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a b s t r a c t

In this paper, three customised Artificial Intelligence (AI) frameworks, considering Deep Learning,
Machine Learning (ML) algorithms and data reduction techniques, are proposed for a problem of long-
term summer air temperature prediction. Specifically, the prediction of the average air temperature
in the first and second August fortnights, using input data from previous months, at two different
locations (Paris, France) and (Córdoba, Spain), is considered. The target variable, mainly in the first
August fortnight, can contain signals of extreme events such as heatwaves, like the heatwave of 2003,
which affected France and the Iberian Peninsula. Three different computational frameworks for air
temperature prediction are proposed: a Convolutional Neural Network (CNN), with video-to-image
translation, several ML approaches including Lasso regression, Decision Trees and Random Forest,
and finally a CNN with pre-processing step using Recurrence Plots, which convert time series into
images. Using these frameworks, a very good prediction skill has been obtained in both Paris and
Córdoba regions, showing that the proposed approaches can be an excellent option for seasonal climate
prediction problems.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Seasonal Climate Prediction (SCP) has gained momentum in
he last decade [1], becoming an important field of study, with
pplications in very different areas such as agriculture, risk man-
gement, long-term energy planning or climate change and ex-
reme events modelling [2,3], among others. SCP problems are
pecially interesting in the current context of climate change,
ince they may have important consequences in the future [4].
ne of such climate change effects are the constantly rising
ong-termed average temperature, coined as the so-called global
arming, and associated greenhouse gases [5,6]. However, the
onstantly changing weather conditions not only affect the long-
erm temperature averages, but also stipulate temporally much
horter periods with drastically large deviations from steady lev-
ls, producing extreme phenomena such as heatwaves and severe
roughts.
Evidence shows that these extreme weather events can cause

orldwide consequences and impacts in natural resources (agri-
ulture, construction, renewable energy) [7,8], financial sector [9]
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and of course human’s health [10,11]. Also, one of the effects of
climate change is to produce warmer summers [12], which can
be further studied by predicting average summer months tem-
perature at a long-term basis. SCP related to air temperature are,
therefore, extremely important and challenging problems, due to
the long-term prediction time-horizon involved in these prob-
lems. There are many different previous works involving prob-
lems related to long-term prediction of air temperature, many of
them involving Machine Learning (ML) or Artificial Intelligence
(AI) methods. For example, there have been several previous
works discussing the application of Neural Networks to long-term
air temperature prediction problems, such as in [13], where three
different types of neural networks were applied to a problem
of daily mean, maximum and minimum temperature time series
in Turkey. In [14] a spatial–temporal graph attention network
approach is used for air temperature forecasting. In [15] a genetic
algorithm is used for input data selection in an air temperature
prediction problem by using artificial neural networks. In [16]
different artificial neural networks were applied to a problem of
daily maximum temperature prediction in Dhahran, Saudi Arabia.
Data for 18 weather parameters were considered as input vari-
ables, and the objective was to predict the maximum temperature
on a given day, with different prediction time-horizons up to 3
days in advance. In [17] a multi-layer perceptron neural network

is applied to the prediction of the maximum air temperature in
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he summer monsoon season in India. The mean temperature oft
revious months in the period of analysis is considered as inputs
or the system.

Other ML approaches have also been applied to long-term pre-
iction of air temperature. For example, in [18] a Support Vector
egression algorithm (SVR) was applied to a problem of daily
aximum air temperature prediction, with a 24 h prediction

ime-horizon. Input variables such as previous air temperature,
recipitation, relative humidity and air pressure and synoptic
ituation were considered. Results in different European mea-
urement stations were reported. In [19] a least squares SVR
lgorithm is applied to prediction of time series temperature in
audi Arabia. In [20] different ML approaches are proposed to
evelop multi-model ensembles from global climate models. The
bjective is to obtain annual prediction of monsoon maximum
emperature and minimum temperature, among other variables,
ver Pakistan. In [21] two ML algorithms (MLP and natural gra-
ient boosting (NGBoost)), are applied to improve the prediction
kills of the 2-m maximum air temperature, with prediction time
orizon with lead times from 1 to 35 days. In [22] a number
f ML algorithms such as neural networks, SVMs, RF, Gradient
oosting or Decision trees have been applied to the prediction of
urface air temperature two months in advance, with input data
wo months in advance from SINTEX-F2, a dynamical prediction
ystem. Results in data from Tokio (Japan) have confirmed the
ood skill of the prediction.
In the last years, Deep Learning (DL) algorithms have been suc-

essfully applied to long-term air temperature prediction prob-
ems, such as in [23], where a type of LSTM network (Transductive
STM) is applied to a problem of temperature prediction in Bel-
ium and the Netherlands, or [24] where a coupling of CNN and
STM (ConvLSTM) is proposed for a long-range air temperature
rediction problem. Note that such DL models get complex very
oon, and in many cases the training sample size needs to be
xtraordinary large. However, one important issue is that the
raining size is usually severely constrained, due to the availabil-
ty of the historic data. There are several public meteorological
atabases from measurements or Reanalysis [25], but many of
hem are limited to data from 1950 or 1979 such as Reanalysis
ata. This means that, in many cases there are 72 years of the me-
eorological data available effectively for the given geographical
ocation and, if severe extreme events occur every 10–15 years,
here are just a sample of extreme events incorporated within
he data. The application of DL complex models to SCP prob-
ems implies, therefore, a trade-off with the data availability, in
hich improvements can be expected by means of information

usion [26]. For example, in [27] (WeatherBench) an example
f an image-to-image translation using the CNN (among other
ethods) for medium-range weather predictions of up to 5 days
as been shown. In that paper, the inputs are organised as images,
here each pixel represents a geographical location. Similarly,
he outputs are as organised as images, hence the image-to-
mage translation. An improved WeatherBench approach with the
re-trained ResNet was proposed soon later in [28]. In [29] the
pplication of CNN on the case study for climate prediction over
hina was shown. The so-called capsule neural networks (Cap-
Nets) were proposed for DL analogue predictions in [30], where
hey have exhibited significant statistical benefits compared to
sual DL practices. In [31] an integrated framework for predicting
he sea surface temperature was proposed. The proposed method,
o-called Unet-LSTM, was based on the LSTM showed mixed
rediction skills for predicting two of the past extreme events,
gain on the image-to-image basis to emphasise the ‘‘big-picture’’
henomena.
Based on the excellent performance previously shown by ML
nd DL approaches in air temperature prediction, in this paper

2

we propose and analyse different ML and DL approaches with
data reduction techniques, for a long-term air temperature pre-
diction problem. Specifically, the objective of the research is to
predict the average temperature of the first and second August
fortnights, using meteorological data from previous months. This
problem has different climatological and energy-related applica-
tions, such as detection and attribution of heatwaves or predic-
tion of energy consumption, among others. In order to achieve
this objective, we propose the following procedure, based on
artificial intelligence techniques: we start with a first correlation
analysis among predictive variables (meteorological variables)
and the target variable (air temperature of the first and second
August fortnights). This correlation analysis defines a Geographic
Selection Area (GSA), a reduced area of study with the highest
correlation among predictive and target variables. Following, we
apply an Exhaustive Feature Search (EFS) to reduce the number of
predictive (input) variables in the modelling methods. Then, three
different computational frameworks for prediction are defined:
First, we analyse the performance of a Convolutional Neural Net-
work (CNN), with video-to-image translation. In this case, a video
stands for a sequence of half-monthly climate data and a 3D CNN
filters are exploited to reduce the input dimension to an output
image. Here, pixels represent geographical coordinates and the 3-
channelled RGB dimensions are replaced by n-channelled climate
data. This CNN with video-to-image translation has been applied
to the whole GSA defined data area. The second computational
framework, independent of the first one, analyses the perfor-
mance of several ML approaches (Multi-linear regression (LR),
Lasso regression, Decision trees (DT) and Random Forest (RF)). In
this case we have selected a single node of the GSA (the most
correlated node), and the inputs to the ML approaches are time
series of climate variables (not images). The last computational
framework also considers the CNN as a central processing el-
ement, but instead of processing the raw data, it relies on a
pre-processing step with Recurrence Plots (RPs) [32,33], which
convert time series into images. In this case, RPs share the same
initial data as the ML methods, i.e. a time series of length t for a
given geographic coordinate with the highest correlation with the
target. Two different methodologies, i.e., analogue and binarised
RPs are applied and compared. After the application of the RP, the
resulting image is applied to a CNN in order to obtain a final air
temperature prediction within this computational framework.

The proposed methodology, with the three computational
frameworks proposed are trained and validated on Reanalysis
data (ERA5 Reanalysis), considering two different geographical
locations in Europe: Paris (France, northern Europe) and Córdoba
(Spain, Iberian peninsula), where episodes of extreme summer
temperature have occurred in the last decades. For example,
August’s 2003 extreme temperature rise severely impacted south
of Spain, such as the city of Córdoba. Also, another extreme
temperature rise was recorded in August 2003 that severely
shocked the north of the France [34].

The rest of the paper has been structured in the following
way: next section discusses the different data handling and fusion
techniques used in this paper. We discuss here the Reanalysis
data used, the processing of the data into geographical area
selection and a process of feature selection to obtain the best set
of inputs data for the DL approaches. Section 3 present the pro-
posed CNN-based methods for accurate long-term air prediction.
Section 4 shows the performance of the proposed DL approaches
based on CNN, in the two geographical areas considered (Paris
and Córdoba). A comparison with alternative ML algorithms and a
discussion of the findings are also shown in this section. Section 5
closes the paper with some final remarks and conclusions on the
research work carried out.
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Table 1
Meteorological variables (data) used in the study.
No. Variable Notation

1. air temperature* (at 2m) x(t2m)
ijt

2. sea surface temperature x(sst)ijt

3. 10 m u-component of wind x(u10)ijt

4. 10 m v-component of wind x(v10)ijt

5. 100 m u-component of wind x(u100)ijt

6. 100 m v-component of wind x(v100)ijt

7. mean sea level pressure x(msl)
ijt

8. volumetric soil water layer 1 x(swvl1)
ijt

9. geopotential pressure level on 500 hPa x(geo500)ijt

* = not only input variable but output variable as well. A whole dataset is
denoted with x(k)ijt , where k represents the arbitrary data variable. The true output
is represented as yt , prediction output as ŷt .

. Data handling and data reduction techniques

Original meteorological data were obtained from a single
ource, the ERA5 Reanalysis [35], compiled and maintained by
uropean Centre for Medium-Range Weather Forecasts (ECMWF)
36] in a GRIB file format. The considered input and output
ariables are listed in Table 1, and the corresponding notation are
iven as used throughout the paper. Each data variable were ini-
ially obtained on hourly basis, ranging from 1st January 1950 to
1st December 2021, between latitude and longitude coordinates
anging [70◦N, 20◦N] and [30◦W, 30◦E], with the coordinate
esolution of 0.25 degrees.

These meteorological data were then further treated for data
eduction by temporal averaging. Downsampling was performed
or each meteorological data variable separately, on a fortnight
semi-monthly) basis. This means that the original hourly data
ere transformed into averaged fortnight data. Hence, two data
amples were created for each month, the first sample describing
he observations in the first fortnight of a given month and the
econd sample for the second one. This way, 24 downsampled
limate data samples per year were generated. A custom notation
f describing of the semi-monthly data was utilised in this paper,
.e., the τ1 represents the first fortnight of a given month, and τ2
epresents the second fortnight.

The spatial treatment of the data was carried out as fol-
ows: First, these 9 different meteorological variables were con-
idered and visualised using the coordinate (geographical) plots.
he ERA5 variables were obtained in a regular grid, consisted of
very large sized area incorporating almost the whole Europe

ncluding Iceland, part of the northern Africa and almost a half
f the Atlantic towards the USA. Three specific problems arose
ith the incorporation of such amount of data, e.g., (1) It was
xtremely difficult to process the complete available area with all
vailable meteorological variables due to computational limita-
ions; (2) It seemed intuitive that filtered and concrete subsets of
ata should lead to better DL performance than tons of unfiltered
ata; (3) Specific predictor variables, such as the x(sst)ijt , were only
vailable at certain areas, i.e., the sea, while for land areas these
alues were not defined, which could be problematic for the
rediction stage. These problems suggest that subsets of data
eed to be selected before further modelling. We called these
ubsets as ‘‘geographic area selection’’ (GAS), and their purpose
s to obtain relevant geographic areas for predicting the outputs
ŷt , compared to the true outputs yt ) in a given area of study,
.e., Paris and Córdoba in this case. GAS were obtained for Paris
nd Córdoba by calculating the Pearson’s correlation coefficients
or each meteorological variable for each geographic coordinate
vailable. Then, rectangular images considering the most relevant
reas were selected to form images, for each predictor variable
3

geographic areas for each predictor variable were allowed to be
ifferent). Image sizes of 33 × 33 were empirically recognised
s a compromise between the geographical area coverage on one
and and a homogeneity of the correlated areas on the other
larger image sizes would expose areas with less homogeneous
alues of correlation coefficients, smaller images would omit
elevant geographical information).

Pearson’s correlation coefficients between each predictor vari-
ble and a temperature in Paris or Córdoba (yt ) were calculated
s follows:

orrx(k)ij
= ρ

(
x(k)ijt , yt ′

)
, (1)

where ρ denotes the correlation coefficient calculation, x denotes
one of the 9 available data variables, indices i, j denote the pair
of location coordinates (latitude, longitude) and t is a time index.
t ′ represents the delayed time index and is used in combination
with a variable y that represents the given area temperature at
time t , t−1 (τ1) or t−2 (τ2). Variable k represents the given pre-
dictor (explanatory) variable. It must hold that lat (k)min < i < lat (k)max

nd long (k)
min < j < long (k)

max, where lat (k)min, lat
(k)
max, long

(k)
min, long

(k)
max

define the GAS area. In the next subsections, the two GAS proce-
dures carried, i.e., one for Paris and the other for Córdoba will be
presented in detail.

2.1. Geographic area selection for Paris

In order to obtain the GAS, correlation analyses for each vari-
able are performed between the averaged climate data predictors
and an averaged temperature in a given study area (city), consid-
ering a possible synoptic relation between predictive and target
variables. They are performed specifically for each predictor to
obtain the most correlated areas with temperature in a given city.
Since forecasts are always made in advance, both the coincident
(present) and time-delayed (past) scenarios of correlation analy-
ses are looked for, and a compromise between the two is taken
when selecting the GAS.

Coincident scenario considers time–coincidental pairs of the
temperature in Paris (target) and a given predictor variable for
each geographic coordinate, e.g., the series of a predictor variable
for a given geographic coordinate xij from Jan-τ1’1950 to Dec-
τ2’2021 and the yt ’s in Paris from Jan-τ1’1950 to Dec-τ2’2021. The
τ1 time delay scenario depicts the Pearson’s correlation analysis
between the time delayed yt in Paris for τ1, e.g. the series of given
predictor variable for given geographic coordinate xij from Jan-
τ1’1950 to Dec-τ1’2021 and the yt ’s in Paris from Jan-τ2’1950 to
ec-τ2’2021 (note that the sample size decreases for 1 instance in
his case). In turn, the τ2 time delay scenario depicts the Pearson’s
orrelation analysis between the time delayed yt in Paris for τ2,
.g. the series of given predictor variable for given geographic
oordinate xij from Jan-τ1’1950 to Nov-τ2’2021 and the yt ’s in
aris from Feb-τ1’1950 to Dec-τ2’2021 (note that the sample size
ecreases for 2 instances in this case). Results are visualised onto
geographic map and are interpreted with the help of a colour-
ar, where the darker the red or blue colour symbolises the larger
he positive or negative correlation, respectively. Fig. 1 and Fig. 2
epict the three Pearson’s correlation analyses for Paris, for the
irst and second part of the variables, respectively.

As expected, the yt data variable is the most correlated to
tself among all predictor variables. Regions near Paris score
orrelation coefficients near +1, the further we go, the lower the
orrelation coefficients are. Land is more correlated than the sea:
ver the Atlantic correlation coefficients in average score values
round +0.5. The further we go to the north or south, the lower
he correlation coefficient. Similar latitudes on the other hand
aintain similar correlation coefficient values. The τ delay is
1



D. Fister, J. Pérez-Aracil, C. Peláez-Rodríguez et al. Applied Soft Computing 136 (2023) 110118
Fig. 1. Correlation analysis (Paris) first part of the variables. The three columns represent the Pearson’s correlation analyses between the yt in Paris and the each
geographic coordinate for each variable x(k)ijt . ‘‘Coincident’’ = Pearson’s correlation coefficients between the coincident pairs; ‘‘τ1 ’’ = Pearson’s correlation coefficients
between pairs delayed for τ1 , ‘‘τ2 ’’ = Pearson’s correlation coefficients between the pairs delayed for τ2 . The red rectangles inside the figures denote the regions with
highest or lowest correlation coefficients.
as expected a bit less correlated and the τ2 delay even less. For
the latter, latitudes below 30◦N score correlation coefficients near
zero, therefore they cannot deliver much of an information value
towards predictions of the yt in Paris. In this case, the GAS region
is centred in Paris and extends symmetrically to north, south, east
and west.

Next, we analyse the pair of wind components at 10 m. The
(x(v10)ijt , yt ) pair obtains higher levels of correlation coefficients
than the (x(u10)ijt , yt ) pair. (x(v10)ijt , yt ) pair is similarly correlated
considering the τ or τ delay with the coincident, and can thus be
1 2

4

treated as a stable (or even leading) indicator, although of lower
correlation magnitudes, approximately −0.25. South Mediter-
ranean area and the north-west (as well as north-east) of Africa
score much higher correlation coefficients and the relation even
gets stronger by prolonging the delay. Some parts of the eastern
and western Europe seem to be highly positively correlated, but
the effect is not much homogeneous and the information value
towards predicting the yt is questionable.

No significant correlation is found in the central European area
for the pair (x(u10), y ) but strong negative correlation is found
ijt t
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g

Fig. 2. Correlation analysis (Paris) second part of the variables. The three columns represent the Pearson’s correlation analyses between the yt in Paris and the each
eographic coordinate for each variable x(k)ijt . ‘‘Coincident’’ = Pearson’s correlation coefficients between the coincident pairs; ‘‘τ1 ’’ = Pearson’s correlation coefficients

between pairs delayed for τ1 , ‘‘τ2 ’’ = Pearson’s correlation coefficients between the pairs delayed for τ2 . The red rectangles inside the figures denote the regions with
highest or lowest correlation coefficients.
between yt in Paris and the x(u10)ijt in Mediterranean sea, meaning
that the stronger the u-component of wind (westerlies) the lower
the Paris temperature. According to the dark blue colour, wind in
Mediterranean’s should be a good fit. As expected, the 100 meter
wind is more homogeneous than the 10 meter wind. Also, the
magnitudes of correlation coefficients are maintained even if in-
creasing the delay. Mediterranean’s and the north of Africa again
play an important role, just like the north of the Norway. Both of
the GAS regions were selected at the north of the Africa, x(u10)ijt at
latitudes closer to a Greenwich meridian, x(v10)ijt further away.

Both the x(v10)ijt and x(v100)ijt components that represent the
north–south component exhibit a semi-homogeneous tunnel lo-
cated at the north Africa which, we suppose, symbolises the
Sirocco wind pattern. Western and eastern parts of the north of
the Africa are of strong negative correlations but the latitudes
close to the Greenwich meridian are more to the red. Further,
the x(u10)ijt and x(u100)ijt components in central Africa are positive as
here the easterlies prevail. The GAS regions for x(u100)ijt and x(v100)ijt
are as well set at the north of the Africa.
5

The x(msl)
ijt data variable is among the more important variables.

It is utterly homogeneous, with two different zones, north-west
and south-east. The former (Atlantic) is positively correlated,
while the latter (the north of Africa) negatively correlated, mean-
ing that the higher the x(msl)

ijt on Atlantic the higher the Paris
temperature, and the higher the x(msl)

ijt in Africa, the lower the Paris
temperature. Both the positive and negative correlations enlarge
by extending the delay, thus the x(msl)

ijt should be treated as an
excellent leading indicator. The GAS is set at the extreme western
part of the Atlantic available, at high latitudes, close to Iceland.

The x(sst)ijt data variable is available only for the sea areas,
e.g. Atlantic and Mediterranean’s. The relation is highly robust for
coincident scenario, but drops substantially with the introduction
of delay. Most correlated seem to be areas of similar geographic
latitudes. On the other hand, the (x(geo500)ijt , yt ) pair exhibits much
higher relation strengths. Except a central area on the Atlantic
which seems to exhibit lower correlation pairs, correlations are
above +0.5 and persistent at the delays. The higher the x(sst)ijt or
x(geo500) values, the higher the temperature in Paris.
ijt
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Finally, the (x(swvl1)
ijt , yt ) is addressed, here the prolongation of

delay reduces the correlation fit. Strongest negative fit is found
to be on the land near across the whole Europe, meaning that
the higher the volumetric soil water layer, the lower the Paris
temperature. No correlation is found between the (x(swvl1)

ijt , yt ) pair
on sea (either the Atlantic or Mediterranean). The correlation fit
worsens by considering northern or southern latitudes, such as
north of Africa or Norway, Sweden, Iceland. An outlier, i.e. the
Alps, is spotted: here, the Alps are positively correlated. The GAS
region is selected to be covering as much as France as possible.

2.2. Geographic area selection for Córdoba

The results show in this case that the yt data variable is among
the most correlated variables again, especially for regions of the
central Europe and the north-east of the Africa. Unfortunately, the
correlation coefficients quickly reduce by introducing the τ1 and
2 delays. Again, the yt on the land is more correlated than the yt
n the sea, e.g., Atlantic; low correlations are found for yt on the
ea below latitudes 30◦N. The GAS region is centred at Córdoba.
Correlations for pairs (x(u10)ijt , yt ) and (x(u100)ijt , yt ) wind compo-

ents are similar between themselves. The Mediterranean sea is
ighly negatively correlated with the yt in Córdoba and the south
f the Europe is highly positively correlated, but the fit is not as
omogeneous as Mediterranean’s. Additionally, the north of the
ahara seems to be positively correlated with the Córdoba’s yt ,
ut the fit is due to limiting coordinates not homogeneous as
esired. Both the v-components seem to exhibit similarly positive
orrelations behaviour as in the Paris case, with the significant
ut leaky tunnel between the north of the Africa and south of
rance. Again, the south-east of the Europe is most negatively cor-
elated. The GAS regions for x(u10)ijt , x(u100)ijt , x(v10)ijt , x(v100)ijt are centred
identically to the Paris case.

The x(msl)
ijt shows a similar structure to the Paris case, yet very

interesting realisation – the larger the time delay, the higher the
correlation. Atlantic and the north-east of the Europe is positively
correlated with the Córdoba’s yt and the south-east of Europe
and north of Africa is again negatively correlated. A similar re-
alisation is with the x(sst)ijt – the higher the latitude, the higher
the correlation coefficient; although the sea surface temperature
correlation coefficient gets weaker by increasing the extending
the time delay. The (x(geo500)ijt , yt ) again realises a central Atlantic
part less related with the Córdoba yt , but for the rest of the re-
gions, especially the northern Africa, it exhibits a highly positively
related connection. The (x(swvl1)

ijt , yt ) pair shows a strong negative
correlation fit over the land, but weak or none fit on the sea. The
strongest negative fit is spotted for the similar latitudes as the
Córdoba itself. The GAS for x(sst)ijt , x(geo500)ijt predictor variables are
centred identically as in Paris case, while the x(swvl1)

ijt is centred to
cover the Iberian Peninsula (see Figs. 3 and 4).

The predictive climate variable have been then limited to the
GAS regions in order to carry out the air temperature prediction
with the ML and DL approaches. Since we are particularly inter-
ested in forecasting the summer temperatures, GAS regions were
further downsampled to include months from April to August
only. Between these, 8 time samples from April to July were
considered as input data, and 2 time samples as output model
data, i.e., August τ1 or τ2. The next subsection describes the
further data adjustment procedure.

2.3. Data adjustment procedure

The GAS procedure leaved us with the original (unit) data, thus
some data adjustment were needed before employing the pro-
posed modelling with AI techniques. Input and output data were
6

first normalised separately. First, the input data (x(k)ijt ) normalisa-
tion within the range [0, 1], was employed using the following
transformation:

x(k)
′

ijt =
x(k)ijt −mint x

(k)
ijt

maxt x
(k)
ijt −mint x

(k)
ijt

, (2)

where the x(k)ijt represents the original input set of data from April–
July, x(k)

′

ijt the normalised input climate variables, i and j represent
the coordinates (longitude, latitude), k represents each of the nine
of the climate variables considered and t ∈ [1950, 1951, . . . ,
2021] represents the time. As it can be seen in the transformation
with the index t , input data normalisation was performed specif-
ically for each year (still, all the time samples from April–July
within a given year were normalised using the same factors).

The output data (y), which effectively represents the given
area temperature data in August, either the first or second fort-
night, is adjusted twofold. First, it is adjusted using the input data
x normalisation factors, as follows:

y′ijt =
yijt −mint x

(t2m)
ijt

maxt x
(t2m)
ijt −mint x

(t2m)
ijt

, (3)

where yijt illustrates the original regional temperature output and
the y′ijt is the scaled regional temperature output data. However,
note that this adjustment does not ensure the normalised data
within the range [0, 1], rather aggregated numbers close to 1
with a very small variance. After, the adjusted y′ijt is normalised
to ensure the [0, 1] range as follows (and hence maximise the
output variance):

y′′ijt =
y′ijt −mint y′ijt

maxt y′ijt −mint y′ijt
. (4)

Also, the output data was given as an image (with appropriate i
and j coordinates), but by selecting a single pixel (e.g., i = 1, j =
1) only a specific geographical location could be extracted, i.e., y′′t .

2.4. Exhaustive feature search

There are nine different predictors (input variables) included
in the analysis carried out. Some of them may appear as redun-
dant (especially regarding the wind) and thus they are suspicious
to lower the forecasting skills of the prediction model. Exhaustive
Feature Search (EFS) is therefore employed, due to low number of
existing predictors, to test all possible combinations of predictors
(29
= 512) and return a combination of the best set of features.

Upon, the best obtained combination is taken for training and
forecasting.

In addition, note that we consider nine different modelling
methods applied in the paper (LR, Lasso, Poly, AdaBoost, DT, RF,
CNN, RP+CNN and RP+CNN+BIN). Different modelling methods
incorporate different training skills, so in order to maximise the
training skill (and consequently the forecasting skill), the most
suitable combination of predictors is sought for each modelling
method specifically. The best combination of predictors may thus
differ between methods (no universal solution may work equally
well for all methods). EFS is conducted by first generating a list of
all possible combinations of predictors. Next, each of the possible
combination of predictors is trained for each model and forecasts
are run. The mean squared error (mse) of the forecasts is then
calculated compared to the true values. Finally, the combina-
tion of predictors with lowest mse (for each modelling method
specifically) is taken as a best combination of predictors. Note
that the EFS is run for each prediction model separately (no
unique EFS solution is provided). GAS regions are selected once
only (to reduce the complexity of problem) in the data handling
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Fig. 3. Correlation analysis (Córdoba) first part of the variables. The three columns represent the Pearson’s correlation analyses between the yt in Córdoba and
he each geographic coordinate for each variable x(k)ijt . ‘‘Coincident’’ = Pearson’s correlation coefficients between the coincident pairs; ‘‘τ1 ’’ = Pearson’s correlation
oefficients between pairs delayed for τ1 , ‘‘τ2 ’’ = Pearson’s correlation coefficients between the pairs delayed for τ2 . The red rectangles inside the figures denote the
egions with highest or lowest correlation coefficients.
ection and are fixed since then, no matter the regression method.
he EFS is then run on these fixed given GAS regions for each
egression method separately. However, the obtained best set of
eatures should not be treated as definitive (it is only exhibited
o give informational value), as relocating the GAS regions should
7

change the EFS selections. Therefore, migrating the GAS regions
would mean repeating the EFS for each regression method. The
best set of features for each prediction model will be shown in
the results section.
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Fig. 4. Correlation analysis (Córdoba) second part of the variables. The three columns represent the Pearson’s correlation analyses between the yt in Córdoba and
he each geographic coordinate for each variable x(k)ijt . ‘‘Coincident’’ = Pearson’s correlation coefficients between the coincident pairs; ‘‘τ1 ’’ = Pearson’s correlation
oefficients between pairs delayed for τ1 , ‘‘τ2 ’’ = Pearson’s correlation coefficients between the pairs delayed for τ2 . The red rectangles inside the figures denote the
egions with highest or lowest correlation coefficients.
. Proposed computational frameworks based on AI for long-
erm temperature prediction

This section presents the three proposed computational frame-
orks for long-term air temperature prediction. All the pro-
osed computational frameworks exploited the same data as
escribed above. However, slight further modifications and ad-
ustments were applied to adjust the data to each of the meth-
ds unambiguously. Especially, the data sequencing procedure,
hich will be explained for each method distinctively, provided

arge differences regarding the data exploitation among the three
rameworks.

.1. Computational framework 1: convolutional neural networks

CNNs are universal, deep learning networks for processing im-
ges and videos, either for regression, classification, segmentation
r identification purposes [37]. The hearth of the CNNs is the
NN kernel, a matrix or tensor with trainable weights. Weights
8

are typically randomly initialised and are adjusted during the
CNN training. CNN kernel with weights performs a mathematical
operation of convolution and produces CNN’s hidden layers, so-
called feature map. Within a single hidden layer many feature
maps are typically produced by many distinctive CNN kernels.
Feature maps are usually of lowered dimensionality compared
to the inputs. Such dimensionality reduction depends on the
CNN kernel size and is usually minimal. Rather, dimensionality of
feature maps is controlled by the pooling operation. Pooling only
adjusts the dimensionality, but does not provide any trainable
weights. Several pooling strategies, such as maximum or average
pooling, exist. Most often, pooling is used in conjunction with a
convolution layer, in a stacked architecture where convolution is
first applied and then pooling follows. In a multi-layered CNN
such stacking combinations are applied several times, meaning
that the dimensions and number of feature maps may change
several times between CNN input and output. The CNN output
also is a feature map. It can be either treated as an image or



D. Fister, J. Pérez-Aracil, C. Peláez-Rodríguez et al. Applied Soft Computing 136 (2023) 110118

a
s
o

i
l
i

k
t
f

f
t
P
d
τ

i
t
a

Fig. 5. Demonstration of a CNN convolution.
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lternatively be flattened into a single regression value or clas-
ification probability using a dense layer. For complex regression
r classification problems, several dense layers can be applied.
Fig. 5 shows a general example of the CNN convolution. Figure

s divided into two schemes representing the same concept. The
eft scheme is more abstract, while the right more detailed. Input
nto the demonstrated CNN is the image of dimensions d1 × d2
and d3 channels (images typically incorporate three channels,
the red, green and blue). Input image is convolved with the
demonstrated CNN kernel of dimensions k1 × k2, where k1 =
2 = 3. Procedure of convolution is repeated f3-times, each
ime with distinctively initialised kernel weights. In such a way,
3 feature maps of dimensions f1 × f2 × f3 are generated. The
detailed scheme represents the extraction of dark grey coloured
subimage to be convolved with the light grey coloured kernel.
Typical CNN convolution multiplies the values of subimage with
the kernel weights element-wised and sums them. After, the bias
b is added. Finally, the result is saved as a single component
into the feature map (on figure represented by the dark greyed
colour single pixel). This process is repeated by gradually moving
the dark grey coloured subimage over the rest of the image, a
process thoroughly controlled by the kernel stride parameters.
Both the overlapping or non-overlapping scenarios of subimages
may be applied. After all suitable combinations, given by image
size, kernel size and kernel stride, are gone through, a complete
feature map is built.

Following the introductory demonstration of CNNs, the CNN
computational framework as used in the study is presented. The
use-case diagram of the originally proposed CNN computational
framework can be visualised in Fig. 7. Figure is organised as
a flowchart, and addresses three important steps of CNN ex-
ploitation (each of these steps is indicated by a grey coloured
rectangular box). First, a correlation analyses of the fused data
are run as shown in Section 2. Correlation analyses provide the
GAS regions, one per predictor, which are in the figure exhibited
by red symmetrical rectangles. Positions of GAS regions are fixed
for a given variable but may differentiate between variables.

Next, the data sequencing step follows. The purpose of the
data sequencing is to build a multivariate data structure similar
to the moving images (video). There are 9 predictors, each of
them forms a single channel. Predictor values are taken from GAS
regions for two of the each monthly fortnights (τ1, τ2). Months
rom April to July are covered, meaning that 8 different images
hat form a motion with a sequence length 8, are introduced.
rocessing of the images is always from the oldest to latest, as
epicted on Fig. 7. First comes the April’s τ1, followed by April’s
2, etc., the last image is July’s τ2. The whole motion of images
s called an instance. Each instance represents an individual year,
here will be so many instances as is the number of years of data
vailable. However, not only input variables undergo slight data
9

odifications but also the output variable does. The CNN output
ˆ ′′ijt is organised as an image and needs to be compared with an
mage during the CNN training to derive the weight corrections.
amely, if the dimension of the CNN output is lower than the
NN input (due to CNN convolutions), the true output image y′′ijt

dimensionality needs to be thus lowered as well. A symmetric
lowering of dimensions is employed as y′′′ijt = y′′ijt [l : n− l, l : n− l],
here l controls the level of lowering. Due to symmetry, the
entre of the so reduced true image is maintained.
Finally, the CNN training and forecasting procedures are run.

nstances (72 of them) are divided into two strictly non-
verlapping sets, the training and forecasting sets. As output,
ither the August’s τ1 or τ2 is applied. Fig. 6 better describes the
utline of a single instance and forecast output.
A detailed architecture of proposed CNN computational frame-

ork is visualised in Fig. 8. The figure is adjusted to exhibit a
ingle instance only. Input size of an instance is 8× 33× 33× 9
time samples × x-axis size × y-axis size × number of channels,
espectively). A 3D CNN kernel of 3 × 3 × 3 is proposed to create
he first layer of feature maps. The 32 feature maps are generated,
ach of the size 31 × 31, and the sequence is lowered from 8 to
. Next CNN hidden layer is applied by a CNN kernel of 3× 3× 3.
he number of feature maps is increased to 64 and sequence
ength decreased to 4. The final CNN kernel is of customised
imensions 4 × 3 × 3 to assure the single-channelled output
mage. The CNN output image dimension is equal to 27 × 27 and
hat is also the dimension of the true output image dimension,
ence l = (33− 27)/2 = 3.

.2. Computational framework 2: ML methods

Six different ML methods are also implemented and tested to
e applied in the air temperature forecast problems considered.
hree of them are deterministic, such as linear regression (LR),
asso regression (Lasso), and Polynomial regression (Poly), and
hree of them more sophisticated, such as AdaBoost, Decision
rees (DTs), and Random Forest (RF). In what follows, each ML
ethod is presented briefly.
LR is a traditional, easy-to-use, and a low-complex shallow

odelling method. It is able to capture linear, as well as non-
inear connections between input and output variables. Due to its
ersatility and extremely quick processing, LR is one of the more
opular benchmark methods among researchers. The original
ersion of the LR, incorporating the ordinary least square min-
mising algorithm, was proposed by mathematician Gauss [38].

Lasso regression is an advanced and automated modelling
ethod that combines the feature selection with original LR
ethodology. Developed by Tibshirani [39], the motivation of

he Lasso is to omit the redundant and less relevant predictors
rom the model and thus improve the model performance. The
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Fig. 6. Forecast diagram. One CNN input instance consists of 4 consecutive months from April to July, two fortnights per month. An output is organised as either
Aug τ1 or Aug τ2 .

Fig. 7. There are three different grey rectangles in the Figure. These dictate the workflow of CNN processing. The first rectangle symbolises the correlation analysis
for each of the 9 predictor variables, which is done for the whole geographical map available. The darker the red or blue, the greater the correlation coefficient. The
second grey rectangle symbolises the selection of the most correlated and coherent regions. A red box of dimensions 33 × 33 is placed onto the geographical map
for each predictor separately to best represent the relation between the predictor and air temperature. Both the magnitude of the correlation coefficients and the
consistency of correlation coefficients over a wider area is taken into account when placing the red boxes. From the placed GAS regions the original predictors are
then extracted. Finally, the third grey rectangle represents the exploitation of the selected predictors for CNN training and forecasting.

Fig. 8. CNN architecture. The input consists of a sequence of images (or a motion). Each image consists of 9∗ different channels, 2 images per month. Months from
April to July are covered within the input data, either August τ1 or August τ2 in the output. The CNN processes the input data using 3 separate 3D kernels, hence
2 sets of feature maps are generated (the third set of feature map is the output). The output is organised as a 2D image, with adjusted dimension size.

10
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bjective of the Lasso is to minimise the variance of regression
arameters on the behalf of so-called shrinkage parameter λ.
n original objective function (which is also used during the
xperiments), is stated as 1/2∥Y − Xβ∥22 + λ∥β∥1, where the
erm Y − Xβ represents the residual sum of squares and the
athematical notation ∥ represents the norm. The Lasso can be
lso seen as a regularisation method and is especially suitable for
atasets with higher number of features and for datasets with
igher level of uncertainty.
Polynomial regression works with the traditional LR, but trans-

orms predictors non-linearly before the use. By its nature, it
ncreases number of features, but this increase can be controlled
onveniently by the parameter setting on level of degrees.
DTs are a popular shallow estimators which are originally

urposed for classification tasks, but are also capable of solving
he regression tasks. Pioneered by Quinlan [40] and Breiman
t al. [41], DTs became a robust and reliable ML estimators and
ave since inception been applied to a large number of predic-
ion problems, including meteorological applications and climate
rediction tasks [42–44].
AdaBoost (also Adaptive Boosting) was not proposed as a

elf-standing modelling method [45]. Instead, it bases on one of
he other underlying estimators, typically DTs. Purpose of the
daBoost is to build an ensemble of DTs with different sub-
amples [46]. There have been recent successful applications of
daBoost to prediction problems in climate and related tasks such
s [47,48].
RFs are a state-of-the-art ensemble classification and regres-

ion methods that similarly as AdaBoost use DTs as an under-
ying estimators [49,50]. RFs also exploit repetitive subsampling
o build many weak-learners, which are then managed into a
trong-learner using a voting mechanism. Some recent climate
pplications with RFs are [51–53].
All the adopted ML methods are trained and tested using

he same data samples. However, some further modifications
f ML methods data are required compared to the CNN data,
ince adopted ML methods cannot process images, nor motions of
mages. A simple remediation to adjust the data for ML methods
s employed. The CNN data structure is taken as a baseline,
rom which maximum values (a single pixel) for each channel
re extracted. Initially, we have tested other extractions, such
s minimum, average or median, but extraction of maximum
alue was realised empirically as the best hit. The process of
xtracting the maximum value is repeated for each fortnight and
he temporal data are stacked horizontally as individual instances.
ormally, the extraction of maximums is denoted in Eq. (5).

(k)′′
t = max

i∈1,2,...,n

(
max

j∈1,2,...,n

(
x(k)
′′

ijt

))
, (5)

where x(k)
′′

t denotes the ML adjusted data. The equation is saying
that the spatial dependencies are removed by picking the maxi-
mum point within each channel of the image. Only two indices,
t and k, which represent time and type of the predictor variable
(channel), remain in the ML adjusted data. In this way, a lot of
the data is lost. This can be either positive, due to significant
filtration of data redundancy, since we assume that the climate
data close together are similar. Or, it can also be negative, due
to losing many of the details. Next, the use-case diagram of ML
methods is demonstrated.

The use-case diagram of ML methods is shown in Fig. 9. ML
adjusted data follows the identical correlation analyses as CNN
data to obtain GAS regions. Adjusting the ML data by maximising
each channel is thus seen as additional adjustment procedure.
Maximum values are on the use-case diagram demonstrated with
a small but visible red rectangular point and red arrows are
driven out of them. The process is repeated for each predictor and
11
individual maximum values are collated to form a vector of 1×9∗.
he process is further repeated for each fortnight (8 in total) and
ndividual vectors of predictors are stacked into an instance to
orm a vector of 1× 9∗x8, i.e., 1× 72∗.

The architecture ML data is visualised in Fig. 10. Each fortnight
s represented with the 9∗ predictors. The output is organised as
single 1 × 1 value.
Due to the ML data adjustments, the ML methods are fed with

significantly less data. Theoretically, this is a drawback, since less
data carry less information. Although, performed tests have re-
vealed that model performance is not hurt much by incorporating
less data. Therefore, we proposed to build a variant of CNN that
would operate on the ML adjusted data. ML adjusted data is seen
by CNNs as 1D. We proposed to transform the 1D data into images
by using the RP to make them more comfortable for CNNs. In this
way, the same data were exploited in the transformed way. The
next subsection describes the combination of RP and the CNN.

3.3. Computational framework 3: Recurrence plot with convolu-
tional neural network

This subsection represents the theoretical outline of the RP
transformation and associated transformation process. Two types
of RPs are used, the classic and binarised. Next, the use-case dia-
gram and the used RP+CNN(+BIN) architecture are demonstrated.

RP transformation is in general a mathematical process of
subtracting and deriving a norm of the two displaced time series
elements and the result is graphically visualised as an image. Only
a single image with 9∗ channels is created from ML adjusted data,
here the shape (ornament) of an image represents the time se-
ies of each channel. Formally, the input vector (gp) is represented
s follows (mathematical expressions are summarised from pyts
ibrary [54], please note that the variable names and indices are
ustomised):

a = (ga, ga+τ , . . . , ga+(b−1)τ ), ∀a ∈ {1, . . . , c − (b− 1)τ }, (6)

here the a runs from 1 to c − (b − 1)τ . In case τ = 1, one can
tate a simplified representation:

a = (g1, . . . , gc). (7)

here the c represents the number of timestamps. The RP calcu-
ation is derived by accounting for two iterative variables, i.e., a, d.
he output of the RP is a 2D image and is symmetric over the
iagonal, formally,

a,d = Θ(ε − ∥ga − gd∥), ∀a, d ∈ {1, . . . , c − (b− 1)τ }. (8)

athematical operator ∥ · ∥ represents the Euclidean 2D norm
etween the two timestamps a and d, and the ε represents the
o-called threshold. Threshold is optional. If used, the RP image
s binarised, if not, the RP image is the left analogue. Both of the
ptions have been tested in this computational framework, the
nalogue we denote as RP+CNN, the binarised as RP+CNN+BIN.
y nature, threshold is one of the tuning parameters. If applied,
he RP image undergoes the Heaviside step function, denoted
s Θ , which then delivers the binarisation. Three different sce-
arios of binarising the RPs exist. First of them sets the given
ercentage of 1 − p of pixels with lowest values to 0 and the
est of the pixels of percentage p to 1. The second seeks for the
aximum value of RP and sets the individual pixels which values
re less than given percentage of 1 − p of the maximum value
o 0. Others are set to 1. The third option comes with manual
pecification of threshold. Fig. 11 shows the use-case diagram of
he RP+CNN(+BIN) methods. Correlation analyses are identical to
NN and ML computational frameworks. Again, maximal values
re derived from the coordinate data and the RPs are generated
ith this adjusted data. The analogue (originally obtained) RP
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Fig. 9. There are three different grey rectangles in the Figure. These dictate the workflow of ML processing. The first rectangle symbolises the correlation analysis
and selection of GAS regions (same as for the CNN case). The second grey rectangle represents selection of GAS regions (same as for the CNN case) as well as
extraction and sequencing of the predictors. For ML methods, the whole GAS region is not taken as a predictor, but its maximum values only. Hence, ML sequencing
procedure returns time series data (compared to CNN which returns panel data). The third grey rectangle symbolises the exploitation of the selected predictors for
ML training and forecasting.
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Fig. 10. Architecture of ML data. The input consists of a 72∗ featured vector
which represent the sequence of months variables from April to July. The output
is organised as a single value for regression task and either represents the
August’s yt in τ1 or τ2 prediction horizons.

is processed as-is. For the binarised RP, the first option with
percentage of 1− p of pixels is applied.

The RP+CNN(+BIN) architecture is shown in Fig. 12. Each input
instance is organised tabularly, with dimensions 9∗×8. These are
ransformed by RP with dimensions 8 × 8 × 9∗. For the CNN, a
educed 2 × 2 kernel is employed to process the input images.
There are 32 feature maps in the first hidden layer, imitating
the CNN computational framework setting. Generated first layer
of feature maps is reduced from the 8 × 8 to the dimension of
7 × 7. Another hidden layer of 64 feature maps follows, again
imitating the CNN framework. Final CNN layer is the third layer
of 128 feature maps with the dimensions of 5 × 5. Feature maps
are collected by a single flattening layer with 128 neurons that
outputs a single regression value.

4. Experiments and results

This experimental section is divided into two subsections,
each of them dealing with long-term air temperature forecasts
 i

12
in Paris (France) and Córdoba (Spain), respectively. Two differ-
ent experiments are conducted for each area, the first one for
the shorter (τ1) prediction time-horizon, and the second one
for the prolonged (τ2) prediction time-horizon. The objective is
to forecast the air temperature ŷt in the considered study area
(cities) for the given prediction time-horizon with the minimum
possible errors (deviations). Geographical coordinates of Paris and
Córdoba were taken as 48.75◦N, 2.25◦E and 37.75◦N, 4.75◦W,
respectively (rounded to nearest quarter).

The methodology carried out is the following: First, the cli-
mate data are obtained, treated and fused, and further adjusted
to comply with the specifics of each method (Table 2 shows
the input and output data for each of the employed family of
methods). Period from April–July is adopted to represent the
sequence of input variables, and August as the target month
(forecast). In total, 72 years from 1950–2021 are considered in the
study, of which 52 instances during 1950–2001 are considered for
training, and the rest 20 instances during 2002–2021 as out-of-
sample forecasts (test). For each given study area and for each
prediction time-horizon, multiple algorithms are tested, in total
9. The first 3 of them belong to the family of deterministic shallow
ML methods, the next 3 to the family of the stochastic shallow ML
methods, the last 3 are the stochastic CNNmethods (for stochastic
methods N = 10 independent runs are considered instead of
single one, to avoid the stochastic bias). In total, 9∗ predictor
ariables and a single yt output are supplied to each model. For
ach method specifically, the EFS procedure is run.
Results are interpreted by a combination of performance

raphics and a set of performance metrics. Performance graphics
ndicate in detail (1) how consistently each method forecasts ŷ
t
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Fig. 11. There are three different grey rectangles in the Figure. These dictate the workflow of RP+CNN(+BIN) processing. The first grey rectangle symbolises the
correlation analysis and selection of GAS regions (same as for the CNN case). Extraction and sequencing of the predictors is done in the same way as for the ML. The
second grey rectangle represents how the time series data is utilised to generate the analogue and binary RPs. The third grey rectangle symbolises the exploitation
of the generated RPs for RP+CNN(+BIN) training and forecasting.

Fig. 12. CNN architecture. The input consists of a RPs of dimensions 8×8×9∗ . Months from April to July are depicted on the RPs. The CNN processes the input data
using 3 separate 2D kernels, hence 3 sets of feature maps are generated. The output is organised as a combination of a flattened and a dense layer and represents
the yt in either the τ1 or τ2 prediction horizons. No differences are made to architectures between RP+CNN or RP+CNN(+BIN). Notes: A = April, M = May, Jn = June,
Jl = July.

13
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Table 2
Input and output data as required by each of the family of methods.
Method Input Output

ML methods x′′tk y′′t
CNN x(k)

′′

ijt y′′′ijt
RP+CNN(+BIN) x′′tk y′′t

with minimum error from actual yt ; (2) how well each methods
djusts to the trend of slight yt increase within the forecasting
eriod, and (3) how well each method forecasts the yt outliers,
.e., observations far away from long-term average, therefore
ossibly indicating a heatwave or a coolwave signal appearing in
ugust summer air temperature. Performance metrics are given
n numerical values and indicate how well the forecasts are as a
hole. For each method, the following metrics are considered: (1)
he numeric rank according to the mean squared error statistical
ndicator, (2) two most common statistical indicators, i.e., mse
nd mean absolute error (mae), (3) two correlation coefficients,
.e., the Pearson and Spearman rank, with appropriate statistical
ignificance, and (4) the optimal subset of predictor variables ob-
ained by the exhaustive search. Pearson’s correlation coefficient
X,Y is calculated as shown in Eq. (9), where X represents true
emperature y′′t and Y represents predicted temperature ŷt . σ
epresents the standard deviation.

X,Y =
E[(X − X)(Y − Y )]

σX · σY
(9)

Note that Spearman’s rank correlation coefficient is also cal-
culated by using Eq. (9), where in this case X represents ranks
of true temperatures R(y′′t ) and Y represents ranks of predicted
emperatures R(ŷt ).

The evaluation function for EFS is defined as zm = mse.
valuation function is adjusted for stochastic models, as follows
n Eq. (10), effectively averaging the mseh performance among the
N = 10 runs. Here, the mseh denotes the mean squared error or
mse of the hth model, the lower the error, the better the model.
Only the best model, according to the best evaluation function
value for each method is shown in the results. Parameter settings
as outlined in Table 3 were used for ML modelling methods. Fi-
nally, the CNN and RP+CNN(+BIN) architecture settings are listed
in Tables 4 and 5.

zm =
∑N=10

run=1 mseh
N

. (10)

Kernel size settings were set to minimal values practicable,
s suggested by [56], who realised that a very small kernel size,
.g., 3 × 3, delivers significant improvements and increases the
NN effectiveness. Additionally, small kernel size has also been
sed because of the low input image size dimension, which has
een selected due to the geographical constraints, namely the ho-
ogeneous area with relatively uniform correlation coefficients.
urthermore, the kernel size has been further reduced to 2 × 2
n case of RP+CNN(+BIN) due to very small input image size
imension (8 × 8). Due to operating with very small input image
ize dimensions on one hand, but higher number of channels
n the other, no pooling layers to reduce the dimensionality
ave been introduced to any framework. The introduction of the
xperiments and results section is finalised by the Algorithm 1,
epresenting the pseudocode of the ŷt forecasts for CNN and ML.
seudocode for the RP+CNN(+BIN) is visualised separately in the
lgorithm 2 due to additions of calculating the RPs.
This pseudocode shows the workflow of the ŷt forecasts for
given study area and a given prediction time-horizon. After

he study area and the prediction time-horizon are defined, the
nput and output data are fused and adjusted to comply with the
14
Table 3
Parameter settings for the ML modelling methods. The SAMME.R is a real
boosting algorithm [55].
ML method Setting Searching range

LR

learning algorithm OLS [OLS, WLS]
Intercept included included

Lasso

Lambda (λ) 0.0005 [0.0001–0.01]
Intercept included included

Poly

No. of polynomial degrees 4 [2–4]
Intercept included included

AdaBoost

No. of estimators 100 [50–100]
Learning rate 1.0 [0.9–1.0]
Algorithm SAMME.R [SAMME, SAMME.R]

DT

Max. depth 10 [4–10]
Criterion squared-error squared-error
Splitter best [best, random]
Pruning alpha α 0.0 [0.0–0.1]

RF

Max. depth 10 [4–10]
Criterion squared-error squared-error
Bootstrap yes [yes, no]
Pruning alpha α 0.0 [0.0–0.1]

Table 4
CNN architecture. Number of channels (9∗) are subject to change due to the
exhaustive search. Batch size = 12 (searching range [12, 32, 64]), learning
algorithm = Adam (searching range [Adam, RMSProp]), learning rate = 0.001
searching range [0.001, 0.01]), decay rate beta_1 = 0.9, decay rate beta_2 =
.999, learning criterion = mean squared error.
Block type Ingredients Kernel size Size of feature maps

input 8 × 33× 33× 9∗
down 1 Conv3D/relu 3× 3× 3 6× 31× 31× 32
down 2 Conv3D/relu 3× 3× 3 4× 29× 29× 64
down 3 (output) Conv3D/sigmoid 4× 3× 3 1× 27× 27× 1

Table 5
RP+CNN(+BIN) architecture. Number of channels (9∗) are subject to change due
to the FS. Batch size = 12 (searching range [12, 32, 64]), learning algorithm
= Adam (searching range [Adam, RMSProp]), learning rate = 0.001 (searching
range [0.001, 0.01]), decay rate beta_1 = 0.9, decay rate beta_2 = 0.999, learning
riterion = mean squared error.
Block type Ingredients Kernel size Size of feature maps

input 8× 8× 9∗
down 1 Conv2D/relu 2 × 2 7× 7× 32
down 2 Conv2D/relu 2 × 2 6× 6× 64
down 3 Conv2D/relu 2 × 2 5× 5× 128
output Flatten & Dense/linear 1 1

requirements of each specific method. Then, the EFS is run for
each modelling method. Each possible combination of predictors
is sequentially trained and forecast is obtained. The deterministic
models run the trial solutions just a single time, others N = 10
imes. For the latter, an average of mseh is calculated to evaluate
he quality of forecasts. Finally, a vector of new trial solutions
m is generated. The iterative procedure is run until the stopping

criteria is met, i.e., the number of function evaluations hit the
nFEs_max. The next subsection reports the results on forecasting
the ŷt in Paris.

Code was written exclusively in Python programming lan-
guage. Data fusioning, adjusting and handling were done with
the following Python libraries: Pandas [57,58], Numpy [59] and
Xarray [60]. RPs were created in Pyts [61]. For the implementation
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Algorithm 1 Pseudocode of the temperature forecasts in a given
study area.
1: procedure Forecasting the ŷt using the CNN and ML
2: INITIALISE city and time horizon;
3: x(k)

′′

t , x(k)
′′

ijt ← FUSE and ADJUST the input data;
4: y′′t , y

′′

ijt ← FUSE and ADJUST the output data;
5: u ← GENERATE all possible combinations of predictor

variables;
6: for all possible combinations u do
7: for all modelling methods g do
8: TRAIN MODEL on subset of predictors un for model

gm;
9: MAKE FORECASTS ŷt on the trained model gm;

10: zn,m ← CALCULATE mse for the subset un for model
gm;

11: end for
12: end for
13: end procedure

Algorithm 2 Pseudocode of the temperature forecasts in a given
study area.
1: procedure Forecasting the ŷt using the RP+CNN(+BIN)
2: INITIALISE city and time horizon;
3: x(k)

′′

t ← FUSE and ADJUST the input data;
4: x(k)

′′

t ← calculate RP transformation on x(k)
′′

t ;
5: y′′t ← FUSE and ADJUST the output data;
6: u ← GENERATE all possible combinations of predictor

variables;
7: for all possible combinations u do
8: for RP+CNN and RP+CNN+BIN methods in g do
9: if RP+CNN+BIN then
0: x(k)

′′

t ← binarise RP plots x(k)
′′

t ;
11: end if
12: TRAIN MODEL on subset of predictors un for model

gm;
13: MAKE FORECASTS ŷt on the trained model gm;
14: zn,m ← CALCULATE mse for the subset un for model

gm;
15: end for
16: end for
17: end procedure

of ML methods, sklearn [62] library was chosen. The CNN archi-
tectures were implemented with Keras [63] and Tensorflow [64]
libraries.

4.1. Results for long-term temperature forecasts in Paris

This subsection starts with the comment on the yt dynamics
or Paris in years 2002–2021, and continues with the performance
raphics. Results on nine different modelling methods are visu-
lised in a shape of a 3 × 3 table. Later, the performance metrics

with a set of five statistical indicators and a best EFS combination
follow.

The daily mean air temperature (yt ) in Paris in August ranges
from 17.43◦ to 26.61 ◦Celsius, with a mean of 19.94 ◦C and a
ariance 4.96 ◦C. Period within 2002–2009 shows a very unsteady
nd difficult-to-predict yt performance, associated with an ex-

treme event in year 2003. The temperature rises rapidly during
one year, which is then followed by approximately 3 years of
yt lower than usual. Since 2009, the time series is more stable,
quasi first-order negatively autocorrelated. Therefore, we expect
15
Table 6
Statistical indicators of Paris τ1 and τ2 forecasts. Ranks in brackets represent the
non-FS ranks (all predictor variables included).
Paris τ1

rank mse mae Pearson Spearman Vars.
LR 3(9) 2.973 1.264 **0.695 0.409 011000100
Lasso 7(6) 3.316 1.519 *0.559 0.347 111100000
Poly 1(7) 1.928 1.226 **0.772 *0.535 101100100
AdaBoost 5(1) 3.092 1.236 **0.645 *0.519 111111100
DT 9(4) 3.651 1.508 **0.665 0.433 010100010
RF 8(2) 3.375 1.247 *0.559 0.424 110100100
CNN 6(5) 3.232 1.446 **0.606 0.292 100000001
RP+CNN 2(8) 2.970 1.332 **0.63 *0.517 110000100
RP+CNN+BIN 4(3) 3.007 1.295 **0.625 *0.462 000001010

Paris τ2

rank mse mae Pearson Spearman Vars.
LR 2(9) 2.704 1.159 0.401 *0.526 100010010
Lasso 3(6) 2.722 1.333 0.121 0.177 100100010
Poly 9(8) 3.299 1.475 0.253 0.25 101100010
AdaBoost 6(2) 3.062 1.457 0.091 0.116 100001011
DT 5(7) 2.938 1.362 0.343 0.365 010101100
RF 7(3) 3.064 1.478 0.081 0.123 100001011
CNN 8(4) 3.072 1.348 −0.01 0.041 111110000
RP+CNN 4(5) 2.931 1.351 0.246 0.286 010010101
RP+CNN+BIN 1(1) 2.117 1.261 *0.516 *0.487 100000001

‘‘Pearson/Spearman’’ = Pearson’s and Spearman’s rank correlation coefficients, *
= p-value less than 0.05, ** = p-value less than 0.01, ‘‘Vars.’’ = variables ordered
as {t2m, u10, u100, v10, v100, msl, sst, geo500, swvl1}. Ranks calculated on the
basis of mse value. The EFS (column Vars.) is rerun for each method and may be
different for each selected geographical area (no unique solution is obtained).

a worse performance in the first part of the time series and a bet-
ter performance in the second. Fig. 13(a) shows the performance
graphics of forecasting ŷt on shorter prediction time-horizon
first fortnight of August), and Fig. 13(b) on prolonged prediction
ime-horizon (second fortnight of August).

Interpretation of the modelling methods is as follows. For
horter time horizon, all the methods included exhibit under-
stimations during the extreme weather event in year 2003
or shorter-time horizon τ1. All of them also underestimate the
emperature drop during 2006 cool event. Contrary, all methods
ndicate the temperature increases in 2020 well. Visually, Poly
s the best fit among modelling methods in the horizon τ1,
ince it best forecasts the 2003 year heatwave and associated
emperature drop afterwards. It delivers the best compromise
etween forecasts during non-extreme (regular, typical, casual)
vents and forecasts during extreme events. ML methods show a
ower level of variability than CNN-based methods. Among them,
P+CNN+BIN is the most promising by visual means, since it de-
ivers the best compromise between variability and non-extreme
vents forecasting.
Visually, for the prolonged horizon τ2, RP+CNN and

P+CNN+BIN seem to be the best fit. Predictions are less variable
han for the horizon τ1. This is positive, but lower variability
nherently implies lower skill on forecasting extremes. Determin-
stic and ML methods lack of forecast skills in years 2005 and
016. ML techniques also lack of forecast skill in years 2011 and
014. CNN-based methods are far from perfect, but capture the
rend and magnitudes to the best degree among all methods anal-
sed. We deduce that the more complex the modelling method,
he better the forecast for prolonged time horizon.

Table 6 shows performance metrics of forecasts in Paris, for
oth τ1 and τ2. Poly is the best modelling method according
o the performance metrics for shorter prediction horizon and
P+CNN+BIN for prolonged horizon τ2. Both of them are signif-
cantly better than the rest of the methods, regarding the mse
tatistical indicator. Correlation coefficients are significant for all
ethods for shorter prediction and significant only for LR and
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Fig. 13. Forecast of average daily mean temperature in August (ŷt ) in Paris. Solid black line represents the true yt in Paris, red dotted lines represent individual runs
of ŷt , solid green represents the average of the individual runs (not applicable for deterministic models in first row). The first row represents the deterministic ML
methods, LR, Lasso and Polynomial regressions. Second row shows results for more complex ML methods, such as AdaBoost, DT and RF. The third row shows the
results of the proposed methodologies, CNN, RP+CNN and the RP+CNN+BIN.
RP+CNN+BIN for prolonged horizon (for either Pearson’s or Spear-
man’s coefficients). The use of EFS drastically lowers the number
of predictors, e.g. RP+CNN+BIN only includes two variables. As
expected, the air temperature predictor seems to be among the
more important.
16
4.2. Results for long-term temperature forecasts in Córdoba

Average daily mean August air temperature in Córdoba ranges
from 25.78◦ to 29.87 ◦Celsius, with a mean 27.66 ◦C and a vari-
ance 1.02 ◦C. Two extreme temperature events are spotted in the
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Fig. 14. Forecast of the yt in Córdoba. Solid black line represents the true yt in Córdoba, red dotted lines represent individual runs of ŷt , solid green represents the
average of the individual runs (not applicable for models in first row). The first row represents the deterministic ML methods, LR, Lasso and Polynomial regressions.
Second row represents results of more complex ML methods, such as AdaBoost, DT and RF. The third row represents the results of the proposed methodologies,
CNN, RP+CNN and the RP+CNN+BIN. Years on the x-axis, 2 m temperature in ◦Celsius on the y-axis.
test period considered, one in the famous 2003 summer, the other
in years 2017–2018. A significant cool event is spotted in year
2014. Córdoba experimented a gradual increase in temperatures
in years 2002–2021, which even more intensifies the challenge of
forecasting.

Performance graphics are visualised in Fig. 14. First impression
is that the Córdoba is more forecastable than Paris area. By far,
the best forecasts are in this case provided by the RP+CNN+BIN.
With the exception of years 2010–2013 and years 2017–2018,
17
forecasts are very similar to the actual temperatures, either at ex-
treme or non-extreme events. Among the deterministic methods,
Lasso is the best compromise. CNN variability is much decreased
compared to the Paris case, which is again a sign that different
study areas have different properties of forecastibility. Despite,
all the methods are prone to the erroneous forecasting in years
2017–2018.

Performance metrics can be found in Table 7. RP+CNN+BIN is
found to be the best method for shorter, RP+CNN for prolonged
forecast horizon. Compared to the Paris, mse of both horizons are



D. Fister, J. Pérez-Aracil, C. Peláez-Rodríguez et al. Applied Soft Computing 136 (2023) 110118
Table 7
Statistical indicators of Córdoba τ1 and τ2 forecasts. Ranks in brackets represent
the non-FS ranks (all predictor variables included).
Córdoba τ1

rank mse mae Pearson Spearman Vars.
LR 6(9) 0.903 0.740 *0.548 *0.531 100000000
Lasso 2(7) 0.778 0.720 **0.639 *0.538 100000100
Poly 9(8) 1.149 0.770 0.423 0.332 100111010
AdaBoost 7(3) 0.911 0.705 **0.577 0.441 101010100
DT 4(2) 0.833 0.745 **0.636 0.432 111010100
RF 5(1) 0.872 0.712 **0.604 *0.483 101010100
CNN 3(4) 0.814 0.741 **0.614 **0.568 111000010
RP+CNN 8(6) 1.029 0.808 **0.609 *0.486 000100111
RP+CNN+BIN 1(5) 0.718 0.696 **0.789 **0.651 000110100

Córdoba τ2

rank mse mae Pearson Spearman Vars.
LR 9(9) 1.398 1.001 0.230 0.180 000100000
Lasso 5(7) 1.093 0.906 0.364 0.331 000001110
Poly 6(8) 1.094 0.791 *0.454 0.257 101001010
AdaBoost 2(2) 0.976 0.841 0.249 0.165 111100000
DT 8(6) 1.196 0.914 **0.678 0.441 000000010
RF 3(1) 1.012 0.822 0.313 0.164 100101000
CNN 7(4) 1.145 0.755 0.396 0.322 010100100
RP+CNN 1(5) 0.971 0.857 0.373 0.314 010101000
RP+CNN+BIN 4(3) 1.028 0.829 *0.538 0.380 111011111

‘‘Pearson/Spearman’’ = Pearson’s and Spearman’s rank correlation coefficients, *
= p-value less than 0.05, ** = p-value less than 0.01, ‘‘Vars.’’ = variables ordered
as {t2m, u10, u100, v10, v100, msl, sst, geo500, swvl1}. Ranks calculated on the
basis of mse value. The EFS (column Vars.) is rerun for each method and may be
different for each selected geographical area (no unique solution is obtained).

decreased much and correlation coefficients are increased. Three
of the Pearson’s coefficients are significant for methods during
the prolonged forecast horizon. It is realised that Poly does not
deliver stable performance, since ranks are inverted compared to
the Paris and correlation coefficients are insignificant. EFS again
reduces much the sets of most suitable predictors.

5. Conclusions

Seasonal climate prediction problems involve uncertain and
demanding tasks related to forecasting the long-term steady-
levels of different climate variables, such as air temperature.
In this long-term behaviour of variables, it is possible to spot
short-term extreme events signals, such as heatwaves. Some ge-
ographical areas are in fact more exposed to weather extremes
than others, and hence, these extreme signals should appear in
the long-term prediction of climate variables at these zones. In
line with this, no universal model can fit forecasts for all the
geographical areas well, which means that not only the span
of coordinates of input data may be different to forecast in a
specific area, but also the set of the best input data features (data
variables) may be different.

Following this idea, in this paper we have tackled a problem
of long-term air temperature prediction in summer (August), us-
ing different computational frameworks based on AI techniques.
Specifically we first propose a novel approach based on CNN com-
bined with different process for data fusion and dimensionality
reduction. In the second computational framework, different ML
approaches are proposed, including Lasso, Decision trees and Ran-
dom Forest. The third computational framework also considers a
CNN, with pre-processing steps via RPs as data reduction tech-
nique. RPs have been assimilated as a compromise to exploit the
temporal structure of the data. Since the RP is a transformation of
a time-series into an image, the CNN has been further exploited
in this case with the RPs output as a processing medium.

The performance of the different proposed AI-based compu-
tational frameworks have been evaluated in two problems of
18
long-term air temperature prediction at Paris (France) and Cor-
doba (Spain), considering the prediction in the first and second
August fortnights using predictive variables from the previous
months. The results obtained seem to indicate a superior per-
formance by the RP+CNN-based approaches, albeit no unique
model is the best approach for both prediction time-horizons
considered. The proposed RP+CNN-based approaches were able
to accurately detect some maximums in the summer temperature
better than classical CNN and ML techniques. These maximum
values can be associated with heatwaves signals occurring in
August in the areas studied (Paris and Córdoba), such as that of
2003, whose signal is detectable in the August mean temperature
when comparing with other years.

As future research lines, we propose that the original CNN
model could be reworked to output not only a single channel (like
the 2 m air temperature in this paper), but rather a set of multiple
channels, including the wind information and/or volumetric soil
water layers. Increased complexity due to multi outputs could
be compensated by data augmentation techniques to achieve
identical stability of the models. Different architectures, including
auto-encoders, could be employed to exploit the benefit of con-
verging the images into a single-size and diverging it back to the
original size. In general, a larger amount of climate data could be
exploited for training the models, by including the climate data
from January–April and from September–December, to better
capture the climate trend. Also, a universal model that would fit
forecasts for all geographical areas should be built and verified
compared to the ML and DL methods.
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