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Abstract: Virtual sensing is the process of using available data from real sensors in combination with
a model of the system to obtain estimated data from unmeasured points. In this article, different
strain virtual sensing algorithms are tested using real sensor data, under unmeasured different forces
applied in different directions. Stochastic algorithms (Kalman filter and augmented Kalman filter)
and deterministic algorithms (least-squares strain estimation) are tested with different input sensor
configurations. A wind turbine prototype is used to apply the virtual sensing algorithms and evaluate
the obtained estimations. An inertial shaker is installed on the top of the prototype, with a rotational
base, to generate different external forces in different directions. The results obtained in the performed
tests are analyzed to determine the most efficient sensor configurations capable of obtaining accurate
estimates. Results show that it is possible to obtain accurate strain estimations at unmeasured points
of a structure under an unknown loading condition, using measured strain data from a set of points
and a sufficiently accurate FE model as input and applying the augmented Kalman filter or the
least-squares strain estimation in combination with modal truncation and expansion techniques.

Keywords: structural health monitoring; virtual sensing; Kalman filter; augmented Kalman filter;
least squares estimation; strain virtual sensor

1. Introduction

Structure health monitoring (SHM) involves monitoring structures to determine their
current condition. The use of SHM systems increases the safety of structural facilities
and allows the optimization of the maintenance actions, predicting the remaining useful
life of critical components and detecting anomalies that may indicate the presence of
damage [1]. SHM systems require measured data from the structure using sensors, but it is
not always possible to install all the necessary sensors at all the points of interest, either
for technical or economic reasons. Virtual sensing (VS) allows obtaining measures from a
system, not directly from physical sensors, but using data inference from other sensors [2].
The use of vs. in SHM systems results of interest takes place when it is necessary to obtain
measurement data at points where it is not technically feasible to locate a real sensor, or
when it is necessary to obtain measurements at a large number of locations, requiring a
sensor network that is too extensive [3]. In conclusion, the use of vs. offers technical and
economic advantages.

VS techniques can be classified into two main groups: data-driven techniques and
model-based techniques [4]. Model-based techniques require a physics-based model ca-
pable of replicating the behavior of the monitored system. The model-based methods
can be further classified into two groups: stochastic, where the system uncertainties are
considered; and deterministic, where the system uncertainties are not considered [5,6].
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Neural networks (NN) are commonly used in the data-driven vs. approaches. The NN
are artificial intelligence algorithms that consist of complex networks of nodes (neurons)
adjusted using training data, which relates the provided input data with the desired outputs.
Artificial neural networks (ANNs) [7] and Convolutional neural networks (CNNs) [8] have
been used for vs. applications. ANNs are simpler, because inputs are processed only in
the forward direction, while CNNs are more complex because they use multiple types of
layers for processing the provided input data.

Stochastic vs. algorithms have been commonly used for the estimation of states. One
of the most known stochastic estimation algorithms is the Kalman filter (KF), a physics
model-based algorithm proposed by R. Kalman in 1960 [9]. The KF uses a state-space model
of the system to make state predictions (mean and covariance) based on information from
the previous states. The KF is then a Bayesian estimator [10]. Input data from real sensors
are used to correct the predictions and to update the algorithm parameters. Some examples
of the use of the KF for strain estimations are found in [11,12]. An implementation of the KF
with an augmented state-space model (which estimates the inputs together with the states
of the system) was first proposed in 1969 by B. Friedland, to perform a state estimation
with unknown inputs [13]. In 2010, E. Lourens et al. used the KF with the augmented
state-space for dynamic force identification, and the following year they consolidated the
so-called augmented Kalman filter (AKF), which has been used in later publications [14].
Other variants of the KF for nonlinear systems have been proposed: for example, the Extended
Kalman filter (EKF) [15], that performs a linearization of the estimated mean and covariance
for each time step, or the Unscented Kalman filter (UKF) [16], that avoids linearization by
applying an unscented transformation to the estimated mean and covariance. An alternative
to the Kalman filter is the Particle filter (PF) [17], which are also stochastic Bayesian estimators.
For each time step, the PF generates multiple random estimations (particles) using Monte
Carlo simulations. A weight is assigned to each particle, and the closest particles to the
observation measurements are more weighted for the following time-steps.

Deterministic vs. algorithms have been used for force and strain estimation [3,18,19].
In this article, the least-squares state estimation (LSSE) is used. This method uses a Moore-
Penrose pseudoinverse (a generalization of the matrix inverse which allows to obtain the
pseudo-inverse matrix of a non-squared matrix [20]) to obtain the least-squares solution
of the unknown strains [21]. Unlike the probabilistic methods, such as the previously
described Kalman filters, the LSSE does not use the information of previous states and does
not update its internal parameters to improve the estimation.

In this article, both stochastic and deterministic model-based algorithms are tested.
The classic KF and the AKF are used as examples of stochastic methods and the LSSE is used
as example of deterministic method. The AKF has been chosen because it is specifically
designed to work without information of the external forces (which is of great interest for
the work developed in this article), while the KF has been chosen to compare it with the
AKF under the unknown external forces condition. On the other hand, the LSSE has been
chosen due to its simplicity. EKF and UKF have been discarded because it is not intended
to work with nonlinear models; meanwhile, the PF has been discarded due to its much
higher computational complexity. NN algorithms are not used in this work because it is
intended to avoid providing substantial amounts of training data.

In recent years, Kalman filter and variants [22,23] and deterministic algorithms [24,25]
have been used in SHM systems applied to structural facilities, such as wind turbines or
bridges. In [22], the AKF is applied in a wind turbine to estimate the state of the structure
and the external wind forces, using the turbine speed and the generator torque, together
with accelerometer data, as input sensors. In [23], the KF algorithm is used for damage
detection in aircraft frames and bridges, using accelerometers as input sensors. In [24],
modal expansion is used for stress and strain estimation in an offshore structure prototype,
using accelerometers and strain gauges as input sensors. In [25], modal expansion is used
for strain estimation in a monopile offshore wind turbine, using accelerometers and strain
gauges as input sensors too.
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In order to work with strain measurements using the mentioned algorithms, as well as
to obtain strain estimates from them, it is necessary to use the modal expansion/reduction
method [18,26]. This method allows a number of strain measurements to be related to
displacements in a model, and vice versa. Model reduction methods are also used to obtain
lighter models from complex FE models, capable of being used by the vs. algorithms. Strain
estimation is of interest due to its relationship with fatigue: by estimating the strain at
critical points, the remaining useful life of a structure due to the accumulated fatigue can
be estimated.

The main contribution of this article is to test different vs. algorithms (stochastic and
deterministic) using real data obtained from a wide variety of experimental tests, obtained
from an offshore wind turbine scaled prototype. For each selected algorithm, different input
sensor configurations have been tested under different types of external forces applied in
different directions (using an electromagnetic shaker installed on a rotating base on the top
of the prototype), simulating variable loads on the prototype. The vs. algorithms are tested
without measuring the applied forces, increasing the difficulty of the study.

This article is organized as follows: in Section 2, the modeling processes, the virtual
sensing algorithms used, and the use case are described. In Section 3, the obtained experi-
mental results are shown. In Section 4, the results are discussed and in Section 5, the final
conclusions are presented.

2. Materials and Methods
2.1. System Modeling

In this subsection, the theoretical bases used on system modeling are described: mass-
damper-spring equation, state-space formulation, and model discretization. The selected
model reduction method, modal truncation, is also described.

2.1.1. Finite Element Model

A Finite Element (FE) linear model of the monitored structure is created. Geometry,
construction details and boundary conditions must be taken into account during the model
creation. Mathematically, a FE model is defined by the mass-damper-spring second order
differential Equation (MCK) Equation (1), that is able to describe the dynamical behavior of
the model over time.

M
..
q(t) + CD

.
q(t) + Kq(t) = f(t) (1)

With n being the number of degrees of freedom (DoFs) of the model, q(t) is the
displacement vector (with n × 1 dimension), M, CD and K are the stiffness, damping and
mass matrices, respectively (with n × n dimension), and f(t) is the external forces vector
(with n × 1 dimension).

The FE models of complex structures contain a large number of degrees of freedom
(DoF), which implies that a big processing capacity and large amounts of time are needed
to work with them. To remedy this issue, reduction methods need to be applied.

2.1.2. Model Reduction

By applying model reduction methods to a full FE model, it is possible to obtain models
with a much smaller number of DoFs, which are much lighter in terms of computation. It is
a necessity when it is intended to work with FE models that represent complex structures
(usually made of thousands or even millions of DoFs) and it is required to perform a high
number of calculations over time (for example, a transient simulation) [27]. The reduced
models can reproduce the dynamic behavior of the structure in limited ranges of use.
Several model reduction methods can be found in the bibliography. Some examples are
the Guyan static condensation [28], the improved reduced system (IRS) [29], the Craig-
Bampton component mode synthesis [30] and the modal truncation [31]. In this article, the
modal truncation is selected as model reduction method because it is a method that allows
to maintain a great precision from the full model, within a defined range of use, and due to
its simplicity of application [32].
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To introduce the modal truncation method, first it must be explained that a dynamic
model can be described through its mode shapes, using the mode-shapes matrix (Φ). Each
column of Φ corresponds to an eigenvector (ϕi), associated to an eigenvalue (λi). The
square root of every eigenvalue corresponds to a natural frequency of the system (ωi). The
Φ-transformation implies a change of domain for the model, from the physical domain
(with cartesian base) to the modal domain. Φ can be obtained solving the undamped
Equation (2), discarding the trivial solution Φ = 0. Φ is considered mass-normalized when
expression (3) is satisfied.

(K − λM)Φ =
(

K −ω2M
)

Φ = 0 (2)

ΦTMΦ = I (3)
In its full form, Φ contains as many mode shapes as DoFs of the full model, but it is

possible to reduce the model removing the modes out of the frequency range of interest
(modal truncation). For a k number of modes of interest, Φ is reduced to ΦK (4), with its
dimension reduced to n × k.

Φ(n,k) = [ϕ1,ϕ2 . . .ϕk] (4)

Through the Φ-transformation, the dynamic Equation (1) can be transformed into
the generalized dynamical Equation (5), where z(t) is the vector of modal displacements
(also known as generalized displacements), obtained with the transformation q(t) = ΦK
z(t). Equation (5) can also be expressed as (6), ΦK

TMΦK being an identity matrix, Σ a
diagonal matrix containing the damping ratios (ξ) associated with each frequency, and
Ω the diagonal matrix with the natural frequencies of the model (ω).

Φk
TMΦk

..
z(t) + Φk

TCDΦk
.
z(t) + Φk

TKΦkz(t) = Φk
Tf(t) (5)

..
z(t) + 2ΣΩ

.
z(t) + Ω2z(t) = Φk

Tf(t) (6)

2.1.3. State-Space Model

A MCK model can be described as a state-space system (7), that consists of two
equations: the state Equation (above) and the output Equation (below). x is the state vector,
with 2n × 1 dimension. As shown in (8), the state vector contains the displacements and the
velocities of each DoF. u is the input vector, and with n × 1 dimension, contains the possible
external input for each DoF. A and B are the state and input matrices, respectively. As it
seen in (9) and (10), the dimensions of these matrices are 2n × 2n and 2n × n, respectively.
The elements of the output equation, the output vector y and the output and feedthrough
matrices C and D, change according to the desired output variables. State-space notation is
required to implement the model in Kalman filters and variants.{ .

x = Ax + Bu
y = Cx + Du

(7)

x =

(
q
.
q

)
(8)

A =

[
0 I

−M−1K −M−1CD

]
(9)

B =

[
0

M−1

]
(10)

To use the state-space model in a discrete-time approach, the A and B matrices must be
discretized. Ad (11) and Bd (12) are the discretized versions of the state-space model matrices.

Ad = eA∆t (11)
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Bd = A−1(Ad − I)B (12)

2.2. Virtual Sensing Algorithms

In this subsection, the selected vs. algorithms in this article are described: the Kalman
filter, the Augmented Kalman filter and the least-squares strains estimation. The observ-
ability conditions of each algorithm are also described.

2.2.1. Kalman Filter

The KF is a Bayesian recursive algorithm used to estimate the hidden states of a system.
A state-space model of the system is used to make predictions of the states, and information
coming from a limited number of real sensors is used to correct the predictions.

The KF is an algorithm of stochastic nature that manages gaussian uncertainties
associated with the used model and with the measurements. Q (13) is the covariance matrix
of the model (with 2n × 2n dimension) and R (14) is the covariance matrix of the input
sensors (with r × r dimension, being r the number of input sensors). Assuming that the
states and the measurements are not correlated with each other, the matrices Q and R
are simplified to diagonal matrices, where each value of the diagonal corresponds to the
uncertainty associated with each state (q) and with each sensor input (r), respectively. The
Q matrix must be discretized when used in a discrete-time Kalman filter (15).

Q = diag(q1, q2 . . . , q2n) (13)

R = diag(r1, r2 . . . , rr) (14)

Qd = (A dQAd
T
)

∆t (15)

In absence of external force measurements, the KF is implemented as follows: states
prediction (16), covariance prediction (17), Kalman gain determination (18), states predic-
tion update (19) and covariance prediction update (20).

xt = Axt−1 (16)

Pt = APt−1AT+Q (17)

Kt = PtHT
(

HPtHT + R
)−1

(18)

xt
updated = xt + Kt(zt − Hxt) (19)

Pt
updated = Pt − KtHPt (20)

The incorporation of the real sensor measurements into the filter (described in states
prediction update step) is performed with the measurement matrix (H). This matrix relates
each measurement with their corresponding states. It has r × 2n dimension, being 2n the
number of states of the system and r the number of input sensors.

With a measurement data vector z(t) containing x number of strain gauges and y num-
ber of accelerometers, the H matrix is built as seen in (21). To relate the strain gauge data to
the modal states, the modal strains are obtained from the FE model. These can be obtained
from a modal analysis of the FE model of the structure, compiling the strain value (ε)
obtained in each gauge (1 to x) for each mode (1 to n). To relate the accelerometer data to
the modal states, the corresponding rows of modal M, C and K matrices are used.

Because of the external force measurements are not available, no relation between
the force and acceleration measurements is implemented (in the case that external force
measurements were available, these would be related to the acceleration measurements
through a J matrix (22)). Because of this, the uncertainty of accelerometer measurements is
expected to be greater.
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H =



ε1,1 · · · ε1,n
...

. . .
...

εx,1 · · · εx,n

0 · · · 0
...

. . .
...

0 · · · 0
−M1,1

−1K1,1 · · · −M1,n
−1K1,n

...
. . .

...
−My,1

−1Ky,1 · · · −My,n
−1Ky,n

−M1,1
−1C1,1 · · · −M1,n

−1C1,n
...

. . .
...

−My,1
−1Cy,1 · · · −My,n

−1Cy,n


(21)

J =



0 · · · 0
...

. . .
...

0 · · · 0
M1,1

−1 · · · M1,n
−1

...
. . .

...
My,1

−1 · · · My,n
−1


(22)

In a KF, observability can be defined as the capacity of the algorithm to obtain enough
information from the real system (through the input sensors and the observation matrix)
to be able to estimate all the states. To determine if a KF is observable, the observability
matrix O (23) is calculated using the transpose of A. Only if the rank of O is equal to 2n
(the number of states of the model) is the KF is fully observable.

O =


ATH0

ATH1

...
ATH2n−1

 (23)

2.2.2. Augmented Kalman Filter

The AKF is a variant of the KF in which the external forces over the system are
considered additional states of the model. Thanks to this feature, this filter does not need
the external force applied on the monitored system as input. The AKF uses an augmented
state-space model of the system that combines the A and B matrices of the state-space
model in a single matrix A* (24) with (2n + nf) × (2n + nf) dimension (nf being the number
of expected external forces), and an augmented vector of states x* (25) that combines the
displacements, their first derivatives and the external input forces (resulting in a 2n + nf
dimension). The discretization of A* is shown in (26).

A* =

[
A B
0 0

]
(24)

x* =

q
.
q
u

 (25)

Ad
* =

[
Ad Bd
0 I

]
(26)

The unknown input is modeled as a zero-mean random walk model, so the covariance
matrix of the model Q must be augmented to (2n + nf) × (2n + nf) dimension by adding a
term related to the uncertainty associated to the external forces (27).

Q* =

[
Qd 0
0 Qu

]
(27)

An augmented observation matrix H* (28) must be defined by combining the observation
matrix H (21) and the input observation matrix J (22), resulting in a matrix of r × (2n + nf)
dimension.
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H* =
[
H J

]
(28)

In the AKF, observability has the same meaning as in the classical KF. To determine if
an AKF is observable, the observability matrix O* (29) must be calculated. Only if the rank
of O* is equal to 2n + nf is the AKF is fully observable.

O* =


A*TH*0

A*TH*1

...
A*TH*2n−1

 (29)

2.2.3. Least-Squares Strain Estimation (LSSE)

The LSSE is a deterministic virtual sensing algorithm that uses a matrix generalized
inversion to obtain the least squares solution of the unknown strains. The Moore-Penrose
pseudoinverse [20] and the Modal Expansion [24] are used for this purpose. This method
allows obtaining strain estimates at unmeasured points both in the presence and absence
of dynamic effects.

The linear equation is stated by relating the measured strain and the modal displace-
ments of the system (30). In a linear system, displacements x(t) and measured strains zi(t)
are linearly related through the modal strain matrix Gi (with g × m dimension, g being the
number of strain measurements, and m the number of modal displacements).

zi(t) = Gix(t) (30)

Using the same statement, strain virtual measurements zvs(t) can be obtained from the
modal displacements, through the modal strain matrix Gvs (with o × m dimension, o being
the number of virtual strain sensors, and m the number of modal displacements) (31).

zvs(t) = Gvsx(t) (31)

Using the pseudoinverse of Gi, both statements can be combined to obtain strain
virtual measurements from a set of real strain measurements (32).

zvs(t) = Gvs
[
Gi

+z(t)
]

(32)

If the number of strain measurements g is equal to the number of modal displacements
m, the statement (31) is determined, and the solution is found by the LSSE. If g is higher than
m, the statement is overdetermined. If, on the contrary, g is lower than m, the statement (31)
is underdetermined. In both cases, the LSSE gives a best-fit approximation of the solution.
To provide a good approximation of the solution, the condition number of the matrix Gi
must be close to 1. If the condition number of Gi is high, the statement (31) is ill conditioned
and significant errors can be expected in the solution.

2.3. Virtual Sensing Implementation

The selected vs. algorithms are tested on a use case defined in Section 2.4. First, an FE
model of the use case is created. This model is used to choose the location of the sensors
(strain gauges and accelerometers) in the real prototype. Measurement data obtained from
the sensors is first used to adjust and validate the model, and then to feed the vs. algorithms.
The obtained estimations are compared to the equivalent measurement data to evaluate
the performance of the vs. algorithms under the different conditions. The entire process is
summarized in the flowchart shown in Figure 1.
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2.4. Use Case

In this subsection, the use case, the installed sensors, and the modelling process
are described.

2.4.1. Prototype Description

The use case is a scaled wind turbine tower prototype installed on a jacket-type
structure, which is fixed to the ground (Figure 2). The main specifications of the prototype
can be seen in Table 1. An electromagnetic inertial shaker, considered as part of the system,
is placed on top of the prototype attached to a rotating platform to excite the structure in
different directions (Figure 3) and frequency components (<25 Hz). The specifications of
the shaker used can also be seen in Table 1.
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Figure 3. Inertial shaker Data Physics IV47 attached on top of the prototype.

Table 1. Main specs of the prototype and the shaker.

Feature Value

Tower + nacelle weight 42 kg
Jacket weight 13.5 kg

Shaker + support weight 27 kg
Total weight 82.5 kg
Tower height 1790 mm
Jacket height 1300 mm
Total height 3090 mm

Material Steel
Supports Fixed to a concrete base

Shaker model Data Physics IV47
Inertial mass 14.5 kg

Max sinus force (peak) 250 N
Total shaker mass 21 kg

Shaker main mode freq. 20 Hz

2.4.2. FE Model and Model Reduction

A FE model of the prototype is built based on the 3D CAD of the structure. The
shaker and its support, including the bushing, are simplified to an equivalent point mass
located at the mass center of the replaced components and attached to the structure. The
behavior of the bushing has been tested in the frequency range of interest (0 to 25Hz),
verifying its linearity. The platform has been designed to keep the mass center of the
rotating components in the rotating axis, so the system can be considered invariant. The
bolted joints present in the prototype are also simplified using bonded contacts. Due to
the tower and nacelle of the wind turbine prototype being thin steel profile components,
shell-type elements have been used to reduce the total number of elements in the mesh. In
the jacket support structure, solid elements have been used. The primary features of the FE
model can be seen in Table 2, and the FE model of the prototype can be seen in Figure 4.



Sensors 2023, 23, 4706 10 of 19

Table 2. Main specs of the FE model.

Feature Description

Number of elements 11,387
Element type Shell and solid
Element order Quadratic

Young modulus 2.2 × 1011 Pa
Boundary conditions 4 fixed supports

Model weight 82.5 kg
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Modal truncation is applied to obtain a reduced model. Following the criteria indicated
in the Section 2.2, the minimum number of modes to include are the first 4 modes, because
their frequencies are inside the range of the external forces applied (between 2 and 25 Hz)
and accumulate more than 90% of the modal mass. The 5th and following modes have
frequencies over 50 Hz.

2.4.3. Model Validation

To compare the modal response of the model to the real prototype, an operational
modal analysis (OMA) has been performed using two accelerometers located in the nacelle
of the prototype (with the shaker off). The current data acquisition system has been used,
in combination with the software PULSE. All the first four modes of the model are detected
in the real prototype. The stiffness of the contacts between tower segments in the model
has been adjusted in order to obtain a better modal adjustment.

The four detected modes have good MAC correlation values with the model modes
(all above 85%). The relative error between the frequencies of the model and the frequencies
of the detected prototype model are below 10% in all cases. The correlations between the
modes of the FE model and the detected modes in the real prototype are shown in Table 3.
The four modal shapes are shown in Figure 5.
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Table 3. Correlation between the modes of the model and modes detected in the real prototype.

FE Model OMA

Mode Mode
Description

freq.
[Hz]

freq.
[Hz]

Damping
Ratio [%]

MAC
[%]

1 1st in X. Bending 3.1 3.1 0.5 85
2 1st in Y. Bending 3.1 3.1 0.7 93
3 2nd in X. Bending 17.0 16.2 4.1 86
4 1st in Z. Torsion 19.2 17.4 2.7 99
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2.4.4. Sensors

The set of sensors installed in the prototype consists of strain gauges, accelerometer,
and a potentiometer to measure the shaker direction. No sensors for force measurement
have been installed in the prototype. The location of the gauges and the accelerometers
has been chosen following the Modal Kinetic Energy method [33]. A sufficient number of
gauges have been installed to be able to work with different configurations of input sensors,
keeping reference sensors to have reference real data in the locations of the virtual sensors.
All the used strain gauges measure the normal strain in the axial (Z) direction. A triaxial
accelerometer has been located at the top of the prototype, the zone with maximum
displacement. The number and main specifications of the sensors used can be found in
Table 4, and their location can be seen in Figure 4.

Table 4. Number and specifications of installed sensors.

Sensor Number Description

Strain gauges: quarter bridge 8 120 Ω, gauge factor = 2
Strain gauges: half bridge 2 120 Ω, gauge factor = 2 *

Accelerometer 1 (3 channels) MEMS type (ADXL335)
Angle sensor 1 Potentiometer

* Each individual gauge.

The data acquisition system used is the software LabVIEW of National Instruments
(NI) in combination with the hardware NI CompactDAQ-9189, a chassis with 8 slots for
acquisition modules. Modules NI-9235 have been used for the quarter bridge gauges,
NI-9237 for the half bridge gauges, NI-9234 for the accelerometers and NI-9201 for the
angle sensor.

Prior to carrying out the experiments, the sensors were calibrated. The accelerometer
has been calibrated both statically and dynamically, checking its response to orientation
changes for the first case, and using a calibration shaker (PCB 394C06 handheld shaker)
for the second case. The strain gauges have been calibrated by first checking the offset
value (with the prototype unloaded), then applying static measured forces to the prototype
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(using a dynamometer) and checking their response with the FE model strain response at
the same points. The uncertainty value have been measured in 0.3 µm/m in the case of the
strain gauges, and in 0.01 m/s2 in the case of the accelerometer.

3. Results

In this section, the estimations obtained with the vs. algorithms are shown. The
evaluation methods (for comparing the estimated data with the measured data of reference),
as well as all the input forces and input sensors configurations used, are also described.

3.1. Evaluation Methods

The estimates obtained in the virtual sensors are evaluated using a set of indica-
tors, first in order to determine if the virtual sensors are within an acceptable reliability
range, and secondly to be able to compare the performance of the different virtual sensing
algorithms tested using different configurations of input sensors.

The mean of the error signal (the subtract from the estimated signal to the reference
signal) indicates a bias in the estimated signal, which should be close to 0.

A certain delay between the estimated signals and the reference is expected, especially
when KF and AKF are used. In this study, the delay in the estimations is not considered
relevant, so when some correlation parameters are used (those where the presence of a delay
would alter the results) the existing delay is calculated and compensated. The Pearson
correlation coefficient (PCC) is a normalized measurement of the covariance between two
signals (33). This indicator is obtained through the quotient of the cross covariance of the
estimated signal (cov (est, ref)) and the reference signal with the product of the standard
deviations of the reference signal and the estimated signal (σest σref). The PCC has a rank
between 100% and −100%: a PCC = 100% means that the estimation of the virtual sensor is
fully correlated with the real measurement, a PCC = 0% means that there is no correlation
between the estimate and the real measurement, and a PCC = −100% means that there is
an inverse correlation. The PCC is used to evaluate if the estimated signals (with delay
compensated) are consistent in shape with the reference signals.

PCCest,real =
cov(est, ref)
σestσref

× 100 (33)

The percentage error of the estimations is obtained using the formula (34).

error[%] =

∣∣∣∣1 − σest

σref

∣∣∣∣× 100 (34)

For the purpose of this article, strain estimates are considered acceptable when they
have a percentage error below 10% in the cases of forces applied in X or Y directions, and
below 20% in the cases of forces applied in combined directions. A PCC above 90% is
considered acceptable in all cases.

3.2. Tests Performed

To test the virtual sensing algorithms, an organized sequence of tests has been used.
The different algorithms with different input sensor configurations are tested using different
external input forces applied in different directions. The external input forces used in the
tests are collected in Table 5. A few examples of results with different external inputs (such
as variable direction or hammer impacts) are shown in Figures 9 and 10.

Table 5. External inputs used in the performed tests.

Input Force Type Frequency [Hz] Directions

0 mean sinusoidal 2 X, Y and XY
0 mean sinusoidal 5 X, Y and XY
0 mean sinusoidal 10 X, Y and XY
0 mean sinusoidal 15 X, Y and XY

0 mean white noise 5 to 25 X, Y and XY
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With the aim of summarizing the considerable number of obtained results, two refer-
ence sensors are used, in which the performance of the algorithms is studied: the gauges
1-X-90 and 1-Y-90, at the bottom of the tower. These gauges have been selected as reference
gauges because is where a greater response is expected. The rest of the sensors are used as
input sensors for the algorithms. All tested configurations are collected in Table 6.

Table 6. Input sensor configurations tested. The “G” column indicate the use of the strain gauges
(both X and Y) corresponding to the height of the tower shown in Figure 5. The “Ac”columns indicate
the use of the channels of the accelerometer 1.

Algorithms Config. AcX AcY Ac Z G2 G3 G4 G5

KF, AKF, LSSE 1 x x x x
KF, AKF, LSSE 2 x x x
KF, AKF, LSSE 3 x x x
KF, AKF, LSSE 4 x x
KF, AKF, LSSE 5 x x

KF, AKF 6 x x x x x x x
KF, AKF 7 x x x x x x
KF, AKF 8 x x x x x x
KF, AKF 9 x x x x x
KF, AKF 10 x x x x x
KF, AKF 11 x x x x
KF, AKF 12 x x x x

For each sensor configuration tested, KF parameters (R, Q and QF values) are adjusted
through an iterative process. The R values of the sensor measurements and the QF value
of the augmented states of the AKF are held constants for all the configurations used,
while the Q values are varied for each sensor configuration in order to achieve the highest
accuracy in the virtual sensor estimations. The selected R values can be seen in Table 7,
and the selected Q and QF values can be seen in the Table 8. The input sensor data used is
previously filtered using a 26 Hz low-pass Butterworth filter.

Table 7. R values for each sensor used.

R Value

gauges 1 × 108

accelerometers 1 × 103

Table 8. Q and QF tuning parameters for each configuration. The number of truncated modes used is
also included.

Configuration
KF AKF LSSE

Modes Q Modes Q QF Modes

1 4 1 × 10−1 4 1 × 10−1 1 × 103 4
2 4 1 × 10−1 4 1 × 10−1 1 × 103 4
3 4 1 × 10−1 4 1 × 10−1 1 × 103 4
4 4 1 × 10−1 4 1 × 10−1 1 × 103 4
5 4 1 × 10−2 4 1 × 10−2 1 × 103 4
6 4 1 × 10−9 4 1 × 10−1 1 × 103 -
7 4 1 × 10−9 4 1 × 10−1 1 × 103 -
8 4 1 × 10−9 4 1 × 10−1 1 × 103 -
9 4 1 × 10−9 4 1 × 10−1 1 × 103 -
10 4 1 × 10−9 4 1 × 10−1 1 × 103 -
11 4 1 × 10−9 4 1 × 10−1 1 × 103 -
12 4 1 × 10−9 4 1 × 10−3 1 × 103 -

3.3. Obtained Results

For each configuration and for each direction of application of the input forces, the
results shown are an average of the estimates obtained for each input force applied. A limit
value of 4 µm/m in the standard deviation of the reference signals has been set, based on
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the experience obtained from the experimental tests. Above that limit, the estimation of
that reference signal is considered in the average. Below that limit, the reference signal is
considered background noise and its estimation is not taken into account in the average.

The results obtained with the KF, AKF and LSSE are summarized in Tables 9–11,
respectively.

Table 9. KF results.

Configuration Number
Gauges

Number
Accelerometers

Error %/PCC
X Direction

Error %/PCC
Y Direction

Error %/PCC
XY 45◦ Direction

1 8 0 11.0/99.3 19.2/99.9 16.9/99.5
2 6 0 10.4/99.2 19.4/99.8 19.3/99.3
3 6 0 8.8/97.8 5.6/99.7 19.4/99.4
4 4 0 13.4/99.3 23.7/99.8 21.8/99.1
5 4 0 30.3/84.6 22.0/96.4 28.1/97.2
6 8 1 751.5/86.4 55.9/73.5 368.8/81.2
7 6 1 751.5/86.4 55.9/73.5 368.8/81.2
8 6 1 751.5/86.4 55.9/73.5 368.8/81.2
9 4 1 751.5/86.4 55.9/73.5 368.8/81.2

10 4 1 751.5/86.4 55.9/73.5 368.8/81.2
11 2 1 54.3/91.5 56.3/73.2 50.8/90.4
12 2 1 54.3/91.5 56.3/73.2 50.8/90.4

Table 10. AKF results.

Configuration Number
Gauges

Number
Accelerometers

Error %/PCC
X Direction

Error %/PCC
Y Direction

Error %/PCC
XY 45◦ Direction

1 8 0 10.6/99.4 19.2/99.9 17.3/99.7
2 6 0 9.9/99.2 19.4/99.8 19.6/99.3
3 6 0 7.3/97.9 4.6/99.8 19.2/98.4
4 4 0 13.3/99.3 24.2/99.8 22.0/99.1
5 4 0 32.4/87.0 16.6/97.9 26.7/97.1
6 8 1 10.3/99.0 26.3/99.5 22.6/98.7
7 6 1 15.1/99.0 24.2/99.6 21.8/98.5
8 6 1 4.5/97.1 18.4/98.4 19.3/97.5
9 4 1 13.6/99.4 63.0/74.3 35.4/94.3

10 4 1 35.1/81.3 65.2/65.2 47.1/76.6
11 2 1 56.6/82.7 66.6/77.7 53.9/91.2
12 2 1 70.2/46.3 87.1/49.3 76.6/70.3

Table 11. LSSE results.

Configuration Number Gauges Error %/PCC
X Direction

Error %/PCC
Y Direction

Error %/PCC
XY 45◦ Direction

1 8 11.1/99.5 20.1/99.9 17.5/99.7
2 6 10.9/99.3 21.5/99.9 20.9/99.4
3 6 8.2/99.6 5.5/99.8 18.8/98.9
4 4 15.7/99.2 30.5/99.7 25.7/98.9
5 4 36.4/84.1 26.0/97.3 45.2/90.0

4. Discussion

In total, 12 different sensor configurations have been tested in the KF and AKF algo-
rithms: five configurations with only strain gauges, and seven configurations combining
strain gauges and an accelerometer. In the case of the LSSE, since only admits strain gauge
signals as inputs, only the first five configurations have been tested. No force measurements
are available. A modal-truncated model with four modes has been used for all cases.

Firstly, it has been observed that when only strain gauges are used as input sensors,
the three tested algorithms (KF, AKF and LSSE) perform remarkably similarly. Only in
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certain cases (such as the estimations obtained under variable direction forces), the KF
shows some deviation from the other two algorithms. When an accelerometer is added
to the configuration, the KF fails, and a large level of error is detected in the estimations.
In the case of the AKF, the addition of an accelerometer as sensor input does not bring a
significant improvement. In some cases, the error detected in the virtual sensors increases
appreciably with the included accelerometer. This can be explained because, in the absence
of force measurements, the uncertainty associated with the accelerometer measurements
grows significantly, as was predicted in Section 2.2.1.

The error detected in the virtual sensors does not always increase as the number
of sensors of the configuration is reduced. For example, when an eight-strain-gauge
configuration is used (the maximum number available), greater error is detected than
when a six-strain-gauge configuration is used. When the number of gauges is reduced
to four or less, the detected error grows significantly. This behavior coincides in the
three tested algorithms. It is also observed that not only the number of input sensors in
the configuration, but also their position, influence the response of the virtual sensing
algorithms. This agrees with the fact that some sensor locations are more adequate for
measuring the system behavior, as is predicted by sensor location methods (such as the
Modal Kinetic Energy method, mentioned in Section 2.4.4).

According to the obtained results in the virtual sensors when forces in X direction are
applied, the estimates obtained in the virtual sensors are generally better than when forces
in the Y direction or in combined directions are applied. This difference can be explained
by the certain lack of precision in the behavior of the FE model (from which the reduced
model has been obtained) in the Y-direction bending and the Z-direction torsion. Of the
sensor configurations tested in the different vs. algorithms, the best-performing one is
configuration 3. This configuration uses the 3X, 3Y, 4X, 4Y, 5X and 5Y gauges as input
sensors. Configuration 8, that uses the same input gauges but adding an accelerometer,
also performs well when is used with the AKF.

From the data obtained from the experiments carried out in this article, it can be
concluded that, in terms of robustness, the LSSE is preferable because, unlike Kalman
filters, it does not depend on tuning parameters. Among the Kalman filters, the AKF can
be considered more robust than the KF because, under conditions of unmeasured forces, it
has a stable performance when accelerometers are used as input sensors.

Some examples of the obtained results applying different input forces, using config-
uration 3 (input gauges X-2-90, Y-2-90, X-3-90, Y-3-90, X-4-90, Y-4-90, X-5-90, Y-5-90), are
provided in Figures 6–10. The values corresponding to these results are summarized in
Tables 12–16. The virtual sensors are the gauges 1X (first column of the tables) and 1Y
(second column of the tables). The estimations obtained with the KF, AKF and LSSE are
compared with real strain data at the same location (indicated as REF). The left values in the
tables correspond to the percentage error of the estimation, and the right values correspond
to the PCC error.

Table 12. Evaluation of the results shown in Figure 6.

F X 5 Hz X-1-90 Y-1-90

KF 3.6/99.4 178.6/61.6
AKF 7.7/99.4 187.3/60.2
LSSE 4.1/99.8 197.1/58.3

Table 13. Evaluation of the results shown in Figure 7.

F Y 15 Hz X-1-90 Y-1-90

KF 195.6/95.4 7.3/99.9
AKF 209.3/95.2 7.0/99.9
LSSE 217.3/98.5 6.9/99.9
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Table 14. Evaluation of the results shown in Figure 8.

F XY Noise X-1-90 Y-1-90

KF 19.8/97.4 13.7/99.1
AKF 20.0/97.4 13.9/99.0
LSSE 18.2/97.3 15.9/98.9

Table 15. Evaluation of the results shown in Figure 9.

F VAR 5 Hz X-1-90 Y-1-90

KF 12.3/92.8 8.6/99.0
AKF 19.5/99.0 4.9/98.9
LSSE 16.8/99.3 4.1/98.7

Table 16. Evaluation of the results shown in Figure 10.

F X HIT X-1-90 Y-1-90

KF 11.6/99.5 2.1/93.7
AKF 11.3/99.5 1.8/93.3
LSSE 11.6/99.6 3.2/92.4
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5. Conclusions

In this article, three different vs. algorithms have been tested to obtain virtual strain
estimations under unknown forces. Twelve different sensor configurations have been
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used under 15 different dynamic loads. Two virtual strain gauges have been implemented
in the base of the tower of the prototype, and two real strain gauges have been used as
reference sensors, to compare the estimated data obtained from the virtual sensors with the
equivalent real sensor data.

It has been verified that, through the modal truncation, a reduced model can be used
to obtain the response of a much more complex FE model (in a limited range of frequencies)
using a limited number of modes (which implies a significative reduction in the number
of DoFs used). The AKF shows itself to be better than the classical KF in absence external
force measurements, especially when strain and acceleration measurements are available.
If only strain measurements are available, the AKF and the LSSE perform similarly, so, to
obtain strain virtual measurements, the LSSE may be preferable due to its simplicity.

The experience and results obtained with the experiments presented in this article can
be useful when implementing strain virtual sensors. Examples of application can range
from wind turbines (as in the case of this article) to many other types of complex structural
assets, for example distinct types of offshore structures, bridges, communication towers or
even large industrial frames (such as industrial presses).

Several future lines of inquiry may continue the work presented in this article. On one
hand, it would be interesting to add real-time force measurements to allow comparison vs.
results with known forces and with unknown forces. Forces can also be estimated using vs.
algorithms. On the other hand, it would also be interesting to install more accelerometers
to the use case, in order to be able to test more sensor configurations in the different vs.
algorithms. It would be also interesting to install gauges with an orientation of 45º with
respect to the tower axis, with the aim of measuring torsional strain. Furthermore, it would
be interesting to apply the tested vs. algorithms in other use cases of a different nature, to
check if vs. estimations of comparable quality can be obtained in other types of structures.
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