorana fermions are not expected to
arise as fundamental particles, but rather as emergent excitations [11]. These ex-
citations are usually denoted with the γ operator, fulfilling the conditions γ: “ γ
(particle equal to anti-particle) and γ2 “ 1. As such, it is inaccurate to call a
Majorana fermion a particle, since there is no meaning in γ being occupied or un-
occupied [11], [44]. It is more precise to refer to these modes as "fractionalized",
comprising half of a regular fermion. In this way, a pair of Majorana modes, γ1 and
γ2, form a fermionic state, c “ pγ1 ` iγ2q{2, where c has a well-defined occupation
number.

The most interesting property of Majorana fermions are their non-Abelian statis-
tics. In some systems, particles whose statistics are not fermionic nor bosonic
can arise, these are called anyons. They come in two kinds: Abelian and non-
Abelian. Between the two, non-Abelian anyons are the most interesting: Upon
their spatial exchange, the final state of non-Abelian anyons is subject to a unitary
operation [12], [47], unlike fermions and bosons, for which particle exchange sim-
ply results in a multiplication by ´1 or `1, respectively. Consequently, exchange
operations of non-Abelian anyons do not commute. Using this property, topo-
logical quantum computing algorithms are based on "braiding" operations using
non-Abelian anyons [12], [44]. The statistics of Majorana fermions are described
by the so-called Ising anyons [47]. Unfortunately, the set of unitary operations of
Ising anyons does not constitute a "universal" set of quantum gates [12], [48], as
such they need to be supported by additional non-topological operations.

The search for Majorana fermions has focused on superconducting systems. The
particle-hole symmetry existing in superconductors makes them natural candidates
for experimental realizations. In the Bogoliubov-de Gennes representation [49], the
excitations in superconducting systems are described by a quasi-particle operator
with electron and hole part. In this representation, the parallel between Majorana
fermions and superconducting systems becomes apparent [43], [50]. A system host-
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1.1. Topology in condensed matter systems

ing Majorana Fermions is referred to as a topological superconductor. One of the
simplest models exhibiting topological superconductivity is the Kitaev model [13],
it describes a 1-D chain of spinless fermions in one dimension. In the following, we
will review the Su-Schrieffer-Heeger model, one of the simplest model exhibiting a
non-trivial topological phase. And, in more detail, the Kitaev model.

1.1.2 The Su-Schrieffer-Heeger model
One of the most basic models to support topological excitations is the Su-Schrieffer-
Heeger (SSH) model [51], on Fig.1.1 (a) we show a sketch of the system. It describes
a one dimensional chain with alternating hopping parameters between sites, v and
w, (orange and blue lines respectively). In this way, the unit cell of the system is
composed by two sites, A and B, each can host one state (black and gray balls).
A real system described by this structure is, for example, the organic polymer
polyacetylene [52].

(a)

(b)

(c)

Figure 1.1: SSH chain diagram. (a) The two sites (A and B) are represented by
black and gray balls, connected by alternating hopping parameters (v and w) in
orange and blue. The unit cell of the chain is marked by dashed gray bubbles. (b)
Fully dimerized limit v “ 1, w “ 0, all sites are paired inside their unit cell. (c)
Fully dimerized limit v “ 0, w “ 1, the edge sites marked with yellow border are
isolated from the rest of the chain, topological state.

The tight-binding Hamiltonian modelling a finite chain of N sites can be writ-
ten [42]:

Ĥ “ v
N
ÿ

n“1

p|n,By xn,A| ` h.c.q ` w
N´1
ÿ

n“1

p|n` 1, Ay xn,B| ` h.c.q (1.1)

Where h.c. stands for hermitian conjugate. |n,Ay and |n,By indicate the state
of the chain with an electron on the sublattice A or B, respectively. The index
n P t1, 2, ..., Nu labels the site of the chain. As we can observe from the previous
expression, the hopping v connects two sites inside the same unit cell (indicated
by the dashed gray balls), whereas w links two sites from different unit cells.

Like in many systems, we can differentiate between bulk and boundary. In this
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Chapter 1. Majorana fermions in spin chains.

case, the bulk is the inside of the chain, while the boundary are the two sites
at the ends of the chain. To describe the bulk Hamiltonian, we take advantage
of the translational symmetry of the system and applying Bloch’s theorem (see
Appendix A). We go to the reciprocal space and obtain the dispersion relation of
the system:

Epkq “ ˘
a

v2 ` w2 ` 2vw cos k (1.2)

Note that the previous dispersion relation is gapped in energy for all v and w,
except when v “ w. If we look at the fully dimerized cases in Fig. 1.1 (b) v “ 1,
w “ 0 and (c) v “ 0, w “ 1. We notice that in the second case, there are two
sites in the chain that are left out from the Hamiltonian. In this case, we say that
the system is in a topological state and the two sites left out are edge states. More
generally, we can verify that for hopping values such that w ą v, we find ourselves
in the topological state of the system. To change the topological character, the
system has to go through a topological phase transition (TPT) and the energy gap
has to close. In the SSH model, this transition occurs when v “ w.

As we have seen, the topological character of these two different phases appears
in the bulk. In the present case, the bulk is defined by the unit cell. Depending
on whether we choose the unit cell with its internal bond given by v or w, we are
choosing a completely different ending when we cut the infinite system to create
the finite one. Otherwise, the phases in the infinite system are totally equivalent
and indistinguishable.

The SSH model provides one of the most basic systems to show topological edge
states, its easy description provides an ideal platform for the study of topological
states in 1-D. As we will see in the following, Kitaev’s chain follows a very similar
description, and many of its properties can be translated into the SSH model. Nu-
merous experimental realizations, have shown the emergence of topological states
in this model [53], [54].

1.1.3 The Kitaev model

Kitaev’s chain is a model proposed by Alexei Kitaev in 2001 [13]. It consists
of a 1-D chain of N sites, each occupied by a fermionic particle [43], [55]. The
Hamiltonian in real space can be written:

ĤKiatev “ ´µ
N
ÿ

n“1

c:
ncn `

N´1
ÿ

n“1

p∆c:
nc

:
n`1 ´ tc:

ncn`1q ` h.c. (1.3)

Where c: and c are creation and annihilation fermion operators, respectively, µ is
the chemical potential of the system, t is the coupling between neighboring sites
and the coupling, ∆, couples pairs of fermions. This last parameter, as we will see
in the following, is usually identified with the pairing potential in superconductors,
responsible for the bonding between electrons forming Cooper pairs. However, it
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1.1. Topology in condensed matter systems

is important to mention that in the previous equation, the spin is absent, meaning
that in real systems ∆ must couple fermions with the same spin. As we will see
in 1.2, this type of coupling can not be found in conventional superconductors.

Figure 1.2: Kitaev chain schema. Each site of the chain is represented by a dashed
gray bubble, the two Majorana states γA and γB are represented by blue and
orange balls, the black lines connect adjacent Majorana states forming a fermionic
state. (a) Trivial state, Majorana states in the same site are coupled, forming a
fermionic state in each site. (b) Topological state, Majoranas from different sites
are coupled to each other, leaving two unpaired Majorana (with yellow contour)
at the ends of the chain.

Majorana operators

In order to observe topological states in this model, we have to express the current
fermion operators as a function of new operators:

cn “
1

2
pγAn ` iγBn q c:

n “
1

2
pγAn ´ iγBn q, (1.4)

γA and γB are the Majorana operators. Any fermionic operator can be decomposed
into two Majorana operators [11], [43], because the new representation allows to
write the creation and annihilation operators in terms of their real and imaginary
parts, Eq. 1.4. In Fig. 1.2, each fermionic site of the chain is represented by a
dashed bubble, and the blue and orange balls represent the γA and γB Majorana
operators. In this representation, we can see how the fermionic chain is decom-
posed in individual Majorana states. Rewriting Eq. 1.3 in terms of these new
operators, we obtain:

ĤKitaev “ ´iµ
N
ÿ

n“1

γAn γ
B
n ` i

N´1
ÿ

n“1

pip∆ ` tqγBn γ
A
n`1 ` ip∆ ´ tqγAn γ

B
n`1q. (1.5)

This model is very similar to the SSH model explained in 1.1.2: we can define the
two hopping parameters v :“ ip∆ ´ tq and w :“ ip∆ ` tq [56] and the real and
imaginary parts of the fermionic operators constitute the new bipartite lattice.
Similarly, if we look at the case where µ “ 0 and ∆ “ t, in the SSH notation, this
corresponds to v “ 0 and w “ 2. Here, the Hamiltonian simply becomes:

ĤKiatev “ 2it
N´1
ÿ

n“1

γBn γ
A
n`1. (1.6)
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Chapter 1. Majorana fermions in spin chains.

We find ourselves in a very similar situation as the one described in the SSH model:
two of the Majorana operators (γA1 and γBN ) are left out of the Hamiltonian, as
shown in Fig. 1.3 (b). This is the topological state of the Kitaev chain. The two
Majorana states left unpaired at the edges of the chain are called Majorana bound
states (MBS). Unlike the SSH model, there are not experimental realizations that
have proved the emergence of MBS in the lab to the present date.

Bulk-edge correspondence

As we have discussed in 1.1.2, the study of the bulk Hamiltonian of the SSH
model allowed us to identify topological solutions of the system. We want to
proceed similarly for the Kitaev chain. For this, we go into the reciprocal space,
because k-points are good quantum numbers we can apply Bloch’s theorem. We
can write the Hamiltonian using the basis ψk “ tck, c

:

´ku:

Ĥpkq “
1

2

ÿ

k

ψ:

kĤBdGψk

ĤBdG “p´µ´ 2t cos kqτx ` 2∆ sin kτy

(1.7)

Where τx,y,z denote the Pauli matrices. The previous Hamiltonian is written un-
der the Bogoliubov-de Gennes (BdG) form [49].

Figure 1.3 shows the result of diagonalizing Eq. 1.7 for different chemical potential
values. For µ “ ´3 (Fig. 1.3 (a)), we observe two bands and an energy gap. When
we increase to µ “ ´2 in Fig. 1.3 (b), we observe that the gap has closed, this
is the topological phase transition, the topological state of the system changes at
this point. For µ “ ´1, the system is newly gapped, and we find ourselves in the
non-trivial topological phase. This transition can also be observed by diagonaliz-
ing the Hamiltonian in Eq. 1.3 for a finite chain. The resulting eigenenergies for a
30-site chain are depicted in Fig. 1.3 (d). As the chemical potential is increased,
we observe a zero-energy state emerging at µ „ ´2. Indeed, the system is found
to be in the trivial phase for µ ă ´2t and in the topological state for µ ą ´2t.
As we can see, the properties of the bulk Hamiltonian give information about the
finite system, by virtue of the bulk-edge correspondence [13]. The bulk-edge corre-
spondence principle states that zero-energy edge states appear when joining two
systems of different bulk topology. Then, by knowing the topology of different
finite systems, when they are put together, the number of zero-energy edge states
is determined.

However, is there a way of knowing the topology of a system for any given param-
eters without having to look for this gap closing of the bulk Hamiltonian? Indeed,
it is possible to define an integer that identifies the different topological phases of
a system, this is called a topological invariant.
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1.1. Topology in condensed matter systems
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Figure 1.3: (a), (b) and (c) band structure from Eq.1.7 for µ “ ´3,´2,´1, respec-
tively. The topological phase transition, and gap closing, is observed at µ “ ´2.
(d) Eigenenergies for a finite chain of 30 sites. Parameters: ∆ “ t “ 1, µ as
indicated.

In gapped systems (like insulators and superconductors) it is possible to defined
topological invariants based in smooth variations of the Hamiltonian. When cre-
ating and edge between different systems, if they are gapped, we expect that we
can smoothly change from one to the other. But if the topological invariants are
different, this is not possible, because the invariant should be preserved during the
smooth evolution. The only way to make the transition possible is by closing the
gap at the edge, and as a consequence zero-energy edge states appear. As we will
see in the next section, the topological invariant for a given system is defined by
the symmetries present in the system.

1.1.4 Symmetries and topological classification

Symmetries have an important role in physics, they add restrains to systems, which
can be useful because they reduce the degrees of freedom. As we are about to see,
symmetries also allow to classify a system, by means of topological invariants.
Using the presence or absence of the three main symmetries, we can classify the
system in different topological classes. These symmetries are summarized in the
following table [57], [58]:

Symbol Symmetry Commutation Unitary

T Time-reversal rĤ, T s “ 0 Anti-unitary
P Particle-hole tĤ,Pu “ 0 Anti-unitary
C Chiral tĤ, T u “ 0 Unitary

Table 1.1: Three main symmetries considered for topological classification of a
Hamiltoninan, Ĥ. They are defined by their commutation or anti-commutation
with Ĥ, and wheter the symmetry is defined by a unitary or anti-unitary operator.

7



Chapter 1. Majorana fermions in spin chains.

As we can see in Table 1.1, time-reversal symmetry commutes with the Hamilto-
nian, i.e., T ĤT ´1 “ Ĥ. Particle-hole and chiral symmetries, on the other hand,
anti-commute with the Hamiltonian, i.e. PĤP´1 “ ´Ĥ1. The symmetries are
further classified by the unitary or anti-unitary2 corresponding operators. The
three main symmetries and whether their associated operators squares to ˘1 re-
sult in the 10-fold symmetry classification, summarized in Table 1.2.

Time-reversal symmetry

Time-reversal are the conservation laws under time inversion, (t Ñ -t). In quantum
mechanics, it is defined by an anti-unitary operator. In general, time-reversal
operators can be expressed under the following from:

T “ UK (1.8)

where U is a unitary operator and K denotes the complex-conjugation opera-
tor. A Hamiltonian with time-reversal symmetry satisfies the following relation
T ˆHpkqT ´1 “ ˆHp´kq.

An important case is the one of spin 1/2 systems, time-reversal symmetry on
this case is defined as T “ iσyK. This is the most commonly known time-reversal
symmetry in physics. In this case, T 2 “ ´1.

Particle-hole symmetry

Also known as charge conjugation symmetry, particle-hole is the symmetry con-
served when we exchange particles and anti-particles, in our case, electrons and
holes. It is defined by the anti-unitary operator:

P “ σxK (1.9)

The particle-hole symmetric Hamiltonian satisfies PĤpkqP´1 “ ´Ĥp´kq. It is
worth mentioning that every BdG Hamiltonian is particle-hole symmetric by con-
struction.

Chiral symmetry

Geometrically, chirality refers to the symmetry existing between an object and
its mirror image. In physical systems, a natural way for chirality to emerge is to

1Some authors use the term chiral symmetry to refer to any symmetry satisfying tĤ, Cu “ 0,
however, in our case we use the term chiral symmetry to refer to an anti-symmetric relation
defined by a unitary operator.

2Note that the definition of anti-unitary operator is a bijective operation U : H1 ÝÑ H1

in a complex space H1 such that ă Ux,Uy ą“ă x, y ą and it does not necessary mean that
U2 “ ´1. For example, T “ 1K, is an anti-unitary operator such that T 2 “ 1.

8



1.1. Topology in condensed matter systems

have a sublattice defined, this is why this symmetry is also referred to as sub-
lattice symmetry. The operator defining the so-called chiral symmetry is the one
composed by the two previous ones:

C “ T ¨ P (1.10)

It satisfies the following relation CĤpkqC´1 “ ´Ĥpkq. It is possible for a system
that T and P are broken buy still C is satisfied [58].

class T P C d=1 2 3
A Z
AI 1
AII -1 Z2 Z2

AIII 1 Z Z
BDI 1 1 1 Z
C -1 2Z
CI 1 -1 1 2Z
CII -1 -1 1 2Z Z2

D 1 Z2 Z
DIII -1 1 1 Z2 Z2 Z

Table 1.2: 10-fold symmetry classification, according to time-reversal (T ), particle-
hole (P) and chiral (C) symmetries. d denotes the dimensionality of the system.

Classification

The presence or absence of these three symmetries and depending on the square
of the operators (U2 “ ˘1) permits to perform a topological classification of the
electronic structure. We can classify the system on 10 different topological classes.
In Table 1.2 we show the classification in symmetry classes as a function of the
three aforementioned symmetries [58].

For the Kitaev chain Hamiltonian, we can define the generalized time reversal
operator T “ 1K, in this case T 2 “ 1. Particle-hole symmetry is preserved by
every BdG Hamiltonian by construction, the operator defined by Eq. 1.9 and it
satisfies P2 “ 1. Then, the chiral operator is C “ T ¨ P “ σx, and C2 “ 1. Thus,
as we can observe on Table 1.2, the system falls into the BDI class. The SSH chain
previously discussed is also included in the BDI class. In the next section, we take
a closer look into this topological class and the corresponding invariant used to
describe the different topological phases.

1.1.5 Topological invariants
As we have seen in the previous section, the symmetries of a system allow us to
classify it in a specific topological class. Each class has a topological invariant as-
sociated to it, taking values as specified in Table 1.2. The Kitaev and SSH models
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Chapter 1. Majorana fermions in spin chains.

fall into the BDI class, the topological invariant in this case takes values in the set
of integer numbers, Z “ t...´ 2,´1, 0, 1, 2, ...u.

Assuming that the topology of the system is well represented by the two lower-
energy bands, because they are the ones that will close the gap first, then we can
write the Hamiltonian as Ĥpkq “ d⃗pkqτ⃗ , where τ⃗ is the basis of the Pauli matrices.
Because any 2 ˆ 2 matrix can be expressed as a linear combination of the Pauli
matrices and the identity matrix.

Winding number

Due to the chiral symmetry of the SSH and Kitaev models, the component dzpkq “

0. As such, the hamiltonian can simply be written [42]:

Ĥpkq “

ˆ

0 dxpkq ´ idypkq

dxpkq ` idypkq 0

˙

(1.11)

The d⃗pkq vector, describes a closed trajectory in the pdx, dyq plane. The topology
of this loop is characterize by the winding number [42], [59]:

w “
1

2π

ż

1BZ
dθpkq (1.12)

Where θpkq is the angle described by the d⃗pkq vector in its trajectory. The winding
number counts the number of turns that the trajectory completes about the origin
in the first Brillouin zone (positive for anti-clockwise trajectories and negative for
clockwise). Hence, this number must take values in Z, as expected.

To evaluate the winding number, we can define the following formula, zpkq “

exp iθpkq “ d⃗pkq{|d⃗pkq|, from this the winding number can be obtained by evalu-
ating:

w “

ż 2π

0

dzpkq

zpkq
(1.13)

Applying the zpkq expression, we find:

w “
1

2π

ż π{a

´π{a

dkpdx
d

dk
dy ´ dy

d

dk
dxq, (1.14)

The cases where w “ 0 the system is in the topologically trivial state, for w “

Zzt0u, the system is in a non-trivial topological state.

Q topological invariant

By considering a lower symmetry class, such as the D class in 1-D, we can define
a different topological invariant. The associated topological invariant in that case

10



1.2. Theory of superconductivity

is:
Q “ SgnrPfpĤpk “ 0qq ¨ PfpĤpk “ πqqs (1.15)

Where Pf denotes the Pfaffian of the Hamiltonian, which is easily evaluated
PfpĤpk “ 0qq “ detpApkqq. Q takes values in Z2 “ t´1, 1u3. It can be shown
that Q and the winding number are related by the expression,

Q “ p´1qw (1.16)

in other words, Q gives the parity of the winding number. These two invariants
will be used in the following to determine the topological phase of our system.
But first, we will review some superconductivity basics, and how the excitations
in these systems are closely related to Majorana fermions.

1.2 Theory of superconductivity

As already mentioned in the introduction to this chapter, the particle-hole symme-
try existing in superconductors makes them natural candidates for experimental
realization of MBS. Indeed, as explained in 1.1.3, the pairing parameter ∆ in the
Kitaev model, is usually identified with the pairing parameter in superconductors.
In this section, we review the basics of the BCS theory of superconductivity, as
well as the Bogoliubov-de Gennes equations.

1.2.1 General considerations

Superconductivity was first observed in 1911 by Heike Kamerlingh Onnes while
doing experiments on mercury at low temperatures. He found that below a crit-
ical temperature the resistance of the mercury sample dropped to zero. In 1933
Walther Meissner and Robert Ochsenfeld discovered that superconductors expel
applied magnetic fields, this is called the Meissner effect. In 1957 John Bardeen,
Leon Cooper, and John Robert Schrieffer proposed the first microscopic theory for
superconductivity, the BCS theory [1].

Bardeen, Cooper and Schrieffer postulated that superconductivity had its origin
in the coupling of electrons forming Cooper pairs [2], as the result of an attractive
interaction between electrons. This interaction, can have different origins. In con-
ventional superconductors, it is the result of the electron-phonon interaction [60],
this is represented in Fig. 1.4. The pairing of electrons leads to a new ground
state below a certain critical temperature. This ground state is formed by the
condensation of all Cooper pairs such that no single-particle state is possible. As
a consequence, single-particle states become available only after breaking Cooper
pairs. The energy to break the Cooper pair is called the superconducting gap,
∆. Since the ground state is conducting, the presence of the excitation gap leads

3Strictly Z2 refers to the quotient group Z{p2Zq know as the cyclic group with two elements,
this group is isomorphic to the set t0, 1u with the addition modulo 2.
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Chapter 1. Majorana fermions in spin chains.

(a) (b)

k -k

k - q

-k + q

q

Figure 1.4: Electron-phonon interaction. (a) The lattice of positive ions is dis-
placed due to the presence of an electron, a second electron is attracted due to the
excess of positive charges. (b) Feymann diagram of electron-phonon interaction.
Here the two electrons exchange a virtual phonon.

to non-decaying currents as first observed in 1911. Furthermore, assuming an
isotropic pairing leads to Cooper pairs whose two-particle wave function can be
well represented by the first spherical harmonic about the center of the Cooper
pair. This s-wave approximation leads to a singlet pairing of the electronic spins
to maintain the antisymmetry of the Cooper pair wave function as dictated by
the Pauli principle. As a consequence, the BCS ground state is formed by spinless
particles that trend to break under the presence of a magnetic field. In order to
minimize the energy of the system, the magnetic field is then expelled giving rise
to the Meissner effect. Indeed, this theory was able to explain all the known phe-
nomena characterizing superconductors. Bardeen, Cooper and Schrieffer received
the Nobel Prize in Physics for this theory in 1972.

1.2.2 BCS theory

Cooper pairs

Cooper showed that, at low temperature, an attractive interaction can bind pairs of
electrons near the Fermi surface. This is true no matter how weak the interaction
is, making the Fermi sea of electrons unstable. The two particle wave function can
be written:

ψpr⃗1, σ1, r⃗2, σ2q “ eikRϕpr⃗1, r⃗2qχσ1,σ2 (1.17)

Where ϕpr⃗1, r⃗2q is the orbital part and χσ1,σ2
is the spin part. k and R are

the center of mass and total momenta, respectively. Cooper showed that the
lowest energy state is reached when the momenta of the two electrons are opposite
k⃗2 “ ´k⃗1, i.e., k “ 0 [61], [62]. To satisfy the Pauli exclusion principle and the
indistinguishability of the electrons, the total wave function of the pair has to be
antisymmetric with respect to electron exchange. If we assume the orbital part
of the Cooper pair to be an even function ϕpr⃗1, r⃗2q “ ´ϕpr⃗1, r⃗2q, then spin wave
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1.2. Theory of superconductivity

function must be a singlet (total spin S “ 0):

χσ1,σ2
“

1
?
2

p|ÒÓy ´ |ÓÒyq (1.18)

Conventional superconductors show this singlet coupling, and are known as s-wave
superconductors. Alternatively, if the orbital part, ϕpr⃗1, r⃗2q is an odd function,
the Cooper pairs must couple in a triplet spin state (S “ 1):

χσ1,σ2 “

$

’

&

’

%

|ÒÒy

1?
2

p|ÒÓy ` |ÓÒyq

|ÓÓy

(1.19)

This type of Cooper pair coupling in known as p-wave superconductivity. And
it lies at the core of experimental realizations of Majorana fermions in condensed
matter systems. As it couples electrons with the same spin.

BCS Hamiltonian

The pairing Hamiltonian of a conventional superconductor induces the electron-
electron interaction described in 1.2.2. This interaction appears as a scattering
term that takes the pair of electrons with momentum: pk⃗1,´k⃗1q Ñ pk⃗,´k⃗q.4 We
use creation (c:

kσ) and annihilation (ckσ) operators to write the Hamiltonian, they
respectively create and destroy an electron with momentum k⃗ and spin σ. The
BCS Hamiltonian writes:

Ĥ “
ÿ

kσ

ξkc
:

kσckσ `
1

N

ÿ

kk1

Vkk1c:

kÒ
c:

´kÓ
c´k1Óck1Ò. (1.20)

Where σ “Ò, Ó is the spin index. ξk “ ϵk ´ EF is the electron energy relative
to the Fermi level, EF . N is the number of electrons and Vkk1 is the interaction
potential. Using the mean field approximation, the Hamiltonian is converted to:

ĤMF “
ÿ

k,σ

ξkc
:

kσckσ ´
ÿ

k

∆˚
kc´kÓckÒ ´

ÿ

k

∆kc
:

kÒ
c:

´kÓ
. (1.21)

Where the gap of the superconductor is given by the expectation value of the
Cooper pair creation and annihilation operators:

∆k “ ´
1

N

ÿ

´k

Vkk1 ă c´k1Óck1Ò ą,

∆˚
k “ ´

1

N

ÿ

´k

Vkk1 ă c:

k1Ò
c:

´k1Ó
ą .

(1.22)

4In the following, we drop the vector symbol in k⃗ and simply write k to denote the reciprocal
space wave vector.
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Chapter 1. Majorana fermions in spin chains.

1.2.3 Bogoliubov quasiparticles
As shown independently by Bogoliubov [63] and Valantin [64] the mean field Hamil-
tonian in Eq. 1.21 can be diagonalized by applying the following linear transfor-
mation:

ckÒ “ukγkÒ ` vkγ
:

´kÓ

c:

´kÓ
“ ´ v˚

kγkÒ ` u˚
kγ

:

´kÓ

(1.23)

This transformation is commonly known as Bogoliubov transformation.

The creation and annihilation operators in Eq. 1.21 can be replaced by the Bogoli-
ubov transformation 1.23. The cross-diagonal terms of the Hamiltonian (γ:

kÒ
γ:

´kÓ

and γ´kÓγkÒ terms) in the mean field Hamiltonian will be cancelled if the coeffi-
cients uk, vk are such that:

|uk|2 “
1

2

´

1 `
ξk

a

ξ2k ` |∆|2

¯

; |vk|2 “
1

2

´

1 ´
ξk

a

ξ2k ` |∆|2

¯

. (1.24)

In the new basis, the Hamiltonian is diagonal and can be expressed under the
form:

ĤMF “ E0 `
ÿ

kσ

Ekγ
:

kσγkσ. (1.25)

E0 is the energy of the ground state, and Ek is the dispersion relation of the
eigenstates defined by the Bogoliubov transformation. The second term gives an
increase in energy of the ground state in terms of γ:

kγk. As such, the γk operator
describes the elementary quasiparticle excitations of the system, commonly known
as Bogoliubov quasiparticles. Their dispersion relation:

˘ Ek “ ˘

b

ξ2k ` |∆|2 (1.26)

By inverting the Bogoliubov-Valantin transformation (Eq. 1.23), we find the ex-
pression for the Bogoliubov quasiparticle creation operators:

γkÒ “u˚
kckÒ ´ vkc

:

´kÓ
,

γ:

´kÓ
“ukc

:

´kÓ
` v˚

k ckÒ.
(1.27)

As shown in the previous expression, the Bogoliubov quasiparticles are a coherent
superposition of creation and annihilation electron operators, making these quasi-
particles a combination of electron and hole. The superconducting gap, ∆, is the
minimum energy required to have Bogoliubov excitations. The transformation in
Eq. 1.27 highlights the electrons-hole symmetry existing in superconductors. Fig-
ure 1.5 (a) depicts the uk and vk probabilities as a function of ξk. As shown, in the
high-energy limit (E ąą ∆), the Bogoliubov quasiparticles behave as particles:
for negative ξk, in the limit |vk|2 “ 1, and for positive energies |uk|2 “ 1, i.e., the
quasi-particles become hole and electron, respectively.
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Figure 1.5: Density of states of a superconductor. (a) Coherence probabilities
|uk|2 and |vk|2 as a function of ξk. (b) Density of states of a superconductor as
obtained from Eq. 1.30.

As it can be noted, the Bogoliubov transformation is the same as the one utilized
in the Kitaev model (section 1.1.3) to express the fermion states as Majorana op-
erators in Eq. 1.4. Indeed, Majorana bound states are Bogoliubov quasi-particle
with equal electron and hole part [43], which implies that they can only exist at
zero energy, ξk “ 0.

Superconducting density of states

To compute the superconducting density of states, NspEq, we can use the disper-
sion relation of the Bogoliubov quasi-particles and equating: NspEqdE “ Nnpξqdξ.
Since E2

k “ ∆2 ` ξ2k, and assuming that the normal-metal density of states is con-
stant and equal to the metal’s density of state at the Fermi energy, Nnpξq “ Np0q,
we find [61]:

NspEq

Np0q
“
dξk
dE

“

#

E?
E2´∆2 pE ą ∆q

0 pE ă ∆q
(1.28)

As we can see from the previous expression, at E “ ∆, we expect to have a
divergent state density. To better fit the experimental data and the measured
density of states. Dynes introduced a damping factor, such that E Ñ E ` iΓ [65],
[66]. Which takes into account the pair braking during tunneling processes [61].
In this way, the density of states is written:

NspEq “
E ` iΓ

a

pE ` iΓq2 ´ ∆2
(1.29)

15



Chapter 1. Majorana fermions in spin chains.

Alternatively, the superconducting density of states can be obtained from the
Bogoliubov quasiparticles probabilities [49]:

NspEq “
1

N

ÿ

k

”

|uk|2δpE ´ Ekq ` |vk|2δpE ` Ekq

ı

(1.30)

Figure 1.5 (b) is the superconducting density of states, calculated from Eq. 1.30.
At ξk “ ∆ we can observe the coherence or quasi-particle peaks.

1.2.4 Bogoliubov-de Gennes equations
The Hamiltonian in Eq. 1.21 expressed in the reciprocal space, can not properly
describe a non-uniform system, as k is not a good quantum number. As such, it
is more convenient to us to express the mean-field Hamiltonian in real space:

ĤMF “
ÿ

ijσ

`

´ µc:

iσciσ ´ tijc
:

iσcjσ
˘

`
ÿ

i

`

∆ic
:

iÒc
:

iÓ ` ∆˚
i ciÓciÒ

˘

(1.31)

where tij accounts for the hopping terms. Due to the four component Nambu
spinor that we use as our base, we need to define a spin-generalized Bogoliubov
transformation:

ciÒ “
ÿ

n

uniÒγnÒ ` v˚
niÒγ

:

nÓ, ciÓ “
ÿ

n

uniÓγnÓ ` v˚
niÓγ

:

nÒ

c:

iÒ “
ÿ

n

u˚
niÒγ

:

nÒ ` vniÒγnÓ, c:

iÓ “
ÿ

n

u˚
niÓγ

:

nÓ ` vniÓγnÒ

(1.32)

Our goal is to find the unσ and vnσ coefficients that diagonalizes the mean field
hamiltonian in Eq. 1.31. The equations relating these coefficients with the eigen en-
ergies of the system are the so-called Bogoliubov-de Gennes (BdG) equations [49].
In the following, we explain how to obtain these equations (the details are shown
in Appendix A).

We first need to calculate the commutation relations of the creation and annhilia-
tion operators with the mean-field Hamiltonian, rĤMF , c

p:q

iσ s. With the aid of the
anti-commutation relations of the fermionic operators tcν , cµu “ tc:

ν , c
:
µu “ 0 and

tcν , c
:
µu “ 1, we find:

rĤMF , ciÒs “
ÿ

j

ptij ` δijµqcjÒ ` ∆ic
:

iÓ

rĤMF , ciÓs “
ÿ

j

ptij ` δijµqcjÓ ´ ∆ic
:

iÒ

rĤMF , c:

iÒs “
ÿ

j

´ptij ` δijµqc:

jÒ ´ ∆˚
i ciÓ

rĤMF , c:

iÓs “
ÿ

j

´ptij ` δijµqc:

jÓ ` ∆˚
i ciÒ

(1.33)
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We now require that the γp:q
nσ operators diagonalize the Hamiltonian from Eq. 1.31.

So that:
ĤMF “ E0 `

ÿ

n

EnÒγ
:

nÒγnÒ ` EnÓγ
:

nÓγnÓ (1.34)

We obtain the commutators of the diagonalized Hamiltonian, rĤMF , c
p:q

iσ s. Equat-
ing them to the commutators in Eq. 1.33 and comparing the coefficients of the γp:q

nσ

operators, we find the BdG equations:

uniÒEnÒ “
ÿ

j

´ptij ` δijµqunjÒ ´ ∆ivniÓ

uniÓEnÓ “
ÿ

j

´ptij ` δijµqunjÓ ` ∆ivniÒ

vniÒEnÓ “
ÿ

j

ptij ` δijµqvnjÒ ` ∆˚
i uniÓ

vniÒEnÒ “
ÿ

j

ptij ` δijµqvnjÓ ´ ∆˚
i uniÒ

(1.35)

Defining hσuniσ “
ř

j ´tijunjσ ´µuniσ, we can white the equations under matrix
form:

¨

˚

˚

˝

hÒ 0 0 ´∆i

0 hÓ ∆i 0
0 ∆˚

i ´hÒ 0
´∆˚

i 0 0 ´hÓ

˛

‹

‹

‚

¨

˚

˚

˝

uniÒ
uniÓ
vniÒ
vniÓ

˛

‹

‹

‚

“ En

¨

˚

˚

˝

uniÒ
uniÓ
vniÒ
vniÓ

˛

‹

‹

‚

(1.36)

From the BdG equations, we can easily show the following statement: For a solu-
tion puiÒ, uiÓ, viÒ, viÓqT of Eq. 1.36 with eigen energy E. There is always a solution
with eigen energy ´E, pv˚

iÒ, v
˚
iÓ, u

˚
iÒ, u

˚
iÓqT (see Appendix B for more details).

1.3 Experimental realizations: Spin chains on su-
perconductors

As it has been discussed, the Kitaev chain is a theoretical model for realizing
Majorana bound states. Superconducting systems are natural candidates due to
the superconducting pairing potential. Unfortunately, a 1-D superconductor with
pairing potential and absence of spin does not exist in nature. This could be effec-
tively achieved by the resulting set of low-energy excitations after fully polarizing
the system (for example by applying an external magnetic field), but supercon-
ductivity has never been observed in such conditions [55]. Spinless superconductor
are systems where the Cooper pairs are formed with only one spin degree of free-
dom. As discussed in 1.2.2, this forces the orbital function of the pair to be an
odd function, resulting in p´wave superconductivity.

Realizations of p-wave superconductivity have been proposed in the later years.
One major breakthrough came from the work by Fu and Kane [14], they showed
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Chapter 1. Majorana fermions in spin chains.

a way of engineering p´wave superconductivity induced by the proximity effect of
a s´wave superconductor in the surface of topological insulators. In the following
years, several works focused on the Rashba semiconductor model [15]–[18]. In this
approach, the presence of a Rashba spin-orbit coupling along with the breaking of
the time-reversal symmetry (for example, by a Zeeman field), allows the system
to enter a similar non-trivial state as the one shown by Fu and Kane.

Inspired by these theoretical works, experimental realizations [67] of MBS have
focused on 1-D systems that combine three main ingredients: superconductivity,
spin-orbit coupling (SOC) and magnetic Zeeman interactions. Semiconducting
nanowires with high SOC and proximitized superconductivity [68]–[72] are one of
the main approaches. The presence of topological states is detected by a zero-bias
anomaly in transport measurements. This signal corresponds to a resonant An-
dreev reflection due to the presence of a MBS [43]. A peak of unitary quantized
conductance, G “ 2e2{ℏ is expected to appear at zero energy when the system is
in the topological phase. Unfortunately, transport measurements do not allow to
spatially resolve the emergence of MBS at both edges of the wire. Additionally,
disorder in the device may result in the appearance of zero bias signals when the
system is in the trivial state [73], [74].

In recent years, spin chains on superconducting surfaces with high SOC have
also gained attention [20], [22]–[25], [75]. This approach has been developed in
the context of scanning tunneling microscopy (STM). This tool, allows for precise
control in the assembly of atomic structures [76]. In this way, 1-D structures of
magnetic atoms can be crafted without any defects [19], [23], [28], [31]. Moreover,
spatially resolved spectroscopy is possible in STM, which enables to observe the
presence of the MBS at both ends of the chain.

This thesis focuses on the study of magnetic impurities in superconductors, as
such, we are more interested on the second approach because it allows us to study
these effects on the atomic scale, using both experimental and theoretical tools
especially developed for atomistic studies.

In this section, we present and analyze the tight-binding model describing a 1-
D superconducting system with Zeeman interaction and SOC. This is an effective
model of a ferromagnetically ordered spin chain on a superconductor, but it equiv-
alently describes a semiconductor nanowire with proximitized superconductivity
and an external magnetic field. This simple model, although it employs unreal-
istic parameters, will help us understand more realistic models and experimental
results in the following.

1.3.1 1-D bulk Hamiltonian

We start from the Hamiltonian of a 1-D superconducting system in real space, we
write the mean-field Hamiltonian from Eq. 1.31. For the single-particle interac-
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tions, we only consider the chemical potential of the system and a hopping term
connecting neighboring atoms:

ĤBCS “
ÿ

i

“

´ µc:

iσciσ ´ tpc:

iσci`1σ ` h.c.q
‰

`
ÿ

i

“

∆c:

iÒc
:

iÓ ` ∆˚ciÓciÒ
‰

. (1.37)

Where µ is the chemical potential of the system, t represents the hopping parame-
ter between neighboring sites and ∆ is the local pairing potential, we assume that
it is real, ∆ “ ∆˚, and that it is site independent ∆i “ ∆ [8].

Figure 1.6: Tight-binding model of a ferromagnetic chain in a 1-D superconductor.
The chain is assumed to be oriented along the x direction. t couples first-neighbor
sites and the αR is the effective Rasha coupling strength. The impurities spins are
oriented along the z direction.

The Rashba spin-orbit interaction [77] is the result of spin-orbit coupling, and the
symmetry breaking that occurs in surfaces. As electrons move, they experience an
effective magnetic field (the Rashba field), proportional to their momentum and
perpendicular to their movement [78]. In one dimension, can be expressed by the
following Hamiltonian5:

ĤRashba “ i
αR

2a

ÿ

jσσ1

“

c:

j`1σpσyqσσ1cjσ1 ` h.c.
‰

. (1.38)

Where αR is the Rashba coupling strength and the factor 2a comes from the dis-
cretization of the system that replaces the appearing spatial gradients by finite
differences in the discrete grid. This Hamiltonian, is an effective hopping term
that couples neighboring sites with opposite spin.

Finally, we want to add magnetic impurities to the chain. This is modeled by
the local s´ d Hamiltonian:

Ĥimpurity “ J
ÿ

i

“

S⃗i ¨ s⃗piq
‰

. (1.39)

Where J is the coupling strength between the magnetic impurities and the host-
ing material, S⃗i is the spin of the localized impurities in site i and s⃗piq is the spin

5The Rashba spin-orbit interaction is discussed in more detail in chapter 2.
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operator of the conduction electrons that interact with the magnetic impurities.
In this study, we limit ourselves to ferromagnetic spin chains, i.e. the spins of all
the impurities have the same orientation, perpendicular to the chain’s axis. In this
case, all the sites will have the same magnetic interaction and the term will simply
be J ¨S. We now add all previous terms together and express it using the notation
|iy representing the i-site of the chain, each site is modelled with the 4-component
Nambu ψi “ pciÒ, ciÓ, c

:

iÒ, c
:

iÓq.

Ĥtotal “

N
ÿ

i

“

´ µτzσ0 ` ∆τyσy ` J ¨ Sτzσz
‰

|iy xi| `

N
ÿ

i

“

p´tτzσ0 ` i
αR

2a
τzσyq |i` 1y xi| ` h.c.

‰

(1.40)

The Pauli matrices τx,y,z,0 and σx,y,z,0 operate in the particle-hole and spin sec-
tors, respectively6. The previous Hamiltonian describes the spin chain of N sites
in real space. But we are interested in the case of an infinite 1-D chain. To
this end, we move to the reciprocal k-space, so we are able to obtain the band
structure of the system. Again, applying Bloch’s theorem, we define the unit cell
of a single atomic site. A complete basis is given by the 4-Nambu components
ψk “ tĉkÒ, ĉkÓ, ĉ

:

´kÒ
, ĉ:

´kÓ
u. The resulting Hamiltonian matrix is a 4ˆ 4 matrix for

each k point:

Ĥpkq “ (1.41)
¨

˚

˚

˝

´µ` JS ´ 2t cos k ´2iα sin k 0 ´∆
2iα sin k ´µ´ JS ´ 2t cos k ∆ 0

0 ∆ µ´ JS ` 2t cos k 2iα sin k
´∆ 0 ´2iα sin k µ` JS ` 2t cos k

˛

‹

‹

‚

We diagonalize the previous Hamiltonian in the first Brillouin zone of the spin
chain, k P r´π

a ,
π
a s where a is the distance between spins, and plot the resulting

band structure. We set ∆ “ 0.5 and µ “ t “ 1, we add the Rashba interaction
and magnetic exchange coupling separately to better observe their effect in the
band structure. In Fig. 1.7, we plot the resulting bands for four different cases: In
Fig. 1.7 (a) we see two bands with an energy gap, here magnetic and Rashba inter-
actions are zero, so the two bands are doubly degenerated. We add the magnetic
interaction and, as shown in Fig. 1.7 (b), the two bands split, breaking Kramer’s
degeneracy. In Fig. 1.7 (c) we solely add the Rashba interaction, the two bands
split in the k-vector, lifting the spin degeneracy [18], [43], [72]. Finally, in Fig. 1.7

6All the Pauli matrices products in Eq. 1.40 are, in fact, Kronecker products. They are
expressed in the compact notation τi bσi “ τiσi. The resulting matrix has 4ˆ 4 dimension. We
keep this notation throughout the thesis
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Figure 1.7: Band structure of a one dimensional spin ferromagnetic chain in a
superconductor. Parameters: µ “ 1.0, t “ 1.0, ∆ “ 0.5. (a) No magnetic or
Rashba interaction JS “ 0.0, αR “ 0.0. (b) Magnetic interaction alone JS “ 2.0,
αR “ 0.0. (c) Rashba interaction alone JS “ 0.0, αR “ 0.5, (d) Magnetic and
Rashba interaction JS “ 2.0 and αR “ 0.5.

(d) both magnetic and Rashba interactions are present, when compared to (b) we
observe that the two bands crossing at zero energy split, opening a new gap in the
system. This gap opening marks the topological phase transition to a non-trivial
state.

The topological invariant, Q, is evaluated as indicated by Eq. 1.15, for all cases
in Fig. 1.7. The system is in a topological state in (b) and (d), however, only (d)
is a gapped system, meaning that in this case topological edge states will be able
to emerge. The difference between Fig. 1.7 (b) and (d) is the respective absence
and presence of the Rashba spin-orbit interaction. When added, the Rashba term,
opens the topological gap in the system. Q is obtained by evaluating the Pfaffian
in k “ 0 and k “ ˘π

a , at these high symmetry points, the Rashba interaction
vanishes, meaning that the presence or absence of the Rashba interaction has no
effect on the topological phase of the system. However, its presence is required to
reopen the gap and have MBS emerging in the spin chain [8].
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1.3.2 Topological phase diagram

Topological phase diagrams are of special interest when studying the topological
phases of a system. The topological invariant is evaluated as a function of two
parameters and represented as a 2-D map in the parametric space. This allows us
to easily identify the topological phases of the system depending on the parameters.

In Fig. 1.8, we show the topological phase diagrams of a ferromagnetic spin chain
in a superconductor as a function of the magnetic exchange interaction (J ¨ S)
and the chemical potential (µ). Figure 1.8 (a) shows the topological invariant, Q,
where the Q “ 1 (yellow) areas correspond to the trivial phases and the Q “ ´1
(purple) areas are the topologically non-trivial. This is in good agreement with
the winding number in Fig. 1.8 (b), here w “ 0 is the trivial phase while we can
differentiate two topological phases, w “ ˘1. As we mentioned before, Q gives
the parity of the winding number, in this sense, Q allows distinguishing trivial
from topological phases, but it carries less information than the winding number.
The winding number sign indicates the direction of the d⃗ vector, and it allows dis-
tinguishing two types of MBS emerging at the ends of finite chains [79]. Finally,
Fig. 1.8 (c) is not a topological invariant, but the energy gap of the system. As
discussed in previous paragraphs, the topological phase transition occurs only if
there is a gap closing. The dark purple areas of the map correspond to a zero
energy gap. As we can observe in Fig. 1.8, the places where Q and the winding
number change value, perfectly match with the gap closings of the system in panel
(c).
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Figure 1.8: Topological phase diagrams as a function of JS and µ. (a) Topological
invariant, Q. The yellow (purple) areas mark the trivial (topological) phases. (b)
Winding number, w. The white areas correspond to trivial phases, while green
and magenta are two distinct topological phases. (c) Energy gap of the system,
the topological phases transitions always coincide with a zero gap. Parameters:
∆ “ 0.5, t “ 1 and αR “ 0.5.

The topological phase transition, observed in Fig. 1.8, is given by the following
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1.3. Experimental realizations: Spin chains on superconductors

relation:
J ¨ S “

a

p˘2t´ µq2 ` ∆2. (1.42)

The two branches correspond to the two possible gap closing points of the bands:
k “ 0,˘π. One centered at µ “ 2t and the other one at µ “ ´2t. The topological
order parameter, ∆, marks the minimum of J ¨ S delimiting the topological area.
For large |µ|, J ¨ S is linear with µ explaining the shape of the curves delimiting
the topological area.

1.3.3 Finite chains

In the previous paragraph, we studied the bulk Hamiltonian of the spin chain.
This allowed us to identify the topological phases of the system. Thanks to the
bulk-edge correspondence, when we move to the case of a finite system, the topo-
logical phases of the system should result in MBS at the edges of the chain.

We go back to the real space Hamiltonian from Eq. 1.31. We define a finite 1-D
system with N sites, modeling the superconductor, and we select the middle Nj

sites to host the magnetic impurities. The resulting matrix has a size of 4N ˆ 4N :
¨

˚

˚

˚

˝

M11 M12 . . . M1N

M21 M22

...
. . .

...
MN1 . . . MNN

˛

‹

‹

‹

‚

(1.43)

Where each Mij is a 4 ˆ 4 matrix as written in Eq. 1.36:

Mi,i “

¨

˚

˚

˝

´µ` JS 0 0 ´∆
0 ´µ` JS ∆ 0
0 ∆ µ´ JS 0

´∆ 0 0 µ` JS

˛

‹

‹

‚

, Mi,i`1 “

¨

˚

˚

˝

´t αR 0 0
´αR ´t 0 0
0 0 t ´αR

0 0 αR t

˛

‹

‹

‚

The JS component is present only on the sites where we have a magnetic impurity,
being zero elsewhere. The matrix from Eq. 1.43 acts on the 4N -component vector:

ϕ̂n “ pc1Ò, c1Ó, c
:

1Ò, c
:

1Ó, ..., ciÒ, ciÓ, c
:

iÒ, c
:

iÓ, ..., cNÒ, cNÓ, c
:

NÒ, c
:

NÓqT (1.44)

Solving the equations

We want to solve the BdG equations for the Hamiltonian in 1.43. To this end,
we numerically, diagonalize the 4N ˆ 4N matrix. For an eigenenergy, En, the
resulting eigenvectors are of the form

ϕ̂n “ pu1Ò, u1Ó, v1Ò, v1Ó, ..., uiÒ, uiÓ, viÒ, viÓ, ..., uNÒ, uNÓ, vNÒ, vNÓqT
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Chapter 1. Majorana fermions in spin chains.

We select the following parameters: ∆ “ 0.5, t “ 1, µ “ 2, JS “ 2 and αR “ 0.5.
If we take a look at the phase diagrams in Fig. 1.8, we can easily see that this
corresponds to a topological phase, as such, MBS emerge in this system. After
diagonalizing the matrix, we select the eigenstate with energy closest to zero. Be-
cause, we are now solving a finite system the energy of the Majorana mode is not
exactly zero by a small amount [80]. Figure 1.9 (a)-(b) depicts the resulting mod-
ulus square of uiÒ,Ó for the corresponding eigenvector, as a function of the sites
in the system. The vertical black dashed lines mark the edges of the magnetic
impurity chain. As we can observe, |uÒ,Ó|2 reach their maximum at the edges, and
they drop to zero as we move to the middle of the chain or outside. Since this is
a Majorana mode, the coefficients satisfy |u| “ |v|, equal electron and hole part.
However, we can note that the two spin Ò, Ó coefficients do not have the same
amplitude. This fact highlights one of the main differences with the Kitaev chain:
the spin chain is not a spinless system, and the MBS emerging in this case have
some spin component [30].
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Figure 1.9: Finite chain of magnetic impurities in a superconductor. (a)-(b) Mod-
ulus square of uiÒ and uiÓ as a function of site. (c)-(d) Modulus square of the
Majorana wave functions, γA and γB . (e) and (f) LDOS at the end and middle of
the chain, respectively, as a function of energy. Parameters: ∆ “ 0.5, t “ 1, µ “ 2,
JS “ 2 and αR “ 0.5. 400 superconducting sites and 200 magnetic impurities.

We also want to observe the Majorana probability distribution in the chain, and
verify that have two different modes (γA and γB). To this end, we need to make
a unitary transformation of the Hamiltonian to express it in the Majorana repre-
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1.3. Experimental realizations: Spin chains on superconductors

sentation:

ĉÒ “
1

2
pγ̂AÒ ` iγ̂BÒ q, ĉÓ “

1

2
pγ̂AÓ ` iγ̂BÓ q

ĉ:

Ò “
1

2
pγ̂AÒ ´ iγ̂BÒ q, ĉ:

Ó “
1

2
pγ̂AÓ ´ iγ̂BÓ q

(1.45)

Or under matrix form:

Û “ IN b
1

?
2

¨

˚

˚

˝

1 0 1 0
0 1 0 1
i 0 ´i 0
0 i 0 ´i

˛

‹

‹

‚

(1.46)

We apply the previous unitary transformation to the eigen vector, ϕ̂n. Figure 1.9
(c)-(d) show the resulting modulus square of the γA and γB coefficients using the
same parameters as previously mentioned. As observed, each of these reach the
maximum at the edge of the chain, but in opposite sites. Showing that these cor-
respond to the two Majorana bound states.

We can also calculate the local density of states (LDOS) from the electron and
hole coefficients:

ρiσpEq “
ÿ

n

“

|uiσ|2δpEn ´ Eq ` |viσ|2δpEn ` Eq
‰

(1.47)

The total LDOS being ρi “ ρiÒ ` ρiÓ. On Fig. 1.9 (e) and (f) we have plotted the
local density of states at the edge (e) and the centre (f) of the magnetic chain.
We can clearly observe a pronounced peak at zero energy that correspond to the
Majorana bound state, at the opposite end of the chain, the corresponding spec-
trum perfectly matches the one in Fig. 1.9 (e). When we look at the spectrum in
the middle of the chain (Fig. 1.9) (f), we observe an absence of this peak and an
energy gap.

This example of a finite chain, shows the main characteristics of MBS in fer-
romagnetic spin chains: (i) The two bound states are well localized at the ends of
the 1-D system, and their wave function probability goes to zero as we move away
from the edges. (ii) The MBS show some spin component different from zero, and
its value is the same at both ends. (iii) The MBS appears as a pronounced peak at
zero energy when we look at the LDOS at the edges of the chain. The parameters
used in this tight-binding study are non-realistic. For instance, the bandwidth is
unrealistically of the order of the superconducting gap, ∆). Nevertheless, these
properties remain true when we look at more realistic models, as we will see in
chapters 2 and 3.
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Chapter 1. Majorana fermions in spin chains.

Effect of the Rashba spin-orbit coupling

As briefly discussed in 1.3.1, the Rashba coupling has no effect in the topological
phase of the spin chain. However, in order for MBS to emerge in finite ferromag-
netic spin chains, this interaction is required [81], [82].

To better show this effect, in Fig. 1.10 we have plotted the 30-lowest energy lev-
els for a 150-atom spin chain as a function of the magnetic exchange interaction
(J ¨ S), for two distinct cases: In Figure 1.10 (a) the Rashba strength is αR “ 0.5
while in Fig. 1.10 (b) it is zero. We have also plotted the topological invariant, Q
to indicate the topological phase of the system. Keeping the same color code as
in Fig. 1.8 (a), the non-trivial phase (Q “ ´1) correspond to the purple area. As
observed, the presence or absence of Rashba coupling does not affect the topolog-
ical invariant.
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Figure 1.10: Calculated energy spectrum for a 150-atom spin chain on 300-site
superconducting 1-D system. The topological phase is indicated with the purple
areas (Q “ ´1) and the trivial correspond to the yellow (Q “ 1). Parameters:
∆ “ 0.5, t “ 1, µ “ 2, JS “ 2, (a) αR “ 0.5 and (b) αR “ 0

However, if we look at the energy levels, both situations are strikingly different. In
Fig. 1.10 (a) we can observe a solution at zero energy once the system enters the
topological phase. This zero energy state is protected from the rest of the states
by a topological gap [8]. As J ¨ S increases, the gap is reduced, until the system
reaches a trivial phase again and the energy levels split to higher energies. For
magnetic interaction values in the window, 0.5 ď J ¨S ď 4.0, there is a MBS arising
in this system, topologically protected from the higher energy states. In Fig. 1.10
(b), however, when the system is in the topological phase, no zero-energy state
can be found. Even if there are zero-energy crossings between the levels, a new
energy gap does not open in the topological region, preventing MBS to emerge.
This is due to the absence of Rashba coupling in the system. As recently reported,
higher SOC can lead to a larger topological gap [83], as a result, MBS are better
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1.3. Experimental realizations: Spin chains on superconductors

protected from finite-energy states.

Conclusions. In this first chapter, we have reviewed how the search Majorana
fermions have become a prominent topic in condensed matter physics. Exper-
imental realizations of the Kitaev model focus around superconducting systems
with spin-orbit and magnetic interactions. In this thesis, we focus on the study of
spin chains in superconductors. In 1.3, using a tight-binding model, we show how
MBS can arise in this type of system and compute the corresponding topologi-
cal invariant. Using non-realistic parameters, we could observe the main physical
characteristics that the topological edge states should exhibit in finite spin chains
on superconductors. In the following, we will present a more realistic model, where
we implement the BdG equations using a Green’s functions approach.
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2 Yu-Shiba-Rusinov states:
Green’s functions formalism.
Superconductivity and magnetic impurities: YSR states. When a metal
in the superconducting state is subjected to an external magnetic field, the applied
field is expelled from the material. This is known as the Meissner effect. However,
for a sufficiently high field, superconductivity is suppressed. Similarly, magnetic
impurities have a big effect on superconductors at the microscopic scale. As in-
dependently shown by Yu [3], Shiba [4] and Rusinov [5], the exchange interaction
caused by a single magnetic moment leads to the appearance of local in-gap states,
the Yu-Shiba-Rusinov (YSR) states. The emergence of these sates can be under-
stood as a local weakening of the Cooper pairs’ pairing, resulting in quasi-particle
states appearing at energies E ă ∆. The study of YSR states is key in the study
of topological states emerging in spin chains, as the hybridization of such states
and consequential formation of the so-called YSR-bands can lead the system to
enter the topological phase.

In the present chapter, we study YSR states by means of a theoretical approach
that utilizes single-electron Green’s functions. This method allows to easily obtain
the local density of states (LDOS) of the modeled system. We study in-gap states
in a 2-D finite superconductor, created by single impurities, dimers, and finally
we simulate a ferromagnetic spin chain to observe the emergence of edge states.
The model utilizes realistic parameters that can be compared with experiments.
Studies of impurities in superconductors have shown that non-magnetic impurities
have a minimal effect on the superconducting energy gap, only for a high density
of impurities, the superconductor is better described in the dirty limit [84]. On
the other hand, magnetic impurities have a strong effect, as they break the time-
reversal symmetry, and locally suppress the superconducting order parameter. As
such, the LDOS in the vicinity of the impurity is greatly affected. In the original
YSR states theoretical description [3]–[5] the spin is assumed to be classical1. As
such, the impurity’s spin is fixed and cannot fluctuate, simplifying the theoretical
treatment. The exchange field is a local magnetic field centered on the impurity
that will attract electrons with opposite spins and repel electrons with their spin

1In the classical spin limit, the spin is assumed to be large (S Ñ 8), but the total interaction
should be finite, J Ñ 0, JS “finite. Under these conditions, the spin does not experience internal
transitions and only acts as a scattering center for external particles.
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Figure 2.1: Emergence of YSR bound states on a superconductor. (a) Cooper pair
braking due to the presence of a magnetic impurity. (b) Energy of the YSR bound
states (Eq. 2.1) as a function of the exchange interaction, J .

aligned with the impurity’s one (see Fig. 2.1 (a)), similar to the Meissner effect.
The resulting exchange field is a consequence of the classical-spin approximation
and is given by the exchange interaction of the Kondo Hamiltonian representing
the impurity-substrate interaction times the impurity spin.

The solutions of the Hamiltonian for a purely magnetic impurity, with a clas-
sical spin oriented along the z direction, yields a bound state of energy ϵ0 inside
the superconducting gap (ϵ0 ă ∆):

ϵ0 “ ∆
1 ´ α2

1 ` α2
, α “ πN0JS. (2.1)

Where J is the exchange interaction between the magnetic impurity and the elec-
trons from the substrate, S is the spin of the impurity and N0 is the normal density
of states of the superconductor. The previous equation shows the energy for a sin-
gle YSR bound state. A second state will emerge with opposite sign. YSR states
are usually referred to in plural. However, it is more correct to think about one
single state with electron and hole components following the Bogoliubov descrip-
tion of superconducting quasiparticle states.

From a phenomenological point of view, the effect of the magnetic impurity can be
understood as a polarization of the Cooper pairs in the superconductor. The ex-
change interaction reduces locally the pairing potential, "weakening" the Cooper
pair and inducing a bound state at energy |ϵ0| ă ∆. The first experimental detec-
tion of YSR bound states were obtained in tunneling measurements using scanning
tunneling microscopy, on Mn and Gd atoms deposited on Nb [7].

For very large exchange fields, the Cooper pair can break, and the impurity be-
comes efficiently screened by the electrons. This leads to a different ground state
of the impurity + superconductor system. A change of many-body ground state
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Chapter 2. Yu-Shiba-Rusinov states: Green’s functions formalism.

is usually described as a quantum phase transition (QPT) [85]. The YSR-states
energy from Eq. 2.1 is plotted in Fig. 2.1 (b) as a function of the exchange inter-
action, J . As we can observe, as J increases, the energy of the YSR lowers. At
a critical Jc value, the bound state crosses the Fermi level and electron and hole
components change sign. At this crossing point, the ground state of the system is
no longer the ΦBCS , but one with a YSR bound state. The crossing corresponds
to the QPT of the system.

2.1 Green’s functions

In the previous chapter, we studied the emergence of Majorana edge states in a
superconductor using a simple tight-binding model. However, in order to obtain
realistic results that use energy gaps and bandwidths that can be compared with
experiments, we need to take a different approach.

Green’s functions are widely used in physics, like in the investigation of many-
body systems. They can be viewed as operators describing the propagation of a
perturbation in the system. Green’s functions are also interesting because they
contain information about the system that can be directly compared with experi-
ments, for instance, the density of states.

2.1.1 Spin chains on wide band superconductors

For our model, we aim to simulate a bulk superconductor with magnetic impu-
rities on its surface. Beyond their superconducting transition, superconductors
behave as normal metals. Usually, materials that become s´wave superconduc-
tors have a large electron band in their metallic state. The usual values show a
superconducting gap thousands of times smaller than the metallic band. Addi-
tionally, an energy mismatch also exists between the typical exchange interaction
values (in the eV range) and the superconducting order parameter (usually in the
meV range). These different energy scales call for a different modelling approach
from the tight-binding model presented in chapter 1, or the ones used, for example,
to treat semiconducting nanowires with proximitized superconductivity [18], [86],
where the energy scales are comparable.

The typical approach for modelling a wide-band superconductor is to use a free-
electron approximation [9], [26]–[28], [87], [88] using Green’s functions. The next
step is to add the effect of the magnetic impurities. For this, one can stick to
the Green’s function approach and add the effect of the impurities by solving the
Dyson equation [26]–[28] (equivalently the T matrix approach [87], [89]), or obtain
the wave function by applying the Lippmann-Schwinger approach [9], [88].

In our model, we follow the theory developed by Flatté and Byers [26], [27] for a
discrete grid. We use single-particle Green’s functions to describe a BCS super-

30



2.1. Green’s functions

conductor using the BdG equations. With the aid of the Dyson equation, we add
the effect of local magnetic impurities to the system, as well as the effect of the
Rashba spin-orbit coupling. These two interactions can be added to the system as
a single-particle self-energy term.

2.1.2 Single particle Green’s functions
We will start by discussing single-particle Green’s functions for one-particle Hamil-
tonians, where the Green’s function becomes the resolvent of the Hamiltonian. In
this context, the features of the resolvent can be easily shown as we do in the
following.

Propagator

The Green’s function associated with the Schrödinger equation:
“

iℏ
B

Bt
´ Ĥ

‰

ψpr⃗, tq “ 0 (2.2)

is defined by the solution to:

piℏ
B

Bt
ψpr⃗, tq ´ ĤqGpr⃗, t, ˜⃗r, t1q “ δpr⃗ ´ ˜⃗rqδpt´ t1q (2.3)

Where Ĥ is a time-independent Hamiltonian. In this context, Gpr⃗, t, ˜⃗r, t1q is called
a propagator. Taking into account the time evolution and assuming t ă t1. The
propagator is the operator that yields the system’s wave function at t1 if the wave
function is known at t:

ψpr⃗, t1q “ exp
“

´ iĤpt1 ´ tq{ℏ
‰

ψpr⃗, tq (2.4)

Where we can define the propagator or Green’s operator,

G`pt1 ´ tq “ ´iθpt1 ´ tqe´iĤpt1
´tq{ℏ (2.5)

here θpτq is the step function. The ` index, indicate that the previous expression
correspond to the retarded Green’s operator. The advanced operator (G´) can be
obtained similarly, but with t1 ă t.

In case the Hamiltonian is time-independent, the Green’s function only depends
on the time difference, t1 ´ t, in this case it is convenient to Fourier transform into
the frequency domain:

G`pωq “

ż 8

´8

Gpt1 ´ tqeiωpt1
´tqdt1 “ ´i

ż 8

t

eipω´H{ℏq{pt1
´tqdt1 (2.6)

Using time translational invariance, we can take t “ 0. To make the integral
converge, we let ω Ñ ω` iη where η “ 0` is a positive infinitesimal. After solving
the integral, we find:

G`pωq “
1

pω ´H{ℏ ` iηq
(2.7)
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Chapter 2. Yu-Shiba-Rusinov states: Green’s functions formalism.

G`pωq is known as the resolvent operator. The poles of the corresponding Green’s
function, coincide with the discrete eigenenergies of the Hamiltonian H, and vice-
versa, as can be seen from Eq. 2.7. The density of states can be obtained from the
imaginary part [90]:

Npωq “ ¯
1

π
Tr

␣

ImtG˘pωqu
(

(2.8)

that is trivially shown by using the Cauchy equality 1
ω`iη “

p
ω ´ iπδpωq where p

stands for the principal part of the implicit integration.

Non-interacting electrons

We now want to look at the particular case of non-interacting electrons, at zero
temperature, and calculate the corresponding k-space Green’s function. In this
case, the Hamiltonian is simply:

Ĥ “
ÿ

nk

ξnkψnkpr⃗q (2.9)

Where k takes values in the first Brillouin zone and n is the band index (this index
could represent also, for example, the spin state of the excitation). We can express
the ψpr⃗q as field operators:

ψ:pr⃗q “
ÿ

nk

ψ˚
nkpr⃗qc:

nk, (2.10)

and so the Hamiltonian can be written:

Ĥ “

ż

dr⃗ψ:pr⃗qĤψpr⃗q “
ÿ

nk,mp

xψnk|H |ψmpy| c:

nkcmp

“
ÿ

nk,mp

ξnkδnk,mpc
:

nkcmp “
ÿ

nk

ξnkc
:

nkcnk

(2.11)

Using the time dependence of the c operators: cnkptq “ cnke
´iξnkt and c:

nkptq “

c:

nke
iξnkt. And the definition from Eq. 2.5 ({ℏ “ 1 unless otherwise specified):

G`pnk, t´ t1q “ ´iθpt´ t1qe´iξnkpt´t1
q (2.12)

We perform Fourier transform to obtain the corresponding propagator of the free
electron Hamiltonian:

G`pnk, ωq “ ´ i

ż 8

´8

dt θpt´ t1qeiωpt´t1
qe´iξnkpt´t1

qηpt´t1
q

“
1

ω ´ ξnk ` iη

(2.13)

Using Cauchy’s expression: 1
ω`iη “

p
ω ´ iπδpωq where p stands for the principal

part when this expression appears in the integration over the continuum states,
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(we reintroduce ℏ for clarity in the following expressions):

Gpk, ωq “
ÿ

n

` p

ω ´ ξnk{ℏ
´ iπδpω ´ ξnk{ℏq

˘

(2.14)

We now want to find the function in real space. Using that |nky is a complete
basis 1 “

ř

nk |nky xnk|:

Gpr⃗, ˜⃗r, ωq “ xr⃗|Gpωq |˜⃗ry “
ÿ

nk,mp

xr⃗|nky xnk|Gpωq |mpy xmp|˜⃗ry

“
ÿ

nk

ψnkpr⃗qGpk, ωqψ˚
nkp˜⃗rq

(2.15)

Replacing Gpk, ωq by Eq. 2.14, we arrive at the final expression:

Gpr⃗, ˜⃗r, ωq “
ÿ

nk

ˆ

p
ψnkpr⃗qψ˚

nkp˜⃗rq

ω ´ ξnk{ℏ
´ iπψnkpr⃗qψ˚

nkp˜⃗rqδpω ´ ξnk{ℏq

˙

. (2.16)

Density of states

Let us define the local density of states, ρpr⃗0, ωq:

ρpr⃗0, ωq “
ÿ

nk

|ψnkpr⃗0q|2δpω ´ ξnk{ℏq. (2.17)

If we look at the expression, we found for Gpr⃗, r⃗1, ωq in Eq. 2.16, we can write the
LDOS as:

ρpr⃗0, ωq “ ´
1

π
ImpGpr⃗0, r⃗0, ωqq. (2.18)

The density of states, Npωq, can be calculated by integrating the previous expres-
sion over r⃗:

Npωq “

ż

dr⃗ρpr⃗, ωq “ ´
1

π

ż

dr⃗ ImpGpr⃗, r⃗, ωqq

“ ´
1

π
Im

ÿ

k

Gpk, ωq “
ÿ

nk

δpω ´ ξnk{ℏq.
(2.19)

In this section, we have reviewed how to obtain the retarded Green’s function for
free electrons, as defined in Eq. 2.5. We have also seen how we can easily obtain
the density of states from the imaginary part of the real-space Green’s function
(Eq. 2.18 and 2.19). In the following, we will obtain the retarded Green’s function
of a BCS superconductor, described by the mean-field Hamiltonian, presented in
chapter 1.
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Chapter 2. Yu-Shiba-Rusinov states: Green’s functions formalism.

2.1.3 Green’s function for a BCS superconductor

Using the Green’s function results from the previous section, we want to calculate
the corresponding Green’s function for a BCS superconductor. This will allow us
to compute the corresponding local density of states. As we discussed in 1.2, the
mean-field BCS Hamiltonian, can be expressed in the 4-component Nambu spinor
basis [49], [91]:

ψk “

¨

˚

˚

˝

ckÒ

ckÓ

c:

´kÒ

c:

´kÓ

˛

‹

‹

‚

(2.20)

Using Pauli matrices, τ and σ, the BCS Hamiltonian in this basis, can be expressed
under the following form [91]:

HBCS “ ξkτzσ0 ` ∆τyσy (2.21)

Where τ0,x,y,z act in the particle-hole space and σ0,x,y,z act in the spin space. As-
suming that ∆ is real and homogeneous in the superconductor, ∆ij “ ∆δi,j “ ∆
such that we recover the s-wave superconductor condition ∆k “

ř

j ∆0,je
ik¨pr0´rjq “

∆. Thanks to the one-particle character of the BCS Hamiltonian, we can simply
apply the propagator equation 2.7 to obtain the Green’s function of the supercon-
ductor:

GBCSpk, ωq “
1

ω2 ´ ξ2k ´ ∆2

¨

˚

˚

˝

ω ` ξk 0 0 ´∆
0 ω ` ξk ∆ 0
0 ∆ ω ´ ξk 0

´∆ 0 0 ω ´ ξk

˛

‹

‹

‚

(2.22)

The goal is to obtain the Green’s function in real space, ĜBCSpr⃗, ˜⃗r, ωq. As shown
in 2.1.2, we can change the basis by evaluating the following expression:

ÿ

k,k1

xr⃗|ky xk|GBCSpk, ωq |k1y xk1|˜⃗ry

“
ÿ

k,k1

ψkpr⃗qGBCSkk1 pk, ωqψ:

k1 p˜⃗rq

“
1

p2πq3

ż

eikrGBCSpk, ωqdk

(2.23)

To solve Eq. 2.22 we need to evaluate two different integrals:

I1 “
1

p2πq3

ż

eikr∆

ω2 ´ ξ2k ´ ∆2
dk (2.24)

I2 “
1

p2πq3

ż

eikrpω ` ξkq

ω2 ´ ξ2k ´ ∆2
dk (2.25)
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2.1. Green’s functions

Where r “ |r⃗ ´ ˜⃗r| is the distance between sites. It can be shown that [9], [91]
(details are provided in Appendix B):

I1 “ ´
πN0∆

kF r
?
∆2 ´ ω2

sin kF r ˆ e´
?
∆2´ω2 r

πξ∆ (2.26)

I2 “ ´
πN0

kF r
pcos kF r `

ω
?
∆2 ´ ω2

sin kF rq ˆ e´
?
∆2´ω2 r

πξ∆ (2.27)

Finally, the resulting matrix writes:

GBCSpr⃗, r⃗1, ωq “ ´
πN0

kF r
e

´
?

∆2´ω2r
πξ∆ ˆ (2.28)

¨

˚

˚

˚

˝

cos kF r ` ω?
∆2´ω2 sin kF r 0 0 ´∆?

∆2´ω2 sin kF r

0 cos kF r ` ω?
∆2´ω2 sin kF r

∆?
∆2´ω2 sin kF r 0

0 ∆?
∆2´ω2 sin kF r ´ cos kF r ` ω?

∆2´ω2 sin kF r 0
´∆?
∆2´ω2 sin kF r 0 0 ´ cos kF r ` ω?

∆2´ω2 sin kF r

˛

‹

‹

‹

‚

Where N0 is the normal electronic density, kF is the Fermi wave vector, and
ξ “ kF

π∆meff
. The energy variable, ω “ ω1 ` iΓ, where Γ is the Dynes param-

eter [65]. The imaginary part of ĜBCSpr⃗, r⃗, ωq gives the one particle density of
states at the coordinate r⃗. As it can be noted, the Green’s function has an oscil-
latory behavior with kF r.

We solve Eq. 2.28 on a finite array of sites modeling the superconductor. In
Fig. 2.2 (a) we show an example of a 2-D array with dimensions Nx “ Ny “ 5,
each GBCSpri, rj , ωq is modeled by the 4 ˆ 4 Green’s function in Eq. 2.28. For
a 2-D case, the full matrix has a size of 4NxNy ˆ 4NxNy. For the case of a ho-
mogeneous superconductor, the distance between sites, r, is fixed by the lattice
parameter, a, such that r “ |ri ´ rj | ˆ a.

The density of states can be directly obtained by looking at the imaginary part of
Eq. 2.28, as discussed in 1.2.4, the four-component BdG equations are redundant,
so it is enough to look at only two of their components to obtain the DOS. In our
model, we are projecting the DOS into the sites of the finite array, in this way,
we refer to this quantity as projected density of states (PDOS). This expression
writes:

ρpr⃗i, ωq “ ´
1

π
ImrG1,1pr⃗i, r⃗i, ωq `G4,4pr⃗i, r⃗i,´ωqs. (2.29)

As shown by the Abrikosov-Gorkov equations (see 2.1.4), after the correspond-
ing analytical continuation to real times (frequencies), each of the components
from Eq. 2.29 gives us the PDOS for spin up (G11) and down (G44) components.
Figure 2.2 (b) depicts the resulting PDOS obtained on a finite 2-D array with
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Chapter 2. Yu-Shiba-Rusinov states: Green’s functions formalism.

Figure 2.2: (a) 2-D square lattice modeling a superconductor, the size is Nx ˆNy.
The distance between sites is the lattice parameter, a. (b) PDOS as obtained
from Eq. 2.29 for a superconducting 2-D lattice. Parameters: ∆ “ 0.75 meV,
kF “ 0.183 a´1

0 , a “ 3.36 Å and Γ “ 0.01 meV. Modeling the superconductor
Bi2Pd.

dimension Nx “ Ny “ 8, with parameters: ∆ “ 0.75 meV, kF “ 0.183 a´1
0 .

The parameters used here are found to correctly described the superconductor
Bi2Pd [28]. The Dynes parameter is set to be: Γ “ 0.01 meV to reproduce the
experimental data. As observed, the PDOS shows the characteristic coherence
peaks at energy ˘0.75 meV.

2.1.4 Abrikosov-Gorkov equations
As expressed in Eq. 2.18, the local density of states is obtained from the imag-
inary part of the resulting Green’s function. Expressing the Green’s function in
the imaginary-time space with the Abrikosov equations shows how we obtained
the correct density of states after the corresponding analytical continuation.

The Nambu operators in the imaginary time space:

Ψ̂ipτq “

¨

˚

˚

˝

ĉiÒpτq

ĉiÓpτq

ĉ:

iÒpτq

ĉ:

iÓpτq

˛

‹

‹

‚

, Ψ̂:

i pτq “

´

ĉ:

iÒpτq ĉ:

iÓpτq ĉiÒpτq ĉiÓpτq

¯

(2.30)

The Heisenberg operators are defined:

ĉ
p:q

iσ pτq “ eτH{ℏĉ
p:q

iσ e
´τH{ℏ. (2.31)

Where τ is the imaginary time (τ “ it) and H is the Hamiltonian of our model.
With this the Green’s function is defined as

Gpi, τ ; j, τ 1q “ ´ ă Tτ Ψ̂ipτq b Ψ̂jpτ 1q ą (2.32)
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2.1. Green’s functions

Where Tτ is the time-ordering operator, more explicitly the previous equation
becomes

Gpi, τ ; j, τ 1q “ ´θpτ´τ 1q ă Ψ̂ipτqbΨ̂:

jpτ 1q ą `θpτ 1´τq ă Ψ̂:

jpτ 1qbΨ̂ipτq ą (2.33)

Where ă ... ą“
ř

n
e´βEn

Z xn| ... |ny is, the thermal average over all states |ny and
Z is the canonical partition function (Z “

ř

n e
´βEn). With this, we can explicitly

calculate some of the components.

G11pi, τ ; j, τ 1q “ ´θpτ ´ τ 1q ă ĉiÒpτqĉ:

jÒpτ 1q ą
looooooooomooooooooon

I1

`θpτ 1 ´ τq ă ĉ:

jÒpτ 1qĉiÒpτq ą
looooooooomooooooooon

I2

(2.34)

It can be shown that (see Appendix B for details):

I1 “
ÿ

s

pe´Espτ´τ 1
q{ℏusiÒu

s˚
jÒfp´Esq ` eEspτ´τ 1

q{ℏvs˚
iÒ v

s
jÒfpEsqq

I2 “
ÿ

s

peEspτ 1
´τq{ℏus˚

jÒu
s
iÒfpEsq ` e´Espτ 1

´τq{ℏvsjÒv
s˚
iÒ fp´Esqq

(2.35)

So that,

G11pi, τ ; j, τ 1q “ ´θpτ ´ τ 1q
ÿ

s

pe´Espτ´τ 1
q{ℏusiÒu

s˚
jÒfp´Esq ` eEspτ´τ 1

q{ℏvs˚
iÒ v

s
jÒfpEsqq

`θpτ 1 ´ τq
ÿ

s

peEspτ 1
´τq{ℏus˚

jÒu
s
iÒfpEsq ` e´Espτ 1

´τq{ℏvsjÒv
s˚
iÒ fp´Esqq

(2.36)

We now go back to the frequency domain:

G11pi, j, iωnq “

ż βℏ

0

dτeiωnτG11pi, j, τq (2.37)

“ ´
ÿ

n

«

uniÒu
n˚
jÒ fp´Enq

ż βℏ

0

dτepiωn´En{ℏqτ ` vn˚
iÒ v

n
jÒfpEnq

ż βℏ

0

dτepiωn`En{ℏqτ

ff

“ ´
ÿ

n

«

uniÒu
n˚
jÒ

iωn ´ En{ℏ
fp´Enq

`

eβℏpiωn´En{ℏq ´ 1
˘

`
vn˚
iÒ v

n
jÒ

iωn ` En{ℏ
fpEnq

`

eβℏpiωn`En{ℏq ´ 1
˘

ff

“
ÿ

n

«

uniÒu
n˚
jÒ

iωn ´ En{ℏ
`

vn˚
iÒ v

n
jÒ

iωn ` En{ℏ

ff

(2.38)

Similarly, we can be show that G44pi, j, iωnq, in the frequency domain:

G44pi, j, iωnq “
ÿ

n

«

un˚
iÓ u

n
jÓ

iωn ` En{ℏ
`

vniÓv
n˚
jÓ

iωn ´ En{ℏ

ff

(2.39)
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And the local density of states can be calculated using the analytical continuation,
as:

ρiÒpEq “ ´
1

ℏπ
␣

G11pi, i, iωn Ñ E{ℏ ` i0`q
(

(2.40)

ρiÓpEq “ ´
1

ℏπ
␣

G44pi, i,´iωn Ñ ´pE{ℏ ` i0`qq
(

(2.41)

In this way, the total local density of states is obtained ρipEq “ ρiÒpEq ` ρiÓpEq,
which coincides with the expression written in Eq. 2.29.

2.2 Magnetic impurities on a BCS superconductor

As discussed above, the presence of magnetic impurities in a superconductor re-
sults in the formation of YSR states. When several impurities assemble, their
in-gap states can overlap forming in-gap bands, also called YSR-bands [9], [24],
[92], [93]. When the impurity chain forms and helical spin ordering, it has been
shown that the bands can enter a topological superconductivity phase and, as a
result, MBS can emerge at the edges of the chain [8], [9], [94]. The presence of spin-
orbit coupling can induce this helical spin ordering in ferromagnetic chains [87],
[95], [96].

Here, we study the emergence of YSR-states by means of the Green’s function
formalism. We add the effect of the magnetic impurities and the Rashba interac-
tion as self-energies in the Dyson equation. We first study the simple case of single
impurities and two impurities in proximity.

2.2.1 Perturbations with Green’s functions

To obtain the BCS Green’s functions, we can simply apply the equations for free
electrons, as describe in 2.1. However, to add the effect of the magnetic impurities
and the Rashba coupling, we need to add a perturbation to the system. As we will
see in the following, by describing these perturbations as mean-field Hamiltonians,
the Dyson equation allows us to obtain the total Green’s function of the system.

Dyson equation

Our goal is to find the corresponding Green’s function of a Hamiltonian H “ H0 `

H1, where H0 is unperturbed (in our case H0 “ HBCS) and H1 is the perturbation
to the system (in our case the magnetic impurities and the Rashba interaction
that are treated as one-particle potentials). To obtain the corresponding Green’s
function of the total Hamiltonian, we want to express it in terms of G0 and H1.
For this, we start by writing the Green’s functions:

G0pωq “pω ´H0q´1

Gpωq “pω ´Hq´1
(2.42)
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2.2. Magnetic impurities on a BCS superconductor

The total Green’s operator, then:

Gpωq “
`

ω ´H0 ´H1

˘´1
“
“

pz ´H0q
`

1 ´ pz ´H0q´1H1

˘‰

“
“

1 ´ pω ´H0q´1H1

‰´1
pω ´H0q´1

“
`

1 ´G0pωqH1

˘´1
G0pωq

(2.43)

Expanding p1 ´G0H1q´1, we write:

G “ G0 `G0H1G0 `G0H1G0H1G0 ` ... (2.44)

In a more compact form, we find:

G “ G0 `G0H1G (2.45)

The previous expression is the so-called Dyson equation [90], [97]. By applying
basic algebra it can be shown that:

G “
“

G´1
0 ´H1

‰´1 (2.46)

In this context, H1 is referred to as the self-energy, and it models the effect of inter-
actions on the unperturbed Green’s operator. In the following, we will see how we
can apply the Dyson equation to add magnetic impurities to the superconductor.

2.2.2 Adding magnetic impurities
The first term we add to the self energy, is the one describing the magnetic im-
purities. As discussed, the BCS superconductor is modelled as a finite array, and
the impurities will be located in selected sites of the array, being able to create
different structures.

Kondo Hamiltonian

Similar to the magnetic term in 1.3.1, the magnetic impurities are described using
the Kondo model, the Hamiltonian in this case is [9]:

Ĥimpurity “

N
ÿ

j

pJjS⃗j ¨ α⃗ ´Kjτzσ0q (2.47)

Where J is the magnetic strength coupling of the impurity and S⃗j is its spin. For
J ą 0 values, the exchange field will attract electrons with opposite spin, and
repel electrons with parallel spin, this is the antiferromagnetic interaction. For
J ă 0, the interaction is ferromagnetic, attracting electrons with the same spin.
α⃗ is the electron-spin as expressed in the Nambu basis: α⃗ “ 1`τz

2 σ⃗ ` 1´τz
2 σyσ⃗σy

where σ⃗ is the spin operator [98]. S⃗j is assumed to be classical and, in prin-
ciple, can be oriented in any direction of the 3-D space, S⃗j “ pSj,x, Sj,y, Sj,zq
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“ Spsin θj cosϕj , sin θj sinϕj , cos θjq, although recent studies have reported effects
of quantum spins in superconductors [99]–[101]. K accounts for the non-magnetic
potential scattering due to the Coulomb interaction.

Figure 2.3: (a)-(c) Spin-resolved PDOS calculated on a single magnetic impurity
located at the center of a 21 ˆ 21 superconducting lattice. (a) J “ 0.3 meV,
K “ 0.0, (b) J “ 2.0 meV, K “ 0.0, (c) J “ 2.0 eV, K “ 2.0 eV. (d), (e) 2-D
maps of the spatial distribution of the electron and hole components, respectively,
of the spectra shown in (b). (f) Electron/hole PDOS along the middle row of the
2-D-array shown in (d) and (e). Superconductor parameters same as in Fig. 2.2.

We numerically solve the Dyson equation (Eq. 2.46), by setting G0 “ GBCS and
H1 “ Himpurity, modelling a single impurity located at the center of a supercon-
ducting 2-D array. The impurity spin is chosen to be S “ 5{2 corresponding, for
example, to a Chromium atom. The magnetic moment is set to be aligned along
the z⃗ axis, perpendicular to the surface. We evaluate the spectral function or
PDOS as written in Eq. 2.29. Figure 2.3 (a)-(c) shows the resulting spectra, ρÒ

(in blue) and ρÓ (in orange), the total spectrum is the sum of both components.
In Fig. 2.3 (a) the magnetic coupling is J “ 0.3 eV and no scattering potential
(K “ 0). For comparison, we have depicted (in green) the spectra obtained on
a clean superconductor with the same size. By comparing the two spectra, the
presence of in-gap states can be only noted by a narrowing of the superconducting
gap in the orange + blue curve. These states become more apparent as we increase

40



2.2. Magnetic impurities on a BCS superconductor

the exchange coupling.

Figure 2.3 (b) shows the calculated PDOS with J “ 2.0 eV, as we can see, two
peaks corresponding to a YSR state are present inside the energy gap. The co-
herence peaks have vanished from the spectra. The two YSR peaks emerge at a
symmetric energy of ˘0.375 meV, and they have equal electron and hole compo-
nents. We can also see that the YSR states are fully spin polarized [102], [103]. The
electron (hole) component, visible at positive (negative) energy, is spin-down(up)
polarized. As expected from AFM coupling, the magnetic impurity attracts elec-
trons with opposite spin polarization. To break the spectral symmetry, we add a
potential scattering term to the system. Figure 2.3 (c) shows the obtained PDOS
with the same parameters as Fig. 2.3 (b), but with K “ 2.0 eV. As we can ap-
preciate, the YSR peaks have shifted to a slightly different energy (˘0.396 meV)
but, most notably, the spectra now show an asymmetry between electron and hole
components. The scattering Coulomb term, repels the electrons, reducing its spec-
tral height.

The 2-D maps, shown in Fig. 2.3 (d) and (e), represent the spatial distribution of
the electron an hole components, as calculated in (b). As we can see, the YSR
states extend in space far from the impurity. As we can observe, the electron and
hole spatial distributions do not match, even in the absence of a potential scatter-
ing term. They both show their maximum height at the location of the magnetic
atom, but they decay with some phase shift [102]. Figure 2.3 (f) gives more insight
into the electron/hole spatial distribution, this figure shows a cut of the PDOS
along the x direction of the 2-D array. We observe the maximum of both electron
and hole at the center of the array (where is impurity is located), and the spatial
miss-match between the two can be better observed.

Quantum phase transition

As first pointed out by Sakurai [104], a large magnetic exchange interaction leads
to a level crossing between two ground states [98]. In this transition, the spin
quantum number of the ground state changes from zero to ˘1{2, and the parity
of the ground state changes. This transformation receives the name of quantum
phase transition (QPT) [85], [98], [105]. In an s´wave superconductor, this re-
sults in a local breaking of Cooper pairs. As a consequence, beyond some critical
coupling J ą Jc, the impurity spin becomes partially screened. This transition
occurs, when the in-gap states cross at zero energy, and the electron and hole
components interchange.

For a single impurity, using the same parameters as Fig. 2.4, we study the evolution
of the YSR states as we vary the exchange coupling, J . Figure 2.4 (a)-(c) show
the results for an impurity without potential scattering (K “ 0.0). In Fig. 2.4
(a) we depict the magnetic coupling versus the YSR-state energy. We can observe
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Figure 2.4: Quantum phase transition for a single magnetic impurity. (a)-(c)
K “ 0.0 meV. (d)-(f) K “ 5.5 meV. (a),(d) Exchange energy, J versus energy
peak position. (b),(e) PDOS 2-D map as a function of J vs energy. (c),(f) Spin z
component 2-D map. Parameters: Same Fig. 2.3 (b) and (c), only varying J .

a crossing of the two peaks at J “ 3.48 eV, coinciding with the value extracted
from Eq. 2.1, by setting α “ 1. The calculated behavior of the in-gap states co-
incides with the one shown in Fig. 2.1. To obtain more information about the
quantum phase transition, Fig. 2.4 (b) and (c) show 2-D maps of the PDOS and
the ρz “ ρÒ ´ ρÓ spin polarization of the states, respectively. The PDOS is parti-
cle/hole symmetric, since there is no potential scattering in this calculation. We
obtain more information when we look at the spin component. We can observe
that the spin polarization inverts at the transition. Indeed, at the QPT, the spin
polarization is expected to flip [106], [107].

Figure 2.4 (d)-(f) shows analogous results to the upper row, but with potential
scattering K “ 5.5 eV. As we can observe, the Jc has shifted to higher values, ob-
serving the QPT at J „ 4.0 eV. In Fig. 2.4 (e) we can again note the electron/hole
asymmetry due to the presence of K, the spin components switch again at the
QPT.

2.2.3 Adding Rashba spin-orbit coupling

When electrons move in an electric field, they experience a magnetic field in their
rest-frame. This field induces a momentum-dependent Zeeman energy called spin-
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orbit coupling (SOC). The Hamiltonian describing this interaction:

ĤSOC „ µBpE⃗ ˆ p⃗q ¨ σ⃗ (2.48)

Where µB is the Bohr magneton and p⃗ is the electron’s momentum. Rashba
SOC arises as a consequence of inversion symmetry to be broken (for example on
surfaces). This symmetry breaking can be added as an electric field, E⃗ “ Ez z⃗,
that breaks the symmetry in the z⃗ axis. With this condition, the SOC Rashba
interaction takes the form [77], [108]:

ĤRashba “
αR

ℏ
pz⃗ ˆ p⃗q ¨ σ⃗ (2.49)

As such, when electrons flow along the x⃗ axis with a well-defined p⃗, they experi-
ence an effective magnetic field along y⃗, the Rashba field [78]. αR is the Rashba
parameter, it measures the strength of the Rashba SOC. The highest αR values
have been measured on Bi compounds: for Bi/Ag alloys an αR « 3.0 eV-Å has
been experimentally measured [109], on BiTeI αR “ 3.8 eV-Å was obtained [110].

We want to add this Rashba interaction to our discrete lattice model (see Ap-
pendix C for details). Rewriting Eq. 2.49 more explicitly:

ĤRashba “
αR

ℏ
ppyσx ´ pxσyq (2.50)

The momentum operator is related to the differential operator:

p̂x “ ´iℏ
B

Bx
p̂y “ ´iℏ

B

By
(2.51)

Using finite differences and the following discretization of the 2-D space as
|i, jy “ |x “ ia, y “ jay states where a is the lattice parameter, the momentum
operators become [111]:

p̂x “ ´iℏ
|i` 1, jy xi, j|

2a
p̂y “ ´iℏ

|i, j ` 1y xi, j|

2a
(2.52)

So the Rashba Hamiltonian can be written:

ĤRashba “
αR

2a

ÿ

i,j

”

`

|i` 1, jy xi, j| ˆ iσy
˘

´
`

|i, j ` 1y xi, j| ˆ iσx
˘

ı

` h.c. (2.53)

Where the state |i, jy indicates the site i in the x direction and the site j in the
y direction. a is the lattice parameter of the material. The previous Hamiltonian
couples states at nearest neighbors sites and with different spin. As such, the
Rashba SOC can be understood as a hopping term that includes a spin flip in the
electron. Equation 2.53 can be written more explicitly, in terms of the creation
and annihilation operators:

ĤRashba “
iαR

2a

ÿ

i,j,σ,σ1

pc:

i`1,jσσyci,j,σ1 ´ ci,j`1,σσxci,j,σ1 ` h.c.q (2.54)
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Finally, to obtain the total Green’s function of the system, we solve Dyson’s equa-
tion (Eq. 2.46) by taking the impurity and the Rashba term together in the self-
energy term:

ĤSelf “ Ĥimpurity ` ĤRashba (2.55)

The Ĥimpurity term is a local term, only found at the lattice sites where the
magnetic impurities are located. The ĤRashba term, on the other hand, is present
everywhere in the superconducting lattice. The effect of the Rashba term for a
single impurity is rather small, to better observe its effect we instead look at the
case of a pair of magnetic impurities (or dimers).

2.2.4 Magnetic dimers

We now take a look at the case of two magnetic impurities located next to each
other in the center of the superconducting array. For this structure, it is also inter-
esting to consider the relative spin arrangement existing between the two impuri-
ties within our classical-spin model. We investigate two cases: a ferromagnetically
ordered dimer (both spins are parallel to each other) and anti-ferromagnetic pair
(the spins are antiparallel, oriented in opposite directions).

Figure 2.5: Impurity dimer with no Rashba SOC. (a)-(d) FM dimer and (e)-
(h) AFM dimer. (a),(e) PDOS obtained on the first atom. The blue (orange)
curve is the ρÓ (ρÒ) component. (b),(f) PDOS spatial distribution of the electron
component at the indicated energy. (c),(g) Density of spin along z. (d),(h) Density
of the transversal spin component, ρx. Parameters: ∆ “ 0.75 meV, kF “ 0.183
a´1
0 , a “ 3.36 Å, Γ “ 0.01 meV, J “ 1.8 eV, K “ 2.0 eV and αR “ 0.0. All shown

densities are in units of 1/eV.
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Figure 2.5 shows the result for the FM dimer (upper row) and AFM ordering
(lower row). Figures 2.5 (a), (e) depict the PDOS obtained on the first atom of
the pair, in blue (orange) we show the ρiÓ (ρiÒ) component, the total PDOS is
simply the sum of the two. In the FM case, we can observe four peaks: one pair at
˘0.15 meV and, with a much reduced height, at second pair at ˘0.74 meV. In con-
trast, in Fig. 2.5 (e) we observe only two peaks. This difference is due to the YSR
hybridization expected for FM atomic dimers. Indeed, the states split into the
symmetric and anti-symmetric combination of the one impurity YSR states [28],
[29]. However, for the AFM ordered dimer, the expected behavior is single-atom
like. Since the quasi-particles attracted by the two impurities have opposite spin,
the hybridization in this case is weaker and only a small energy shift can be ob-
served when compared to the single-impurity spectrum in Fig. 2.3 (c) [27]–[29]. As
we will see in the following, this behavior changes in the presence of SOC. Also,
we can see that the in-gap states of the FM dimer are fully spin polarized, the
negative (positive) YSR states only show spin up (down) components. In the AFM
spectrum, however, we can observe spin up and down components on both in-gap
peaks due to the presence of the neighboring atom with opposite spin direction.

The 2-D maps in Fig. 2.5 (b), (f) show the spatial distribution of the PDOS at the
indicated energy, corresponding to the electron component of the YSR state. For
the FM case, the maximum can be observed at the position of the dimer, while
for the AFM dimer, the maximum is reached at the neighbor sites of the magnetic
atoms. In the remaining maps, we show the spin distribution at the same energy.
Figures 2.5 (c), (g) show the ρiz “ ρiÒ ´ ρiÓ spin distribution. We can observe a
big difference between the two cases: In the FM dimer, the spin of the YSR state
in both atoms is the same, with a majority of spin down component. In the AFM
case, the polarization of the in-gap state is opposite on the two atoms, due to
the opposite spin direction of the pair: in the spin-up (down) atom the majority
of electrons show spin-down (up) polarization. Finally, we also study the trans-
verse, or in-plane spin component, ρx. It can be obtained from the non-diagonal
components in the Green’s function:

ρxpr⃗i, ωq “ ´
1

π
ImrG1,4pr⃗i, r⃗i, ωq `G4,1pr⃗i, r⃗i, ωqs (2.56)

Figures 2.5 (d), (h) show the transverse spin component distribution. As we can
see, for both cases, there is no in-plane polarization component.

Figure 2.6 shows similar results as Fig. 2.5, but we have added the Rashba inter-
action, with αR “ 3.0 eV-Å. The spectra in Fig. 2.6 (a) shows small difference
compared to the αR “ 0.0 case: there are still four peaks visible, but they have
slightly shifted to different energies. For the AFM dimer, on the other hand, we can
observe that, as the Rashba SOC is added to the system, the two peaks have now
split into four (Fig. 2.6 (e)), indeed, the presence of SOC allows for anti-parallel
spins to hybridize [112], as experimentally observed for Mn dimers on Nb [29].
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Figure 2.6: Impurity dimer with Rashba SOC. (a)-(d) FM dimer and (e)-(h) AFM
dimer. (a),(e) PDOS obtained on the first atom. The blue (orange) curve is the ρÓ

(ρÒ) component. (b),(f) PDOS spatial distribution at the indicated energy. (c),(g)
Density of spin along z. (d),(h) Density of the transversal spin component, ρx.
Parameters: Same as Fig. 2.5 and αR “ 3.0 eV-Å. All shown densities are in units
of 1/eV.

The 2-D maps, show similar behavior as in Fig. 2.5. Most notably, we can now
observe a non-zero transverse spin component (ρx) in Fig. 2.6 (d) and (h). The
PDOS distribution in Fig. 2.6 (b), (f) does not differ a lot from the corresponding
case in Fig. 2.5 For the FM dimer, the transverse spin is opposite in each of the
impurities and shows an antisymmetric behavior in the rest of the array. In the
AFM pair, the in-plane spin component has a symmetric distribution around the
dimer. Overall, the presence of the Rashba SOC, results in a mixture of the spin
components, allowing, for example, for the AFM YSR states to hybridize.

2.3 Spin chains on a superconductor

Finally, we want to build a chain with several impurities on a superconducting sur-
face. The realization of MBS in spin chains follows two main approaches. The first
one is the so called diluted chain limit. The YSR states created by the impurities
can hybridize, resulting in the YSR bands. These bands can go into a topological
phase, and host MBS on their edges [9], [88], [93], [113], [114]. The second ap-
proach is the dense impurity limit, here magnetic impurities are coupled to each
other and superconductivity is induced by proximity effect into the chain. The
chain may enter the topological phase when a non-collinear spin texture is present
in the chain. This may result from RRKY interaction or spin orbit coupling [94],
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[115], [116]. The last approach is similar to the experimental realizations using
semiconducting nanowires.

In our Green’s function model, we find ourselves on the diluted chain limit. In this
section, we will simulate a chain of magnetic impurities using the same model used
to simulate single impurities and dimers in 2.2. We aim to observe the emergence
of MBS using realistic parameters which can be realized on experimental set-ups.

Figure 2.7: Spin chain on a superconductor. The superconducting surface is mod-
elled, by a discrete 2-D array represented by blue balls in the figure. The magnetic
impurities, represented by the orange balls, are placed along the x direction form-
ing the chain. The arrows represent the spin state of the impurities, in this figure,
we can observe the spins ferromagnetically coupled and pointing along the z⃗ axis,
perpendicular to the superconducting surface.

2.3.1 Modeling and plotting

Figure 2.7 depicts the geometry of the modelled system: the blue balls represent
the atoms of the BCS superconductor, each of them is one site of the lattice.
The orange balls are the magnetic atoms. They are located at the center of the
superconducting surface. The chain is placed along the x⃗ direction. The arrows
represent the spin of the impurities. Here the arrows are pointing along the z⃗ axis,
perpendicular to the surface creating a FM chain, however the spins can point in
any other direction in the 3-D space, as explained in 2.2.2.

We solve Dyson’s equation for a FM spin chain with 27 magnetic impurities on a
2-D superconducting array of 35ˆ11 sites. Figure 2.8 shows the results of the cal-
culation. In Fig. 2.8 (a) we depict the spectrum obtained on one of the edge atoms
of the chain, we can easily notice a pronounced peak at zero energy as well as other
in-gap states at higher energies. A key feature of MBS is their spatial distribution
in finite systems. In a 1-D system, such as a spin chain, MBS are expected to arise
localized at the edges of the chain [8], [117]. To observe this, on Fig. 2.8 (b) we
plot the PDOS of the chain at E “ 0.0 as a function of the atomic site along the x
axis. The red dashed lines mark the limits of the atomic chain, we leave a margin
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Figure 2.8: Spin chain on a superconductor. (a) PDOS energy spectrum on the
first atom of a 27-atom chain. (b) PDOS profile at zero energy along the x-axis
of the magnetic chain, red dashed lines mark the edges of the spin chain, these
coincide with PDOS maximum. (c) Spectra as a function of atomic site along x
direction. (d) Spatial distribution of PDOS at E=0.0 in the 2-D array. Parameters:
∆ “ 0.75 meV, kF “ 0.183 a´1

0 , a “ 3.36 Å, Γ “ 0.01 meV, J “ 1.7eV, K “ ´2.0
eV and αR “ 3.0 eV-Å.

of 4 sites of clean superconductor on both sides. We observe how the PDOS at
zero energy reaches its maximum close to the edges, and it rapidly decays as we
move toward the center of the chain and outside. Note that the PDOS does not
go down to zero inside the chain. This is due to the finite size of the chain [80].
The MBS wave functions have some overlap, resulting in the finite PDOS inside
the chain. To gain more insight into the spatial distribution of the rest of the
states, in Fig. 2.8 (c) we plot the spectra as a function of the atomic site along
the x direction. We can easily distinguish the two zero-energy edge states at both
ends of the chain. Additionally, in this plot we can observe an energy gap around
the chain, this is the so-called topological gap [8], that protects the MBS from
mixing with finite energy states. Other in-gap states can be observed outside this
gap along the chain. Figure 2.8 (d) is a 2-D map of the PDOS at E “ 0.0 every-
where in the 2-D array, the localized zero energy states can again be observed here.

All the features shown in Fig. 2.8 are in good agreement with the presence of
MBS, however they are necessary but not sufficient conditions to have topologi-
cal edge states. Indeed, trivial in-gap states can emerge at zero energy on spin
chains [25], [118]. MBS arise when the system enters a topological phase, however,
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this can not be simply identified by looking at the density of states. As we will
see in the following, the spin polarization can help us determine if the system has
gone through a topological phase transition.

2.3.2 Topological phase transition and spin polarization of
MBS

Unlike Majoranas in the Kitaev model, MBS in spin chains are spin polarized.
They are expected to have a characteristic spin signature, providing further in-
formation that can help distinguish MBS from other trivial zero-energy edge
states [30], [119]–[122]. In experimental realizations, the development of spin-
polarized (SP)-STM [123], [124], gives an extra tool that can be utilized to further
characterize zero-energy states in spin chains [21]. It has been argued, that the
ρz component (perpendicular to the chain) is expected to be the same for the
two edge states, additionally, their transversal spin component, ρx, is the same
with opposite sign [30]. Furthermore, the spin of the YSR bands along the chain
is also helpful to identify the topological phase. When the system goes through
a topological phase transition (TPT) the lower energy YSR bands switch their
spin polarization [119]. With this in mind, by slowly tuning the parameters and
monitoring the spin state of the in-gap states of the chain, we can observe this
transition, and hence, identify the topological phase of the chain.

Figure 2.9: TPT in spin chain. (a)-(c) Sz spin component along the chain axis for
J “ 1.0 eV, J “ 1.5 eV and J “ 1.7 eV, respectively. (d)-(f) Same as (a)-(c) but
Sx spin component. All shown densities are in units of 1/eV. Other parameters:
Same as Fig. 2.8.

The energy-resolve z spin density can be easily obtained as shown in 2.2.2, ρz “

ρÒ ´ ρÓ. And the transverse spin component (ρx) is obtained from Eq. 2.56. In
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Fig. 2.9 we plot the spin components ρz (upper row) and ρx (lower row) for differ-
ent exchange interaction (J) values, keeping the rest of parameters from Fig. 2.8.
Fig. 2.9 (a) and (d) correspond to the case where J “ 1.0 eV. For this value,
the lowest energy YSR states are found at „ ˘0.2 meV and no in-gap states are
present near zero energy. Figure 2.9 (a) shows the ρz spin component, as we can
see, the lowest YSR states have opposite spin components, the negative energy
band has a positive polarization and the states at positive energy are spin-down
polarized. The ρx polarization shows an alternating behavior between the YSR
bands. We now increase the magnetic interaction to J “ 1.5 eV, in Fig. 2.9 (b) and
(e) we can observe in-gap states very close to zero energy. As discussed in chap-
ter 1, the closing of the energy gap is a necessary condition to have a TPT, this
is what we can observe here. Also, the ρz spin polarization of the bands decreases
as they approach zero energy. For even higher exchange interaction (J “ 1.7 eV),
in Fig. 2.9 (c) and (f) we can observe two edge states at zero energy, well localized
at the chain’s ends (the parameters in this case coincide with Fig. 2.8). Their ρz
spin component coincides, while the transverse component, ρx, is the same but
with opposite sign. These signatures are in good agreement with the presence
of MBS [30]. To have further evidence of a TPT, we can also look at the spin
polarization of the low energy YSR states. By comparing the ρz component on
Fig. 2.9 (a) and (c) we can observe that the spin sign of the YSR states closer to
zero are interchanged, this is a signature of a TPT [119]. Assuming the system
was initially in a trivial phase, we can conclude that the parameters used in the
calculation in Fig. 2.8 correspond to a topological phase.

However, as pointed out in Ref. [30], these spin signatures are still necessary but
not sufficient conditions to have topological superconductivity. Furthermore, in
real experiments, the exchange coupling J cannot, in general, be modified in the
same fashion as shown in Fig. 2.9. So identifying this transition is, in general, not
possible. As we viewed in chapter 1, the topological state of the system can only
be identified by evaluating a topological invariant.

Conclusions. In the present chapter, we have described a Green’s functions-
based model to describe a BCS bulk superconductor. By means of the Dyson
equation, the effect of magnetic impurities and Rashba SOC can be added to the
system. We have reviewed some results on single impurities as well as magnetic
dimers, allowing to observe the effect of the Rashba term. As observed, the pres-
ence of SOC, allows for YSR states in AFM dimers to hybridize. Following the
same approach, we simulated a 27-atom spin chain on a superconducting surface.
We studied the emergence of zero-energy edge states and how the spin polarization
shows good agreement with the presence of MBS and a topological phase transi-
tion of the system.

In the following, we will use the Green’s function model to reproduce real experi-
mental results on magnetic spin chains in superconductors. We will also develop a
method to evaluate the topological invariant starting from the Green’s functions,
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allowing us to identify topological regions using realistic parameters.
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3 Calculations of spin chains on
superconductors
Introduction. Topological edge states are expected to arise in ferromagnetic
spin chains on superconducting surfaces under the right conditions [20]–[24], [93],
[125]–[128]. In chapter 2, we introduced the free-electron model used to describe
a bulk superconductor with magnetic impurities. This formalism allowed us to
compute the PDOS, and observe the emergence of presumably topological edge
states in ferromagnetic spin chains. In the present chapter, we will focus on two
goals: (i) Using our model, reproduce experimental results of spin chains on a su-
perconducting surface. (ii) Develop a method to evaluate the topological invariant
of the system, allowing us to unambiguously identify the topological phase.

The present chapter is organized as follows: In 3.1 we show a direct applica-
tion of the model by reproducing experimental measurements on Cr spin chains in
the superconductor β-Bi2Pd. These findings are published in Phys. Rev. B 104,
045406 [31]. In 3.2 we present a method to obtain the Hamiltonian Ĥpkq of the
spin chain+superconductor system starting from the real space Green’s function.
In 3.3 we discuss the evaluation of the topological invariant and a topological phase
diagram that will allow us to easily identify the topological phases. These results
were published in Phys.Rev.B 104, 245415 [32]. Finally, in 3.4 we discuss the finite
size effects of spin chains and the consequential emergence of energy oscillations
as we vary the length of the chain. These finding were published in Phys.Rev.
Research 4, L032010 [33].

3.1 Chromium atoms on Bi2Pd

The Green’s function model described in chapter 2 can be utilized to reproduce
measurements performed on real systems using scanning electron tunneling mi-
croscopy (STM)1. In the following, we will compare the results obtained with our
model with measurements on chromium atoms deposited on the β-Bi2Pd super-
conductor [31].

1Scanning tunneling microscopy is discussed in detail in chapter 4.
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3.1.1 Measurements with STM

β-Bi2Pb is an s-wave superconductor with critical temperature of Tc “ 5.4 K [129],
the crystal structure consists of alternating bilayers of bismuth and monolayers of
palladium atoms [129], [130]. When the crystal is cleaved, the exposed surface is Bi
terminated, forming a square lattice with parameter a “ 3.36 Å. Chromium atoms
are deposited at temperature ď 20 K [31] onto a Bi2Pb sample, cleaved in-situ in
ultra-high vacuum conditions. As reported in previous studies, the Cr atoms get
absorbed on hollow sites of the Bi surface [28]. Atomic lateral manipulation using
the STM tip allows for building different atomic arrangements. In particular, we
focus on chains of atoms (denoted as Crn where n is the number of atoms) along
different orientations with respect to the Bi lattice and, hence, different distance
between the impurities.
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Figure 3.1: Scanning tunneling spectroscopy on Cr chains. (a) Topography image
of Cr4 of the d “

?
2a chain. The black dot indicates the atoms when the STS is

measured (b) Same as (a) for the d “ 2a chain. Insets in (a) and (b) show the Cr
atoms (orange balls) over the Bi lattice. (c) Spectra obtained for Cr2, Cr3 and
Cr4 for chain in (a). (d) Same as (c) for chain in (b).

Measurements are carried out at a temperature of T “ 30 mK, using a metallic
PtIr tip [31]. Figure 3.1 shows scanning tunneling spectroscopy (STS) obtained on
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the edge atom of small Cr chains on β-Bi2Pd for lengths between 2 and 4 atoms.
Figure 3.1 (a) and (b) show the topography images of the four-atom, or tetramer,
with two different orientations. The inset figures depict the geometry of the Cr
chains (in orange) on the β-Bi2Pd surface. The chain in Fig. 3.1 (a) is built along
the ă 110 ą direction of the Bi square lattice, the distance between Cr atoms
in this case is d “

?
2a. The chain in Fig. 3.1 (b) is built along the ă 100 ą

direction by keeping the Cr atoms at a distance of d “ 2a. In Fig. 3.1 (c) and
(d) we have plotted the scanning tunneling spectroscopy (STS) obtained in the
edge atom (marked as a black dot in panels (a) and (b)) of dimer (Cr2), trimer
(Cr3) and tetramer (Cr4). The three curves in Fig 3.1 (c) show a clear in-gap
YSR state. As the chain’s length increases from 2 to 4 Cr atoms, we can observe
that the in-gap state, shifts closer to zero energy. On the other hand, the spectra
obtained on the d “ 2a spaced chain, looks very similar for dimer, trimer and
tetramer: the presence of YSR states in this structure can only be noted by the
asymmetry in the quasi-particle peaks.

Previous work on Cr dimers on β-Bi2Pd, point to a different arrangement of the
magnetic moments depending on the spatial configuration of the Cr atomic struc-
tures. In particular, authors conclude that dimers built with distance d “

?
2a

show a ferromagnetic spin ordering, whereas dimers with distance d “ 2a are
coupled anti-ferromagnetically [28]. These findings are based in the presence or
absence of hybridized in-gap states. We keep this in mind, to reproduce the ex-
perimental results with the Green’s functions model. However, Rashba SOC was
not taken into account in the study presented in [28], which, as we saw in 2.2.4,
can induce hybridization between the YSR states in AFM structures.

3.1.2 Comparison with Green’s function model

We model the Cr spin chains on β-Bi2Pd in the independent-atom limit using our
Green’s function model. Density functional theory (DFT) calculations show that
Cr atoms have been found to have no electronic levels at the Fermi energy and neg-
ligible direct interactions, even for Cr atoms located a unit cell apart [28], which
justifies this approach. The calculations will allow us to gain more insight into
the behavior YSR states. We create a superconducting lattice and select specific
locations to place the magnetic impurities and reproduce the structures’ geometry
shown in Fig. 3.1 (a) and (b).

The magnetic impurities are modelled as discussed in 2.2.2, the spin is assumed to
be classical, and, in principle, it can be oriented anywhere in the 3-D space. We
fit the spectrum of a single magnetic impurity. Figure 3.2 (a) shows the measured
STS for a single Cr atom on β-Bi2Pd. The simulated spectrum is depicted in
Fig. 3.2 (b), from which we obtain the following parameters: the exchange inter-
action is estimated to be J « 2 eV, the potential scattering is taken as K “ 5.5
eV to reproduce the electron/hole asymmetry. Finally, the Rashba SOC is mod-
eled as discussed in 2.2.3, we use a Rashba SOC strength of αR « 1.8 eV, which
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is estimated from DFT calculations, and in good agreement with Bi-terminated
surfaces [131].

Figure 3.2: Single Cr spectra on Bi2Pd. (a) Experimental spectrum measured with
STM. (b) Calculated spectrum using the Green’s functions model. Parameters:
∆ “ 0.75 meV, J “ 1.9 eV, K “ 5.5 eV and αR “ 0.0.

The case of d “
?
2a - ă 110 ą spin chains

Figure 3.3 shows 2-D maps of the spectra along the chain for Cr2, Cr3 and Cr4
in the case of atomic chains built with d “

?
2a distance, i.e., along the ă 110 ą

direction of the Bi lattice. In Fig. 3.3 (a)-(c) we show the experimental dI{dV
spectra measured along the chain’s axis. For the dimer, we can observe two YSR
extended states: one at lower energy, with maximum DOS in the middle of the
structure and a second one at an energy close to the quasi particle peaks of the
superconductor with a minimum in the center of the structure. The overall spatial
distribution of the YSR states is maintained for the trimer and tetramer. However,
as the length increases, the YSR state at low energy, moves toward zero.

This behavior, is well reproduced by the theoretical calculation shown in Fig. 3.3
(d)-(f). Additionally, the calculations allow us to better distinguish YSR states
found at higher energies, located at the edges of the chain. These are more easily
observed at positive energies. The overall, distribution of the YSR states on Cr2,
Cr3 and Cr4 is well reproduce by our calculations, including the electron-hole
asymmetry, achieved by choosing an adequate potential scattering. In order to
properly reproduce the position of the YSR bands, the magnetic exchange cou-
pling is increased from J “ 2.0 eV for the dimer, J “ 2.1 eV for trimer, and
J “ 2.3 eV for the tetramer. This tuning of the parameter may be justified by an
increase of the magnetic hybridization of the magnetic impurities with the surface
due to a geometrical rearrangement as the number of atoms increases, resulting
in larger couplings, but this is speculative, and we have no evidence to support
it other than the computed YSR spectra better reproduce the experimental one.
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Figure 3.3: Experimental dI{dV (a)-(c) and theoretical local density of states (d)-
(f) on Cr chains on Bi2Pd built on the diagonal direction of the Bi lattice. (a)-(c)
Experimental dI/dV spectra obtained along the chain for (a) dimer, (b) trimer and
(c) tetramer. (d)-(f) Calculated PDOS along the chain for (d) dimer, (e) trimer
and (f) tetramer. Fitting parameters: ∆ “ 0.75 meV, K “ 5.5 meV, kF “ 0.15
a´1
0 , Γ “ 0.01 meV and the magnetic coupling (d) J “ 2.0 eV, (e) J “ 2.1 eV and

(f) J “ 2.3 eV.

A background signal coming from the superconducting hosting material is also
added to the calculated spectra to better reproduce the experiments. This can be
justified by the fact that, in the experimental set-up, the STM tip is not sharp
enough, so DOS coming from the β-Bi2Pd surface is also measured.

The spin arrangement of the magnetic atoms is set to be ferromagnetic, with the
spins pointing perpendicular to the surface. Other arrangements, such antiferro-
magnetic and spin helices with different periods, were also calculated. But FM
ordering showed the best agreement with the experiments, as predicted in Ref. [28].
In the experimental set-up, longer chains than 4 atoms along this particular direc-
tion could not be built, as the Cr atoms tend to form clusters at this interatomic
distance.

The case of d “ 2a - ă 100 ą spin chains

Unlike the d “
?
2a, the d “ 2a chains built along the ă 100 ą direction are far

enough so that atoms do not clusterize so easily, and chains up to 12 atoms could
be built. However, in this case, we cannot observe any obvious structure inside the
superconducting gap, even as the length of the chain is increased. The evolution
is depicted in Fig. 3.4 (a)-(h), here the spectra along the chain’s axis are depicted
for selected chain’s lengths ranging from Cr2 to Cr12. Due to the presence of YSR
states, the chains show a smaller energy gap than the superconducting gap of 2∆,
being ∆ “ 0.75 meV. Additionally, the chains show an even smaller superconduct-
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Figure 3.4: dI{dV signal measured for the d “ 2a´ ă 100 ą Cr chains. For n “ 2
(a), n “ 3 (b), n “ 4 (c), n “ 6 (d), n “ 8 (e), n “ 9 (f), n “ 11 (g) and
n “ 12 (h). (i) Shows the evolution of the energy gap measured in the edge atom
of the chain (purple marker) and in the center (green marker) versus the number
of atoms in the chain.

ing gap at the edge atom compared to spectra in the center of the structure (see
Fig. 3.4 (i)), this is particularly notable for chains longer than 8 atoms, however
this gap closing remains constant for longer chains, indicating that a complete
closing of the gap cannot take place, and hence, no topological phase transition is
expected in these chains. A closer look into the spectra at negative energies, re-
veals a modulation in the in-gap states that matches the number of atoms present
in the chain, this means that each atom gives rise to a YSR state that does not
hybridize with the neighboring YSR states, as expected in AFM spin structures
on superconductors.

As concluded by the absence of hybridization between the YSR states for atomic
dimers in this configuration [28], the spin ordering is expected to be AFM for
these chains. However, with the addition of Rashba spin-orbit coupling into the
model and a higher number of atoms, the simulated AFM 12-atom chain (shown
in Fig. 3.5 (b)) does not resemble the experimental spectra of the dodecamer in
Fig. 3.5 (a). As we can see in the calculated PDOS, two edge states emerge close
to zero energy, these features are absent in the experimental data. Indeed, as
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Figure 3.5: (a) Experimental STS spectra along the chain’s axis of the Cr12 (b)-
(h) 12-atom calculations with different spin ordering and period.

discussed in Ref. [29] the presence of spin-orbit coupling induces splitting due to
hybridizations forming the YSR bands for AFM chains, so a slightly different ap-
proach is needed to reproduce the experimental data.

To obtain a spin configuration that better reproduces the measurements, we model
a non-collinear spin texture [132] and compare with the 12-atom chain measure-
ments. We define a spin helix going along the chain, and we study the result-
ing spectra obtained for different helix periods. As mentioned in 2.2.2, the im-
puties’ spin can be oriented everywhere in the 3-D space, S⃗j “ pSj,x, Sj,y, Sj,zq

“ Spsin θj cosϕj , sin θj sinϕj , cos θjq. With this in mind, the spin helix is defined
by varying the θ coordinate between sites. Fig. 3.5 (b)-(h) show the obtained
PDOS for 12-atom chains with different period spin helices. The periodicity num-
ber indicate the number of atoms until the spin configuration is repeated, so period
2 corresponds to AFM spin ordering, period 3 corresponds to a 120º angle with
the neighboring spin, and infinite period is FM. As we can observe, the period
3 and period 4 configurations, show an overall good agreement with the experi-
ments: the in-gap states result in a narrowing of the energy gap, and edge states
reduce the gap at the edges of the chain. This is an indication that the presence of
spin-orbit coupling in this system, induces a more complex spin texture than the
one found for d “ 2a dimers in Ref. [28]. On the other hand, non-collinear spin
DFT calculations, including spin-orbit interactions, show that the preferred spin
arrangement in this chain is AFM coupling. Spin-polarized-STM measurements
could shed more light into the spin configuration of these atomic spin chains [133].
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3.1. Chromium atoms on Bi2Pd

Figure 3.6: MBS signatures in 20 atom d “
?
2a´ ă 110 ą chain. (a) color map

of the PDOS along the chain’s axis. (b) Profile of the PDOS at zero energy along
the chain’s axis. Fitting parameters: Same as Fig. 3.3 and J “ 2.5 eV.

3.1.3 MBS in Cr chains on Bi2Pd

As seen in Fig. 3.3, the d “
?
2a´ ă 110 ą chains exhibit in-gap states moving to

zero as the chain’s length increases. This is a good indication for the emergence
of MBS in longer chains. Since chains longer than 4 atoms could not be experi-
mentally realized, we performed calculations for longer chains. In Fig. 3.6 we plot
the calculated 20-atom chain along the ă 110 ą direction for the same parameters
as in Fig. 3.3 and J “ 2.5 eV. Fig. 3.6 (a) shows the PDOS along the chain’s
axis, exhibiting two edge states at zero energy, and an energy gap inside the chain.
Fig. 3.6 (b) depicts the profile of the PDOS at zero energy along the chain, as we
can see, the zero-energy states are localized at the edge atoms, however, inside the
chain the PDOS does not go down to zero due to the finite size of the system.

The features in Fig. 3.6 are in good agreement with the presence of MBS states.
As discussed in 2.3.2, the spin polarization of the in-gap states can help us identify
if a TPT has taken place, and potentially distinguish MBS from zero-energy trivial
states [30], [119]. In Fig. 3.7, we plot the evolution of the two spin components,
ρz and ρx, as we increase the magnetic coupling interaction, J . Fig. 3.7 (a) and
(d) correspond to an exchange interaction of J “ 2.1 eV, here we see an energy
gap in the spectra but no edge states, the YSR band at positive (negative) energy
is spin-down (up) polarized. At J “ 2.3 eV (Fig. 3.7 (b) and (e)), the energy gap
is virtually zero, and it reopens at J “ 2.5 eV (Fig. 3.7 (c) and (f)). Two edge
states at zero energy become apparent, showing opposite polarization for the spin
density along the x direction, ρx and parallel ρz component. The z-polarization
of the YSR bands in the middle of the chain reverses when comparing Fig. 3.7
(a) and (c), and only on the later the edge states can be observed. This behavior
is in good agreement with a TPT. Indicating that the edge states in Fig. 3.6 are
topological.
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Chapter 3. Calculations of spin chains on superconductors

Figure 3.7: Topological phase transition on Cr atoms on β-Bi2Pd as we increase
the exchange interaction, J . The three columns correspond to three different J
values, J “ 2.1 eV, J “ 2.3 eV and J “ 2.5 eV. (a)-(c) Shows color maps of the
perpendicular spin density, ρz as a function of the chain’s length versus energy.
(d)-(f) Transversal spin density, ρx.

The number of atoms in the chain is decisive for the formation of MBS [117]. The
calculations in Fig. 3.6, are performed for a 20-atom chain, but shorter chains may
suffice to host topological edge states. The emergence of edges in the chain can be
observed in Fig. 3.8, we show the evolution of the PDOS as we vary the chain’s
length from Cr5 to Cr20. According to this calculation, for chains as short as 8
atoms, edge states can already be distinguished at zero energy.

3.1.4 Summary

In this section, using the Green’s functions model described in chapter 2, we were
able to obtain the PDOS of magnetic impurities in a superconducting surface.
In particular, we could reproduce experimental results obtained with STM on Cr
atoms deposited on β-Bi2Pd. The different arrangement of short spin chains lead
to striking different behavior of the YSR states. With our model, we are able to
reproduce the PDOS, and to better understand the spin configuration. We have
observed that the spectra on d “

?
2a´ ă 110 ą chains is in good agreement

with the calculations when the spin ordering is chosen to be ferromagnetic [28].
However, the d “ 2a´ ă 100 ą chains calculations do not show a good agree-
ment when the spin configuration is set to be AFM, as anticipated. The different
period spin helix calculation points to a more complex spin texture for these chains.

The measurements, show a fast gap closing in the d “
?
2a´ ă 110 ą Cr chains, as

the number of atoms in the chain increases. Calculations in 20-atoms structures,
using similar parameters to model the experimental data, show features in good
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3.2. Green’s functions in k-space

Figure 3.8: Evolution of the in-gap states for the d “
?
2a chains. The parameters

are set such that the system is in a topological state, (a)-(h) show the spectra
for Crn chains from n “ 5 to n “ 20. For n “ 8, edge states can already be
distinguish.

agreement with the presence of MBS. In fact, we could already observe Majorana-
like edge states for 8-atoms chains. Additionally, a study of the spin components as
we vary the magnetic exchange interaction, J , points to the presence of a TPT [31].
All of these features are in good agreement with a topologically non-trivial state of
the system. However, as already discussed, they are all necessary but not sufficient
conditions [30].

3.2 Green’s functions in k-space

As explained in chapter 1, topological invariants serve to identify the topological
phase of a system. These depend on its topological class, which is determined by
its symmetries. In particular, we saw that for the BDI class in 1-D, the relevant
topological invariant is the winding number. In the case of an infinite magnetic
chain on a superconductor, the winding number takes values in ´1, 0, 1. And phase
diagrams that help us identify the topological phase become particularly useful.

In chapter 2, we described a model based on Green’s functions capable of obtain-
ing the density of states of magnetic chains on a superconductor. In particular,
as discussed in 3.1, we could reproduce the experimental results of Cr chains on
β-Bi2Pd. For some parameters, we could find signatures indicative of the presence
of MBS. However, to be certain that the studied system is in the topological phase,
we need to compute the topological invariant. In this section we will see how to
obtain the winding number starting from the Green’s functions model described
in chapter 2.
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Chapter 3. Calculations of spin chains on superconductors

3.2.1 BCS superconductor in k-space
We are interested in studying the topological properties of 1-D spin chains. In
order to calculate the topological invariant, we will obtain the bulk Hamiltonian
of the system. In this first section, we will see how to go from our Green’s function
in real space back to the reciprocal k-space. The reason to do this is that in the
approximations performed to obtain the real-space Green’s function, the properties
of the original Hamiltonian in k-space, Eq. 2.21, are strongly modified. The Nambu
basis in the reciprocal space is:

ψk “

¨

˚

˚

˝

ckÒ

ckÓ

c:

´kÒ

c:

´kÓ

˛

‹

‹

‚

(3.1)

Where, k is the wave-vector of the plane-wave basis function ϕkprq “ eik⃗¨r⃗{
?
V , V

is the normalization volume and r⃗ are the spatial-coordinate vectors.

Starting from the Green’s function in real space, we can go to k-space by applying
the following Fourier transform:

GBCSpk⃗, ωq “
ÿ

R⃗

GBCSpR,ωqeik⃗¨R⃗. (3.2)

Where GBCSpR,ωq is the Green’s function in real space and the sum is to all the
sites. This sum can be solved analytically, as done in Ref [134] and Ref [117]. In
terms of the 4-component Nambu basis (Eq. 3.1), we obtain:

GBCSpk⃗, ωq “
πN0

2kFa
L`pkqτzσ0`

ˆ

ω

i
?
∆2 ´ ω2

L´pkq ´
πN0

?
∆2 ´ ω2

˙

τ0σ0

`
πN0

?
∆2 ´ ω2

ˆ

π

i2kFa
L´pkq ´ 1

˙

τyσy

(3.3)

Where the function L˘pkq is defined as:

L˘pkq “F p´ξ ` ipkF ` kqq ` F p´ξ ` ipkF ´ kqq

˘F p´ξ ´ ipkF ` kqq ˘ F p´ξ ´ ipkF ´ kqq
(3.4)

And where F pxq “ logp1 ´ exq.

Alternatively, we can also evaluate the Fourier transform in Eq. 3.2 numerically,
for a finite but large system such that we can approximate the behavior in the
center of the chain to the behavior in an infinite system. In the previous chapter,
we studied 2-D systems containing the magnetic impurities, however, when study-
ing spin chains, we can simply consider finite 1-D systems thanks to the locality
of the interactions and to our interest in the behavior of the band structure along
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3.2. Green’s functions in k-space

the chain. This allows us to easily evaluate Eq. 3.2.

We have computed Eq. 3.2 numerically for a 1-D superconductor of a finite num-
ber of sites and compared it to the analytical solution obtained from Eq. 3.3. In
Fig. 3.9, we plot the density of states for both (a) numerical calculation and (b)
analytical expression. Similar to the real-space calculation, the density of states
is obtained from the imaginary part of the retarded Green’s function:

ρpωq “ ´
1

π
ImGBCSpk⃗, ω ` i0`q (3.5)

The two cases show good agreement, even for short systems, the numerical calcula-
tion in Fig. 3.9 (a) was obtained from a system of 101 sites. The superconducting
energy gap is clearly visible for |E| ă 0.75 meV, along with the quasi-particle
peaks. The parameters used are a “ 3.36 Å, kF “ 0.15 a´1

0 and ∆ “ 0.75 meV,
values used to describe Bi2Pd.

We can also observe a cutoff in the density of states when k ą kF . This is
observable when kF is smaller than the Brillouin zone π{a. These k values behave
pathologically, and beyond this k value the system is not well described. The
density of states becomes well behaved when kF ą π{a. If we think in terms
of real space, this shows that the theory is not good when the r values in real
space are small, but is well behaved when the distances considered are rather big.
The reason for this is the long-distance limit taken in the evaluation of the ana-
lytical real-space Green’s function. The approximation is good when we consider
spin chains in the diluted limit [9], [92], [113], [114], where the distance between
impurities is of the same order as the Fermi wavelength of the superconductor.

3.2.2 Effective Hamiltonian
The next step is to add the effect of the magnetic impurities to the Green’s func-
tion. To this end, we can solve Dyson’s equation to obtain the full Gpk⃗, ωq function
of the infinite system. Similar to the real-space calculation, the total Green’s func-
tion can be obtained:

Gpk⃗, ωq “ GBCSpk⃗, ωq `GBCSpk⃗, ωqΣpk⃗, ωqGpk⃗, ωq. (3.6)

To include the effect of the impurities in the system, we model their effect, as
explained in the previous chapter, as the Kondo Hamiltonian:

Ĥimpurity “

N
ÿ

j

p´Kjτzσ0 ` JjS⃗j ¨ α⃗q (3.7)

Where Kj is non-magnetic potential interaction and Jj is the magnetic exchange
interaction of impurity j. All the matrices in Eq. 3.6 are 4ˆ4 operators, Σpk⃗, ωq is
the self-energy term accounting for the effect of the impurities. Due to the locality
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Figure 3.9: Density of states obtained for a superconductor. (a) From numerical
Fourier transform (Eq. 3.2) for a 1-D system with 101 sites. (b) Analytical calcu-
lation (Eq. 3.3). Parameters: a “ 3.36 Å, kF “ 0.15 a´1

0 , N0 “ 0.037{eV , Dynes
broadening Γ “ 0.01 meV and ∆ “ 0.75 meV. A cut in the density of states is
visible for values k ą kF “ 0.15 a´1

0 .

of the spins and assuming they are identical and ferromagnetically ordered, this
term can be easily calculated in the reciprocal space:

Σimppk⃗, ωq “
ÿ

R⃗

xR⃗|Ĥimpurity|0yeik⃗¨R⃗ “ ´Kτzσ0 ` JS⃗ ¨ α⃗, (3.8)

Where the matrix element xR⃗|Ĥimpurity|0y is only evaluated between the 0 and R⃗
unit cells of the periodic system. We also need to add the effect of the spin-orbit
coupling to the self-energy term. In chapter 2, we showed that the Rashba coupling
acted effectively as a hopping term between neighboring sites with opposite spin.
Doing the transformation into a 1-D k-space lattice, and expressing in the Nambu
k basis, we find:

ΣSOCpk⃗, ωq “ 2αR sinpk⃗aqτzσy (3.9)

We solve Dyson’s equation, by setting Σpk⃗, ωq “ Σinppk⃗, ωq`ΣSOCpk⃗, ωq (Eq. 3.6)
to obtain the total Green’s function, Gpk⃗, ωq. From this expression, we want to
compute the Hamiltonian of the infinite spin chain, Hpk⃗q. But as we will see, this
is not a simple task. The GBCS function is not a resolvent in the Nambu space, as
such inverting the Green’s function, Gpk⃗, ωq, to find the bulk Hamiltonian [135],
does not work:

Ĥpk⃗q ‰ ´G´1pk⃗, ω “ 0q (3.10)

Instead, we take into account that we are looking for the poles of the Green’s
function near ω “ 0. Then, we can expand the inverse Green’s functions about 0
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3.2. Green’s functions in k-space

in the ω variable, approximately find the zero of the inverse of the Green’s function
and thus, find the poles of the Green’s function:

0 “ G´1pk⃗, ωq « G´1pk⃗, ω “ 0q `

˜

BG´1pk⃗, ωq

Bω

¸´1

ω“0

ω. (3.11)

This equation gives the poles of the Green’s function near the Fermi energy, ω “ 0.
Then these values of ω correspond to the bands near the Fermi energy, because
the bands are the poles of the Green’s function. The bands, expressed as the
eigenvalues of the Hamiltonian, are then obtained [32]:

Ĥpk⃗q “ ´

˜

BG´1pk⃗, ωq

Bω

¸´1

ω“0

G´1pk⃗, ω “ 0q (3.12)

Figure 3.10: (a) and (c) Band structure obtained from Eq. 3.6, using the analytical
Green’s function from Eq. 3.6. (b) and (d) Resulting PDOS from the imaginary
party of the Nambu Green’s function. Parameters: J “ 2.5eV, ∆ “ 0.75 meV,
N0 “ 0.037/eV, α “ 3.0 eV-Å K “ 5.5 eV, a “ 3.36 Å. (a) and (b) kF “ 0.75 a,10 ,
(c) and (d) kF “ 0.25 a,10 .

The bands in Ĥpk⃗q are in a matrix shape, expressed in the original Nambu basis,
to find the actual in-gap bands, we need to diagonalize the total matrix.

In Fig. 3.10 (a) we obtain 4 bands, as the result of diagonalizing the 4 ˆ 4 Hamil-
tonian form Eq. 3.12. Calculations on a single impurity, solving for the in-gap
states analytically or using the above procedure, show that only the lower-energy
states are good approximations of the actual in-gap state. In this calculation
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kF “ 0.75 a´1
0 , but the Brillouin zone is p´π

a ,
π
a q « p´0.49, 0.49qa´1

0 . Meaning,
that we will have folding in the band structure, this is visible in the discontinuity
at k “ 2π

a ´kF « ˘0.24 a´1
0 . Despite this fact, the bands behave properly, and the

lower bands perfectly match the density of states in Fig. 3.10 (b). Figure 3.10 (c)
and (d) are obtained with the same parameters but with kF “ 0.25 a´1

0 . As we can
observe in Fig. 3.10 (c), for k ą kF values, the bands go to very high energies, as
the Green’s function is not defined for this k range. As a consequence, these points
fail to describe the system. The inset in Fig. 3.10 (c) shows the zoomed-in bands
for smaller energies, the two lower bands perfectly match the PDOS depicted in
panel (d).

3.3 Topological invariants

We have seen that we can compute the Green’s functions in the reciprocal space for
infinite and finite chains, also we are able to obtain the renormalized Hamiltonian.
Our next goal is to evaluate a topological invariant that defines the topological
phase of the system. As discussed in chapter 1 and reported in previous works [59],
[136], a chain of magnetic impurities in a 1-D superconducting system belongs to
the BDI topological class due to its symmetries. The relevant topological invariant
in the case is the winding number (w). In the following, we will find a procedure
to evaluate this number for infinite and finite chains, using numerical calculations.

3.3.1 Winding number evaluation
As previously discussed, a 1-D infinite chain on a superconductor has chiral (or
sublattice) symmetry. As a consequence, the Hamiltonian can be rewritten under
the following form:

Hpkq “

ˆ

0 Apkq

A:p´kq 0

˙

(3.13)

Where A is a 2 ˆ 2 matrix in the spin sector. This representation is retrieved by
performing a change of basis to the Majorana representation, and express it in
terms of the Majorana operators γ “ pĉ ˘ ĉ:q{

?
2. For a 2 ˆ 2 Hamiltonian, Eq.

(3.13) can be written as:

Hpkq “ dxpkqτx ` dypkqτy, (3.14)

where the change of basis has permitted us to have a zero component of τz, because
τz anticommutes with the Hamiltonian and defines the chiral symmetry of the
system [42]. The vector d⃗ “ pdx, dyq defines a closed trajectory in the complex
plane in the first Brillouin zone. As discussed in chapter 1, the winding number,
w, is defined as the number of complete turns described by d⃗ about zero, as such,
w P tZu. However, for a 1-D system such as a spin chain on a superconductor, w
is takes values in t´1, 0, 1u [59]. The winding number can be evaluated:

w “
1

2π

ż π{a

´π{a

dkpdx
d

dk
dy ´ dy

d

dk
dxq, (3.15)
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Figure 3.11: Calculations for ferromagnetic spin chains in trivial (a)-(d) and topo-
logical (e)-(h) state. (a), (e) Calculated band structure with 4 bands, insets show
the two lower energy bands where we can observe the trivial (a) and topological
(e) gap. (b), (f) Normalized d⃗pkq as k is varied. To facilitate the visualization
of the trajectory, k values go from ´π{a (in cyan) to π{a (in magenta). (c), (g)
Evolution of dx (orange), dy (green) and wpkq (blue) as a function of k. (d), (h)
Finite 30 atomic chain calculation with same parameters as the analytical one.
We plot the PDOS in 2-D map as a function of the atomic site in the chain versus
the energy. Parameters: (a)-(d) J “ 2.0 eV and (e)-(h) J “ 2.7 eV, K “ 5.5 eV
and αR “ 3.0 eV-Å, the Fermi vector is kF “ 0.3a´1

0 , and the spin is S “ 5{2, the
metal density of states at the Fermi energy is N0 “ 0.037/eV and ∆ “ 0.75 meV.

where d⃗ has been previously normalized. Mathematically equivalent expressions
can be obtained by using the trajectories in the complex plane of z “ DetpAq{|DetpAq|

as shown in Refs. [59] and [42]. But they involve the evaluation of the logpzq that
plagues the computation with numerical problems due to artificial discontinuities
caused by the logarithm’s branch cut. Expression 3.15 however, is numerically
simple and accurate to evaluate.

Although w is the good topological invariant for 1-D systems, we want to compare
with numerical calculations in 2-D superconducting systems. We have modeled
the Rashba interaction for a two dimensional system, however, the relevant in-
teraction allowing the formation of MBS involves only the SOC along the chain,
and the perpendicular coupling has a minimal effect. As such, the Rashba is an
effective 1-D interaction [96]. Additionally, our calculations have a highly local
character, meaning that the chain sites are unaffected by the presence of sites in
the perpendicular direction. As a result, the winding number still can describe the
topological state of the 2-D spin chain accurately.

To exemplify this calculation, we compute the bands and corresponding d⃗ vector
for two cases in an infinite chain, Fig. 3.11 shows the results. Figure 3.11 (a)-(d)
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correspond to a spin chain on a superconductor in the trivial phase. Figure 3.11
(a) shows the band structure, in this case kF “ 0.3 a´1

0 . As previously noted, for
k ą kF the band structure is unreliable, the inset shows a zoom for k ď kF , and
the two lower energy bands are depicted, here the trivial energy gap can be ob-
served. Figure 3.11 (b) and (c) show the evolution of d⃗, in (b) we have depicted the
trajectory of the normalized vector in the complex plane in the range of the first
Brillouin zone. Using a gradient of colors, we indicate the evolution from k “ ´π

a

(cyan) to k “ π
a (magenta). As shown, d⃗ oscillates about (1.0 + 0i), and does not

complete any turn about zero. The same behavior can be extracted from panel (c).
Here, we have depicted the dx (orange curve) and dy (green curve) components
versus k, we notice that for k ą kF these quantities do not show any evolution,
further supporting the fact that for high k values, the bands fail to describe the
system and, hence, these points do not contribute to the topological character.
However they could contribute, and this contribution would be spurious. In the
same plot, we also show the cumulative value of w (blue curve). This number is
obtained by evaluating the following expression for every k point:

wpkq “
1

2π

ż k

´π{a

dk1pdx
d

dk1
dy ´ dy

d

dk1
dxq, (3.16)

It shows some evolution for |k| ă kF , but its value goes back to zero at the end
of the first Brillouin zone, resulting in w “ 0 for this particular case. To check
how this topological phase translates into finite system, in Fig. 3.11 (d) we plot
the PDOS of a 30-atom spin chain on a 2-D superconductor. The plot is a color
map of the atomic sites versus energy and the PDOS is indicated by the color
map. As shown in this case, the lowest energy in-gap states are found at „ 0.2
meV all along the chain, but no edge state close to zero energy is observed. On
the other hand, Fig. 3.11 (e)-(h) correspond to a topologically non-trivial phase
of the infinite chain. The parameters are kept the same as for Fig. 3.11 (a)-(d)
and we have simply increased the magnetic coupling, from J “ 2.2 eV to J “ 2.7
eV. The band structure in (e) again, gives unrealistic values for |k| ą kF . As
shown in the in-set, we observe two in-gap bands at lower energy for |k| ă kF . In
Fig. 3.11 (f), we show the evolution of the d⃗ vector. In this case, it completes a
clockwise turn about zero, resulting in a winding number of w “ ´1. This can
be further noticed by looking at the evolution of dx, dy and w versus k (Fig. 3.11
(g)). Again, all the evolution is limited to the k points, |k| ă kF . We observe, how
w evolves from zero to ´1. We conclude that this corresponds to a topological
phase of the system. To further verify this, in Fig. 3.11 (h) we plot the PDOS
for a finite chain using the same parameters. In this case, two edge states emerge
at zero energy. The topological character of the system proves that these are MBS.

Apart from the winding number, a lower-symmetry topological invariant, may
also be calculated. The Z2 topological invariant is obtained from the Pfaffian of
the system. For a chiral Hamiltonian written as in Eq. 3.13 the Pfaffian can be
easily evaluated using Pf rHpkqs “ DetrApkqs. And the Z2 topological invariant,
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Q, becomes:

Q “ sgn rPf rHpk “ 0qs ˆ Pf rHpk “ π{aqss

“ sgn rdxpk “ 0q ˆ dxpk “ π{aqs (3.17)

Obviously, this topological invariant carries less information than the winding
number, as it only takes values in Z2 “ t´1, 1u. It only indicates whether the
system is in the trivial (Q “ 1) or topological (Q “ ´1) phase. The winding
number, on the other hand, distinguishes two different topologically non-trivial
phases (w “ ˘1). However, Q is easier to obtain, as it only evaluates the Hamilto-
nian in two k points, making this invariant more convenient to calculate in certain
situations. Equation 3.17 is valid when we have a high kF value. However, when
kF is smaller than the first Brillouin zone, as we have already described, the k
points such that |k| ą kF are not reliable, in those cases the Pfaffian in k “ π{a
is instead evaluated in k˚ close to k “ kF .

The winding number can be particularly difficult to evaluate, as a high num-
ber of k points is needed. The value is highly dependent on the evolution on d⃗,
and it rapidly changes at k “ kF due to the drastic changes of the band structure
at this k point. To avoid errors, we have systematically increased the number of
k-points and followed the evolution of the different topological invariants to reach
a coherent description of the topological character of the studied phases.

In the previous calculations, we have obtained the effective Hamiltonian (Eq. 3.12)
for a 1-D infinite spin chain on a superconductor, starting from the analytical
Green’s function. The winding number can be then easily computed from expres-
sion Eq. 3.15. And the topological phase, found for the infinite system, corresponds
to the emergence of zero-energy states in finite systems. The band structure is
only relevant for k values |k| ă kF . In the case that we use a kF bigger than the
1st Brillouin zone, the band folding solves this problem, so all k points properly
describe that system.

3.3.2 Topological phase diagrams

In the following, we want to apply the topological invariant calculation, and do a
systematic evaluation as we change the parameters of the system. The goal is to
be able to map the parameter space, so that we can easily identify the topological
regions of the system.

Figure 3.12 shows the resulting phase diagrams as we study the phase space by
varying three different parameters versus the Fermi vector. We systematically
evaluate both Q and w, as well as the energy gap, that we obtain from the band
structure. Figure 3.12 (a)-(c) shows color maps of the energy gap, the red and
blue color respectively indicate Q “ 1 and Q “ ´1. So the areas with a positive
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Figure 3.12: Phase diagrams obtained for a ferromagnetic spin chain with normal-
metal DOS at the Fermi energy N0 “ 0.037/eV, ∆ “ 0.75 meV and spin s “ 5{2.
(a)-(c) Energy gap of the system multiplied by the Z2 topological invariant, Q,
allowing for differentiation of trivial (Q “ 1) and topological (Q “ ´1) phases.
(d)-(f) Winding number. The green areas correspond to w “ ´1 (cases like the
one shown in Fig. 3.11 (f)) and the magenta areas to w “ 1, here the winding
vector, d⃗ completes a turn in the opposite direction. (a) and (d) Phase diagrams
as a function of the Kondo coupling J versus the Fermi wave vector of the system
kF , with potential scattering K “ 5.5 eV and Rashba coupling αR “ 3.0 eV-Å.
(b) and (e) Phase diagrams as a function of the potential scattering, K versus kF
with Kondo coupling J “ 3.0 eV and Rashba coupling αR “ 3.0 eV-Å. (c) and (f)
Phase diagrams as a function of the Rashba coupling, αR versus kF with Kondo
coupling J “ 3.0 eV and potential scattering K “ 5.5 eV.

gap (in red) correspond to the trivial phase, and the negative gaps (in blue), are
topologically non-trivial. We can also observe that in the transition between the
two phases, when the system undergoes a TPT, the energy gap goes to zero (in
white). Indeed, in order to have a change in the topological character, a gap clos-
ing is required [42], [43].

If we look at Fig. 3.12 (a), magnetic coupling, J versus kF , we can easily dis-
tinguish two branches where the gap closes. One is the gap closing occurring at
k “ 0 going from kF „ 0.1 a´1

0 to kF „ 0.75 a´1
0 , and at the second one is the

gap closing at k “ π{a visible at low values of J for kF ą 0.5 a´1
0 . In other cases,

however, the gap closing at a TPT can be difficult to observe. For example, in
Fig. 3.12 (a) for Fermi vector values such that kF ă 0.5 a´1

0 and J couplings going
from „ 2.5 eV to „ 4.5 eV, the topological character changes, but we do not see a
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clear zero gap in this area. Here, the gap closes at a k˚ point close to kF , but this
transition is very abrupt, requiring a high number of k-points and a fine tuning of
the parameters to properly observe the gap closing.

Figure 3.12 (d) shows the same phase diagram, but here we plot the winding
number, w. The magenta and green areas correspond to w “ ´1 and w “ 1 topo-
logical phases, respectively. While the white areas are trivial. As expected, the
w “ ˘1 areas perfectly match the topological Q “ ´1 areas from panel (a). This
is true for the three phase diagrams in Fig. 3.12. A similar behavior is observed
in panels (b) and (e), these are the phase diagrams of the potential scattering, K
versus kF . Again, there are two easily observed white branches corresponding to
the gap closings at k “ 0, π{a, while the transition at k˚ requires a high number
of k points to be distinguished.

It is interesting to note, the big effect that the potential scattering, K-term in
Eq. 3.7, has on the topology of the spin chain. The effect of magnetic coupling, J
is known to be necessary, as exchange interaction is required to have in-gap states,
as such, we can observe on panels (a) and (d) from Fig. 3.12 that no topological
phase is obtained for J “ 0. Potential scattering, on the other hand, is not nec-
essary for the system to enter the topological phase, as we can observe in panels
(b) and (e) topological regions for K “ 0. However, it has an important effect on
the topology. If we look again at Eq. 3.7, K is an on-site term that has a similar
effect as a chemical potential in the system. This will shift the on-site energies of
the sites, and have a big effect on the topological phase.

Figure 3.12 (c) and (f) show the phase diagrams as a function of the Rashba
coupling strength, αR, versus kF . Overall, we notice that the topological state is
independent of αR, and the system is on the topological phase for 0.2a´1

0 ă kF ă

0.5a´1
0 . This is in good agreement with the definition of Q, Eq. 3.17, since the term

Rashba banishes at k “ 0,˘π{2, the topological phase should not depend on the
presence or absence of spin-orbit coupling. However, if we pay closer attention to
Fig. 3.12 (f), we can observe that the system is in the trivial state for small values
of αR. Indeed, topological phases on ferromagnetic chains can only be achieved on
systems with Rashba interaction, even if αR is infinitesimally small [81], [82]. The
previous remark shows that Eq. 3.17 should not be blindly applied. Moreover, in
Fig. 3.12 (e) we can see that the topological gap becomes bigger with an increasing
αR, giving better protection to the MBS arising in finite systems [125].

The number of MBS that emerge on a finite system is given by the difference in
the winding number at the domain wall between regions with different topological
phase, |w1 ´ w2| [114]. With the consequence that an interface carrying two Ma-
joranas could be created between two superconductors with w “ 1 and w “ ´1.
Up to now, we have only observed the emergence of MBS in ferromagnetic chains
with w “ ˘1. As such, finite spin chains in a superconductor, will host one MBS
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Chapter 3. Calculations of spin chains on superconductors

Figure 3.13: Chain with αR “ 3.0 eV-Å in the first half and αR “ ´3.0 eV-Å in
the other half. (a) PDOS profile at E “ 0 along the chain. (b) Color map of
PDOS along the chain’s axis versus energy. The state at E=0 found in the middle
of the chain is constituted by two MBS. (c)-(d) Winding number computer in the
firs and second half of the chain, respectively. Parameters: Exchange interaction
J “ 2.7 eV, potential scattering K “ 5.5 eV, the Fermi vector is kF “ 0.3 a´1

0

on each end. However, if we look at the phase diagrams in Fig. 1.8, there are
some regions where there’s an abrupt change in w. Particularly, in Fig. 1.8 (d)
and (e) when kF is close to π{a, there are regions with w “ 1 and w “ ´1 very
close to each other. An interface between two superconductors of very different
electron density, such that one has a kF ă π{a, and the other one has kF ą π{a,
a spin chain straddling the interface will have a change of winding number of 2,
and hence present two MBS at the interface.

Alternatively, the sign of the αR parameter changes the sign of w [137]. Like
this, in the domain wall of a spin chain with two different spin orbit coupling
interactions, we expect two MBS to arise. The behavior of a ferromagnetic spin
chain in the presence of Rashba SOC can be compared to a non-collinear spin
chain [9], [138], following this analogy, a chain with two αR sections with different
sign can be compared to a non-collinear spin chain with a domain wall separat-
ing two sections with opposite chirality [114], [137]. This situation is depicted in
Fig. 3.13. Here, we have plotted a 60-atom chain, with αR “ 3.0eV-Å on one half
of the chain and αR “ ´3.0 eV-Å in the other. Figure 3.13 (a) shows the PDOS
profile at zero energy and along the chain. As observed, there are two edge states
localized at the ends and another state in the middle of the chain. This can also
be observed in Fig. 3.13 (b), the color map clearly shows a zero energy state at the
domain wall between the two sections of the chain. Figure 3.13 (c) and (d) show
the winding number calculation with different sign of αR. As it can be noted, the
d⃗ trajectory is completed in opposite directions in each case.
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3.3.3 Numerical calculations
So far, we have obtained the effective Hamiltonian and computed the topological
invariants, for an infinite ferromagnetic spin chain on a superconductor. In a
similar spirit, as Fig. 3.9, we want to obtain all previous calculations for a finite
system, using purely numerical approach, and compare it to analytical results.
Our goal is to study the validity of our calculations of finite spin chains on 2-D
superconductors [31], like the results presented in 3.1. We have verified that the
dimensionally does not drastically affect the emergence of edge states in finite
systems, our calculations in 2-D superconductors show that the DOS of in-gap
states decay in only 5 sites perpendicular to the chain, and the resulting spectra
does not differ a lot compared to 1-D simulations. Similarly, in 3-D systems, the
addition of extra layers does not affect the overall DOS distribution of in-gap
states. This is largely due to the presence of the Rashba interaction being limited
to the first superconducting layer in our calculations.

Numerical evaluation of topological invariants

Figure 3.14 shows the numerical calculation for a finite spin chain. Figure 3.14
(a), (b) and (d) are obtained for a 30 atom impurity chain on a 2-D superconduc-
tor. In order to be able to compute the band structure of the system by solely
numerical means, we need to simulate a long enough chain. Figure 3.14 (c), (e)
and (f) were obtained from a 1001-atom chain in a 1-D superconductor with the
same parameters.

Figure 3.14 (a) shows the spectra on the first atom of the chain. The 30-atom
chain is located at the center, of a 2-D rectangular superconducting array with
dimensions Nx “ 36 and Ny “ 5 sites. The exchange coupling is J “ 3.5 eV, the
potential scattering amplitude is K “ 5.5 eV, Rashba coupling is αR “ 3.0 eV-Å
and the Fermi vector is kF “ 0.7a´1

0 . By looking at the topological phase dia-
gram in Fig. 3.12 (a), we can come to the conclusion that these parameters yield
a topological solution with winding number w “ 1. Figure 3.14 (b) shows PDOS
along the chain’s profile at zero energy. As shown, the zero-energy states are well
localized at the chain’s ends. More information about the spatial distribution of
the in-gap states is found in Fig. 3.14 (d). We can again see the zero-energy states
at the ends of the spin chain, and a small energy gap that separates them from
the rest of in-gap states. The resulting band structure obtained for a finite chain
is shown in Fig. 3.14 (c).

We obtain Gpk⃗, ωq from the real-space Green’s function Gi,jpωq by using a fi-
nite Fourier transform (Eq. 3.2), and a sufficiently high number of atoms in a 1-D
finite system. We then calculate the k-resolved Hamiltonian from the renormal-
ized Green’s function, Eq. (3.12). In red, we plot the numerical results, and for
comparison the analytical band structure for an infinite chain is plotted as black
dashed lines. The two show good agreement, but it can be improved by using even
longer spin chains, and increasing the number of k points in the calculation.
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Figure 3.14: Numerical results of 30-atom impurity chain of a 2-D superconductor
with dimensions Nx “ 36 and Ny “ 5. (a) Spectrum obtained on the first atom
of the chain. (b) PDOS at zero energy along the chain’s axis. (c) Renormalized
bands, analytical calculation (black dashed lines) and numerical result (in red)
for a 1001-atom chain in a 1-D superconductor. (d) PDOS spectra along the 30
atom chain. (e) Corresponding trajectory of winding vector d⃗, the color bar shows
the k-points where d⃗pkq is evaluated. (f) dx, dy and cumulative winding number
wpkq, Eq. (3.16) as a function of k. Parameters: ∆ “ 0.75 meV, N0 “ 0.037/eV,
kF “ 0.7 a´1

0 , α “ 3.0 eV-Å J “ 3.5 eV, K “ 5.5 eV.

Figures 3.14 (e) and (f) depict the evolution of the d⃗ vector and winding number
for the above case. As we can see, d⃗ completes a turn about zero in the positive
direction, resulting in w “ 1 and proving the topological origin of the edge states
in the 30-atom chain. The evolution of dx, dy and w is depicted in Fig. 3.14 (f).
It is interesting to note here that dx and dy are not perfectly symmetrical for
positive and negative values of k. This is again, due to numerical problems. The
asymmetry can be reduced by taking sufficiently small ω steps that improves the
numerical precision of the derivative in Eq. (3.12). Also, small oscillations can
appear in these curves due to the Fourier transform from the finite-chain in real
space to k-space, Fig. 3.14 (f).

The agreement between the numerical calculation and the analytical solution is of
special interest, because it shows that the band structure and topological invari-
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ants of a system can be calculated from a finite system and by means of purely
numerical calculations.

Numerical phase space

We have seen that it is possible to determine the topological character of a sys-
tem from numerical calculations on a finite system. Compared to the analytical
approach, it requires a much higher computational power, but a big advantage of
the finite-system calculation, is that we can directly observe the emergence of edge
states when entering the topological phase, whereas the infinite chain calculation
only gives information about the bulk system. Moreover, for a long-enough chain,
the middle of the chain should be a good approximation of the bulk system. With
this in mind, we want to explore the phase space by looking at the in-gap states
of the bulk and edges of the system. And, again, compare the numerical and an-
alytical approaches.

We aim to study how the edge states emerge, also we wish to observe when the
TPT occurs as we vary one of the parameters of the system. The calculations are
performed in finite system, and we look at the PDOS in the edge and the middle of
the chain. For comparison, we also obtain the resulting in-gap states in an infinite
chain, this will help us distinguish edge states from purely bulk states. To do so,
we obtain the Green’s function in k space, Gpk⃗, ωq, and we Fourier transform to
real space, such that the PDOS of the infinite system can be evaluated.

In Fig. 3.15, we have plotted the bulk and edge states as a function of the ex-
change interaction, J , for a fixed value of the potential scattering K “ 5.5 eV
(Fig. 3.15 (a)-(c)) or as a function of the potential scattering, K, for a fixed value
of J “ 3.0 eV (Fig. 3.15 (d)-(f)) for a 30-atom spin chain. The region between
the red dashed lines indicate the topological phase as extracted from the phase
diagrams in Fig. 3.12.

Figure 3.15 (a) and (b) show the evolution of the edge and middle atom, re-
spectively, as a function of J . As observed, for an increasing J , the in-gap states
move to zero until they cross, closing and reopening the gap. The crossing coin-
cides with the change in topological character, this is the TPT at J „ 2.7 eV. If we
look at the edge atom, Fig. 3.15 (a), the topological phase also coincides with the
emergence of an edge state at zero energy. In the middle of the chain (Fig. 3.15
(b)) we observe a closing of the gap and reopening, as the system enters the topo-
logical phase. This can be compared with Fig. 3.15 (c), which corresponds to the
infinite system calculation. We can observe a good agreement between (b) and
(c), showing that some states in (b) are not bulk states but rather a result of the
finite length of the chain. The TPT can also be observed in (c) at the same J value.

As the exchange interaction increases, the energy gap starts to close again and
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Figure 3.15: Evolution of in-gap states at the edges and at the center of the chain
((a) and (b) respectively) as a function of the couplings for exchange J for a fixed
value of the potential interaction matrix element K “ 5.5 eV and potential K,
for fixed J “ 3.0 eV ((d) and (e)) interactions. For comparison, the states at the
center of an infinite chain from an analytical calculation are also shown in (c) and
(f). As expected, the agreement between the spectra at the mid-site of the finite
chain (b) and the site of the infinite chain (c) is excellent, as well as between (e)
and (f). The main differences are due to long-range edge states that are absent
from the infinite chain. Red dashed lines indicate the TPT as obtained from phase
diagrams in Fig. 1.8. Topologically non-trivial phases are found between the two
horizontal lines. Parameters: ∆ “ 0.75 meV, N0 “ 0.037/eV, kF “ 0.4 a´1

0 ,
α “ 3.0 eV-Å, the finite chains ((a), (b), (d) and (e)) are 30-atom long. The
PDOS is in (1/eV) units.

at J „ 4.0 eV, there is a new TPT, Fig. 3.15 (b) and (c). We observe a narrowing
of the gap, but the gap closing is difficult to observe because a high number of
k-points and J values is required to observe this gap closing. As a consequence,
we find a zero-energy edge mode between J “ 2.7 and J “ 4.0 eV that clearly
signals the topological phase, Fig. 3.15 (a).

A similar situation can be observed for the potential scattering study (Fig. 3.15
(d)-(f)). Here, the first TPT is more difficult to distinguish (at K „ 2.0 eV),
while the transition at K „ 7.0 eV is easily observed, and perfectly matches the
loss of the edge state in Fig. 3.15 (d). The good agreement between numerical
and analytical solutions, further supports the validity of numerical calculations
for topological studies.
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We can also note the finite-size effects on the edge states. In Fig. 3.15 (a) we
can observe how the edge state begins to split before the system enters the trivial
state at J „ 4.0 eV. This is a direct consequence of the finite length of the chain.
We have verified, that for longer chains, this small splitting is shifted to J values
closer to the TPT. The above calculations show, overall, a very good agreement
between analytical and purely numerical calculations on finite systems, showing
that topological properties can be studied in finite-system calculations. In the
following, we will take a closer look at the finite-size effects that the spin chains
have on the edge states.

3.4 Finite-size effects on spin chains in a supercon-
ductor

As we have discussed so far in this thesis, MBS in ferromagnetic spin chains are
expected to arise at zero energy, however, as we could already observe in Fig. 3.15,
the topological edge state shows some splitting. Indeed, the chain’s length is a crit-
ical parameter for the emergence of MBS in topological phases of the system [128].
And, due to the finite length of the chains, the spatial overlap existing between
the two MBS, results in a shift of the edge states from zero to a finite energy [69],
[80], [128], [139], [140]. Furthermore, MBS in finite systems can interact with each
other but also with other in-gap states [141], which can lead to a periodic oscilla-
tion of these edge states [24], [33], [128].

In the following, we will study these edge states at finite energy in finite-size
spin chains and study how they evolve as we vary the size of the chain.

3.4.1 Energy oscillation and topological state

In 3.3.2 we obtained the phase diagram for spin chains in a superconductor, here,
we want to study the parameter space and observe how edge states evolve with
the chain’s length. Figure 3.16 shows the J vs kF phase diagram as depicted in
Fig. 3.12. Here, we have selected four pairs of parameters (indicated by different
shapes in the inset) and obtain their spectra at the edge atom of a finite chain, as
we vary its length.

The phase diagram depicts the winding number as computed in 3.3.1. The white
areas are the trivial phase, while the magenta and green areas correspond to
w “ ˘1. Figure 3.16 (a) is a trivial case. As we can see, the lowest-energy
in-gap states are found at „ 0.3 meV, and they remain at this energy as the
number of atoms increases. Figure 3.16 (e) shows the spatial distribution for the
lowest-energy state for a chain of 100 atoms. As we can observe, the in-gap states
are distributed along the chain and not localized at the ends.
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Figure 3.16: (a)-(d) Evolution of edge states as a function of the number of atoms
in the spin chain. Inset: Topological phase diagram. We selected 4 pairs of
parameters: exchange interaction (J) and Fermi vector (kF ), as indicated by the
different shapes in the phase diagram. (e)-(h) Corresponding spatial distribution of
the PDOS along the chain’s axis for a fixed length of 100 atoms. Other parameters:
∆ “ 0.75 meV, N0 “ 0.037/eV, αR “ 3.0 eV-Å K “ 5.5 eV and ac “ 3.36 Å.

On the other hand, Fig. 3.16 (b) corresponds to a topological phase (w “ ´1),
here we see that for chains as short as 5 atoms, there’s a strong peak at zero
energy. As the length of the chain is increased, the edge state remains at zero
energy. The PDOS profile along the chain’s axis in Fig. 3.16 (f) show that these
states are very localized at the edges, as expected for MBS. Figure 3.16 (c) shows
a different behavior, in this case the edge states oscillate in energy around zero
with a period of „ 5 atoms, and panel (g) shows that these states are also well
localized at the edges. Here, the winding number (w “ 0) indicates that this is a
trivial state of the chain.

Finally, Fig. 3.16 (d) also shows an oscillatory behavior, but in this case the system
is in a topological phase (w “ 1). The period here is about 60 atoms, and two
different branches are observed, which can be separated between even and odd
number of atoms (see Fig. 3.17 (a) and (b)). This behavior is completely compat-
ible with the experimental findings of topological spin chains [128]. In the present
study, we have observed energy oscillations of the edge states in spin chains, how-
ever, the topological phase of the system cannot be related with the emergence of
the oscillations, because we have observed them for trivial and topological states.

3.4.2 Moiré periodic oscillations

The period of the oscillations in Fig. 3.16 is not straight forward to rationalize.
Particularly, Fig. 3.16 (d) presents an even-odd effect with the number of atoms
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in the chain. Figure 3.17 (a) and (b) show the split oscillations from Fig. 3.16 (d)
in even and odd number of atoms. From these plots, we can see a clearer period
of „ 105 atoms.

In the presence of impurities, Friedel oscillations emerge in their vicinity on con-
ducting surfaces [142], in particular also on superconductors [5], [102]. These
oscillations follow the relation cosp2kF r` δq, where kF is the Fermi wave vector, r
is the distance to the impurity and δ is a phase shift [5]. However, if we try to ra-
tionalize the oscillations in Fig. 3.16 with this equation, we find that the observed
periods are much larger than the expected. To understand the resulting periodic-
ity, we need to take into account the periodical effect of the interaction between
spins in superconductors. This oscillation follows EJ “ ´∆sinpkF rq{kF re

´r{ξ [9].
Additionally, we need to consider the periodicity emerging from the discrete lat-
tice distance between spins (ac) [33]. To take into account this discretization, we
need to apply a mask function, fprq, to the EJ relation, making non-zero only the
values at a nˆac distance, with n P N. To approximate this function, we can take
its first harmonic, fprq « cosp2πr{acq. Then, the energy of the in-gap states with
our model will follow

EY SRprq “ EJ ˆ fprq (3.18)

To understand the periodicity, we simply take the oscillatory part from the previ-
ous equation:

sinpkF rq ˆ cosp
2πr

ac
q “

1

2

“

sinpkF r ´
2πr

ac
q ` sinpkF r `

2πr

ac
q
‰

(3.19)

In this expression, we can observe two oscillatory terms, one with high frequency,
k1 “ kF r` 2πr

ac
, responsible for the even-odd effect: this frequency is too high to be

visible in our discrete-lattice model, as such, this fast oscillation results in an alter-
nating signal between even and odd sites. The lower frequency of k2 “ kF r` 2πr

ac
,

results in the longer range oscillations.

To better illustrate this model, we solve a simple case where we only consider two
sites in the system, i.e. an impurity dimer at different inter-impurity distances.
We vary the distance in a continuous fashion to obtain the spectra as a function of
the impurities distance, shown in Fig. 3.17 (c), the fast oscillation does not allow to
properly observe the period. The inset shows a zoomed-in area for inter-impurities
distance from 25 to 27.5 ac, here we can verify that, as expected, the period of these
oscillations coincides with the frequency in EJ . To retrieve the period observed in
Fig. 3.17 (a) and (b), we have to select inter-impurity distances that are sites of
the underlying superconducting atomic lattice, such that r “ n ˆ ac with n P N.
This is exactly what is depicted in Fig. 3.17 (d), the period of the oscillations
observed here perfectly matches the chain calculation in Fig. 3.16 (d). Finally,
we split the resulting structure into even and odd number of atoms (Fig. 3.17
(e) and (f), respectively). Note that the energies in the two-sites model are not
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Figure 3.17: Comparison of spin chain and magnetic dimer. (a), (b) Projected
density of states in the edge atom as we vary the number of atoms in the chain for
even (a) and odd (b) number of atoms, combining (a) and (b) we recover Fig. 3.16
(d). (c)-(f) Dimer PDOS as we vary the distance between the two sites. (c) The
distance between the two impurities is varied in a continuous fashion, the inset
shows a zoomed in for distances between 25-27 a0. (d) Selected distances extracted
from (c) corresponding to integer numbers of a0 and split between even (e) and
odd (f) numbers. Comparing (a), (b) and (e), (f) we arrive at the conclusion that
the periodicities perfectly match.

around zero, but we expect this behavior not to be energy dependent, and the in-
teractions leading to these oscillations are the same regardless of the state’s energy.

By comparing Fig. 3.17 (a) and (b) for the spin chain versus Fig. 3.17 (e) and
(f) corresponding to the two impurity model. We can observe that the period
on both cases is the same. We conclude that the resulting period is the one of
a moiré pattern, product of the interaction between the substrate-mediate oscil-
lations, with a spatial frequency of kF and the lattice discretization with a wave
vector of 2π{ac. As a consequence, the resulting periodicity highly depends on kF
and ac.

The dependence of the oscillations with ac and kF can be used to tune their peri-
odicity. Figure 3.18 show the resulting spectra for different ac values (a)-(c) and
kF (d)-(f), only for odd number of atoms in the chain. As expected for moiré
patterns, slight changes in any of the parameters, lead to highly different peri-
odicities. In particular, as shown in Fig. 3.18 (b) and (e), it is possible to tune
the parameters in a way that the obtained period is long enough, so that the edge
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Figure 3.18: Oscillations observed for odd-number spin chains. (a)-(c) for different
lattice parameters, a and kF “ 0.75 a´1

0 . (d)-(f) for different wave vectors, kF and
a “ 3.36 Å.

states do not evolve as the number of atoms varies. The edge states in Fig. 3.18 all
correspond to topological phases of the system. Thanks to the underlying moiré
pattern, we are able to tune these topological edge states to a regime where they
are found a fixed and non-zero energy, regardless of the spin chain’s length [33].

Conclusions. Throughout this chapter, we have reviewed some applications of
the Green’s function model presented in chapter 2. As shown in 3.1, this model
provides a realistic framework able to reproduce experimental data. We explained
the YSR states present on Cr spin chains on β-Bi2Pd, and predicted the emergence
of Majorana-like edge states in the same system.

In 3.2, starting from the real space Green’s function, we were able to derive an
effective Hamiltonian in the reciprocal space, the band structure that we obtained
from diagonalizing the Hamiltonian allowed us to compute the topological invari-
ants for infinite systems, as described in 3.3. Furthermore, we could extend the
calculation to finite-size systems, and we performed a topological invariant calcu-
lation from a purely numerical approach.

Finally, in 3.4, we studied how the finite size of topological spin chains results
in non-zero edge states. In particular, we observed how these edge states oscillate
in energy as the spin chain’s length is varied. We rationalized the period of these
oscillations as a moiré pattern resulting from the discrete nature of the supercon-
ducting lattice and the spin-spin interaction transmitted through the substrate.
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4 Scanning tunneling microscopy
and experimental techniques
Introduction. Scanning tunneling microscopy (STM) was developed by Gerd
Binnig and Heinrich Rohrer in the IBM Zurich Research Laboratory in 1981 [6],
[143], allowing to observe surfaces with atomic precision for the first time. This
major break through in the development of nanoscience, granted the two scientists
the Nobel prize in 1986. The first great achievement of this new technique, was to
spatially observed the 7 ˆ 7 reconstruction on Si(111) [144], being able to resolve
the surface down to their individual atoms. Following the STM, other techniques
were developed, such as the atomic force microscope (AFM), developed by Binnig
a few years later [145].

In the present chapter, we will review the working principle and main concepts
behind scanning tunneling microscopy, as well as the use of superconducting tips
in STM. All the experimental results in this thesis were obtained with the aid of
this technique.

4.1 Scanning tunneling microscopy: basics

4.1.1 Working principle

Scanning tunneling microscopy relies on the principle of a small current existing
between a sharp metallic tip, with an applied bias, and a conducting sample that
are brought in proximity, with a vacuum barrier existing between the two. This
current, in principle prohibited by classical physics at low bias, is a result of the
quantum tunneling effect. The resulting flow of electrons tunneling through the
vacuum barrier is the so-called tunneling current.

Bardeen described a model for electronic tunneling in a metal-insulator-metal junc-
tion [146]. After the development of STM, Tersoff and Hamann [147] derived a
simplified tunneling model taking into account the geometry of the STM system
(a sharp metallic tip and flat surface). In the Bardeen model, Fermi’s golden rule
shows that the tunneling process from an initial state (t) into a final state (s),
where t and s denote, for example, tip and sample, respectively, is given by the
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4.1. Scanning tunneling microscopy: basics

transition probability per unit time [148]:

Γts “
2π

ℏ
|Mts|2δpϵs ´ ϵtq, (4.1)

where |Mts| is the tunneling matrix element, which depends on the geometry of
the tip, the distance to the sample the electronic wave functions of both surface
and tip and the connecting potential. The Dirac delta function in the previous ex-
pression, shows that tunneling is only allowed between same-energy states (elastic
process). The tunneling current will be eΓts, where e is electron’s change.

To calculate the total tunneling current from tip to sample, we integrate over
all energies taking into account the occupation of the electronic states. The oc-
cupation is defined by the Fermi-Dirac distribution ft,spϵq “ p1 ` exp rϵ{kBT sq.
Electrons can only tunnel from occupied (described by fpϵq) to unoccupied states
(p1 ´ fpϵqq). As such, the flow of electrons tunneling from tip to sample is given
by the expression:

ItÑs “
4πe

ℏ

ż 8

´8

dϵρtpϵ´ eV qρspϵqftpϵ´ eV qp1 ´ fspϵqq|Mts|2, (4.2)

where ρsptq is the density of states of the sample (tip), there is a factor 2 coming
from spin degeneracy. Note that we have set a potential difference, V , between tip
and sample (as depicted in Fig. 4.1 (a)). To obtain the total tunneling current,
we also need to take into account the flow of electrons going from the sample to
the tip, IsÑt. The tunneling current is then calculated as the difference between
the two IT “ ItÑs ´ IsÑt. Finally, we obtain:

IT “
4πe

ℏ

ż 8

´8

ρtpϵ´ eV qρspϵq
”

ftpϵ´ eV q ´ fspϵq
ı

|Mts|2. (4.3)

As we can see in the previous expression, and as sketched in Fig. 4.1 (a), the
applied bias (V ), makes electrons tunnel from filled to empty states between tip
and sample.

4.1.2 Imaging with STM
To obtain a topographic image using STM, we take advantage of the high depen-
dence of the tunneling current with the tip-sample distance (z). As reported by
Binning and Rohrer [6], the tunneling current decays exponentially with z. We
scan the area that we intend to map by moving the tip in the x ´ y plane. The
measured tunneling current is subject to a feed-back loop. In this way, when scan-
ning over an area, the feed-back tries to maintain the tunneling current constant
to a given set point by varying z. This correction is achieved by the piezoelec-
tric components attached to the tip. Piezoelectric materials can shrink or extend
under voltage. In this way, the tip-sample distance is recorded. The ensemble of
tip positions over the sample while keeping the tunneling current constant creates
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Chapter 4. Scanning tunneling microscopy and experimental techniques

Figure 4.1: STM working principle. (a) Electrons can tunnel from filled states
of the sample to empty states in the tip, due to the energy difference, eV . Here,
we are considering a substrate with a complex density of states (DOS) while the
tip is assumed to have a constant DOS about the Fermi energy. Both sample
and tip are assumed to be kept at the same temperature, T , that leads to the
thermal occupation represented in colors. (b) Schematics of the STM set-up. The
potential difference generates a tunneling current between tip and sample. In the
constant-current mode, the tunneling is kept constant by a feed-back loop that
acts on the tip’s height with respect to the sample. (c) Constant-current image
obtained on a clean Pb(111) surface, with a current set point I “ 200 pA and
V “ ´200 mV.

the experimental topography map. The movement in x ´ y is also achieved by
piezoelectric components. In Fig. 4.1 (b) we depict a sketch of the STM set-up.
This scanning mode is called constant current, as the feed-back works to maintain
a constant current in the sample-tip junction.

Alternatively, we can also scan an area with the feed-back off, in this case the
tip-sample distance is kept constant and, as we scan over an area, the set-up will
record a varying tunneling current. The topography is retrieved by looking at the
current map. This mode is called constant height. Between the two, the constant-
current mode is most commonly used for acquiring topography images. Figure 4.1
(c) shows a constant-current map with size 100 nmˆ100 nm of a Pb(111) crystal
obtained with a current set-point of I “ 200 pA. As observed, the topography
shows several atomic-sized terraces.

4.1.3 Scanning tunneling spectroscopy

As we can see in Eq. 4.3, the tunneling current carries information about the DOS
of the local area directly under the tip. Meaning that the local density of states
(LDOS) of the sample can be probed by measuring the tunneling current at differ-
ent biases. This is called scanning tunneling spectroscopy (STS). In the following,
we will see how the LDOS can be directly extracted from tunneling measurements.
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4.1. Scanning tunneling microscopy: basics

We go back to the expression of the tunneling current in Eq. 4.3. By assuming
that the matrix element, M , is constant. We have that:

IT 9

ż 8

´8

ρtpϵ´ eV qρspϵq
”

ftpϵ´ eV q ´ fspϵq
ı

dϵ (4.4)

And we calculate the derivative with respect to the bias voltage, V .

BIT
BV

|V 9

ż 8

´8

dϵ
”

´ ρspϵqρ1
tpϵ´ eV qftpϵ´ eV q

´ ρspϵqρtpϵ´ eV qf 1
tpϵ´ eV q

` ρspϵqρ1
tpϵ´ eV qfspϵq

ı

(4.5)

If we assume that the DOS of the tip remains constant, then the derivative with
respect to V is ρ1

t “ 0. The first and third component in Eq. 4.5 become zero.
Also, in the limit where the temperature goes to zero, the derivative of the Fermi-
Dirac function, becomes simply a delta distribution. f 1pϵqTÑ0 “ δpϵq. Like this,
Eq. 4.5 simply becomes:

BI

BV
|Vbias

9ρtpϵq

ż 8

´8

ρspϵqδpϵ´ eV qdϵ “ ρtρspeV q (4.6)

As we can see, BI
BV is proportional to the density of states of the sample at energy

eV . By keeping the tip at a constant height, i.e. feed back is off, and sweeping
the tunneling voltage while measuring the current, we obtain the IpV q curve.
By performing a numerical derivation, we can obtain the BI

BV signal. However,
in experiments, due to mechanical vibrations, external electromagnetic noise and
noise from the amplifier electronics, this signal turns out to be very noisy. In this
way, in experimental set-ups, the BI

BV is directly measured with the aid of a lock-in
amplifier.

Lock-in measurements

As previously discussed, the goal of STS is to measure the derivative of the tun-
neling current with respect to the applied bias, BI{BV . To this end, we can use
the lock-in technique. The idea behind this, is that by applying a small oscillating
modulation to the voltage, the measured current will also oscillate, the amplitude
of this modulated current carries information about the slope of the IpV q curve,
in other words, its derivative. This measurement drastically reduces the signal-to-
noise ratio compared to the numerical derivation of the IpV q signal [148].

The modulation added to the input voltage is Vm cos pωref t` θq, where Vm is
the modullation amplitude, ωref is the known reference frequency, and θ is an
unknown phase. The tunneling current is then,

I “ IpV ` Vm cosωref t` θq (4.7)
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If Vm is taken to be small enough (Vm ăă V ), we can do a Taylor expansion of
the previous expression:

IpV ` Vm cosωref t` θq “ IpV q`a1
BI

BV
Vm cos pωref t` θq

`a2
B2I

BV 2
Vm cos p2ωref t` θq ` ...

(4.8)

To detect the first harmonic, ωref t, the previous expression is multiplied by a refer-
ence modulation signal V 1 cos pωref t` ϕq, with same frequency as the modulation
and phase ϕ. The signal measured by the lock-in is the first term of the Taylor
expansion:

BI

BV
|lock´in “ V 1 cos pωref t` ϕq ˆ

”

a1
BI

BV
Vm cos pωref t` θq

ı

(4.9)

Which can be rewritten as:

BI

BV
|lock´in “ a1

V 1

2

BI

BV
Vm

”

cos pθ ´ ϕq ` cos p2ωref t` θ ` ϕq

ı

(4.10)

As we can see, the out-put signal has two components: a DC component propor-
tional to BI

BV cospθ ´ ϕq and an AC signal of frequency 2ωref . By doing a time
average of the signal, only the DC component is filtered out. Note that for all
other signals with frequency (ω ‰ ωref ) the DC component is zero. Additionally,
the result is proportional to the cosine of the phase difference between the input
and reference signal. This phase can be adjusted to maximize the amplitude of
the output [148].

Inelastic electron tunneling spectroscopy (IETS)

The electron tunneling discussed up to now involves only elastic processes, i.e.
electrons tunneling between tip and sample conserving their energy (see Fig. 4.2
(a)). However, electrons can tunnel from one side to the other of the vacuum
barrier, losing part of their kinetic energy and promoting the system into a higher-
energy state. These type of processes receive the name of inelastic tunneling, and
can be used to probe discrete energy states of the system. Inelastic tunneling
spectroscopy (IETS) has been used, for example, to probe vibrational modes on
molecules [149]–[151] or spin excitations on single magnetic moments [152], [153]
such as molecules [34] and atoms [154], [155].

As we vary the voltage, the elastic flow of electrons contributes linearly to the
total tunnel current. However, the inelastic processes open a new channel that will
induce changes in the slope of the IpV q curve. The inelastic channel opens when
electrons have a sufficiently high energy, eV ě Ei. Above this energy threshold,
the additional inelastic current is added to the tunneling current. The total current
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Figure 4.2: Inelastic electron tunneling spectroscopy. (a) Tunneling electrons flow-
ing from the sample to tip in elastic and inelastic processes. In the elastic tunnel-
ing, the electron conserves its energy. In the inelastic case, the electron loses some
of its energy and tunnels to a lower-energy state. (b) Total tunneling current (blue
line) obtained from Eq. 4.12, the change in the slope coincides with the opening
of the inelastic channel. For comparison, the elastic current is also depicted (black
dashed line). (c) Numerical derivative of (b), the changes in the IpV q slope result
in steps in the dI{dV spectra.

will be the combination of both elastic and inelastic processes, IT ` Ie ` Ii:

IT “ σeV `
σi
e

ż

”

fpϵ´ eV `Eiqp1 ´ fpϵqq ` fpϵqp1 ´ fpϵ´ eV ´Eiqq

ı

dϵ (4.11)

where σepiq is the elastic (inelastic) conductance. The two terms in the previous
expression are the electron flow from tip to sample and vice versa. The previous
integral can be analytically solved:

IT “ σeV ` σi

„

pV ´ Ei{eqf̃peV ´ Eiq

f̃peV ´ Eiq ´ 1
`

pV ` Ei{eqf̃p´eV ´ Eiq

f̃p´eV ´ Eiq ´ 1

ȷ

(4.12)

where f̃pϵq “ exppϵ{kBT q. Figure 4.2 (b) shows the resulting tunneling current
with an inelastic channel corresponding to an excitation of energy Ei “ 0.6eV.
The elastic current is depicted as the black dashed line (I “ σeV ), beyond the
threshold, we see a change in the slope and an increasing total current, due to
the opening of the inelastic channel. Figure 4.2 (c) shows the derivative of the
tunneling current. As we can observe, the change in slope becomes a step-like
feature in the BI{BV spectra at bias Ei{e. These abrupt changes in conductance
allow us to easily detect excitations in the system.
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4.1.4 Experimental set-up

The microscope used in this thesis is a low-temperature STM from Omicron kept
under ultra-high-vacuum (UHV) conditions. The system is located at l’Institut de
Physique et Chimie des Matériaux de Strasbourg (IPCMS), in France. A picture
of the system is shown in Fig. 4.3 (a), indicating the main components. The UHV
system consists in two chambers: the preparation and STM chambers, separated
by gate valves. Both chambers are equipped with a turbo-molecular pump and an
ionic pump. The base pressure in the preparation chamber is kept in the range of
10´10 mbar and in the STM chamber at 10´11 mbar. Additionally, titanium sub-
limation pumps (TSP) are periodically used to help keep the vacuum conditions.
A third chamber, the load-lock, is connected to the preparation chamber, this one
can be exposed to ambient pressure and it is used to insert or remove samples
from the system.

Figure 4.3: STM system used in this thesis at IPCMS in Strasbourg. (a) UHV
system with its main components labelled: STM and preparation chambers and
load-lock. (b) STM head outside the STM chamber, the STM tip is framed with
a pink square.

The preparation chamber is equipped with a sputtering gun and heating stage
used for sample preparation. The samples used in this thesis are Pb(111) single
crystals. To achieve a clean surface, we perform several sputtering annealing cy-
cles. We use tungsten tips, also prepared by Ar` sputtering. In Fig. 4.3 (b) we can
see the STM stage outside the UHV system, the tip is marked by a pink square.
Samples are placed on top of the tip, in the sample stage.

A cryostat with 3.5L of capacity is located directly on top of the STM head,
when filled with liquid helium, the temperature in the microscope reaches 4.5 K.
For measurements, the temperature can be further reduced by pumping on the
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cryostat. When the pump is working at full power, the temperature reaches 2.5 K,
all the measurements reported in the present and next chapter were acquired at
this temperature, unless otherwise specified.

4.2 Scanning with superconducting tips

As discussed in 4.1.3, STS is used to measure the LDOS of the sample. In the
case we use a tip with a flat DOS around the Fermi energy, the energy resolution
of the spectroscopy will be limited by the Fermi-Dirac distribution, and a high
energy resolution can be only achieved at very low temperatures. As we will see
in the following, the use of superconducting tips in STM [156], [157], can increase
the energy resolution of the measured STS [158], [159].

4.2.1 Tunneling between superconductors

As previously discussed in 4.1.1, the tunneling current between tip and sample is
given by the Eq. 4.3, this expression depends on the DOS of both tip an sample.
As explained in chapter 1 (1.2.3), the DOS of a superconductor is well described
by the Dynes formula [65]:

ρscpϵq “ N0Re
” ϵ` iΓ
a

pϵ` iΓq2 ´ ∆2

ı

, (4.13)

where iΓ is a damping factor, known as the Dynes parameter [65], [66]. It ac-
counts for the pair breaking that occurs under a finite current during tunneling
processes [61].

Metal-superconductor tunneling

In case we are studying a superconducting sample with a metallic tip, the tunneling
current can be easily obtained by replacing the superconducting DOS in Eq. 4.3.

Ins9

ż 8

´8

ρscpϵq

N0

”

fpϵq ´ fpϵ` eV q

ı

dϵ. (4.14)

From this expression, we can see that electrons will be able to tunnel when the
bias is |eV | ą ∆1. This situation is sketched in Fig. 4.4 (a), the sign of the bias
is not relevant, since creating a hole or an electron in the superconductor requires
the same energy. The BI{BV signal, as discussed in 4.1.3, is proportional to the
LDOS of the sample.

Superconductor-superconductor tunneling

In the case where we have superconducting materials on both electrodes, the tun-
neling current expression becomes more complex. Replacing the superconducting
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Figure 4.4: Electron tunneling between metal-superconductor and two supercon-
ductors. (a) Current tunneling from a metalic tip to a superconducting sample.
Electrons can tunnel when the bias potential is eV ą ∆1. (b) In case tip and sam-
ple are superconducting, the potential requiered is eV ą |∆1 ` ∆2|, this energy
is enough to create a hole in one side and an electron in the other. (c) STS mea-
surements on Pb(111) crystal with a metallic W tip (blue curve) and Pb coated
superconducting tip (orange curve) at T=2.5K.

density of states in Eq. 4.3, we get:

Iss9

ż 8

´8

|ϵ|
a

ϵ2 ´ ∆2
1

|ϵ` eV |
a

pϵ` eV q2 ´ ∆2
2

”

fpϵq ´ fpϵ` eV q

ı

dϵ. (4.15)

From the previous equation, we observe that no current can flow from one side to
the other until |eV | “ ∆1 ` ∆2. At this bias, the energy is enough to create a
hole in one side and an electron on the other. The tunneling process is depicted
in Fig. 4.4 (b).

The derivative, BI
BV , is given by Eq. 4.5. In the case of a superconducting tip,

we cannot make the assumption of ρ1
t “ 0. We need to explicitly evaluate the

three terms. So the conductance between a sample and a superconducting tip is
proportional to:

BI

BV
9

ż 8

´8

´ e
Bρt
BV

ˇ

ˇ

ˇ

ˇ

ϵ´eV

ρspϵq
”

ftpϵ´ eV q ´ fspϵq
ı

dϵ

`

ż 8

´8

´ eρtpϵ´ eV qρspϵq
Bf

BV

ˇ

ˇ

ˇ

ˇ

ϵ´eV

dϵ

(4.16)

The derivative of Eq. 4.13 can be calculated analytically (find the expression in
Appendix D), and the resulting BI{BV from Eq. 4.16 can be evaluated numerically.
This calculation can be used to compare with experimental results.

Compared to the metal-superconductor tunneling, the signal now is not propor-
tional to the DOS of the sample. Rather, the resulting signal is a convolution with
the DOS of the tip, mainly shifting all features in the sample by the superconduct-
ing gap of the tip, ∆tip. This convolution, on the other hand, is what gives the
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enhanced energy resolution to the superconducting tip measurements. In order to
properly study the energy resolved spectroscopy, the spectra obtained need to be
deconvoluted to remove the effect of the tip.

4.2.2 Spectroscopy with Pb tips

For most of the measurements shown in this thesis, we used a Pb-coated STM tip.
Lead is one of the highest Tc elemental superconductors, with a critical tempera-
ture of Tc “ 7.19 K [160]. The superconducting pairing potential of Pb at T=0 is
∆ “ 1.35 meV.

Tip preparation

STM measurements were performed using tungsten tips. They are prepared by
chemically etching tungsten wires, using a solution of NaOH [161]. Resulting in
sharp-end tips. To improve the sharpness and removing impurities, tips are also
sputtered with Ar` ions, before being inserted in the STM head.

Next, we coat the W tip with some superconducting material. To this end, we
prepare clean Pb(111) crystal by doing several sputtering/annealing cycles. For
sputtering, we set an Argon pressure of 1.0E-6 mbar and apply 700 V. With these
conditions, we measure an emission current of „1.5 µA. We then anneal the sample
at a maximum temperature of 425 K. The result is a clean Pb surface, as shown in
Fig. 4.1 (c). We coat the tip with some Pb, by indenting the tip onto the surface.
We move the tip several nanometers into the surface until it crashes. We keep a
bias voltage of 10 V during this process, and then move several micrometers in the
x-y coordinates to get some Pb into the tip. The result is a superconducting tip
with a slightly smaller ∆ than the bulk Pb.

Experimental STS with Pb tips

Figure 4.4 (c) depicts experimental BI{BV measurements obtained with a Pb-
coated tip, as explained in the previous paragraph, compared with STS obtained
with a metallic tip on clean Pb(111) crystal. Both spectra were obtained at
T=2.5 K, the blue curve corresponds to the measurement with a metallic W tip,
the superconducting gap can be observed, but the features are smeared due to the
finite temperature. The orange curve, is obtained at the same conditions using a
Pb-coated tip. In this case, the quasi-particle peaks can be easily distinguished,
the total energy gap is found to be ∆ “ ∆tip ` ∆Pb « 2.6 meV, indicating a
superconducting gap ∆tip ă ∆Pb, as expected. Other features at higher energy
can be observed as well. For instance, the electron-phonon steps at « ˘6 meV and
« ˘10.5 meV [162], that correspond to the electron-phonon modes of the bulk Pb,
found at around 4.4 and 8.5 meV [163], [164].
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Figure 4.5: Numerical simulation of BI{BV spectra between two superconductors.
(a) BI{BV with ∆1 “ ∆2 “ 1.35 meV, and T “ 4.0 K, thermal tunneling feature
is visible at eV “ 0. (b) Same as (a) but ∆1 “ 1.0meV, and ∆2 “ 1.35meV. Two
thermal features are visible at eV “ ˘|∆1 ´ ∆2| “ 0.35meV. (c) BI{BV spectra
measured with Pb tip on Pb(111) surface (blue dots) at a measured temperature of
T “ 2.5 K. Simulated spectra with using Eq. 4.16 and Gaussian noise. Parameters:
∆sample “ 1.35meV, ∆tip “ 1.185meV, Γ “ 0.05meV, T “ 2.5K and σ “ 2.7E´ 6.

Simulated dI/dV between two superconductors

As already mentioned, Eq. 4.16 can be numerically evaluated to simulate the BI{BV
signal between two superconductors (see Appendix D for more details). Figure 4.5
shows simulated BI{BV signals between two superconductors. Figure 4.5 (a) shows
the conductance spectra between two superconductors with ∆1 “ ∆2 “ 1.35 meV.
The resulting curve shows two sharp features at eV “ ˘|∆1 ` ∆2|, as well as a
small peak at zero energy, this corresponds to thermally excited quasi-particles.
In Fig. 4.5 (b) the thermal feature arises as two sharp peaks, at eV “ ˘|∆1 ´∆2|,
at this voltage the filled states at ∆1 can tunnel to the available states in ∆2 [61].
The temperature for the two electrodes in Fig. 4.5 (a) and (b) is T “ 4.0 K, the
thermal features become more apparent as we increase the temperature.

Figure 4.5 (c) shows the measured superconducting gap obtained on a Pb(111)
crystal with a Pb-coated tip (blue dots). Using the numerical calculation, we can
fit this spectrum with good agreement. The temperature is set to T “ 2.5 K, as
measured in the STM stage, and the tip’s pairing potential is set to ∆tip “ 1.185
meV. To better fit the quasi-particle peaks in the measured spectra, we also add
a Gaussian noise signal to the simulated conductance.

4.2.3 Low-resistance tunneling processes
The tunneling processes between two superconductors described in 4.2.2 are valid
when the superconducting-insulating-superconducting (S-I-S) junction is in the
weak-coupling limit, i.e. the STM junction resistance is high (in the range of
MΩ). However, in strongly-coupled junctions (when the junction resistance drops
to the kΩ range), new processes emerge. In this section, we review the multiple
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Andreev reflections and Josephson effect.

Andreev reflections

Andreev reflections were first described by A.F. Andreev in 1964 [165]. Essentially,
in a normal-superconducting (N-S) interface, an incident electron with energy
E ă ∆ cannot go through the barrier as a quasi-particle of the system because
there are no quasi-particle states inside the superconducting gap. Instead, the
electron is reflected as a hole as depicted in Fig. 4.6 (a). In this way, a charge of
2e is transferred to the BCS condensate in the superconductor [61], [166].

Figure 4.6: (a) Schematic of an Andreev reflection at a normal/superconductor
interphase. (b) Single Andreev reflection in a S-I-S junction. (c) Multiple Andreev
reflection with order n “ 3. Tunneling electrons are represented by black balls and
holes as white balls. Cooper pairs are depicted as black bubbles with two white
dots inside. Adapted from Ref. [167].

An Andreev reflection between two superconductors with same superconduct-
ing gap, ∆, is sketched in Fig.4.6 (b), here an incoming electron with energy
2∆ ą |eV | ą ∆ from superconductor 1, reaches the interface of superconductor 2.
Since there are no electron-states available in this side, the process can only occur
if the electron is Andreev reflected as a hole. The reflected hole tunnels back in the
opposite direction, to superconductor 1, where empty (hole) states are available.
After this process, a total of 2 electron charges have tunneled from superconductor
1 to superconductor 2.

A similar process is possible, involving higher-order reflections, these are called
multiple Andreev reflections (MAR). The reflected hole from Fig. 4.6 (b) can be
again Andreev reflected at the interface with superconductor 1, as an electron-like
quasiparticle. This process annihilates a Cooper pair in superconductor 1. This
situation is depicted in Fig. 4.6 (c) and at the end of this process a total of three
elementary charges tunnel across the junction.

These multiple reflection processes result in resonant peaks in the BI{BV spec-
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tra inside the superconducting gap. The threshold for this higher order processes
to occur is given by the following relation:

eVT ě
2∆

n
(4.17)

where n´ 1 is the number of Andreev reflections occurring in the junction, and n
the total number of elementary charges tunneling from one superconductor to the
other.

Josephson effect

The tunneling of Cooper pairs between superconductors was predicted by Brian
Josephson in 1962 [168], [169]. He studied a system composed by two bulk su-
perconductors separated by a thin barrier (S-N-S), today known as a Josephson
Junction, in hopes of finding a physical quantity which would allow measuring
the phase difference between the two superconductors (∆ϕ). This phase was in-
troduced in the Gizburg-Landau theory as a global phase of the wave-function
describing the superconducting electrons [166].

The superconducting phase was first highlighted by the findings of Josephson.
He predicted the existence of a supercurrent between two superconductors at zero
bias voltage, driven by the phase difference existing between the two:

Is “ Ic sin∆ϕ (4.18)

This is known as the DC Josephson effect, and it was measured experimentally
by Anderson and Rowell in 1963 in thin films [170]. Ic is the critical current, the
maximum current supported by the junction, and it depends on the temperature,
the superconducting gap, ∆ and the resistance of the junction, RT [171]:

Ic “
π∆

2RT
tanh

∆

kBT
(4.19)

Josephson also predicted a superconducting phase evolution as a function of the
applied voltage:

d∆ϕ

dt
“
eV

ℏ
(4.20)

This is known as the AC Josephson effect, and it generates an alternating current
of amplitude Ic and frequency ν “ 2eV {h.

When we use superconducting STM tips, the two previous phenomena can be
measured when the junction resistance is low enough. Figure 4.7 shows the STS
obtained using a Pb-coated tip on a Pb crystal at two different junction resis-
tances. The blue curve is obtained at a resistance of 0.5 MΩ, here we observe the
coherence peaks and a superconducting gap of „ 2.6 meV. The junction resistance
can be reduced by increasing the tunneling current, which brings the tip closer to
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4.2. Scanning with superconducting tips

Figure 4.7: dI/dV spectra measured on a Pb crystal with Pb coated tip at T “

2.5 K. The dI/dV spectra are shifted for clarity. The blue curve was measured
at RN “ 0.5 MΩ, showing only the quasi-particle peaks. The orange curve was
obtained at RN “ 10.4 kΩ showing MAR and Josephson supercurrent.

the sample. The orange curve in Fig. 4.7 was measured at a resistance of 10.4 kΩ.
As we can see, in-gap states arise under these conditions. We can observe a peak
at zero bias that corresponds to the Josephson current. At higher energies, we can
also see two features corresponding to Andreev reflections, showing second and
third order MAR. The dashed black lines indicate the expected MAR energies as
written in Eq. 4.17. The observed peaks are in good agreement with their expected
energies. We can also note that, as the resistance of the junction has decreased,
the coherence peaks get broader.

Conclusions. As we have reviewed in this chapter, STM is a powerful tool to
study metallic samples down to the atomic level. The high spatial resolution allows
to image the topography of the sample with a high precision, and to measure
the LDOS at selected locations in the sample. The use of superconducting tips
and samples, results in convoluted spectra that, in return, allows for a higher
energy resolution, otherwise only achieved at mK temperatures. At low resistance
junctions, new phenomena arise only observable in superconducting systems: MAR
and Josephson supercurrent.
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5 Nickelocene on Pb(111): STM
study with superconducting
tips
Nickelocene on metallic surfaces. Metallocene molecules consist on a metallic
center, usually from one of the middle elements on the 3d row (V, Cr, Mn, Fe,
Co, Ni) [172]. And two cyclopentadienyl rings (C5H5, noted as Cp) parallel to
each other and on opposite sides of the metallic atom, this structure is sketched
in Fig. 5.1 (a). Ferrocene (FeCp2) was the first metallocene molecule discovered
in the 1950s [173], [174], with other compounds soon following. Their discovery
helped to develop the field of organometallic compounds. Several macroscopic av-
eraging studies on ferrocene [175], [176] and nickelocene (NiCp2) [177]–[179] tried
to unravel their absorption on metallic surfaces, in particular on Ag and Cu crys-
tals. More recently, local probe studies [180], [181] allowed to study metallocene
molecules down to the single-molecular level and to better understand their ab-
sorption into metallic surfaces.

In recent years, the interest on metallocence compounds, has grown in the context
of molecular spintronics. Due to the magnetic anisotropy existing in these systems,
distinct spin-dependent energy levels can be individually addressed [182]. In this
thesis, we focus on the study of nickelocene (noted as Nc in the following). Nc has
been previously studied with the aid of STM on normal metallic surfaces [35], [181],
[183]. Due to its electronic configuration, Nc has a spin S “ 1, as shown by sev-
eral studies [172], and an uniaxial magnetic anisotropy, making the spin’s ground
state to be perpendicular to the Nc molecular axis. For our study, we change
the metallic substrate by a superconducting one. In particular, we will study the
absorption and molecular excitations of Nc on a superconducting Pb (111) crystal.

Metallocene molecules exhibit two distinct configurations depending on the rel-
ative orientation of the two Cp rings. Usually, a small energy barrier separates the
eclipse (D5h symmetry) and the staggered (D5d symmetry) configurations [184].
In the former, the two Cp rings show the same rotation with respect to the molec-
ular axis (Fig. 5.1 (a)), in the later the rings show a relative rotation of 36˝. For
Nc, DFT calculations in the gas phase show that the eclipsed geometry is 23 meV
lower in energy, making this the preferential configuration upon absorption in a
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5.1. Sample preparation

metallic surface [181].

STS studies on Nc deposited Cu(100) [34], [185], [186], Ag(110) [35] and Cu(111) [183]
show a big inelastic step in conductance. This molecular excitation corresponds to
the promotion from the Nc ground state |S “ 1,mz “ 0y to the doubly degenerated
|S “ 1,mz “ ˘1y excited state. Due to the spin 1 of Nc, this signal constitutes a
direct measurement of the magnetic anisotropy. The magnetic properties of Nc are
robust, as their signatures remain unchanged in different metallic environments,
for example, when the molecule is absorbed into the STM tip [35], [185]. At low
junction resistances, the dI{dV spectra of Nc-terminated tips drastically change
showing a peak at zero bias. This transition corresponds to a molecular spin
switching from S “ 1 to S “ 1{2 [185], [186]. Other metallocene molecules have
also been studied on Cu substrates such as, ferrocene [180], [187] and cobaltocene
(CoCp2) [188].

In the present chapter, we investigate Nc deposited on a Pb(111) crystal. With
the aid of a STM superconducting tip, we were able to resolve small variations in
the anisotropy of the molecule. We also compare the measurements obtained on
molecules on the surface and absorbed in the tip’s apex. Thanks to that infor-
mation, we could unravel the absorption of molecular islands with respect to the
Pb (111) lattice. The main findings presented in this chapter were published in
The Journal of Physical Chemistry Letters 2021 12 (11) [36]. Additionally, low
junction resistance measurements using a Nc-termiated tip allow observing some
characteristic superconducting tunneling processes.

5.1 Sample preparation

The STM system used in the present study is presented in 4.1.4. The molecules are
deposited on clean Pb(111) crystal after several sputtering and annealing cycles,
as described in 4.2.2.

5.1.1 Molecular deposition

The molecules are kept in solid state as powder and the deposition is carried out
in UHV conditions, following a similar procedure as the one used for depositing
on Cu(100) [34], [181]: a small amount of Nc powder is placed inside a ceramic
crucible. The crucible is then inserted in the loadlock of the STM system and
transferred to the preparation chamber. At low pressure, the molecules subli-
mate [190]. To control the molecular flux, a lid is placed to cover the crucible
with a hole in the center of about 1mm diameter. For deposition, the crucible is
placed right in front of the valve separating the preparation and STM chambers.
The sample is kept in the STM stage at LHe temperature (about 4.4 K), we take
it out and place it also in front of the valve, to maximize the exposure to the
molecular flux. Deposition is performed by opening the gate valve separating the
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Chapter 5. Nickelocene on Pb(111): STM study with superconducting tips

Figure 5.1: (a) Nickelocene structure in the eclipse configuration. Different color
balls represent atomic species: Nickel (yellow), Carbon (brow) and Hydrogen
(pink). (b) Electronic configuration of the 3d8 electrons in Nc. (c) Schema of
Nc deposition between preparation and STM chambers under UHV conditions.
Adapted from Ref. [189].

two chambers (as depicted in Fig. 5.1 (c)), for times under 1 minute, depending
on the coverage we want to achieve.

The pressure in the preparation chamber during deposition ranges from 5.0 ¨ 10´7

to 10´6 mbar. If the measured pressure is found to be too low, after transfer-
ring the crucible into the preparation chamber, we can increase the molecular flux
by slightly heating the crucible with the aid of the annealing filament from the
preparation stage.

5.1.2 Nc islands on Pb (111)

Self-assemble arrays of magnetic molecules [191], [192] are governed by molecule-
molecule and molecule-substrate interactions [193]. This may lead to ordered
arrays with magnetic domains and non-collinear magnetic arrangements. On
Pb(111) van der Waals forces are the main contribution in molecular absorp-
tion [194]–[197], and complex magnetic textures can be expected. Nc has been
found to form ordered molecular islands on Cu crystals [34], [181], similar ar-
rangements were also reported for ferrocene [180].

As it was previously observed on Cu crystals, Nc molecules are absorbed on the
Pb(111) surface with one of their Cp rings bonded to the surface and the other
one exposed to vacuum [181]. As a result of this configuration, in the STM topog-
raphy, the molecules appear as ring shaped (see Fig. 5.2 (d)-(f)). In the resulting
sample, we find big patches of molecules forming molecular islands of sizes about
several tens of nanometers with a height of 3.5 Å. Unlike Cu(100), we could not
find isolated molecules [181] in the Pb(111) surface. Nevertheless, depending on
the deposition conditions, we could achieve different degrees of order in the molec-
ular islands.

Figure 5.2 shows different molecular-island configurations. To control the resulting
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5.1. Sample preparation

Figure 5.2: Constant current scans of Nc layers on Pb(111) with different configu-
rations on Pb (111) (a) Disordered Nc island on Pb(111), the image was obtained
using the parameters I=80pA, V=-20mV. (b) Paired phase I=20pA, V=-60mV. (c)
zig-zag phase I=40pA, V=-80mV. (d) I=60pA, V=-20mV. (e) I=20pA, V=-20mV.
(f) I=8pA, V=-20mV.

molecular arrangement, we found that the sample’s temperature during deposition
is critical. The molecular layers in Fig. 5.2 (a) and (d) are prepared by taking the
sample out of the STM head and holding it with the wobble stick in vacuum for
about 3 min before deposition. This results in rather disordered islands. Fig. 5.2
(b) and (c) are achieved by proceeding similarly, but in this case, we park the sam-
ple on a samples’ carousel at room temperature for „ 2 minutes before deposition.
This makes the sample to thermalize faster, resulting in a higher temperature for
deposition. As we can observe, the resulting islands show an ordered configuration.

On Pb(111), the ordered Nc islands are mainly present in two different phases [36]:
Figure 5.2 (b) and (e) coincides with the paired configuration previously observed
in Cu samples [181]. The second phase is also formed by pairs of molecules (or
dimers), but they are arranged by alternating their direction between rows, we call
this phase zig-zag, and it is shown in Fig. 5.2 (c) and (f). Both arrangements can
be found within the same island, showing domains of one of the two. The compact
Nc layers observed on Cu(100) [181] can also be found on Pb(111), but they are
much less common than the other two.
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5.2 STS on Nc with superconducting tips

5.2.1 Magnetic properties
As previously mentioned, Nc has spin S “ 1 and it possesses an uniaxial magnetic
anisotropy (denoted as D), with D “ 3.2 meV in gas phase [198]. IETS measure-
ments on Cu(100), also found D “ 3.2 meV in agreement with X-ray magnetic
circular dichroism (XMCD) spectra on the same sample [34]. The effective spin
Hamiltonian of the system can be written:

Ĥ “ DŜ2
z (5.1)

The ground state is |S “ 1,mz “ 0y, where mz is the magnetic quantum number
projected onto the molecular axis, perpendicular to the Cp rings. The two degen-
erate states are |S “ 1,mz “ ˘1y. Eclipse Nc has a crystal field with symmetry
D5h, hence it energetically favors the triplet S “ 1 state than the single S “ 0
configuration. The zero-field splitting of Nc [198], leads to a positive anisotropy,
D, making |S “ 1,mz “ 0y the ground state of the system. This spin Hamiltonian
allows us to find the magnetic anisotropy energy (MAE) as the molecular spin
changes orientation.

Studies on metallic Cu [34], [185] and Ag [35] crystals have proven that Nc con-
serves its magnetic properties when they are absorbed into a metallic surface, even
when the molecule is absorbed on different metallic environments, such as the apex
of the STM tip [34], [183]. As we will see in the following, the overall magnetic
properties of Nc are also preserved when deposited on Pb (111).

5.2.2 Spin excitation in Nc
All the STS measurements shown in this chapter were obtained using supercon-
ducting Pb tips [199], prepared as explained in 4.2.2 and carried out at a tem-
perature of T “ 2.5 K. We measure STS spectra by placing the STM on top of
Nc islands. Figure 5.3 (a) shows a Nc paired island on Pb(111), the blue and
orange stars indicate the positions where we have acquired the STS. Since we are
interested in the spin excitations of Nc, we limit our study to meV energy range.
The resulting spectra are shown in Fig. 5.3 (b). The blue curve corresponds to the
spectrum obtained on a clean Pb surface, here we can observe a superconducting
gap of ∆ „ 2.55meV that corresponds to ∆Pb `∆tip, where ∆Pb “ 1.35 meV. Us-
ing a superconducting tip, means that all the obtained spectra will be convoluted
by the superconducting DOS, mainly shifting all the features by the corresponding
energy gap, ∆tip.

The orange curve in Fig. 5.3 (b) was obtained on the Nc layer. As shown, the super-
conducting gap is not affected by the presence of the molecule, and the coherence
peaks are found at the same energy. Additionally, we can observe a symmetrical
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5.2. STS on Nc with superconducting tips

Figure 5.3: IETS signal of Nc coming from spin excitation. (a) Nc layer on
Pb(111), the stars mark the places where we take STS. The image was taken for
the following parameters: I=50 pA, V=-80 mV. (b) STS obtained on Pb surface
(blue curve) and on Nc layer (orange curve). Feed-back was opened at V=-15mV,
I=200pA. The spectrum on Nc shows a step signal, at V “ ˘6.5 mV accompanied
by two narrow peaks, corresponding to the spin excitation depicted in (c). The
elastic (inelastic) conductance is marked as green (red) area.

conductance step at „ ˘6.5 meV, due to an inelastic channel opening. The steps
are accompanied by a replica of the quasi-particle superconducting peaks. This
signal corresponds to the spin excitation depicted in Fig. 5.3 (c). The system goes
from the ground state, |S “ 1,mz “ 0y, to the excited state, |S “ 1,mz “ ˘1y.
The spectra are then a measurement of the anisotropy parameter, D. As previ-
ously mentioned, in Cu(100) researchers found found D “ 3.2 meV [34], and on
Ag(110) D „ 3.8meV [35]. In our case, to obtain the anisotropy parameter, D, we
have to remove the value of the superconducting gap, so D “ 6.5 ´ 2.55 “ 3.95
meV [36]. However, as we will see in the following, small variations in D can be
measured thanks to the use of superconducting tips.

Something worth noting in the Nc spectra is the ratio between the elastic (in-
dicated as the green area in Fig. 5.3 (b)) and elastic (red area) channels. We
found this ratio to be about „ 4, making the spin-flip of Nc a highly-efficient tun-
neling process [34]. The striking difference between the two channels can also be
observed in the topography images, Fig. 5.4 (a) shows the resulting topography
with an applied bias above the magnetic anisotropy (eV ą D) in this case the
inelastic channel is open. In contrast, Fig. 5.4 (b) correspond to a sample bias,
such that eV ă D. In this case, we can not image the ring of the molecules,
and in the topography, Nc appears as a ball. We can also observe some signal
coming from the space between the pairs of molecules. As we will discuss in the
following, this signal is coming from the laying down Nc that form the molecular
island structure [36], [181].

Another particular aspect about Nc is that, in order to measure its spin excitation,
we do not require an insulating layer to decouple the molecule from the metallic
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Chapter 5. Nickelocene on Pb(111): STM study with superconducting tips

surface. This is usually the case when studying spin excitations on single magnetic
entities. Insulating layers such as MgO [200], [201] or Cu2N [155] are often used
to protect the spin excitation from scattering events. The Nc high stability and
anisotropy, do not require this decoupling from the metallic environment [34].

Figure 5.4: (a)-(b) Constant-current topography scans on a paired Nc island with
tunneling current I=20pA, and (a) inelastic channel open (V=20mV) and (b) in-
elastic channel closed (V=5mV). (c) Measured spectra on 10 different molecules
within the same paired layer. (d) Zooming in the superconducting gap peak (blue
square in (c)). (e) Zooming in the IETS peak (orange square in (c)).

5.2.3 Small anisotropy variations
As explained in 4.2.2, the use of a superconducting STM tip leads to a higher
energy resolution [154], [158], [159], [195] when performing bias spectroscopy. It
allows us to detect small energy variations in the sub-meV range [36], that normal
metallic tips are not able to resolve above mK temperatures. With this in mind,
we measure STS on several Nc molecules from the paired molecular layer shown
in Fig. 5.4 (a) and (b). The resulting spectra are plotted together in Fig. 5.4 (c).
We can again distinguish the superconducting gap and, at higher energies, the
inelastic step corresponding to the spin excitation. However, if we look carefully,
there are some small variations in the IETS peak’s position depending on the tar-
get molecule. Figure 5.4 (d) zooms in the superconducting gap quasi-particle peak
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5.2. STS on Nc with superconducting tips

on different molecules, we can observe the same position for the peak regardless
of the molecule (˘2.55 ˘ 0.02 mV), showing again that superconductivity is not
affected by the presence of Nc. Figure 5.4 (e) zooms in the IETS peaks, as we
can see, there are variations in the peaks’ position not present in Fig. 5.4 (d).
The IETS peaks are found for energies between 6.2mV - 6.6mV. We trace back
these variations to slight changes of the environment of each molecule, resulting
in different magnetic anisotropy energies. Note that we are only able to observe
these variations thanks to the use of superconducting tips.

Figure 5.5: dI/dV maps on of Nc paired layers. (a) Constant current topography
of Nc paired layer, I “ 20pA, V “ ´30 mV. (b) dI{dV signal map of the same
area in (a) at V “ ´6.3 mV. (c) Same as (b) but V “ ´6.5 mV.

To gain more insight into the spatial distribution of the anisotropy variations, we
perform dI{dV maps. Figure 5.5 (a) shows the topography of a paired Nc island
that we map. We place the tip on one of the Nc, and set the same feed-back
parameters used for STS, we then open the feed-back loop and change the bias at
which we would like to do the mapping. We perform constant height scans of the
same area as we record the dI{dV signal of the lock-in. By looking at the MAE
variations observed in this layer, we select V “ ´6.3 mV and V “ ´6.5 mV as the
two distinct biases, the resulting maps are shown in Fig. 5.5 (b) and (c), respec-
tively. The bright molecules, correspond to the Nc with a matching IETS peak
at the corresponding bias, while the dark molecules have a different inelastic peak
energy position. As we can observe, there is a quasi-periodic pattern shown in the
dI{dV maps. The two scans are complementary to each other. This reveals, an
underlying structure in the Nc layers, presumably caused by the interaction with
the Pb (111) substrate.

In the following, we will try to unravel the difference between these molecules.
And how the structure observed in the dI{dV maps relates to the anisotropy of
the molecules. To this end, we now study Nc on a different environment: picked
up on the STM tip.
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5.3 Nc-terminated superconducting tip

As already mentioned, Nc preserves its magnetic properties when absorbed in the
apex of the STM tip. Indeed, several studies using Nc-terminated STM tip have
been reported [34], [35], [183]. In this section, we will see that it is also possible to
absorb a Nc molecule on a Pb-coated tip, and we will study the Pb (111) surface
with a superconducting and Nc-terminated tip.

5.3.1 Picking up Nc

Molecules found on highly ordered layers (see Fig. 5.2 (b) and (c)) are difficult
to pick up due to the molecule-molecule interaction that creates the molecular
ordered layer. However, Nc found at the edges of disordered islands (see Fig. 5.2
(d)), can be absorbed by bringing the STM tip close enough to the sample. To
this end, we perform a constant current scan over the target molecule at low bias
(„ 5mV). We then start increasing the tunneling current, when we reach „ 200
pA, the molecule is picked up at the tip’s apex. This can be noted by a sudden
change in the topography. It is also possible to pick-up Nc by scanning at low
bias (around 5 mV) over disordered islands, but in this way we do not control the
target molecule which is picked up.

Figure 5.6: Superconducting, Nc-terminated tip. (a)-(b) STM constant current
image of a Fe atom absorbed on Pb (111) with (a) clean supercondcuting tip and,
(b) Nc-terminated tip. (c)-(d) STS spectra measured on Nc layer and on clean
Pb (111) surface using a Nc tip, respectively. (e) Constant current STM image
showing atomic resolution of the surface obtained with Nc absorbed on the tip’s
apex, I “ 80 pA, V “ ´15 mV.

The presence of a Nc molecule at the tip’s apex can be noted by the counter image
in the topography of single objects. Figure 5.6 (a) and (b) show constant current
topography images of single Fe atoms absorbed on Pb (111). Figure 5.6 (a) was
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obtained with a clean superconducting tip, the atom appears as a round object
on the lead surface. Figure 5.6 (b) was obtained after absorbing a Nc molecule
at the tip’s apex. As shown, the half-moon shape can be assigned to a tilted Nc
absorbed onto the apex of the tip [34].

5.3.2 STS with Nc-terminated tip
Next, we measure STS with the Nc-terminated tip. Figure 5.6 (c) and (d) show
a comparison between spectra measure on a Nc island with a Pb tip, and STS
obtained with a Nc tip on clean Pb (111) surface. As we can observe, the two
spectra are almost identical. The IETS peaks can be found roughly at the same
sample bias, showing that the magnetic properties of Nc on Pb (111) surface are
conserved when transferred to the tip’s apex.

Another interesting feature observed with the Nc-terminated tip, is that it gives
an enhanced spatial resolution, allowing to resolve the atomic structure of the sur-
face [202]. Figure 5.6 (e) shows a constant-current topography image of the Pb
(111) surface, feed-back parameters are I=80 pA and V = -15 mV. These atomic-
resolution images can only be obtained by bringing the tip close enough to the
surface, setting a low-enough bias (ď 20 mV). The resulting hexagonal lattice is
in good agreement with the (111) crystal orientation of the Pb sample.

Sensing MAE variations

As discussed in 5.2.3, the Nc layer shows small energy variations depending on
the measured molecule. With the aid of a Nc tip, we will try to sense these small
changes in the anisotropy on the Pb (111) surface. Figure 5.7 (f) shows the atomic
resolution image obtained with a Nc-terminated tip. From the topography, we can
distinguish the four highly symmetric absorption sites on Pb (111): top (blue dot),
bridge (red dot) and the two hollow sites. To further distinguish between the two
later, we can observe a higher contribution coming from the hcp site (green dot)
due to the presence of the atom below that site [202], allowing us to distinguish it
from the fcc hollow site (orange dot).

By increasing the tunneling current we bring the tip close to the surface, Fig. 5.7
(c) shows the current (I) as a function of the tip displacement (z). The Ipzq curve
gives information about the molecule-surface interaction. As the tip approaches
the surface, the current increases exponentially until „ 70 nA. At this current, we
can observe instabilities due to the Nc-sample interaction. Moreover, the forward
and backward sweeps reveal a hysteresis behavior, indicating a rearrangement of
the Nc at the tip’s apex. The Ipzq curve shown in Fig. 5.7 is found to be repro-
ducible with different Nc-terminated tips.
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Figure 5.7: Anisotropy sensing with Nc tip. (a) Spectra measured on top position
of the Pb (111) surface with increasing tunneling current vañues from I= 10 nA to
I=100 nA. (b) Zooming in the data in (a). (c) Forward and backward sweeps of
tunneling current versus tip displacement, the tip is placed on top position, and
the bias is set to be 15mV. (d) Spectra obtained on different abortion sites with
Nc-terminated tip. Feedback is open at I “ 100 nA and V “ 15 mV. (e) Zooming
in the data of (d), we can observe the different MAE values depending on the
absorption site. (f) Atomic resolution image of the Pb (111) surface. I “ 70 pA,
V “ ´15 mV.

Figure 5.7 (a) shows the measured spectra on a top site (blue dot in Fig. 5.7 (f))
as the tip approaches the sample. We can, reproducibly, observe the IETS peaks
at „ 6.5mV and the superconducting gap. As the current increases, we observe
an increased signal coming from the quasi-particle peaks. Figure 5.7 (b) zooms
in Fig. 5.7 (a) around the IETS peak bias. The peak’s energy remains constant
up to 70 nA, where a jump of about „ 0.5 mV can be seen, possibly due to a
change in the Nc configuration. This change in energy is too large compared to
the small MAE variations observed on the Nc layer in Fig. 5.4. The change in the
Ipzq curve occurred at „ 70 nA, and the two distinct IETS peaks values, indicate
that the interaction Nc-surface results in two distinct absorption configurations of
the molecule at the tip apex [36].

Figure 5.7 (d) shows acquired spectra at a current of I “ 100 nA, on the four
absorption sites. At this current, the molecule-surface interaction is high. Zoom-
ing in Fig. 5.7 (e), the colors of the curves coincide with the dot colors in the
atomic resolution image. We can observe small anisotropy variations depending
on the site we measure with the molecular tip. We can distinguish three different
MAE values, as the two hollow sites show a very similar peak position. These
values are also found to be reproducible. The difference in MAE between the sites
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is found to be up to 0.4 mV. Matching with the variations observed on the Nc
islands from Fig. 5.4 (e). Note that these smalls variations in energy are only
possible to observe thanks to the use of a superconducting STM tip. With this
information, in the following we will unravel the structure of the Nc islands and
their orientation with respect to the Pb (111) surface.

5.4 Unraveling the structure of Nc islands on Pb(111)

5.4.1 DFT calculations of nickelocene

Density functional theory (DFT) has been a key tool for understanding the geom-
etry of Nc on Cu (100) [181] as well as other metallocene molecular layers such as
ferrocene [180]. In these studies, the authors found that the molecular islands are
composed by a combination of standing up and laying down molecules. As such,
we expect the molecular islands in Pb(111) to have a similar geometry. The DFT
calculations were performed by the group using the VASP code [203].

Figure 5.8 shows the simulated molecular arrangement of Nc molecules, the struc-
ture is a combination of vertical and horizontal molecules. The horizontal molecules
are usually not visible in topography images, however, in scans at bias below the
inelastic channel (|V | ď 6.5 mV), some signal is visible in between the vertical Nc
coming from the horizontal ones (see Fig. 5.4 (b)). As we can observe in Fig. 5.8
(a), the unit cell is composed by two vertical and two horizontal Nc. Figure 5.8 (b)
shows the structure modeling the zig-zag configuration, in this case the unit cell
has doubled in number of molecules. Figures 5.8 (d) and (e) show the correspond-
ing simulated STM images of the two configurations. As we can see, they show
good agreement with the paired and zig-zag configurations observed in the sample,
even when we are not considering the Pb (111) surface. For comparison, Fig. 5.8
(c) and (f) shows the supercell consisting on the paired structure together with
the Pb surface, it comprehends a total of 12 molecules. To find the relative ori-
entation of the molecular layer with the (111) surface we perform scanning at low
tunneling bias with a Nc-terminated tip near the edge of an island, the atomic res-
olution granted by the molecular tip, allows us to find an angle of 47´48˝ between
the dimerization direction of the Nc layer and the r1̄01s direction of the Pb crystal.

According to the calculations without substrate, the paired and zig-zag configu-
rations are not far in energy, in good agreement with both configurations being
present in the same proportion on the sample. The binding energy is found to be
0.438 eV for the paired configuration and 0.425 eV for the zig-zag one without sub-
strate. Including the substrate may not change the difference in energy between
the two phases because the interaction with the substrate is mainly due to small
van der Waals interactions.
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Figure 5.8: DFT calculated Nc layers. (a) Molecular structure of a paired Nc
island, in the gas phase the supercell is composed by two vertical and two horizon-
tal Nc molecules. (b) Same as (a) but for the zig-zag arrengement. (c) Supercell
composed by the paired molecular layer and the Pb (111) surface. (d)-(f) Corre-
sponding simulated STM topography.

5.4.2 Nc structure on Pb (111)

To further optimized the supercell, the molecular layer can be shifted laterally
over the Pb (111) surface. This is done so that the molecule at the origin of the
molecular supercell occupies the top, hcp, fcc and bridge sites. The final DFT
supercell is proposed such that it matches (i) the relative orientation with the
surface found in the experiment, (ii) the simulated topography showing the dimer
structure observed in the paired islands, and (iii) the quasi-periodic pattern ob-
served on the dI{dV maps in Fig. 5.5 (b)-(c). With these previous constrains, the
proposed supercell is shown in Fig. 5.9 (c).

Figure 5.9 (a) and (b) shows two dI{dV maps corresponding to the topography in
Fig. 5.4 (a) at V “ 6.6 mV and V “ 6.0 mV, respectively. In order to reproduce
the quasi-periodic pattern, observed in Fig. 5.9 (a)-(b), the unit cell is chosen with
the first atom centered in a fcc site. In this configuration, we can rationalize the
dI{dV patterns by realizing there are no molecules absorbed on top position. By
looking at the MAE values obtained with the Nc-tip, in Fig. 5.7 (e), we observe
that the molecules on hcp sites, show higher energy IETS peak. In Fig. 5.9 (c), we
have marked with blue circles on the supercell the standing up molecules in this
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Figure 5.9: (a) Constant-height dI{dV map at V “ 6.6 mV, corresponding to
the topography shown in Fig. 5.4 (a). (b) Same as (b) but V “ 6.0mV. (c)
Supercell for molecular islands on Pb (111). Blue circles indicate the vertical
molecules absorbed on hollow hcp sites. (d) Spin texture of the Nc paired layer,
as obtained from DFT calculations. Vertical molecules couple ferromagnetically
(in-plane red arrows), and horizontal ones anti-ferromagnetically (blue crosses and
points represent inward/outward spins).

position, the resulting pattern coincides with the bright molecules from Fig. 5.9
(a), the dI{dV map at higher bias. The remaining molecules in the supercell
are absorbed on hollow fcc and bridge, which show a similar MAE, as measured
with the Nc tip. Their position matches the bright molecules from the lower bias
dI{dV map (Fig. 5.9 (b)). The angle with the surface is 48.7˝, which matches
the value found experimentally. The supercell is defined by the vectors p5,´1q

and p3, 7q which form an angle of 53.9˝ in good agreement with the experimental
value 50 ˘ 4˝. The structure also shows some incommensurability with the sur-
face, which translates into the quasi-periodic pattern observed in the experimental
dI{dV maps.

Finally, DFT calculations were also used to evaluate intermolecular magnetic in-
teractions in the paired configuration. Using non-collinear spin configurations,
minimizing the energy and fitting a generalized Heisenberg exchange tensor. The
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spin configuration shown in Fig. 5.9 (d) is found. The vertical molecules show a
ferromagnetic spin coupling (red arrows) in the same row. While the horizontal Nc
are anti-ferromagnetic, sketched as vectors pointing in and out of the substrate.
This study shows that a non-collinear spin arrangement is expected in these Nc
molecular patterns [204].

5.5 Contact measurements with Nc tip

As we have discussed, Nc is a magnetic molecule with a defined magnetic moment
corresponding to a spin S “ 1. As such, when absorbed on a superconducting
surface, one could expect to observe YSR states [3]–[5], [7]. However, the spectra
shown until now do not have any in-gap features. The emergence of YSR states
mainly depends on the magnetic exchange interaction, J , of the impurity with the
electrons in the superconductor. This interaction depends on the magnetic species
and the surface, but it may be tuned, for example, by controlling the distance
between the molecule and the surface, resulting in different molecule/substrate
hybridization [195].

With this in mind, we perform STS measurements with a Nc-terminated super-
conducting tip as we increase the tunneling current, bringing the tip closer to the
Pb surface. We found this configuration to be more stable that approaching the
tip to the molecules in the layers. In this situation, the junction resistance drops
and because our tip is superconducting, we also expect strong coupling effects to
arise, such as multiple Andreev reflections and the Josephson effect (see 4.2.3 and
4.2.3).

5.5.1 Multiple Andreev reflections

We pick-up a Nc molecule as explained in 5.3. The presence of the molecule at
the apex is verified by taking STS on bare Pb(111), showing the typical IETS
peaks of the spin-flip in Nc (blue curve in Fig. 5.10 (b)). We first characterize
the tip-substrate junction as we approach the tip to the surface. Figure. 5.10 (a)
shows the measured conductance as a function of the tip displacement, Gpzq, in
a semi-logarithmic scale. In the forward sweep (blue curve) we observe an expo-
nential increase of the conductance, until the curve jumps at „ 1.0 G0 (where
G0 “ 7.748 ˆ 10´5 S is the quantum of conductance) to a different regime where
the conductance increases more slowly, we refer to this region as contact. We
perform spectroscopy in these conditions on the clean Pb surface. The backward
sweep (orange curve) shows a big hysteresis in the tip’s movement, due to strong
molecule-surface interactions.

Figure 5.10 (b) shows the measured STS using a Nc-terminated tip in contact
regime compared with the spectrum measured in tunneling regime. As observed,
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(a) (b)

(c)

Figure 5.10: STS in contact measurements with a superconducting Nc-terminated
tip. (a) G(z) curve of the Nc-terminated tip on Pb surface. Feed-back is opened
at I “ 200 pA, V “ 3.0 mV. (b) Comparison between tunnel (G “ 1.7ˆ 10´3 G0)
and contact (G “ 0.9 G0) regime, the dI{dV signal is in arbitrary units, allowing
to compare the two curves. (c) Contact measurements for conductance values
between 0.9-1.7 G0. The black dashed lines mark the expected MAR resonant
peaks bias, 2∆{n. Where ∆ “ ˘2.52 meV is the superconducting gap, as obtained
in tunneling regime.

the two curves are strikingly different. In the high-conductance regime, the in-
elastic signal coming from the spin flip at „ 6.0 mV is diminished in favor of the
quasi-particle peaks of the superconductor and the in-gap features. However, we
cannot observe the effect reported on Cu where the molecular spin is reduced to
S “ 1{2 due to the surface-molecule interactions in the contact regime [185]. The
most remarkable difference with the tunneling regime is the presence of in-gap
states in the orange spectrum. Figure 5.10 (c) shows several spectra in the contact
regime for an increasing junction conductance (G “ 0.9 ´ 1.7 G0) in the ˘4.5 mV
bias range. In the tunneling regime, we measured a superconducting gap of ˘2.52
mV for this particular tip (marked as black dashed lines). As we can observe,
the quasi-particle peaks are broadened in the high-conductance regime due to the
increased inter-electrode coupling.
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We observe two pairs of symmetrical in-gap features and a pronounced zero-bias
peak in the contact regime. The finite-energy peaks correspond to multiple An-
dreev reflections. In Fig. 5.10 (c) we have marked with black dashed lines the
expected 2∆{n energy values. As we can see, under these conditions, we are able
to resolve the n “ 2, 3-order Andreev reflections. The zero-bias peak corresponds
to the Josephson supercurrent, we can see how the conductance increases as we
approach the Nc-terminated tip closer to the sample. In the following, we will
study the Josephson effect in this junction more closely. Note that, even if we are
able to resolve in-gap features in the contact regime, we cannot find evidence of
the presence of YSR states in this system.

5.5.2 Josephson current
In the spectra from Fig. 4.6 (c), we can observe a prominent zero-bias peak, cor-
responding to the dc-Josepson effect. The Josephson energy, EJ , depends on the
resistance of the junction, RN :

EJ “
πℏ
4e2

∆pT q

RN
tanh

∆pT q

2kBT
. (5.2)

Where ∆pT q refers to the temperature-dependent gap of the superconductors.
From this expression, the critical current of the junction is given by Ic “ 2eEJ{ℏ.
Generally, in high-resistance junctions (RN „ 100 MΩ), EJ is much smaller than
the thermal energy of the system [171]. As the resistance of the junction decreases
(for example, by bringing the tip closer to the surface), EJ increases. In our case,
we are able to bring the Nc-terminated tip close to the surface until we reach a
junction resistance of only a few kΩ, without destroying the superconductivity of
the tip to a regime where thermal fluctuation interfere with the Josephson effect,
kBT „ EJ .

Figure 5.11 (a) shows the measured I ´ V curves for junction resistances between
2 ´ 4 kΩ. In this regime, EJ is comparable with the thermal energy. The I ´ V
characteristics can be expressed under the following form [205]:

IpV q “
I2cZenv

2

V

V 2 ` V 2
p

, (5.3)

where Vp “ p2e{ℏqZenvkBTn, and Zenv is the impedance of a resistor, used to
model the Johnson noise [206], [207] at temperature Tn. The solid lines in Fig. 5.3
(a) are the fitting of the data using Eq. 5.3, where the parameters are Vp and
A ” IcZenv{2. As we can observe the solid lines are only able to fit the experi-
mental points, for small bias in the ˘0.2 mV range. This is due to the fast increase
of quasi-particle current with bias that ovecomes the slow 1{V decrease of Cooper
pair tunneling. The small slope of the linear I´V close to zero, reflects the depar-
ture of the Cooper-pair current from the ideal Josephson current. This is due to
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(a) (b)

Figure 5.11: Josephson I ´ V curves for Nc-terminated superconducting tip. (a)
Low-bias IpV q curves for kΩ resistance junctions. The dots represent the exper-
imental data and the solid lines are the fitting usign Eq. 5.3. (b) Linear fit of
the extracted parameter B ”

a

p4e{ℏqA{Vp versus 1{Rn. From the slope we can
extract Vp and Tn of the system.

the Josephson energy being comparable to the thermal energy, as Eq. 5.3 describe
the IpV q curves in the limit of strong thermal fluctuations [205].

Nevertheless, the extracted Vp values from each curve can be plotted versus 1{RN .
The resulting points are plotted in Fig. 5.11 (b), which can be fit by a linear
dependence. Error bars are comparable to the markers’ size. From its slope we
can extract the effective temperature and from the magnitude of the current we
obtain the impedance of the system. From this set of measurements we obtain
Tn “ 24.648 ˘ 0.693 K and Zenv “ 205.5 ˘ 22.5 Ω, describing the Johnson noise
in our STM set-up.

5.6 Nc and Fe atoms

Finally, we add Fe atoms to the sample. Our goal is to study if the magnetic
properties of Nc can be affected by the presence of a Fe atom modifying the in-
gap electronic structure, and whether the atoms can form new structures with the
molecular Nc layers.

5.6.1 Fe on Pb(111): YSR states

The Pb(111) sample obtained after the Nc deposition, shows patches of molecular
islands, and also big areas of clean lead. On this sample, we deposit Fe atoms. The
atomic evaporation is performed in situ by keeping the sample in the STM stage.
A window connects the microscope with an evaporator containing three different
metallic filaments (Fe, Ni and Cr). The Fe atoms can be directly evaporated into
the Pb (111) crystal at LHe temperature. We deposit by opening the STM shield,
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connecting to the evaporator for times between 30-60 s. The resulting sample is
shown in Fig. 5.12 (a).

The Fe coverage is ă 1%, and individual Fe atoms can be found on the Pb (111)
surface. Among these, we can distinguish two different species: most of the atoms
(around 90 %) show a corrugation of 30.0 ˘ 3.6 pm and have a rather elongated
shape (Fig. 5.12 (c)), we call them type I Fe following Ref. [37], the remaining
atoms (10 %) show a higher corrugation, 55.0 ˘ 9.0 pm, and have a more round
appearance, shown in Fig. 5.12 (b). We refer to them as type II Fe after [37].

(a) (d)

(c)

(b)

0.0

65 pm

Figure 5.12: Fe atoms deposited on Pb(111). (a) Constant current topography
image showing a Pb (111) clean area after the Fe atomic evaporation, I=60 pA,
V = 80 mV. (b) Constant current image of single type II Fe atom, I = 60 pA, V
= 40 mV. (c) Type I Fe atom, I = 60 pA, V=40 mV. (d) STS measured on clean
Pb surface (blue curve) and obtained on type II Fe atom (orange curve).

As reported by previous studies [37], Fe on Pb (110) crystals shows in-gap fea-
tures. The resulting spectra at low biases is depicted in Fig. 5.12 (d). Spectra
over 40 atoms were recorded, type I Fe atoms do not show any in gap feature and
the spectra at low biases is indistinguishable from the Pb surface. On the other
hand, the higher-corrugation Fe atoms (type II) show in-gap states in the tunnel-
ing regime. The orange curve in Fig. 5.12 (d) was obtained by placing the STM
tip in the center of a type II Fe atom. The spectrum shows two pairs of in-gap
states at ˘1.8 mV and ˘1.3 mV corresponding to two YSR-states. As reference,
we also plot the spectrum measured on clean Pb surface with the same tip (blue
curve). The energy position of the YSR states is found to be reproducible in other
type II Fe atoms.

As we showed in 5.3, the Nc-terminated tip allows for atomic resolution of the
surface. This high spatial resolution can help us determine the Fe atoms absorp-
tion in the Pb (111) surface. Figure 5.13 (a) shows a constant current image
showing the two types of Fe atoms in the sample, close to a surface cavity. These
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cavities are the result of Ar embedded in the surface during the sputtering pro-
cess, resulting in surface bubbles [208]–[210]. The shape of these cavities follow
the crystal facets of the (111) crystal, as such, they present a hexagonal shape.
Figure 5.13 (b) shows a scan of the same area but with a Nc-terminated tip. As
we can see, the scan now shows atomic resolution. The Fe atoms also have a very
different appearance, probably due to the current tunneling through the molecular
orbitals of the Nc.

In order to determine the absorption position of the atoms, we try to match the
atomic pattern of the Pb (111) crystal with a triangular lattice. Figure 5.13 (c)
zooms in an area around the type-II Fe, with an over imposed lattice with param-
eter a “ 3.27 Å. Which is ă 10% error compared to Pb (111) surface parameter,
a “ 3.5 Å [211]. The center of the balls is assumed to be the top position and the
rotation of the lattice is adjusted to better match the pattern. As we can see, the
center of the Fe atoms falls in a location that matches a hollow site of the lattice.

Figure 5.13: Fe atoms on Pb (111) surface. (a) Constant current scan of Fe atoms
on Pb surface, feed-back parameters I=60 pA, V=50 mV, the two types of Fe atoms
are visible. (b) same as (a) but the superconducting tip is now Nc-terminated,
I=200pA, V = 10mV. (c) Zoomed in area from (b), with a triangular lattice over
imposed matching the resulting triangular lattice of the (111) surface.

5.6.2 Nc tip and Fe atom
The next step we take is to use the Nc-terminated STM tip to study the interaction
between the molecule and the type II Fe atoms. As shown by previous studies on
Cu (100) with a Nc-terminated tip, the presence of a Fe adatom, induces a split-
ting of the degenerate excited states of Nc seen in the dI{dV spectra as the tip
approaches the magnetic adatom [183]. Similarly, using cobaltocene-terminated
tips the presence of a Fe atom, induces a splitting of the Kondo peak of cobal-
tocene [188]. As such, we expect the Fe atom to magnetically couple with the Nc
molecule at the apex of the tip.
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(a)

(b)

(c)

(d)

0.0

80 pm

IETS peak

YSRSC gap

Figure 5.14: Fe atom on Pb (111) measured using a Nc-terminated supercon-
ducting tip. (a) Constant current image recorded on a type-II Fe atom with a
Nc-terminated tip, I “ 200 pA, V “ 10 mV. (b) Peaks position versus tip dis-
placement as obtained from spectra in (c) and (d). (c)-(d) Measures STS as we
move the tip toward the Fe atom, the measured positions are depicted as crosses
in (a).

Figure 5.14 (a) shows the topography of the Fe atom obtained with a Nc molecule
at the tip’s apex, with tunneling parameters I “ 200 pA and V “ 10 mV. In this
configuration, we have atomic resolution of the Pb (111) surface. The Fe atom
appears as a bright area in the hexagonal lattice with a corrugation of „ 40 pm.
Scanning over Fe atoms with a molecular tip is particularly difficult due to the
strong atom-Nc interactions. Some areas appear as dark spots due to instabilities
of the tip’s Nc. To observe the effect of the magnetic atom, we perform STS as
we approach laterally toward the center of the atom (the measured positions are
marked with blue dots in Fig. 5.14 (a)). Figures 5.14 (c) and (d) show the re-
sulting spectra. The curves are measured in the ˘10 mV range. The blue curve
in Fig. 5.14 (c) shows the usual STS signal of a Nc-terminated tip: at „ ˘6 mV
we observe the inelastic spin-excitation signal, the superconducting energy gap at
˘2.6 mV and no in-gap states. This spectrum does not show any features induced
by the presence of the Fe atom, and it is indistinguishable from STS recorded on
a clean Pb surface with molecular tip, away from the Fe atom. We label the spec-
trum as x “ 0.0, found at a distance of 8.2 Å to the center of the Fe atom. The
lateral tip displacement, x, is indicated in the legend for the rest of the curves. As
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the tip approaches the Fe atom, the IETS peaks start reducing their height until
we observe a splitting of the peaks at x “ 1.14 Å (Fig. 5.14 (c)).

The splitting of the IETS peak, results from the degeneracy breaking of the two
excited states of Nc. Indeed, the exchange interaction between Fe and Nc, lifts the
degeneracy between the two states, |S “ 1,mz “ `1y and |S “ 1,mz “ ´1y [183].
Figure 5.14 (d) shows the spectra as we keep moving the tip toward the magnetic
atom. As we can see, the splitting gets bigger, this coincides with the emergence of
YSR states inside the superconducting gap. The splitting suffers a jump between
x “ 1.52 Åand x “ 1.9 Å (Fig. 5.14 (d)). From this point, the splitting becomes
constant, indicating a maximum degeneracy lifting.

Figure 5.14 (b) summarizes the peaks’ energy positions. The green and red dots
correspond to the coherence peaks, which remain at constant bias throughout.
The orange and blue and dots are the inelastic peaks. In this graph we can better
observe how the IETS peaks split, a small splitting of sub-meV rapidly becomes
an energy difference of „ 2 meV. This splitting coincides with the presence of YSR
states inside the gap (gray and pink dots). This splitting remains constant as we
keep approaching the tip. This set of measurements is found to be reproducible
with different Nc tips and on different Fe atoms. We also perform measurements
by bringing the tip close to the Fe atom vertically in the z coordinate, as per-
formed in Cu(100) [183]. However, in that case, we cannot see any variation in the
splitting of the IETS peaks. The splitting only varies as we change the distance
laterally between tip and atom. This effect can only be obtained for type-II Fe
atoms, when approaching the type I Fe atoms with a Nc-tip no change in the STS
can be observed.

5.6.3 Fe + Nc complex

After the Fe deposition, we could find some new features in the Nc layers. In
the topography (Fig. 5.15 (a)) these structures appear as a half-moon or "bean"
shape structure with a height of 4 Å above the Pb surface, or 50 pm above the Nc
layer. The half-moon shape suggests that the Nc molecule is found on top, with
some tilting with respect to the surface, exposing the side of one of its rings. We
speculate that the Fe atom has migrated below the molecular layer after deposition.
Similar structures were found on Nc layers and Ni atoms on Cu (100) [150]. In
the following, we refer to this structure as Nc+Fe complex.

Tunneling spectra

The inset in Fig. 5.15 (a) shows one of these complexes. The measured tunnel
spectrum on this feature is depicted in Fig. 5.15 (b). A small peak is visible at the
usual bias of the inelastic spin excitation, but the signal is very weak compared to
the usual spectra measured on the Nc layer. The height of the IETS peak varies
between different Fe+Nc, but the signal is always drastically lower compared to
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STS on Nc in the layer and, in some cases, the signal completely disappears. The
STS is taken in the ˘25.0 mV range, but no higher-bias signals are observed in
the spectrum. Additionally, we observe that the superconducting coherence peaks
at ˘2.56 mV show some asymmetry.

Figure 5.15: Fe+Nc complex found in a Nc molecular layer. (a) Constant current
STM image of a paired Nc layer with two Fe+Nc complexes. Inset: Zoomed-in
image of one of the structures, feed-back parameters I “ 30 pA, V “ ´20 mV. (b)
Tunnel spectra measured on the bright spot shown in the inset of (a) parameters
I “ 20 pA, V “ ´30 mV. (c) Superconducting gap measured on the Pb surface
(blue) and on the Nc+Fe complex (orange).

We take a closer look at these two peaks: Figure 5.15 (c) shows a comparison of
the superconducting gap measured on clean Pb surface (blue curve) and on the
Fe+Nc complex (orange curve). We can see that the peaks of the two curves are
found at a very similar sample bias, however the orange curve shows some degree
of asymmetry. We can also see a drop in the dI{dV at negative energy, right
before the peak at ´2.56 mV. These features point to the presence of a YSR state
induced by the Fe + Nc complex in the Pb superconducting gap. Note that these
features are found at a very different energy than the YSR states measured on
single Fe type II atoms. Indicating that the magnetic interaction of the Nc+Fe
complex is different from the one of single Fe adatoms.

Contact measurements

Finally, we measure spectra on the Fe+Nc complex as we approach the Pb tip
toward the sample. We first characterize the Nc+Fe junction with the tip. Fig-
ure 5.16 (a) shows the conductance versus tip displacement (Gpzq) curve in a
semilogarithmic scale obtained by approaching the superconducting tip toward
the Fe+Nc complex. The small offset between forward and backward sweeps is
due to a delay in data acquisition. The conductance increases exponentially up to
close to one unit of conductance (G0), and without big changes in the slope.
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Figure 5.16: Contact measurements performed on a Fe+Nc complex. (a) Con-
ductance versus tip displacement obtained by placing the STM tip on top of the
Fe+Nc complex. (b) Measured spectra on the Fe+Nc as we increase the tunneling
junction conductance. The black dashed lines indicate the expected position for
MAR processes between the superconducting tip and Pb sample.

Figure 5.16 (b) shows the measured spectra, as we increase the current in the
tunneling junction. The points where STS is acquired are marked with red points
in the Gpzq curve in Fig. 5.16 (a). As the junction conductance increases, we can
observe the YSR peaks shifting in to lower energies. Also, the asymmetry that we
could observe in the tunneling spectra (Fig. 5.15 (b)), disappears. Additionally,
as the conductance of the junction increases, low-resistance features appear in the
spectra: two pairs of peaks below the energy of the YSR state which, in principle,
we attribute to MAR processes, and a Josephson zero-bias peak that rapidly grows
as we increase the set-point current. The black dashed lines indicate the expected
energy position of the MAR (2∆{n).

For an increasing tunneling conductance the YSR peaks evolve as we explain
in the following: starting from the coherence peaks (found at „ 2∆), the peak
starts to move to lower energies when tunneling conductance is higher than 0.1G0,
from that point the peak keeps moving to lower energies. At a conductance of
0.6G0, the peak merges with the second-order Andreev reflection (pink curve).
The merged peak is found at a sample bias below the expected ∆ value, and stays
at this energy for increasing junction conductance (up to 0.77G0).

A lower-energy peak is found at „ ˘0.5 mV, this peak does not match the ex-
pected bias for a third-order MAR process. The presence of YSR states together
with MAR processes, makes the rationalization of the spectra in Fig. 5.16 (b) not
a simple task. The interplay between the YSR states in the Fe+Nc complex and
MAR in high conduction regime is still an ongoing study.
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Conclusions. In the present chapter, we have studied nickelocene on a Pb (111)
surface using superconducting STM tips. The deposited molecules create ordered
molecular layers on the Pb surface. Nc presents robust magnetic properties that
are conserved also on the Pb (111) surface. We measure a big inelastic signal,
corresponding to a molecular spin-flip process. It constitutes a direct measure-
ment of the magnetic anisotropy energy (MAE) of the system, for Pb (111) we
found a value of „ 4 meV. Similar to other metallic substrates [34], [35]. Thanks
to the enhanced energy resolution granted by the Pb-coated superconducting tip,
we were able to detect sub-meV energy variations in the MAE of molecules within
the same layer.

The magnetic properties of Nc are also conserved when the molecule is trans-
ferred to the tip apex. Using a Nc-terminated tip, we were able to probe the MAE
on the four different absorption sites. These measurements show a small depen-
dence on the lateral position, the variation was found to be in the same range
observed for the Nc layer. These results indicate that the small MAE variations
recorded on the molecular layers have their origin on the position of the molecules
on the Pb surface.

dI/dV maps of the molecular layers, give us more insight into the spatial dis-
tribution of the MAE variations. Using this information, we proposed a molecular
supercell, combination of vertical and horizontal molecules. The resulting struc-
ture on the Pb (111) surface is in good agreement with the measured dI{dV maps
of the Nc layers. Additionally, DFT calculations point to a complex non-collinear
arrangement of the spins in the molecular islands [36].

We also perform in-contact measurements with a Nc-terminated STM tip. In
this regime, multiple Andreev reflections and the Josephson effect are measured
as in-gap features. In our junction, we can resolve the MAR processes of order
n “ 2, 3. But we are not able to observe any YSR states for Nc on Pb (111).
We fit the Josephson I ´ V curves, allowing us to extract the effective tempera-
ture in the junction and the impedance resulting from Johnson noise of the system.

Finally, we investigate the interaction of Nc with single magnetic atoms by de-
positing Fe into the sample. We found that a minority of Fe (around 10 %) show
YSR states in tunneling regimen. When we approach a Nc-tip to a single atom,
the magnetic moment of the Fe splits the IETS peak, lifting the degeneracy of
the doubly degenerated excited state of the molecular spin. When deposited on
the molecular layers, Fe can migrate below the molecules, resulting in Nc + Fe
complexes. These features show YSR states in the tunneling regimen that can be
tuned by bringing the STM tip closer to the surface.
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6 Conclusions and Outlook
Throughout this thesis, we have studied the physics of YSR states using theoreti-
cal and experimental approaches with the aim of understanding how these in-gap
states can create MBS in spin chains.

Cr chains on β-Bi2Pd show drastically different YSR states depending on the
chain’s configuration. For the d -

?
2a chains, we could find a good agreement be-

tween theory and experiments when the spin arrangement between the impurities
is set as FM. The calculations on the d - 2a chain, initially assumed to have an
AFM spin ordering, show a better match when a non-collinear spin arrangement is
assumed. Calculations in longer chains point to the d -

?
2a chain as a promising

platform for MBS. We expect chains of less than 10 atoms to present localized
MBS.

A first outlook of this work is to pursue our studies into assembling longer Cr
spin chains on β-Bi2Pd superconductors, and compare with the theory presented
here. Spin-polarized (SP-STM) measurements could give us more information
about the chains’ spin arrangement, in particular for the d - 2a configuration.
Moreover, this thesis shows that a complex behavior of edge states can be found
even in topological phases, that need to be characterized before concluding that a
non-zero edge state has a topological origin.

For the unambiguous determination of MBS, it is important to evaluate topo-
logical invariants, such as the winding number, as set by the Hamiltonian of the
system. Due to the efficient numerical calculations that can be performed by tai-
lored BCS Green’s functions, it is interesting to have a Hamiltonian that describes
the same low-energy physics as the Green’s function. We obtained an effective
Hamiltonian, starting from the real-space Green’s function, that describes a spin
chain on a superconductor. From there, we could evaluate the system’s winding
number, allowing us to unambiguously identify the topological phase. Further-
more, we have shown that we can determine the winding number from solely
numerical calculations.

Calculations for finite chains show an oscillatory behavior in the energy of edge
states moving them away from zero and blurring the topological identification of
the corresponding superconducting phase. The obtained period results from an
emergent moiré pattern, product of two periods: The first one set by the discrete-
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Chapter 6. Conclusions and Outlook

ness of the lattice and the second one by the spin-substrate interaction, governed
by the Fermi wave vector, kF . The significant dependence of the oscillations on
these two parameters allows tuning the energy of edge states. In experiments, this
can be achieved by varying the distance between the impurities.

We studied Nc on a Pb(111) crystal using superconducting tips. Their high-energy
resolution allowed us to sense sub-meV magnetic variations between molecules
within the same molecular island. Further information provided by dI/dV maps
and DFT calculations allowed us to unravel the absorption of Nc on the Pb (111)
surface.

Nc on Pb (111) was initially considered due to their potential application as a
MBS platform. However, we could not find evidence of YSR in Nc on Pb (111),
even in the contact regime, evidencing low magnetic exchange interaction between
Nc and the Pb crystal. After adding Fe atoms to the sample, we found a new
structure in the Nc layers. We speculate that Fe atoms migrate below the molecu-
lar layer, creating a Fe+Nc complex. The new structure shows YSR states in the
tunneling regime, and their energy position can be tuned by approaching the tip.

Approaching the tip changes the conduction properties of the molecular junction.
When the electrodes are superconducting, this leads to different regimes where
Cooper-pair conduction and high-order single quasi-particle transmision can take
place. Using Pb-coated tips with and without Nc molecules in the junction, we
have been able to characterize the appearance of Josephson features due to the
transmission of Cooper pairs and to study the interplay between multiple-Andreev-
reflection (MAR) peaks and YSR states. This interesting work is still work in
progress, with the aim to further study the interplay between MAR and YSR, in
particular for the characterization of magnetic weak-links between superconduc-
tors.
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A Bloch theorem and BdG
equations derivation
A.1 Bloch theorem

In order to analyse the dispersion relation of the superconducting chain, we need
to go to momentum space. For this, we can apply Bloch’s theorem. It states that
the wave function of a periodic system can be written as the product of a periodic
function times a phase:

ψn,kpr⃗q “ ψn,kpr⃗ ` R⃗qe´ik⃗¨R⃗. (A.1)

Imagine we divide our crystal in unit cells, that are repeated periodically every R⃗.
In each unit cell, we can define a local basis set, such that we can span the full
Hilbert space, tϕνpr⃗qu.

Let us start with the eigenvalue problem of the Schrödinger equation:

Hψn,kpr⃗q “ ϵn,kψn,kpr⃗q. (A.2)

If we assume we have a finite basis of N elements (ν P t1, . . . , Nu), then the secular
equation becomes:

»

—

—

–

ř

R e
ik⃗¨R⃗xϕ1p0q|H|ϕ1pRqy . . .

ř

R e
ik⃗¨R⃗xϕ1p0q|H|ϕN pRqy

... . . .
...

ř

R e
ik⃗¨R⃗xϕN p0q|H|ϕ1pRqy . . .

ř

R e
ik⃗¨R⃗xϕN p0q|H|ϕN pRqy

fi

ffi

ffi

fl

»

—

–

Cn,k
1
...

Cn,k
N

fi

ffi

fl

“ ϵn,k

»

—

–

Cn,k
1
...

Cn,k
N

fi

ffi

fl

(A.3)
Where Cn,k

ν are the coefficients for the Bloch’s wave function:

ψn,kpr⃗q “
ÿ

ν,i

Cn,k
ν ϕνpr⃗ ´ R⃗iqe

ik⃗¨R⃗i . (A.4)

This function abides by the Bloch theorem because

ψn,kpr⃗ ` R⃗q “
ÿ

ν,i

Cn,k
ν ϕνpr⃗ ´ R⃗i ` R⃗qeik⃗¨R⃗ieik⃗¨pR⃗´R⃗q, (A.5)
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Appendix A. Bloch theorem and BdG equations derivation

Reshuffling the exponents and changing variables we get:

ψn,kpr⃗ ` R⃗q “
ÿ

ν,i

Cn,k
ν ϕνpr⃗ ´ R⃗i ` R⃗qeik⃗¨pR⃗i´R⃗qeik⃗¨R⃗ “ ψn,kpr⃗qeik⃗¨R⃗,

QED.

A.2 BdG equations derivation

Starting from the Hamiltonian in Eq. 1.31, we want to calculate the commuta-
tion relations rH, c

p:q

iσ s. Note that we can split the Hamiltonian and compute
the commutators as: rH, c

p:q

iσ s “ rH0, c
p:q

iσ s ` rH∆, c
p:q

iσ s. Where H0 and H∆ are
the single-particle and coupling Hamiltonian respectively. We explicitly write the
derivation for rH, ciÒs:

rH0, cnÒs “ ´
ÿ

ijσ

ptij ` δijµq rc:

iσcjσ, cnÒs
loooooomoooooon

˚

(A.6)

Using the anti-commutation relations for fermionic operators, tcν , cµu “ tc:
ν , c

:
µu “

0 and tcν , c
:
µu “ 1, we calculate:

˚ “c:

iσcjσcnÒ ´ cnÒc
:

iσcjσ

“ ´ pc:

iσcnÒcjσ ` cnÒc
:

iσcjσq

“ ´ pc:

iσcnÒ ` cnÒc
:

iσqcjσ “ tc:

iσ, cnÒucjσ “ ´δinδσÒcjσ

(A.7)

So that,

rH0, cnÒs “
ÿ

ijσ

ptij ` δijµqδinδσÒcjσ

“
ÿ

j

ptnj ` µδtjqcjÒ

(A.8)

Similarly, we compute rH∆, cnÒs:

rH∆, cnÒs “
ÿ

i

`

∆i rc:

iÒc
:

iÓ, cnÒs
looooomooooon

˚˚

`∆˚
i rciÓciÒ, cnÒs

˘

(A.9)

The second term of the expression is zero, due to commutation properties of cre-
ation and annihilation operators. And we only need to calculate the first term:

˚˚ “c:

iÒc
:

iÓcnÒ ´ cnÒc
:

iÒc
:

iÓ

“ ´ pc:

iÒcnÒc
:

iÓ ` cnÒc
:

iÒc
:

iÓq

“ ´ tc:

iÒ, cnÒuc:

iÓ “ ´δinc
:

iÓ

(A.10)
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A.2. BdG equations derivation

So that,

rH∆, cnÒs “
ÿ

i

∆ip´δinc
:

iÓq “
ÿ

n

∆nc
:

nÓ (A.11)

Finally, the total commutator writes:

rĤMF , ciÒs “ rĤ0, ciÒs ` rĤ∆, ciÒs “
ÿ

j

ptij ` δijµqcjÒ ` ∆ic
:

iÓ (A.12)

The remaining commutators shown in Eq. 1.33 can be obtained similarly.

We next substitute the generalized Bogoliubov transformation form Eq. 1.32 into
the commutators rH, c

p:q

iσ s, we get:

rHMF , ciÒs “
ÿ

nj

γnÒrptij ` δijµquniÒ ` ∆ivniÓs ` γ:

nÓrptij ` δijµqv˚
niÒ ` ∆iuniÓs

rHMF , ciÓs “
ÿ

nj

γnÓrptij ` δijµquniÓ ´ ∆ivniÒs ` γ:

nÒrptij ` δijµqv˚
niÓ ´ ∆iu

˚
niÒs

rHMF , c:

iÒs “
ÿ

nj

γ:

nÒr´ptij ` δijµqu˚
niÒ ´ ∆˚

i vniÓs ` γnÓr´ptij ` δijµqvniÒ ´ ∆˚
i uniÓs

rHMF , c:

iÓs “
ÿ

nj

γ:

nÒr´ptij ` δijµqvniÓ ` ∆˚
i uniÒs ` γ:

nÓr´ptij ` δijµqu˚
niÒ ` ∆˚

i v
˚
niÒs

(A.13)

We then, impose the γp:q
nσ operators to diagonalize the HMF Hamiltonian,

ĤMF “ E0 `
ÿ

n

EnÒγ
:

nÒγnÒ ` EnÓγ
:

nÓγnÓ (A.14)

We compute, again the rH, c
p:q

iσ s for the diagonalized Hamiltonian in Eq. A.14.
Applying the commutation relations:

rHMF , γnσs “ ´Enγnσ, rHMF , γ:
nσs “ Enγ

:
nσ (A.15)

We explicitly write the derivation for rH, ciÒs, using the generalized Bogoliubov
transformation:

rHMF , ciÒs “rHMF ,
ÿ

n

puniÒγnÒ ` v˚
niÒγ

:

nÓqs

“
ÿ

n

puniÒrHMF , γnÒs ` v˚
niÒrHMF , γ:

nÓsq

“
ÿ

n

p´uniÒEnÒγnÒ ` v˚
niÒEnÓγ

:

nÓq

(A.16)
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Appendix A. Bloch theorem and BdG equations derivation

Proceeding similarly, for the rest of the cp:q

iσ operators we find:

rHMF , ciÒs “
ÿ

n

p´EnÒuniÒγnÒ ` EnÓv
˚
niÒγ

:

nÓq

rHMF , ciÓs “
ÿ

n

p´EnÓuniÓγnÓ ` EnÒv
˚
niÓγ

:

nÒq

rHMF , c:

iÒs “
ÿ

n

pEnÒu
˚
niÒγ

:

nÒ ´ EnÓvniÒγnÓq

rHMF , c:

iÓs “
ÿ

n

pEnÓu
˚
niÓγ

:

nÓ ´ EnÒvniÓγnÒq

(A.17)

By comparing the γp:q
nσ coefficients from Eq. A.13 and A.17, we find the Bogoliubov

equations written in the main text (Eq. 1.2.4), and a second set of BdG equations
for the complex conjugate coefficients:

v˚
niÒEnÓ “

ÿ

j

ptij ` δijµqv˚
njÒ ` ∆iu

˚
niÓ

v˚
niÓEnÒ “

ÿ

j

ptij ` δijµqv˚
njÓ ´ ∆iu

˚
niÒ

u˚
niÒEnÒ “

ÿ

j

´ptij ` δijµqu˚
njÒ ´ ∆˚

i v
˚
niÓ

u˚
niÓEnÓ “

ÿ

j

´ptij`δijµqu˚
njÓ ` ∆˚

i v
˚
niÒ

(A.18)

Or under matrix form:
¨

˚

˚

˝

´hÒ 0 0 ∆i

0 ´hÓ ´∆i 0
0 ´∆˚

i hÒ 0
∆˚

i 0 0 hÓ

˛

‹

‹

‚

¨

˚

˚

˝

v˚
niÒ

v˚
niÓ

u˚
niÒ

u˚
niÓ

˛

‹

‹

‚

“ En

¨

˚

˚

˝

v˚
niÒ

v˚
niÓ

u˚
niÒ

u˚
niÓ

˛

‹

‹

‚

(A.19)

Comparing these to set of BdG equations from the main text (Eq. 1.36), we observe
that the two sets have the same expression, except for a minus sign. From this
we can conclude: For every solution punÒ, unÓ, vnÒvnÓqT of Eq. 1.36 with eigen
energy En. Automatically, there is a second solution, pv˚

nÒ, v
˚
nÓ, u

˚
nÒ, u

˚
nÓqT with

eigen energy ´En.
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B Some details on integrals and
the Abrikosov-Gorkov
equations
B.1 Cauchy’s expression

We have that:
1

ω ` iη
“

ω

ω2 ` η2
´ i

η

ω2 ` η2
(B.1)

By making the limit η Ñ 0. The real part simply becomes: 1
ω

In the imaginary part, we can see that it has the shape of a Lorentzian, in the
limit this becomes a Dirac delta:

lim
ηÑ0

η

ω2 ` η2
“ πδpωq (B.2)

And so equation B.1 becomes:

p

ω
´ iπδpωq, (B.3)

where p stands for the principal part.

B.2 Solving integrals

In order to evaluate the BCS Green’s function, Eq. 2.28, we show here how to
obtain Eqs. 2.26 and 2.27 that are the solutions to:

I1 “
1

p2π3q

ż

eikr∆

ω2 ´ ξ2k ´ ∆2
dk (B.4)

I2 “
1

p2π3q

ż

eikrpω ` ξkq

ω2 ´ ξ2k ´ ∆2
dk (B.5)

127



Appendix B. Some details on integrals and the Abrikosov-Gorkov equations

To solve the first integral, we change the integration variables to spherical coor-
dinates. And using the dispersion relation k2

2m ´ µ “ ξk, where µ is the chemical
potential or Fermi energy. We find that,

ż

d3k “ π

ż

k2dk

ż 1

´1

dx “ π
N0

2

ż

ξk (B.6)

The new integration variables are ξk and x “ cos θk. Eq. B.4 becomes:

I1 “
N0

2

ż

dξk

ż 1

´1

dx
∆eikrx

ω2 ´ ξ2k ´ ∆2
, (B.7)

where N0 is the normal-metal DOS at the Fermi energy. We first integrate ξk for
the case ω ă ∆:

I “

ż 8

´8

dξk
eikrx

piξk ´
?
∆2 ´ ω2qpiξk `

?
∆2 ´ ω2q

(B.8)

Following the BCS approximations, we linearize the energy about the Fermi energy,
which is equivalent to writing k “ kF ` ξk{vF . Then, the integral becomes:

I “

ż 8

´8

dξk
e
ipkF `

ξk
vF

qrx

piξk ´
?
∆2 ´ ω2qpiξk `

?
∆2 ´ ω2q

(B.9)

To solve this integral, we move to the complex plane. We realize that it is equal
to 2π the residue of the integrand. Changing variables to z “ iξk gives us an
overall negative sign and there is only one simple pole in the contour that makes
the integral convergent:

I “ ´2πi
e
ipkF rx`

?
∆2´ω2

vF
r|x|q

2i
?
∆2 ´ ω2

(B.10)

It is straight forward to integrate over x. After taking the limit kF "
?
∆2´ω2

vf
, we

obtain the result:

I1 “ ´
N0πsinpkF rq

kF r
?
∆2 ´ ω2

e
´

?
∆2´ω2

vf
r
. (B.11)

The second integral, I2, needs to be renormalized to make it convergent. To do
this, we apply a Lorentizan cutoff on the Debye frequency, ωD, as is customarily
done in the BCS theory. The integral becomes:

I2 “
N0

2

ż

dξk

ż 1

´1

dx
ξke

ikrx

ω2 ´ ξ2k ´ ∆2

ω2
D

ω2
D ` ξ2k

. (B.12)

Following the same procedure as for I1 and then taking the limits kF r " ωDr
vf

" 1

as well as kF "
?
∆2´ω2

vf
, we obtain the result:

I2 “ ´
N0πcospkF rq

kF r
e

´

?
∆2´ω2

vf
r
. (B.13)
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B.3. Lehmann representation using the Abrikosov-Gorkov equations

These approximations lead to a discontinuity in r when going from the spatially
non-diagonal Green’s function to the diagonal one as we saw in Chapter 2, since
r cannot be smaller than 1{kF .

B.3 Lehmann representation using the Abrikosov-
Gorkov equations

We explicitly calculate the term I1 from Eq. 2.35, using Eq. 2.31:

I1 “
ÿ

n

e´βEn

Z
xn| eτHĉiÒ e

´τHeτ
1H

loooomoooon

“e´Hpτ´τ 1q

ĉ:

iÒe
´τ 1H |ny

And using the property that the trace of a matrix product is constant under cyclic
permutations:

I1 “
ÿ

n

e´βEn

Z
xn| eHpτ´τ 1

qĉiÒe
´Hpτ´τ 1

qĉ:

iÒ |ny “
ÿ

n

e´βEn

Z
xn| ĉiÒpτ ´ τ 1qĉ:

iÒp0q |ny

We now write the creation and annihilation operators using the Bogoliubov canon-
ical transformation:

ĉiσ “
ÿ

n

puniσγ̂n ´ σvn˚
iσ γ̂

:
nq, ĉ:

iσ “
ÿ

n

pun˚
iσ γ̂

:
n ´ σvniσγ̂nq (B.14)

Where the γ̂:
n and γ̂n operators creates and annihilates, respectively, a Bogoliubov

quasiparticle in the state n.

I1 “
ÿ

n

e´βEn

Z
xn|

ÿ

s

pusiÒγ̂spτ ´ τ 1q ´ vs˚
iÒ γ̂

:
spτ ´ τ 1qq

ÿ

s1

pus
1
˚

jÒ γ̂
:

s1 ´ vs
1

jÒγ̂s1 q |ny

We now perform the product of the two sums in s and s1, since we are evaluating
the trace xn| ... |ny, only the components with γγ: and γ:γ will be non-zero, so
only the cross-products survive:

I1 “
ÿ

n

e´βEn

Z
xn|

ÿ

s,s1

pusiÒu
s1

˚
jÒ γ̂spτ ´ τ 1qγ̂:

s1 ` vs˚
iÒ v

s1

jÒγ̂
:
spτ ´ τ 1qγ̂s1 q |ny

We now need to write the time dependence of the Bogoliubov quasiparticle opera-
tors, however, these operators diagonalize the Hamiltonian of our system, so that
the following commutation relations are verified:

rγ:
n,Hs “ ´Enγ

:
n, rγn,Hs “ Enγn (B.15)

From this, it is easily shown that:

γ:
npτq “ γ:

ne
Enτ{ℏ, γnpτq “ γne

´Enτ{ℏ (B.16)

129



Appendix B. Some details on integrals and the Abrikosov-Gorkov equations

So that the expression becomes:

I1 “
ÿ

n

e´βEn

Z
xn|

ÿ

s,s1

pe´Espτ´τ 1
q{ℏusiÒu

s1
˚

jÒ γ̂sγ̂
:

s1 ` eEspτ´τ 1
q{ℏvs˚

iÒ v
s1

jÒγ̂
:
s γ̂s1 q |ny

We now use:

ÿ

n

e´βEn

Z
xn| γ:

sγs |ny “ fpEsq,
ÿ

n

e´βEn

Z
xn| γsγs: |ny “ fp´Esq (B.17)

Where fpEq is the Fermi distribution. From the previous expression, we see that
this results in a δss1 , so the sum in s1 disspears and we end up with:

I1 “
ÿ

s

pe´Espτ´τ 1
q{ℏusiÒu

s˚
jÒfp´Esq ` eEspτ´τ 1

q{ℏvs˚
iÒ v

s
jÒfpEsqq

Doing an analogous development, we find the second term to be:

I2 “
ÿ

s

peEspτ 1
´τq{ℏus˚

jÒu
s
iÒfpEsq ` e´Espτ 1

´τq{ℏvsjÒv
s˚
iÒ fp´Esqq
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C Rashba spin-orbit coupling
C.1 Modelling the Rashba spin-orbit coupling in a

discrete 2-D array

We recall here the Rashba Hamiltonian for a 2-D system (Eq. 2.53):

ĤRashba “
αR

2a

ÿ

n,m

«

`

|n` 1,my xn,m| ˆ iσy
˘

´
`

|n,m` 1y xn,m| ˆ iσx
˘

ff

` h.c.

(C.1)
Where the index n, denotes the site in the x spatial coordinate, and m in the y
coordinate. σx and σy are the Pauli matrices acting on the two spin states Ò and Ó.
We want to find the explicit expression of Eq. C.1 and how to write the matrices
in our 4-component Nambu base, Ψ “ pψÒψÓψ

:

Òψ
:

ÓqT .

ĤRashba “
αR

2a
ˆ

¨

˚

˚

˝

0 p̂x ´ ip̂y 0 0
´p̂x ´ ip̂y 0 0 0

0 0 0 ´p̂x ´ ip̂y
0 0 p̂x ´ ip̂y 0

˛

‹

‹

‚

(C.2)

Where the upper block corresponds to the electron space and the lower block is
the time-reversed or hole space. The time reversed Hamiltonian is obtained by
taking the minus complex conjugate, ´Ĥ:. Nevertheless, when writing this ma-
trix for a 2-dimensional superconducting array of dimension Nx ˆNy, we need to
differentiate between the Rashba coupling in the x and y directions.

We explicitly write the matrix of the Rashba interaction, for the case where Nx “ 2
and Ny “ 3. The corresponding lattice is depicted in the following diagram. Each
node is labelled with the corresponding state |n,my.
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Appendix C. Rashba spin-orbit coupling

|1, 1y |2, 1y

|1, 2y |2, 2y

|1, 3y |2, 3y

Figure C.1: Lattice with Nx “ 2 and Ny “ 3 resulting in a 6 sites lattice, labelled
using the notation |n,my.

The resulting matrix will have total size 24 ˆ 24 (4NxNy ˆ 4NxNy). Explicitly:

|1, 1y |2, 1y |1, 2y |2, 2y |1, 3y |2, 3y
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x1, 1| Ĥx Ĥy

x2, 1| Ĥ:
x Ĥy

Ĥtotal “ x1, 2| Ĥ:
y Ĥx Ĥy

x2, 2| Ĥ:
y Ĥ:

x Ĥy

x1, 3| Ĥ:
y Ĥx

x2, 3| Ĥ:
y Ĥ:

x

Each block in the previous matrix has size 4 ˆ 4. As we can see, the Rashba
Hamiltonian has been divided between x and y coupling. Note that the diagonal
blocks are empty and given the state |n,my only the sites where n (m) differs in
a unit, have Rashba coupling along x (y) direction. The Ĥx and Ĥy are given:

Ĥx “
αR

2a

¨

˚

˚

˝

0 1 0 0
´1 0 0 0
0 0 0 ´1
0 0 1 0

˛

‹

‹

‚

Ĥy “
αR

2a

¨

˚

˚

˝

0 ´i 0 0
´i 0 0 0
0 0 0 ´i
0 0 ´i 0

˛

‹

‹

‚

(C.3)
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D dI/dV numerical calculation
D.1 Convolution and dI/dV calculation

In this appendix, we explicitly write the expressions for the numerical evaluation
of the BI{BV signal between two superconductors. As shown in Eq. 4.5, there are
three terms to evaluate:

pIq “

ż 8

´8

dϵρspϵqρ1
tpϵ´ eV qftpϵ´ eV q

pIIq “

ż 8

´8

dϵρspϵqρtpϵ´ eV qf 1
tpϵ´ eV q

pIIIq “

ż 8

´8

dϵρspϵqρ1
tpϵ´ eV qfspϵq

(D.1)

The BI{BV signal is proportional to BI{BV9 ´ pIq ´ pIIq ` pIIIq. The three
expressions in Eq. D.1, have the form of three convolutions1. Since our goal is to
simulate the conductance between two superconductors, the expression used for
ρspϵq and ρtpϵq are given by Eq. 4.13. The derivative of this expression can be
analytically obtained:

Bρscpϵq

Bϵ
“ N0Re

” 1
a

pϵ` iΓq2 ´ ∆2

ı

´N0Re
”

pϵ` iΓq2

rpϵ` iΓq2 ´ ∆2s3{2

ı

(D.2)

Similarly, we can obtain the derivative of the Fermi function:

Bfpϵ, T q

Bϵ
“

´1

T

exppϵ{T q
`

1 ` exppϵ{T q
˘2 (D.3)

The three expression in Eq. D.1 are evaluated numerically, we select the following
parameters for the two electrodes of the junction: the normal electron density
of the metal, N0, the superconducting gap, ∆, temperature, T , and the Dynes
parameter, Γ. Figures 4.5 and D.1 shows some results that we can obtain with
this numerical calculation. Figure D.1 (a) shows the result for a metallic tip and
a superconducting sample, this can be easily achieved by setting ρt ” cte. The
superconducting gap is set to be ∆ “ 1.35 meV and temperature is T “ 4.0 K.

1The convolution of two functions is defined as the integral of the product of the two functions
after one is reversed and shifted, f ˚ gptq :“

ş8

´8
fpτqgpt ´ τqdτ
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Appendix D. dI/dV numerical calculation

The tunneling between two superconductors is plotted in Fig. D.1 (b), here the
superconducting gaps are ∆1 “ 1.0 meV and ∆1 “ 2.0 meV, as discussed above,
the thermally excited states appear at |∆1 ´ ∆2| “ 1.0 meV, and the tunneling
through the quasi-particle peaks is visible at the peaks at |∆1 ` ∆2|.
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Figure D.1: Numerical BI{BV simulations. (a) Metallic tip and superconducting
sample with ∆ “ 1.35 meV. (b) Superconducting sample and tip with ∆1 “ 1.0
meV and ∆2 “ 2.0 meV. (c) Superconducting tip and sample with ∆1 “ ∆2 “ 1.35
meV (green curve) adding Gaussian noise (red curve). Temperature is set to
T “ 4.0 K for all cases.

To add the noise effect of the electronics in the lock-in amplifier, we additionally
make a convolution of the resulting signal with a Gaussian function. This allows
to better fit the peaks’ broadening in our measurements. Figure D.1 (c) we show
the conductance signal with ∆1 “ ∆2 “ 1.35 meV (green curve), and then we add
the effect of the noise by convolving the signal with a Gaussian function with σ “

0.19 meV (red curve).
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