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Abstract
The assembly of biological communities depends on deterministic and stochastic processes whose influence varies across 
spatial and temporal scales. Although ectomycorrhizal (ECM) fungi play a key role in forest ecosystems, our knowledge on 
ECM community assembly processes and their dependency on spatial scales is still scarce. We analysed the assembly pro-
cesses operating on ECM fungal communities associated with Cistus albidus L. and Quercus spp. in Mediterranean mixed 
forests (Southern Spain), for which root tip ECM fungi were characterized by high-throughput sequencing. The relative 
contribution of deterministic and stochastic processes that govern the ECM fungal community assembly was inferred by 
using phylogenetic and compositional turnover descriptors across spatial scales. Our results revealed that stochastic processes 
had a significantly higher contribution than selection on root tip ECM fungal community assembly. The strength of selection 
decreased at the smallest scale and it was linked to the plant host identity and the environment. Dispersal limitation increased 
at finer scales, whilst drift showed the opposite pattern likely suggesting a main influence of priority effects on ECM fungal 
community assembly. This study highlights the potential of phylogeny to infer ECM fungal community responses and brings 
new insights into the ecological processes affecting the structure and dynamics of Mediterranean forests.

Keywords Ectomycorrhizal fungi · Community structure · Assembly processes · Environmental filtering · Biotic 
interactions · Mediterranean mixed forests

Introduction

Understanding the ecological processes behind community 
organization is key to predict the establishment and coexist-
ence of local species pools (Pearson et al. 2018). They have 
been classified into selection, dispersal, drift and specia-
tion (Vellend 2010). Speciation operates at a wide temporal 
scale and it is expected to have little effect in organizing 
communities able to exchange individuals, i.e. belonging to 
the same metacommunity. The other processes can be clas-
sified into deterministic that may conduct selection from the 
regional species pool (e.g. species interactions and environ-
mental filters), and stochastic, based on probabilistic events 
associated with population demography: drift (i.e. popula-
tions fluctuating by chance) and dispersal (i.e. the ability of 
individuals to move across communities) (Stegen et al. 2012; 
Ning et al. 2020). Dispersal may have contrasting effects: 
when it is limited, it enhances stochastic drift, whereas high 
dispersal may cause mass effects that homogenize commu-
nities (Stegen et al. 2013; Evans et al. 2017). Deterministic 
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processes fit into the niche theory that assumes that species 
environmental requirements determine community assem-
bly (Chesson 2000; Goberna et al. 2019; Viana and Chase 
2019).

This theoretical scheme is dynamic and the relative 
importance of deterministic and stochastic processes varies 
across spatial and temporal scales (Chase and Myers 2011; 
Kivlin et al. 2014; Davison et al. 2016; Viana and Chase 
2019). In fact, the effect of deterministic mechanisms such 
as environmental filtering is usually observed across broad 
abiotic gradients. Meanwhile, the importance of biotic inter-
actions, together with stochastic processes, increases as the 
environment becomes more homogeneous at smaller scales 
(Götzenberger et al. 2012; Vályi et al. 2016).

Soil microbial communities show complex structural and 
functional responses to the environment that might hinder 
our understanding of community assembly processes (Pérez-
Izquierdo et al. 2019). Microbial community features, such 
as phylogenetic relatedness (Miller et al. 2017) or functional 
traits (Martiny et al. 2013; López-García et al. 2018), are 
increasingly relevant in studying the assembly of microbial 
communities. Thus, to infer ecological processes, Stegen 
et al. (2013) proposed an analytical framework combining 
both the phylogenetic turnover (i.e. the averaged evolution-
ary distance among taxa in different communities) and com-
positional turnover of microbial communities. In fact, both 
abundance-based and phylogenetic information are currently 
steadily explored in microbial ecology by using null model 
approaches (Tripathi et al. 2018; Zhao et al. 2019; Pereira 
et al. 2020). Null modelling allows estimating the extent to 
which the structural patterns of the observed community 
differ from random expectations derived from stochastic pro-
cesses (Chase and Myers, 2011; Münkemüller et al. 2020). 
This analytical approach may also link the dependency of 
assembly processes to spatial or temporal scales (Kivlin 
et al. 2014; Viana and Chase 2019; Zhao et al. 2019). Thus, 
Davison et al. (2016) demonstrated the shift from environ-
mental filtering towards biotic interactions from broader to 
finer spatial scales by studying the phylogenetic structure of 
arbuscular mycorrhizal fungal communities collected world-
wide. However, despite this potential, the null modelling 
approach has been barely implemented to analyse the scale 
dependency of ectomycorrhizal (ECM) fungal community 
assembly rules (but see Pickles et al. 2012).

The ECM symbiosis has key ecological and biogeochem-
ical implications in forests, such as affecting net primary 
production and promoting nutrient mobilization through 
belowground mycelial networks (Lu and Hedin 2019; Rog 
et al. 2020; Tedersoo et al. 2020). The species composition 
of ECM fungal communities is influenced by geographical 
and abiotic environmental conditions (e.g. climate, season-
ality or soil properties, Rincón et al. 2015; Pérez-Izquierdo 
et al. 2017; van der Linde et al. 2018), biotic factors such 

as the host partner (Pérez-Izquierdo et al. 2017; Wang et al. 
2019), dispersal ability and fungal life-history differences 
across taxa (Peay et al. 2012) and the interaction of both 
biotic and abiotic factors (Buscardo et al. 2010; Põlme et al. 
2013). However, the spatial hierarchy of assembly processes 
governing ECM fungal communities remains unclear (Zhao 
et al. 2019) and particularly in the Mediterranean area where 
such kinds of studies are scarce. The Mediterranean basin 
is a biodiversity hotspot where species have diversified by 
adapting to particular environmental conditions, such as 
large soil heterogeneity, severe seasonal droughts or fire 
recurrence (Rundel et al. 2016; Pérez-Valera et al. 2018; 
Pérez-Izquierdo et al. 2020). These adaptations have led to 
highly diverse biological communities with complex assem-
bly processes (Rincón et al. 2014; Alcántara et al. 2018).

Under this environmental context, we aimed to identify 
the main potential factors and underlying processes explain-
ing ECM fungal community structure in Mediterranean 
mixed forests. We also wanted to study the habitat scale 
dependency of these assembly processes. We expected that 
ECM fungal communities would be deterministically assem-
bled due to the relatively high dispersal potential of this 
fungal group (Peay et al. 2012) (hypothesis 1). That notwith-
standing, and as formerly stated (Stegen et al. 2013; Vellend 
et al. 2014; Peay 2018), the relative importance of determin-
istic (environmental filtering) vs. stochastic (dispersal limita-
tion and drift) assembly processes should change with the 
spatial scale, with stochastic forces increasing in importance 
at smaller scales (hypothesis 2). To test these hypotheses, we 
analysed, at different spatial scales, the structure of root tip 
ECM fungal communities of three dominant plant species of 
Mediterranean mixed forests in Southern Spain.

Materials and methods

Study site and sampling design

This study was conducted on mixed forests located in two 
protected areas in Southern Spain (hereafter sites) (Fig. 1): 
Natural Park of Sierras de Cazorla, Segura y Las Villas 
(38.29°N, − 2.57°W, hereafter called Segura) and Sierra 
Sur de Jaén Park (37.64°N, − 3.73°W, hereafter called Jaén). 
Mixed forests of Pinus halepensis Mill., Quercus ilex L. 
and Quercus faginea Lam. dominated in Jaén, and mixed 
forests of Pinus nigra subsp. salzamanii J.F. Arnold, Pinus 
pinaster Ait., Q. ilex, Q. faginea and Quercus pyrenaica 
Willd. in Segura (Pulgar et al. 2017; Alcántara et al. 2018). 
The understory plant species often found was highly diverse, 
belonging to the genera Cistus, Crataegus, Juniperus, Ros-
marinus and Thymus, among others. Both sites show simi-
lar geological context (Siles et al. 2010). In the region, the 
climate is continental Mediterranean, with an annual mean 
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rainfall of 800–1000 mm and a mean annual temperature of 
10–12 °C.

Experimental design and sample processing and analy-
ses are detailed in Suppl. Info. Appendix 2. Briefly, three 
plant species were sampled at both sites (Cistus albidus L., 
Q. faginea and Q. ilex). We collected ECM root tips from 
four individuals per plant species in four plots per site that 
were molecularly analysed (final n = 92) by Illumina Miseq 
(ITS-1 rDNA region). Gravimetric moisture (GM), pH and 
organic matter (OM) content of soils were also determined. 
Raw sequences were processed with DADA2 pipeline v1.16 
(Callahan et al. 2016; R Core Team 2021) and the LULU 
algorithm (Frøslev et al. 2017). Operational taxonomic units 
were obtained by clustering amplicon sequence variants at 
a 97% similarity and their taxonomy was checked against 
UNITE database v7.2 (Abarenkov et al. 2010). OTUs were 
classified by fungal guilds with the FUNGuild database v1.0 
(Nguyen et al. 2016). The final output yielded 449 OTUs and 
6,582,941 reads related to the ECM lifestyle. Homogeneous 
sequencing depth across samples was confirmed by rarefac-
tion (vegan R package, Oksanen et al. 2019) (Fig. S1).

Plant and ECM fungal phylogenies

The phylogeny of plant species used in this study has been pre-
viously published by Alcántara et al. (2018). The ECM fungal 
community phylogeny was estimated with the program Phy-
lomatic as implemented in Phylocom 4.2 (Webb et al. 2008) 
and the BEAST software v.1.10.4 (Suchard et al. 2018). The 

phylogenetic tree was generated with a reference fungal mega-
tree, whose topology and age for major nodes were inferred 
from the phylogenetic information available in the literature 
(Pérez-Izquierdo et al. 2019). The input for Phylomatic was 
the list of fungal OTUs that was matched to the most resolved 
position in the mega-tree previously constructed, so that if any 
genus was missing from the mega-tree, a polytomy of gen-
era within that family was returned (Moles et al. 2005). For 
the remaining undated nodes, ages were estimated with the 
BLADJ algorithm in Phylocom (Webb et al. 2008) that dis-
tributes undated nodes evenly between nodes of known ages. 
To check for the robustness of results to the topological and 
chronological uncertainty introduced by the Phylomatic and 
BLADJ procedures, an additional phylogenetic tree based on a 
branch length adjustment procedure that follows a birth–death 
evolutionary model while randomly resolves the polytomies 
in the BEAST program was constructed (Drummond and  
Rambaut 2007; Kuhn et al. 2011). Markov Chain Monte Carlo 
(MCMC) analyses for 5 ×  106 iterations were run, sampling 
trees every  103 iterations, discarded a 25% burn-in and recov-
ered the maximum clade credibility tree using the TreeAnnota-
tor v1.5.4 software (Drummond and Rambaut 2007).

Data analyses

Drivers of ECM fungal community composition

The distribution of measured soil variables (pH, OM and 
gravimetric soil moisture previously log transformed) was 

Fig. 1  Location of the study 
sites and plots in Southern 
Spain: Sierra Sur de Jaén park 
(referred as Jaén, triangle), and 
Sierras de Cazorla, Segura y las 
Villas natural park (referred as 
Segura, square)
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tested via linear mixed-effect models (LMMs) with host 
plant species identity and season as fixed factors, and site 
and plot nested in site as random factors. The interaction host 
plant × season was not significant and it was discarded from 
models. The same model was used to analyse the nearest 
taxon index (NTI) (Webb et al. 2002) as a measure of phylo-
genetic distance between OTUs in a single community. NTI 
allows the inference of potential assembly processes, i.e. phy-
logenetic similarity or clustering of fungi would indicate the 
action of an environmental filter, while overdispersion that 
of competition. NTI was quantified with the ses.mntd func-
tion and taxa.labels as null model (999 null communities in 
picante R package) and the relative abundance and the phy-
logenetic distance matrices of the ECM fungal communities. 
The significance of fixed and random factors was determined 
with the Anova (car R package) and rand functions (lmerTest 
R package) respectively, and their relative contribution by the 
coefficient of determination (pseudo-R2) calculated with the 
r.squaredGLMM function (MuMIn R package). Significant 
differences of predicted means were separated by the Tukey 
test (HSD.test function, agricolae R package).

Phylogenetic relatedness is a good proxy for shared traits 
of species, allowing to identify environmental filters driv-
ing community assembly (Martiny et al. 2015; Goberna and 
Verdú 2016; Rog et al. 2020). Thus, we used the β-nearest 
taxon index (βNTI), which is the between-assemblage ana-
logue of NTI (Fine and Kembel 2011). βNTI was calculated 
with qpen function and taxa shuffle as a null model (999 null 
communities in iCAMP R package).

To disentangle the weight of biotic (plant species), abiotic 
(environmental properties) factors, and stochastic events in 
driving phylogenetic turnover (βNTI) of the fungal com-
munity, we subjected to principal component analysis (PCA) 
the soil abiotic variables, the spatial variables—previously 
decomposed via principal coordinates of neighbourhood 
matrix (PCNM, Borcard and Legendre 2002)—and the two 
principal coordinates axes of phylogenetic distances among 
plant species (Stegen et al. 2013). The significant influence 
of PCA axes on βNTI was tested by forward selection based 
on distance-based redundancy analysis (dbRDA) (ordistep 
and capscale functions in vegan R package).

To determine if any environmental or spatial variable could 
be driving species composition independently of their phylog-
eny, we applied the approach described for βNTI to the Raup 
Crick metric based on Bray–Curtis dissimilarity (RCBray) 
that measures the turnover of OTUs composition against that 
expected by chance (Stegen et al. 2013). This metric was cal-
culated with the qpen function and taxa shuffle as the null 
model (999 null communities in the iCAMP R package).

Finally, to check the fungal taxonomic groups related to 
the community phylogenetic turnover, we calculated the 
principal coordinate axes (PCoA) of βNTI (function pcoa 
in the ape R package). PCoA axes were correlated with the 

significant PCA axes, derived from the forward selection, 
by applying the Spearman method with Bonferroni adjust-
ment, using the corr.test function in the psych R package. 
PCoAs significantly related to PCA axes were tested against 
the relative abundance of main fungal phyla (Ascomycetes, 
Basidiomycetes) and families, following the same correla-
tion analysis procedure as described above.

The main trends of ECM fungal community composition 
were represented by using a non-metric multidimensional 
scaling (nMDS) (Bray–Curtis dissimilarity, metaMDS func-
tion, vegan R package), where host plant species and site 
were plotted together with the abundance of ECM fungal 
taxa (envfit function 999 permutations, vegan R package).

Ecological assembly processes acting on ECM fungal 
communities across spatial scales

To estimate the relative importance of the different assem-
bly processes operating in the ECM fungal communities 
(hypothesis 2), we followed the analytical approach described 
by Stegen et al. (2012, 2013) (Fig. 2). We first discriminate 
among deterministic (i.e. selection) and stochastic processes 
by the βNTI values calculated for each pair of samples. When 
|βNTI|> 2, i.e. when the phylogenetic turnover is significantly 
smaller (βNTI < − 2) or greater (βNTI > 2) than expected by 
chance, it indicates that community assembly is affected 
by habitat filtering processes (selection). When |βNTI|< 2 
(i.e. − 2 < βNTI < + 2), βNTI values are non-different from 
random expectations showing communities mainly driven by 
dispersal and/or drift processes (stochasticity) (sensu Stegen 
et al. 2013). To more finely delimit the stochastic processes, 
the matrix of RCBray values was calculated with the qpen 
function in iCAMP R package. RCBray > 0.95 that did not 
show |βNTI|> 2 assigned dispersal limitation processes oper-
ating in community assembly, RCBray < − 0.95 that did not 
show |βNTI|> 2 indicated homogenizing dispersal (i.e. high 

Fig. 2  Schematic workflow for the inference of deterministic and sto-
chastic processes through the community phylogenetic (βNTI, expressed 
in absolute values) and compositional (RCBray) turnover indices
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dispersal ability of ECM fungal species) and |RCBray|< 0.95 
assigned drift as the determinant of community assembly 
(Fig. 2, Stegen et al. 2013). Both metrics (βNTI and RCBray) 
were calculated across spatial/habitat scales (regional, site, 
plot nested in site and host plant species nested in plot and 
site) by restricting the input abundance matrices, used for cal-
culating the null communities, to regional, site, plot and host 
plant species, respectively. The relative contribution of each 
assembly process at each scale was determined as the number 
of community-community turnover assigned to each assembly 
process. A χ2 test was used to detect significant differences in 
the proportion of assembly processes across spatial scales.

Finally, to seek for the presence of species interactions 
driving the assembly of ECM fungal communities across 
scales, NTI values were calculated for each spatial scale, simi-
lar to what was done with the previous metrics. The signifi-
cance of averaged NTI values at each scale respect to the null 
expectation was assessed by means of t test (p < 0.05) and dif-
ferences between spatial scales were evaluated by the Tukey 
test with the function HSD.test in the agricolae R package.

All analyses conducted in this study were carried out with 
functions and packages of the R free software v.4.1.1 (R 
Core Team 2021).

Results

The studied sites (Fig. 1) differed in soil properties, with 
higher pH and OM found in Jaén (pH 7.7 ± 0.1 and OM 
16.5 ± 2.1%) than Segura (pH 6.6 ± 0.2 and OM 8.9 ± 1.0%) 

(Tables 1 and S1). Soil pH varied significantly between host 
plant species, but differences were mainly driven by samples 
from Segura, where C. albidus (7.1 ± 0.2) showed higher 
values than Quercus spp. (6.4 ± 0.1; 6.3 ± 0.2).

The ECM fungal community dissimilarity did 
also vary across sampling sites and host plant species 
(Tables 1 and S1; Fig. 3). The nMDS revealed that the abun-
dance of Pezizales significantly correlated with C. albidus 
in Jaén and that abundance of Russulales and Helotiales did 
correlate with Quercus spp. in Segura (Fig. 3). NTI values 
were positive at all spatial scales analysed, and different 
from null expectations (Tables S1 and S2), pointing to phy-
logenetic clustering of ECM fungal communities.

Drivers of ECM fungal community composition

Two PCA axes, composed by environmental and spatial 
variables, were found to drive the phylogenetic composi-
tion of ECM fungal communities (βNTI) (Fig. 4; Table 2). 
Depending of the components of significant PCA axes, 
they were interpreted as follows: those correlated to soil 
or plant phylogenetic variables were considered as ‘meas-
ured’ environmental filters, while PCA axes correlating with 
PCNM axes (spatial variables), but not with measured vari-
ables, were considered ‘unmeasured’ environmental filters 
(Table S3). Our results showed that PCA 4 mainly corre-
lated with plant phylogeny (first PCoA axis, differentiating 
C. albidus from Quercus spp.; see Table S3), hence repre-
senting a ‘measured’ environmental filter. PCA 9 did also 
significantly correlate with βNTI, mainly due to PCNM 6, 

Table 1  Effect of the fixed factors season and host plant identity and 
the random factors site and plot (nested in site) on soil parameters and 
ectomycorrhizal fungal diversity indices, analysed by linear mixed-
effect models. F and χ2 values with sub-indexes indicating the degrees 

of freedom for each factor are respectively given for fixed and random 
factors, and significant effects are noted in bold. The coefficient of 
determination (pseudo-R.2, i.e., variance explained) is shown for fixed 
and random factor pools

ns non-significant, OM organic matter (log transformed), GM gravimetric moisture (log transformed), S fungal richness (log transformed), NTI 
nearest taxon index calculated for the full system
***p < 0.001
**p < 0.01
*p < 0.05
. p < 0.10

Fixed factors Random factors Pseudo-R2

Season Host plant identity Site Plot (site) Fixed Random

Soil parameters
pH F2

1 = 25.44 *** F2
2 = 5.40 ** χ2

1 = 13.56 ** χ2
3 = 1.11 ns 0.09 0.70

OM F2
1 = 0.92 ns F2

2 = 0.99 ns χ2
1 = 3.15 χ2

3 = 13.09 *** 0.01 0.58
GM F2

1 = 56.47 *** F2
2 = 2.06 ns χ2

1 = 0.00 ns χ2
3 = 14.03 *** 0.32 0.19

ECM community diversity
STotal F2

1 = 2.35 ns F2
2 = 2.43 χ2

1 = 0.45 ns χ2
3 = 3.82 0.06 0.17

SAscomycetes F2
1 = 0.11 ns F2

2 = 9.40 *** χ2
1 = 0.41 ns χ2

3 = 2.71 0.16 0.14
SBasidiomycetes F2

1 = 4.51 * F2
2 = 0.57 ns χ2

1 = 2.06 ns χ2
3 = 2.66 ns 0.04 0.26

NTI F2
1 = 4.37 * F2

2 = 1.11 ns χ2
1 = 1.43 ns χ2

3 = 0.00 ns 0.07 0.05
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which represents the narrowest spatial scale and a spatially 
structured ‘unmeasured’ environmental filter.

βNTI was decomposed into PCoA axes, and those axes 
significantly correlating with PCA 4 and 9 (Table  S4) 

revealed the variation of certain fungal families. In fact, 
PCoA 5 and PCoA 36 (related to PCA 4, r = − 0.34, 
p < 0.001 and r = − 0.24, p = 0.02), correlated with the rela-
tive abundance of Gomphidiaceae plus Russulaceae (nega-
tively), and Tuberaceae (positively), respectively (Table S4). 
By contrast, PCoA 9 (related to PCA 9, r = − 0.21, p = 0.04) 
did not correlate with any fungal family. In the case of 
PCoA axes 44 and 57 (related to PCA 9, r = 0.21, p = 0.05, 
and r = − 0.23, p = 0.03, respectively), only PCoA 57 sig-
nificantly correlated with the abundance of Helvellaceae 
(positively) and Pezizaceae (negatively) (Table S4).

Focusing on compositional ECM fungal community turn-
over  (RCBray), whether a PCA axis did significantly drive it, 
but not that of βNTI, it was interpreted as an indication of 
dispersal limitation (i.e., limiting species distribution) or, 
alternatively, as an environmental driver acting on traits non-
phylogenetically conserved. The  RCBray outcomes were only 
marginally influenced by PCA 3, which was related to the 
second PCoA axis of plant phylogeny, i.e. differentiating 
equally between the three plant species (Table 2).

Scale dependency of ECM fungal community 
assembly processes

ECM fungal community turnover was explained to a differ-
ent extent by different assembly processes, depending on the 
habitat scale (Fig. 5). Homogenizing dispersal was the process 
explaining the least number of community turnovers and it did 
not change with scale (χ2 = 0.94, p = 0.82). By contrast, selec-
tion (χ2 = 20.79; p < 0.001), dispersal limitation (χ2 = 163.00; 
p < 0.001) and drift (χ2 = 124.45; p < 0.001) did show signifi-
cant variations across habitat scales. Selection explained a 
small percentage of community turnover and its importance 
decreased between the regional and the rest of the scales 

Fig. 3  Structure of ectomyc-
orrhizal fungal communities 
associated with the plant species 
of this study: Cistus albidus, 
yellow; Quercus faginea, 
pink; and Quercus ilex, brown. 
Fungal community composition 
was analysed by non-multidi-
mensional scaling (stress = 0.29) 
on the Bray–Curtis dissimilarity 
matrix. Strength and direction 
of vectors indicate the relative 
weight of occurring fungal 
orders in structuring ECM 
fungal communities (correlation 
significance: ‘***’ p < 0.005, 
‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ 
p < 0.1)

Fig. 4  Effects of environmental variables on the phylogenetic turno-
ver (βNTI) of ectomycorrhizal fungal communities. Distance-based 
redundant analysis (F2,89 = 3.37, p < 0.01) using significant principal 
components (PC) after forward selection (arrows). PCA 4 signifi-
cantly correlated with the phylogenetic distance between C. albidus 
(yellow) and Quercus spp. (Q. faginea in pink and Q. ilex in brown) 
(see Table  S3). Ellipses enclose βNTI values for each plant spe-
cies (plotted by using the standard errors with ordiellipse function, 
vegan R package). PCA 9 significantly correlated with the narrow-
est decomposed spatial variable, indicating a spatially structured 
unmeasured environmental variable affecting ectomycorrhizal fungal 
phylogenetic turnover βNTI
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(Fig. 5). Drift decreased in importance when reducing the 
scale, while dispersal limitation followed the opposite pattern, 
increasing in importance when reducing the scale (Fig. 4).

Despite the general significant phylogenetic cluster-
ing revealed by the NTI analysis at every analysed habi-
tat scale, it showed no variation across habitat scales 
(Table S2).

Discussion

Drivers of ECM fungal community composition

The fact that phylogenetic clustering was predominant 
across habitat scales indicates that environmental filtering is 
a widely distributed assembly force of root tip ECM fungal 
communities of the Mediterranean mixed forests, as previ-
ously reported in other forest ecosystems (Koide et al. 2011; 
Pena et al. 2017). Contrary to our expectations, we did not 
observe strong relationships between ECM fungal commu-
nities and the studied soil variables. If any, they were prob-
ably masked by the great effect of host plant identity (e.g. 
pH was significantly higher under C. albidus than Quercus 
spp.). The pH gradient, mediated by the plant species iden-
tity, could be a determinant to filter the regional ECM fungal 
species pool (i.e. Ascomycetes are usually tied to higher soil 
pH), as other studies have evidenced in soil microbial com-
munities (Vályi et al. 2016; Glassman et al. 2017; Tripathi 
et al. 2018), and would explain the correlation of this fungal 
phylum with C. albidus (particularly Pezizales and the fam-
ily Tuberaceae within this fungal order). Contrary, Gom-
phidiaceae and Russulaceae (Basidiomycetes) showed the 
opposite trend. Although the three soil variables analysed 
are commonly reported as the main environmental predic-
tors of ECM fungal community assembly (Glassman et al. 
2017; van der Linde et al. 2018), the phylogenetic turno-
ver observed in our study system revealed that other non-
measured spatially structured environmental variables (e.g. 
temperature, soil texture, quality of organic matter or soil 
key nutrients) might also explain ECM fungal community 

Table 2  Forward selection based on distance-based redundant analy-
sis (dbRDA) models of principal component analysis (PCA) axes (see 
Table S3) explaining phylogenetic (βNTI) and compositional  (RCBray) 
turnover of the ectomycorrhizal fungal communities. Depending on 
which variables loaded a PCA axis, it was classed as environmen-
tal measured variables (ENV measured) when heavier loadings were 
associated with soil variables and PCoAs (i.e. host plant) and spatially 
structured environmental unmeasured variables when spatial variables 
explained βNTI in the dbRDA (ENV unmeasured) (see Table S3)

Df degrees of freedom, AIC Akaike information criterion
p codes: ** < 0.01; . < 0.1

(A) Forward selection of variables  
driving βNTI

Adjusted R2 Df AIC F p
PCA 9 (ENV  

unmeasured)
0.20304 1 89.991 3.3863 0.009**

PCA 4 (ENV  
measured)

0.39767 1 88.678 3.2636 0.010**

All PCA 1.0201
(B) Forward selection of variables  

driving RCBray

Df AIC F p
PCA 3(ENV  

measured)
1 373.73 1.2638 0.099

Fig. 5  Percentage of ectomy-
corrhizal fungal community 
turnover explained by differ-
ent assembly processes across 
habitat scales (region, site, plot 
nested in site and host plant 
species nested in plot and site). 
Differences across scales for 
each assembly process were 
assessed via a χ.2 test. Signifi-
cant results are highlighted in 
bold (p < 0.05)
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outcomes (Pena et al. 2017; van der Linde et al. 2018). This 
phylogenetic preference points towards the conservation of 
ecological traits in the evolution of ECM fungi (e.g. produc-
tion of fruit bodies and spores, dispersal strategies, host pref-
erence or mycelium exploration type) (Treseder and Lennon 
2015; van der Heijden et al. 2015; van der Linde et al. 2018). 
These results partially confirmed our first hypothesis: the 
ECM fungal community significantly depended on the host 
plant species identity and soil properties.

Despite the significant effect of environmental predictors, 
our results further revealed that all types of assembly pro-
cesses described in Vellend (2010) had a role in configuring 
the ECM fungal communities. The magnitude of the influ-
ence of each process did largely vary. In fact, dispersal limi-
tation and drift had a much greater role than deterministic 
(i.e. selection) processes contrary to our expectations (first 
hypothesis). This result suggests that stochastic mechanisms, 
such as priority effects (i.e. arrival timing of species into 
the community), could be key to understanding ECM com-
munity assembly outcomes (Peay 2018). Indeed, it is known 
that the early arrival of ECM fungal species to colonize 
root tips can limit the establishment of later arriving taxa, 
what would explain the role of dispersal limitation in the 
metacommunity (Kennedy et al. 2009; Napoli et al. 2010; 
Thoen et al. 2019). However, the lower extent of selection 
structuring ECM fungal communities could be an artefact of 
the used methodological approach. This approach relies on 
the assumption of phylogenetic conservatism of functional 
traits that, in the case of ECM fungi, could be challenged by 
their paraphyletic nature (Tedersoo et al. 2010). In any case, 
the fact that community compositional turnover (measured 
through  RCBRAY ) did not reveal any contribution of selection 
would also confirm the greater role of stochasticity over the 
selection on the ECM community assembly in our study 
system.

ECM fungal community assembly processes were 
habitat scale dependent

The influence of assembly processes revealed differences 
with the analysed scale confirming our second hypothesis. 
Drift and dispersal limitation did explain most of this vari-
ation and both processes showed opposite patterns, being 
the former more influent at lower scale (host plant) and the 
last at higher scale (regional). Our results were consistent 
with the framework proposed by Zobel (1997) and previ-
ously tested by Davison et al. (2016) on arbuscular mycor-
rhizal fungal communities: the higher importance of disper-
sal limitation at finer scales, which might be related to the 
potential main role of priority effects also driven by com-
petition, i.e. first taxa arriving within the system determine 
the establishment of the later taxa (Pickles et al. 2012). On 

the other hand, homogenizing dispersal showed a general 
low contribution to assembly and did not vary across habi-
tat scales, suggesting that communities were not assembled 
by few highly abundant or highly dispersed taxa (i.e. mass 
effect) (Evans et al. 2017). As expected, selection gener-
ally diminished with habitat scales (Chase 2014; Zhao et al. 
2019), likely influenced by those dominant ECM fungal 
taxa whose relatively high abundance could be reinforced 
by priority effects (Moeller and Peay 2016). The lack of 
differences in phylogenetic clustering across habitat scales 
seems to point out towards a lack of hierarchical effect of 
spatial scale on biotic interactions governing ECM fungal 
community assembly that has been previously described for 
other microbial groups (Götzenberger et al. 2012; Davison 
et al. 2016; Vályi et al. 2016; Goberna et al. 2019). In any 
case, the eventual absence of spatial hierarchical assembly 
might be supported by the functional redundancy of dis-
tantly related ECM fungal taxa (i.e. lack of phylogenetic 
conservatism on functional traits) (Pena et al. 2017). This is 
particularly important in environments such as the Mediter-
ranean, where inter- and intra-annual environmental vari-
ability can lead to increasing stochastic events that would 
mask hierarchical assembly outcomes within communities. 
This idea would argue the need to complement the phylo-
genetic information obtained from the ECM fungal com-
munities studied with other aspects of functional diversity 
(e.g. fungal traits, Põlme et al. 2021) in order to reveal the 
mechanisms underlying ECM fungal community assembly 
in Mediterranean forest ecosystems.

Conclusions

In this study, we have found that (1) spatial factors and host 
plant species are determinants of ECM fungal community 
assembly in Mediterranean mixed forests; (2) phylogenetic 
and compositional turnover are good community structure 
proxies to evaluate the contribution of deterministic and sto-
chastic assembly processes in ECM fungal communities and 
(3) the contribution of assembly processes is habitat scale 
dependent. Thus, ECM community assembly in Mediter-
ranean forests is dependent on both deterministic and sto-
chastic processes, particularly dispersal limitation and drift, 
increasing the first and diminishing the second at smaller 
scales. These patterns confirm the habitat scale dependency 
of assembly processes, as previous studies described in other 
biological guilds but not in ECM fungal communities. Fur-
ther studies are needed to disentangle the role of fine-tuned 
biotic interactions in forests, as well as how ECM phylogeny 
complements with functional diversity and environmental 
drivers, particularly in Mediterranean ecosystems. Addi-
tional information may be found in the online version of 
this article at the publisher’s website.
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