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Laburpena
Lan honen xedea euskaraz idatzitako testuetan suertatu daitezkeen errore gramatikalak

automatikoki antzeman eta zuzentzea da. Zehazki, ikasketa sakoneko teknikak erabiltzen
dira, alde batetik esaldi erroredunetan aurkitzen diren erroreak detektatu eta haien mota

gramatikala identifikatzeko eta, bestetik, esaldi erroredunen zuzenketa lortzeko. Ataza
hauek automatikoki ebazteko gai diren eredu neuronalak entrenatu ahal izateko,

etiketatutako datu-kopuru handiak behar dira. Lan honetan, detekzio eta zuzenketa
ereduez gain, ataza hauetarako aproposak diren etiketatutako datuak sortzeko metodo
automatiko bat ere aurkezten dugu. Metodo hau errore gramatikalak dituzten esaldiak
sortzeko gai da, baita esaldi horiek sortutako errore motaren arabera etiketatzeko ere.

Burututako esperimentuek agerian uzten dute entrenamendu garaian mota eta ezaugarri
askotariko datuak erabiltzearen garrantzia. Gainera, gure datu sorkuntza metodoarekin
sortutako esaldiak sistema neuronalen entrenamendurako erabiltzeak ereduak euskarazko

gramatika-erregelei buruzko jakintzaz hornitzen dituela frogatzen da.

Hitz-gakoak: Zuzenketa Gramatikal Neuronala, Errore Gramatikalen Detekzio Neuronala,
Datu Sintetikoen Sorkuntza, Baliabide gutxiko hizkuntzak, Transformer arkitektura

Abstract
The objective of this work is to automatically detect and correct grammar errors made in
texts written in Basque. More specifically, Deep Learning techniques are used in order to,

on the one hand, detect grammatical errors in sentences and specify their grammatical
type and, on the other hand, correct the incorrect sentences. So as to train models that
are capable of automatically solving these tasks, large amounts of annotated data are

needed. In addition to the detection and correction systems, in this work we also develop
a method for generating grammatically incorrect sentences that can be used as training

data for the aforementioned neural models. This method can automatically generate
realistic grammar errors, as well as tagging them according to the error type.

Experiments highlight the importance of using diverse data samples for training.
Furthermore, using data generated with our error generation approach proves to be

effective in providing the systems with knowledge about grammar-rules in Basque.

Keywords: Neural Grammar Error Correction, Neural Grammar Error Detection,
Synthetic Data Generation, Low-resource languages, Transformer architecture
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1 Introduction

1.1 Problem Statement

According to the most recent sociolinguistic studies, 28.4% of people (above the age of
16) who live in Euskal Herria are competent in Euskara or Basque, while 16.4% of the
population is considered to be passive bilingual, i.e., people who never or rarely speak in
Basque but are capable of understanding it (Jaurlaritza et al., 2016). Regarding the actual
use of the language, however, the same studies conclude that only 16.5% of the population
uses Basque more than Spanish or in the same amount, meaning that there is a high number
of people who know Basque but are not accustomed to using it. Consequently, it is probable
that these people who do not tend to speak in Basque make certain errors when trying to use
the language, mostly due to lack of habit. These errors may include grammar errors, using
words in other languages and/or mixing them with words in Basque, misspelling issues
in written texts or any other phenomenon that does not follow the rules of standardised
Basque defined by Euskaltzaindia, the official academic language regulatory institution for
Basque. Making such errors does not mean that communication is not longer possible,
and even people who use Basque as their main language can make them. Nevertheless,
depending on the degree and number of errors, the message that the communicator intends
to give might be hard to understand in some cases.

Developing openly available tools that detect and correct these errors is important, not
only for the actual correction, which makes the message clearer and the communication
easier, but also because they can help users learn. Having doubts about how to say
something during a conversation or while writing an essay is normal; having someone close
by who is fluent enough to solve those doubts might not be that frequent. Error detection
and correction systems would allow us to instantly solve our uncertainties regarding words
or language-related structures and patterns, among others, and would be of assistance in
our individual learning process. Some specific error types are already being handled by
systems that are publicly available for everyone’s use, such as the well known spelling
checkers and correctors. Precisely, a spelling checker — Xuxen (Agirre et al., 1992) — has
also been developed for the Basque community and it is freely available online for everyone
to use.

1.2 Objectives, Contributions and Document Description

This work aims to keep developing tools that will be of aid to those who choose to use
or learn Basque. To be more precise, our intention is to use the newest techniques in the
field of Natural Language Processing (NLP) to build systems that focus on detecting and
correcting grammatical errors that are made in texts written in Basque.

Research in the fields of Machine Learning and Deep Learning has drastically advanced
in recent years and neural architectures are currently the state of art for several tasks,
including NLP problems. One of those tasks is Grammatical Error Correction (GEC),
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which can be seen as a particular case of Machine Translation, being the grammatically
incorrect sentence the sentence in the source language and its correction the “translation”.

If the GEC task wants to be solved by using neural networks, grammatically incorrect
sentences and their corrections are needed in order to train a model. These corpora can be
hard to obtain, because for most languages a big enough number of sentences has not been
annotated with errors or corrected. In such cases, a typical approach is to create synthetic
data by generating errors from correct sentences. The easiest way to do so is replacing,
inserting, eliminating or re-ordering tokens from the original sentences. This method is
simple and, since the token-operations are randomly applied, the probability of generating
an incorrect sentence is high. However, the sentences created using this approach are very
artificial and extremely different from real-life grammatical errors.

In this project, the first objective is to find a way to, starting from correct sentences
written in Basque, generate errors that imitate those that are made in real scenarios. To
do so, different types of errors that are commonly made in Basque will be analysed, an
attempt to find which are the grammatical elements that get mixed in each case will be
made and different methods to replicate those changes and create errors will be used. The
quality of the generated corpus will be measured by using it, across different settings, to
train a neural model and observing how the trained system performs in the aforementioned
task of GEC.

The second objective of this work is to extend the error generation method in such a
way that, in addition to creating realistic grammatically incorrect sentences, the part of
the sentence that has been modified so as to generate said errors will be tagged according
to the type of grammar-error that is created. This tagged corpus will allow us to train a
neural model that aims to solve the task of Grammar Error Detection (GED), where, unlike
GEC, the main intention is not to produce a correct version of an incorrect sentence, but
to identify which part (if any) of a sentence is erroneous. GED can be seen as a particular
stance of a Named Entity Recognition task, where instead of identifying named entities,
the objective is to identify the type of grammar error.

The motivation behind having two separate systems instead of combining both cor-
rection and detection in a single one is the fact that each of the systems has a different
use case. A correction system will always be used when the main objective is obtaining
the output itself, that is, a new, improved version of what has been written. A detection
system, however, will more likely be used for educational purposes. For instance, detection
systems can be of aid for analysing the number and type of errors that are made in a text,
which then can be used to determine the level of linguistic competence the person who has
written it has. Having information about the exact error that is being made also makes
it easier to find an explanation of why it is an error and how to fix it, which means that
these systems can support people in their learning process of a language.

Overall, this work presents two main contributions to the field of Natural Language
Processing in Basque. The first one is an advanced method for automatic grammar error
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generation in Basque, which is defined by complex rules that have been designed after an
elaborate analysis of grammar errors that are often made. The second contribution is the
actual design and training of a Neural Grammar Error Detection system for Basque which,
to our knowledge, has never been done before.

Regarding the first main contribution, it should be noted that, even though we believe
our error generation method is solid, the task is extremely challenging and improvements
still need to be made. We are aware that not all the rules we have defined work as
expected in all cases, meaning that sometimes unrealistic errors or even correct sentences
might be generated. Readers should be aware of this when following our reasoning behind
the design of the error generation method and expect us to discuss the downsides of our
proposal throughout the sections where the experiments that have been carried out are
detailed.

The rest of this document is structured as follows. Chapter 2 gathers recent works re-
lated to tasks of Grammar Error Correction and Detection. In Chapter 3, we delve into the
proposed synthetic error generation method by explaining the approach, the implementa-
tion, the challenges and the features of the generated corpora in great detail. Chapter 4 is
dedicated to the Error Correction task: the followed approach and the chosen architecture
are explained, performed experiments are listed and the obtained results are discussed. As
for the Error Detection task, it is described in Chapter 5 and, similarly to the previous
chapter, it includes the taken approach, implementation details, the experiments that have
been carried out and the evaluation results. Finally, in Chapter 6 we discuss the main
conclusions of our work and propose some future lines of work on the topic.

Additionally, we provide some useful information in the last pages of this document.
Appendix A includes a list of comparisons of morphological analyses of correct and incor-
rect sentences. Appendix B shows all the results obtained for the error detection models
developed in this work. Finally, we make translations of all the example-sentences written
in Basque that are used throughout this document available in Appendix C, in case they
serve for better understanding.
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2 Related Work

In this section, firstly, literature on the topic of data generation for GEC will be studied.
Then, we will talk about the actual tasks of GEC and GED and analyse what the newest
approaches are. Finally, we will focus on the particular case of Basque and discuss the
progress that has been made in the field up until this point.

2.1 Synthetic Data Generation for GEC

Deep Learning models are capable of obtaining state of the art results in numerous tasks,
often times thanks to the huge amounts of annotated data that is used to train them.
Collecting large quantities of annotated data, however, is not an easy thing to do, specially
for certain tasks where very specific knowledge is needed for producing the appropriate
annotations. Human-made annotations are usually desired because they are likely to be
more precise than those generated by automatic methods, but annotating millions of sam-
ples by hand is extremely expensive and time-consuming. Therefore, when huge amounts
on data are needed for training neural models, the usual approach consists in trying to
create synthetic data that is as accurate as possible. Manually revised annotations are left
for testing the models, because datasets used for testing contain much less samples than
those used for training, making it a considerably more manageable task for humans.

In the case of GEC, the annotated data that is needed for training models has quite
specific features: sentence pairs are needed, formed by a sentence that contains at least
a grammar error and a sentence that is the correct version of the previous one. It is
true that this kind of annotation can easily be found in most language examinations or
essays written for language classes, where teachers usually cross out words or structures
that are incorrectly used and write the appropriate correction beside the error that was
made. However, the truth is that almost no resources that contain these characteristics
can be found digitally, specially for low-resource languages. That being the case, recent
GEC approaches have proposed their own methods for automatically generating data which
could later be used for model training.

For example, one of the techniques that is proposed is back-translation, which is a data
augmentation strategy commonly used in Machine Translation. It consists in 1) using the
data that is initially available to train a model, 2) using said model to translate the samples
in the target language to the source language, 3) adding the newly generated pairs to the
initial data and 4) training a definite model using all the data. Ge et al. (2018) propose
an approach based on this technique for the particular case of GEC. In their work, first,
a model is trained with a limited amount of correct and incorrect sentence pairs and used
to correct a subset of incorrect sentences. Then, the n-best corrections of those sentences
are paired with the original correct sentence, as long as the fluency of the automatically
corrected sentence is below the fluency of the original correct sentence. These new pairs
are then incrementally added to the training corpus in subsequent training epochs. The
procedure is proven to effective in improving the quality of the correction models.
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Boyd (2018) proposes to use Wikipedia edits as a source of correct and incorrect sen-
tence pairs. Article dumps and revision histories are downloaded and filtered to preserve
only those edits that contain small changes from one to another. Then, since Wikipedia
edits can be content related and not necessarily grammar error corrections, a gold-standard
GEC corpus and the Wikipedia edits are compared using error annotation tools. Finally,
all edits that are not considered to follow the patterns or be similar to the content found
in the gold-standard corpus are discarded. At evaluation time, models trained with the
remaining Wikipedia edits as additional data show better performance than those trained
just with the initial gold-standard corpus.

Methods that use simple token operations have also been presented in recent years.
Grundkiewicz et al. (2019) suggest the insertion, deletion and replacement of tokens in
order to generate errors in a sentence but, instead of randomly choosing the tokens to
modify and add in each case, which can make the sentence really unnatural and artificial,
they propose the usage of confusion sets. For each sentence, a number of words is chosen
to operate on, based on the word error rate in the training data. For each chosen word,
the operation to perform (insertion, deletion or replacement) is randomly chosen with a
given probability. If replacement is selected, a spellchecker is used to generate a list of
suggestions for the chosen word. These suggestions are sorted by the edit distance between
the original word and the proposed word with the new spelling, and the distance between
their phonetic equivalents is also taken into account; only those suggestions that are within
a relatively close distance from the input word are chosen to form a confusion set. The
word in the original sentence is replaced with a word that is randomly chosen from this
confusion set. GEC systems trained using this approach obtained the best results on the
Restricted and Low Resource tracks of the Building Educational Applications (BEA) 2019
Shared Task (Bryant et al., 2019). Both of these tasks restricted the use of corpora so as
to encourage development of systems that were not reliant on huge amounts of data.

The second best system on the Restricted and Low Resource tracks, developed by Choe
et al. (2019), was trained using synthetic data generated with another token replacement
technique. In this case, authors first use a sample of annotated training data to extract
error patters, i.e., the edits made from the incorrect sentence to the correct one and their
frequency. Then, for a new set of correct sentences, errors are generated by searching for
tokens that appear in the edit pattern dictionary and applying edits in reverse. For tokens
that are not present in the edit dictionary, errors are generated, given a certain probability,
based on the part-of-speech of each word: nouns are replaced with their singular or plural
counterparts, verbs are replaced with their morphological variants and prepositions are
replaced with other prepositions.

The most current approaches aim for generating more realistic errors, i.e., errors
that imitate patterns that are present in manually revised GEC datasets. For exam-
ple, Stahlberg and Kumar (2021) propose to use error annotation tools to guide synthetic
data generation. Similarly to the previous approaches, grammatically correct sentences
are taken as the starting point and modified in such a way that incorrect sentences are
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generated. What differentiates this approach from the previous ones is that a Transformer
model is trained to perform this error generation process. To do so, first, error annota-
tion tools are used for tagging parallel GEC corpora. Then, the tags predicted by the
annotation tool for each sentence pair are appended to the correct sentence of the pair.
Finally, a Transformer is trained using the parallel corpus that also contains the error tags.
After training, the system is capable of, given a correct sentence and the type of error that
wants to be created, generate and incorrect sentence that contains a grammar error of the
specified type. Authors of the paper report state-of-the-art results when testing their GEC
models with respect to the BEA-19 test sets.

2.2 Current approaches for GEC and GED

2.2.1 Grammar Error Correction

Initially, Grammar Error Correction was addressed using rule-based approaches (Naber
et al., 2003; Oronoz, 2008). Then, classification based methods were proposed: individual
classifiers were trained to tackle each specific type of grammar error, such as preposition or
determiner misuses (Izumi et al., 2003; De Felice and Pulman, 2008). However, having a
system for each type of error is not practical for real use cases, so research towards systems
that were capable or handling multiple grammar error types began.

The first methods proposed with this in mind were based on Statistical Machine Trans-
lation (Yuan and Felice, 2013; Ehsan and Faili, 2013). These approaches use parallel data
to train statistical models that are capable of learning probability distributions of the cor-
pora and thus, have the ability to compute the most probable correction of a given input
sentence.

More recently, neural architectures are being explored for solving the GEC task, due to
the growing popularity of Deep Learning. Some approaches propose to combine statistical
and neural models, obtaining corrections that preserve the accuracy that statistical models
are able to achieve while also being fluent thanks to the neural component (Grundkiewicz
et al., 2019). Alikaniotis and Raheja (2019) strongly encourage the use of Transformer-
based language models to rank the possible corrections suggested by neural correction sys-
tems and conclude that, like for other Natural Language Processing tasks, the Transformer
architecture provides a really strong baseline for GEC, because it achieves consistent high
performance in the task. More complex approaches opt for combining sequence tagging
models, token-level transformations, several stages of fine-tuning and ensembles of models
like BERT, RoBERTa and XLNet and obtain almost state-of-the-art results by doing so
(Omelianchuk et al., 2020).

The approach that is currently considered to obtain the best results for the GEC task
is presented by Rothe et al. (2021) and it consists on fine-tuning mT5, a multilingual pre-
trained text-to-text Transformer (Xue et al., 2020), for the particular case of grammar error
correction. To do so, an unsupervised language-agnostic objective is described, which tries
to imitate patterns of corrections that are normally found in manually labelled data for
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GEC. By doing so and scaling the number of parameters from 60 million to 11 billion, state-
of-the-art results are obtained for four languages: English, Czech, German and Russian.

2.2.2 Grammar Error Detection

Research on the field of Grammar Error Detection began much later than research on
the field of Grammar Error Correction, precisely because the focus was set on correcting
errors, and information about error types and frequency was just a byproduct of the output
produced by correction systems. It was not until a value for education was seen in the
actual detection and analysis of errors that investigation on the topic started.

Rei and Yannakoudakis (2016) present some of the first experiments using neural archi-
tectures for error detection. In their investigation, several sequence labelling architectures
are trained for solving the task, including convolutional networks, bidirectional recurrent
networks and bidirectional LSTMs (Long-Short Term Memories). Results demonstrate
that detection models can identify more errors than systems that are solely focused on
correcting errors.

Bell et al. (2019) propose integrating contextualised word embeddings in sequential
methods for error detection. Contextualised representations of words can capture com-
positional information in language and, therefore, facilitate error identification. Authors
of this work experiment with three types of word embeddings, BERT, ELMo and Flair,
and integrate them in bidirectional LSTMs for error labelling. Results show that adding
contextual information does in fact improve the performance of the error detection systems.

Some of the most recent works propose to dive deeper into the architecture of neural
models and, instead of just using the output given by the final layer of a model, taking ad-
vantage of information provided by previous layers as well. This is the case of the approach
presented by Kaneko and Komachi (2019), where the effects of employing information from
intermediate layers of pre-trained language representation models is studied for the par-
ticular case of Grammar Error Detection. Said work proposes a multi-head multi-layer
attention model that determines which are the appropriate layers in BERT to use for error
detection. The model achieves state-of-the art results on three different grammatical error
detection datasets.

2.3 Neural Grammar Error Correction in Basque

This section aims to describe the work proposed in the field of Grammar Error Correction
for the specific case of Basque. We focus the section solely on the correction task because,
to our knowledge, no neural systems for grammar error identification and tagging have
been proposed as of writing this document. As for correction, the line of research is just
beginning and very few works regarding the topic can be found. As a matter of fact, we are
only aware of two works on the topic of Neural Grammar Error Correction for Basque: our
own previous research and a new approach that proposes a more complex corpus generation
method for the task. We talk about these two works in greater detail below.
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2.3.1 Antecedents: Own Previous Research Work

In our previous research work (Méndez, 2020), an approach to build a Neural Grammar Er-
ror Corrector for Basque was studied. Said approach consisted in understanding Grammar
Error Correction as a subtask of Machine Translation. State of the art Machine Translation
techniques were analysed and the choice to use Transformers1 for training our models was
made. These models need to be fed big amounts of data in order to learn and generalise
from the samples they are shown and achieve reasonably good results when asked to make
a prediction about data samples they have never seen.

In the particular case of the Grammar Error Correction task, grammatically correct
and incorrect sentence pairs are needed to train the models, so that they can learn which
correction is adequate for each incorrect sample. To obtain a large enough amount of
sentence pairs written in Basque that fulfill these characteristics, errors were generated
from a corpora of grammatically correct texts written in Basque by applying simple token-
operations, i.e. inserting, deleting, replacing and re-ordering. Then, these newly gener-
ated sentences were paired with the original sentence they were generated from, obtaining
correct-incorrect sentence pairs that could be used to train the models. In the end, four
different sets of sentence pairs were built, each of them formed by a different number of
sentence pairs. This allowed us to compare the evolution and performance of the models
the more data they received at training time.

Four GEC systems were trained making use of these four datasets and all of them
were evaluated against automatically generated grammatically incorrect sentences (gener-
ated following the same procedure as the incorrect sentences in the train set) and real-
life, human-made grammatically incorrect sentences. The obtained results were not very
favourable: for synthetic incorrect sentences, the best system was able to correct around
42% of the errors and, for real incorrect sentences, the best system only managed to correct
around 2% of the incorrect sentences. It was concluded that, since the created errors did
not resemble real grammatical errors, when testing against real data, models were not able
to generalise and correct most of the errors, because they had not been faced with similar
examples in the training phase. However, the system trained with the largest dataset,
which contained almost 10 million sentence pairs, proved to be the best one at identify-
ing correct sentences and understanding that no corrections should be proposed for them,
which demonstrated that feeding these type of models huge amounts of data containing
diverse examples does help the learning process.

Taking our previous experience into account, the objective of this work is to improve
the synthetic error generation method proposed in our previous research work and generate
errors that are more similar to real, human-made errors. Then, we aim to use them in order
to train new models and study whether they are useful for improving the performance of
the aforementioned models. The scope of the previous work also intends to be extended

1Section 4.1 of the present work delves deeper into the Transformer architecture and some of its current
applications.
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by using these generated errors for training Grammar Error Detection models.

2.3.2 Neural Grammar Error Corrector presented by Elhuyar

The present work has as one of its main references a paper published by the Elhuyar Foun-
dation (Beloki et al., 2020). To our knowledge, this is the only published work regarding
Grammatical Error Correction in Basque where neural models are used and synthetic cor-
pora with grammatical errors is generated. In this paper, following a similar approach to
the one introduced by Yuan and Felice (2013), instead of using an annotated corpus as
reference, grammatically correct sentences are the initial point and errors are generated
from them using linguistic rules.

The implemented rules generate grammatically incorrect sentences by replacing spe-
cific words in the reference sentences. The words to be replaced are chosen according to
grammatical information obtained using morphosyntactic analysers and depending on the
error-type that wants to be generated in each case. Four different types of errors are tack-
led in this work: those related to verb tense, the ones associated to paradigms of auxiliary
verbs, errors that are created when there is a lack of agreement between the verb and the
subject and errors regarding completive sentences. These 4 error categories were selected
from the extensive list of errors for Basque presented in Oronoz (2008) upon consulting a
professional translator/corrector and a professional lexicographer and asking them to point
out those they thought were the most common errors in texts written in Basque.

After automatically creating grammatically incorrect sentences, different datasets for
training are built by combining correct-incorrect and correct-correct sentence pairs. Each of
the datasets varies on different features, such as the amount of total sentence pairs used, the
number of errors each incorrect sentence contains or the balance between different error-
types applied to the whole dataset. Evaluation datasets are also constructed following
a similar approach but, in addition to automatically generated sets, manually revised
evaluation datasets are also provided.

A total of four GEC systems are presented, all of them based on the Transformer
architecture and evaluated in terms of precision, recall and F0.5 score. The best results are
obtained by a model trained with over 9 million sentence pairs. In particular, the incorrect
sentences of the dataset employed for training said model are generated by simultaneously
applying multiple error-generation rules to each original, correct sentence. After comparing
this model to the rest, findings show that Transformers seem to work well for correcting
sentences that contain multiple errors and perform worse in cases where a single error
(or none) exists. The study also highlights the poor performance of models trained with
sentences generated by surface token operations (i.e., insertion, deletion, replacement).
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3 Building Corpora: Approach and Implementation

In order to build a neural grammar error corrector, a large corpus formed by correct and
incorrect sentence pairs is needed, so that the models can learn where the errors lay in the
incorrect sentences and how to fix them according to their correct counterparts. However,
manually creating and revising millions of sentence pairs of such characteristics is extremely
costly and hard work, hence only small non-synthetic datasets of grammatically incorrect
sentences and their correct pairs can be found. Since large enough corpora that fulfils those
requirements does not exist, specially for low-resource languages like Basque, we will use a
corpus of correct Basque sentences as the starting point and we will define a method that
allows us to modify them in such a way that (hopefully) realistic grammar errors will be
created. That way, we will have a collection of correct and incorrect sentence pairs, which
we will later be able to use for training GEC and GED systems.

As previously mentioned in Section 2, this error generation approach is inspired by
Beloki et al. (2020), which is why we use the synthetic dataset provided in their paper2 as
the basis. Said data collection is built over a total of 4.927.748 different correct sentences
written in Basque, which were extracted from the following sites: Berria.eus, Argia.eus
and Tokikom.eus. A subset of 4.921.748 sentences was chosen to apply different automatic
error generation strategies, consequently creating several datasets.

The publicly available corpus is formed by a training dataset and 6 sets of evaluation
data. All the sets are collections of incorrect-correct sentence pairs and for each pair the
rule(s) used for creating the incorrect sentence are specified. The evaluation data is divided
in two main groups: data created fully automatically (identified as “Dea”) and manually
revised data (identified as “Dem”). For each group, 3 datasets are available: None, Single
and Multi. None-type datasets contain original unmodified sentences with no errors, i.e.
both sentences in the pair are identical and no rules have been applied. The other two types
of evaluation datasets do contain gramatically incorrect sentences and their corrections:
Single-type datasets are formed by sentences with a single grammatical error and their
original versions and Multi-type datasets by sentences with multiple grammatical errors
and their original versions. Table 1 summarises the number of sentences in each dataset.

Out of all those resources, the correct sentence of each pair in the training corpus and
the 3 automatically generated evaluation datasets are employed in this work. The correct
sentences are used as the starting point from which we will generate synthetic grammatical
errors by applying our own rules; the evaluation datasets are used for testing our models
and comparing results.

There are several reasons why we try to generate our own errors instead of directly
using the ones in the training corpus published by Elhuyar:

1. This work is born from the need to improve the synthetic error generation method

2Synthetic training and evaluation datasets publicly available here: https://hizkuntzateknologiak.
elhuyar.eus/assets/files/elh-gec-eu.tgz
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Number of sentence pairs
Correct-Incorrect Correct-Correct Total

Train 4.41M 4.92M 9.333.672
Dea Single 2.000 0 2.000
Dea Multi 2.000 0 2.000
Dea None 0 2.000 2.000

Dem Single 250 0 250
Dem Multi 221 0 221
Dem None 0 201 201

Table 1: Number of sentence pairs for each dataset in the publicly available corpus devel-
oped by the Elhuyar Fundation.

proposed in our previous research work. We had already studied various approaches
and it was clear that this particular task was the next step towards obtaining better
results. Directly using the incorrect sentences provided by Elhuyar would not give
us the chance to explore options for implementing this error generation method, and
thus, there would no longer be a clear motivation behind this work.

2. Generating new synthetic sentences provides new resources to the investigation of
GEC for Basque. It gives us the possibility of combining our synthetic examples
with the ones created by Elhuyar and training new models with larger datasets.

3. By analysing some of the provided synthetic sentences, we detected some cases where
the generated word does not exist. For instance, starting from the correct sen-
tence “Joxan Goikoetxea ariko da Lasarte-Oriako Akordeoi Jaialdian”, the sentence
“*Joxan Goikoetxea artzen da Lasarte-Oriako Akordeoi Jaialdian” is proposed as its
incorrect version. The sentence is in fact incorrect, but because the word “artzen”
does not exist. The word “aritzen” should have been generated in its place, simu-
lating a typical case of verb tense misuse. Small mistakes like this one are normal
because, after all, the error generation method proposed in the paper is automatic
and it is extremely unlikely that all the generated samples will be perfect. Still, by
defining our own rules for error generation, we might be able to produce appropriate
samples in cases where their method fails (and vice versa).

The rest of this chapter elaborates on the approach taken for creating our own incorrect-
correct sentence pairs given the correct sentences of the Elhuyar training corpus. As for
the evaluation datasets, their use is further discussed in Section 4.3.2.

Language Analysis and Processing
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3.1 Error analysis

The first step for implementing our own error generation method is to analyse the errors
described in Beloki et al. (2020) and see how many can be replicated. Four groups of
errors have been studied: related to verb tense, concordance of the verb and the subject,
completive sentences and auxiliary verb paradigms.

To determine what type of change needs to be made in a sentence in order to create each
of those errors, we can take incorrect-correct sentence pairs in which we know that those
errors occur and compare their morphological analyses. To do so, we employ Eustagger,
a morphological analyser and Part-of-Speech tagger designed for Basque (Ezeiza et al.,
1998). This analyser tries to disambiguate all the words in a sentence and then tags them
with the grammatical information that corresponds to each of them. An example of the
output obtained with this linguistic analyser can be seen in Figure 1. Servers of the IXA
Research Group have been used in order to execute the analyser.

In our particular scenario, for each type of error, we have used Eustagger to obtain
morphological analyses of the sentence pairs proposed in the reference paper. These sen-
tences are presented as examples of incorrect sentences that contain each of those errors
and their correct versions. Then, we have compared those analyses and identified the tags
that differ between the two. Those tags are representative of the errors and, consequently,
can be used as patterns to detect in which words of a sentence an error can be created.

For instance, let us take the correct sentence “Ziur bihar jakingo dugula” and the
incorrect one that is often used in its place: “*Ziur bihar jakiten dugula”. This is an
example of a sentence where the verb tense is not properly used. Figure 2 shows the analysis
given by Eustagger for each of those sentences (the difference between both analyses is
highlighted in red). As can be seen, they only differ in one of the tags of the third word,
which changes from GERO in the correct example to EZBU in the incorrect one. This indicates
that the verb in the correct sentence is in future tense (etorkizuna/geroaldia) and the verb
in the incorrect sentence is not finished (ez burutua). Therefore, any time the GERO tag is
found in a sentence, a verb tense related error can be generated if said tag is modified and
replaced by EZBU.

Figure 1: Analysis of the correct sentence “Nire ustez, hori horrela da” obtained using
Eustagger.
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Figure 2: Differences between the analyses of the sentences “Ziur bihar jakingo dugula”
and “*Ziur bihar jakiten dugula”.

However, not all cases are that simple. If we compare the sentences “Gauza bat falta
zait esateko” and “*Gauza bat faltatzen zait esateko”, which were proposed in the original
paper as an example of perfective/imperfective errors, we realise that Eustagger does not
disambiguate the word “falta” as a verb. Instead, it identifies it as a noun (see Figure 3)
and, thus, it is not possible to compare both analyses as a means to detect which tags should
be used to identify errors related to finished vs. non-finished actions. The approach in such
cases has consisted in trying to find another word that behaves similarly to the one not
properly disambiguated, in hopes that given a different sentence and context Eustagger will
be able to show the desired properties. To illustrate, in the case of the previous example,
instead of the verb “falta”, the verb “bururatu” has been used. A correct sentence that
uses it has been built, such as “Gaur gauza bat bururatu zait”, as well as its incorrect
form, “*Gaur gauza bat bururatzen zait”, and both have been analysed (see Figure 4). In
this case, the disambiguation does allow to find the tags needed to be changed for error
generation.

The complete list of comparisons performed can be seen in Appendix A, where given
several pairs of sentences (being the first sentence the correct one and the second one the
grammatically incorrect one) their analyses are shown and the difference between both
analyses is marked.

Once these comparisons between analyses of sentence pairs that serve as example of
all the error types listed in the reference paper have been made, we can build a mapping
table that matches each error type with the pattern that needs to be found in the analysis
of a sentence so that said error can be applied to it. Our mapping table is provided in
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Figure 3: Differences between the analyses of the sentences “Gauza bat falta zait esateko”
and “*Gauza bat faltatzen zait esateko”. The disambiguation issue is underlined.

Figure 4: Differences between the analyses of the sentences “Gaur gauza bat bururatu zait”
and “*Gaur gauza bat bururatzen zait”. The verb is properly disambiguated.

Table 2. The first column indicates the type of error and the second column indicates the
pattern (as a regular expression) that needs to appear in the analysis of a word for it to
be modified.

A third column named “FST” exists in our mapping table. FST stands for finite-state
transducer, which is a type of finite-state machine (FSM). FSMs are mathematical models
of computation defined by a list of states, an initial state and the inputs that trigger
transitions from one state to another. The peculiarity of FSTs is that they produce output
as well as reading input. To be more precise, in the case of FSMs, the defined transitions
are followed, depending on the input, to jump between states and arrive at a certain final
state, which will give a certain output. Using FSTs, this behaviour is extended by labelling
the transitions with an input/output pair, in such a way that output will be produced every
time a transition between two states is made. This means that, while FSMs can only be
used for pattern-matching, FSTs can also be used for parsing.

Two FSTs derived from EDBL3 (Aldezabal et al., 2006) have been used in this work:

3EDBL stands for Euskararen Datu-Base Lexikala, which translates to “Lexical Database of Basque”.
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Error Pattern FST

ko/go ten/tzen ADI SIN GERO morpheme

nuke nuen ADL B2 analysis

nuen nuke ADL B1 analysis

NR-NK NR-NI-NK (edun—ukan—izan)(.)*NR [ˆ\s]+\sNK [ˆ\s]+\s analysis

erg abs ERG(.)*@SUBJ analysis

denik-dena dela ADL(.)*KONPL morpheme

NR-NI NR-NI-NK (edun—ukan—izan)(.)*NR [ˆ\s]+\sNI [ˆ\s]+\s[ˆNK] analysis

NR-NK NR (edun—ukan—izan)(.)*NR [ˆ\s]+\sNK [ˆ\s]+\s analysis

NR-NI NR-NK (edun—ukan—izan)(.)*NR [ˆ\s]+\sNI [ˆ\s]+\s[ˆNK] analysis

buru ezbu BURU analysis

NR-NK NR-NI (edun—ukan—izan)(.)*NR [ˆ\s]+\sNK [ˆ\s]+\s analysis

NR-NI-NK NR-NI (edun—ukan—izan)(.)*NR [ˆ\s]+\sNI [ˆ\s]+\sNK [ˆ\s]+\s analysis

NR NR-NK (edun—ukan—izan)(.)*NR [ˆ\s]+\s[ˆNI (.)*NK ] analysis

Table 2: List of errors, patterns that need to be found in the analysis to apply them and
which transducer to use in each case.

one that contains complete analysis and morphological information about the words, from
now on referred to as “analysisFST”, and one that only contains information about mor-
phemes — roots and affixes —, from now on referred to as “morphemeFST”. By way of
illustration, the different outputs obtained when using the word “etxean” as input for these
two transducers are shown in Figure 5.

Taking into account that FSTs are bi-directional, we can use these transducers, not
only to get the analyses of words (as demonstrated in Figure 5), but also to generate
words given a certain analysis. This means that, every time we detect that an error can
be generated in a certain word, we can pass the word to a transducer, get its analysis,
modify the appropriate tags and return the modified analysis to the transducer, which will
generate a new word. For all cases, the analysis of the input words has been done in the
upward direction (i.e. using the word as input to the transducer) and the generation in
the downward direction (i.e. using the analysis as input to the transducer).

Depending on the error that wants to be generated in each particular case, one trans-

Figure 5: Differences between the outputs given by the two FSTs for the word “etxean”.
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ducer or the other has been employed, which is what the third column in our mapping table
is for: error types that can be created by just changing the suffixes of a word have the value
“morpheme” in the “FST” column, which means that the error will be generated using the
morphemeFST transducer; for the rest of error types, the analysisFST transducer will be
used, as indicated by the “analysis” value in the third column of the mapping table.

In order to create the analysis that will be given as input to the transducer in the
generation phase, simple rules have been written and built into FSTs using Foma, a finite-
state toolkit for constructing finite-state automata and transducers (Hulden, 2009). The
rules that have been defined modify some of the analyses obtained with the transducers
so that, given a certain context, tags in the initial analysis are substituted by other tags.
The following subsection details these rules, for which type of error each of them is used
and the changes they produce in the analyses obtained by the transducers.

3.2 Error generation

3.2.1 Procedure

Once we have examined all the errors we want to automatically create and detected the
patterns that indicate from which words those errors can be generated, the next step is
to actually build the incorrect sentences. For that task, first, we have iterated over the
list of correct Basque sentences, normalised them by lowercasing and tokenizing them and
analysed all of them with Eustagger. Then, using our mapping table, we have identified
all the words in those sentences whose morphological analysis contains a pattern that
corresponds to an error. Next, we have passed those words to the corresponding transducer,
modified the obtained analyses - in different ways depending on the error that wants to
be generated from each word - and passed (in the opposite direction) the new analyses to
the same transducer. Finally, in the correct sentences, we have replaced the original words
with the outputs given by the transducer. By following this procedure, we have produced
modified versions of the original sentences, in which the newly added words make the
sentence grammatically incorrect but are not too far off from the original word and the
original meaning of the sentence is mostly maintained.

Two versions of this method have been implemented: one where a single error has
been created per sentence and one where multiple errors have been added to a sentence.
In the first case, if a sentence contains 5 words that can be modified so as to create errors,
5 sentence pairs are generated, each one containing one of those 5 errors (see Table 3). In
the second case, all the errors that can be created from the correct sentence are applied in
a single incorrect sentence (see Table 4).

In practice, because of time limitations, we have decided to only use those incorrect
sentences created with the first method, that is, those that have a single error in them. It
is also worth mentioning that, even if several different incorrect sentences can be created
from the same initial sentence by using this method, we have decided to randomly select
one of the pairs and discard the rest. The reason behind this is that we want to avoid
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Correct sentence Generated sentence (with errors)
jaurlaritzak gaur hasiko du urte politikoa , donostian . *jaurlaritza gaur hasiko du urte politikoa , donostian .
jaurlaritzak gaur hasiko du urte politikoa , donostian . *jaurlaritzak gaur hasten du urte politikoa , donostian .
jaurlaritzak gaur hasiko du urte politikoa , donostian . *jaurlaritzak gaur hasiko dio urte politikoa , donostian .
jaurlaritzak gaur hasiko du urte politikoa , donostian . *jaurlaritzak gaur hasiko da urte politikoa , donostian .
jaurlaritzak gaur hasiko du urte politikoa , donostian . *jaurlaritzak gaur hasiko zaio urte politikoa , donostian .

Table 3: Example of multiple incorrect sentences that can be generated from a single
correct sentence if only one error per sentence is applied.

Correct sentence Generated sentence (with errors)
jaurlaritzak gaur hasiko du urte politikoa , donostian . *jaurlaritza gaur hasten zaio urte politikoa , donostian .

Table 4: Example of an incorrect sentence that can be generated from a correct sentence
by applying multiple errors to the sentence.

having a single correct sentence (and several incorrect versions of it that have very little
variance) appear multiple times in our training corpus, because the system may memorise
the sentence itself instead of trying to learn correct and incorrect grammar patterns.

Having described the general steps of our error generation approach, let us explain in
detail the process followed for creating each type of error:

3.2.1.1 Errors related to Verb Tense

This section describes the proposed error generation methods for cases where the verb
tense or aspect is inappropriately used. Mainly, the following scenarios are studied: mixing
the present and the future tense, mistaking the past tense and the conditional and confusing
the finished aspect with the unfinished aspect.

3.2.1.1.1 ko/go→ ten/tzen

The first error that has been examined is regarding the case where two aspects of verbs
get mixed: actions that have not been finished and actions in the future. This is the case
of sentences such as “Ziur bihar jakingo dugula”, where, instead of using the future tense,
a common mistake is to use the unfinished aspect and say “*Ziur bihar jakiten dugula”.
The proposed method to automatically generate this type of error is simple:

First, among all the sentences, words that are simple verbs in the future tense are
found, that is, those that end with the morphemes “-ko” and “-go”. This is done by
looking for the GERO tag4, as mentioned in Section 3.1, throughout the analyses of all

4In practice, we look for the tags ADI and SIN along with the tag GERO, which correspond to verb
(aditza) and simple, respectively. This is done to make sure we are working with a simple, not a composed
or periphrastic verb, in the future tense.
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Figure 6: First command is used to obtain the analysis of the word “jakingo”. Second and
third commands show both possible morphemes added to the base form and how only one
of the constructions returns the word “jakiten”.

the sentences in the corpus. Then, in an effort to get their base forms, every word that
has those features is passed as input to the transducer that only gives information about
morphemes. Since verbs that have not yet been finished can either end with the morphemes
“-ten” or “-tzen”, the two possible forms are created by concatenating the base form to
each of these morphemes. After that, the two forms are passed to the transducer in the
opposite direction; the form that exists will give a verb in Basque and the other form will
return an empty output. Finally, in the correct sentence, the newly generated verb is added
in place of the original verb.

Let us follow the previous example and suppose that “Ziur bihar jakingo dugula” is
the input sentence. After analysing it with Eustagger, the system will detect, based on the
tags of the analysis, that “jakingo” is a verb in the future tense. Then, this word will be
passed as input to the corresponding transducer and the output will be XjakiN++ko. In
this case a single output will be obtained, but other words can have several outputs, so we
need to make sure we choose the right one by ensuring it starts with the “X” character,
which specifies that said word is a verb. After that, the base form — XjakinN — will be
extracted from the analysis and two strings will be created, one for each of the possible
morphemes the unfinished aspect can have: XjakiN++ten and XjakiN++tzen. Finally,
these two strings will be passed to the transducer in the opposite direction; XjakiN++ten
will return the word “jakiten” and XjakiN++tzen will return and empty output (because it
does not exist). The operations done using the transducer are shown in Figure 6. Finally,
the word “jakingo” will be substituted by “jakiten” in the original sentence, thus creating
the incorrect sentence “*Ziur bihar jakiten dugula”.

3.2.1.1.2 nuen→nuke / nuke→nuen

The next error-type that has been approached is the one where the past tense (indica-
tive) and the conditional (indicative) get mixed. An example of this error is using the
incorrect sentence “*Gustura egingo nuen” instead of “Gustura egingo nuke”. This error
can be generated bidirectionally, that is, taking words that use the past tense and changing
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them to conditional or taking conditional words and changing them to past tense. The
process is the following:

First, words in past tense or conditional form (both indicative) are found. Then, every
word that has those features is passed as input to the transducer and their morphological
information is retrieved. Once we have the analysis, the tag that corresponds to the past
tense or conditional is changed and passed to the transducer in the opposite direction.
Finally, in the correct sentence, the original word is replaced by the newly generated one.

If the initial sentence is “Gustura egingo nuke”, for example, the word “nuke” is passed
to the corresponding transducer and the following output is obtained: edun [ADL] [B2]

[NR HURA] [NK NIK] and ukan [ADT] [B2] [NR HURA] [NK NIK] [PNT]. The tag to be
changed is the second one: “B2” is replaced with “B1” and vice versa. Note that the B1

tag stands for past indicative and the B2 tag for conditional indicative. After changing
the tag5, the analysis is passed to the transducer in the opposite direction, resulting in the
word “nuen”.

3.2.1.1.3 Perfective (burutua)→ Imperfective (ez burutua)

The last error related to verb tense that has been analysed is the one where verbs that
should be used to talk about unfinished actions are used when verbs that correspond to
finished actions should be. For instance, instead of the sentence “Zerbait falta zait esateko”,
a common mistake is to use the sentence “*Zerbait faltatzen zait esateko”.

This error is specially complex, because changing the aspect of a verb from finished to
unfinished does not always generate an error. For example, although the only thing that
changes is the aspect of the verb (as in the example just mentioned), both the sentences
“Afaltzera gonbidatu ninduen” and “Afaltzera gonbidatzen ninduen” are grammatically
correct. This occurs because while some verbs take the morpheme “-tzen”, others do not.
In order to simplify, we will suppose that an error is always generated if a sentence contains
a verb whose aspect is finished and it is changed to unfinished.

To create this type of error, words whose aspect is the finished one have been identi-
fied and passed to the transducer that outputs the morphological analysis. In this case,
the transducer returns several possible analyses; we need to keep the one that informs
about the finished aspect (the one that contains the tag BURU). For example, in the case of
the word “gonbidatu”, the outputs given by the transducer are gonbidatu [ADI] [SIN] +

[AMM] [PART], gonbidatu [ADI] [SIN] + [AMM] [PART] + [DEK] [ABS] [MG] [] and
gonbidatu [ADI] [SIN] + [AMM] [PART] + [ASP] [BURU], so the last one will be used.
Once we have this analysis, we only need to change the tag BURU for the tag EZBU, which
corresponds to the unfinished aspect, and the tag PART for the tag ADOIN, which corre-
spond to participle and base of verb respectively, and pass this transformed analysis to the
transducer in the opposite direction. The generated word will be “gonbidatzen”.

5We can perform the replacement in either of the outputs, because both will give us the same result.
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3.2.1.2 Errors related to Auxiliary Verb and Subject Agreement

This section illustrates the error generation method in the scenario where there is an
absence of concordance between the verb and the subject. Often times, this is due to
confusion when declining the suffix of the subject.

3.2.1.2.1 Ergative subject→Absolutive subject

A common example where a lack of agreement between the verb and the subject can
be found is the case of the subject getting mixed and using the absolutive case instead
of the ergative case. This occurs, for example, when “*Ni ez dut nahi” is used instead of
“Nik ez dut nahi”.

The overall procedure to generate this kind of error is the same we used for errors
3.2.1.1.2 and 3.2.1.1.3. The only thing that changes is that, in this case, when the mor-
phological analysis from the transducer is received, we need to ensure that, out of all the
possible analyses, the one that contains the tag that marks the ergative case — ERG —
is chosen. This is important because, in cases such as the word “langileak”, the word
can be ergative case (“langileak egin du”, a single worker has done it) or absolutive case
(“langileak jatorrak dira”, the workers (plural) are nice), and we only want to change the
ergative ones.

3.2.1.3 Errors related to Completive sentences

This section defines the approach for generating cases of verb suffix misuse, specifically
those in completive sentences, where it is usual to get the suffixes “-(e)la”, “-(e)nik” and
“-(e)na” mixed up.

3.2.1.3.1 denik/dena→dela

In this scenario, cases where the words “denik” and “dena” get mixed with the word
“dela” have been studied. For example, the incorrect sentence “*Ez dut uste hori egia dela”
is often used instead of “Ez dut uste hori egia denik” or “*Badago beste aukera bat hobea
dela”, which is also incorrect, is said instead of “Badago beste aukera bat hobea dena”.

The words “denik”, “dena” and “dela” are all auxiliary verbs derived from the form
“da” and completives. In order to simplify, the approach in this case has been to find all
words that have those two features and follow a similar process to the one used in error
3.2.1.1.1: to change the morphemes at the end of the words.

For instance, if the input sentence is “Ez dut uste hori egia denik”, the word “denik”
will be passed to the corresponding transducer and two outputs will be given: d@+En+Rik
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and d@+Enik. Then, the base form d@ will be extracted from either of the outputs and
concatenated with the morpheme “-ela”, obtaining the string d@+Ela. Passing this string
to the transducer in the opposite direction will result in the word “dela”, which is the one
used in erroneous cases.

For this particular group of errors, it is important to mention two things:

1. We have defined that, in order to create errors of this category, we need to find
words whose analyses contain the tags ADL and KONPL. However, the analysis of the
word “dela” itself also contains those two tags. This means that, whenever an input
sentence has the word “dela” in it, it will be presumed that an error of this type can
be generated. In reality no error will be created when that occurs, because, for errors
of this type, we always assume that the error is generated when the word “dela” is
used. In other words, the generated sentences will still have the word “dela” in them,
so we will have generated a sentence that is identical to the reference sentence. To
determine which words that are auxiliary verbs and completives can generate errors
and which should not be modified, further analysis needs to be done.

2. In all the examples we have tried, the word “dena” has been disambiguated as an
adverb that means “all” or “everything”, so we have not been able to test our error
generation method for sentences like “Badago beste aukera bat hobea dena”.

3.2.1.4 Errors related to Auxiliary Verb Paradigms

The final section in the error generation step considers errors related to auxiliary verb
paradigms. Four auxiliary verb paradigms — nor, nor-nork, nor-nori and nor-nori-
nork — exist in Basque and it is very common to use them inappropriately. To be
precise, methods for generating the following types of verbal paradigm changes have been
implemented: nor-nork to nor-nori-nork, nor-nork to nor, nor-nori to nor-
nori-nork and nor-nori to nor-nork. Some of these changes have been implemented
in both directions.

3.2.1.4.1 Nor-Nork→Nor-Nori-Nork

“Atzo ikusi zintudan” is an example of a sentence where the paradigm of the auxiliary
verb is nor-nork (nor: “zu”, nork: “nik”). A typical error is to use “nizun” instead of
“zintudan”, that is, to use nor-nori-nork (nor: “hura”, nori: “zuri”, nork: “nik”).

To generate errors of this kind, all nor-nork elements have been detected and changed
to nor-nori-nork. After examining several examples where this type of change is made,
we have realised that, when adding the nori element, the common way to do it is to
use the person and number that where previously used in the nor element in the nori
element, in this case 2nd person singular (the nor element of “zintudan” is “zu” and the
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Figure 7: Foma rules for modifying the verbal paradigm from nor-nork to nor-nori-
nork.

nori element of “nizun” is “zuri”), and to add the 3rd person singular as the nor element
(the nor element of “nizun” is “hura”).

To perform this change, the morphological tags of the word have been obtained using
the corresponding transducer and then, using Foma, several rules have been created to
change the string of the morphological analysis appropriately. For example, if the analysis
of the word “zintudan” is edun [ADL] [B1] [NR ZU] [NK NIK], using the defined rules it
is changed to edun [ADL] [B1] [NR HURA] [NI ZURI] [NK NIK] (the analysis that cor-
responds to the word “nizun”). Once this change has been made, the newly generated
analysis has been used as the input of the transducer to obtain the desired word.

As for the specific Foma rules designed to modify the analysis, we present Figure 7 as
means of illustration. Although these rules are only used for changing the auxiliary verb
paradigm from nor-nork to nor-nori-nork, all the scenarios related to auxiliary verbal
paradigm that will be later introduced in this document work with a similar set of rules.
In this particular case, rules #1 to #4 are used for substituting the nor element with the
nori element while maintaining the person and number, and rule #5 adds the 3rd person
singular as the new nor element. The exact modifications performed by each of these
rules are listed below:

rule #1: adds the “-ri” suffix if ““hi”, “ni”, “gu” or “zu” are found in the nor tag,
obtaining the tags NR HIRI, NR NIRI, NR GURI and NR ZURI6.

rule #2: adds the “-i” suffix in place of the “-k” suffix if “zuek” or “haiek” are found
in the nor tag, obtaining the tags NR ZUEI and NR HAIEI6.

rule #3: replaces “hura” by “hari” if “hura” is found in the nor element, obtaining
the tag NR HARI6.

rule #4: changes all the tags that reference the nor element so that they reference
the nori element, obtaining the tags NI HIRI, NI NIRI, NI GURI, NI ZURI, NI ZUEI,
NI HAIEI and NI HARI.

6 The tags created in this step are not correct: they reference the nor element but contain values that
correspond to the nori element. These are not final tags and rule #4 is designed specifically to fix this
issue and create the definite ones.
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Figure 8: All possible morphological analyses of the word “zintudan” and how they all can
be used to generate the word “nizun”.

rule #5: adds the 3rd person singular of the nor element — NR HURA — as a new tag
and places it before the tag that corresponds to the nori element.

An important note to be made is that the morphological analysis of the input word
may return many outputs, some of which even differ on the base form of the verb. For
errors of this particular case, however, it is not a problem because the desired final word
can be obtained by modifying any of the analysis outputs, as seen in Figure 8.

3.2.1.4.2 Nor-Nork→Nor

Sometimes elements are removed from the verbal paradigm instead of being added.
This occurs, for instance, when “*Azkenaldian asko argaldu da” is used instead of “Azke-
naldian asko argaldu du” or, in other words, when nor is employed where nor-nork is
supposed to be used.

The Foma rules implemented to generate this type of errors are quite straightforward;
we just remove the nork element. What needs to be taken into account is that, in
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Figure 9: First command shows morphological analyses of the word “du”. Second and
third commands show empty outputs if the base form is not changed. Fourth and fifth
commands show that by changing the base form and removing the nork element, both
analyses can be used to generate the word “da”.

this scenario, the base form of the input words needs to be changed in order to generate
the output word. For example, if the input word is “du”, two morphological analyses
will be given: edun [ADL] [A1] [NR HURA] [NK HARK] and ukan [ADT] [A1] [NR HURA]

[NK HARK] [PNT]. Both can be used to generate the word “da”, but in either case we need
to change the forms “edun” and “ukan” to the form “izan” (see Figure 9).

3.2.1.4.3 Nor-Nori→Nor-Nori-Nork

In some other occasions, such as when phrases like “*Aholku kontrajarriak ematen ari
digu” are used instead of its correct form “Aholku kontrajarriak ematen ari zaigu”, the
paradigm nor-nori-nork is being used when nor-nori is supposed to be. Two main
changes need to be done to the morphological analysis of the correct sentence so that this
type of errors can be generated: adding the nork element and changing the base form.

Taking “zaigu” as the input, the transducer outputs these two analyses: izan [ADT]

[A1] [NR HURA] [NI GURI] [PNT] and izan [ADL] [A1] [NR HURA] [NI GURI]. No mat-
ter which of them is chosen, the nork element (3rd person singular) has to be added, so
the analyses read as follows: izan [ADT] [A1] [NR HURA] [NI GURI] [NK HARK] [PNT]

and izan [ADL] [A1] [NR HURA] [NI GURI] [NK HARK]. What differentiates these two
analyses is that the first one corresponds to a verb composed by a single element (aditz
trinkoa - ADT tag) and the second one corresponds to an auxiliary verb (aditz laguntzailea
- ADL tag). To generate the word that will make the sentence grammatically incorrect,
“digu” in this particular example, either the base form of the first analysis needs to be
changed from “izan” to “ukan” or the base form of the second analysis needs to be changed
from “izan” to “edun”. Figure 10 illustrates this example.
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Figure 10: First command shows morphological analyses of the word “zaigu”. All the other
commands show how the word “digu” is only obtained when, as well as adding the nork
element, the base form is changed appropriately.

3.2.1.4.4 Nor-Nori→Nor-Nork

The last error we have worked on is the one where nor-nork is used when nor-nori
is supossed to be used. For instance, this happens in the case of the sentence “*Paisaia
asko gustatzen nau” (the correct sentence would be “Paisaia asko gustatzen zait”). The
pattern that is commonly used to produce these changes is to add the 3rd person singular
case as the nork element and to use the case of the nori element of the input as the nor
element of the output.

Going back to the previously given example, one of the possible analysis of the word
“zait” is izan [ADL] [A1] [NR HURA] [NI NIRI]; the nor component is the 3rd person
singular case and the nori component is the first person singular case. This means that,
to obtain the word “nau”, first we need to use the case of the nori element of “zait” in
the nor element, and then we need to add the nork element. These changes will give us
the following analysis: izan [ADL] [A1] [NR NI] [NK HARK].

To generate errors from this family we also need to take into account the base forms
and change them accordingly. This means that, if we have a verb with a single component,
“izan” has to be substituted by “ukan” and, if we have an auxiliary verb, “izan” has to be
substituted by “edun”, the exact same way we did in error 3.2.1.4.3.
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3.2.2 Challenges

Even though the general error generation process seems straightforward, we have come
across some problems while implementing it.

The first challenge has been the huge number of correct sentences we use as the starting
point. In order to analyse all of them with Eustagger, first, we have had to separate all
the sentences in files, each of them containing around 50.000 tokens (because that is the
maximum amount of tokens the analyser can process in a single file). To do so, we have
calculated the average number of tokens per sentence in the original corpus: around 16
tokens per sentence. If we assume that a single sentence contains 16 tokens, we can
conclude that we need 3.125 sentences to gather 50.000 tokens. Therefore, we have divided
the whole corpus in files that contain 3.125 sentences, obtaining a total of 2.987 files. Then,
we have fed each of these files to the linguistic analyser. Taking into account that Eustagger
performs a complex analysis, where disambiguation of each token is carried out, the high
number of sentences to analyse has made this a lengthy process. In the end, around 20
days have been needed in order to analyse all the reference sentences.

The second setback has been caused by a mismatch between the tokenizer we have used
in the reference sentences — Moses Tokenizer (Koehn et al., 2007) — and the tokenizer
Eustagger uses. For instance, if we take the clause “esklusibekin-eta.”, whereas Eustagger
separates it in three tokens (see Figure 11), Moses considers it a single token.

A consistency between the tokenization of the original sentences and their analysis
is crucial for our implementation of the error generation procedure. Specifically, it is
important for the step where we iterate over the Eustagger analyses in search of words
from which an error can be generated (i.e., words whose morphological analysis matches
one of the error patterns previously described). During this step, each file we work with
contains the analyses of 3.125 sentences, so we need to delimit the sentences. Let us use
Figure 12 for illustrating how we define where a sentence ends and the next one starts.
The figure shows the analyses of the sentences “*gustura egingo nuen orain.” and “*jon
ez daki ezer.” and, as we can see, there is no blank line that separates the two analyses.

Figure 11: Output produced by Eustagger given the sentence “...sortu duelako esklusibekin-
eta.”. The clause “esklusibekin-eta” is divided in three tokens and “-” is tagged as
<BEREIZ>, which stands for “bereizlea” or “divisor”.
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Figure 12: Output produced by Eustagger given the sentences “*gustura egingo nuen
orain.” and “*jon ez daki ezer.”

Initially, looking at the format of the output analysis, we might think that each token in
the original sentence corresponds to two lines in the analysis: the first line for the token
itself and the second line for its morphological analysis. Therefore, if a sentence is 3 tokens
long, its analysis should be given in 6 lines. However, the first sentence in our example
already shows that this rule does not always apply: the word “*nuen” in the sentence
“*gustura egingo nuen orain.” is not completely disambiguated, which makes a single
token in the original sentence have 3 corresponding lines in the analysis. Since we can
not assume that doubling the number of tokens in the original sentences will give us the
number of corresponding lines in the analyses, we have decided to iteratively match the
tokens in the sentences with the lines in the analyses; we arrive at the end of a sentence
every time a line in the analysis matches the last token of said sentence. Let us go back
to our previous example to introduce this method step by step. The sentence “*gustura
egingo nuen orain.” is formed by five tokens (“gustura”, “egingo”, “nuen’, “orain” and
“.”) and in the analysis file, we can see that the tokens are marked between the symbols
“/<” and “>/”. That being the case, we start with the token “gustura” and iterate over
the lines in the analysis until we find one that start with the sequence “/<gustura>/” (in
this case we find it in the first line). Once we find it, we take the next token, “egingo”,
and we keep iterating over the lines in the analysis (starting from the line where we found
the previous token) until we find the sequence “/<egingo>/”. We repeat this process until
we find a line that starts with the sequence “/<.>/”; when we find it, we know that we
have arrived to the end of the sentence and that the next line that starts with the symbols
“/<” will be the beginning of the analysis of the next sentence.

This method is the reason why we need the tokenization of the sentences to match
the tokenization in the analyses. If we consider that “esklusibekin-eta” is a single token
but in the analysis it has been considered as three different ones, when we try to find
a line that contains the sequence “/<esklusibekin-eta>/” we will not be able to find it
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Figure 13: Output produced by Eustagger given the string “&#91;”.

Figure 14: Output produced by Eustagger given the sentence “ikus-entzunezko edukien
ekoizpenari”. The clause “ikus-entzunezko” is considered as a single token and tagged as
an adjective.

and, consequently, we will not know how to identify the boundaries of the sentences in the
analysis file.

In order to fix this tokenization issue, we have considered finding all the occurrences
of the “-” character in the original sentences and separating them from the words they are
attached to. Nevertheless, there are two main reasons why this solution is not plausible:

1. The dash is not the only character that causes tokenization mismatches. Throughout
the texts, we have also found HTML entity codes such as “&#91;”, which is the code
that represents the left square bracket (“[”). While Moses interprets this code as
a single token, Eustagger divides it in 4 tokens (see Figure 13). We could also
try to define a pattern to match all HTML entities in order to find them in the
sentences and separate them in different tokens, but considering that we have come
across this issue with dashes and HTML codes, it is likely to happen with more
punctuation or encoding related symbols. Performing a search of the token that
causes the mismatch and dividing it appropriately every time tokenization issues
arise is not optimal, specially because, due to the large size of the corpus, chances of
it happening frequently are high.

2. Eustagger does not always follow the same pattern for tokenizing dashes. For in-
stance, given the sentence “ikus-entzunezko edukien ekoizpenari”, Eustagger consid-
ers that “ikus-entzunezko” is a single token, instead of separating it in three (see
Figure 14). Even if we tried to define a method to manually handle the tokenization
mismatches caused by this symbol, we would not be able to do it with just a surface
analysis; we would have to find heuristics and patterns to determine how the “-”
symbol should be tokenized in each case and, by doing so, we would be creating our
own tokenizer.
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Since there is no easy way to determine how to manually separate these special cases
so that both tokenizations match, we have come to the conclusion that the easiest thing to
do is to use the same tokenizer Eustagger uses in the original sentences. To do so, first, we
have added a special token that indicates that the sequence has finished at the end of each
sentence in the original corpus. Then, we have applied the same tokenizer Eustagger uses
to these sentences, so as to obtain an output file that follows the format and tokenization
of the Eustagger analyses. It should be noted that this is also a considerably long process:
in order to tokenize all the sentences in the original corpus around 5 or 6 days have been
needed. To end with, we have lined up the tokenization files and the analyses of the
sentences (a couple of days have been needed to complete lining up process), in such a
way that the special end-of-sentence token gets added to the end of each analysis. Like
so, we have achieved to delimit the analyses with the special token and, as a consequence,
counting the number of tokens in a sentence to know where its analysis ends is no longer
necessary.

Lastly, the amount of time needed to generate the actual errors should also be men-
tioned. In the end, over two months have been needed to create all the incorrect sentences
that will be used to train the Error Correction models (the exact number of sentences will
later be discussed in Section 4.2). This is due to the fact that, for each of the millions
of sentences we have worked with, every token in the sentence is analysed to determine
whether an error can be created from it and, if the possibility exists, several FST calls and
replacement operations are performed to generate the new (incorrect) sentence.

3.3 Error type tagging

As mentioned in Chapter 1, apart from correcting grammatical errors, we also aim to
build a system that is capable of, given any sentence written in Basque, detect whether it
contains a grammatical error and, if so, identify its type and the fragment of the sentence
where it occurs.

To do so, a corpus of incorrect sentences where the errors are tagged is needed and,
as such, we have extended the error generation procedure mentioned in the section above
with a feature that allows us to, not only create a grammatically incorrect sentence, but
also tag said sentence with the type of error that has been applied to it.

In order to explain how we have achieved this, it is important to recall how our error
generation process begins: by identifying from which words of a sentence an error can
be generated. Every time we find a match between one of the patterns listed in Table
2 and the morphological analysis of a sentence, as well as knowing that an error can be
generated, we also know exactly what the error that can be generated is. We have used
this information to, after following the whole process explained in Section 3.2, concatenate
the newly created word (the one that will make the sentence grammatically incorrect) and
the error type. Then, instead of replacing the original word by the newly generated one,
we have replaced it by the whole concatenation.
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Figure 15: Example of how the sentences for error detection have been tagged.

As an example, the sentences generated following this method have been tagged as
illustrated in Figure 15. The figure shows how the original sentence has been modified,
by putting the word “errepikatzen” in place of the word “errepikatuko”, to create an error
where the unfinished aspect is used when the future tense should be, as well as how the
word “errepikatzen” is followed by the tag “B-ko/go ten/tzen”, which is the label we use
to identify this kind of error.

Let us note that, in the previous example, the “B-” part of the “B-ko/go ten/tzen” tag
indicates that the token it refers to is the first token of the error. As for now, our approach
only contemplates single word modifications for generating errors, but this label has been
added in case future experiments lead us to creating multi-word errors or sentences with
multiple different errors in them, in which case we would need to identify whether two
consecutive tokens that make the sentence incorrect belong to the same error or not.

3.4 Overview of the Generated Corpora

A small sample of the results obtained with our error generation method can be seen in
Table 5. Original sentences are shown in the first column, the generated sentences in the
second column and which error has been applied in each case in the third column.

Among all the generated sentences, different degrees of errors can be found. One of the
objectives of this work, to create grammatically incorrect sentences that are similar to real-
life errors, has been achieved in cases like “*bihar joaten gara erosketak egitera”, “*ez dut
uste etorriko dela”, “*gustatu beharko zitzaizun” or “*abokatuak helegitea aurkeztu zuten”,
to mention a few. Even if some less realistic sentences have also been created, such as “*niri
orkestraren soinua lantzea gustatzen nau” or “*1995ean jaio litzatekeen”, they still show
errors that are much more plausible than those generated with simple token-operations
such as random insertion, deletion or replacement of words.

It is important to mention that a small number of grammatically correct sentences
have also been generated, those that are not marked with the symbol “*” in the second
column of Table 5. For now, in order to delimit the scope of this project, we will assume
that, out of the million of sentences we have created, only a minority are grammatically
correct and we will not try to identify and remove those that are correct. We will discuss
what could be done to treat these cases in Chapter 6.
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Correct sentence Generated sentence (with errors) Applied change
bihar joango gara erosketak egitera *bihar joaten gara erosketak egitera ko/go –>ten/tzen
gustura egingo nuke orain gustura egingo litzateke orain NR-NK –>NR
atzo kalean ikusi zintudan *atzo kalean ikusi nizun NR-NK –>NR-NI-NK
afaltzera gonbidatu ninduen afaltzera gonbidatzen ninduen burutua –>burutugabea
gustatu beharko litzaizuke *gustatu beharko zitzaizun nuke –>nuen
3,6 milioi lagunek laguntza behar dute *3,6 milioi lagun laguntza behar dute erg –>abs
langileek lan handia egin dute langileek lan handia egiten dute burutua –>burutugabea
ez dut uste etorriko denik *ez dut uste etorriko dela denik –>dela
aholku kontrajarriak ematen ari zaigu *aholku kontrajarriak ematen ari digu NR-NI –>NR-NI-NK
niri orkestraren soinua lantzea gustatzen zait *niri orkestraren soinua lantzea gustatzen nau NR-NI –>NR-NK
1995ean jaio zen *1995ean jaio litzatekeen nuen –>nuke
kontzertu bakarra emango dugu beraiekin *kontzertu bakarra ematen dugu beraiekin burutua –>burutugabea
abokatuek helegitea aurkeztu zuten *abokatuak helegitea aurkeztu zuten erg –>abs

Table 5: Example of initial sentences and the sentences generated from them. The gener-
ated grammatical errors are marked in red.

Lastly, it should be noted that, although our aim has been to work with incorrect
sentences that contain a single error, we have observed that in a few cases, specially in
long sentences, multiple errors of the same type have been created. This is due to the
fact that, the longer a sentence, the higher the probability of using a common word more
than once. Consequently, if said word is the one we have randomly selected to modify
and generate an error from, when making the final substitution and replacing the original
word by the new word, it will be replaced in all its occurrences in the initial sentence. For
example, let us suppose that our original sentence is “Nahi duena egiteko libre da, baina
etxeak su hartzen badu, arazoa ez da berea bakarrik izango” and that we have chosen to
modify the fifth word, “da”, to create a verbal paradigm related error. After applying our
error generation algorithm, we will have created the word “du”, but since “da” appears
twice in the input sentence, “du” will replace it in both cases, obtaining the sentence
“*Nahi duena egiteko libre du, baina etxeak su hartzen badu, arazoa ez du berea bakarrik
izango”. Improving our algorithm so that such cases are controlled is one of the tasks
considered for the future steps in this work.
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4 Error Correction

This chapter delves into the experimentation carried out for building a Neural Grammar
Error Corrector and the results obtained when using the implemented systems for solving
the GEC task. More specifically, the approach taken and the architecture chosen for
training are briefly described, the proposed training settings are detailed and the quality
of the developed models is discussed.

As previously stated, the present work aims to be the continuation of the work sub-
mitted as the Final Degree Project, where a first attempt at building a Neural Grammar
Corrector was made. The main conclusion that was drawn from said work was that, in
order to build a neural grammar checker capable of performing reasonably well, generating
a training corpus by applying simple token replacement, insertion and deletion operations
was not enough. Thus, the objective of this section is to analyse whether training a neural
grammar checker with a corpus created using a more complex error generation process
successfully improves the quality of the corrections.

4.1 Approach and Architecture

Since we want this work to be a continuation of the work done in the Final Degree Project,
we have decided to stick to the approach taken in said project: considering Grammar Error
Correction as a particular case of Machine Translation (MT). In MT tasks, a text written
in a certain source-language is translated to a different target-language. If we view GEC as
a specific case of MT, the source and target texts will be written in the same language, but
the source will contain grammatical errors and the target will be, ideally, the corresponding
correction of the source text. In other words, the incorrect text will be “translated” to a
correct text.

Figure 16 showcases the parallelism between the two tasks. In the illustrated example,
the source-language for the MT task is Spanish and a translation to the target-language
— Basque — is obtained. Similarly, in the GEC example, taking an incorrect sentence as
the starting point, a “translation” (correction) to a correct sentence is obtained.

Figure 16: Parallelism between Machine Translation and Grammar Error Correction.
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Figure 17: Architecture of the Transformer model.

Source: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.Ñ. Gomez,  L. Kaiser,and I. Polosukhin, “Attention is
all you need,” in Advances in neural information processing systems

As for the architecture chosen to train a neural grammar checker, we have also decided
to stick to the architecture used in the Final Degree Project: the Transformer, a Deep
Learning model introduced in 2017 by Vaswani et al. (2017). We have selected this archi-
tecture for our task because Transformers have achieved state of the art results in Machine
Translation across different languages (Takase and Kiyono, 2021; Liu et al., 2020).

Transformers are sequence-to-sequence architectures, that is, they take a sequence as
input and transform it into another sequence. The main components of a Transformer
model are an Encoder module (composed of Nx encoders), a Decoder module (composed
of Nx decoders) and an attention mechanism. The Encoder takes the input sequence and
maps it into a higher dimensional space. Then, that representation of the input sequence is
fed into the Decoder, which turns it into an output sequence. The attention mechanism is
in charge of deciding, in each step, what the most relevant segments of the input sentence
are. The detailed architecture of the Transformer model is shown in Figure 17.

Transformers were proposed in order to overcome the weaknesses previous models for
sequence processing had, and have since become the state of the art models in Natural
Language Processing tasks (Wolf et al., 2020). For instance, one of the strengths of the
Transformers is that it is capable of processing the entire input sequence at once, on
the contrary to other sequential data processing architectures such as Recurrent Neural
Networks, where the elements of the input sequences have to be read one by one. This
allows for parallelization and therefore considerably reduces training times. In addition,
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being able to process multiple input sequences at the same time also implies having the
ability of training on larger datasets, which has led to the development of Transformer-
based models such as BERT (Devlin et al., 2018) and GPT (Radford et al., 2018). These
models are trained on huge amounts of data and can be fine-tuned for multiple tasks.
Nowadays, these models can be found behind technologies we use on our every day lives,
such as Google queries (Schwartz, 2020), or even in more complex scenarios like tools for
automatic code search and generation (Feng et al., 2020).

4.2 Experiments

As an initial experiment, with the aim of ensuring that our implementation of the Trans-
former works properly and is able to learn, we have fed the raw training corpus presented
by the Elhuyar Foundation (i.e., the “Train” corpus introduced in Table 1) into our own
code and trained a model. This model has been able to obtain comparable results to those
presented in the original paper (these results are discussed in detail in Section 4.3.2) and,
thus, our implementation is proven to be appropriate for the task at hand.

Once we have made sure that our code is correctly implemented, we have trained two
Error Correction systems with our own corpora: one that, for all sentences in the training
corpus, contains at least an automatically generated grammatical error in the incorrect
sentence of the pair and, a second system that, in addition to incorrect-correct pairs, also
uses correct-correct pairs for training. Adding sentences that do not need a correction in
the training corpus of an error correction model may seem contradictory, but it is important
to do so because we want to ensure that the system does not propose any change if it is to
receive a correct sentence as input. We do not want the system to learn that it always has
to correct; we want it to be able to detect incorrect sentences and only suggest a correction
for those.

For the first system, from now on referred to as system1, we have used 4.234.427
sentence pairs in the training corpus. For the second one, from now on referred to as
system2, we have used over 9 million sentence pairs: the sentence pairs used in the first
model plus 5 million correct-correct sentence pairs. The exact number of sentences is shown
in Table 6.

The decision for choosing a total number of around 9M sentences comes from the paper
by the Elhuyar Foundation. In their work, several systems are developed depending on the
synthetic error generation method used for creating the incorrect sentences in the training

Number of sentence pairs
Correct-Incorrect Correct-Correct Total

system1 4.234.427 0 4.234.427
system2 4.234.427 5.000.000 9.234.427

Table 6: Number of sentence pairs used for training the systems.
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Figure 18: Example of the BPE algorithm.

corpus. With the aim of carrying out the fairest comparison of results possible, among all
the presented systems, we have chosen the one where incorrect sentences in the training
corpus were generated by applying a single, randomly selected error to each of them7

(because we too have only applied a single error type per sentence when generating incorrect
sentences). Said system presented by Elhuyar was trained with a total of 9.33M sentence
pairs, 4.92M of them being correct-correct pairs and 4.41M of them being incorrect-correct
pairs, which is why we have aimed for a similar balance in the training corpus of our model.

As for the actual implementation and training of the models, it has been done following
the Transformer architecture previously described and setting the hyper-parameters listed
below:

• Vocabulary size: 32.000

• Batch size: 4.096

• Number of epochs: 10

• Maximum length (number of words) of the sentences: 90

It should be noted that, although we set a fixed vocabulary size of 32.000 tokens,
which seems small considering our data is formed by millions of sentences, none of the
tokens of the corpus are discarded. This is achieved thanks to a technique called Byte
Pair Enconding (BPE), which is used for fixing the vocabulary size while still maintaining
less common tokens, as well as for other data compression tasks (Gage, 1994). The BPE
algorithm works as follows: initially, each character of the corpus is considered to be a
token and then, for each iteration, the most frequent token pair in the corpus is combined,
forming a new single token. Iterations are performed until the number of tokens matches
the fixed vocabulary size. At the end of the iteration process, the corpus will have as many
tokens as defined in the vocabulary size; the most common words will be complete and
those that are less frequent will be divided in sub-tokens. Figure 18 illustrates the first
iterations of the BPE algorithm applied in a very simple sentence.

Due to the large-scale data used for the experiments, the training processes of all the
systems mentioned in this section have been carried out making use of Graphic Processing

7Other systems presented in the paper were trained using different incorrect sentence generation meth-
ods such as random word replacement or application of several error types per sentence.
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Units (GPUs) courtesy of the IXA Research Group. Around 20 hours have been needed in
order to finish the training process for the smallest system (the one that is trained on 4.2M
sentences pairs). As for the biggest system (the one trained in over 9M sentence pairs),
training time has doubled, needing around 42 hours to be completed.

4.3 Evaluation and Results

4.3.1 Evaluation Metric: ERRANT

ERRANT (ERRor ANnotation Toolkit) is a tool for automatically annotating parallel
sentences (Bryant et al., 2017; Felice et al., 2016). To be precise, it compares a sentence
with errors and its corresponding corrected version and annotates the differences proposed
in the correction. It does so by creating a file where, for every incorrect-correct sentence
pair, the fields “S” and “A” are defined. Lines in the file beginning with the symbol
“S” (short for “sentence”) list the incorrect sentence. Lines beginning with the symbol
“A” (short for “annotation”) contain the corrections proposed for that incorrect sentence
(obtained by annotating the differences between the incorrect sentence and its, presumably,
correct version). Although the annotation is formed by multiple fields for each proposed
correction, only the first one and the third one are relevant for our particular task 8.
These fields correspond to the position of the correction (i.e., in which token the correction
begins and in which token it ends, represented by the token identifiers) and the proposed
correction, respectively.

By way of illustration, let us use ERRANT for annotating the grammatically incorrect
sentence “*umeak triste dago” and one of its possible corrections: “umeak triste daude”.
Figure 19 shows the output obtained when using these two sentences as input for ERRANT.
As can be seen, the first line, the one that starts with “S”, contains the incorrect sentence
and the second line, starting with “A”, the annotation. The “2 3” indexes9 we see in the
first field of the annotation mean that the correction is made from the second token to the
third token, that is, only the second token is replaced. The word “daude”, shown in the
third field, is the word that appears in the correction in place of the word that is in the
second position in the incorrect one. Thus, the correction consists in replacing the word
“dago”, which is the token with index number 2 in the incorrect sentence, by the word
“daude”.

8Other fields include information about the error types (only works for sentences written in English)
and the annotators.

9Token index count starts from 0.

Figure 19: ERRANT output given the incorrect sentence “*umeak triste dago” and “umeak
triste daude” as its proposed correction.
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(a) Incorrect vs Reference (b) Incorrect vs Automatically corrected

Figure 20: Comparison of annotations made by ERRANT for two different sets of correc-
tions proposed for the same incorrect sentences.

As well as automatic sentence pair annotation, ERRANT also includes a feature that
can be useful for evaluating our error correction systems, where two annotated files are
compared and measured in terms of Span-Based Correction. First, we can generate an
annotation that compares the incorrect sentences and the original correct sentences (see
Figure 20a) and an annotation that compares the incorrect sentences and the corrections
proposed by our model (see Figure 20b)10. Then, we can evaluate the model by comparing
both of these annotations, which showcase the differences between the (supposedly) ideal
correction and the one our model proposes.

We can use Figure 21 so as to explain the Span-based Correction evaluation method.
In the depicted scenario, “*I often look at TV” is the incorrect sentence, and we can
assume that its correct version is “I often watch TV”. By comparing these two sentences
in ERRANT, we would obtain the annotation [2, 4, watch], which would indicate that
the correction consists in replacing the second and third tokens (“look at”) by the token
“watch”. In order to meet the Token-based Detection criterion, the annotation generated
when comparing the incorrect sentence and the one proposed by our system would have
to show that the index of the first token to be replaced is properly identified. To meet
the Span-based Detection criterion, the complete position — first token and last token —
of the replacement needs to be guessed. If we want to pass Span-based Correction, the
criterion ERRANT uses to measure the quality of the corrections, apart from identifying
the exact position of the replacement, the exact token to be put in place also needs to be
guessed. In other words, in terms of Span-based Correction, an automatic error correction
system is only rewarded if the reference correction and the correction proposed by the
system are identical.

10The corrections proposed in Figure 20b correspond to a very simple model trained with very few
and simple sentences in order to test ERRANT’s functioning; these corrections were not suggested by the
systems described in Section 4.2.

TP FP FN Prec Rec F0.5
2 4 1 0.3333 0.6667 0.3704

Table 7: Measures computed by ERRANT for the files in Figure 20.
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Figure 21: Comparison between Span-based Correction, Span-based Detection and Token-
based Detection.

Source: https://www.cl.cam.ac.uk/research/nl/bea2019st/#eval

By contrasting the two annotations and following the Span-based Correction criterion,
ERRANT computes the measures shown in Table 7 (the exact values correspond to the
the files previously illustrated in Figure 20).

Firstly, the number of True Positives (TP), False Positives (FP) and False Negatives
(FN) is shown. Following with the example of Figure 20, the TP correspond to the correc-
tions the system has guessed, that is, substituting “dira” by “dago” in the first sentence
and replacing “dago” by “daude” in the second one. The 4 cases of FP are the ones that
the automatic system has proposed but are not present in the original corrections: us-
ing “pozik” instead of “triste” in the second sentence and using “aulkia” instead of “ni”,
“hurbil” instead of “oporretan” and “dago” instead of “joango da” in the third sentence.
FN correspond to the corrections that should have been made (according to the reference
sentences) but our system has not suggested, in this case, using “naiz” instead of “da” in
the third sentence.

Then, using TP, FP and FN values, Precision (Prec) and Recall (Rec) are computed as
shown in Equations 1 and 2, respectively. Precision measures how many of the corrections
proposed by the system are appropriate and recall measures how many corrections the
system has proposed among all the corrections that should be made.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Finally, the F0.5 measure is calculated, which gives double the weight to precision
than to recall and is computed as depicted in Equation 3. This is the score we will use to
measure the quality of our automatic error correction system, because giving more weight
to precision than to recall indicates that False Positives are considered worse than False
Negatives. This is accurate for the task at hand since, when using a grammar checker,
it is important that the proposed corrections are highly accurate in order to gain user
acceptance. Neglecting to propose a correction is not as bad as proposing an erroneous
correction.
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F0,5 = (1 + 0, 52) · prec · rec
(0, 52 · prec) + rec

(3)

4.3.2 Evaluation Corpora and Results

The evaluation of our Error Correction systems can be divided in two steps: first, we
have performed an initial evaluation of the system trained using Elhuyar’s raw training
data, just to make sure our implementation is correct; then, we have evaluated the models
trained with our own data.

For the initial evaluation, the main objective has been to obtain comparable results
to those presented in the original paper, which would let us deem our implementation as
appropriate. So as to make a fair comparison, we have evaluated the system using the
same test sets that are used in the original paper, that is, the DeaSingle and DeaMulti
datasets previously introduced in Section 3. Both datasets were automatically built and
contain 2.000 correct-incorrect sentence pairs but, whereas the incorrect sentences of the
DeaSingle dataset contain a single error, the incorrect sentences of the DeaMulti dataset
contain multiple errors.

The F0.5 scores obtained by both systems with respect to these two datasets are shown
in Table 8. We refer to the system presented in the original paper as “Reference System”
and to the system we have trained as “Our System”. It is worth to reiterate that both
systems have been trained using the same dataset, a dataset in which incorrect sentences
have multiple errors per sentence. As can be seen, for both test sets, the systems have
obtained similar results, being ours a little bit higher. This proves that our Transformer
implementation is valid for training systems that aim to solve the GEC task.

For evaluating our actual error correction systems (i.e. the ones we have trained using
our own training datasets), we have also used the DeaSingle and DeaMulti sets, because
we want to make a fair comparison between the reference model and the ones we have
trained. Note that, in this scenario, making a fair comparison implies that we will be
comparing against the model in the reference paper that has been trained using a single
error per incorrect sentence, which is not the model that obtained the best overall score in
said paper.

DeaSingle DeaMulti
Reference System
(best performing)

0.83 0.88

Our System 0.8638 0.8984

Table 8: F0.5 scores obtained by the reference system (the best one out of all the systems
presentenced in the reference paper) and our system with respect to the DeaSingle and
DeaMulti datasets.
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TP FP FN Prec Rec F0.5
system1 1035 900 965 0.5349 0.5175 0.5313
system2 919 327 1081 0.7376 0.4595 0.6579

Table 9: Performance of the systems with respect to the DeaSingle evaluation set.

TP FP FN Prec Rec F0.5
system1 1397 660 2950 0.6791 0.3214 0.5555
system2 1500 514 2847 0.7448 0.3451 0.6047

Table 10: Performance of the systems with respect to the DeaMulti evaluation set.

The ERRANT scores obtained when evaluating our two systems against the DeaSingle
and DeaMulti sets are shown in Tables 9 and 10. As a reminder, system1 is the model
that has been trained with over 4 million correct-incorrect sentence pairs and no correct-
correct pairs. On its part, system2 has been trained trained with the same correct-incorrect
sentence pairs plus 5 million correct-correct pairs. We can contrast the F0.5 scores we have
obtained with the ones obtained by the reference model presented in the paper (the one
trained with a single error per incorrect sentence) in Table 11.

As we can see, for the two test sets, both of our systems achieve a lower F0.5 score than
the reference system. However, when correcting the sentences that form those test sets,
our model is likely to obtain worse results than the model presented in the reference paper,
because, at training time, the reference model has seen sentences generated with the same
rules that have been used to create the test sets (and these rules differ from the rules we
use in our error generating method). Therefore, we have created a third test set, from now
on referred to as OwnDeaSingle, applying our own rules for error generation. This test set
contains 2.000 correct-incorrect sentence pairs in which the incorrect sentences contain a
single error. By also evaluating our models against this test set, we will be able to determine
whether our systems are strongly dependent on our corpus generation method and are only
able to correct incorrect sentences that follow those patterns or, on the contrary, are able
to generalise and have the ability to correct grammar errors generated in multiple ways.
The ERRANT scores obtained by our models with respect to the OwnDeaSingle test set
are shown in Table 12.

This time, we can see that both of our systems obtain an F0.5 score of above 0.89,
which is higher than any of the F0.5 scores seen in all the previous experiments and even
higher than the scores obtained by the reference system with respect to the test sets that
were created using the same set of rules that was used for training said model. This shows,
on the one hand, that our models have learnt to correct incorrect sentences that contain
the same type of errors that have been used for training them and, on the other hand, that
the performance of these models is in fact a bit dependent on the type of corpus used for
training them.
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DeaSingle DeaMulti
Reference System

(single error)
0.81 0.79

system1 0.5313 0.5555
system2 0.6579 0.6047

Table 11: F0.5 scores of the reference system (the system presented in the reference paper
that is trained with a single error per incorrect sentence) and our systems with respect to
the DeaSingle and DeaMulti evaluation sets.

TP FP FN Prec Rec F0.5
system1 1857 213 216 0.8971 0.8958 0.8968
system2 1761 121 312 0.9357 0.8495 0.9171

Table 12: Performance of the systems with respect to the OwnDeaSingle evaluation set.

Nevertheless, we can say that our models have been able to generalise up to certain
extent and learn how to correct some patterns. Our best model (system2), when faced
against sentences that have been created using a different approach to those seen at training
time, obtains an F0.5 score of 0.66 points correcting sentences with a single error in them
and an F0.5 score of 0.61 points correcting sentences with multiple errors in them. These
scores are considerably higher than the 0.42 F0.5 score we were able to obtain in the Final
Degree Project when we attempted to correct incorrect sentences that were automatically
created, specially if we take into account that, in those experiments, sentences in the
training and test sets were generated using the same rules. This further proves that sentence
created with our new error generation method have a closer resemblance to more realistic
grammar errors and that using them for training a GEC system improves the performance
of the model.

Another observation that is important to make is that, for all test sets, the number
of False Positives obtained by system2 is lower than those of system1. A lower number of
False Positives implies that the system is less prone to trying to correct something that is
not an error. This is due to the fact that, while all training pairs used in system1 contain
at least an error in the incorrect sentence, system2 is also given correct-correct pairs for
training. Thanks to those correct examples the model sees at training time, it is capable
of learning that not all sentences need correction and it is able to identify, at least to a
certain degree, when those corrections should be proposed.

Still, although it has been proven that adding correct examples in the training corpus
does help, the number of correct instances to add can be hard to determine. This can
be seen by comparing the number of False Negatives obtained by the systems in both
scenarios where the sentences in the test sets contain a single error. In the case of the
DeaSingle set, while system1 ignores an error and does not correct it 965 times, system2
does so 1.081 times. As for the OwnDeaSingle set, system1 incorrectly deems an error
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Incorrect Correct system1 system2
ikertzaileak nitratoak zer
ondorio izan ditzaketen

aztertzen ari dira .

ikertzaileak nitratoek zer
ondorio izan ditzaketen

aztertzen ari dira .

ikertzaileak nitratoek zer
ondorio izan ditzaketen

aztertzen ari dira .

ikertzaileek nitratoak zer
ondorio izan ditzaketen

aztertzen ari dira .
metal astunak uretan
disolbatutak dauden
substantziak dira .

metal astunak uretan
disolbatuta dauden
substantziak dira .

metal astunak uretan
disolbatutak dauden
substantziak ditugu .

metal astunak uretan
disolbatutak dauden
substantziak dira .

nire gelako bati deitu
egin nion ikusi niolako .

nire gelako bati dei
egin nion ikusi nuelako .

nire gelako bati deitu
egin nion ikusi nuelako .

nire gelako bati deitu
egin nion ikusi nuelako .

baina pezetaren debaluazioa
alde txarrak ere bazeukan .

baina pezetaren debaluazioak
alde txarrak ere bazeuzkan .

baina pezetaren debaluazioak
alde txarrak ere bazeukan .

baina pezetaren debaluazioak
alde txarrak ere bazeukan .

hauteskundeen sistemaren
arabera , bi buelta dago
lehendakari aukeratzeko .

hauteskundeen sistemaren
arabera , bi buelta daude
lehendakaria aukeratzeko .

hauteskundeen sistemaren
arabera , bi buelta dago

lehendakari aukeratzekoek .

hauteskundeen sistemaren
arabera , bi buelta dago
lehendakari aukeratzeko .

anek gu etxera ekarri digu . anek gu etxera ekarri gaitu . anek guk etxera ekarri digu . anek gu etxera ekarri gaitu .
gehiago ikasi izan balu ,

azterketa gaindituko luke ,
baina huts egin du .

gehiago ikasi izan balu ,
azterketa gaindituko zukeen ,

baina huts egin du .

gehiago ikasi izan balu ,
azterketa gaindituko luke ,

baina huts egin da .

gehiago ikasi izan balu ,
azterketa gaindituko luke ,

baina huts egin du .
ziur azterketaren emaitzak

bihar esaten dituztela .
ziur azterketaren emaitzak

bihar esango dituztela .
ziur azterketaren emaitzak

bihar esango dituztela .
ziur azterketaren emaitzak

bihar esango dituztela .
adimen naturala eboluzioa
du eta artifiziala berriz ez .

adimen naturalak eboluzioa
du eta artifizialak berriz ez .

adimen naturala eboluzioa
da eta artifiziala berriz ez . ***

adimen naturala eboluzioa
da eta artifiziala berriz ez . ***

egia da urte berri hau
gauza txarrak ekarri dituela .

egia da urte berri honek
gauza txarrak ekarri dituela .

egia da urte berri hau
gauza txarrak ekarri direla .

egia da urte berri hau
gauza txarrak ekarri dituela .

Table 13: Examples of grammatically incorrect sentences automatically corrected by our
systems. The *** symbol indicates that the proposed correction is grammatically correct
even if it does not match the human correction.

as correct 216 times, but system2 does so 312 times. This indicates that system2 is more
likely to not propose a correction when it should, probably because said error resembles one
of the correct-correct examples the model was trained with. Taking this into account, we
can conclude that setting an appropriate number of correct-incorrect and correct-correct
pairs when building the training corpus is important, and further experiments should be
performed in order to find the perfect balance.

Finally, in order to show the actual performance of our models, Table 13 shows ex-
amples of sentences written by humans that contain some type of grammar error and the
corrections proposed by our models, as well as what the actual correction should be11.
In the first column, where the incorrect sentences are listed, the errors are highlighted in
red. In the second column, where the corresponding human-proposed corrections appear,
the word that should have been used (and makes the sentence correct) is highlighted in
green. In the third and fourth columns, where we can see the corrections proposed by our
systems, the words that have been properly identified as incorrect and corrected according
to the reference (True Positives) are highlighted in green, those that have not been cor-
rected (False Negatives) are highlighted in red and words for which a correction has been
proposed but did not need any change (False Positives) are highlighted in purple.

11These reference corrections are proposed by people with advanced Basque knowledge.
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It can be clearly seen that, while system1 has a tendency for proposing changes that are
not needed, system2 is more conservative and almost never proposes changes that should
not be made. It is also obvious that, in many cases, the systems are not able to properly
correct the sentences. This is because these are real life examples and, although we have
aimed for designing a more realistic error generation method, it is still artificial; many
errors that we have synthetically created and used for training will not be found in real
scenarios.
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5 Error Detection

This chapter focuses on our approach towards building a Neural Grammar Error Detector.
First, the chosen strategy is described, as well as the tools used for implementing it. Then,
the experimentation process is explained, where several iterations have been performed
throughout the training phase. Finally, the obtained results are discussed.

5.1 Approach

Error Detection involves, given a grammatically incorrect text, detecting which elements
make it incorrect and determining the type of grammar error that occurs in the text.
In this case, we have decided to view the task as a particular case of the Named Entity
Recognition (NER) task. NER systems aim to locate named entities — real-world objects
that can be referred to with a proper name — in a given text and classify them in pre-
defined categories such as ‘person’, ‘organization’, ‘location’ or ‘date’, among others. We
can see the parallelism between the GED and NER tasks if, instead of recognising named
entities, we try to identify grammar errors and, instead of classifying them according to
the type of entity they belong to, we classify them in different error categories.

A comparison between both tasks is shown in Figure 22. Given the sentence “Amaiak
bazkaria prestatu du”, a NER system will recognise the word “Amaiak” as a named entity
that falls under the ‘person’ category. If we were to use a GED system to analyse the same
sentence, none of the words would be tagged because it is a grammatically correct sentence
and the objective of the system is to detect errors. Now, let us suppose we apply our error
generation rules to that sentence and replace the ergative subject with the absolutive,
obtaining the incorrect sentence “*Amaia bazkaria prestatu du”. If we were to analyse this
new sentence with a GED system, the word “Amaia” should be detected as the word that
makes the sentence incorrect and using the absolutive instead of the ergative should be
identified as the type of error.

Figure 22: Parallelism between Named Entity Recognition and Grammar Error Detection.
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5.2 Implementation

In order to build a system that is able to detect and classify grammar errors, we have
decided to use Flair, a library for natural language processing that contains state of the
art models but also facilitates new model training (Akbik et al., 2019). Flair allows us to
train our own sequence labelling models by simply loading a training corpus and specifying
the word embeddings12 to use.

5.2.1 Corpora Adaptation

The training corpus we have used for this task is quite different to the one we have employed
for GEC. In the previous task, we needed sentence pairs so that the model could learn which
one was correct, which one was incorrect and how to “translate” from one to the other.
In this case, we do not need sentence pairs; we need sentences in which the words that
generate a grammar error are tagged. As aforementioned in Section 3.3, we have extended
our error generation method so that obtaining sentences that contain those tags is possible.

For sequence tagging tasks, Flair requires the training data to follow a specific format:

• All the sentences in the training corpus are grouped in a single file.

• Each line of the training file contains a single word and its corresponding tag.

• A word and its tag are separated by a tab character.

• Sentences are delimited with a blank line.

As can be seen, one of the specifications indicates that all words must have a tag.
However, we know that, for the GED task, only those words that generate errors need to
be identified and, as such, only those should be tagged in the training corpus. This issue is
easily fixed by a common practice for NER related tasks, which is to use the IOB2 format
for tagging (IOB is short for inside, outside, beginning). The “I-” and “B-’ prefixes are
added before the tags: “B-’ if the token that corresponds to the tag is the first one in the
entity and “I-” if the token is part of an entity but is not the start of the entity. The “O”
tag is used when a word does not have a corresponding tag, that is, when the word is not
a named entity (or does not generate a grammar error in our case).

Taking all of the above into account, for building a training corpus that can be loaded
in Flair, we have iterated over all the incorrect sentences (with tags) that we have gener-
ated, tokenized them and created a new file where we have a token per line. As for the
corresponding tags, those words that generate a grammar error in the sentence will contain
the string “|B-” in them, because our tagging method concatenated the generated incorrect
word plus the error type (see the token “errepikatzen|B-ko/go ten/tzen” in the example
shown in Figure 15). Thus, if a token contains the substring “|B-”, we have added what
comes after the “|” symbol as the tag; otherwise, we have added the “O” tag.

12We define word embeddings as vector representations that encode the meaning of words. Words with
a similar meaning are expected to be close in the vector space.
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(a) NER tags. (b) GED tags.

Figure 23: Comparison between annotated sentences for NER and GED.

In Figure 23 we show examples of what would be very small training files for the NER
and GED tasks, respectively.

5.2.2 Training

Once our training corpus follows the appropriate format, training a model with Flair is
simple13. First, we have loaded the corpus and specified the column properties: the first
column contains the token list and the second column the tags. It is important to indicate
Flair that this second column is the one the model should learn to predict. Then, we
have defined which word embeddings to use. Several experiments have been carried out
by combining different word embeddings. Next, we have defined the tagger (i.e., our GED
model) and initialised it with the embeddings we are going to use and the list of tags that
are present in the training corpus. Finally, we have initialised the trainer by specifying
that we want to use our corpus for training. For all the experiments that are explained in
this chapter, the models have been trained using the following hyper-parameters:

• Learning rate: 0.1

• Mini batch size: 32

• Number of epochs: 10

13The detailed procedure for model training is explained in the following site: https://github.com/

flairNLP/flair/blob/master/resources/docs/TUTORIAL_7_TRAINING_A_MODEL.md
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We have trained several models following this procedure and varying the training corpus
or the embedding combinations in each case. All those experiments are detailed in Section
5.4. For all cases, we have trained the models using GPUs of the IXA Research Group.

5.3 Evaluation Metrics

In addition to all the possibilities it offers regarding model training, Flair is also useful
for performing model evaluation. If, apart from the training set, a test set is also defined
when initialising the corpora for an experiment, Flair automatically evaluates the model
it just trained (with respect to said test set) according to F1 micro score, F1 macro score
and Accuracy.

Whereas the F1 macro of a system is computed by first calculating the F1 score for each
of the classes and then averaging all those scores, the F1 micro is computed by calculating
the metrics globally, that is, counting the total True Positives, False Negatives and False
Positives, using them to calculate the Precision and Recall (see Equations 1 and 2) and
then computing the F1 as shown in Equation 4.

F1 = 2 · prec · rec
prec + rec

(4)

Accuracy, on its part, is computed by dividing the number of correct predictions made
by a model by the total number of samples, that is, by adding the number of True Positives
and True Negatives and dividing them by the sum of True Positives, False Positives, True
Negatives and False Negatives (see Equation 5). This metric needs to be used with care,
because it can sometimes be deceiving: since True Negatives are also counted as right
guesses for the model, it is easy to obtain a high Accuracy score. To give an example, let
us imagine a sentence that is formed by 10 tokens and that one of those tokens is an error.
If given that sentence the model predicts that it is correct and considers all tokens to be
correct, it will still achieve a 90% Accuracy, because it has guessed that the other 9 tokens
are not errors. Therefore, for tasks like the one we are working on where the vast majority
of tokens are not errors, Accuracy is not the most reliable metric, so we will mostly be
focusing on F1 scores.

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

5.4 Experiments and Results

This section delves into the experimentation carried our for the Grammar Error Detec-
tion task. The section is divided in three subsections: initial experiments, error detection
without error types and false positive analysis. In the first subsection, the earliest exper-
iments are explained, including preliminar tries and more definite models. In the second
subsection we talk about experiments performed in order to better understand the results
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obtained in the first subsection. Finally, subsection three is used to define experiments
that aim to fix issues found in the experiments carried out in subsection two.

5.4.1 Initial Experiments

As an initial experiment, in order to make sure our approach is appropriate for the task at
hand, we have decided to take a random number of incorrect sentences generated by us,
3.247 in this case, and build a corpus that follows the guidelines explained in Section 5.2.1.
Then, we have decided to try different combinations of embeddings for training multiple
models with said corpus and compare the results. For evaluation, we have built a smaller
corpus by generating 101 sentences that also contain grammar errors.

In this experimentation phase, we have opted for working with four embedding types:

• Character embeddings. They are representations of words built by looking at their
character-level composition.

• Word embeddings. They are static embeddings, meaning that each word gets a pre-
computed embedding and, no matter the context, the embedding for the word is
always the same. Specifically, we have used the embeddings that have been pre-
trained using the Basque Wikipedia.

• Flair embeddings (Akbik et al., 2018). They are contextual embeddings that capture
syntactic and semantic information. They model words as sequences of characters
because they are trained without any explicit notion of actual words. They are
contextualised by their surrounding text, which means that the same word will have
different embeddings depending on its context.

• Transformer embeddings. They are representations obtained by training transformer-
based language models. Specifically, we have used the BERTeus embeddings, which
have been trained on millions of sentences from Basque news articles and Basque
Wikipedia (Agerri et al., 2020).

For our initial experiment, we have proposed five different combinations of those em-
beddings and trained a GED system with each of them, with the objective of determining
which combination works best for the task at hand. In all cases, we have taken the Trans-
former embeddings as the basis, because of the state of the art performance of Tranformers
across multiple tasks. The embedding combinations we have used are the following:

1. Transformer embeddings.

2. Transformer embeddings + Character embeddings.

3. Transformer embeddings + Word embeddings.

4. Transformer embeddings + Character embeddings + Word embeddings.

5. Transformer embeddings + Character embeddings + Word embeddings + Flair em-
beddings.
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The results obtained by these 5 preliminar models are shown in Table 14. As can be
seen, the highest scores are obtained by the model that has been trained using a combina-
tion of Character, Word and Transformer embeddings. In order to test the quality of this
model, we have made up a small set of incorrect sentences and fed them to said model to
see how capable of identifying errors it is.

Although for sentences such as “*Gustatu beharko lizuke”14, “*Eguraldi hobea egingo
balu hondartzara joango nintzen”15 and “*Ez dut uste emaitzak errepikatuko direla”16 the
model has not been able to detect errors, we show successful error detection cases in Figure
24. Let us explain what the model has identified in each case:

• For the sentence “*Nik Ariane deitzen naiz”, we can see that the system identifies
“naiz” as the word that should be corrected, and proposes that the error has occurred
because the nor element has been used instead of the nor-nork element. Although
at first sight the obvious correction of this sentence would be to change the word
“Nik” and use “Ni” in its place, so that the subject matches and the meaning of the
sentence is “My name is Ariane”, the modification proposed by the system is actually
correct: if the nor-nork element is used instead of the nor element, the sentence
“Nik Ariane deitzen dut” is formed, which is grammatically correct and means “I
call Ariane (with a certain periodicity)”.

• For the sentence “*Abiadura handiak balaztatze bortitzak eragiten zaizkio errepidean”,
the model identifies that the word “zaizkio” is the one that makes the sentence
incorrect, the reason being the use of the nor-nori scheme instead of the nor-
nork scheme. The prediction of the model is accurate: by using the nor-nork,
we get the grammatically correct sentence “Abiadura handiak balaztatze bortitzak
eragiten ditu errepidean”, which translates to “High speed causes violent braking on
the road”.

• For the sentence “*Margolan hori gustatzen dit”, the model is able to tell that the
nor-nori element should be used instead of the nor-nori-nork element, that is,
that instead of the word “dit” the word “zait” should be employed, obtaining the
correct sentence “Margolan hori gustatzen zait”, which translates to “I like that
painting”.

Even if the obtained results are somehow promising, we have realised that the systems
could be learning features or grammatical types of certain words instead of learning how to
identify errors and categorise them. For instance, if we have the word “ikusten” tagged as
“ko/go ten/tzen” in one of the sentences of the training corpus, it means that the correct
sentence should use “ikusiko” in its place. However, instead of learning that another word

14The correction of the sentence “*Gustatu beharko lizuke” should be “Gustatu beharko litzaizuke”.
15The correction of the sentence “*Eguraldi hobea egingo balu hondartzara joango nintzen” should be

“Eguraldi hobea egingo balu hondartzara joango nintzateke”.
16The correction of the sentence “*Ez dut uste emaitzak errepikatuko direla” should be “Ez dut uste

emaitzak errepikatuko direnik”.
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Train: 3247 sentences /// Test: 101 sentences
Embeddings F1 (micro) F1 (macro) Accuracy

Transformer 0.7686 0.597 0.6286
Transformer + Character 0.7755 0.6726 0.6419
Transformer + Word 0.7607 0.6035 0.6181
Transformer + Character + Word 0.805 0.7039 0.6783
Transformer + Character + Word + Flair 0.7764 0.6595 0.6389

Table 14: F1 and Accuracy scores for preliminar error detection models using different
embeddings. Only sentences with errors are used.

Figure 24: Examples of outputs obtained with the GED system that has been trained
using BERTeus, word and character embeddings.

should be used in that case, the model might be learning that all words that end with the
“-ten” suffix should be tagged with the “ko/go ten/tzen” tag. In order to prevent this issue,
we have decided to add correct sentences to the training corpus, that is, sentences where
all tokens will have the “O” tag. In a similar manner to the GEC task, correct sentences
will help the models learn that not all sentences contain errors and that not every instance
should be corrected or tagged. In addition, having both correct and incorrect sentences
in the training corpus, words that generate errors in some sentences are likely to appear
in correct sentences without being tagged (because they do not generate an error in that
case). For example, the word “ikusten” will be tagged in the sentence “*gaur ikusten dut”
because “ikusiko” should be used in its place, but it is correctly employed in the sentence
“egunero ikusten dut”, so it will not be tagged as an error in that scenario. The model
will have to find patterns to understand which are the samples that need to be tagged and
which are not and thus, will learn to detect actual errors.

Taking that into consideration, we have performed a new set of experiments where we
have trained five new models — one for each of the embedding combinations previously
mentioned — using the same 3.247 sentences with errors that we used in the previous
training phase and adding 1.911 grammatically correct sentences. Table 15 shows the
results obtained in this case when evaluating this model against a test set formed by the
previous 101 sentences with errors and 81 new correct sentences. As we can see, by adding
sentences without errors at training time, we have managed to improve the F1 micro and
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Train: 5158 sentences // Test: 182 sentences
1911 correct + 3247 with errors // 81 correct + 101 with errors

Embeddings F1 (micro) F1 (macro) Accuracy
Transformer 0.786 0.6206 0.6475
Transformer + Character 0.7892 0.6125 0.6567
Transformer + Word 0.7748 0.6176 0.637
Transformer + Character + Word 0.8182 0.6181 0.6977
Transformer + Character + Word + Flair 0.8125 0.6224 0.6894

Table 15: F1 and Accuracy scores for error detection models using different embeddings.
Sentences with no errors have been added in the training corpus.

Accuracy scores (both obtained with the model that combines transformer, character and
word embeddings). However, the F1 macro is lower in 3 out of 5 models.

Considering that the training corpus used for our best GEC system contains more
correct-correct pairs than correct-incorrect pairs and taking into account that adding cor-
rect sentences has helped improve F1 micro and Accuracy scores, we have decided to
perform one last experiment: training GED models with a corpus that contains more
correct sentences than incorrect ones.

Nevertheless, at the time of building such corpus, we have noticed that the incorrect
sentences that the models have seen at training time up until this point might not be
appropriate for the task. The reason behind this is that we have created multiple incor-
rect sentences taking the same original sentence as the basis, and therefore, most of the
tokens of the original sentences appear several times, with the same tag, in the training
corpus. Let us use the example previously shown in Table 3 to better illustrate this is-
sue. In this case, from a single correct sentence, we can generate five incorrect sentences:
“*jaurlaritza gaur hasiko du urte politikoa, donostian”, “*jaurlaritzak gaur hasten du urte
politikoa, donostian”, “*jaurlaritzak gaur hasiko dio urte politikoa, donostian”, “*jaurlar-
itzak gaur hasiko da urte politikoa, donostian” and “*jaurlaritzak gaur hasiko zaio urte
politikoa, donostian”. If we use these five sentences in the training corpus of a GED sys-
tem, the word “jaurlaritzak” will always be given the “O” tag, that is, no errors will be
related to it. However, the word “jaurlaritzak” itself is likely to cause an error related
to ergative/absolutive subjects in other sentences. Even if the model should be able to
determine when a word generates an error, if the number of times a single word is tagged
as a non-error is considerably higher than the number of times it is tagged as an error, the
system will be prone to always considering it a non-error, without even trying to determine
whether an error exists. With the objective of mitigating this issue, we have decided to,
first, build new corpora by creating a single incorrect sentence from each correct sentence
and, then, repeat the whole training process.

For this final training phase, we have built five training sets and three test sets. The
number of total sentences used in each of them and the balance between correct and
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Number of sentences
with errors correct total

train1 3250 0 3250
train2 3250 1910 5160
train3 3250 5165 8415
train4 3250 15000 18250
train5 3250 30000 33250

Table 16: Number of total sentences and distribution of correct and incorrect sentences
throughout the different training sets for Error Detection.

Number of sentences
with errors correct total

test1 100 0 100
test2 100 85 185
test3 100 825 925

Table 17: Number of total sentences and distribution of correct and incorrect sentences
throughout the different test sets for evaluating the Error Detection systems.

incorrect sentences in each case is summarised in Table 16 (training sets) and Table 17
(test sets).

We have trained a model for each of these training sets and each of the embedding
combinations mentioned before, which means that we have trained a total of 25 models.
All the F1 and Accuracy scores that these models have obtained with respect to the three
test sets we have built can be seen in Section B.1 of Appendix B.

Since we have a huge number of results to analyse, in order to simplify, we will consider
that the third test set (test3) is the closest to a real-life scenario (because writing all — or
most — sentences incorrectly is not realistic, at least for someone who has a certain degree
of knowledge about a language) and we will use the results obtained with respect to that
test set as our reference to draw conclusions from.

The first thing we can conclude by taking a look at the results is that adding correct
sentences to the training corpus does help improve the performance, at least up to 15.000
correct sentences. For the train set with 30.000 correct sentences the F1 micro and Accu-
racy scores are a bit lower, but not significantly so to the point where we could affirm that
adding 15.000 extra sentences makes the systems learn much less. Still, out of these two
training sets, models trained with 15.000 correct sentences seem to perform better overall,
even with respect to the test sets with less correct sentences (test1 and test2), so we show
the results obtained by the models trained with this corpus in Table 18.

As for the embedding combination that performs best, we can see that, for all models
trained with the train4 dataset, the setting that obtains the best results is using Trans-
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Train: 18250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
15000 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.7381 0.5555 0.5905 0.7006 0.5112 0.5439 0.6526 0.4778 0.4882
Transformer
Character

0.764 0.5674 0.6355 0.0095 0.0088 0.0049 0.0025 0.0019 0.0013

Transformer
Word

0.7349 0.5118 0.5865 0.7052 0.4932 0.5495 0.6354 0.4337 0.4692

Transformer
Character

Word
0.7886 0.5859 0.6635 0.7541 0.5474 0.6161 0.6866 0.505 0.5308

Transformer
Character

Word
Flair

0.7485 0.5423 0.6095 0.7072 0.5081 0.5565 0.6305 0.4516 0.4672

Table 18: F1 micro, F1 macro and Accuracy scores for the models trained using 15.000
correct sentences and 3.250 sentences with errors.

former, Character and Word embeddings, which is the same embedding combination that
obtained the best results in the preliminar experiments.

Taking all of the above into account, we can establish that using around 15.000 sen-
tences without errors in the training corpus and combining Transformer, Character and
Word embeddings for training the model seems to be the setting that achieves the best
results for identifying tokens that generate an error in a sentence and tagging them appro-
priately according to the error type they create.

5.4.2 Error Detection Without Error Types

As we have just mentioned, all the results derived from the previous experiments show
the performance of the models not only at detecting what token in a sentence makes it
grammatically incorrect, but also the type of error it creates. If we focus on the error type
classification part and count how many times errors of each type appear in our train and
test sets (see Table 19), we can see that they are not balanced: in a set of 3.250 sentences,
a certain error has been generated more than 600 times while other only occurs 4 times.
This lack of balance is likely to make the system fail at classifying errors that are present
very few times in the training corpus. In those cases, the system might be able to identify
that a token does not fit within a sentence, but not the type of error that there is. If that
occurs, even if the detection part of the task is accurately done, the system still receives
a low score at evaluation time, because tagging the tokens appropriately is crucial for the
NER approach we are following. So as to determine how often this occurs, we have decided
to perform the same experiments as before without taking error types into account.

In order to evaluate how our systems work just for detecting incorrect tokens, without
taking into account what type of error is made in each case, we have followed the next
procedure:

1. Use each of the 25 models trained in the previous subsection to detect and classify
errors in all the sentences of the three test sets.
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train test
NR NR-NK 645 22
NR-NK NR-NI 564 17
NR-NK NR-NI-NK 535 18
NR-NK NR 501 10
buru ezbu 359 7
erg abs 264 15
nuen nuke 192 5
ko/go ten/tzen 131 4
NR-NI-NK NR-NI 97 4
NR-NI NR-NI-NK 72 1
NR-NI NR-NK 56 0
denik-dena dela 11 0
nuke nuen 4 1
**exceptions 3 0

Table 19: Number of errors of each type in the sentences with errors used in the Error
Detection phase.

2. For each of the predictions, store the indexes of the tokens that the models identify
as incorrect (if any).

3. For each of the sentences in the test sets, store the indexes of the tokens that are
actually incorrect (if any).

4. For each sentence in the test sets and their corresponding prediction made by the
models, compare the indexes of the tokens tagged as errors.

• If the indexes match, count it as a True Positive

• If we have stored an index in the prediction but not in the reference sentence,
count it as a False Positive.

• If we have not stored an index in the prediction but we have in the reference
sentence, count it as a False Negative.

5. Compute the F1 score as shown in Equation 4.

All the TP, FP and FN counts obtained when testing our models, as well as the F1
scores, are shown in Section B.2 of Appendix B. Thanks to this evaluation, we are able to
verify that the combination of Transformer, Character and Word embeddings plus a corpus
with 15.000 correct sentences still seems to be the best option for this task, at least for
the test scenario where the majority of the sentences do not have errors. In that case, the
model trained in said setting obtains a F1 score of over 0.7 points (see Table 20), meaning
that it is able to detect tokens that make a sentence incorrect 70% of the time.
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Train: 18250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
15000 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings TP FP FN F1 TP FP FN F1 TP FP FN F1
Transformer
Character

Word
71 0 33 0.8114285714285714 71 8 33 0.7759562841530053 71 26 33 0.7064676616915424

Table 20: True Positive, False Negative and False Positive counts and F1 scores for the
model trained using a combination of Transformer, Character and Word embeddings,
15.000 correct sentences and 3.250 sentences with errors. Only detection of errors is eval-
uated, not classification according to error type.

Even if the best F1 score is obtained in that particular setting, the evolution that occurs
when correct sentences are periodically added to the training corpus is noteworthy. For
the systems trained using datasets train1, train2 and train3, where the maximum number
of correct sentences used is just above 5.000, the models are capable of scoring a high
number of True Positives, that is, they are able to correctly identify a lot of tokens that
cause errors. However, the downside of those models is that they also score a high number
of False Positives, which indicates that often times they mark as errors tokens that are
actually correct. This is clearly an issue because, in practice, an error detection system
that identifies elements that are correct as errors is not very useful, and would probably
have a bad reception among users. It is safe to say that we would rather have a system
that correctly identifies errors, even if not all of them, than a system that identifies all
errors but also indicates that correct sentences should be modified. Often times, indicating
that an error exists when it does not is directly connected to the fact that not that many
correct sentences are used for training the models where this phenomenon happens. If the
models, at training time, come across sentences that contain errors almost half of the time
(or more, in the cases where train1 and train2 datasets are used for training), they are
likely to learn that there should be an error to detect in most sentences.

The importance of showing correct sentences to the models is further proved when
analysing the number of False Positives obtained by the systems trained with the train4
and train5 datasets: whereas the best model trained with few correct sentences wrongly
identified 58 tokens as errors, the highest number of FPs obtained among the models
trained with many more correct sentences is 33 (and it does not correspond to the model
that obtains the best overall F1 score). Still, the perfect balance between correct and
incorrect sentences to use in the training corpus remains unknown, because models trained
using the train4 and train5 datasets show a decrease in the number of True Positives they
obtain (compared to the models trained with the other three datasets).

Regarding this balance, since models trained with less correct sentences clearly have
a better chance at learning more about the actual errors and, consequently, are better at
guessing what tokens make a sentence incorrect, it would be interesting to analyse what
the cause of the high number of False Positives is. If we are able to reduce the number of
False Positives scored by these models, they will drastically improve and they will perform
better than the models trained with more correct sentences. This is something we are
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Train: 8415 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
5165 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings TP FP FN F1 TP FP FN F1 TP FP FN F1
Transformer

Word
84 2 20 0.8842105263157894 84 16 20 0.8235294117647058 84 70 20 0.6511627906976744

Table 21: True Positive, False Negative and False Positive counts and F1 scores for the
model trained using a combination of Transformer and Word embeddings, 5.165 correct
sentences and 3.250 sentences with errors. Only detection of errors is evaluated, not clas-
sification according to error type.

interested in because, although models trained with more correct sentences are less likely
to say that there is an error when there is not, they are not as good at saying that there is an
error when there actually is. The next subsection aims to explain experiments performed
regarding the high number of False Positives obtained by some of the models.

5.4.3 False Positive Analysis

We have seen that models trained with less correct sentences are able to properly identify
more than 80 errors out of test sets that contain a total of 104 errors. However, these models
tend to also mark as errors words that are actually correct. For this set of experiments,
we have decided to choose one of the best systems trained with less correct sentences and
analyse the False Positives (i.e., the correct elements that are predicted as incorrect) it
detects, so as to understand why this issue is happening and try to find a solution.

The model we have chosen is the one trained using 5.165 correct sentences and a
combination of Transformer and Word embeddings. We have selected this system because,
out of the systems trained with a smaller number of correct sentences, it achieves the best
F1 score for test1 and test2, while also obtaining the second best F1 score for test3 (just
0.01 points below the best model). The exact F1 scores obtained by this system, as well
as the TP, FP and FN counts, are shown in Table 21.

By analysing the sentences where this system believes that there is an error when
actually there is not, we have realised that many cases are somehow ambiguous, that is,
another word could be used instead of the word the system identifies as an error and the
sentence would still be grammatically correct. For instance, this is the case of the sen-
tence “Sare sozialetan ere jarraitzaile kopurua goraka doa, eta urte osoan ia etenik gabe lan
egiten jarraituko da”. The system identifies the word “da” as incorrect, probably believing
that the word “du” should be used in its place. It is true that, if we were to substitute
“da” by “du”, we would obtain the grammatically correct sentence “Sare sozialetan ere
jarraitzaile kopurua goraka doa, eta urte osoan ia etenik gabe lan egiten jarraituko du”.
Still, the original sentence without modifications is grammatically correct, so the system
saying that an error exists is not helpful for a potential user.
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Our hypothesis for why the system considers cases like the one shown in the previous
example as errors is that, because of the rules we have defined for error generation, the
change between “da” and “du” frequently appears throughout the training corpus. Pre-
cisely, this occurs because of the rule where we find the nor element and replace it by the
nor-nork element (and vice versa). What we did not take into account when defining
this rule is that “da” and “du” are extremely common words (which is why we assume that
this modification can be found many times in the training corpus) and that, although sub-
stituting one by the other may generate errors in some cases, if the subject of the sentence
is not specified, both can be used in a sentence and still have it be grammatically correct
(but with a different meaning). In other words, it is quite possible that, by applying this
rule, we have been generating sentences that are not actually grammatically incorrect and
feeding them to the models as if they were.

In order to determine how often this has happened, as well as whether we have defined
other rules that cause similar problems, we have taken the sentences where the 70 False
Positives predicted by the system occur and we have looked at the actual error types the
system assigns for each of those cases. What we have found further demonstrates our
hypothesis: 27 out of the 70 cases the system wrongly predicts as grammatically incorrect
are errors generated by replacing the nor element with the nor-nork element and another
28 cases are errors generated by replacing the nor-nork element with the nor element.

This clearly shows that part of the high amount of False Positives the systems produce is
due to the fact that our error generation procedure can sometimes generate grammatically
correct sentences. With the objective of fixing this issue, we have tried to see whether
we can somehow discard those grammatically correct sentences that are generated from
the training corpus. To do so, we have generated 50 new sentences by replacing the nor
element with the nor-nork element and another 50 new sentences where the nor-nork
element is replaced by the nor element. Then, we have used a Language Model trained
with correct sentences written in Basque to calculate the probability of those 100 sentences
belonging to correct Basque, as well as the probability of their corresponding 100 correct
sentences (the 100 original sentences from which the new ones have been generated) of
pertaining to the Basque language model. Next, for each sentence pair, we have computed
the difference between the probability of the correct sentence and the probability of the
generated sentence. Finally, by manually analysing the generated sentences, we have set a
threshold to indicate that, if the difference between the probabilities of the original and the
generated sentence is above said threshold, generally, it means that the generated sentence
has clearer errors or is almost always incorrect without a doubt.

Once we have defined this threshold, we have applied it to the sentences in the training
corpora, and re-trained the models shown in Table 20 and Table 21 using sentences that
are above the threshold17. We show the comparison between the F1 scores and the number
of TPs, FPs and FNs obtained by the models with and without applying the threshold

17So as to keep the same number of total sentences in the training corpus as in the previous experiments,
every time a sentence has been discarded, a new one that scores above the threshold has been added.
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8415 sentences: 5165 correct + 3250 with errors // Transformer + Word embeddings
No threshold applied Threshold: >2

TP FP FN F1 TP FP FN F1
test1

100 with errors
84 2 20 0.8842105263157894 71 5 33 0.7888888888888889

test2
85 correct + 100 with errors

84 16 20 0.8235294117647058 71 13 33 0.7553191489361704

test3
825 correct + 100 with errors

84 70 20 0.6511627906976744 71 47 33 0.6396396396396397

Table 22: Comparison between models trained using 5.165 correct sentences and a com-
bination of Transformer and Word embeddings with and without applying a threshold to
the sentences in the training corpus.

18250 sentences: 15000 correct + 3250 with errors // Transformer + Word + Charcter embeddings
No threshold applied Threshold: >2

TP FP FN F1 TP FP FN F1
test1

100 with errors
71 0 33 0.8114285714285714 56 0 48 0.7000000000000001

test2
85 correct + 100 with errors

71 8 33 0.7759562841530053 56 1 48 0.6956521739130436

test3
825 correct + 100 with errors

71 26 33 0.7064676616915424 56 14 48 0.6436781609195402

Table 23: Comparison between models trained using 15.000 correct sentences and a com-
bination of Transformer, Character and Word embeddings with and without applying a
threshold to the sentences in the training corpus.

in Table 22 (for the model trained with 5.165 correct sentences and a combination of
Transformer and Word embeddings) and Table 23 (for the model trained with 15.000
correct sentences and a combination of Transformer, Character and Word embeddings).

If we analyse the results, we see that, in both cases and with respect to all test sets,
training the models without applying the thresholds seems to work better. Even if, in
almost all cases, the number of False Positives does decrease by using the threshold, the
number of correct guesses made by the models is also considerably lower, which makes the
overall F1 score be lower as well. This is strange because removing correct sentences that
we were assuming to be incorrect, rather than making the models detect less errors, should
help them have a clearer view of what actual errors are.

With the aim of identifying why this is happening, we have decided to analyse the
sentences in the test sets and what the models are predicting for each of them. What
we have realised by inspecting the incorrect sentences from the test set in greater detail
is that many of them are actually correct. Since the supposedly incorrect sentences from
the test set have also been automatically generated, we come across the same issue as
before: sometimes correct sentences are generated. This might be the reason why the
models trained with sentences that pass the threshold have achieved less True Positives:
the systems have learnt to identify actual errors (those that are always errors, almost
without a doubt) and have made their predictions accordingly, but in the test sets we have
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tagged as errors cases that are not errors; even if the models rightly identify a sentence as
correct, if it has been tagged as containing an error (when it should not have been), it will
not count as a True Positive.

We believe that having an appropriate test set against which we can evaluate our models
is crucial, because otherwise we will not be able to know how good at solving the task our
models actually are. With that in mind, we have decided to manually revise the test set.
To do so, we have read the 100 incorrect sentences in the test set an annotated them
according to whether we thought the incorrect sentence of the pair was actually incorrect
or not. Then, we have only kept those sentences that were considered incorrect by all
annotators and we have generated new incorrect sentences (and repeated the annotation
and discarding process) until we have built a new set of 100 incorrect sentences.

Once we have verified that the incorrect sentences are fitting for the task, we have
re-built all our test sets using these 100 manually revised sentences (and maintaining the
correct ones) and we have re-evaluated all our models (considering error types). The new
scores can be found in Section B.3 of Appendix B. As we can see, for the most part,
the F1 micro and Accuracy scores obtained when evaluating against the new test set are
higher. This is a good sign, because we are getting better scores with a test set that
is more appropriate for evaluating the task. As for the F1 macro, it does sometimes
improve, but other times it is lower. Having a decrease in the macro score indicates that
there might be certain error types that the models have trouble predicting. As future
steps towards improving these systems, it could be interesting to identify which are the
particular errors that the models have trouble guessing. Then, sentences with said errors
could be generated and added to the training set, and whether the models are able to learn
from those new instances and generalise with regards to that specific error type could be
studied by comparing the F1 macro scores.

The model that obtains the best results against the third test set is the one trained
with 30.000 correct sentences and just Transformer embeddings, achieving the highest F1
micro, F1 macro and Accuracy scores out of all the models and also higher scores than all
of the scores obtained with the previous test set. However, the most constant model — the
one that, for all three test sets, always obtains the highest or almost highest scores — is the
one trained with 15.000 correct sentences and a combination of Transformer, Character and
Word embeddings. Even if it does not score the absolute best F1 and Accuracy values in
the third test scenario, it obtains just 0.0013 F1 micro points, 0.0402 F1 macro points and
0.0025 Accuracy points less than the best model, which we can say is a small difference for
it to be considered significant. Altogether, we could conclude that, in our experience, the
most successful setting for training a GED model is using 4 times more correct sentences
than incorrect ones and combining Transformer, Character and Word embeddings.
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6 Conclusions and Future Work

In this work we have completed our objective of continuing the line of research of our
previous work. We have done so by exploring a methodology for creating more complex
grammatical errors that aim to be more similar to human-made errors than those gen-
erated with surface operations. Said method has allowed us to generate over 4 million
sentences that contain diverse types of grammar errors and that can be useful for training
neural models for multiple tasks. Furthermore, we have been able to test this new error
generation approach by training Grammar Error Correction systems and evaluating their
performance across different settings. Results show that models trained with our synthetic
errors achieve really good scores when correcting synthetic errors generated with the same
method, as well as a considerably good performance when correcting synthetic errors that
are generated using a different method. Correction of human-made incorrect sentences still
needs improvement, but our models are capable of accurately correcting certain paradigm
and subject related errors, demonstrating that the corpora created with the proposed error
generation procedure does provide the models with a certain degree of knowledge.

Additionally, this work has also given us the chance to experiment towards building a
Grammar Error Detection system that is capable of identifying grammar errors in a sen-
tence and tagging them according to their type. In doing so, we have expanded our error
generation method so as to create tagged synthetic data where error types are indicated
next to the words that make the sentences incorrect. We have trained several detection
models using these data, while also studying different embedding combinations for training
and analysing which ones are more appropriate for the task. This experimentation phase
has been specially insightful and has served to highlight the importance of using correct
sentences at training time, due to the great impact they have at helping the models un-
derstand which cases do not contain errors. These experiments have also brought to light
a downside of our error generation approach: generating grammatically correct sentences
in certain occasions. This has proven to have a negative impact on the systems, because,
if correct sentences that are tagged as incorrect are used for training, the information from
which the models have to infer can end up being contradictory and thus, no real leaning
can be made.

Overall, we have been able to complete the goals we set when we defined the scope of
the project. The error generation method has been successfully improved, Neural Grammar
Error Correction and Detection systems have been trained and tested and the developed
systems have proven to have acquired a certain degree of knowledge about grammar rules
in Basque.

As for future lines of investigation, there are several topics and tasks where we could
continue our development. For instance, work still needs to be made regarding real-life
incorrect sentences.

The first step towards improving the performance on real, human-made incorrect sen-
tences, both for GEC and GED, would involve training a system with sentences that can
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contain multiple errors. As seen in the real-life examples shown in Table 13, it is quite
common to find sentences where two modifications need to be made in order to correct it.
Therefore, it would be interesting to build a corpus combining correct sentences, sentences
with a single error and sentences with multiple errors. This idea could also be extended
and, instead of building a single corpus, multiple datasets could be constructed by varying
the proportion of sentences according to the number of errors they have. In the case of
GEC, it would be insightful to test models trained with these datasets against the DeaMulti
dataset, because, if the performance with respect to that dataset improves (compared to
the models presented in this work), the hypothesis that models do learn how to correct
sentences that are very similar to those used for training would be further demonstrated.
In addition, for both tasks, we would be able to analyse whether adding samples with more
errors at training time improves the performance on real incorrect sentences.

Improvement could also be achieved by detecting correct sentences that are generated
by our error generation method. In order to mitigate this issue, we could further experiment
regarding the probabilities given by the language model to sentences that contain different
types of errors, so as to see what the most problematic errors are. Then, we could try to
define a new threshold that is fitting for all errors types and after applying it, re-train some
models and evaluate them against our new manually revised test set without considering
error types. This would show whether an appropriate threshold actually helps reduce the
number of False Positives or, on the contrary, a different strategy should be used.

Regarding the particular task of error correction, we could try to extend the knowledge
of our system and, not only provide it with the ability of correcting grammar errors but also
those related to orthography. This could be useful because, when writing in Basque, words
that contain “ts”, “tx” or “tz” are often incorrectly written and the use of the “h” letter
also generates doubts frequently. So as to add such capability of correcting orthography
errors, we could use the error generation method proposed in the Final Degree Project, the
one that consisted on insertion, deletion and replacement operations. This time around,
however, instead of performing those operations at token level, we could do so at character
level. This way, we would generate sentences with a small amount of words where one or
two characters should be corrected, and we could add them to the training corpus we have
built in this work in order to train a new system that also considers orthography errors.
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A Comparisons of analyses of correct and incorrect

sentences

This appendix displays tables that contain all the comparisons performed during the error
analysis phase described in Section 3.1. For each table, the left column shows a grammat-
ically correct sentence and the analyses obtained when passing it as input to Eustagger;
the right column contains an incorrect version of the other sentence and its analysis. In
all pairs, for the particular analysis of the word that differs between the two sentences,
the patterns that change from one analysis to the other are marked in red. In addition,
if disambiguation issues (i.e. the analyser has not been able to completely disambiguate a
word) occur in the words that vary between the sentences, they are underlined in orange.
Some annotations made during the development stages of the error analysis and generation
approaches are shown under the tables.
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Ziur bihar jakingo dugula.

/<Ziur>/<HAS_MAI>/
("ziur" ADJ ARR w1,L-A-ADJ-ARR-10,lsfi1 @<IA)

/<bihar>/
("bihar" ADB ARR w2,L-A-ADB-ARR-10,lsfi2 @ADLG)

/<jakingo>/
("jakin" ADI SIN GERO DU w3,L-A-ADI-SIN-34,lsfi3 @-JADNAG)

/<dugula>/
("*edun" ADL A1 NR_HURA NK_GUK MOD/DENB w4,L-A-ADL-39,lsfi4

@+JADLAG_MP_ADLG)
/<.>/<PUNT_PUNT>/

Ziur bihar jakiten dugula.

/<Ziur>/<HAS_MAI>/
("ziur" ADJ ARR w6,L-A-ADJ-ARR-10,lsfi5 @<IA)

/<bihar>/
("bihar" ADB ARR w7,L-A-ADB-ARR-10,lsfi6 @ADLG)

/<jakiten>/
("jakin" ADI SIN EZBU DU w8,L-A-ADI-SIN-37,lsfi7 @-JADNAG)

/<dugula>/
("*edun" ADL A1 NR_HURA NK_GUK MOD/DENB w9,L-A-ADL-39,lsfi8

@+JADLAG_MP_ADLG)
/<.>/<PUNT_PUNT>/

➔ Jakingo → Geroaldia (future tense)
➔ Jakiten → Burutugabea (imperfective)

Gustura egingo nuke orain.

/<Gustura>/<HAS_MAI>/
("gustura" ADB ARR w11,L-A-ADB-ARR-11,lsfi9 @ADLG)

/<egingo>/
("egin" ADI SIN GERO DU w12,L-A-ADI-SIN-38,lsfi10 @-JADNAG)

/<nuke>/
("*edun" ADL B2 NR_HURA NK_NIK w13,L-A-ADL-41,lsfi11 @+JADLAG)

/<orain>/
("orain" ADB ARR w14,L-A-ADB-ARR-12,lsfi12 @ADLG)

/<.>/<PUNT_PUNT>/

Gustura egingo nuen orain.

/<Gustura>/<HAS_MAI>/
("gustura" ADB ARR w16,L-A-ADB-ARR-11,lsfi13 @ADLG)

/<egingo>/
("egin" ADI SIN GERO DU w17,L-A-ADI-SIN-38,lsfi14 @-JADNAG)

/<nuen>/
("*edun" ADL B1 NR_HURA NK_NIK w18,L-A-ADL-42,lsfi15 @+JADLAG)
("*edun" ADL B1 NR_HURA NK_NIK MOS w18,L-A-ADL-44,lsfi16
@+JADLAG_MP_ADLG)

/<orain>/
("orain" ADB ARR w19,L-A-ADB-ARR-12,lsfi17 @ADLG)

/<.>/<PUNT_PUNT>/

➔ Nuke → Indik. baldintza (conditional indicative) → adb: nintzateke
➔ Nuen → Indikatibozko lehenaldia (past indicative → adb: nintzen



Gauza bat falta zait esateko.

/<Gauza>/<HAS_MAI>/
("Gauza" IZE LIB PLU- w21,L-A-IZE-LIB-3,lsfi18 @KM>)

/<bat>/
("bat" DET DZH NMGS w22,L-A-DET-DZH-3,lsfi19 @ID>)

/<falta>/
("falta" IZE ARR BIZ- ABS MG w23,L-A-IZE-ARR-72,lsfi21 @PRED)
("falta" IZE ARR BIZ- ABS NUMS MUGM w23,L-A-IZE-ARR-73,lsfi20 @PRED)

/<zait>/
("izan" ADT A1 NR_HURA NI_NIRI PNT w24,L-A-ADT-48,lsfi22 @-JADNAG)

/<esateko>/
("esateko" IZE ARR BIZ- ABS MG w25,L-A-IZE-ARR-75,lsfi23 @PRED)
("esateko" IZE ARR BIZ- ABS MG w25,L-A-IZE-ARR-75,lsfi24 @SUBJ)
("esate" IZE ARR BIZ- ABS MG w25,L-A-IZE-ARR-77,lsfi25 @PRED)
("esate" IZE ARR BIZ- ABS MG w25,L-A-IZE-ARR-77,lsfi26 @SUBJ)
("esate" IZE ARR BIZ- ABS MG w25,L-A-IZE-ARR-80,lsfi27 @SUBJ)
("esate" IZE ARR BIZ- ABS MG w25,L-A-IZE-ARR-80,lsfi28 @PRED)

/<.>/<PUNT_PUNT>/

Gauza bat faltatzen zait esateko.

/<Gauza>/<HAS_MAI>/
("gauza" IZE ARR BIZ- w27,L-A-IZE-ARR-68,lsfi29 @KM>)

/<bat>/
("bat" DET DZH NMGS ABS MG w28,L-A-DET-DZH-4,lsfi30 @SUBJ)

/<faltatzen>/
("faltatu" ADI SIN EZBU DA-DU w29,L-A-ADI-SIN-47,lsfi31 @-JADNAG)

/<zait>/
("izan" ADL A1 NR_HURA NI_NIRI w30,L-A-ADL-46,lsfi32 @+JADLAG)

/<esateko>/
("esateko" IZE ARR BIZ- ABS MG w31,L-A-IZE-ARR-75,lsfi33 @PRED)
("esateko" IZE ARR BIZ- ABS MG w31,L-A-IZE-ARR-75,lsfi34 @SUBJ)
("esate" IZE ARR BIZ- ABS MG w31,L-A-IZE-ARR-77,lsfi35 @PRED)
("esate" IZE ARR BIZ- ABS MG w31,L-A-IZE-ARR-77,lsfi36 @SUBJ)
("esate" IZE ARR BIZ- ABS MG w31,L-A-IZE-ARR-80,lsfi37 @SUBJ)
("esate" IZE ARR BIZ- ABS MG w31,L-A-IZE-ARR-80,lsfi38 @PRED)

/<.>/<PUNT_PUNT>/

➔ We have not been able to obtain the needed disambiguation because the option of “falta” being a verb has been discarded by the tagger. We will try with the
“bururatzen” verb in the next example to see if we get the disambiguation we need.

Gaur gauza bat bururatu zait.

/<Gaur>/<HAS_MAI>/
("gaur" ADB ARR w1,L-A-ADB-ARR-2,lsfi1 @ADLG)

/<gauza>/
("gauza" IZE ARR BIZ- w2,L-A-IZE-ARR-4,lsfi2 @KM>)

/<bat>/
("bat" DET DZH NMGS ABS MG w2,L-A-DET-DZH-4,lsfi2 @SUBJ)

/<bururatu>/
("bururatu" ADI SIN BURU DU-ZAIO w3,L-A-ADI-SIN-11,lsfi3 @-JADNAG)

/<zait>/
("izan" ADL A1 NR_HURA NI_NIRI w4,L-A-ADL-2,lsfi4 @+JADLAG)

/<.>/<PUNT_PUNT>/

Gaur gauza bat bururatzen zait.

/<Gaur>/<HAS_MAI>/
("gaur" ADB ARR w1,L-A-ADB-ARR-2,lsfi1 @ADLG)

/<gauza>/
("gauza" IZE ARR BIZ- w2,L-A-IZE-ARR-4,lsfi2 @KM>)

/<bat>/
("bat" DET DZH NMGS ABS MG w7,L-A-DET-DZH-4,lsfi6 @SUBJ)

/<bururatzen>/
("bururatu" ADI SIN EZBU DU-ZAIO w8,L-A-ADI-SIN-15,lsfi7 @-JADNAG)

/<zait>/
("izan" ADL A1 NR_HURA NI_NIRI w9,L-A-ADL-2,lsfi8 @+JADLAG)

/<.>/<PUNT_PUNT>/



Afaltzera gonbidatu ninduen.

/<Afaltzera>/<HAS_MAI>/
("afaltze" IZE ARR ALA NUMS MUGM w33,L-A-IZE-ARR-81,lsfi39 @ADLG)

/<gonbidatu>/
("gonbidatu" ADI SIN BURU DU w34,L-A-ADI-SIN-50,lsfi40 @-JADNAG)

/<ninduen>/
("*edun" ADL B1 NR_NI NK_HARK w35,L-A-ADL-47,lsfi41 @+JADLAG)
("*edun" ADL B1 NR_NI NK_HARK MOS w35,L-A-ADL-49,lsfi43

@+JADLAG_MP_ADLG)
("*edun" ADL B1 NR_NI NK_HARK ERLT w35,L-A-ADL-50,lsfi42

@+JADLAG_MP_IZLG>)
/<.>/<PUNT_PUNT>/

Afaltzera gonbidatu zidan.

/<Afaltzera>/<HAS_MAI>/
("afaltze" IZE ARR ALA NUMS MUGM w37,L-A-IZE-ARR-81,lsfi44 @ADLG)

/<gonbidatu>/
("gonbidatu" ADI SIN BURU DU w38,L-A-ADI-SIN-50,lsfi45 @-JADNAG)

/<zidan>/
("*edun" ADL B1 NR_HURA NI_NIRI NK_HARK w39,L-A-ADL-52,lsfi46

@+JADLAG)
("*edun" ADL B1 NR_HURA NI_NIRI NK_HARK MOS w39,L-A-ADL-54,

lsfi48 @+JADLAG_MP_ADLG)
("*edun" ADL B1 NR_HURA NI_NIRI NK_HARK ERLT w39,L-A-ADL-55,

lsfi47 @+JADLAG_MP_IZLG>)
/<.>/<PUNT_PUNT>/

➔ Ninduen → Nor: ni (nork: hark)
➔ Zidan → Nor: hura, Nori: niri (nork: hark)

Jonek ez daki ezer.

/<Jonek>/<HAS_MAI>/
("Jone" IZE IZB PLU- ERG NUMS MUGM w63,L-A-IZE-IZB-5,lsfi76 @SUBJ)
("Jon" IZE IZB PLU- ERG NUMS MUGM w63,L-A-IZE-IZB-6,lsfi77 @SUBJ)

/<ez>/
("ez" ADB ARR w64,L-A-ADB-ARR-14,lsfi78 @ADLG)

/<daki>/
("jakin" ADT A1 NR_HURA NK_HARK PNT w65,L-A-ADT-69,lsfi79
@+JADNAG)

/<ezer>/
("ezer" IOR IZGMGB ABS MG w66,L-A-IOR-IZGMGB-2,lsfi80 @OBJ)
("ezer" IOR IZGMGB ABS MG w66,L-A-IOR-IZGMGB-2,lsfi81 @SUBJ)

/<.>/<PUNT_PUNT>/

Jon ez daki ezer.

/<Jon>/<HAS_MAI>/
("Jon" IZE IZB PLU- ABS NUMS MUGM w68,L-A-IZE-IZB-8,lsfi82 @OBJ)

/<ez>/
("ez" PRT EGI w69,L-A-PRT-4,lsfi83 @PRT)

/<daki>/
("jakin" ADT A1 NR_HURA NK_HARK PNT w70,L-A-ADT-69,lsfi84
@+JADNAG)

/<ezer>/
("ezer" IOR IZGMGB ABS MG w71,L-A-IOR-IZGMGB-2,lsfi85 @OBJ)
("ezer" IOR IZGMGB ABS MG w71,L-A-IOR-IZGMGB-2,lsfi86 @SUBJ)

/<.>/<PUNT_PUNT>/

➔ Jonek → Ergatiboa (ergative)
➔ Jon → Absolutiboa (absolutive)



Bidaiek atsedena hartzeko balio dute.

/<Bidaiek>/<HAS_MAI>/
("bidaia" IZE ARR BIZ- ERG NUMP MUGM w73,L-A-IZE-ARR-93,lsfi87 @SUBJ)

/<atsedena>/
("atseden" ADI SIN ABS NUMS MUGM PART w74,L-A-ADI-SIN-62,lsfi88
@-JADNAG_MP_OBJ)

("atseden" ADI SIN ABS NUMS MUGM PART w74,L-A-ADI-SIN-62,lsfi89
@-JADNAG_MP_SUBJ)

/<hartzeko>/
("hartze" IZE ARR GEL NUMS MUGM w75,L-A-IZE-ARR-97,lsfi91 @IZLG>)
("hartz" IZE ARR BIZ+ GEL NUMS MUGM w75,L-A-IZE-ARR-102,lsfi90 @IZLG>)

/<balio>/
("baliotu" ADI SIN DU ADOIN LEX w76,L-A-ADI-SIN-66,lsfi92 @-JADNAG)

/<dute>/
("ukan" ADT A1 NR_HURA NK_HAIEK-K PNT w77,L-A-ADT-73,lsfi93
@+JADNAG)

/<.>/<PUNT_PUNT>/

Bidaiak atsedena hartzeko balio dute.

/<Bidaiak>/<HAS_MAI>/
("bidaia" IZE ARR BIZ- ABS NUMP MUGM w79,L-A-IZE-ARR-112,lsfi94 @SUBJ)

/<atsedena>/
("atseden" ADI SIN ABS NUMS MUGM PART w80,L-A-ADI-SIN-62,lsfi95

@-JADNAG_MP_OBJ)
("atseden" ADI SIN ABS NUMS MUGM PART w80,L-A-ADI-SIN-62,lsfi96

@-JADNAG_MP_SUBJ)
/<hartzeko>/

("hartze" IZE ARR GEL NUMS MUGM w81,L-A-IZE-ARR-97,lsfi98 @IZLG>)
("hartz" IZE ARR BIZ+ GEL NUMS MUGM w81,L-A-IZE-ARR-102,lsfi97 @IZLG>)

/<balio>/
("baliotu" ADI SIN DU ADOIN LEX w82,L-A-ADI-SIN-66,lsfi99 @-JADNAG)

/<dute>/
("ukan" ADT A1 NR_HURA NK_HAIEK-K PNT w83,L-A-ADT-73,lsfi100

@+JADNAG)
/<.>/<PUNT_PUNT>/

➔ Bidaiek → Ergatiboa
➔ Bidaiak → Absolutiboa

Jende askok uste du.

/<Jende>/<HAS_MAI>/
("jende" IZE ARR w85,L-A-IZE-ARR-114,lsfi101 @KM>)

/<askok>/
("asko" DET DZG MG ERG MG w86,L-A-DET-DZG-4,lsfi102 @SUBJ)

/<uste>/
("uste" IZE ARR BIZ- ABS MG w87,L-A-IZE-ARR-119,lsfi103 @OBJ)

/<du>/
("ukan" ADT A1 NR_HURA NK_HARK PNT w88,L-A-ADT-74,lsfi104
@-JADNAG)

/<.>/<PUNT_PUNT>/

Jende askok uste dute.

/<Jende>/<HAS_MAI>/
("jende" IZE ARR w90,L-A-IZE-ARR-114,lsfi105 @KM>)

/<askok>/
("asko" DET DZG MG ERG MG w91,L-A-DET-DZG-4,lsfi106 @SUBJ)

/<uste>/
("uste" IZE ARR BIZ- ABS MG w92,L-A-IZE-ARR-119,lsfi107 @OBJ)

/<dute>/
("ukan" ADT A1 NR_HURA NK_HAIEK-K PNT w93,L-A-ADT-73,lsfi108

@-JADNAG)
/<.>/<PUNT_PUNT>/

➔ Du → Nork: hark
➔ Dute → Nork: haiek



Atzo kalean ikusi zintudan.

/<Atzo>/<HAS_MAI>/
("atzo" ADB ARR w41,L-A-ADB-ARR-13,lsfi49 @ADLG)

/<kalean>/
("kale" IZE ARR BIZ- INE NUMS MUGM w42,L-A-IZE-ARR-82,lsfi50 @ADLG)

/<ikusi>/
("ikusi" ADI SIN BURU DU w43,L-A-ADI-SIN-53,lsfi51 @-JADNAG)

/<zintudan>/
("*edun" ADL B1 NR_ZU NK_NIK w44,L-A-ADL-56,lsfi52 @+JADLAG)
("*edun" ADL B1 NR_ZU NK_NIK MOS w44,L-A-ADL-58,lsfi54
@+JADLAG_MP_ADLG)

("*edun" ADL B1 NR_ZU NK_NIK ERLT w44,L-A-ADL-59,lsfi53
@+JADLAG_MP_IZLG>)

/<.>/<PUNT_PUNT>/

Atzo kalean ikusi nizun.

/<Atzo>/<HAS_MAI>/
("atzo" ADB ARR w46,L-A-ADB-ARR-13,lsfi55 @ADLG)

/<kalean>/
("kale" IZE ARR BIZ- INE NUMS MUGM w47,L-A-IZE-ARR-82,lsfi56 @ADLG)

/<ikusi>/
("ikusi" ADI SIN BURU DU w48,L-A-ADI-SIN-53,lsfi57 @-JADNAG)

/<nizun>/
("*edun" ADL B1 NR_HURA NI_ZURI NK_NIK w49,L-A-ADL-60,lsfi58
@+JADLAG)

("*edun" ADL B1 NR_HURA NI_ZURI NK_NIK MOS w49,L-A-ADL-62,lsfi60
@+JADLAG_MP_ADLG)

("*edun" ADL B1 NR_HURA NI_ZURI NK_NIK ERLT w49,L-A-ADL-63,lsfi59
@+JADLAG_MP_IZLG>)

/<.>/<PUNT_PUNT>/

➔ Zintudan → Nor: zu (nork: nik)
➔ Nizun → Nor: hura, nori: zuri (nork: nik)

● Note: If we use the command “up zintudan” in the FST, several outputs are obtained. Still, for all those choices, we can get “nizun” in the downwards direction
by adding nori and modifying nor.

Paisaia asko gustatzen zait.

/<Paisaia>/<HAS_MAI>/
("paisaia" IZE ARR w41,L-A-IZE-ARR-67,lsfi41 @KM>)

/<asko>/
("asko" DET DZG MG ABS MG w42,L-A-DET-DZG-4,lsfi42 @SUBJ)

/<guztatzen>/
("gustatu" ADI SIN EZBU ZAIO w43,L-T1-ADI-SIN-61,lsfi43 @-JADNAG)

/<zait>/
("izan" ADL A1 NR_HURA NI_NIRI w44,L-A-ADL-45,lsfi44 @+JADLAG)

/<.>/<PUNT_PUNT>/

Paisaia asko gustatzen nau.

/<Paisaia>/<HAS_MAI>/
("paisaia" IZE ARR w46,L-A-IZE-ARR-67,lsfi45 @KM>)

/<asko>/
("asko" DET DZG MG ABS MG w47,L-A-DET-DZG-4,lsfi46 @OBJ)

/<gustatzen>/
("gustatu" ADI SIN EZBU ZAIO w48,L-A-ADI-SIN-66,lsfi47 @-JADNAG)

/<nau>/
("*edun" ADL A1 NR_NI NK_HARK w49,L-A-ADL-46,lsfi48 @+JADLAG)

/<.>/<PUNT_PUNT>/

➔ Zait → nor: hura. nori: niri
➔ Nau → nor: ni, nork: hark



Utzi behar diogu negar egiteari.

/<Utzi>/<HAS_MAI>/
("utzi" ADI SIN DU PART w51,L-A-ADI-SIN-55,lsfi61 @-JADNAG)
("utzi" ADI SIN ABS MG PART w51,L-A-ADI-SIN-57,lsfi62 @-JADNAG_MP_OBJ)
("utzi" ADI SIN ABS MG PART w51,L-A-ADI-SIN-57,lsfi63 @-JADNAG_MP_SUBJ)

/<behar>/
("behar" IZE ARR BIZ- ABS MG w52,L-A-IZE-ARR-86,lsfi64 @OBJ)

/<diogu>/
("ukan" ADT A1 NR_HURA NI_HARI NK_GUK PNT w53,L-A-ADT-66,lsfi65
@-JADNAG)

("esan" ADT A1 NR_HURA NK_GUK PNT w53,L-A-ADT-67,lsfi66 @-JADNAG)
/<negar>/

("negar" IZE ARR BIZ- ABS MG w54,L-A-IZE-ARR-88,lsfi67 @OBJ)
/<egiteari>/

("egin" ADI SIN DAT NUMS MUGM ADIZE w55,L-A-ADI-SIN-60,lsfi68
@-JADNAG_MP_ZOBJ)

/<.>/<PUNT_PUNT>/

Utzi behar dugu negar egitea.

/<Utzi>/<HAS_MAI>/
("utzi" ADI SIN DU PART w57,L-A-ADI-SIN-55,lsfi69 @-JADNAG)
("utzi" ADI SIN ABS MG PART w57,L-A-ADI-SIN-57,lsfi70 @-JADNAG_MP_OBJ)
("utzi" ADI SIN ABS MG PART w57,L-A-ADI-SIN-57,lsfi71 @-JADNAG_MP_SUBJ)

/<behar>/
("behar" IZE ARR BIZ- ABS MG w58,L-A-IZE-ARR-86,lsfi72 @OBJ)

/<dugu>/
("ukan" ADT A1 NR_HURA NK_GUK PNT w59,L-A-ADT-68,lsfi73 @-JADNAG)

/<negar>/
("negar" IZE ARR BIZ- w60,L-A-IZE-ARR-87,lsfi74 @KM>)

/<egitea>/
("egin" ADI SIN ABS ADIZE KONPL w61,L-A-ADI-SIN-61,lsfi75

@-JADNAG_MP_OBJ)
/<.>/<PUNT_PUNT>/

➔ Egiteari → Datiboa (nori), singularra, mugatua  (dative, singular, definite)
➔ Egitea → Absolutiboa (nor), konpletiboa (absolutive, completive)

Azkenaldian asko argaldu du.

/<Azkenaldian>/<HAS_MAI>/
("azkenaldi" IZE ARR BIZ- INE NUMS MUGM w31,L-A-IZE-ARR-66,lsfi33

@ADLG)
/<asko>/

("asko" ADB ARR GRAD w32,L-A-ADB-ARR-8,lsfi34 @ADLG)
/<argaldu>/

("argaldu" ADI SIN BURU DA-DU w33,L-A-ADI-SIN-59,lsfi35 @-JADNAG)
/<du>/

("*edun" ADL A1 NR_HURA NK_HARK w34,L-A-ADL-43,lsfi36 @+JADLAG)
/<.>/<PUNT_PUNT>/

Azkenaldian asko argaldu da.

/<Azkenaldian>/<HAS_MAI>/
("azkenaldi" IZE ARR BIZ- INE NUMS MUGM w36,L-A-IZE-ARR-66,lsfi37

@ADLG)
/<asko>/

("asko" ADB ARR GRAD w37,L-A-ADB-ARR-8,lsfi38 @ADLG)
/<argaldu>/

("argaldu" ADI SIN BURU DA-DU w38,L-A-ADI-SIN-59,lsfi39 @-JADNAG)
/<da>/

("izan" ADL A1 NR_HURA w39,L-A-ADL-44,lsfi40 @+JADLAG)
/<.>/<PUNT_PUNT>/

➔ Du → nork: hark (nor: hura)
➔ Da → X (nor: hura)



Aholkuak ematen ari zaigu.

/<Aholkuak>/<HAS_MAI>/
("aholku" IZE ARR BIZ- ABS NUMP MUGM w1,L-A-IZE-ARR-5,lsfi1 @PRED)

/<ematen>/
("eman" ADI SIN INE ADIZE KONPL w2,L-A-ADI-SIN-5,lsfi2 @-JADNAG_MP_OBJ)

/<ari>/
("ari" HAOS w3,L-A-HAOS-2,lsfi3 @HAOS)

/<zaigu>/
("izan" ADT A1 NR_HURA NI_GURI PNT w4,L-A-ADT-2,lsfi4 @+JADNAG)

/<.>/<PUNT_PUNT>/

Aholkuak ematen ari digu.

/<Aholkuak>/<HAS_MAI>/
("aholku" IZE ARR BIZ- ABS NUMP MUGM w1,L-A-IZE-ARR-5,lsfi1 @SUBJ)

/<ematen>/
("eman" ADI SIN INE ADIZE KONPL w2,L-A-ADI-SIN-5,lsfi2 @-JADNAG_MP_OBJ)

/<ari>/
("ari" HAOS w3,L-A-HAOS-2,lsfi3 @HAOS)

/<digu>/
("ukan" ADT A1 NR_HURA NI_GURI NK_HARK PNT w4,L-A-ADT-2,lsfi4
@+JADNAG)

/<.>/<PUNT_PUNT>/

➔ Zaigu → X (nor: hura, nori: guri)
➔ Digu → nork: hark (nor: hura, nori: guri)

Ez dut uste hori egia denik.

/<Ez>/<HAS_MAI>/
("ez" ADB ARR w95,L-A-ADB-ARR-15,lsfi109 @ADLG)

/<dut>/
("ukan" ADT A1 NR_HURA NK_NIK PNT w96,L-A-ADT-75,lsfi110 @+JADNAG)

/<uste>/
("uste" IZE ARR BIZ- w97,L-A-IZE-ARR-118,lsfi111 @KM>)

/<hori>/
("hori" DET ERKARR ABS NUMS MUGM w98,L-A-DET-ERKARR-2,lsfi112
@SUBJ)

/<egia>/
("egia" IZE ARR BIZ- ABS NUMS MUGM w99,L-A-IZE-ARR-124,lsfi113 @PRED)

/<denik>/
("izan" ADT A1 NR_HURA PNT KONPL w100,L-A-ADT-76,lsfi114

@+JADNAG_MP_SUBJ)
("izan" ADT A1 NR_HURA PNT KONPL w100,L-A-ADT-76,lsfi115

@+JADNAG_MP_OBJ)
/<.>/<PUNT_PUNT>/

Ez dut uste hori egia dela.

/<Ez>/<HAS_MAI>/
("ez" ADB ARR w102,L-A-ADB-ARR-15,lsfi116 @ADLG)

/<dut>/
("ukan" ADT A1 NR_HURA NK_NIK PNT w103,L-A-ADT-75,lsfi117 @+JADNAG)

/<uste>/
("uste" IZE ARR BIZ- w104,L-A-IZE-ARR-118,lsfi118 @KM>)

/<hori>/
("hori" DET ERKARR ABS NUMS MUGM w105,L-A-DET-ERKARR-2,lsfi119

@SUBJ)
/<egia>/

("egia" IZE ARR BIZ- ABS NUMS MUGM w106,L-A-IZE-ARR-124,lsfi120 @PRED)
/<dela>/

("izan" ADT A1 NR_HURA PNT MOD/DENB w107,L-A-ADT-78,lsfi121
@+JADNAG_MP_ADLG)

/<.>/<PUNT_PUNT>/

➔ Denik →Konpletiboa (completive)
➔ Dela → Moduzkoa/Denborazkoa (adverb type: manner/time)



Nire ustez, hori horrela da.

/<Nire>/<HAS_MAI>/
("ni" IOR PERARR NI GEN NUMS MUGM w109,L-A-IOR-PERARR-3,lsfi122 @IZLG>)

/<ustez>/
("uste" IZE ARR BIZ- INS MG w110,L-A-IZE-ARR-125,lsfi123 @ADLG)

/<,>/<PUNT_KOMA>/
/<hori>/

("hori" DET ERKARR ABS NUMS MUGM w112,L-A-DET-ERKARR-2,lsfi124 @SUBJ)
/<horrela>/

("horrela" ADB ARR w113,L-A-ADB-ARR-17,lsfi125 @ADLG)
/<da>/

("izan" ADT A1 NR_HURA PNT w114,L-A-ADT-80,lsfi126 @+JADNAG)
/<.>/<PUNT_PUNT>/

Nire ustez, hori horrela dela.

/<Nire>/<HAS_MAI>/
("ni" IOR PERARR NI GEN NUMS MUGM w116,L-A-IOR-PERARR-3,lsfi127 @IZLG>)

/<ustez>/
("uste" IZE ARR BIZ- INS MG w117,L-A-IZE-ARR-125,lsfi128 @ADLG)

/<,>/<PUNT_KOMA>/
/<hori>/

("hori" DET ERKARR ABS NUMS MUGM w119,L-A-DET-ERKARR-2,lsfi129 @SUBJ)
/<horrela>/

("horrela" ADB ARR w120,L-A-ADB-ARR-17,lsfi130 @ADLG)
/<dela>/

("izan" ADT A1 NR_HURA PNT MOD/DENB w121,L-A-ADT-78,lsfi131
@+JADNAG_MP_ADLG)

/<.>/<PUNT_PUNT>/

➔ Da → X
➔ Dela → Moduzkoa/Denborazkoa (adverb type: manner/time)

Badago beste kutsadura bat dena nuklearra.

/<Badago>/<HAS_MAI>/
("egon" ADT A1 NR_HURA PNT BALD w123,L-A-ADT-82,lsfi132 @+JADNAG_MP_ADLG)
("egon" ADT A1 NR_HURA PNT EGI w123,L-A-ADT-83,lsfi133 @+JADNAG)

/<beste>/
("beste" DET DZG w124,L-A-DET-DZG-5,lsfi134 @ID>)

/<kutsadura>/
("kutsadura" IZE ARR BIZ- w125,L-A-IZE-ARR-127,lsfi135 @KM>)

/<bat>/
("bat" DET DZH NMGS ABS MG w126,L-A-DET-DZH-4,lsfi136 @SUBJ)
("bat" DET DZH NMGS ABS MG w126,L-A-DET-DZH-4,lsfi137 @PRED)

/<dena>/
("dena" DET ORO ABS NUMS MUGM w127,L-A-DET-ORO-2,lsfi138 @SUBJ)
("dena" DET ORO ABS NUMS MUGM w127,L-A-DET-ORO-2,lsfi139 @PRED)

/<nuklearra>/
("nuklear" ADJ ARR ABS NUMS MUGM w128,L-A-ADJ-ARR-18,lsfi140 @SUBJ)
("nuklear" ADJ ARR ABS NUMS MUGM w128,L-A-ADJ-ARR-18,lsfi141 @PRED)

/<.>/<PUNT_PUNT>/

Badago beste kutsadura bat dela nuklearra.

/<Badago>/<HAS_MAI>/
("egon" ADT A1 NR_HURA PNT BALD w130,L-A-ADT-82,lsfi142

@+JADNAG_MP_ADLG)
("egon" ADT A1 NR_HURA PNT EGI w130,L-A-ADT-83,lsfi143 @+JADNAG)

/<beste>/
("beste" DET DZG w131,L-A-DET-DZG-5,lsfi144 @ID>)

/<kutsadura>/
("kutsadura" IZE ARR BIZ- w132,L-A-IZE-ARR-127,lsfi145 @KM>)

/<bat>/
("bat" DET DZH NMGS ABS MG w133,L-A-DET-DZH-4,lsfi146 @PRED)

/<dela>/
("izan" ADT A1 NR_HURA PNT MOD/DENB w134,L-A-ADT-78,lsfi147
@+JADNAG_MP_ADLG)

/<nuklearra>/
("nuklear" ADJ ARR ABS NUMS MUGM w135,L-A-ADJ-ARR-18,lsfi148 @SUBJ)
("nuklear" ADJ ARR ABS NUMS MUGM w135,L-A-ADJ-ARR-18,lsfi149 @PRED)

/<.>/<PUNT_PUNT>/

➔ We have not been able to find an example where the word “dena” is not disambiguated as a synonym for “all”.
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B Grammar Error Detection Evaluation

B.1 Considering error types

This section shows F1 micro, F1 macro and Accuracy scores of models trained using differ-
ent embedding combinations and different corpora sizes, evaluated against three different
test sets. The evaluation considers error types, that is, the capability of models to detect
tokens that make a sentence incorrect AND determine what type of error they create is
measured.

Train: 3250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors
Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy

Transformer 0.819 0.6849 0.7107 0.702 0.6027 0.5513 0.3221 0.3325 0.1933
Transformer + Char 0.8462 0.7396 0.7521 0.7154 0.6371 0.5677 0.3372 0.3637 0.2042
Transformer + Word 0.8438 0.7389 0.75 0.7714 0.6796 0.6429 0.4615 0.4037 0.3034
Transformer + Char + Word 0.8205 0.6932 0.7207 0.7273 0.6103 0.5882 0.4156 0.3874 0.2658
Transformer + Char + Word + Flair 0.8406 0.665 0.7436 0.7373 0.597 0.5959 0.3686 0.3602 0.2277

Table 24: GED with error types. Setting1. Training corpus contains 3.250 grammatically
incorrect sentences.

Train: 5160 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
1910 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.8108 0.7014 0.7009 0.75 0.6452 0.6148 0.566 0.4823 0.4011
Transformer + Char 0.8066 0.6079 0.6887 0.7487 0.5513 0.6083 0.5794 0.4442 0.4124
Transformer + Word 0.8045 0.5869 0.6857 0.7423 0.526 0.6 0.5878 0.4387 0.4211
Transformer + Char + Word 0.8342 0.631 0.7411 0.7685 0.576 0.6434 0.5108 0.4178 0.3487
Transformer + Char + Word + Flair 0.7876 0.588 0.6726 0.707 0.5305 0.563 0.4097 0.3676 0.2612

Table 25: GED with error types. Setting2. Training corpus contains 1.910 correct sentences
and 3.250 grammatically incorrect sentences.

Train: 8415 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
5165 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.8197 0.5907 0.7075 0.7614 0.5346 0.625 0.6198 0.4507 0.4545
Transformer + Char 0.8432 0.724 0.7429 0.7959 0.6755 0.6724 0.6446 0.5158 0.4815
Transformer + Word 0.8737 0.7597 0.783 0.8137 0.7039 0.6917 0.6434 0.5587 0.477
Transformer + Char + Word 0.8415 0.7347 0.7333 0.77 0.6655 0.6311 0.59 0.5363 0.4208
Transformer + Char + Word + Flair 0.8442 0.653 0.7434 0.7778 0.5978 0.6462 0.5793 0.4682 0.4118

Table 26: GED with error types. Setting3. Training corpus contains 5.165 correct sentences
and 3.250 grammatically incorrect sentences.

Train: 18250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
15000 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.7381 0.5555 0.5905 0.7006 0.5112 0.5439 0.6526 0.4778 0.4882
Transformer + Character 0.764 0.5674 0.6355 0.0095 0.0088 0.0049 0.0025 0.0019 0.0013
Transformer + Word 0.7349 0.5118 0.5865 0.7052 0.4932 0.5495 0.6354 0.4337 0.4692
Transformer + Character + Word 0.7886 0.5859 0.6635 0.7541 0.5474 0.6161 0.6866 0.505 0.5308
Transformer + Character + Word + Flair 0.7485 0.5423 0.6095 0.7072 0.5081 0.5565 0.6305 0.4516 0.4672

Table 27: GED with error types. Setting4. Training corpus contains 15.000 correct sen-
tences and 3.250 grammatically incorrect sentences.
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Train: 33250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
30000 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.6994 0.5126 0.5481 0.6706 0.4817 0.5135 0.6404 0.4627 0.479
Transformer + Char 0.7602 0.5463 0.625 0.0022 0.0021 0.0011 0.0005 0.0007 0.0003
Transformer + Word 0.7558 0.5864 0.625 0.7182 0.5591 0.5752 0.6404 0.4636 0.4815
Transformer + Char + Word 0.7456 0.5925 0.6058 0.7119 0.5723 0.5625 0.6597 0.5068 0.5
Transformer + Char + Word + Flair 0.6951 0.4868 0.5481 0.6514 0.4519 0.4957 0.6064 0.4214 0.4453

Table 28: GED with error types. Setting5. Training corpus contains 30.000 correct sen-
tences and 3.250 grammatically incorrect sentences.

B.2 Without considering error types

This section shows True Positive, False Positive and False Negative counts and F1 score of
models trained using different embedding combinations and different corpora sizes, eval-
uated against three different test sets. The evaluation ONLY considers the capability of
models to detect tokens that make a sentence incorrect. The error type the models assign
to each token is not taken into account.

Train: 3250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors
Embeddings TP FP FN F1 TP FP FN F1 TP FP FN F1

Transformer 89 17 15 0.8476190476190476 89 52 15 0.726530612244898 89 341 15 0.3333333333333333
Transformer + Char 91 13 13 0.875 91 51 13 0.7398373983739838 91 327 13 0.3486590038314176
Transformer + Word 84 2 20 0.875 84 22 20 0.7999999999999999 84 163 20 0.47863247863247865
Transformer + Char + Word 84 7 20 0.8615384615384616 84 32 20 0.7636363636363636 84 197 20 0.43636363636363634
Transformer + Char + Word + Flair 90 13 14 0.8695652173913043 90 42 14 0.7627118644067796 90 278 14 0.3813559322033898

Table 29: GED without error types. Setting1. Training corpus contains 3.250 grammati-
cally incorrect sentences.

Train: 5160 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
1910 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings TP FP FN F1 TP FP FN F1 TP FP FN F1
Transformer 78 3 26 0.8432432432432433 78 18 26 0.78 78 83 26 0.5886792452830188
Transformer + Char 75 2 29 0.8287292817679558 75 16 29 0.7692307692307693 75 73 29 0.5952380952380953
Transformer + Word 74 1 30 0.8268156424581006 74 16 30 0.7628865979381444 74 67 30 0.6040816326530611
Transformer + Char + Word 87 8 17 0.8743718592964824 87 25 17 0.8055555555555556 87 134 17 0.5353846153846153
Transformer + Char + Word + Flair 80 9 24 0.8290155440414508 80 31 24 0.7441860465116278 80 187 24 0.431266846361186

Table 30: GED without error types. Setting2. Training corpus contains 1.910 correct
sentences and 3.250 grammatically incorrect sentences.

Train: 8415 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
5165 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings TP FP FN F1 TP FP FN F1 TP FP FN F1
Transformer 77 2 27 0.8415300546448088 77 16 27 0.7817258883248731 77 61 27 0.6363636363636365
Transformer + Char 80 1 24 0.864864864864865 80 12 24 0.8163265306122449 80 58 24 0.6611570247933884
Transformer + Word 84 2 20 0.8842105263157894 84 16 20 0.8235294117647058 84 70 20 0.6511627906976744
Transformer + Char + Word 78 1 26 0.8524590163934427 78 18 26 0.78 78 79 26 0.5977011494252874
Transformer + Char + Word + Flair 86 9 18 0.8643216080402011 86 26 18 0.7962962962962962 86 100 18 0.593103448275862

Table 31: GED without error types. Setting3. Training corpus contains 5.165 correct
sentences and 3.250 grammatically incorrect sentences.
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Train: 18250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
15000 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings TP FP FN F1 TP FP FN F1 TP FP FN F1
Transformer 63 1 41 0.7499999999999999 63 10 41 0.7118644067796609 63 23 41 0.663157894736842
Transformer + Char - - - - - - - - - - - -
Transformer + Word 62 0 42 0.7469879518072289 62 7 42 0.7167630057803468 62 26 42 0.6458333333333334
Transformer + Char + Word 71 0 33 0.8114285714285714 71 8 33 0.7759562841530053 71 26 33 0.7064676616915424
Transformer + Char + Word + Flair 66 1 38 0.7719298245614035 66 11 38 0.729281767955801 66 33 38 0.6502463054187192

Table 32: GED without error types. Setting4. Training corpus contains 15.000 correct
sentences and 3.250 grammatically incorrect sentences.

Train: 33250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
30000 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings TP FP FN F1 TP FP FN F1 TP FP FN F1
Transformer 59 0 45 0.7239263803680982 59 7 45 0.6941176470588236 59 15 45 0.6629213483146067
Transformer + Char - - - - - - - - - - - -
Transformer + Word 68 0 36 0.7906976744186047 68 9 36 0.7513812154696132 68 31 36 0.6699507389162562
Transformer + Char + Word 65 0 39 0.7692307692307693 65 8 39 0.7344632768361581 65 22 39 0.6806282722513088
Transformer + Char + Word + Flair 60 0 44 0.7317073170731707 60 11 44 0.6857142857142857 60 24 44 0.6382978723404256

Table 33: GED without error types. Setting5. Training corpus contains 30.000 correct
sentences and 3.250 grammatically incorrect sentences.

B.3 Manually revised test set

This section shows F1 micro, F1 macro and Accuracy scores of models trained using dif-
ferent embedding combinations and different corpora sizes, evaluated against three MAN-
UALLY REVISED test sets. The evaluation considers error types, that is, the capability
of models to detect tokens that make a sentence incorrect AND determine what type of
error they create is measured.

Train: 3250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors
Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy

Transformer 0.8612 0.6659 0.9842 0.7377 0.5938 0.98 0.3377 0.3387 0.9764
Transformer + Character 0.9048 0.7257 0.9897 0.7661 0.5856 0.982 0.3626 0.3696 0.9777
Transformer + Word 0.8776 0.6808 0.9879 0.8037 0.6453 0.9875 0.4845 0.4046 0.9879
Transformer + Character + Word 0.8731 0.6767 0.986 0.7748 0.5702 0.9843 0.4444 0.4157 0.9856
Transformer + Character + Word + Flair 0.8942 0.7121 0.9879 0.7848 0.6464 0.9839 0.3932 0.3924 0.9808

Table 34: GED with error types. Setting1. Training corpus contains 3.250 grammatically
incorrect sentences. Evaluation with respect to manually revised test sets.

Train: 5160 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
1910 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.8601 0.6561 0.9854 0.7981 0.622 0.9872 0.6081 0.4455 0.993
Transformer + Character 0.828 0.6014 0.9818 0.77 0.5706 0.9856 0.5992 0.4232 0.9932
Transformer + Word 0.8021 0.5763 0.7009 0.7426 0.5424 0.6148 0.5929 0.4153 0.4335
Transformer + Character + Word 0.86 0.6514 0.7818 0.7926 0.6185 0.6772 0.5276 0.4056 0.3644
Transformer + Character + Word + Flair 0.8458 0.6562 0.983 0.7623 0.6034 0.9836 0.4485 0.3819 0.9861

Table 35: GED with error types. Setting2. Training corpus contains 1.910 correct sentences
and 3.250 grammatically incorrect sentences. Evaluation with respect to manually revised
test sets.
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Train: 8415 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
5165 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.8085 0.5594 0.9812 0.7525 0.5363 0.9852 0.6154 0.4036 0.9939
Transformer + Character 0.8513 0.6342 0.9854 0.8058 0.6116 0.9885 0.6587 0.4742 0.9945
Transformer + Word 0.8776 0.6752 0.9867 0.819 0.6423 0.9882 0.6515 0.4902 0.9939
Transformer + Character + Word 0.8449 0.6403 0.9836 0.7745 0.6011 0.9856 0.5962 0.4524 0.9929
Transformer + Character + Word + Flair 0.8966 0.7012 0.9885 0.8273 0.6655 0.9882 0.619 0.4734 0.9926

Table 36: GED with error types. Setting3. Training corpus contains 5.165 correct sentences
and 3.250 grammatically incorrect sentences. Evaluation with respect to manually revised
test sets.

Train: 18250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
15000 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.7841 0.556 0.6571 0.7459 0.5372 0.6053 0.697 0.5108 0.5433
Transformer + Character 0.0133 0.0099 0.0069 0.0089 0.0065 0.0046 0.0025 0.0018 0.0012
Transformer + Word 0.7978 0.6252 0.6762 0.7676 0.5482 0.6339 0.6961 0.4807 0.542
Transformer + Character + Word 0.8242 0.6073 0.7143 0.7895 0.5943 0.6637 0.7212 0.5021 0.5725
Transformer + Character + Word + Flair 0.7956 0.6267 0.6792 0.7539 0.5463 0.6207 0.6761 0.4888 0.5217

Table 37: GED with error types. Setting4. Training corpus contains 15.000 correct sen-
tences and 3.250 grammatically incorrect sentences. Evaluation with respect to manually
revised test sets.

Train: 33250 sentences Test: 100 sentences Test: 185 sentences Test: 925 sentences
30000 correct + 3250 with errors 100 with errors 85 correct + 100 with errors 825 correct + 100 with errors

Embeddings F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy F1 (micro) F1 (macro) Accuracy
Transformer 0.7841 0.5676 0.6571 0.7541 0.5577 0.6161 0.7225 0.5423 0.575
Transformer + Character 0.7821 0.5568 0.6667 0.7447 0.5409 0.614 0.6796 0.4536 0.5303
Transformer + Word 0.7912 0.5301 0.6857 0.7539 0.5143 0.6316 0.6761 0.4093 0.5294
Transformer + Character + Word 0.809 0.6291 0.6857 0.7742 0.5498 0.6372 0.72 0.465 0.5669
Transformer + Character + Word + Flair 0.7889 0.603 0.6762 0.7435 0.5211 0.6121 0.6961 0.489 0.5504

Table 38: GED with error types. Setting5. Training corpus contains 30.000 correct sen-
tences and 3.250 grammatically incorrect sentences. Evaluation with respect to manually
revised test sets.
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C Translations

We provide the English translations of the sentences in Basque used throughout this docu-
ment. Note that only those examples that are grammatically correct have been translated.

Basque English
Joxan Goikoetxea ariko da

Lasarte-Oriako Akordeoi Jaialdian
Joxan Goikoetxea will play in the
Accordion Festival in Lasarte-Oria

Nire ustez, hori horrela da I think that is right
Ziur bihar jakingo dugula I am sure we will know tomorrow

Gauza bat falta zait esateko I have one thing left to say
Gaur gauza bat bururatu zait Today I have had an idea

etxean at home
jaurlaritzak gaur hasiko du
urte politikoa, donostian

the government will start the
political year today, in donostia

Gustura egingo nuke I would gladly do it
Zerbait falta zait esateko I have something left to say

Afaltzera gonbidatu ninduen He/She invited me to have dinner
Afaltzera gonbidatzen ninduen He/She used to invite me to have dinner

Nik ez dut nahi I do not want to / I do not want it
langileak egin du the worker has done it

langileak jatorrak dira the workers are nice
Ez dut uste hori egia denik I do not think that is true

Badago beste aukera bat hobea dena A better choice exists
Atzo ikusi zintudan I saw you yesterday

Azkenaldian asko argaldu du He/She has lost a lot of weight lately
Aholku kontrajarriak ematen ari zaigu He/She is giving us contradictory advice

Paisaia asko gustatzen zait I really like the view
ikus-entzunezko edukien ekoizpenari to the production of audio-visual content

Ez dut uste orain gertatu diren
emaitzak errepikatuko direnik

I do not think the results that have
happened now will be repeated

Nahi duena egiteko libre da, baina etxeak su
hartzen badu, arazoa ez da berea bakarrik izango

He/She is free to do whatever he/she wants, but if the house
catches fire, the problem will not only be his/hers

umeak triste daude the children are sad
Amaiak bazkaria prestatu du Amaia has prepared lunch
Gustatu beharko litzaizuke You should like it

Eguraldi hobea egingo balu hondartzara joango nintzateke If the weather was better I would go to the beach
egunero ikusten dut I see it every day

Sare sozialetan ere jarraitzaile kopurua
goraka doa, eta urte osoan ia etenik

gabe lan egiten jarraituko da

The number of followers in social media is
also increasing, and work will continue to be

done almost without interruption all year long
Sare sozialetan ere jarraitzaile kopurua

goraka doa, eta urte osoan ia etenik
gabe lan egiten jarraituko du

The number of followers in social media is
also increasing, and he/she will continue

to work almost without interruption all year long
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