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Abstract: Prostate cancer is one of the most common cancers among men. Although many patients
respond favorably to first-line treatments, castration—and chemotherapy—resistance arises after
a few years, leading to metastasis. Thus, new approaches are being investigated using natural
supplements to reinforce current therapies. Ocoxin is a plant-based mixture with antitumor properties
that have been proved in several cancers. Here, we evaluated the cytotoxic capacity of this compound
itself and combined with Docetaxel, Enzalutamide and Olaparib as an adjuvant agent. We observed
that Ocoxin reduced tumor cell viability; slowed down cell cycles; altered the expression of genes
involved in DNA replication, cell cycles and the p53 signaling pathway; and reduced migratory
capacity after stimulation with cancer-associated fibroblasts (CAFs) and osteoblasts in vitro and
reduced tumor volume in vivo. The combination of the nutritional supplement with chemotherapy
showed a higher cytotoxic effect than chemotherapy alone and reverted chemoresistance conferred
by CAFs and osteoblasts. Moreover, the adjuvant therapy also improved the outcome in vivo
compared to the treatment with solo chemotherapy, where mice developed smaller tumors and less
angiogenesis. Therefore, Ocoxin arises as a good candidate for further studies in combination with
current treatments for prostate-cancer patients.

Keywords: prostate cancer; cancer nutrition; adjuvant; chemotherapy; resistance; tumor microenvi-
ronment; fibroblast; osteoblast

1. Introduction

Cancer is one of the leading causes of death worldwide. In particular, prostate cancer
is the second most common cancer among men and the fifth cause of cancer death [1]. These
tumors originate from prostate cells that have undergone genetic and epigenetic changes
such as an increase in oncogene expression and the inhibition of tumor suppressors, leading
to an uncontrolled cell proliferation, which results in a prostate adenocarcinoma [2]. Even
though there are procedures such as resection or radiotherapy for localized primary tumors,
some malignant cells can spread through the bloodstream or lymphatic system and cause
metastasis. In this scenario, androgen deprivation therapy (ADT) is used as the first-line
treatment with drugs such as enzalutamide that block androgen receptors [3,4]. Although
most patients respond favorably, 10–20% of prostate cancer cases become castrate-resistant
after 2–3 years [5]; thus, additional medication such as chemotherapy or immunotherapy
is administered in order to stop tumor growth. In this scenario, docetaxel is the most
prescribed drug, which acts as an antimitotic agent which impedes cell division. Neverthe-
less, occasionally, cancer cells do not react to these agents, leading to patient death [2,6].
Recently, an inhibitor of poly-ADP-ribose polymerase (PARP) named Olaparib was ap-
proved for the treatment of prostate cancer, showing a favorable outcome [7,8]. However,
this agent does not always improve patient’s survival [9] and, as well as the previously
mentioned drugs, it worsens their quality of life (QoL) due to side-effects [10,11]. Therefore,
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innovative approaches are needed not only to cure prostate cancer but also to ameliorate
the detrimental adverse reactions provoked by those therapies.

Evidence indicates that treatment failure lies partly in the interaction of tumor cells
with the tumor microenvironment (TME) [12,13], which, besides cancer cells, contains
many elements such as stromal cells, immune cells, extracellular matrix (ECM), cytokines,
growth factors and many other extracellular components. Therefore, it is also necessary to
consider TME when treating cancer. Prostate tumors usually show a reactive stroma with
a remarkable cancer-associated fibroblast (CAF) and immune-cell infiltration [12,14,15].
CAFs comprise the main component of the TME and show features of activated fibroblasts
found in inflammatory milieu. These cells remodel ECM by producing collagen and matrix
metalloproteinases (MMPs), cause hypoxia, induce angiogenesis and secrete factors which
can facilitate invasion and induce the recruitment of immune cells such as macrophages
and regulatory T cells [16]. In this regard, tumor-associated macrophages (TAMs) constitute
the major immune-cell type of the TME, whose infiltration can increase the secretion of
pro-tumoral factors [17,18] and create an immunosuppressive environment [19], facilitating
tumor development and metastasis. Interestingly, cancer cells are known to secrete IL-6,
which induces the polarization of M2 macrophages [20] which, in turn, produce anti-
inflammatory molecules and suppress antitumor responses [21]. Moreover, another type
of immune cell hosted in the TME is lymphocytes. In particular, cytotoxic T lymphocytes
(CTLs) are of special interest since they influence the anticancer response [22,23]. Therewith,
several studies have confirmed that TME confers resistance to ADT, chemotherapy and
also to immunotherapy [24–28], giving rise to tumor dissemination.

Nonetheless, while primary prostate-cancer tumors grow with a certain TME, metastatic
cancer evolves in a completely different tissue. Prostate-cancer metastases occur in liver,
lung and, predominantly, bones, where tumor cells secrete cytokines, chemokines, hor-
mones, growth factors and metabolites which stimulate the maturation of osteoclasts, cells
which break down bone tissue, and increase the presence of osteoblasts which promote
bulging bone formation [29–31], causing pain to the patient. Therefore, it is necessary to
look for alternative therapies in order to modulate TME so as to increase the effectiveness of
the existing antitumor agents used at present, as well as to reduce their side-effects. In this
sense, as plant extracts have historically been utilized as medicinal remedies due to their
anti-inflammatory, antioxidant and antimicrobial properties, several articles have been
published showing the benefits of treating prostate cancer with natural compounds [32–36].
Indeed, many of those antitumor effects derive from TME modulation. For instance,
resveratrol inhibits CAF differentiation, interrupts communication between tumor cells
and TME and reduces TAM polarization to proinflammatory macrophages [37]. Likewise,
cannabinoids impair CAF activation [38] and a compound containing Chinese herbs named
Ligustilide induces their apoptosis and, therefore, reduces angiogenesis [39]. In addition,
natural products are usually shown to be multi-targeted and less toxic than conventional
therapies [40–42]. In fact, there is extensive literature supporting the application of natural
bioactive compounds extracted from plants as adjuvants of current therapies in order to sen-
sitize tumors and increase treatments’ efficacy. On the one hand, epigallocatechin-3-gallate
(EGCG) (the main bioactive element of green tea), curcumin (obtained from turmeric) and
resveratrol (extracted from grapes) are known to act as radiosensitizers increasing reactive
oxygen species, boosting cell death and by inhibiting pro-tumoral pathways [43,44]. On
the other hand, EGCG and glycyrrhizin (the major active constituent of licorice) have been
shown to increase the effect of many different chemotherapeutic agents by enhancing their
bioavailability, by interacting with receptors and by modulating chemoresistance-related
proteins [43–46]. In addition, it has also been described that EGCG, glycyrrhizin and
eugenol (present in cinnamon) can improve ADT by interacting with androgen receptors
and enzymes [45,47]. Thus, innovative adjuvant strategies need to be developed to improve
conventional therapies against cancer by adding adjuvant natural bioactive elements. In
this regard, a natural nutritional mixture named Ocoxin has shown antitumor properties
by itself against different primary and metastatic cancers where it increased apoptosis,
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caused a cell-cycle arrest and modulated TME by reducing CAF and TAM migration to the
stroma [48–51]. Moreover, Ocoxin sensitized tumor cells to chemotherapy and reverted the
pro-tumoral effect and chemoresistance caused by CAFs [48–50]. These effects of a nutri-
tional mixture arise as a result of the combination of the ingredients that compose Ocoxin,
such as green tea, cinnamon, licorice and vitamins, among others [47,52–55]. Furthermore,
Ocoxin has been administered in clinics in order to mitigate the side-effects provoked by
standard anticancer therapies, showing promising results in oncological patients, including
those suffering from prostate cancer [56–59]. Bearing this in mind, we aimed to study
whether Ocoxin could be used as a complement of the currently administered antitumor
therapies Docetaxel, Enzalutamide and Olaparib.

2. Materials and Methods
2.1. Cell Lines

Three different prostate-cancer cell lines were analyzed in this study: human 22Rv1
and LNCaP cells (ATCC, Manassas, VA, USA) and murine RM-1 cells (ATCC, Manassas,
VA, USA). Murine RM-1 cells were cultured in DMEM medium and human 22Rv1 and
LNCaP cells were grown in RPMI-1640 medium (Gibco, Waltham, MA, USA), all of them
supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, Waltham, MA, USA) and 1% of
Antibiotic–Antimycotic solution (Gibco, Waltham, MA, USA). Moreover, human primary
osteoblasts (P10971) and prostate-tumor-associated fibroblasts (HC-6223) (Innoprot, Derio,
Spain) were cultured in specific osteoblast and fibroblast growth medium (Innoprot, Derio,
Spain) in order to obtain their secretomes. All cell lines were cultured at 37 ◦C in a
humidified atmosphere in the presence of 5% CO2.

2.2. Ocoxin

Ocoxin is a nutritional mixture containing natural ingredients such as plant extracts,
amino acids, vitamins and minerals (Table 1).

Table 1. Composition of Ocoxin per vial of 60 mL.

Amino Acids

L-Glycine 1200 mg
L-Arginine 384 mg
L-Cysteine 122.4 mg

Minerals

Zinc sulfate 48 mg
Glucosamine sulfate potassium chloride 1200 mg

Manganese sulfate 2.4 mg

Plant Extracts

Licorice extract (Glycyrrhiza glabra) 120 mg
Green tea extract (Canellia sinensis) 15 mg

Cinnamon extract (Cinnamomum verum) 1.8 mg

Vitamins

Vitamin C 72 mg
Vitamin B5 7.2 mg
Vitamin B6 2.4 mg
Vitamin B9 240 µg

Vitamin B12 1.2 µg

2.3. Cell-Viability Assay

Several cell-viability assays were performed with all the three prostate-cancer cell lines
in order to study the cytotoxic effect of Ocoxin alone or combined with chemotherapy. First,
5 × 104 cells/mL were cultured in 96-well plates in complete medium for 24 h in the case of
RM-1 and 22Rv1 cells and 72 h for LNCaP. Then, cells were treated with different dilutions
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of Ocoxin ranging from 1:500 to 1:50 (V/Vf) (Catalysis S.L., Toledo, Spain), Docetaxel
(2.5–12 nM), Enzalutamide (12.5–50 µM) and Olaparib (2.5–10 µM) (Selleckchem, Houston,
TX, USA) for 48 and 72 h in 1% FBS supplemented medium. Cell viability was measured
by using PrestoBlue™ Cell Viability Reagent (Invitrogen, Waltham, MA, USA) for 2 h
following manufacturer’s indications so as to assess the most effective doses. Afterwards,
the effect of combinations of Docetaxel, Enzalutamide and Olaparib with Ocoxin were
tested following the same protocol.

2.4. Cell-Cycle Analysis

Cell cycle was analyzed in 22Rv1, LNCaP and RM-1 cells treated with Ocoxin. First,
1.5 × 105 cells/mL were cultured in 6-well plates under standard conditions, and then they
were treated with the 1:100 and 1:50 dilutions of Ocoxin for 48 h in 1% FBS supplemented
medium. Afterwards, cells were trypsinized, washed with PBS, and fixed with 70% ethanol
for 30 min at 4 ◦C. Finally, cells were again washed and incubated with the FxCycleTM

PI/RNase Staining Solution (Invitrogen, Waltham, MA, USA) following the manufacturer’s
instructions. Changes in cell cycle were analyzed by flow cytometry using the Gallios
cytometer (Beckman Coulter, Brea, CA, USA).

2.5. mRNA Sequencing for LNCaP Cell Gene-Expression Analysis

In order to study molecular changes promoted by Ocoxin in human prostate-cancer
cells, an mRNA sequencing was carried out. To begin with, LNCaP cells were cultured in
6-well plates under standard conditions for 72 h at a concentration of 1.5 × 105 cells/mL.
Afterwards, cells were treated with 1:50 Ocoxin dilution in 1% FBS-supplemented medium
for 48 h. Then, detached cells were discarded through PBS washing and the RNA of
adhered cells was isolated with the Total RNA purification kit (Norgen, Thorold, ON,
Canada). Three sample replicates were extracted for each treatment. In order to perform
the mRNA sequencing, first, the quantity and quality of the RNA was evaluated using
the QubitTM RNA HS Assay Kit (Invitrogen, Waltham, MA, USA) and Agilent RNA
600 NanoChips (Agilent Technologies, Santa Clara, CA, USA). After, sequencing libraries
were prepared using the “TruSeq® Stranded mRNA Library Prep” kit, TruSeq® RNA Single
Indexes and TruSeq® RNA CD Index Plate (Illumina, San Diego, CA, USA). Later, starting
from 1 µg of total RNA, mRNA was purified, fragmented and primed for cDNA synthesis
with the SuperScriptTM II Reverse Transcriptase (Invitrogen, Waltham, MA, USA) for
10 min at 25 ◦C, 15 min at 42 ◦C, and 15 min at 70 ◦C, and finished at 4 ◦C. The second
cDNA strand was synthesized with Illumina reagents at 16 ◦C for 1 h, then A-tailing and
adaptor ligation were performed and enrichment of libraries was achieved by PCR (30 s
at 98 ◦C; 15 cycles of 10 s at 98 ◦C; 30 s at 60 ◦C; 20 s at 72 ◦C; 5 min at 72 ◦C and pause at
4 ◦C). Finally, libraries were visualized on an Agilent 2100 Bioanalyzer using the Agilent
High Sensitivity DNA kit (Agilent, Santa Clara, CA, USA) and quantified using QubitTM

dsDNA HS DNA kit (Invitrogen, Waltham, MA, USA).

2.6. Transcriptomic Analysis of LNCaP Cells Treated with Ocoxin

After obtaining mRNAseq results, data were analyzed in order to understand in which
processes Ocoxin is involved. All the analyses were based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database [55]. First, all the significantly deregulated
pathways were identified including all the altered genes. Afterwards, the most significantly
deregulated genes were classified according to their differential expression, upregulated or
downregulated, and the pathways they were involved in were analyzed using the KEGG
mapper tool [60].

2.7. Quantification of the Differential Expression of Genes Altered by Ocoxin through RT-qPCR

Based on the data obtained from the mRNAseq, the differential expression of several
genes involved in the cell cycle (KEGG ID: hsa04110) and protein processing in endoplasmic
reticulum (KEGG ID: hsa04141), which is implicated in the reticulum stress and therefore in
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cell death, was analyzed by RT-qPCR in LNCaP cells which had been untreated or treated
with 1:50 of Ocoxin. First, mRNA was purified as described above and 1 µg of RNA was
retrotranscribed into cDNA using iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA,
USA). Afterwards, the RT-qPCR was carried out using specific primers for the selected
genes (Table 2) and SYBR Green as a fluorophore. Finally, relative expression of each gene
was normalized to the internal control gene actin-β with the ∆∆Ct method.

Table 2. Sequences of the primers used to validate gene expression by RT-qPCR.

Gene Sequence

ATF3 Forward: AGAAAGAGTCGGAGAAGC
Reverse: TGAAGGTTGAGCATGTATATC

DNAJB9 Forward: TGCAGAAGCATATGAAACAC
Reverse: ACTAGTAAAAGCACTGTGTC

ERO1LB Forward: GGAGGAATTCCGATTACATTTC
Reverse: TTCCCCATAATCTGCATTTG

CDK1 Forward: ATGAGGTAGTAACACTCTGG
Reverse: CCTATACTCCAAATGCAACTG

CDK2 Forward: TGTTATCGCAAATGCTGC
Reverse: TCAAGAAGGCTATCAGAGTC

CCNA2 Forward: AGTATCATGGTGTTTCTCTCC
Reverse: AATTTGTACTTGGCCACAAC

CDKN2B Forward: GACTAGTGGAGAAGGTGC
Reverse: TCATCATGACCTGGATCG

ERN1 Forward: GAATAGAAAAGGAATCCCTGG
Reverse: TTCTTATTTCTCATGGCTCG

2.8. Obtention of Cancer-Associated Fibroblast- and Osteoblast-Derived Secretomes

Secretomes or conditioned media (CM) of human osteoblasts and prostate-tumor-
associated fibroblasts were obtained after culturing 2 × 105 cells/mL in 24-well plates with
their specific growth medium. After 24 h, old medium was replaced for fresh medium and
secretomes were collected 24 h later. Finally, all the obtained CM was centrifuged for 5 min
at 4000 rpm and stored at −20 ◦C.

2.9. Chemoresistance Analysis in Prostate-Cancer Cells in the Presence of CAF
and Osteoblast Secretomes

Tumor cells were cultured in RPMI medium supplemented with 1% FBS for 24 h
and then fresh medium was added diluted 1:2 with CAF’s or osteoblast’s CM for another
24 h. Then, cells were treated with the 12.5 nM dose of Docetaxel in combination with
the 1:50 dilution of Ocoxin for 48 h with regular culture medium and cell viability was
analyzed using PrestoBlue™ Cell Viability Reagent (Invitrogen, Waltham, MA, USA).

2.10. Cell Migration Assay

On the one hand, migration of 22Rv1 cells was studied through the wound healing
assay. To achieve this, 2 × 105 cells/mL were cultured on 24-well plates under standard con-
ditions until 90% confluence was achieved. Afterwards, cells were treated with 10 µg/mL
of Mitomycin C (Sigma-Aldrich, Saint Louis, MO, USA) for 2 h in 1% FBS-supplemented
medium in order to stop cell division. Then, a scratch was created in every well. Af-
ter washing, either fresh medium supplemented with 1% FBS (as a control) or CAF- or
osteoblast-secretomes diluted 1:2 in fresh medium was added to the plates for 48 h in the
presence or absence of the 1:50 dilution of Ocoxin. Finally, the percentage of the scratch
covered by the cells was quantified with the ImageJ software (version 1.53t).

On the other hand, the migratory capacity of LNCaP cells was evaluated using Tran-
swell inserts (Corning Inc., Corning, NY, USA). Cells were cultured on the top of the inserts
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with standard medium and were let adhere to the membrane for 3 h. Then, the medium
of the lower compartment was changed for fresh medium supplemented with 1% FBS
or for either CAF- or osteoblast-secretomes diluted 1:2 in fresh medium and the same
concentration of Ocoxin was added. Cells were let migrate for 48 h and, subsequently,
they were fixed in 3.7–4% formaldehyde (PanReac AppliChem, Castellar del Vallès, Spain)
and stained with 0.4% Cristal Violet (Sigma-Aldrich, Saint Louis, MO, USA). Lastly, insert
membranes were mounted for the microscopic analyses.

2.11. Animals

In vivo experiments were carried out with 6–8 week male C57BL/6J mice (Janvier
Labs, Le Genest-Saint-Isle, France). Animals were maintained in line with institutional
guidelines and national and international laws for experimental animal care, and all the
experimental procedures were approved by the Ethical Committee of the University of
the Basque Country (CEID) and by institutional, national and international guidelines
regarding the protection and care of animals used for scientific purposes (Reference M20-
2022-076).

2.12. In Vivo Prostate-Cancer Tumor Development

RM-1 murine prostate-cancer cells were diluted in PBS at a concentration of
1.5 × 106 cells/mL and 100 µL were subcutaneously injected in the right flank of mice.
Then, animals were randomly divided into 4 groups of 7 mice so as to start the different
treatments on the following day. Control group received a vehicle solution. The second
group of mice was treated with an oral dose of Ocoxin (100 µL) daily, the third one received
intraperitoneal injections of 5 mg/kg bodyweight of Docetaxel every other day and, finally,
the fourth group received the combination of both treatments, that is, a daily dose of Ocoxin
and an intraperitoneal injection of Docetaxel on alternate days. After 12 days of treatment,
mice were sacrificed and tumors were either frozen in O.C.TTM Compound (Sakura Finetek,
Alphen aan den Rijn, The Netherlands) or fixed in 3.7–4% formaldehyde (AppliChem,
Darmstadt, Germany) for 18 h at 4 ◦C and embedded in paraffin for histological analyses.

2.13. Immunohistochemical and Immunofluorescence Analyses

Samples were fixed for 10 min in ice-cold acetone (PanReac AppliChem, Castellar del
Vallès, Spain) and permeabilized with PBS-Triton 0.05%. Afterwards, non-specific proteins
were blocked by incubating the samples with PBS 5% FBS for 1 h and, then, tissues were
incubated with specific antibodies overnight at 4 ◦C. The following antibodies were used:
anti-caspase-3 (1:200) and anti-Ki67 (1:200) (purchased from Abcam, Cambridge, UK). Then,
sections were washed with PBS three times and the secondary antibody Alexa Fluor® 488
conjugated goat anti-rabbit IgG H&L (1:2000) (Abcam, Cambridge, UK) was added for
1 h. Finally, sections were again washed and slides were mounted with a DAPI containing
mounting medium (Abcam, Cambridge, UK). Differences in angiogenesis were analyzed
in vivo with immunohistochemical procedures. To do so, 5 µm thick slides were obtained
from paraffin-embedded tissues, and after paraffin removal through an alcohol gradient,
an antigen retrieval step was performed by incubating the samples in citrate buffer at 96 ◦C
for 30 min. Then, endogenous peroxidase was blocked by adding 3% of H2O2 in PBS.
Afterwards, non-specific proteins were blocked by incubating the samples with 3% FBS in
PBS for 1 h and, then, tissues were incubated with the specific anti-CD31 (1:100) (Abcam,
Cambridge, UK) antibody overnight at 4 ◦C. Then, sections were washed with PBS three
times and the secondary anti-rabbit IgG H&L (Abcam, Cambridge, UK) was added for 1 h.
Finally, sections were again washed, counterstained with eosin for 5 s and dehydrated and
mounted.

Immunofluorescence samples were examined under the Zeiss Axioskop fluorescence
microscope (Zeiss, Oberkochen, Germany) and the immunohistochemistry slides were
observed under the Olympus BX50 optic microscope (Olympus Soft Imaging Solutions,
Hamburg, Germany). Finally, expression levels were quantified through the ImageJ soft-



Nutrients 2023, 15, 2536 7 of 24

ware (National Institutes of Health, Bethesda, MD, USA) and results were expressed as the
mean expression of at least X tumor sections per treatment.

2.14. Statistical Analysis

The statistical analyses of all the experiments, except the mRNAseq, were performed
using GraphPad Prism 5.0 (GraphPad software Inc., San Diego, CA, USA). Every in vitro
experiment was carried out at least three times and the in vivo assay was performed twice.
To begin with, the Kolmogorov–Smirnov normality test was run in all the experiments.
When normal distribution was assumed, the One-Way ANOVA was used with the Bon-
ferroni’s post-hoc test and for non-parametric tests the Kruskal–Wallis test followed by
Dunnett’s post-hoc test was applied. In every graph, data are expressed as the mean value
(±standard deviation (SD)).

Regarding the mRNAseq, the multiExperiment Viewer version 4.9.0 (J. Craig Venter
Institute, Rockville, MD, USA) was utilized for the statistical analyses and, afterwards, the
One Way ANOVA the false discovery rate (FDR) correction was applied.

3. Results
3.1. Ocoxin Altered the Viability and Cell Cycle of Human Prostate-Cancer Cell Lines

First of all, the viability of human 22Rv1 and LNCaP prostate-cancer cells was ana-
lyzed in the presence of different doses of Ocoxin. As shown in Figure 1, the nutritional
supplement reduced cell viability by more than 50% in both cell lines when treated with
the highest dose at 48 (Figure 1a) and 72 h (Figure 1b). Moreover, the 1:100 dilution also
reduced cell viability in 22Rv1 cells by 25% and by 35% in LNCaP cells at 72 h (Figure 1b).
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Figure 1. Cytotoxic effect of Ocoxin on the viability and cell cycle of human prostate-cancer cells.
(a,b) Cell viability was quantified using the Presto BlueTM Cell Viability Reagent after treating 22Rv1
and LNCaP cells with 1:500, 1:200, 1:100 and 1:50 dilutions of Ocoxin for (a) 48 and (b) 72 h. Cell
viability was affected in a dose-dependent manner. (c) The proportion of cells gathered in each cell-
cycle phase was measured using flow cytometry using the FxCycleTM PI/RNase Staining Solution
after the treatment with the 1:100 and 1:50 dilutions of Ocoxin for 48 h. A cell-cycle arrest in the
S phase and a decrease in cell number was observed in G2/M phase. Differences versus untreated
cells were considered statistically significant at p < 0.05 (*) according to the Kruskal–Wallis test.
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To elucidate if the reduction in cell viability caused by Ocoxin is due to a cell-cycle
arrest, changes in the cell cycle were studied after the exposure of prostate-cancer cells to
the natural compound for 48 h. Figure 1c shows that Ocoxin caused a gathering of cells in
the S phase with the subsequent decrease in cells in the following G2/M phase from 17%
to 14% in 22Rv1 and from 16% to 12% in LNCaP cells with the highest dose of Ocoxin.

3.2. mRNAseq for the Analysis of Gene Expression of LNCaP Cells Treated with Ocoxin

In order to gain insights into the mechanism of action of Ocoxin, changes in the gene
expression of LNCaP cells were analyzed through mRNAseq after treating them with the
1:50 dilution of Ocoxin for 48 h. According to the results, a total number of 23.726 genes were
altered by the treatment, but only 614 genes were significantly differentially expressed after
FDR correction; precisely, 173 were downregulated and 441 were upregulated. Considering
all the deregulated genes, analyses based on the KEGG database showed that Ocoxin
altered the expression of genes that are involved in three main pathways: cell cycle, DNA
replication and p53 signaling (Table 3).

Table 3. The most significantly deregulated pathways according to the analysis based on KEGG
database in human prostate-cancer cells treated with Ocoxin.

KEGG ID Description

hsa04110 Cell cycle
hsa03030 DNA replication
hsa04115 p53 signaling pathway

The differential expression of the genes is displayed in Figure 2, where Ocoxin is
shown to either increase or decrease the expression of genes involved in the cell-cycle
(Figure 2a) and p53 signaling pathway (Figure 2c) and downregulate the genes involved
DNA replication (Figure 2b). In addition, an in-depth analysis was performed focused only
on the significantly deregulated genes according to their expression pattern (upregulated
or downregulated). As shown in Table 4, even though Ocoxin caused the overexpression
and infraexpression of genes involved in metabolic and cancer-related processes and in
the p53 pathway, most of the upregulated genes were related, as well, to the PI3K-Akt,
mTOR and MAPK signaling pathways, protein processing in the endoplasmic reticulum,
autophagy and apoptosis, and the downregulated genes were principally implicated in cell
cycle and DNA replication, among others (Table 4).

3.3. Analysis of the Differential Expression of LNCaP Cell Genes Treated with Ocoxin by RT-qPCR

The differential expression of eight genes implicated in the cell cycle and in the protein
processing in the endoplasmic reticulum that was shown to be altered by Ocoxin according
to the mRNAseq results was quantified, by RT-qPCR, in LNCaP cells. As seen in Figure 3
and in accordance with the mRNAseq, on the one hand, among the genes involved in the
protein processing in the endoplasmic reticulum ERN1, ERO1LB, DNAJB9 and ATF3 were
all upregulated. On the other hand, also in line with the results obtained in the mRNAseq,
the genes of the cell cycle, CDK1, CDK2 and CCNA2 were downregulated and DCKN2B
was upregulated.
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Figure 2. Heatmap of the differential expression of genes involved in the cell cycle, p53 signaling pathway 
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Figure 2. Heatmap of the differential expression of genes involved in the cell cycle, p53 signaling
pathway and DNA replication in prostate-cancer cells treated with Ocoxin. LNCaP cells were treated
for 48 h with the 1:50 dilution of Ocoxin. mRNA expression levels were measured through mRNAseq
in both treated and untreated cells. (a) Cell cycle, (b) DNA replication and (c) p53 signaling pathway.
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Figure 3. Differential expression of the mRNAseq through RT-qPCR. The differential expression of
eight genes was analyzed by RT-qPCR between LNCaP cells that were untreated or treated with the
1:50 dose of Ocoxin. The genes involved in the protein processing in the endoplasmic reticulum (ATF3,
DNAJB9, ERN1 and ERO1LB) were upregulated and those from the cell cycle were downregulated
(CCNA2, CDK1 and CDK2) except CDKN2B, which was upregulated. Differences versus untreated
cells were considered statistically significant at p < 0.05 (*) according to the One-Way ANOVA.

Table 4. Summary of the KEGG pathways including the highest number of significantly altered genes
classified into upregulated and downregulated.

UPREGULATED

KEGG ID Description Genes

hsa01100 Metabolic pathways 50
hsa05022 Pathways of neurodegeneration 15
hsa04151 PI3K-Akt signaling pathway 13
hsa05200 Pathways in cancer 13
hsa05208 Chemical carcinogenesis—reactive oxygen species 12
hsa05014 Amyotrophic lateral sclerosis 10
hsa01240 Biosynthesis of cofactors 10
hsa05010 Alzheimer disease 9
hsa04141 Protein processing in endoplasmic reticulum 9
hsa05168 Herpes simplex virus 1 infection 9
hsa05165 Human papillomavirus infection 8
hsa04510 Focal adhesion 8
hsa04144 Endocytosis 8
hsa05225 Hepatocellular carcinoma 8
hsa04140 Autophagy 7
hsa04210 Apoptosis 7
hsa04150 mTOR signaling pathway 7
hsa04115 p53 signaling pathway 7
hsa04010 MAPK signaling pathway 7
hsa05016 Huntington disease 7
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Table 4. Cont.

DOWNREGULATED

KEGG ID Description Genes

hsa04110 Cell cycle 18
hsa03030 DNA replication 10
hsa05200 Pathways in cancer 8
hsa01100 Metabolic pathways 8
hsa05166 Human T-cell leukemia virus 1 infection 6
hsa04218 Cellular senescence 6
hsa04914 Progesterone-mediated oocyte maturation 6
hsa04114 Oocyte meiosis 5
hsa05169 Epstein–Barr virus infection 5
hsa04115 p53 signaling pathway 4
hsa05207 Chemical carcinogenesis—receptor activation 4
hsa05203 Viral carcinogenesis 4
hsa04080 Neuroactive ligand-receptor interaction 4
hsa03460 Fanconi anemia pathway 4
hsa04611 Platelet activation 4
hsa03430 Mismatch repair 4
hsa05202 Transcriptional misregulation in cancer 4
hsa05161 Hepatitis B 4
hsa03440 Homologous recombination 4
hsa05165 Human papillomavirus infection 4

3.4. Ocoxin as an Adjuvant Agent of Docetaxel, Enzalutamide and Olaparib Increased
the Cytotoxic Effect in Human Prostate-Cancer Cell Lines

To analyze the adjuvant effect of Ocoxin, we first studied the cytotoxicity of routinely
administered chemotherapeutic agents in prostate-cancer patients Docetaxel, Enzalutamide
and Olaparib. Although both cell lines were sensitive to Docetaxel and Olaparib, 22Rv1
cells did not respond to Enzalutamide and LNCaP cells were only affected by the highest
doses after 48 (Figure 4a) and 72 h (Figure 4b). Focusing on the highest concentrations
of chemotherapy, while the 12.5 nM dose of Docetaxel reduced 22Rv1 and LNCaP cell
viability by 40% and 60%, respectively, after 72 h, 10 µM of Olaparib decreased cell number
by 60% in the 22Rv1 cell line and 25% in LNCaP cells (Figure 4b).

Later, the antitumor activity of Ocoxin was analyzed in combination with chemother-
apy. In detail, two doses of Docetaxel, Enzalutamide or Olaparib were combined with the
1:50 and 1:100 dilutions of Ocoxin for 48 and 72 h and cell viability was measured. Results
showed that the adjuvant treatment reduced cell viability more than chemotherapy alone in
every case (Figure 5). In 22Rv1 cells, while chemotherapy alone barely affected cell viability,
the combination of the lowest doses of Docetaxel, Enzalutamide or Olaparib with Ocoxin
1:50 decreased cell viability by up to 42%, 39% and 69% at 48 h, respectively (Figure 5a), by
up to 68% with Docetaxel and Enzalutamide, and by 93% with Olaparib at 72 h (Figure 5b).
Likewise, in LNCaP cells, the combination of 2.5 nM of Docetaxel with the 1:50 dilution
of the nutritional supplement diminished the number of viable cells from 13% to 57% at
48 h and also decreased cell viability combined with the 5 µM of Enzalutamide and 2.5 µM
of Olaparib by 60% and 43%, respectively, while both drugs did not affect cells on their
own at all (Figure 5c). This effect was enhanced at 72 h, where the 1:50 dilution of Ocoxin
reduced cell viability by 70%, 67% and 80% when combined with the lowest concentrations
of Docetaxel, Enzalutamide and Olaparib, respectively (Figure 5d).

3.5. Ocoxin Reduced the Pro-Migratory Effect and Chemoresistance Produced by Soluble Factors
Derived from Osteoblasts and CAFs Secreted on Human Prostate-Cancer Cells

The main concern regarding prostate cancer is the development of metastasis. One
of the cellular mechanisms involved in this process is cell migration. Hence, since TME
components provide soluble factors to prompt tumor growth and invasion, we analyzed
the effect of CAF and osteoblast CM on the migratory capacity of cancer cells. Furthermore,
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considering that Ocoxin impaired the support provided by CM to cancer cells, we analyzed
the effect of the natural mixture on cell migration in CM-stimulated cells. As shown in
Figure 5a, both CAF and osteoblast CMs enhanced the migratory capacity of prostate-
cancer cells. However, Ocoxin reverted the pro-migratory effect caused by CMs, reducing
CAF and osteoblast CM-stimulated cell migration by around 70% and 50%, respectively, in
both cell lines, reaching the migration levels that cells showed when not in the presence of
CMs. Moreover, it is known that TME confers chemoresistance to tumors. Thus, bearing in
mind that the cytotoxic effect of the combination of Docetaxel and Ocoxin was higher than
chemotherapy alone, we studied if the adjuvant treatment could also revert chemoresistance
in prostate-cancer cells exposed to CM derived from CAFs and osteoblasts. Figure 6b,c
shows that CM increased cell viability in both cell lines regardless of the treatment. In
particular, both CMs were shown to enhance cell viability more in 22Rv1 cells than in
LNCaP. The most remarkable difference was observed in 22Rv1 cells, whereas osteoblast
CM almost duplicated cell viability after 48 h (Figure 6c), CAF CM only enhanced it by 20%
(Figure 6b). In addition, the combination of Docetaxel and Ocoxin reduced cell viability
more than Docetaxel alone in the presence of the soluble factors derived from either CAFs
or osteoblasts in both prostate-cancer cell lines. While the chemotherapeutic agent alone
reduced cell viability by around 25% in every case, the combination increased cell death
by up to 75% in 22Rv1 cells in the presence of either CAF- or osteoblast-derived soluble
factors (Figure 6b,c) and up to 20% (Figure 6b) and 50% (Figure 6c) in LNCaP cells when
they were stimulated with CAF or osteoblast CM, respectively.
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Figure 4. Cytotoxic effect of chemotherapeutic agents on human prostate-cancer cells. Different doses
of Docetaxel (2.5 nM, 5 nM, 12.5 nM), Enzalutamide (12.5 µM, 25 µM, 50 µM) and Olaparib (2.5 µM, 5
µM, 10 µM) were added to 22Rv1 and LNCaP cells in order to assess their cytotoxic capacity after (a)
48 and (b) 72 h. Docetaxel and Olaparib exerted a dose-dependent effect in both cell lines while 22Rv1
was resistant to Enzalutamide and only the highest doses affected LNCaP cells. Differences versus
untreated cells were considered statistically significant at p < 0.05 (*) according to the Kruskal–Wallis
test.
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Figure 5. Cytotoxic effect of chemotherapeutic agents combined with Ocoxin on 22Rv1 and LNCaP
human prostate-cancer cells. Different doses of Docetaxel (2.5 nM, 5 nM), Enzalutamide (5 µM,
12.5 µM) and Olaparib (2.5 µM, 5 µM) were added to cells combined with Ocoxin (1:100, 1:50).
(a) 22Rv1 cells treated for 48 h, (b) 22Rv1 cells treated for 72 h, (c) LNCaP cells treated for 48 h,
(d) LNCaP cells treated for 72 h. All the combined treatments reduced cell viability more than
chemotherapy alone. Differences were considered statistically significant at p < 0.05 according to the
Kruskal–Wallis test when comparing untreated cells versus cells treated with chemotherapy alone (*)
and when comparing chemotherapy alone versus combinations with Ocoxin (#).
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Figure 6. Effect of Ocoxin on the promigratory capacity and chemoresistance conferred by soluble
factors derived from cancer-associated fibroblasts (CAFs) and osteoblasts (Obs) to 22Rv1 and LNCaP
prostate-cancer cells. (a) Cell migration was determined after treating them with the 1:50 dilution of
Ocoxin in the presence CAF- and Ob-derived conditioned medium (CM) for 48 h. Although both CMs
increased the migratory capacity of prostate-cancer cells, Ocoxin reverted cell migration. Differences
between treatments were considered statistically significant at p < 0.05 according to the Kruskal–Wallis
test when comparing cells cultured under normal conditions versus those cultured with CM (*) and
when comparing each control to the treatment with Ocoxin (#). (b,c) Chemoresistance was determined
in after the treatment with 12.5 nM of Docetaxel alone or combined with the 1:50 dilution of Ocoxin
in the presence of CM collected from (b) CAFs and (c) Obs for 48 h. Both CMs reduced the efficacy of
the treatments compared to those added under standard conditions. However, the adjuvant therapy
reduced cell viability more than Docetaxel alone. Differences between treatments were considered
statistically significant at p < 0.05 according to the Kruskal–Wallis test when comparing treatments
under normal conditions versus treatments in the presence of CM (*), between the control and the
treatments being both with CM (#) and between Docetaxel alone versus the combination being both
in the presence of CMs ($).
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3.6. Ocoxin Altered the Viability and Cell Cycle of a Murine Prostate-Cancer Cell Line

Since Ocoxin affected the viability of human prostate-cancer cells, on the one hand,
we analyzed the effect of the compound in the murine RM-1 cell line. Several doses of
Ocoxin ranging from 1:500 to 1:50 were used to treat the cells for 48 and 72 h. As shown in
Figure 7, Ocoxin reduced cell viability by around 50% with the 1:100 and 1:50 dilutions at
48 h (Figure 7a) and by approximately 60% at 72 h (Figure 7b). On the other hand, cell-cycle
analyses revealed that Ocoxin increased the number of cells gathered in the S from 4% to
9% and 17% with the 1:100 and 1:50 doses, respectively, causing a cell-cycle arrest which
reduced the number of cells in phase G2/M from 28% to 26% and 24% with both dilutions
(Figure 7c).
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After testing the anticancer properties of Ocoxin as an adjuvant therapy on human 
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Figure 7. Effect of Ocoxin on the viability and cell cycle of murine prostate-cancer cells. RM-1 cells
were treated with 1:500, 1:200, 1:100 and 1:50 dilutions of Ocoxin for (a) 48 and (b) 72 h and cell
viability was quantified. Ocoxin affected cell viability in a dose-dependent manner. (c) RM-1 cells
were treated with the 1:50 dilution of Ocoxin for 48 h and the percentage of cells gathered in each
cell-cycle phase was measured. Ocoxin caused a cell-cycle arrest in the S phase and decreased the
number of cells in G2/M and G0/G1 phases. Differences versus untreated cells were considered
statistically significant at p < 0.05 (*) according to the Kruskal–Wallis test.

3.7. Ocoxin as an Adjuvant Agent of Docetaxel Increased the Cytotoxic Effect in a Murine
Prostate-Cancer Cell Line

After testing the anticancer properties of Ocoxin as an adjuvant therapy on human
prostate-cancer cells in vitro, we also analyzed whether Ocoxin exerted the same effect in
murine RM-1 prostate-cancer cells. First of all, the cytotoxic effect of different concentrations
of Docetaxel (2.5, 5 and 12.5 nM) was analyzed for 48 and 72 h in order to choose an
optimum dose to treat RM-1 cells with the combination of Docetaxel and Ocoxin afterwards.
Figure 8a,b show that Docetaxel alone did not cause any cytotoxic effect against RM-1 cells
in the analyzed conditions. Nevertheless, although RM-1 cells were shown to be resistant
to Docetaxel, the combination with both the 1:50 or the 1:100 dilutions of Ocoxin reduced
cell viability significantly from approximately 5% to 50% at 48 h (Figure 8c) and to 60% at
72 h, respectively (Figure 8d).
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and also to confirm our in vitro results, tumor-cell proliferation and apoptosis analyses 
were performed using immunofluorescence. As shown in Figure 10, the supplementation 
of the chemotherapeutic agent with Ocoxin caused an increase in the anti-proliferative 
effect of Docetaxel, that is, the adjuvant therapy decreased tumor-cell proliferation by ap-
proximately 60% compared to Docetaxel alone. However, although all the three treat-
ments increased apoptosis within tumors, no significant differences could be observed 
between groups due to the high variability in data. Finally, angiogenesis levels were quan-
tified inside tumors using the endothelial cell marker CD31. Figure 10 shows that all the 

Figure 8. Cytotoxic effect of Docetaxel alone and combined with Ocoxin on murine prostate-cancer
cells. (a,b) Different doses of Docetaxel (2.5 nM, 5 nM, 12.5 nM) were added to RM-1 cells in order
to assess their cytotoxic capacity at (a) 48 and (b) 72 h. This cell line was shown to be resistant to
Docetaxel. (c,d) RM-1 cells were treated with Docetaxel (12.5 nM, 5 nM) combined with Ocoxin (1:100,
1:50) for (c) 48 and (d) 72 h in order to study the cytotoxic effect of the adjuvant therapy. All the
combined treatments reduced cell viability. Differences were considered statistically significant at
p < 0.05 (*) according to the Kruskal–Wallis test when comparing chemotherapy alone with combina-
tions with Ocoxin.

3.8. The Administration of Ocoxin as an Adjuvant of Docetaxel Reduced Prostate Tumor Volume
In Vivo by Increasing Apoptosis and by Decreasing Proliferation and Angiogenesis

Based on the in vitro results, we tested the antitumor capacity of the adjuvant treat-
ment in vivo. To do so, C57BL/6J mice with subcutaneous prostate-cancer tumors were
treated with Docetaxel and Ocoxin on their own or combined. Although bodyweight in
the mice was unchanged, while Docetaxel reduced tumor volume by 44% compared to
untreated mice, the combination of Docetaxel and Ocoxin decreased it by 64% (Figure 9).
Therefore, in order to gain insights into the reason leading to the reduction in tumor size
and also to confirm our in vitro results, tumor-cell proliferation and apoptosis analyses
were performed using immunofluorescence. As shown in Figure 10, the supplementation
of the chemotherapeutic agent with Ocoxin caused an increase in the anti-proliferative
effect of Docetaxel, that is, the adjuvant therapy decreased tumor-cell proliferation by ap-
proximately 60% compared to Docetaxel alone. However, although all the three treatments
increased apoptosis within tumors, no significant differences could be observed between
groups due to the high variability in data. Finally, angiogenesis levels were quantified
inside tumors using the endothelial cell marker CD31. Figure 10 shows that all the three
treatments reduced angiogenesis, although only the value of the combined therapy was
significant, which reduced angiogenesis by 70% compared to the untreated mice.
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Figure 9. Antitumor effect of Ocoxin as an adjuvant of Docetaxel in mice with prostate cancer.
Mice bearing subcutaneous prostate-cancer tumors were treated with a daily oral dose of 100 µL of
Ocoxin and with 5 mg/Kg bodyweight of Docetaxel intraperitoneally every other day (alone or in
combination) for 12 days. Then, tumors were extracted and volume was measured. The adjuvant
therapy reduced tumor volume significantly compared to that of untreated mice. The scale bar
corresponds to 5 mm length. Differences were considered statistically significant at p < 0.05 (*)
according to the one-way ANOVA.
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Figure 10. Apoptosis, proliferation and angiogenesis in tumors of mice bearing prostate cancer
treated with Docetaxel and Ocoxin. Analyses of apoptosis (caspase-3) and proliferation (Ki67) rates
were performed through immunofluorescence and angiogenesis (CD31) levels were determined by
immunochemistry in tumors obtained from mice with prostate cancer that had been treated with a
daily dose of 100 µL of Ocoxin and with 5 mg/kg bodyweight of Docetaxel intraperitoneally every
other day (alone or in combination) for 12 days. All the three treatments showed a trend towards an
increase in apoptosis and the combination of Docetaxel and Ocoxin reduced cell proliferation and
angiogenesis significantly compared to untreated mice. The scale bar corresponds to 250 µm length.
Differences were considered statistically significant at p < 0.05 (*) compared to tumors of untreated
mice according to the One-Way ANOVA.
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4. Discussion

Prostate cancer is one of the leading causes of cancer-related deaths among men in the
world [1]. While primary tumors are curable by surgery or radiotherapy, the treatment of
metastatic prostate cancer is still a challenge. Even though Docetaxel, Enzalutamide or Ola-
parib increase life expectancy, only one-third of the patients survive for more than 5 years
and their QoL is usually deteriorated as a consequence of undesired side-effects caused
by chemotherapy [2,11,61]. Hence, new strategies are being explored including the sup-
plementation of current medicines with natural neoadjuvant agents. On this matter, many
authors have summarized the chemopreventive and anticancer attributes of Chinese herbal
medicines and plant-derived bioactive compounds in prostate cancer [34,36,62,63]. Further-
more, phytochemicals have been tried in vitro and in vivo combined with chemotherapy
to improve treatment outcome showing beneficial responses [64–68]. Additionally, natural
supplements have also been dispensed in clinics to mitigate side effects and to help the
recovery of patients under treatment against different cancers, which, in addition, have
been demonstrated to increase survival rates [46,69,70]. However, results are not always
consistent and the mechanisms of action of the combinations have not been deeply studied.

In this work, we tested whether a nutritional mixture named Ocoxin could serve as a
novel adjuvant agent to improve chemotherapy in prostate cancer. This compound contains
green tea, licorice and cinnamon extract among other natural elements, which have shown
to exert antioxidant, anti-inflammatory, immunoregulatory and antitumoral activities when
administered alone or as a mixture in vitro and in vivo in various types of cancer [48–51].
Moreover, Ocoxin enhanced life expectancy and relieved side effects caused by the current
therapies in patients [56–59]. Interestingly, a clinical study with prostate-cancer subjects
receiving radiotherapy and/or chemotherapy was performed, where Ocoxin was employed
as a supportive treatment; this showed a significant improvement in patients’ QoL, a better
response to chemotherapy and an increase in overall survival [71]. Thereby, we delved
into the underlying anticancer processes in which Ocoxin actively participates. To start
with, we studied the effect of the mixture against human and murine prostate-cancer cells.
Consistent with our previous findings, Ocoxin reduced prostate-cancer cell viability in a
dose-dependent way [48,50,51]. Many studies report the cytotoxic capacity of plant extracts
obtained from green tea, licorice root or cinnamon among others, which are included in
the composition of Ocoxin [52,53,72]. Since this effect could lie in distinct mechanisms,
we investigated if cell-viability decrease was as a result of a cell-cycle arrest. As expected,
the natural supplement caused a delay in the cell-cycle progression in all the three tested
cell lines, 22Rv1, LNCaP and RM-1. More specifically, Ocoxin caused the accumulation
of prostate-cancer cells in the S phase, whereas previous reports showed that the natural
compound halted cell cycles in the Sub G1 phase in colorectal cancer and in G0/G1 in
melanoma [48,51]. Actually, these findings are gathered in a review confirming that Ocoxin
acted at different cell-cycle points depending on the type of cancer [73]. In this regard, we
found out that the effect produced by Ocoxin on the cell cycle of prostate-cancer cells is
mediated by the modulation of gene expression. Notably, most of the genes downregulated
by Ocoxin were mainly related with the cell cycle and cell division, such as cyclin-dependent
kinases (CDKs) such as CDK1 and CDK2, among others.

CDKs are essential proteins to progress the cell cycle. In particular, CDK1 and CDK2
modulate the expression of transcription factors in order to alter the gene expression of
different elements across the cell-cycle phases. Gao et al., reported that Oridonin contributes
to the inhibition of gastric-cancer cell growth by the downregulation of CDK1 and the
induction of cell-cycle arrest in the G2/M phase [74]. Moreover, cyclin A2 (CCNA2), which
was also downregulated by Ocoxin, activates CDK2 to drive the transition from the S phase
to the M phase, blocking the passage of cells to the mitotic process [75]. Li et al., reported
that the overexpression of the CCNA2–CDK2 complex is associated with the occurrence of
several cancers, namely, lung cancer, stomach cancer, leukemia, breast cancer and other
tumors [76]. Thus, CCNA2–CDK2-complex inhibitors are being analyzed as antitumor
therapies. According to this, a component isolated from traditional Chinese medicine,
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Salvia miltiorrhiza Bunge, Tanshinone IIA, provoked cell-cycle arrest and apoptosis and
inhibited the proliferation of lung adenocarcinoma cells through the downregulation of the
CCNA2-CDK2 complex, the same effect observed using Ocoxin [77]. Furthermore, cyclin-
dependent kinase inhibitor 2B (CDKN2B), highly overexpressed by Ocoxin, is known
to form a complex with CDK4 and CDK6, which prevents the activation of the CDKs.
On this point, Xia et al., reported the strength of CDKN2B as a tumor suppressor by
inhibiting cell cycle and glycolysis [78] and Zhang and his collaborators correlated the
overexpression of CDKN2B with apoptosis in hepatocellular carcinoma cells treated with
Veramapil + Doxorubicine [79]. Hence, the downregulation of the CCNA2–CDK2 complex
and the overexpression of CDKN2B produced by Ocoxin could have mediated not only
the gathering of the cells in the S phase of the cycle but also the induction of tumor cells to
an apoptotic stage. In fact, our preliminary in vitro results confirmed that human prostate-
cancer apoptosis was increased two-fold after the treatment with the nutritional mixture.
In addition, even though prostate-cancer cells were rather resistant to chemotherapy, the
supplementation with Ocoxin diminished cell viability more than the drugs (Docetaxel,
Enzalutamide and Olaparib) administered alone. In line with this, many works support
that some of the ingredients present in Ocoxin, such as green tea and licorice, enhanced
chemosensitivity in prostate-cancer cells [43,45,80]. Remarkably, EGCG and quercetin
have shown to sensitize prostate-cancer cells to Docetaxel and Enzalutamide, among
others, by improving their anti-proliferative effect and by inhibiting androgen receptor
signaling [67,68]. Hence, Ocoxin could have also sensitized cancer cells to chemotherapy
owing to the properties of those plants.

In addition, in consonance with our in vitro results, Ocoxin as adjuvant therapy re-
duced tumor volume significantly in vivo, more than Docetaxel alone. However, although
an increasing tendency of apoptosis was observed in murine tumors, no significant differ-
ences was detected between treatments, probably due to the variability observed within the
animal groups. Nevertheless, it is important to note that cells can be induced to apoptosis
in different ways, including intrinsic mitochondrial pathways, extrinsic death receptor
pathways and perforin/granzyme pathways, all of them starting with the cleavage of cas-
pases and finishing with DNA fragmentation [81]. In this regard, reticulum stress-mediated
apoptosis is widely described [81–83]. Endoplasmic reticulum (ER) can cause the activation
of the unfolded protein response (UPR) under stressful situations, a process that takes
part in the re-establishment of the cellular homeostasis protecting cells from stress. After
prolonged ER stress stimuli, UPR is activated and cells are induced to death. In this respect,
proteins such as the activating transcription factor-6 (ATF6), inositol-requiring enzyme-1
(IRE1) and protein kinase RNA-activated (PKR)-like ER kinase (PERK) act as UPR sensor
proteins which activate three different signaling pathways leading cells to the induction
of autophagy or apoptosis. Interestingly, Ocoxin upregulated the expression of several
genes related to the ER stress process, including the DnaJ heat shock protein family (Hsp40)
member B9 (DNAJB9), endoplasmic reticulum oxidoreductase 1 beta (ERO1B), activat-
ing transcription factor 3 (ATF3), endoplasmic reticulum to nucleus signaling 1 (ERN1),
DNA damage inducible transcript 3 (DDIT3), tribbles pseudokinase 3 (TRIB3) and protein
phosphatase 1 regulatory subunit 15A (PPP1R15A), among others.

It is described that the activation of ATF3 promotes apoptosis and cell-cycle arrest by
inhibiting the ubiquitination of the Murine Double Minute Clone 2 (MDM2), a p53 tumor
suppressor regulator [84,85]. Moreover, Muñoz-Guardiola and his colleagues reported
that the alpha-hydroxylated polyunsaturated fatty acid (ABTL0812) promotes the overex-
pression of DDIT3 causing tumor-cell apoptosis and that TRIB3 overexpression inhibited
the protein kinase B (Akt) and the mammalian target of rapamycin (mTOR) complex 1
(AKT-MTORC1) pathway provoking cell death by autophagy [86]. Nowadays, the induc-
tion of cells to this self-degradative process has emerged as a new alternative to kill cancer
cells; thus, new anticancer therapeutic strategies try to impulse tumor-cell autophagy with
pharmacological compounds [87]. On this matter, natural compounds, namely, salino-
mycin, resveratrol and tetrahydrocannabinol, are known to activate cancer-cell death by
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autophagy-dependent mechanisms through the ER stress response [88–90]. Ocoxin also
upregulated several genes, which are directly linked to the ER stress response, which leads
us to speculate that the antitumor action of Ocoxin could also be mediated by the induction
of cancer-cell death via ER stress response promoting apoptosis or autophagy. Nonetheless,
further analyses will be performed in order to confirm this and to delve into the antitumor
mechanism of Ocoxin. In addition, the implication of TME during prostate-cancer develop-
ment and progression has to be considered when designing novel therapeutic drugs. As
previously described, prostate cancer causes metastasis mainly in bones, where diverse
molecules and cells including CAFs and osteoblasts play a pivotal role. CAFs secrete
cytokines and growth factors that prompt tumor-cell growth and boost colonization [15].
Meanwhile, osteoblasts interact with the different signals received from cancer cells and
from the TME, which enables tumor invasion by remodeling bones and by promoting the
development of metastasis [30,91]. Curiously, prostate-cancer cells show a preference for
osteoblast-rich areas [92], suggesting that osteoblasts assist metastatic development.

In this study, we confirmed that CAFs and osteoblasts increased prostate-cancer
cell viability and migration in vitro, an effect which was reverted by Ocoxin. In fact, we
formerly corroborated that Ocoxin also reduced in vitro the migration capacity of fibroblasts
themselves. Along with that, recent studies discuss the effect of natural compounds,
not only in prostate-cancer cells but and also in CAFs and osteoblasts. For instance,
Pietrovito et al., discovered that cannabinoids act on cancer cells and CAFs at the same
time by inhibiting CAF activation [38]; Silk and her colleagues reported that resveratrol
downregulates Transforming Growth Factor β (TGFβ) expression while it exerts an anti-
proliferative and a pro-apoptotic effect in prostate CAFs [37]; and Ma and her collaborators
found out that a Chinese natural medicine is able to cause CAF death and to reduce
their pro-angiogenic capacity by reducing Vascular Endothelial Growth Factor A (VEGFA)
production [39,93]. However, we could not detect any alteration regarding the presence of
CAFs and TAMs in vivo due to the small number of infiltrated cells in the tumor stroma.
This result could be a consequence of the limitations of the experimental model, that is, the
modest size of the tumors and the fact that it was subcutaneous development, which caused
tumor encapsulation and hindered external cell infiltration. Still, we observed that Ocoxin
alone reduced blood-vessel formation in vivo, and that the combination of Ocoxin and
Docetaxel decreased angiogenesis significantly compared to untreated mice, which confirms
that Ocoxin could also mediate, in part, the antitumor capacity by the modulation of the
elements that compose TME. Moreover, in this work, we also showed that even though the
presence of CAF- and osteoblast-derived soluble factors reduced the cytotoxic capacity of
Docetaxel, the adjuvant therapy decreased cell survival significantly in human prostate-
cancer cells more than chemotherapy alone. In concordance, we previously reported that
Ocoxin reduces CAF-mediated chemoresistance and the pro-tumoral activity of metastatic
melanoma [48] and we described the capacity of Ocoxin to cut down the infiltration
of activated fibroblasts and macrophages into the tumor stroma in vivo as well [49,51].
Thus, taking everything into consideration, Ocoxin arises as a suitable supplement to be
administered together with the current first- and second-line treatments in prostate cancer
to reinforce chemotherapy in two ways, acting directly against tumor cells and modulating
the TME.
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