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Deep learning methods have revolutionized computer vision since the appearance of AlexNet in 2012.
Nevertheless, 6 degrees of freedom pose estimation is still a difficult task to perform precisely.
Therefore, we propose 2 ensemble techniques to refine poses from different deep learning 6DoF pose esti-
mation models. The first technique, merge ensemble, combines the outputs of the base models geomet-
rically. In the second, stacked generalization, a machine learning model is trained using the outputs of the
base models and outputs the refined pose. The merge method improves the performance of the base
models on LMO and YCB-V datasets and performs better on the pose estimation task than the stacking
strategy.
� 2023 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vision-based object pose estimation is a task with applications
in different fields, such as robotics or augmented reality. Many
techniques approach this task by estimating the 2D or 3D bound-
ing box that corresponds to the pose of the object [1]. In contrast,
this paper focuses on estimating the 6 degrees of freedom (6 DoF)
pose of object also known as 6D localization, that is the 3 DoF
translation and 3 DoF rotation that would align the object with a
target object reference model. Fig. 1 shows an example of a 6
DoF pose estimation task. 6DoF pose estimation is usually repre-
sented in three diferent ways: Bounding Boxes, Axes and model
overlapping. The Fig. 1 shows the 6DoF poses of the objects over-
lapping the models of the objects on the image.

The leaderboards of the main challenges presented in the
Benchmark for 6D Object Pose estimation [2] (BOP challenge, one
of the most well-known 6DoF estimation benchmarks) were led
by classical non-deep learning methods based on Point Pair Fea-
tures (PPF) [3–6] until 2019. Those methods were depth only
methods that rely on geometrical features of pointclouds. Methods
based on convolutional neural networks (CNNs) [7–10] were lim-
ited by the insufficient number of real training images, since anno-
tation of 6DoF poses is expensive, and the large domain gap
between real test images and the commonly used synthetically
generated training images. On BOP 2020, 350 K physics-based ren-
dered training images were provided to the participants in order to
deal with these problems. Since that moment, deep learning meth-
ods have finally caught up and surpassed PPF-based methods. In
relation with the input data used, on BOP 2020 almost all deep
learning methods were trained on RGB images only. However,
more recently, deep RGB-D approaches have obtained similar
results to deep RGB only methods [11,12].

The main contributions of this paper are summarized as
follows:

� An exhaustive analysis of existing RGB/RGB-D deep learning
methods for 6DoF pose estimation.
� Two ensemble methods (merge and stacking) to combine state-
of-the-art models in order to obtain more homogenous detec-
tion performance across different datasets.

In the experiments performed we compare how each base model
and ensemble strategy perform for each metric, and the results
show that the metrics obtained on the ensemble strategies are more
homogenous than the ones obtained with the base models (or level-
0). The rest of the paper is organized as follows: in Section 2 we pre-
sent related works; in Section 3 we introduce the proposed ensem-
ble method; in Section 5 we explain the conducted experiments;
and, finally, we summarize the paper and the conclusions in
Section 6.
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Fig. 1. 6DoF pose estimation of Linemod objects from BOP challenge.
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2. Background

For some time now, computer vision has been used to develop
technologies to recognize objects. For industrial objects, many
authors have designed specific methods to deal with this paradigm
[13–15]. Nevertheless, generic vision techniques have also been
used for recognition of industrial objects. The first approaches were
based on feature matching or classification techniques: object fea-
tures are detected, described and matched with known features
from target objects.

Typically, features were hand-crafted to produce descriptors
with convenient robustness or invariance to various conditions in
order to make the matching between images and object models
possible. SIFT [16] features have been one of the most popular
hand-crafted features for a long time. More recently, deep neural
network based methods became popular, thanks to the develop-
ment of more powerful GPUs and larger datasets that enable the
training of big convolutional neural network models.

Methods that directly regress the rotation and translation of
objects are very common. The method proposed in [17] regresses
6DoF object poses using only synthetic images. Another pose esti-
mator that directly regresses the rotation and translation is pre-
sented in [18]. This method calculates the 3D translation
predicting the distance from object to camera and the rotation is
estimated regressing to a quaternion representation. In [19],
authors propose an end-to-end trained model that extends Mask
R-CNN [20], the canonical 2D object detection network, to regress
3D translation and rotation. [21] is a dense fusion network that
extracts pixel-wise dense feature embeddings from RGB-D images
Fig. 2. Illustration of the ensemble approach, in which the output of lev
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to predict the pose of the objects. However, this group of methods
is not very scalable to regress poses of datasets with a high number
of different classes.

Other approaches rely on two-stage approaches that first
detect keypoints and later estimate 2D-3D or 3D-3D correspon-
dences of keypoints using Perspective-n-Point (PnP) algorithms
to estimate the poses. One of those methods estimates semantic
keypoints and fits a deformable shape model to the 2D detections
[22]. BB8 [23] predicts a 2D projection of the corners of the 3D
bounding boxes as keypoints. [24] introduces a similar approach
that detects the 2D projection of the 3D bounding box corners
using a single shot convolutional neural network. [25] proposed
a category-agnostic keypoint representation by combining what
they call StarMap heatmap and their corresponding features as
3D locations in the canonical viewpoint. [26] combines global fea-
tures for object segmentation and local features for coordinate
regression followed by a RANSAC to optimize the object pose.
[27] introduces a pixel-wise voting network (PVNet) to regress
pixel-wise vectors pointing to the keypoints and uses those vectors
to vote for the location of keypoints. This voting method has
inspired many later methods. [28] predicts newly introduced fea-
tures called NOCS that, combined with the depth map, can jointly
estimate the 6D pose. Two-stage approaches do not train the entire
pipeline at once. The keypoint prediction is trained while the cor-
respondence matching to 3D and 6D pose estimation is obtained a
posteiori.

Learning from pointclouds provides many benefits to robotics.
PointNet++ [29] introduce a hierarchical neural network that
applies PointNet [30] recursively. [11] estimates the 6Dof pose
by detection 3D keypoints from pointclouds and RGB images and
searching for correspondences similar to two-stage approaches.
[12] is an improvement from the previous method that adds a bidi-
rectional fusion layer to combine RBG information and geometric
information. Those methods use the geometrical features that
can be extracted from pointclouds that 2D images can not provide.

Even if the continuous development of new deep learning archi-
tectures (such as, MFDNet [31], ARHPE [32], EDMF [33], EHPE [34]
or NGDNet [35]) and techniques led to significant performance
improvement on many datasets, there is still a lack of a general
method that works for every situation or dataset. Stacking and
ensemble methods try to deal with this problem. They try to
extract the ability of each individual method to obtain a more
abstract method [36]. There are two critical design elements for
this kind of models: the type of generalizer that is suitable to
derive the higher-level model and what kind of attributes should
be used as inputs [37].

Another challenge to deal with is all the hyperparameters that
base learners and higher level models have to tune. To optimize
this hyperparameter search, authors in [38] proposed a heuristic
search-based stacking of classifiers. Authors from [39] also make
el-0 models outcome are gathered to deduce a unique refined pose.



Table 1
Ensemble strategies and methods.

Strategy Method

Merge Simple
Weighted
Clustering

Stacking SVR
Decision tree
Linear regression
KNN
MLP
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use of meta-heuristic algorithms to configure the stacking
ensemble.

Insect behavior based optimization algorithms are also a good
solution to search the best configurations in a high range of possi-
Fig. 3. Stacking poses o
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ble hyperparameters [40–43]. Many more authors have used
ensemble or stacking methods to improve the generalization of
base learners [44,45]. Some of them even consider stacking a kind
of super learning method [46].

Stacking and ensemble methods have also been used for com-
puter vision systems. In [47], authors designed a support vector
machine training method based on stacked generalization for
image classification. Stacked generalization also improves accuracy
for scene analysis and object recognition [48].
3. Proposed method

The ability of neural networks to retrieve abstract information
from data enables them to attain competitive performances in
many fields and contexts. Nevertheless, not all models are effective
against every task or dataset. Indeed, the optimal selection of the
f 3 level-0 models.
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model type and structure, and the comprehension of the reasons
that explain the results [49] is one of the main challenges that deep
learning can still not solve.

Since looking for the correct deep learning approach is tedious,
we propose a method that learns when a given algorithm is more
appropriate than another one. Our method is an ensemble model
that enables the fusion of the performance of different models.
We have defined two different strategies: merging and stacking.
Both strategies take the output of different models and refine the
obtained poses using the knowledge obtained from each model.
The output of each model is composed of a 3D translation T, a 3D
rotation R, related to the pose of the object with respect to the
camera, and a score s that is the confidence that each model has
for that prediction. Given n different models, Ti;Ri and si represent
the translation, the rotation and the score outcome of the i-th
method, where i 2 1::nf g. We defined the refined translation as
Tr , the refined rotation as Rr and the refined score as sr , the out-
come of our fusion approach.
Fig. 4. Real test ima

Fig. 5. Real test imag

Fig. 6. Real test imag

Fig. 7. PBR train
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Fig. 2 shows the general idea of the ensemble method. Both
ensemble approaches, merge and stacking, rely on a set of deep
learning models (named from now on as level-0 models) that pro-
vide the initial predictions of the pose of the object.
3.1. Level-0 models

We have used as level-0 algorithms three state-of-the-art 6DoF
pose estimation deep models: PVN3D [11], FFB6D [12] and Cosy-
pose [50]. These three methods have led the BOP challenge 2020
leaderboard in different datasets.

PVN3D [11] is a novel method for 6DoF object pose estimation
from a single RGBD image. This method is based on a deep Hough
voting network that takes as input RGBD images and detects 3D
keypoints as is performed in RGB-based 6DoF estimation. Once
the 3D keypoints are detected, these are used to estimate the
parameters of the 6D pose using a least-squares fitting. The
method has outperformed state-of-the-art methods on several
ges from LMO.

es from YCB-V.

es from T-LESS.

ing images.



Table 2
Level-0 results.

Dataset PVN3D FFB6D COSYPOSE

LMO PBR ARVSD 0.4740 0.4450 0.4805
ARMSSD 0.6523 0.6309 0.6062
ARMSPD 0.7105 0.6704 0.8122
AR 0.6123 0.5821 0.6330

YCB-V PBR ARVSD 0.5888 0.3387 0.5166
ARMSSD 0.6955 0.4093 0.5538
ARMSPD 0.5649 0.2758 0.6527
AR 0.6164 0.3413 0.5744

YCB-V S + R ARVSD 0.7291 0.7855 0.7731
ARMSSD 0.8541 0.8791 0.8421
ARMSPD 0.7441 0.7856 0.8502
AR 0.7757 0.8167 0.8218

T-LESS PBR ARVSD 0.1789 0.1291 0.5714
ARMSSD 0.2067 0.1268 0.5892
ARMSPD 0.2039 0.1165 0.7605
AR 0.1965 0.1241 0.6404

T-LESS S + R ARVSD 0.2255 0.1985 0.6691
ARMSSD 0.2826 0.2396 0.6946
ARMSPD 0.2666 0.2291 0.8212
AR 0.2582 0.2224 0.7283
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benchmarks such as Linemod [51] and YCB-V [52]. PVN3D trains its
architecture using the multi-task loss (Eq. 4) jointly training key-
points detection module (Eq. 1), semantic segmentation module
(Eq. 2) and and objects center voting module (Eq. 3).

Lkeypoints ¼ 1
N

XN
i¼1

XM
j¼1
jjof ji � of j�i jjI pi 2 Ið Þ; ð1Þ

where of ji is the translation offset, of j�i is the ground truth transla-
tion offset, M is the total number of selected target keypoints, N is
the total number of seeds and I is an indicating function that
equates to 1 only when point pi belongs to instance I, and 0
otherwise.

Lsemantic ¼ �a 1� qið Þclog qið Þ; where qi ¼ ci � li ð2Þ
with a the a-balance parameter, c the focusing parameter, ci the
predicted confidence for the ith point belongs to each class and li
the one-hot representation of ground true class label.

Lcenter ¼ 1
N

XN
i¼1
jjDxi � Dx�i jjI pi 2 Ið Þ; ð3Þ

where N denotes the total number of seed points on the object sur-
face and Dx�i is the ground truth translation offset from seed pi to
the instance center.

Lmulti�task ¼ k1Lkeypoints þ k2Lsemantic þ k3Lcenter ; ð4Þ

where k1; k2 and k3 are the weights for each task. In our case, we use
2:0 for k2 and 1:0 for k1 and k3.

FFB6D [12] or Full Flow Bidirectional Fusion Network for 6D
Pose Estimation is a deep learning network that combines appear-
ance information from RGB images and geometric information
from depth images during the representation learning stage (en-
coding and decoding). Instead of learning each feature indepen-
dently and fusing them at the end like DenseFusion [21] or
PVN3D [11], the fusion is applied to each encoding and decoding
layer giving complementary information from 3D to 2D and the
other way round. After the representation learning stage, both fea-
tures are concatenated and 6D pose parameters are estimated as in
PVN3D [11]. FFB6D uses the same multi-task loss that was pre-
sented in PVN3D. The main difference between FFB6D and PVN3D
is the architecture of the feature extraction module. PVN3D
extracts geometric features and color features and afterwards fuses
5

them, while FFB6D fuses the geometric and color information on
each layer of the network.

Cosypose [50] is a multi-view multi-object 6D pose estimator.
In the paper, a single-view single-object estimation method to gen-
erate 6D hypothesis and a method for matching the predicted
hypothesis to generate a single consistent scene are introduced.
With the generated scene, global refinement is applied across dif-
ferent objects and views. They outperform current state-of-the-art
results for single-view and multi-view. The single-view 6D pose
estimation of Cosypose is carried out following the focal loss
adapted in [53] and handle symmetries as in [28]. The object can-
didate matching first removes the object candidates that are not
consistent across views using a RANSAC procedure. Moreover, for
the scene refinement they introduce a reconstruction loss (Eq. 5)
that operates at a level of objects.

L TPn ; TCa jTCaOa;að Þ ¼min
S2S lð Þ

1
jvlj

X
x2vl
jjpa TCaOa;aSxð Þ

� pa T�1Ca
TPnx

� �
jj; ð5Þ

where jj � jj is a truncated L2 loss, and for the rest of the parameters
check the original paper [50].

The scores of PVN3D and FFB6D are the confidence of the point
level instance segmentation of each object. The scores of Cosypose,
instead, are the confidence of the initial 2D predictions of the
objects.

All three models have their advantages and disadvantages, none
of them outperforms the others on every dataset (this can be seen
in the BOP Challenge leaderboard). Fig. 2 includes an example of
the predictions of the 3 methods. In this example level-0 model
1 is PVN3D, model 2 is FFB6D and model 3 Cosypose. Predictions
of the 3 level-0 models are similar except from the ape (red col-
ored) which PVN3D can not locate correctly. A combination of
the outputs refines the poses obtaining better results.

For simplicity, our methods deal with the SiVo (Single instance
Various objects) task instead of the ViVo (Various instances Vari-
ous objects) task. We detect a single instance of multiple objects.
4. Ensemble

In order to obtain the refined pose, we define two different
ensemble strategies: merge and stacking. Merge methods are
defined by mixing the individual results of the level-0 methods
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mathematically or algorithmically. Stacking methods, instead,
make use of statistical methods or machine learning methods to
refine the level-0 poses.

Table 1 summarizes all the proposed strategies and methods.

4.1. Ensemble-Merge

We have defined three merge methods that take the output
poses of the level-0 models and calculate a refined pose. The three
defined methods are: simple merge, weighted merge and clustered
merge.

4.1.1. Simple merge
The first approach is a simple merge method that outputs the

mean of the input poses. Eq. 6 and Eq. 7 explains how to obtain
the resulting translation and rotation, respectively. Computing a
rotation mean is not trivial and can be obtained several ways. In
Table 3
Merge ensemble results.

Dataset Simple (S) Weighted (W

LMO PBR ARVSD 0.4776 0.48
ARMSSD 0.6473 0.64
ARMSPD 0.7049 0.73
AR 0.6099 0.61

YCB-V PBR ARVSD 0.4877 0.52
ARMSSD 0.5565 0.60
ARMSPD 0.4370 0.52
AR 0.4938 0.55

YCB-V S + R ARVSD 0.7930 0.77

ARMSSD 0.8733 0.85

ARMSPD 0.8033 0.84
AR 0.8233 0.82

T-LESS PBR ARVSD 0.1741 0.27
ARMSSD 0.1998 0.28
ARMSPD 0.1897 0.31
AR 0.1879 0.29

T-LESS S + R ARVSD 0.2410 0.35
ARMSSD 0.2922 0.39
ARMSPD 0.2822 0.41
AR 0.2718 0.38

Table 4
Results of stacking.

Dataset Stacking Ridge (R) Stacking SVR (SVR) Stacking t

LMO PBR ARVSD 0.3165 (s) 0.3146
ARMSSD 0.4375 (s) 0.5833
ARMSPD 0.6354 (s) 0.6298
AR 0.4631 (s) 0.5092

YCB-V PBR ARVSD 0.4040 (s) 0.4479 (s) 0.2
ARMSSD 0.4896 (s) 0.5773 (s) 0.4
ARMSPD 0.3793 (s) 0.4268 (s) 0.2
AR 0.4243 (s) 0.4840 (s) 0.3

YCB-V S + R ARVSD 0.7233 (s) 0.6024
ARMSSD 0.8113 (s) 0.7967
ARMSPD 0.7218 (s) 0.6574 (s)
AR 0.7521 (s) 0.6835 (s)

T-LESS PBR ARVSD 0.0441 (s) 0.1431 (s)
ARMSSD 0.0364 (s) 0.1301 (s)
ARMSPD 0.0521 (s) 0.1372 (s)
AR 0.0442 (s) 0.1368 (s)

T-LESS S + R ARVSD 0.0589 (s) 0.2216 (s)
ARMSSD 0.0694 (s) 0.2500
ARMSPD 0.0789 (s) 0.2433
AR 0.0691 (s) 0.2370 (s)
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this paper, we use the chordal L2 mean which provides the rotation
that minimizes the square of the difference between rotation
matrices [54].

Tr ¼ 1
n

Xn
i¼1

Ti ð6Þ

Rr ¼ argminR2SO 3ð Þ
Xn

i¼1
jjRi � Rjj2 ð7Þ

where R is a rotation that belongs to the three-dimensional space of
rotations SO 3ð Þ.

4.1.2. Weighted merge
Simple merge considers each of the models equally even if a

model itself outputs a pose with a low confidence. Therefore, this
second approach takes into account the scores each model gives
) Simple clustering (SC) Weighted clustering (WC)

20 0.4807 0.4822
11 0.6496 0.6509
38 0.7416 0.7434
89 0.6240 0.6255
77 0.5451 0.5502
03 0.6150 0.6235
28 0.5312 0.5403
03 0.5638 0.5713
48 0.7958 0.7946
28 0.8733 0.8816
73 0.8132 0.8294

49 0.8275 0.8352
30 0.2732 0.2883
87 0.2921 0.3073
77 0.3232 0.3394
31 0.2962 0.3117
78 0.3275 0.3521
50 0.3699 0.3912
54 0.3802 0.4055
94 0.3592 0.3830

ree (T) Stacking Linear (L) Stacking KNN (KNN) Stacking MLP (MLP)

0.1991 0.3165 (s) 0.3195 0.4408
0.4707 0.4376 (s) 0.5789 0.6176
0.5451 0.6355 (s) 0.6363 0.6812
0.4050 0.4632 (s) 0.5115 0.5799
994 (s) 0.4040 (s) 0.3928 0.4462 (s)
487 (s) 0.4896 (s) 0.5117 0.5462 (s)
615 (s) 0.3792 (s) 0.3623 0.4175 (s)
365 (s) 0.4243 (s) 0.4223 0.4700 (s)
0.3548 0.7233 (s) 0.564 0.6676
0.6208 0.8113 (s) 0.7777 0.7979
0.4023 0.7216 (s) 0.6446 0.6938 (s)
0.4593 0.7521 (s) 0.6621 0.7159
0.0513 0.0441 (s) 0.0714 0.0421
0.0470 0.0364 (s) 0.0600 (s) 0.0535
0.0560 0.0521 (s) 0.0685 (s) 0.0656
0.0514 0.0442 (s) 0.0664 (s) 0.0537
0.0747 0.0590 (s) 0.1079 0.0736
0.0996 0.0694 (s) 0.1182 0.1198
0.1023 0.0789 (s) 0.1208 0.1133
0.0922 0.0691 (s) 0.1156 0.1022
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to its estimation. These scores are usually describing how confi-
dent the models are about the object detected. This score does
not provide any information about how precise the pose is, but
the confidence of the class of the detection.

Each of the poses is weighted accordingly to the obtained score
over the total score. The weight of each model is calculated follow-
ing Eq. 8 and the refined translation and rotation are obtained
respectively with Eqs. 9 and 10.
Table 5
Comparative of all level-0 and ensemble methods. �: Cosypose, 4: PVN3D, I:FFB6D

Dataset Metric Level-0 Merge

LMO PBR VSD 0.480� 0.482 (WC
MSSD 0:6524 0.650 (WC

MSPD 0.812� 0.743 (WC
AR 0.633� 0.626 (WC

YCB-V PBR VSD 0:5894 0.550 (WC
MSSD 0:6964 0.624 (WC

MSPD 0.653� 0.540 (WC
AR 0.616� 0.571 (WC

YCB-V S + R VSD 0.786I 0.796 (SC)

MSSD 0:879I 0.882 (WC

MSPD 0.850� 0.847 (W)
AR 0.822� 0.835 (WC

T-LESS PBR VSD 0.571� 0.288 (WC
MSSD 0.589� 0.307 (WC
MSPD 0.761� 0.339 (WC
AR 0.640� 0.312 (WC

T-LESS S + R VSD 0.669� 0.358 (W)
MSSD 0.695� 0.395 (W)
MSPD 0.821� 0.415 (W)
AR 0.728� 0.389 (W)

Fig. 8. Qualitative comparative of merge

7

wi ¼ 1

1� sð Þ2 þ e
ð8Þ

Tr ¼
Xn
i¼1

wi � Ti ð9Þ
Stacking CDPNv2 Pix2Pose

) 0.440 (MLP) 0.469 0.473
) 0.618 (MLP) 0.689 0.631

) 0.681 (MLP) 0.731 0.659
) 0.580 (MLP) 0.630 0.588
) 0.448 (SVR-s) 0.511 -
) 0.577 (SVR-s) 0.603 -

) 0.426 (SVR-s) 0.483 -
) 0.484 (SVR-s) 0.532 -

0.723 (R-s/L-s) 0.590 0.766

) 0.811 (R-s/L-s) 0.701 0.817

0.722 (R-s) 0.565 0.758
) 0.752 (R-s/L-s) 0.619 0.780
) 0.143 (SVR-s) 0.368 -
) 0.130 (SVR-s) 0.449 -
) 0.137 (SVR-s) 0.488 -
) 0.137 (SVR-s) 0.435 -

0.222 (SVR-s) 0.385 0.438
0.250 (SVR) 0.489 0.548
0.243 (SVR) 0.516 0.549
0.237 (SVR-s) 0.464 0.512

methods on a LMO dataset image.



Fig. 9. Qualitative comparative of stacking methods on a YCB-V dataset image.

Fig. A.10. Qualitative comparative of merge methods on LMO dataset image 8 from scene 2.
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Fig. A.11. Qualitative comparative of merge methods on LMO dataset image 110 from scene 2.
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Rr ¼ argminR2SO 3ð Þ
Xn
i¼1

wijjRi � Rjj2 ð10Þ
where e is very small positive number close to zero used to prevent
the division by zero.
4.1.3. Clustering merge
A limitation of the previous approach is that if a model makes a

bad estimation, the resulting pose may be badly influenced, even if
the remaining methods were quite precise. That is, the resulting
pose may be worse than the best of the initial poses.

Therefore, we designed a method based on clustering the candi-
date poses. To reduce the impact of incorrect poses, we focus the
processing on the most similar poses, which is deduced by the
cluster gathering more poses. For an equal number of poses, the
cluster with the highest mean confidence is chosen. Then, to obtain
the refined pose, a simple merge or a weighted merge is applied
only on the poses belonging to the selected cluster. Algorithm1
explains how the clusters are created and how the resulting pose
is obtained. The distance thresholds have been selected based on
previous experiments. The distance function is the Euclidean dis-
tance between the two given poses. Only translation is considered,
rotation is not used to calculate the distance.
9

Algorithm1: Clustering merge method

1: function CLUSTERINGposes
2: n items len posesð Þ
3: ifn items = 1then
4: result  poses 0½ �
5: else
6: biggest cluster  ½�
7: fori 2 (0, len(poses))do
8: cluster  poses i½ �½ �
9: forj 2 (i, len(poses))do
10: ifdistance poses i½ �; poses j½ �ð Þ < thresholdthen
11: cluster:append pose j½ �ð Þ
12: end if
13: end for
14: iflen biggest cluster < clusterð Þthen
15: biggest cluster  cluster
16: else if len biggest cluster ¼¼ clusterð Þ
17: ifscore biggest clusterð Þ < score clusterð Þthen
18: biggest cluster  cluster
19: end if
20: end if

(continued on next page)



I. Merino, J. Azpiazu, A. Remazeilles et al. Neurocomputing 541 (2023) 126270
(continued)

Algorithm1: Clustering merge method

21: end for
22: result  merge biggest clusterð Þ .simple merge or

weighted merge.
23: end if
24: return result
25: end function
4.2. Ensemble-Stacking

Stacking or stacked generalization is an ensemble method that
combines different machine learning models using another
machine learning algorithm [36,37,46]. The base models or level-
0 models are trained using the training data. Then, the validation
data is predicted using the trained models, generating a new data-
set where the independent variables are the outputs of each model.
Finally, the combiner or level-1 model is trained using the valida-
tion data. Fig. 3 shows the full pipeline of training and evaluating
this model.

4.2.1. Level-1 models
Level-1 methods combine the results that level-0 models have

output. The following level-1 methods have been used in the pro-
posed method:
Fig. A.12. Qualitative comparative of merge method
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� SVR [55] or support vector regression is based on the support
vector machine concept [56]. This method assumes that the
input vectors are non-linearly mapped to a high-dimension fea-
ture space. Nevertheless, the SVR computational complexity
does not depend on the dimensionality of the input space, and
it has excellent generalization capability with high prediction
accuracy.
� Decision Trees [57] are formed by a collection of rules that are
modelled according to input variables values. Variables are
selected to get the best split to differentiate the values of the
dependent variable. The rule splits the tree into two nodes
and the process is repeated for each child node recursively.
The method stops when no more gain can be made or by some
pre-set stopping rules.
� The linear Regression [58] is based on the representation of a
linear equation. The coefficients are learned from the training
data using statistical properties(e.g., means, standard devia-
tions, correlations or/and covariance), using Ordinary Least
Squares to minimize the squared residuals or using the Gradient
Descent method, for instance. We have used 2 linear regres-
sions: Ordinary least squares Linear Regression and Ridge Linear
Regression (Linear least squares with l2 regularization).
� KNN Regressor or K-Nearest Neighbors regressor [59,60] is a
non-parametric model that uses the feature similarity to predict
values. It uses the Euclidean, Manhattan or Minkowski distance
as the KNN classification model. The target is predicted by local
interpolation of the targets associated to the nearest neighbors
in the training set.
s on YCBV dataset image 1130 from scene 49.
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� The MultiLayer Perceptron or MLP [61] is a type of feedforward
Artificial Neural Network. MLP is usually a neural network con-
taining a single hidden layer. We use Mean Squared Error (MSE)
as loss function.

5. Experiments

We evaluate our method on a subset of the BOP challenge [2,62]
benchmark. This objective of this challenge is to set a common
benchmark to compare different state-of-the-art 6 DoF object pose
estimation methods. The challenge defines an evaluation method-
ology and datasets to use. We compare the results obtained with
the state-of-the-art methods (level-0) and the ensemble methods.
5.1. Datasets

BOP challenge includes 7 core datasets. We use a subset of those
datasets including Linemod-Occlusion [51,63], T-LESS [64] and
YCB-Video [52]. This subset is selected for simplicity and because
it is relevant for our use case. Each dataset is composed of 50 k
PBR (Physically-based renderer) synthetic images generated using
BlenderProc for the BOP challenge for training, another training set
with real and synthetic images that each of the datasets provides
and test images. BOP challenge is evaluated using a subset from
the test images (BOP test images). Figs. 4–7 show images of the
LMO dataset, YCB-V dataset, T-LESS dataset and PBR images from
all datasets, respectively.
Fig. A.13. Qualitative comparative of merge method
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5.1.1. Linemod
Linemod-Occlusion (LM-O) [51,63] is a dataset first proposed by

[51] and later redefined by [63]. The initial dataset consists of 15
texture-less objects on a cluttered desk. The later redefinition takes
only into account the scene ’000002’ with extra ground-truth infor-
mation. This configuration is more challenging and only uses the
13 objects with proper 3D models (2 were omitted since proper
3D models were missing) and correct ground-truth poses (Some
ground truth poses from the original dataset were incorrect). In
the BOP challenge, the LM-O has available the 50 K PBR training
images generated with BlenderProc (provided by BOP challenge),
400 k PBR training images from Microsoft Research (MSR) [65],
synthetic training images of isolated objects generated in [63]
and test images.
5.1.2. YCB-Video
YCB-Video [52,18] is a 6D pose estimation dataset composed of

21 objects from the YCB dataset [52] observed in 92 videos with
133827 frames. 80 videos are used for training and 12 videos for
testing. In the BOP challenge, the YCB-V dataset has the 50 k PBR
training images generated with BlenderProc (provided by BOP
challenge), original synthetic training images, real training images
and test images.
5.1.3. T-LESS
T-LESS [64] is an industry-relevant texture-less object dataset.

The objects are often similar in shape and some objects are parts
of others. Three different synchronized sensors have been used to
s on YCBV dataset image 1052 from scene 50.
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capture the real training and test images. Real training images
depict individual objects against a black background. In the BOP
challenge, the T-LESS dataset has the 50 k PBR training images gen-
erated with BlenderProc (provided by BOP challenge), synthetic
training images of isolated objects, real training images of isolated
objects and test images.
5.2. Evaluation metrics

The BOP challenge task is 6D localization of Varying number of
instances of a Varying number of objects in a single RGB-D image
(ViVo task). In the ViVo task, each image can contain 0 or n
instances of 1 or j objects, where j is always less or equal to J,
the number of objects of the corresponding dataset. In our case,
we simplify the problem, and we focus on the 6D localization of
Single instance of Varying number of objects in a single RGB-D
image (SiVo task). In the SiSo task, each image can contain 0 or 1
instances of 1 or j objects.

To evaluate the level-0 models and all the ensemble methods,
we have followed the evaluation methodology that the BOP chal-
lenge follows. Three pose-error functions are used: Visible Surface
Discrepancy (VSD) [2,66], Maximum Symmetry-Aware Surface
Distance (MSSD) [67] and Maximum Symmetry-Aware Projection
Distance (MSPD) [62]. An estimated pose is considered correct if
the value for each specific pose-error function (VSD, MSSD or
MSPD) is less than a given threshold. The recall is the ratio between
the correctly predicted poses over the annotated poses. Given dif-
Fig. A.14. Qualitative comparative of stacking met
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ferent settings of the threshold and misalignment tolerances, the
average recall of a specific pose-error function e (ARe) is defined
as the average of all the recalls for the different configurations on
that pose-error function. The Average Recall (AR) is the average
of the three specific pose-error function Average Recalls
(ARVSD;ARMSSD;ARMSPD). Each dataset and method is evaluated by
the Average Recall (AR).

5.2.1. VSD
VSD only considers visible parts of the objects. Therefore, VSD

treats poses that can not be distinct from one another as equiva-
lent. Eq. 11 shows how to calculate the VSD error.

eVSD bD;D; bV ;V ; s� �
¼ avg

p2bV[V 0 ifp 2 bV \ V ^ jbD pð Þ � D pð Þj < s
1 otherwise

(
ð11Þ

where bD and D are distance maps from rendering the model in the

estimated pose bP and ground-truth pose P, respectively; and bV and
V the visibility masks. ARVSD is calculated from the misalignment
tolerance ranging from 5% to 50% of the object diameter with a step
of 5%, and the threshold from 0.05 to 0.5 with a step of 0.05.

5.2.2. MSSD
The maximum distance is relevant for robotic manipulation as

it indicates if there is a chance of a successful grasp. Compared
to ADD/ADI [66,51], this metric behaves more independently of
hods on LMO dataset image 47 from scene 2.
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the sampling of the mesh. Eq. 12 shows how to calculate MSSD
error.

eMSSD P̂; �P; SM;VM

� �
¼ minS2SMmaxx2VMkP̂x� �PSxk2 ð12Þ

where bP is the estimated pose, P is the ground-truth pose, SM is a set
of global symmetry transformations and VM is a set of mesh vertices
of the model. ARMSSD is calculated from the threshold ranging from
5% to 50% of the object diameter with a step of 5%.

5.2.3. MSPD
This measure is relevant for augmented reality applications and

suitable for evaluation of RGB-only methods. Eq. 13 shows how to
calculate MSPD error.

eMSPD P̂; �P; SM;VM

� �
¼ minS2SMmaxx2VMkproj P̂x

� �
� proj �PSx

� �k2 ð13Þ

where proj is the 2D projection operation. ARMSPD is calculated from
the threshold ranging from 5r to 50r with a step of 5r, where
r ¼ w=640 and w is the width of the image in pixels.
6. Results

We have defined 3 merging methods: simple, weighted and
clustering; and a stacking method. First we are presenting the
Fig. A.15. Qualitative comparative of stacking meth
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scores of level-0 models to compare them with all the ensemble
methods defined.

Table 2 shows the results obtained for LMO PBR, YCB-V PBR,
YCB-V S + R, T-LESS PBR and T-LESS S + R. S + R (SYN + REAL) is
composed of the synthetic pbr images and the real images. For
each dataset and metric, the highest score is set to bold (one per
row). If we focus on the Average Recall(AR), Cosypose is the best
level-0 approach on every dataset except for YCB-V PBR. The three
models have similar AR on LMO PBR and YCB-V S + R. For YCB-V
PBR, PVN3D and Cosypose behave similarly while FFB6D has lower
AR. Results on T-LESS are significantly different: Cosypose outper-
forms FFB6D and PVN3D. This is because PVN3D and FFB6D work
better for datasets like LMO and YCB-V since their authors
designed these methods for those datasets, and the implementa-
tion is not prepared for ViVo task as Cosypose is. Indeed, the T-
LESS dataset has more than one instance of the same object on
some images. This leads to poor performance in many examples.

If we focus on the average recall of each metric, ARVSD behaves
similarly to AR. Even though, for this metric Cosypose is not the
best for every dataset (PVN3D wins on YCB-V PBR, and FFB6D wins
on YCB-V S + R).

On ARMSSD, Cosypose is not the best method on any dataset, but,
on ARMSPD, Cosypose is the best on every dataset. On the one hand,
MSSD is designed to verify if a pose has a chance of a successful
grasp. On the other hand, MSPD does not evaluate the alignment
along the optical axis (Z axis) and is designed for evaluating RGB-
only methods. Therefore, MSSD is higher for PVN3D and FFB6D
ods on LMO dataset image 387 from scene 2.
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since both methods use pointclouds instead of only RGB images.
And for the same reason, Cosypose has higher MSPD because it is
more suitable for working with RGB only input. Cosypose only uses
depth if some pointcloud level refinement is performed, such as
ICP.

The first strategy we are evaluating is the merge ensemble.
Table 3 shows the results of the different merging methods for
each dataset. The scores are underlined if, for that dataset and met-
ric, the merge method has obtained a higher value than the corre-
sponding highest level-0 score, and bold scores are the highest
from the underlined scores for each row. On LMO PBR, results
are close to Cosypose for all metrics, but Weighted clustering has
the highest ARVSD. On YCB-V PBR, PVN3D wins on ARVSD;ARMSSD

and AR and none of the merge methods achieves better results.
Nevertheless, weighted clustering has the highest ARVSD;ARMSSD

and AR for YCB-V S + R. Merge methods can not deal with the T-
LESS dataset since two out of three level-0 methods have very poor
predictions. Even though, merge methods improve the scores of
PVN3D and FFB6D.

The second strategy is stacking. Table 4 shows results of the
stacking in which metrics with (s) denote that including the scores
of the level-0 models improves the metric of the level-1. In this
case, none of the level-1 models of the stacking improves the met-
rics obtained with the level-0 models. Moreover, there is not a
level-1 model that stands out from the others. For each dataset, a
different level-1 model obtains the highest metric.
Fig. A.16. Qualitative comparative of stacking metho
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Table 5 shows a comparative of the different level-0, all ensem-
ble methods and two state-of-the-art methods leading the BOP
challenge (CDPNv2 [7] and Pix2Pose [8]). As expected, some
level-0 work better for some datasets and the leaderboard is very
heterogeneous. On merge methods, the weighted clustering is by
far the best approach, winning on 14 out of 20 rows. On stacking,
instead, there is not a clear winner and a different level-1 works
better for each dataset. Nevertheless, almost on every metric on
the LMO and YCB-V datasets merge methods are better than the
state-of-the-art methods.

Even if our initial hypothesis was that stacking strategy would
lead to a better performance than merge strategy, since level-1
models could learn to distinguish which methods work better for
each object and combine them in order to minimize the errors of
the refined predictions, that is not the reality. This could be due
to various reasons which may include that bad predictions of
level-0 models lead to a bad level-1 model performance, or level-
1 models were not able to learn a pattern. Nevertheless, if we focus
on qualitative results (Figs. 8 and 9) we can see that the obtained
results are valid. Fig. 8 shows a qualitative comparison of the
merge method on the LMO dataset. Simple and weighted merge
have some errors on the cat object but both clustering methods
refine the prediction and obtain a better result. For example, on
Fig. 9, even if each individual prediction of the level-0 models is
not perfect, the predictions that are not present in some predic-
tions is obtained from the others and refined. SVR and MLP outper-
ds on YCBV dataset image 1557 from scene 49.
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form other level-1 models on situations like this. More examples of
qualitative results can be found in the Appendix A.
7. Conclusions

To deal with 6DoF pose estimation task, we have designed some
ensemble strategies. We have proposed 2 ensemble strategies for
deep learning techniques: merge and stacking. On the one hand,
merge strategy is based on the average of the predictions. This
enables a geometrical refinement of the poses and, including the
clustering technique, excludes the poses that do not represent
the same instance. On the other hand, stacking trains a machine
learning model (level-1) that inputs the outputs of the base models
(level-0) to refine the estimated poses. Within merge strategies,
the best method is weighted clustering which achieves 0.8352
AR, 0.7946 ARVSD, 0.8816 ARMSSD on YCB-V dataset using synthetic
and real images, outperforming results obtained with FFB6d,
PVN3D and Cosypose. Weighted clustering also improves ARVSD

on LMO. Stacking methods, instead, did not improve none of the
results obtained with the level-0 models. The obtained results
are for every dataset and level-1 model worse than the results
obtained with level-0 models.

As stated before, qualitative results show that predictions are
good enough for many applications. For example, robotic applica-
tions, where a robot must pick objects and little rotation discrep-
ancies are not crucial, could obtain good results with the
ensemble methods.

Future work will include using different and more level-0 mod-
els, discarding level-0 models that are not prepared for VIVO task
15
and validating the obtained results in a real robotic application
whose objective is to correctly grasp the maximum number of
objects.
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Appendix A. More examples of voting and stacking

Figs. A.10 and A.11 and Figs. A.12 and A.13 showmore examples
of the comparatives of merge methods used on LMO and YCBV,
respectively; and Figs. A.14 and A.15 and Figs. A.16 and A.17 show
more examples of comparative of stacking methods for the LMO
and YCBV datasets, respectively.
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