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Tis paper considers a more general eventually time-varying Beverton–Holt equation for species evolution which can include
a harvesting action and a penalty for overpopulation numbers. Te harvesting action may be positive (typically consisting of
hunting or fshing) or negative which refers to repopulation within the environment. One considers also a penalty of quadratic
type on the overpopulation and the introduction of a term related to Allee efect to take account of small levels of population. Te
intrinsic growth rate is assumed either to exceed unity or to be under unity. In the second case, the extinction point is a locally
stable attractor while the other positive equilibrium point is unstable contrarily to the commonly studied case of intrinsic growth
rate exceeding unity where the above roles are inverted. Tis consequence implies that the extinction point is also globally
asymptotically stable for any given fnite initial condition. In the case when the eventual overpopulation is penalized with
a sufciently large coefcient which exceeds a prescribed threshold, to quantify such an excess, only a globally asymptotically
stable extinction attractor is present and no other positive equilibrium points exist. In the case of a positive moderate quadratic
evaluation term for such an overpopulation, one or two positive equilibrium points coexist with the extinction one. Te smaller
one is unstable contrarily to the extinction equilibrium which is locally asymptotically stable. If it exists a second largest positive
equilibrium point, being distinct to the above-given one, then it can be unstable or locally stable depending on the parame-
terization. Also, some methods of monitoring the population evolution through control laws on the harvesting action are
discussed.

1. Introduction

Beverton–Holt equation is an useful discrete equation for
modelling the evolution of species which reproduce by eggs
such as birds, fshes and insects [1]. It can be considered the
counterpart of the logistic equation in the Verhulst´s
continuous-time model. Te basic Beverton–Holt model is
parameterized by two positive sequences, namely, the car-
rying capacity of the environment which depends on re-
sources availability, temperature, humidity, etc., and the
intrinsic growth rate which is associated with the species

reproduction capability, the survivorship chance etc. Te
intrinsic growth rate has typically to exceed unity to avoid
extinction. In the most general case, those parameters can be
changed to sequences to describe potential diferent be-
haviors of the population evolution in diferent periods, for
instance, seasonality. Tere are other two typical parameters
to be eventually considered which generalize the model such
as the independent consumption which describes re-
cruitment variations due to unforeseen disturbances and
eventual repopulation or interchange of population with
neighbour environments and the harvesting process
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associated with fshing or hunting and which depends on
regulation based on the available spawning stock and
foreseen recruitment. Te basic time-invariant Bev-
erton–Holt equation has two equilibrium points which are
the extinction point, which is locally unstable, and the
carrying capacity level which is globally asymptotically
stable. Te so-called Cushing–Henson conjecture estab-
lished that, if the equation is modelled by periodic pa-
rameterizing sequences of carrying capacities and intrinsic
growth rates, then the averaged periodic sequence of pop-
ulation lies below the average of the corresponding average
of the carrying capacities.Te conjecture has been rigorously
proved to be true by Stevic [2]. Some extensions of the basic
model concerning the Cushing–Henson conjectures for the
Beverton–Holt q-diference equation have been discussed in
[3]. A control theory point of view on the Beverton–Holt
equation has been adopted and discussed in [4–6] while
giving a design procedure of the environment carrying
capacity for monitoring the suitable sequence of values to
follow of the population evolution. Te applicability of the
proposed method is claimed for semiopen environments
such like certain fsheries. It is discussed in [7] how, in
practice, the intrinsic growth rate can be dependent on the
environment carrying capacity. Also, it is discussed in [8] an
impulsive extended competition Beverton–Holt model be-
tween species from the stability point of view.Te usefulness
of the Beverton–Holt and other mathematical models in
maritime biology is described in [9]. In [10–13], the har-
vesting action is investigated in an extended Beverton–Holt
model. Normally, harvesting refers to fshing or hunting
which is subjected to authorities regulation but it can also be
total or partially illegal while associated to furtive un-
controlled actions. See also some references therein and
[6, 8]. Other related studies consider alternative general-
izations concerned with periodic behaviors, associated, for
instance, to seasonality [14, 15], global dynamics analysis of
some extended equation versions [16], presence of bi-
furcations [17, 18] or resonances [19], and perturbations of
the basic model. See, for instance [18]. On the other hand, an
extended Beverton model on isolated time scales is analyzed
in detail in [20]. Also, an extension of the Beverton–Holt
model including discrete delays in the evolution dynamics
has been investigated in [21]. A Beverton–Holt model ex-
tension including discrete delays in the evolution dynamics
has been investigated in [21]. On the other hand, it can be
pointed out that Beverton–Holt-based models are used also
by biologists when monitoring fshing stock availability and
fshing migrations to evaluate the recommended maximum
number of captures (or recommended harvesting action) to
avoid the environment degradation and species extinction.
See, for instance [22, 23], and some of the references therein.

In this paper, we focus on a generalized Beverton–Holt
equation which assumes a quadratic-type penalty for the
population excess describing the potential internal com-
petence between the individuals for food, refuge, etc. Te
harvesting action is considered jointly with eventually
present independent consumption if necessary. It is seen that
the presence of such a term can translate into the presence of
two other equilibrium points. Te paper also designs species

evolution control laws by monitoring the harvesting action
and the infuence in the results of considering a modelling
function of Allee’s efect which makes difcult growing or
even can cause extinction for small numbers of reproductive
individuals.

Te paper is organized as follows. Section 2 deals with
the equilibrium points in the presence and absence of
harvesting action, considered together with eventual in-
dependent consumption, in the case when the intrinsic
growth rate elements exceed unity. Te harvesting se-
quence can have positive, negative or null elements. Te
local asymptotic stability of each feasible (that is being real
and non-negative) equilibrium points is characterized in
the case when the parameterizing sequences converge to
limits. Section 3 develops two methods to derive control
laws for the harvesting actions again if the intrinsic growth
rate exceeds unity for all time. Te frst proposed method is
based on the convergence of the solution sequence of the
population to a prescribed targeted equilibrium point of the
population value by choosing the harvesting sequence.
Classical criteria for convergence of sequences, such as
D’Alembert, Cauchy, and Raabe criteria, are involved in the
respective monitoring rules of the harvesting action. Te
second method relies on a sample-to-sample monitoring of
the solution sequence to target a prescribed evolution
pattern by designing the harvesting sequence. Next, Section
4 relies on introducing Allee’s efect to modify the basic
Beverton–Holt equation to describe the situation arising
under small numbers of individuals which make difcult
the reproductive action and can lead to extinction even the
intrinsic growth rate exceeds unity for all time. Te
equilibrium points, their stability conditions as well as
extinction conditions are investigated if the intrinsic
growth rate exceeds unity for all time. Te second part of
this section proposes a penalty term in the Beverton–Holt
equation for high levels of population in the absence of
harvesting. Te resulting equilibrium points and their
stability issues are also investigated if the intrinsic growth
rate exceeds unity for all time. On the other hand, Section 5
relies on extinction conditions and the local asymptotic
stability of the extinction equilibrium point if the intrinsic
growth sequence has elements being less than unity in the
absence of harvesting by considering the modifed model
with quadratic penalty time for high levels of population.
Te local asymptotic stability of the positive equilibrium
points is also investigated. Section 6 is devoted to discuss
some numerical examples and, fnally, some conclusions
end the paper. In the following, the subsequent notation is
used:

Z0+ and Z0− denote, respectively, the sets of non-
negative and nonpositive integer numbers

Z+ and Z− denote, respectively, the sets of positive and
negative integer numbers

R0+ and R0− denote, respectively, the sets of non-
negative and nonpositive real numbers

R+ and R− denote, respectively, the sets of positive and
negative real numbers
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2. Equilibrium Points and Their Local
Asymptotic Stability under Positive, Null, or
Negative Harvesting

“Harvesting” is referred to fshing and hunting subject to
administrative regulation which depends on the species
population. On the other hand, “independent consumption”
refers to positive of negative supplies of extra populations
due to migrations from outside of the environment under
consideration [10, 13, 14]. In the sequel, we consider both
efects together integrated in the same additive perturbation
sequence to that of the standard population evolution se-
quence. Consider the following, in general, time-varying
Beverton–Holt equation subject to harvesting action even-
tually combined with independent consumption:

yn+1 �
anKnyn

Kn + an − 1( 􏼁yn

− hn, ∀n ∈ Z0+, (1)

with initial condition y0 ≥ 0, where an􏼈 􏼉
∞
n�0 is the intrinsic

growth rate of the species and Kn􏼈 􏼉
∞
0 is the environment

carrying capacity sequence, both being positive real se-
quences. If a constraint yn+1 ≥ zn+1 ≥ 0; ∀n ∈ Z0+ is prefxed
for some sequence zn􏼈 􏼉

∞
n�0 ⊂ R0+ so that the harvesting se-

quence hn􏼈 􏼉
∞
n�0 has to fulfl:

hn ∈ − ∞,
anKnyn

Kn + an − 1( 􏼁yn

− zn+1􏼠 􏼣, ∀n ∈ Z0+. (2)

Te harvesting sequence defnes the population amount
which is not related to the dynamics evolution within the
environment because of natural reproduction and dead
concerns. It is related to an increase or decrease of in-
dividuals due to population fux either from or to the habitat
plus eventual decrease of population due to hunting or
fshing. In this way, the sequence can take negative values at
a particular sampling instant because of the sign in (1), this
situation will correspond to an increase of the amounts of
individuals), positive values (that is, decrease of population),
or zero (that is, the population is just modifed by the natural
reproduction and dead within the considered habitat).
According to that philosophy, the harvesting is considered in
this paper as the eventual combination of an eventual tra-
ditional harvesting (that is, hunting/fshing) and eventual
migrations in both senses from or to the habitat under study.
Also, the hunting or fshing includes, in general, legal or
illegal actions (poaching).

It turns out that any equilibrium point needs to be real
non-negative in order to be feasible (that is, real and pos-
itive) as it is addressed in the subsequent result.

Theorem 1. Assume that an􏼈 􏼉
∞
0 ( ⊂ [1, a])⟶ a, Kn􏼈 􏼉

∞
0

( ⊂ [0, K])⟶ K, zn􏼈 􏼉
∞
0 ( ⊂ [0, z])⟶ z and hn􏼈 􏼉

∞
0 ⟶ h

with hn ∈ (− ∞, (anKnyn)/(Kn + (an − 1)yn) − zn+1];
∀n ∈ Z0+. Ten, the solution of (1) has:

(i) A real positive equilibrium point y � K> 0 and
a null equilibrium point (extinction) at y0 � 0 if
h � 0.

(ii) If h≥K then there is no nonextinction feasible
equilibrium point and the nonextinction equilibrium
points are feasible if h<K.

(iii) If h≠ 0 then the potential nonextinction equilibrium
points y1 > 0 and y2 ≥y1 > 0 are given by

y1,2 � (a − 1)(K − h)∓

�������������������������

(a − 1)
2
(K − h)

2
− 4(a − 1)Kh

􏽱

2(a − 1)
,

(3)

which are real if and only if h ∈ ((− ∞, ((a + 1−

2
��
a

√
)/(a − 1)) K)]∪ [((a + 1 + 2

��
a

√
)/(a − 1))K, +

∞). Te equilibrium point y2 is feasible if and only if
h ∈ [− ∞, K] which restricts the above-given inequality
for realness. Also, the equilibrium point y1 is feasible if
and only if h ∈ [0, K]. If h � K(a + 1∓2

��
a

√
)/(a − 1)

then y1 � y2 > 0. In terms of the intrinsic growth rate,
the nonextinction equilibrium pointsy1 andy2 are both
feasible if h ∈ [0, K] and (a − 1)(K − h)2 ≥ 4Kh,
equivalently, if a≥ ((K + h)/(K − h))2 (a> 1 if
h � 0). Also,y1 is not feasible for h< 0 andy2 is feasible
for h< 0 irrespective of a(> 1) and K(> 0).

Proof. Note directly that the extinction level y0 � 0 is an
equilibrium point. Also, by replacing in (1) the limits of the
various sequences, one gets a single root y � K if h � 0 and,
if h≠ 0, then

(a − 1)y
2

+(a − 1)(h − K)y + Kh � 0. (4)

Tus, since a> 1, if h≥K then there is no real non-
negative solution to (1) since (4) fails for y> 0 and h≥K.

If 0< h<K, or if h< 0, then the roots of (2) are

y1 �
(a − 1)(K − h) −

�������������������������

(a − 1)
2
(K − h)

2
− 4(a − 1)Kh

􏽱

2(a − 1)
,

y2 �
(a − 1)(K − h) +

�������������������������

(a − 1)
2
(K − h)

2
− 4(a − 1)Kh

􏽱

2(a − 1)
.

(5)

Properties [(i)-(ii)] have been proved. On the other
hand, the nonextinction equilibrium points y1 and y2 are
both feasible for h ∈ [0, K) if (a − 1)(K − h)2 ≥ 4Kh,

equivalently, if a≥ (K + h)/(K − h)2 (a> 1 if h � 0). Also, y1
is not feasible for h< 0 from (5) and y2 is feasible, also from
(5), for h< 0 irrespective of a(> 1) and K(> 0).
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Note that, in order for the roots of (4) to be real, since
a> 1, it is needed that θ(h) ≥ 0, where

θ(h) � (a − 1)(K − h)
2

− 4Kh � (a − 1)h
2

+(a − 1)K
2

− 2(a − 1)Kh − 4Kh

� (a − 1)h
2

+(a − 1)K
2

− 2aKh + 2Kh − 4Kh � (a − 1)h
2

+(a − 1)K
2

− 2Kh(a + 1).
(6)

Note that, y1,2 are real if and only if the zeros of θ(h), that
is, h1,2 � K(a + 1∓2

��
a

√
)/(a − 1), are non-negative real since

a> 1. Since θ(h) is a convex parabola, θ(h)≥ 0, and both
equilibrium points y1 and y2 are real (and they can be
positive) if and only if h ∈ (− ∞, K(a + 1 − 2

��
a

√
/

(a − 1)]∪ [K(a + 1 + 2
��
a

√
)/(a − 1), +∞). Contrarily, if

h ∈ (K((a + 1 − 2
��
a

√
))/(a − 1)), K(a + 1 + 2

��
a

√
)/(a − 1))

then the zeros are not real and the nonextinction equilibrium
points y1,2 never exist. Since, their feasibility implies that
h≤K then the equilibrium point y2 is feasible if and only if
h ∈ [− ∞, K]. Since (a + 1 − 2

��
a

√
)/(a − 1)< 1 for a> 1. Also,

the equilibrium point y1 is feasible if and only if
h ∈ [0, K(a + 1 − 2

��
a

√
)/(a − 1)]. It is obvious that h � h1,2 �

K(a + 1∓2
��
a

√
)/(a − 1) then y1 � y2. Property (iii) is proved.

Te use of the inverse sequence of that of a the pop-
ulation evolution sequence is of interest to derive easily some

interesting results concerning the stability and the asymp-
totic boundedness of the solution as it is addressed in the
subsequent result: □

Theorem 2. Defne the inverse sequence of the solution of (1)
as xn � y− 1

n ; ∀n ∈ Z0+. Te following properties hold:

(i) Te inverse sequence xn􏼈 􏼉
∞
n�0 of the solution yn􏼈 􏼉

∞
n�0 is

given by the discrete equation:

xn+1 � μnxn + ]n + h
I
n; ∀n ∈ Z0+, (7)

where μn � a− 1
n ; ]n � (1 − μn)K− 1

n � (an − 1)a− 1
n K− 1

n ,
subject to hn ∈ (− ∞, (anKnyn)/(Kn + (an − 1)yn)];
∀n ∈ Z0+, and hI

n is zero if hn � 0 for any n ∈ Z0+,
with

hn �
anKnh

I
n

2 1 − a
− 1
n􏼐 􏼑 + h

I
n + a

− 1
n xn􏼐 􏼑Kn􏼐 􏼑xn + K

− 1
n an + a

− 1
n − 2􏼐 􏼑 + h

I
n an − 1( 􏼁

; ∀n ∈ Z0+, (8)

for x0 � y− 1
0 > 0. Te solution is equivalently

expressed from given initial conditions as follows:

xn+1 � 􏽙
n

i�0
μi􏼂 􏼃⎞⎠x0 + 􏽘

n

i�0 􏽙

n

j�i+1
μj􏽨 􏽩⎞⎠ ]i + h

I
i􏼐 􏼑.⎛⎝⎛⎝

(9)

(ii) xn􏼈 􏼉
∞
n�0 is bounded, equivalently, yn􏼈 􏼉

∞
n�0 does not

vanish neither at any sample nor asymptotically
(and then the population does not extinguish ei-
ther in fnite time or asymptotically) if
lim supn⟶∞ 􏽐

n
i�0(􏽑

n
j�i+1[μj]) (]i + hI

i )<∞. In
particular, if an􏼈 􏼉

∞
n�0 ⊂ [a, a] and

lim infn⟶∞an ≥ a > 1 then

xn ≤ −
a􏼐 􏼑

− n
x0 +

1 −
−
a􏼐 􏼑

− n

1 − a
sup

0 ≤ i ≤ n− 1
]i + h

I
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌; ∀n ∈ Z+,

(10)

is bounded for any given fnite x0 ≥ 0 for all n ∈ Z0+

if sup0 ≤ i ≤ n− 1|]i + hI
i |< +∞. For any fnite x0 > 0 ,

so that y0 � x− 1
0 , the sequence yn � x− 1

n􏼈 􏼉
∞
n�0

satisfes:

yn ≥
1 −

−
a

−
a􏼐 􏼑

− n
1 −

−
a􏼐 􏼑x0 + 1 −

−
a􏼐 􏼑

− n
􏼐 􏼑 sup

0 ≤ i ≤ n− 1
]i + h

I
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

> 0; ∀n ∈ Z+.

(11)

(iii) Defne bn � 1 − μn � (an − 1)/an by assuming that
an􏼈 􏼉
∞
n�0 ⊂ (1,∞] subject to 􏽐

∞
n�0bn � 􏽐

∞
n�0(an − 1) /

an �∞. Assume that |hI
n + (an − 1)/(Knan)|

≤ ε(an − 1)/an for any integer n≥ n0, some n0 ∈ Z0+

and some ε ∈ R+. Ten, lim supn⟶∞xn

≤ ε⇔lim infn⟶∞yn ≥ ε− 1. Te constraint
|hI

n + (an − 1)/Knan|≤ ε(an − 1)/an is satisfed under
any of the subsequent stipulations for each n ∈ Z0+:

(1) 0≤ hI
n ≤ (ε − K− 1

n )(an − 1)/an requiring that the
harvesting sequence hn ≥ 0 and the carrying ca-
pacity Kn ≥ 1/ε

(2) hI
n < 0 and (an − 1)/anK− 1

n ≥ |hI
n|≥ (K− 1

n − ε)
(an − 1)/an ≤ hI

n < 0 requiring that hn < 0 and
Kn < 1/ε

(3) hI
n < 0 and (an − 1)/Knan < |hI

n|≤ (an − 1)/an

(ε + K− 1
n ) requiring that hn < 0

(iv) Te extinction equilibrium point y0 � 0 is unstable.
Te two positive equilibrium points y1,2 in (5) arising
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when the parametrical sequences an􏼈 􏼉
∞
n�0⟶ a,

Kn􏼈 􏼉
∞
n�0⟶ K, hn􏼈 􏼉

∞
n�0⟶ h fulfl the following

theories:

(a) y2(>y1) is jointly feasible and locally asymp-
totically stable if − ∞< h< ((

��
a

√
− 1)/(

��
a

√
+

1))K

(b) If y1(<y2) is feasible then it is not locally as-
ymptotically stable

(c) If h � ((
��
a

√
− 1)/(

��
a

√
+ 1))K then the unique

nonextinction equilibrium point y1 � y2 � (K

− h)/2 � K/(
��
a

√
+ 1) is jointly feasible and lo-

cally asymptotically stable

Proof. One obtains (7) directly from the following equiv-
alent expression to (1):

xn+1 �
1

yn+1
�

1
anKnyn/ Kn + an − 1( 􏼁yn( 􏼁 − hn

�
Kn + an − 1( 􏼁yn

anKnyn − hn Kn + an − 1( 􏼁yn( 􏼁

� a
− 1
n xn − a

− 1
n − 1􏼐 􏼑K

− 1
n + h

I
n; ∀n ∈ Z0+,

(12)

subject to hn ∈ (− ∞, anKnyn/(Kn + (an − 1)yn)]; ∀n ∈ Z0+

for keeping the sample-to-sample non-negativity of yn􏼈 􏼉
∞
n�0,

where xn � y− 1
n ; ∀n ∈ Z0+, and

h
I
n � xn+1 − a

− 1
n xn + a

− 1
n − 1􏼐 􏼑K

− 1
n �

Knxn + an − 1
anKn − gn

− a
− 1
n xn + a

− 1
n − 1􏼐 􏼑K

− 1
n ; ∀n ∈ Z0+, (13)

with gn � hn(Knxn + an − 1); ∀n ∈ Z0+. One gets from (13)
that

K
− 1
n + h

I
n − a

− 1
n K

− 1
n − xn􏼐 􏼑􏼐 􏼑gn � anKnh

I
n; ∀n ∈ Z0+,

(14)

which leads to

gn �
anKnh

I
n

K
− 1
n + h

I
n − a

− 1
n K

− 1
n − xn􏼐 􏼑

� hn Knxn + an − 1( 􏼁; ∀n ∈ Z0+,

(15)

so that

hn �
anKnh

I
n

K
− 1
n + h

I
n − a

− 1
n K

− 1
n − xn􏼐 􏼑􏼐 􏼑 Knxn + an − 1( 􏼁

�
anKnh

I
n

2xn + K
− 1
n an + a

− 1
n − 2􏼐 􏼑 + h

I
n Knxn + an − 1( 􏼁 − 2a

− 1
n xn + a

− 1
n Knx

2
n

�
anKnh

I
n

2 1 − a
− 1
n􏼐 􏼑 + h

I
n + a

− 1
n xn􏼐 􏼑Kn􏼐 􏼑xn + K

− 1
n an + a

− 1
n − 2􏼐 􏼑 + h

I
n an − 1( 􏼁

; ∀n ∈ Z0+,

(16)

which leads directly to (8). Equation (9) follows directly
from recursive calculations with (7). Property (i) has been
proved. Property (ii) is a direct consequence of Property (i)

since 􏽑
n+1
i�0 [μi]<􏽑

n
i�0[μi]< 1; ∀n ∈ Z0+ and limn⟶∞􏽑

n
i�0

[μi] � 0 since lim infn⟶∞an ≥ a > 1.
To prove Property (iii), we rewrite an upper-bounding

expression of (7) as

xn+1 � 1 − bn( 􏼁xn +
bn

Kn

+ h
I
n ≤ 1 − bn( 􏼁xn +

bn

Kn

+ h
I
n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 1 − bn( 􏼁xn + εnbn; ∀n ∈ Z0+, (17)
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since an􏼈 􏼉
∞
n�0 ⊂ [1,∞] implies that bn � 1 − μn � (an − 1)/

an ∈ [0, 1]; ∀n ∈ Z0+ subject to 􏽐
∞
n�0bn � 􏽐

∞
n�0(an − 1)/an �

∞. Since it is also assumed that |hI
n + bn/ Kn|≤ εbn �

ε(an − 1)/an; ∀n ∈ Z0+, this constraint is achieved if
|hI

n + bn/Kn| � |hI
n + (an − 1)/Knan|≤ εnbn ≤ ε(an − 1)/an; ∀n

(≥ n0) ∈ Z0+, and some n0 ∈ Z0+, where εn􏼈 􏼉
∞
n�0 ⊂ [0, ε] for

any integer n≥ n0, some n0 ∈ Z0+ and some ε ∈ R+ then it
follows from [Lemma 1.2 (i), [24]] that 0≤ lim sup

n⟶∞
xn ≤ ε.

Te stipulation 1 is got from the constraints hI
n ≥ 0 (implying

that hn ≥ 0) and then |hI
n + (an − 1)/Knan| � |hI

n + (an − 1)/
Knan|≤ ε(an − 1)/an, ∀n ∈ Z0+.

Te stipulation 2 follows for hI
n < 0 (implying that hn < 0)

and |hi
n|≤ bnK− 1

n so that the subsequent constraint holds
|hI

n + (an − 1)/Knan| � (an − 1)/Knan − |hI
n|; ∀n ∈ Z0+.

Te stipulation 3 follows for hI
n < 0 and |hi

n|≤ bnK− 1
n so

that the following constraint holds |hI
n + (an − 1)/Knan|

� |hI
n| − (an − 1)/Knan; ∀n ∈ Z0+.
Property (iii) has been proved. Property (iv) follows

from a local perturbation analysis. It is assumed that the
invariant equation (1) perturbed from any equilibrium point
y as yn � y + δyn; ∀n ∈ Z0+. Te linearized perturbation

transmitted to the next sample is y + δyn+1 � aK/K/((y +

δyn) + a − 1) − h; ∀n ∈ Z0+ which leads to |δyn+1|≤K2a/
(K + y(a − 1))2|δyn| + o(|δyn|); ∀n ∈ Z0+ and, for suf-
ciently small |δyn|, |δyn+1/δyn|< 1, ∀n ∈ Z0+, so that y is
locally asymptotically stable, if and only if K

��
a

√
/(K +

y(a − 1))< 1. Equivalently, if and only if y>K(
��
a

√

− 1)/(a − 1) � K/(
��
a

√
+ 1). Contrarily, the equilibrium

point y is not locally asymptotically stable (that is, either
critically stable or unstable) if and only if
K

��
a

√
/(K + y(a − 1))≥ 1, that is, if and only if

y≤K/(
��
a

√
+ 1). In particular, it is unstable if

K
��
a

√
/(K + y(a − 1))> 1, that is, if y<K/(

��
a

√
+ 1). Te

local asymptotic stability constraint fails and the instability
constraint holds if y � y0 � 0 (extinction equilibrium point)
since a> 1.

Ten, the extinction equilibrium point is unstable.
For addressing the local asymptotic stability of the other

two equilibrium points y � y1 and y � y2, provided they are
feasible and distinct (that is, the radicand of (5) is real
positive), note that equilibrium points are locally asymp-
totically stable if and only if

y1,2 �
(a − 1)(K − h)∓

�������������������������

(a − 1)
2
(K − h)

2
− 4(a − 1)Kh

􏽱

2(a − 1)
>

K
��
a

√
+ 1

. (18)

Considering y2 under the above constraint, that one
becomes equivalent to

�������������������������

(a − 1)
2
(K − h)

2
− 4(a − 1)Kh

􏽱

>(
��
a

√
− 1)[2K − (

��
a

√
+ 1)(K − h)].

(19)

Te above-given constraint (19) holds if u> v, where

u � (a − 1) (a − 1)(K − h)
2

− 4Kh􏽨 􏽩

� (a − 1) a(K − h)
2

− (K + h)
2

􏽨 􏽩

� α1h
2

+ β1h + c1,

(20)

where

α1 � (a − 1)
2 β1 � − 2K a

2
− 1􏼐 􏼑; c1 � (a − 1)

2
K

2
, (21)

and

v � ((
��
a

√
− 1)[2K − (

��
a

√
+ 1)(K − h)])

2

� (a + 1 − 2
��
a

√
) 4K

2
+(a + 1 + 2

��
a

√
) K

2
+ h

2
− 2Kh􏼐 􏼑 − 4K(

��
a

√
+ 1)(K − h)􏼐 􏼑

� α2h
2

+ β2h + c2,

(22)

where

α2 � α1 � (a − 1)
2
; β2 � 2K(a − 1)[2

��
a

√
− a − 1]; c2 � K

2
a
2

+ 6a − 4a
��
a

√
− 4

��
a

√
+ 1􏼐 􏼑. (23)
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Tus, u> v, as necessary condition a≥ ((K + h)/(K−

h))2, equivalently, h≤ ((
��
a

√
− 1)/(

��
a

√
+ 1))K in order for

the radicand in the defnition of y1,2 to be non-negative
(equilibrium feasibility condition), with a> ((K + h)/

(K − h))2 if h≠K(
��
a

√
− 1)/(

��
a

√
+ 1) and h≠ 0. For h � 0,

y2 � K is locally asymptotically stable from u> v since
��
a

√
+

1>
��
a

√
− 1 holds trivially. Now (20)–(23), one gets that y2 is

locally asymptotically stable, that is, u> v, if and only if:

h<
c1 − c2

β2 − β1
�

(a − 1)
2

− a
2

+ 6a − 4a
��
a

√
− 4

��
a

√
+ 1􏼐 􏼑

2(a − 1)[2
��
a

√
− a − 1] + 2 a

2
− 1􏼐 􏼑

K �
(a + 1)

��
a

√
− 2a

(a − 1)
��
a

√ K �

��
a

√
− 1

��
a

√
+ 1

K, (24)

which coincides with the feasibility condition. Tus, y2 is
both feasible and locally asymptotically stable if and only if
− ∞< h< ((

��
a

√
− 1)/(

��
a

√
+ 1))K.

For the local asymptotic stability of y1, equation (19)
becomes modifed as follows:

−

�������������������������

(a − 1)
2
(K − h)

2
− 4(a − 1)Kh

􏽱

>(
��
a

√
− 1)[2K − (

��
a

√
+ 1)(K − h)],

(25)

so that, one gets the two associated constraints:

(1) (
��
a

√
− 1)[2K − (

��
a

√
+ 1)(K − h)]≤ 0

(2)
��
u

√
�

�������������������������

(a − 1)2(K − h)2 − 4(a − 1)Kh

􏽱

<
�
v

√
� −

(
��
a

√
− 1)[2K − (

��
a

√
+ 1)(K − h)]⇔u< v

Te above-given frst condition is equivalent to
h≤ ((

��
a

√
− 1)/(

��
a

√
+ 1))K since a> 1. Tis constraint is the

feasibility constraint for harvesting also already needed for
y
→

2. Te above-given second condition is equivalent to just
to reverse the equality in the constraint (24), that is,

h>
(a + 1)

��
a

√
− 2a

(a − 1)
��
a

√ K �

��
a

√
− 1

��
a

√
+ 1

K, (26)

so that y1 ≠y2 is both feasible and locally asymptotically
stable if and only if

��
a

√
− 1

��
a

√
+ 1

K≥ h>
��
a

√
− 1

��
a

√
+ 1

K, (27)

which is a contradiction. Tus, y1 is unstable if feasible and
distinct of y2.

If y1 � y2 is feasible, that is, the radicand of (5) is null so
that h � ((

��
a

√
− 1)/(

��
a

√
+ 1))K, then the equilibrium point

is given by y1 � y2 � (K − h)/2 � K/(
��
a

√
+ 1) which sat-

isfes trivially the above given local asymptotic stability
condition y1 � y2 ≥K/(

��
a

√
+ 1) so that the confuent

nonextinction equilibrium point
y1 � y2 � (K − h)/2 � K/(

��
a

√
+ 1) resulting with

h � ((
��
a

√
− 1)/(

��
a

√
+ 1))K is locally asymptotically stable.

Property (iv) has been proved.
Concerning Teorem 2(i), note that the denominator in

the right-hand-side of (8) cannot be zero at any sample since
the the value of the sequence hn􏼈 􏼉

∞
n�0 is bounded by

hypothesis. □

Remark 1. Note that, the admissible harvesting sequence of
Teorem 2(iii) can be generated from (8) by generating

hI
n􏽮 􏽯
∞
n�0 as follows by fulflling one of the stipulations 1–3 for

each n ∈ Z0+:

(a) Trough the stipulation 1 in the proof of Teorem 2:
hI

n � (ε − K− 1
n )(an − 1)/an − σn ≥ 0; ∀n ∈ Z0+, where

ε ∈ R+ is chosen such that Kn ≥ ε− 1; ∀n ∈ Z0+ and the
sequence σn􏼈 􏼉

∞
n�0 is generated subject to 0≤ σn

≤ (ε − K− 1
n )(an − 1)/an; ∀n ∈ Z0+. Note that, hI

n ≥ 0
and hn ≥ 0; ∀n ∈ Z0+.

(b) Trough the stipulation 2 in the proof of Teorem 2:
hI

n � (1 − an)/anKn + σn, where 0≤ σn ≤ ((an − 1)

/an) (2K− 1
n − ε); ∀n ∈ Z0+ and ε ∈ R+ is chosen such

that Kn < ε− 1. Note that, hI
n < 0 and hn < 0.

(c) Trough the stipulation 3 in the proof of Teorem 2:
hI

n � ((1 − an)/an)(1/Kn + ε) + σn, where
0≤ σn ≤ ((an − 1) /an)ε; ∀n ∈ Z0+ and ε ∈ R+. Note
that, hI

n < 0 and hn < 0.

Remark 2. Te local asymptotic stability of the equilibrium
points addressed in Teorem 2 (iv) relies to the cases of
absence of harvesting in the steady state dynamics (h � 0)
or in the cases of stationary fshing/hunting (h> 0) or
stationary repopulation actions (h< 0). Tose cases cor-
respond to constant values of the harvesting sequence in
fnite time or asymptotically. In the paper, the dynamics is
globally stable if the population solution sequence is
bounded for any given fnite initial condition. Tis cir-
cumstance might be compatible with the event that some of
the equilibrium points be locally unstable, stable, or crit-
ically stable if there are more than one equilibrium points.
An equilibrium point is said to be globally asymptotically
stable if it globally stable and all solution converges as-
ymptotically to such a point for any given fnite initial
conditions.

In the third case, the largest positive equilibrium point is
larger under negative stationary harvesting (having
a meaning of stationary repopulation and/or immigration to
the habitat from outside), than the equilibrium point K

arising in the absence of harvesting. In the second case, the
global stability condition leads to the conclusion that the
larger equilibrium point y2 is locally asymptotically stable
and the smaller one y1 is not locally asymptotically stable
unless they are coincident for a stationary harvesting efort
h � ((

��
a

√
− 1)/(

��
a

√
+ 1))K.

Discrete Dynamics in Nature and Society 7



Te following result proves that, if the harvesting action
sequence has a limit h, then a limit point of the solution
cannot exceed the amount K − h.

Proposition 1. If an􏼈 􏼉
∞
0 ⊂ (1, a)⟶ a, Kn􏼈 􏼉

∞
0 ( ⊂ [0,

K])⟶ K, hn􏼈 􏼉
∞
n�0⟶ h and yn􏼈 􏼉

∞
n�0⟶ y then

h � 0⟺ (y � 0)∨(y � K)

h> 0⟺y<K − h

h< 0⟺y>K +|h|.

(28)

Proof. On gets from (1) that

hn �
anKnyn

Kn + an − 1( 􏼁yn

− yn+1; ∀n ∈ Z0+. (29)

If yn􏼈 􏼉
∞
n�0⟶ y, one gets by taking limits in (29) as

n⟶∞ that

h �
aK

K +(a − 1)y
− 1􏼠 􏼡y �

(a − 1)(K − y)

K +(a − 1)y
y, (30)

and, equivalently,

hK � (a − 1)(K − y − h)y, (31)

|h|K � − hK � (a − 1)(y − |h| − K) if h< 0. (32)

Ten, the given properties follow directly from (31) and .
Te following result establishes the boundedness of the

solution sequence under bounded non-negative
harvesting. □

Proposition 2. Assume that an􏼈 􏼉
∞
0 ⊂ [1, a], Kn􏼈 􏼉

∞
0 ⊂ [0, K],

hn􏼈 􏼉
∞
n�0( ⊂ R0+) If hn􏼈 􏼉

∞
n�0 ⊂ ([0, anKnyn/(Kn + (an−

1)yn)]); ∀n ∈ Z0+ then yn􏼈 􏼉
∞
0 ( ⊂ R0+) is bounded.

Proof. Assume on the contrary that yn􏼈 􏼉
∞
n�0⟶ +∞.Ten,

from L´Hopital rule for quotients with numerator and
denominator tending to infnity, since the harvesting se-
quence is non-negative,

lim
yn⟶∞ n⟶∞

sup yn+1 −
anKnyn

Kn + an − 1( 􏼁yn

􏼠 􏼡

� lim
n⟶∞

sup yn+1 −
anKn

an − 1
􏼠 􏼡≤ 0,

(33)

so that

lim sup
n⟶∞

yn+1 � lim
n⟶∞

yn+1 ≤ lim inf
n⟶∞

anKn

an − 1
< +∞.

(34)

A contradiction for the sequence yn􏼈 􏼉
∞
n�0 to diverge,

which completes the proof. □

3. Control Laws for Monitoring the
Harvesting Action

Te frst part of this section is addressed to derive harvesting
control laws based on Teorem 2(iv) guaranteeing the
convergence to a prescribed equilibrium point x∗ under the
assumption 􏽐

∞
n�0(an − 1)/an �∞ on the intrinsic growth

sequence an􏼈 􏼉
∞
n�0. Known criteria for absolute convergence

of series or for convergence of series of non-negative ele-
ments to a prescribed limit can be used to calculate the
harvesting control sequence hn􏼈 􏼉

∞
n�0 based on the previous

calculation of hI
n􏽮 􏽯
∞
n�0, which refects the harvesting efect in

the inverse of the solution sequence, so as to satisfyTeorem
2(iv). Te last part of the section proposes harvesting control
laws which make the solution sequence of the population
evolution to sample-to-sample, rather than asymptotically,
behave according to a prescribed suitable pattern.

Now, rewrite the population solution sequence
xn � y− 1

n􏼈 􏼉
∞
n�0 as an equilibrium perturbation in the form

􏽥xn + x∗􏼈 􏼉
∞
n�0, where x∗ is the suited equilibrium point and

􏽥xn � xn − x∗; ∀n ∈ Z0+. Tus, one can rewrite from (6) the
one-step ahead evolution of the incremental sequence 􏽥xn in
the form of Lemma 1.2 (iii) of [24] as follows:

􏽥xn+1 � 1 − bn( 􏼁􏽥xn − bnx
∗

+ ]n + h
I
n

� 1 − bn( 􏼁􏽥xn + ωn + cn; ∀n ∈ Z0+,
(35)

where for each n ∈ Z0+,

bn � 1 − μn � 1 − a
− 1
n �

an − 1
an

, (36)

ωn � ]n + βn �
an − 1
anKn

+ βn, (37)

cn � h
I
n − bnx

∗
− βn, (38)

for any βn􏼈 􏼉
∞
0 ⊂ R chosen such that hI

n − bnx∗ ≥
βn ≥ (1 − an)/anKn; ∀n ∈ Z0+ which guarantees that ωn ≥ 0
and cn ≥ 0; ∀n ∈ Z0+. Note that, bn ∈ [0, 1]; ∀n ∈ Z0+. Suf-
fcient conditions for convergence 􏽥xn􏼈 􏼉

∞
0 ( ⊂ R0+)⟶ 0⟺

xn􏼈 􏼉
∞
0 ⟶ x∗ are 􏽥x0 ≥ 0, and

􏽘
∞
n�0bn � 􏽘

∞
n�0

an − 1
an

�∞, (39)

ωn � o bn( 􏼁⇔ lim
n⟶∞

βn

an − 1
+

1
anKn

􏼠 􏼡 � 0, (40)

􏽘
∞
n�0cn <∞. (41)

Te condition (40) is equivalent to limn⟶∞(βn− (1 −

an)/anKn) � 0 and the condition (41) is guaranteed if
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􏽘
∞
n�0 h

I
n +

1 − an

an

x
∗

− K
− 1
n􏼐 􏼑􏼠 􏼡<∞, (42)

since, from (38) and the condition hI
n − bnx∗ ≥

βn ≥ ((1 − an)/an)Kn; ∀n ∈ Z0+, one gets:

􏽘

∞

n�0
cn � 􏽘
∞

n�0
h

I
n − bnx

∗
− βn􏼐 􏼑

≤ 􏽘
∞

n�0
h

I
n −

an − 1
an

x
∗

+
an − 1
anKn

􏼠 􏼡

� 􏽘
∞

n�0
h

I
n +

1 − an

an

x
∗

− K
− 1
n􏼐 􏼑􏼠 􏼡<∞,

(43)

which induces also the further necessary condition
lim

n⟶∞
(hI

n + ((1 − an)/an)(x∗ − K− 1
n )) � 0, since cn⟶ 0 as

n⟶∞, guaranteed in turn if

hI
n􏽮 􏽯
∞
n�0⟶ 0 (equivalently, if hn􏼈 􏼉

∞
n�0⟶ 0) and

K− 1
n􏼈 􏼉
∞
n�0⟶ x∗, equivalently, if Kn􏼈 􏼉

∞
n�0⟶ y∗, or if

hI
n􏽮 􏽯
∞
n�0⟶ 0 and an􏼈 􏼉

∞
n�0⟶ 1

3.1. Harvesting Control Law Based on d´ Alembert Conver-
gence Criterion. a) 􏽐

∞
n�0cn <∞ with cn ≥ 0; ∀n ∈ Z0+ is

guaranteed under d´ Alembert convergence criterion in
order to xn􏼈 􏼉

∞
n�0⟶ x∗ � 1/y∗ > 0, equivalently,

yn􏼈 􏼉
∞
n�0⟶ y∗ > 0, if

h
I
n+1 − bn+1x

∗
− βn+1

h
I
n − bnx

∗
− βn

� cn ≤ c< 1; ∀n ∈ Z0+, (44)

if hI
n ≠ bnx∗ + βn and hI

n ≥ bnx∗ + βn; ∀n ∈ Z0+. Ten, since
bn � (an − 1)/an; ∀n ∈ Z0+, equation (44) leads to

bn+1x
∗

+ βn+1 �
an+1 − 1

an+1
x
∗

+ βn+1

≤ h
I
n+1 � bn+1x

∗
+ βn+1 + cn h

I
n − bnx

∗
− βn􏼐 􏼑

�
an+1 − 1

an+1
− cn

an − 1
an

􏼠 􏼡x
∗

+ βn+1 + cn h
I
n − βn􏼐 􏼑; ∀n ∈ Z0+,

(45)

with limn⟶∞(βn − ((1 − an)/anKn) � 0. One gets from
(12), by using xn � y− 1

n ; ∀n ∈ Z0+, that

yn+1 � x
− 1
n+1 �

anKnx
− 1
n − hn Kn + an − 1( 􏼁x

− 1
n􏽨 􏽩

Kn + an − 1( 􏼁x
− 1
n

�
anKn − hn Knxn + an − 1􏼂 􏼃

Knxn + an − 1
; ∀n ∈ Z0+, (46)

so that, equivalently,

xn+1 �
Knxn + an − 1

anKn − hn Knxn + an − 1􏼂 􏼃
; ∀n ∈ Z0+, (47)

which equalized to (7) in Teorem 2 (i) leads to:

h
I
n � h

I
n hn( 􏼁 �

Knxn + an − 1
anKn − hn Knxn + an − 1( 􏼁

+
1
an

1 − an

Kn

− xn􏼠 􏼡; ∀n ∈ Z0+.

(48)

Ten, combining (45) and (48)

h
I
n+1 �

an+1 − 1
an+1

− cn

an − 1
an

􏼠 􏼡x
∗

+ cn

Knxn + an − 1
anKn − hn Knxn + an − 1( 􏼁

+
1
an

1 − an

Kn

− xn􏼠 􏼡􏼢 􏼣 + βn+1 − cnβn; ∀n ∈ Z0+. (49)

Equivalently,
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h
I
n+1 �

an+1 − 1
an+1

􏼠 􏼡x
∗

+ cn

Knxn + an − 1
anKn − hn Knxn + an − 1( 􏼁

+
1
an

1 − an( 􏼁 K
− 1
n + x

∗
􏼐 􏼑 − xn􏼐 􏼑􏼢 􏼣 + βn+1 − cnβn;∀n ∈ Z0+. (50)

for some cn􏼈 􏼉
∞
0 ⊂ [0, c] ⊂ [0, 1] with βn ≥ (1 − an)/an Kn;

∀n ∈ Z0+. If the necessary limit condition limn⟶∞(βn−

(1 − an)/anKn) � 0 for βn􏼈 􏼉
∞
n�0 is forced for all values of the

sequence, one has in the above equation that

h
I
n+1 �

an+1 − 1
an+1

􏼠 􏼡x
∗

+ cn

Knxn + an − 1
anKn − hn Knxn + an − 1( 􏼁

+
1
an

1 − an( 􏼁 K
− 1
n + x

∗
􏼐 􏼑 − xn􏼐 􏼑􏼢 􏼣 +

1 − an+1

an+1Kn+1
− cn

1 − an

anKn

; ∀n ∈ Z0+,

(51)

so that for each n ∈ Z0+:

Step 1: for a given scalar c ∈ (0, 1) and a prefxed
equilibrium point x∗ > 0 such that xn􏼈 􏼉

∞
n�0⟶ x∗, so

that, equivalently, yn􏼈 􏼉
∞
n�0⟶ y∗ � 1/x∗ and given at

the n-th sampled time Kn,Kn+1, an, an+1, xn, and hn, one
calculates hI

n+1 for some gain cn ≤ c according to (51).
Step 2: one calculates y− 1

n+2 � xn+2 � a− 1
n+1xn+1 + (an+1 −

1)/an+1Kn+1 + hI
n+1 and then

hn+1 �
an+1Kn+1yn+1

Kn+1 + an+1 − 1( 􏼁yn+1
− yn+2 �

an+1Kn+1

Kn+1xn+1 + an+1 − 1
− x

− 1
n+2

�
an+1Kn+1

Kn+1xn+1 + an+1 − 1
−

an+1Kn+1

Kn+1xn+1 + an+1 − 1 − an+1Kn+1h
I
n+1

.

(52)

Note that, the condition hI
n ≥ bnx∗ + βn with hI

n < 0 (and
then hn < 0 implying hunting/fshing action) if K− 1

n > x∗ so
that Kn <y∗. Conversely, hI

n < bnx∗ + βn with hI
n ≥ 0 (and

then hn ≥ 0 implying repopulation) if K− 1
n ≤ x∗ so that

Kn ≥y∗.

3.2. Harvesting Control Law Based on Cauchy Root Test.
Note that for a given c ∈ (0, 1) the sequence generated by

h
I
n � bnx

∗
+ βn + c

n βn ≥
1 − an

anKn

; ∀n ∈ Z0+, (53)

guarantees that 􏽐
∞
n�0cn <∞ since 0≤ cn � hI

n − bnx∗

− βn � cn
n ≤ cn < 1; ∀n ∈ Z0+. Furthermore, ωn � o(bn) is

equivalent to limn⟶∞(βn − (1 − an)/anKn) � 0. It can be
taken βn � (1 − an)/anKn + εn with εn􏼈 􏼉

∞
n�0( ⊂ R0+)⟶ 0.

Te control law is derived by Step 1 and Step 2 of Section 3.1
under the replacement of (51) by the subsequent equation

which implements (51) by respecting the constraint on the
sequence:

h
I
n � bnx

∗
+
1 − an

anKn

+ εn + c
n; ∀n ∈ Z0+. (54)

3.3. Harvesting Control Law Based on Raabe Convergence
Criterion. Te condition 􏽐

∞
n�0cn <∞ with cn � hI

n − bnx∗−

βn; ∀n ∈ Z0+ is achieved from Raabe criterion if
Ln � n(1 − cn+1/cn); ∀n ∈ Z0+ with Ln􏼈 􏼉

∞
n�0⟶ L> 1.

Furthermore, the condition ωn � o(bn) is achieved with
βn � (1 − an)/anKn + εn; ∀n ∈ Z0+ with εn􏼈 􏼉

∞
n�0( ⊂ R0+)⟶

0. Ten, the joint conditions cn+1 � cn(1 − Ln/n) and
βn � (1 − an)/anKn + εn; ∀n ∈ Z0+ with Ln􏼈 􏼉

∞
n�0( ⊂ R0+)

⟶ L> 1 and εn􏼈 􏼉
∞
n�0( ⊂ R0+)⟶ 0 are achieved for

a given harvesting control hn at the n- sample if

h
I
n+1 � bn+1x

∗
+ βn+1 + 1 −

Ln

n
􏼒 􏼓 h

I
n − bnx

∗
− βn􏼐 􏼑

�
an+1 − 1

an+1
− 1 −

Ln

n
􏼒 􏼓

an − 1
an

􏼠 􏼡x
∗

+
1 − an+1

an+1Kn+1
+ εn+1 + 1 −

Ln

n
􏼒 􏼓 h

I
n −

1 − an

anKn

− εn􏼠 􏼡; ∀n ∈ Z0+.

(55)

Ten, Step 1 and Step 2 of Section 3.1 are executed to get
the harvesting control hn+1 at the next (n + 1)-sample.
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3.4. Control Law Based on a Reference Model. It is assumed
that y∗n􏼈 􏼉

∞
n�1 is a suitable reference implicit model for the

population. Note that, from (1) that yn+1 � y∗n+1; ∀n ∈ Z0+ if
hn � y0

n+1 − y∗n+1; ∀n ∈ Z0+, where the “a priori” population
(that is, the harvesting free one) at the (n + 1)-the sample is
given by

y
0
n+1 �

anKnyn

Kn + an − 1( 􏼁yn

; ∀n ∈ Z0+. (56)

While the “a posteriori” one is yn+1 which equalizes the
targeted value by the reference model. If y0

n+1 >y∗n+1 then the
harvesting action hn implies a fshing or a hunting action
while if y0

n+1 <y∗n+1 then the harvesting consists in repo-
pulation and if y0

n+1 � y∗n+1 then no harvesting is performed.
Te following result is obvious from the above equations:

Proposition  . Assume that y∗n􏼈 􏼉
∞
n�0⟶ y∗(> 0). Ten, the

following properties hold:

(i) Ten, y0
n+1 − hn􏼈 􏼉

∞
n�0⟶ y∗ and yn􏼈 􏼉

∞
n�0⟶ y∗.

(ii) Defne λn􏼈 􏼉
∞
n�0 by λn � an/(1 + ((an − 1)/Kn)yn) so

that y0
n+1 � λnyn and defne σn􏼈 􏼉

∞
n�0( ⊂ R0+), with

σn􏼈 􏼉
∞
n�0⟶ 1, such that yn+1 � y∗n+1 � σny∗. Ten,

hn � y0
n+1 − y∗n+1 � λnyn − σny∗ and hn + (1 − λn)􏼈

y∗}∞n�0⟶ 0.
(iii) If yn − Kn􏼈 􏼉

∞
n�0⟶ 0, equivalently, if

Kn􏼈 􏼉
∞
n�0⟶ K∗(� y∗) (since y∗n􏼈 􏼉

∞
n�0⟶ y∗) then

λn􏼈 􏼉
∞
n�0⟶ 1, y0

n􏼈 􏼉
∞
n�0⟶ y∗ and hn􏼈 􏼉

∞
n�0⟶ 0.

Te above-given result establishes that the population
sequence convergence to a limit neither requires the con-
vergence of its parameterizing sequences defning the in-
trinsic growth rates and the carrying capacities nor implies
the convergence to zero of the harvesting control sequence
(Proposition 1 (ii)).

4. Model Extensions by considering Allee and
Overpopulation Effects

Note that, yn � hn � 0 in (1) for some n ∈ Z0+ implies that
yn+1 � 0, that is, extinction in fnite time in the absence of
positive harvesting implies that the extinction remains af-
terwards for all time. However, the asymptotic extinction is
not possible according to this model if y0 > 0 in the presence
of negative or null harvesting as it is obvious from the in-
stability of the zero equilibrium point. Note also that yn􏼈 􏼉

∞
n�0

cannot be strictly decreasing as addressed as follows:

Proposition 4. Assume that hn􏼈 􏼉
∞
n�0 is nonzero. If lim

supn⟶∞(hn − ((an − 1)/(Kn + (an − 1)yn))(Kn − yn)yn)

< 0 then the asymptotic extinction is not possible. If
hn􏼈 􏼉
∞
n�0 ≡ 0, then the asymptotic extinction is not possible

under positive initial conditions.

Proof. Note that, if for any n ∈ Z0+, yn+1 <yn then

yn+1 − yn � yn

anKn

Kn + an − 1( 􏼁yn

− 1􏼠 􏼡 − hn � yn

an − 1
Kn + an − 1( 􏼁yn

Kn − yn( 􏼁 − hn < 0; ∀n ∈ Z0+. (57)

Tus, if lim supn⟶∞(hn − ((an − 1)/(Kn + (an − 1)yn))

(Kn − yn) yn)< 0 then the asymptotic extinction is not

possible. Next, assume that hn � 0; ∀n ∈ Z0+. Ten, yn+1 <yn

for some n ∈ Z0+ implies that yn >Kn. Take a positive real

constant ε< infn∈Z0+
Kn. Assume asymptotic extinction so

that yn􏼈 􏼉
∞
0 ⟶ 0 and assume also that max(yn+1, 0)<yn ≤ ε

for some n ∈ Z0+.Ten, yn > max(yn+1, Kn)> max(yn+1,

ε)≥ ε which is a contradiction to yn ≤ ε. As a result, if yn ≤ ε
then yn+1 ≥yn so that yn􏼈 􏼉

∞
0 ⟶ 0 is not possible. □

4.1. Consider Allee Efect for Small Number of Individuals.
Te well-known Allee efect establishes that under small
population numbers, extinction is possible because of the
difculties for the individuals to meet members of the co-
hort. Now, we modify (1) with a density-dependent function
f: R0+⟶ R+ which penalizes the presence of small
numbers of individuals as follows. It is assumed in the sequel

that hn ≡ 0 in (1) which is coherent with forbidding har-
vesting under very small amounts of individuals in the
environment: It is still assumed that the intrinsic growth rate
exceeds unity for all time.

yn+1 �
f yn( 􏼁anKnyn

Kn + an − 1( 􏼁yn

; ∀n ∈ Z0+. (58)

Theorem  . Te following properties hold:

(i) If f(yn)< a− 1
n for all n ∈ Z0+ such that yn ≠ 0 which is

guaranteed under the stronger sufcient condition
supn∈Z0+

f(yn)< 1/supn∈Z0+
an then yn􏼈 􏼉

∞
n�0 is strictly

decreasing so that it converges to zero.
(ii) Assume that f(yn) � αny

p
n + βn where p ∈ R+,

αn􏼈 􏼉
∞
n�0 ⊂ R0+, βn􏼈 􏼉

∞
n�0 ⊂ R0+. If βn � 0 for yn � 0;

αnβn � 0, βn < a− 1
n ; ∀n ∈ Z0+, and

αn <
an − 1
anKn

y
1− p
n ; ∀n ∈ Z0+, (59)
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then yn􏼈 􏼉
∞
n�0 is strictly decreasing so that it converges

to zero. If (59) is replaced with lim supn⟶∞(αn −

((an − 1)/anKn)y
1− p
n )< 0 then yn􏼈 􏼉

∞
n�0 is not neces-

sarily strictly decreasing while still yn􏼈 􏼉
∞
n�0⟶ 0.

Proof. Note from (58) that yn+1 <yn if and only if
Kn + (an − 1)yn >f(yn)anKn, and equivalently

f yn( 􏼁<
1
an

+
an − 1
anKn

yn; ∀n ∈ Z0+, (60)

which is guaranteed for all n ∈ Z0+ if f(yn)< a− 1
n such that

yn ≠ 0; ∀n ∈ Z0+, if supn∈Z0+
f(yn)< 1/supn∈Z0+

an. Property (i)
has been proved. On the other hand, the condition yn+1 <yn;
∀n ∈ Z0+ implies that

f yn( 􏼁 � αny
p
n + βn <

Kn + an − 1( 􏼁yn

anKn

; ∀n ∈ Z0+, (61)

which is guaranteed if

αn <
an − 1
anKn

y
1− p
n , βn <

1
an

+
an − 1
anKn

− αny
p− 1
n􏼠 􏼡yn; ∀n ∈ Z0+,

(62)

the second above-given constraint being already guaranteed
by the constraint βn < a− 1

n ; ∀n ∈ Z0+, implying also that (an −

1)/anKn − αny
p− 1
n ≥ 0 for the given constraint on αn in (62)

and then yn􏼈 􏼉
∞
n�0 is strictly decreasing so that it converges to

zero. Note also that if lim supn⟶∞(αn

− ((an − 1)/anKn)y
1− p
n )< 0 then yn􏼈 􏼉

∞
n�0⟶ 0. Property (ii)

has been proved. □

Remark 3. Note that, if p � 1 with βn being zero or close to
zero, then Teorem 3(iii) follows if βn < a− 1

n and
αn < (an − 1)/anKn; ∀n ∈ Z0+. Note also that a coherent
f(yn) under the above-given theorem to describe the Allee
efect is f(yn) � αny

p
n + βn with 0<p≤ 1 refecting the

difculties for small numbers to fnd partners. Exponents
p> 1 might lead to large numbers of individuals, in
mathematical terms, to the unbounded growing of the
population. A parallel description for p< 0 in f(yn) might
be appropriate to describe competence within the cohort, for
instance for food or refuge seeking, since it penalizes the
presence of huge numbers of individuals in the cohort along
the evolution process.

Te penalty for high levels of populations mentioned in
the last remark can also be described by introducing qua-
dratic or higher terms in the denominator of the evolution
equation as it is now addressed.

4.2. Incorporation of a Penalty Term for High Number of
Individuals. In the following, we introduce a penalty term to
deal with the presence of a high number of individuals. It is
still assumed that the intrinsic growth rate sequence
exceeds unity.

Proposition 5. Consider the modifed Beverton–Holt
equation:

yn+1 �
anKnyn

Kn + an − 1( 􏼁yn + cny
2
n

; ∀n ∈ Z0+, (63)

with cn􏼈 􏼉
∞
0 ⊂ R+. Te following properties hold:

(i) Neither asymptotic extinction nor asymptotic pop-
ulation unboundedness are possible for any given
fnite initial condition y0 > 0.

(ii) Assume that an􏼈 􏼉
∞
n�0⟶ a(> 1), Kn􏼈 􏼉

∞
n�0⟶ K(>

0) and cn􏼈 􏼉
∞
n�0⟶ c(> 0). Ten, there is a unique

positive equilibrium point y � ((a − 1)/2c)

(
�������������
1 + 4Kc/(a − 1)

􏽰
− 1)< min(K,

���������
K(a − 1)/c

􏽰
) for

c> 0, that is, it is smaller than the equilibrium point
y � K for c � 0 and it is a globally asymptotically
stable attractor. Te extinction equilibrium point y �

0 is unstable for c≥ 0.

Proof. Rewrite the Beverton–Holt equation as

yn+1 �
anKnyn

Kn + an − 1 + cnyn􏼂 􏼃yn

; ∀n ∈ Z0+. (64)

Tus, the population inverse is described by the fol-
lowing equation:

xn+1 �
Kn + cny

2
n

anKn

xn +
an − 1
anKn

�
Knxn + cnyn

anKn

+
an − 1
anKn

; ∀n ∈ Z0+.

(65)

Since ynxn � 1 and y2
nxn � yn; ∀n ∈ Z0+. Ten, if

yn⟶∞ as n⟶∞, xn⟶ 0 as n⟶∞ and, from (65),
xn+1⟶∞ and yn+1⟶ 0, and yn+k⟶ 0; ∀k ∈ Z0+,
a contradiction to the unboundedness of yn􏼈 􏼉

∞
n�0. Tus,

yn􏼈 􏼉
∞
n�0 is bounded for any given fnite y0 > 0.On the other

hand, if yn􏼈 􏼉
∞
n�0⟶ 0, for any arbitrarily small ε ∈ R+ there

is some arbitrarily large m � m(ε) ∈ Z0+ such that
ym+1 <ym ≤ ε, equivalently, (am − 1 + cmym)ym > (am

− 1)Km. But then (am − 1 + cε)ε> (am − 1)Km so that ε
cannot be arbitrarily small. Terefore, asymptotic extinction
is not possible and for any fnite initial condition y0 > 0, one
has 0< lim infn⟶∞yn ≤ lim supn⟶∞yn < +∞. Prop-
erty (i) has been proved.

To prove Property (ii), note that the limiting equation at
an eventual equilibrium point is given by

y �
aKy

K +(a − 1 + cy)y
, (66)

which is satisfed by the extinction equilibrium point y0 � 0
and by y> 0 which satisfes the constraint (a − 1)(K − y) �

cy2 from (66). If c � 0 then y � K, since a> 1, and if c> 0
then y<K. Now, we prove that y is globally asymptotically
stable. First, we prove that it is locally asymptotically stable
and in a second step that it is globally asymptotically stable.
Consider the linearized evolution of the inverse xn � x + δxn
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of yn, where x � y− 1 under a perturbation around the
equilibrium point leading to xn+1 � x + δxn+1. One gets:

x + δxn+1 �
1
a

x + δxn( 􏼁 +
a − 1
aK

y + δyn

y + δyn

+
c

aK
y + δyn( 􏼁

�
1
a

x + δxn( 􏼁 +
a − 1
aK

+
c

aK
(
1
x

− y
2δxn); ∀n ∈ Z0+,

(67)

since δyn � δ(1/xn) � − 1/x2
n]xn�xδxn � − 1/x2δxn � − y2δxn;

∀n ∈ Z0+. From the above-given identity, the one-step ahead
evolution of the linearized perturbation of the inverse of the
solution is given by the following equation:

δxn+1 �
1
a

1 −
cy

2

K
􏼠 􏼡δxn; ∀n ∈ Z0+. (68)

Now, we prove that so that cy2/K< 1. It has been proved
before that the equilibrium point y satisfes the constraints:

(a − 1)(K − y) � cy
2

� aK + y − ay − K

� aK − (a − 1)y − K< aK.
(69)

since a> 1 so that 0< cy2/K< 1. Furthermore,
0< (1/a)(1 − cy2/K)< 1 since a> 1 − cy2/K⇔a + cy2/K> 1
which holds since a> 1. Since |(1/a)(1 − cy2)/K|< 1 then
|δxn+1/δxn|< 1 and |δyn+1/δyn| � |y2δxn+1/y2δxn| �

|δxn+1/δxn|< 1; ∀n ∈ Z0+ since y≠ 0 and any eventual per-
turbation of the equilibrium point at any sample becomes
reduced in size at the next sample. Terefore, the equilib-
rium point y is locally asymptotically stable.

We now prove that the extinction equilibrium point y0 �

0 is unstable. Take a small perturbation δy � δyn < ε, at any
sample n, being less than ε> 0, of y0 � 0 which needs to be
positive since a negative perturbed equilibrium point is
unfeasible since it implies a negative population. Ten, for
c> 0

δyn+1

δyn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
>

a

1 +((a − 1)/K +(c/K)ε)ε
> 1; ∀n ∈ Z0+, (70)

and the zero equilibrium point is unstable provided that
c

K
ε2 +

a − 1
K

ε − (a − 1)< 0, (71)

which holds if ε ∈ (0, ((a − 1)/2c)(
�������������
1 + 4cK/(a − 1)

􏽰
− 1)).

If c � 0 then, |δyn+1/δyn|> 1 if ε ∈ (0, (
�
2

√
− 1)K). Tus, the

zero equilibrium point y0 � 0 associated with extinction is
unstable. Since the nonzero equilibrium point y has already
proved to be locally asymptotically stable then it is also
globally asymptotically stable. Te proof is complete. □

5. Extinction Issues and Associated Stability
Results in the Absence of Haversting

It is now investigated the extinction of the solution sequence
yn􏼈 􏼉
∞
n�0; ∀n ∈ Z0+ of the modifed Beverton–Holt equation

(63) if an􏼈 􏼉
∞
n�0⟶ a(< 1), Kn􏼈 􏼉

∞
n�0⟶ K(> 0) and

cn􏼈 􏼉
∞
n�0⟶ c(≥ 0). Basically, it is found that:

(i) If c � 0 then the only locally stable equilibrium point
is y � 0 (extinction). Tere is another equilibrium
point y1 � K which is unstable. As a result, the
solution sequence is globally stable (that is, bounded
for all time and any given fnite initial condition) but
the population extinguishes asymptotically. On the
other hand, remember from the former sections that
if a> 1, the extinction equilibrium point y � 0 is
unstable while y1 � K is stable. As a result, the
solution sequence is also globally stable and the
population never extinguishes asymptotically if Allee
´s efect is not considered.

(ii) If 0< c≤ (1 − a)/4K, there are, at least two, equi-
librium points y0 � 0 and y1 >K. If c � (1 − a)/4K

there are no more equilibrium points than the ex-
tinction point and y1. If c< (1 − a)/4K then there is
another equilibrium point y2 >y1, Te extinction
equilibrium point y0 � 0 is locally asymptotically
stable, y1 is unstable and y2 is locally stable or in-
stable depending on the combined values of the
parameterization triple [K(> 0), a ∈ (0, 1), c

(∈ (0, (1 − a)/4K))]. Te solution sequence is still
globally stable as before.

Te equilibrium points satisfy yn+1 � yn � y; ∀n ∈ Z0+

so that they satisfy either y � 0 or y> 0. Note that if y> 0 is
an equilibrium point then 0< cy2 � (1 − a)(y − K) with
a< 1 and y>K. Te subsequent result addresses the exis-
tence and local asymptotic stability of the extinction and
nonextinction equilibrium points and the global stability of
the evolution sequence for small intrinsic growth rates such
that a ∈ (0, 1).

Theorem 4. Assume that a< 1. Ten, the following prop-
erties hold:

(i) y0 � 0 is an equilibrium points. If a< 1 and c � (1 −

a)/4K then y0 � 0 and y � (1 − a)/2c are the
equilibrium points.

(ii) If a< 1 then the nonzero feasibly equilibrium points
are the positive real zeros of

cy
2

− (1 − a)y +(1 − a)K � 0, (72)

that is,

y1,2 �
1 − a ±

������������������

(1 − a)
2

− 4cK(1 − a)

􏽱

2c
, (73)

so that, if c> (1 − a)/4K, then y0 � 0 is an equi-
librium point and there is no nonzero equilibrium
point. If 0< c< (1 − a)/4K then y � 0 and also there
are two distinct positive equilibrium points, namely,

Discrete Dynamics in Nature and Society 13



y1 �
1 − a −

������������������

(1 − a)
2

− 4cK(1 − a)

􏽱

2c
>K;

y2 �
1 − a +

������������������

(1 − a)
2

− 4cK(1 − a)

􏽱

2c
<
1 − a

c
,

(74)

which become identical if c � (1 − a)/4K.
(iii) Te inverse sequence xn􏼈 􏼉

∞
n�0 of the evolution se-

quence yn􏼈 􏼉
∞
n�0 of the limiting Beverton-Holt equa-

tion is given by the following equation:

xn+1 �
1
a

xn −
1 − a

Ka
+

c

Kaxn

�
1
a

􏼒 􏼓
n+1

x0 + 􏽘
n

i�0

1
a

􏼒 􏼓
i c

Kaxn− i

−
1 − a

aK
􏼢 􏼣; ∀n ∈ Z0+.

(75)

Te sequence yn􏼈 􏼉
∞
n�0 ⊂ R0+ is ultimately bounded for

any fnite initial condition y0 > 0 and it can converge
to some limit 0≤y< (1 − a)/c (already proved in (ii)
since 0<y1 ≤y2 < (1 − a)/c).

(iv) Te null equilibrium point is locally asymptotically
stable. In particular,

(1) yn􏼈 􏼉
∞
n�0( ⊂ [0, y0))⟶ 0 and it is strictly de-

creasing if c � 0 and 0≤y0 <K

(2) If c> (1 − a)/4K then yn􏼈 􏼉
∞
n�0( ⊂ R0+)⟶ 0 is

bounded and strictly decreasing for any fnite
y0 ≥ 0 and yn􏼈 􏼉

∞
n�0([0, y0))⟶ 0 and it is

strictly decreasing if c≤ (1 − a)/4K and
y0 ∈ [0, y1), since y1 � (1 − a −������������������

(1 − a)2 − 4cK(1 − a)

􏽱

)/2c

(v) If 0< c≤ (1 − a)/4K then the evolution sequence is
globally stable for any given fnite initial condition. If
c> (1 − a)/4K then the evolution sequence is globally
asymptotically stable for any given fnite initial
condition and the evolution sequence converges as-
ymptotically towards the species extinction.

If 0≤ c≤ (1 − a)/4K, then the extinction point is locally
stable and the equilibrium point y1 is unstable. Te equi-
librium point y2 is unstable if y2 ∈ [y1, 2K]∪ [2K/
(1 − a), +∞) and it is locally asymptotically stable if
y2 ∈ (((2 − a)/(1 − a))K, 2K/(1 − a)).

Defne the parameters λc � c/a> 0 and λK � K/a> 0 for
c> 0. Ten, the above-given local asymptotic stability con-
dition of y2 is that for given λc and λK, a ∈ (0, 1) satisfes the
subsequent constraint:

2λKλca
2

+ a − 1􏼐 􏼑
2

+
λcλK

1 − a
a
2

<
1
4
<

2λKλca
2

1 − a
+ a − 1􏼠 􏼡

2

+
λcλK

1 − a
a
2
.

(76)

Proof. Properties (i)-(ii) are direct by calculating the real
positive zeros y1,2, equation (74), which satisfy the sub-
sequent equation of the stationary modifed Beverton–Holt
equation (63), with a< 1 and c> 0, such that yn􏼈 􏼉

∞
0 ⊂ R0+

with yn+1/yn < 1 is satisfed:

cy
2

− (1 − a)y +(1 − a)K � 0, (77)

requiring that c≤ (1 − a)/4K and implying also, if y≠ 0, that
0< cy2 � (1 − a)(y − K) so that (1 − a)/c≥y2 ≥y1 >K if
c≤ (1 − a)/4K (y2 >y1 >K if and only if c< (1 − a)/4K ). If
c> (1 − a)/4K then the zeros are complex conjugate with
nonzero imaginary parts so that y0 � 0 (extinction) is the
unique equilibrium point. Properties (i) and (ii) have been
proved.

Te evolution of the inverse sequence xn � y− 1
n􏼈 􏼉
∞
n�0 of

the population evolution sequence yn􏼈 􏼉
∞
n�0 of the stationary

modifed Beverton–Holt equation is given by the following
equation:

xn+1 �
1
a

xn −
1 − a

Ka
+

c

Ka
yn; ∀n ∈ Z0+, (78)

so that one gets the solution sequence (75) which is got via
direct recursive calculation from initial conditions. Te
subsequent expression is equivalent to (75):

xn+1 +
1 − a

aK
􏼒 􏼓 􏽘

n

i�0
1
a

􏼒 􏼓
i

􏼠 􏼡

�
1
a

􏼒 􏼓
n+1

x0 + 􏽘
n

i�0
1
a

􏼒 􏼓
i c

Kaxn− i

;∀n ∈ Z0+.

(79)

Assume that xn􏼈 􏼉
∞
n�0⟶ x(∈ [0, +∞]). Ten, since

a< 1, one gets in the above equation for any given fnite
initial condition x0 � 1/y0 > 0:

lim
n⟶∞

1 − a

aK
􏼒 􏼓 􏽘

n

i�0
1
a

􏼒 􏼓
i

􏼠 􏼡 � x0 lim
n⟶∞

1
a

􏼒 􏼓
n+1

� lim
n⟶∞

􏽘
n

i�0
1
a

􏼒 􏼓
i c

Kaxn− i

� +∞, (80)
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so that

x � lim
n,m⟶∞

xn+m+1 � lim
n,m⟶∞

xm lim
n⟶∞

1
a

􏼒 􏼓
n+1

􏼢 􏼣 + lim
m,n⟶∞

􏽘
m+n

i�m

1
a

􏼒 􏼓
i c

Kaxn+m− i

−
1 − a

aK
􏼢 􏼣

� x0 lim
n+m⟶∞

1
a

􏼒 􏼓
n+m+1

+ lim
m,n⟶∞

􏽘
m+n

i�m

1
a

􏼒 􏼓
i c

Kax
−
1 − a

aK
􏼔 􏼕

� +∞ + lim
m,n⟶∞

􏽘
m+n

i�m

1
a

􏼒 􏼓
i c

Kax
−
1 − a

aK
􏼔 􏼕.

(81)

Consider the subsequent claims:

(a) x � 0 then y � 1/x � +∞. Tis claim is impossible
since then +∞ � +∞ +∞ is a contradiction. Ten,
the sequence yn􏼈 􏼉

∞
n�0 is ultimately bounded, that is,

lim supn⟶∞yn < +∞, for any given fnite y0 > 0.
(b) x∈ (0, +∞] then y � 1/x (∈ [0, +∞)). Tis claim is

possible with x> c/(1 − a), so that y< (1 − a)/c,
(including the case x � +∞, y � 1/x � 0) since then
0 � +∞ − ∞ is not a contradiction. It is not possible
with x � c/(1 − a), so that y � (1 − a)/c since then
x � c/(1 − a) � +∞ is a contradiction, and it is not
possible either with x< c/(1 − a), so that
y> (1 − a)/c, since then 0 � +∞ +∞ is also a con-
tradiction. Property (iii) has been proved.

To prove Property (iv), frst take c � 0 with a< 1. Ten,
yn+1

yn

�
a

1 − ((1 − a)/K)yn

< 1; ∀n ∈ Z0+, (82)

which implies that yn <K with the extra constraint that
yn <K/(1 − a) in order that 0≤yn+1 < +∞. Both con-
straints together reduce to the frst one since yn < min(K, K/
(1 − a)) � K. Tus, if y0 <K then yn􏼈 􏼉

∞
n�0( ⊂ [0, K))⟶ 0

and it is strictly decreasing. Tus, the extinction equilibrium
point is locally asymptotically stable, as claimed, if c � 0 and
a< 1. Now, assume that c> 0. Ten,

yn+1

yn

�
Ka

K − (1 − a)yn + cy
2
n

< 1; ∀n ∈ Z0+, (83)

with a positive denominator to ensure that
yn􏼈 􏼉
∞
n�0( ⊂ R0+)⟶ 0 is bounded and strictly decreasing.

Both constraints jointly hold if K − (1 − a)yn + cy2
n >Ka,

equivalently,

(1 − a) K − yn( 􏼁 + cy
2
n > 0; ∀n ∈ Z0+, (84)

which holds unconditionally for any fnite y0 ≥ 0 if
c> (1 − a)/4K, since in that case y1 and y2 are unfeasible
since they are complex conjugate with nonzero imaginary
parts so that the unique equilibrium point is y � 0; and for

y0 ∈ [0, (1 − a −

������������������

(1 − a)2 − 4cK(1 − a)

􏽱

)/2c) if
c≤ (1 − a)/4K. Property (iv) has been proved.

To prove Property (v), frst note that that limy1y0⟶∞ �

0 if c> 0. Tus, for any large initial condition y0, it follows

that y1 is arbitrarily close to the extinction equilibrium point
y0 � 0, which is locally asymptotically stable so that
yn􏼈 􏼉
∞
n�0⟶ 0 for sufciently large initial condition y0 and

yn􏼈 􏼉
∞
n�0 is bounded for any given fnite initial condition.

Terefore, any evolution sequence is globally stable and it
converges asymptotically to zero if c> (1 − a)/4K since then
the unique locally asymptotically stable equilibrium point is
the extinction so that it is also a global attractor. Now, the
local stability/instability properties of y1 and y2 of Property
(v) are proved. Note from Property (iv) that:

(a) If c> (1 − a)/4K then yn􏼈 􏼉
∞
n�0( ⊂ R0+)⟶ 0 is

bounded and strictly decreasing for any fnite initial
condition y0 ≥ 0. Also, both y1 and y2 are unfeasible;

(b) If 0< c≤ (1 − a)/4K then yn􏼈 􏼉
∞
n�0( ⊂ R0+)⟶ 0 if

y0 ∈ [0, y1] so that y � 0 is locally asymptotically
stable and y1 is unstable since any solution from any
initial condition y0 <y1, being arbitrarily close to y1
converges asymptotically to y � 0.

It remains to prove that y2 is conditionally stable. Note
that, for a frst-order perturbation of the equilibrium point
y2 at any n-th sample, one has that xn � x2 + δxn,
xn+1 � x2 + δxn+1, δyn � δ(1/xn) � (− 1/x2

2)δxn � − y2
2δxn

with x2 � 1/y2 so that

δxn+1 �
1
a
δxn −

c

Kax
2
2
δxn �

1
a

1 −
c

K
y
2
2􏼒 􏼓δxn; ∀n ∈ Z0+.

(85)

Ten, y2 is unstable if |δxn+1/δxn|y�y2
� (1/a)|1−

(c/K)y2
2|≥ 1; ∀n ∈ Z0+, equivalently if,

1 −
c

K
y
2
2

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � 2 − a −
1 − a

K
y2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ a, (86)

which is satisfed under the two subsequent conditions:

(a) 2 − a − ((1 − a)/K)y2 ≥ a, which is equivalent to
y2 ≤ 2K, which together with the former constraints
y2 >K and K< (1 − a)/c, yields K<y1 ≤y2 ≤
2K< 2(1 − a)/c;

(b) ((1 − a)/K)y2 − (2 − a)≥ a which is equivalent to
y2 ≥ 2K/(1 − a).
As a result, y2 is instable if y2 ∈ [y1, 2K]

∪ [2K/(1 − a), +∞).
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In the same way, in order for y2 to be locally as-
ymptotically stable, |2 − a − (1 − a)/Ky2|< a which
is fulflled under two conditions, namely,

(c) 0≤ 2 − a − ((1 − a)/K)y2 < a which holds if and
only if y2∈ (2K, (2 − a)/(1 − a)K];

(d) 0≤ ((1 − a)/K)y2 − (2 − a)< a which holds if and
only if y2 ∈ [(2 − a)K/(1 − a), 2K/(1 − a))

which are equivalently combined into the local stability
condition y2 ∈ (2K, 2K/1 − a). Taking into account that
y2 � 1 − a/c(1 +

�����������
1 − 4cK/1 − a

√
), the condition y2 ∈ [(2 −

a)K/(1 − a), 2K/(1 − a)) becomes equivalent to

2c(2 − a)

(1 − a)2
− 1􏼠 􏼡

2

≤ 1 −
4cK

1 − a
<

4Kc

(1 − a)2
− 1􏼠 􏼡

2

, (87)

subject to 0≤ c< (1 − a)/4K and defne parameters
λc � c/a> 0 (note that λc � 0 does not need to be considered
since then y2 � y1 � K is stable) and λK � K/a> 0.Ten, the
constraint c< (1 − a)/4K takes the form 4λcλKa2 + a − 1< 0
and the above local stability constraint (87) of y2 takes the
form (76). □

Remark 4. Note from Teorem 4 (ii) that any nonzero
equilibrium point is less than the carrying capacity if c> 0
contrarily to the case when c � 0 where y � K is an
equilibrium point.

Remark 5. Note that, contrarily to Teorem 4(iv), if a≥ 1 and
c � 0, then, in the absence of harvesting, yn􏼈 􏼉

∞
n�0 cannot be

strictly decreasing converging to zero since, for the limit so-
lution sequence to be strictly decreasing, it is necessary that

(yn+1/yn) � a/(1 + ((a − 1)/K)yn)< 1 what implies that
yn >K so that yn􏼈 􏼉

∞
n�0⟶ 0 is impossible for any given

positive fnite initial condition if an ≥ 1; ∀n ∈ Z0+. Tus, the
extinction equilibrium point is unstable if an ≥ 1; ∀n ∈ Z0+.

6. Numerical Simulations

6.1. Example 1. Tis example illustrates the results ofTeorem
1. Te sequences an􏼈 􏼉

∞
0 , Kn􏼈 􏼉

∞
0 and zn􏼈 􏼉

∞
0 are respectively

generated by means of the following diference equationsc:

an+1 � ε1an + ρ1,

Kn+1 � ε2Kn + ρ2,

zn+1 � ε3zn + ρ3,

(88)

with the following values for the parameters:

ε1 � 0.9, ρ1 � 0.4, ε2 � 0.8, ρ2 � 200, ε3 � 0.75 and ρ3 � 100, (89)

and the following initial conditions:

a0 � 1.5, K0 � 500 and z0 � 10, (90)

In this way the conditions of Teorem 1 about the se-
quences an􏼈 􏼉

∞
0 and Kn􏼈 􏼉

∞
0 are fulflled since a � limn⟶∞

an􏼈 􏼉 � ρ1/(1 − ε1) � 4 and K � limn⟶∞ Kn􏼈 􏼉 � ρ2/(1 − ε2)
� 1000.

In a frst simulation, the harvesting sequence hn􏼈 􏼉
∞
0 with

hn � 5∗ (0.7)n is considered so that h � limn⟶∞ hn􏼈 􏼉 � 0
and then the conditions of Teorem 1(i) are satisfed. Fig-
ure 1 shows the evolution of the species population yn􏼈 􏼉 and
that of the environment carrying capacity Kn􏼈 􏼉 if the
population is initially y0 � 200. One can see that
y � limn⟶∞ yn􏼈 􏼉 � limn⟶∞ Kn􏼈 􏼉 � K � 1000 as Teo-
rem 1(i) points out.

On the other hand, Figure 2 displays the evolution of the
species population and that of the environment carrying
capacity if the population is initially y0 � 10. Again, one can
see that y � limn⟶∞ yn􏼈 􏼉 � limn⟶∞ Kn􏼈 􏼉 � K � 1000
although the initial population is close to the equilibrium
point y � 0.Te results displayed in Figures 1 and 2 illustrate
the fact that the equilibrium point y � 0 is globally as-
ymptotically unstable while the equilibrium point y � K is
globally asymptotically stable.

In a second simulation the same values of (89) and (90)
are maintained but the sequence hn􏼈 􏼉

∞
0 converges to

a nonzero value h. Concretely, the time evolution of hn􏼈 􏼉
∞
0 is

displayed in Figure 3 while that of yn􏼈 􏼉 and Kn􏼈 􏼉 if the
population is initially y0 � 145 is shown in Figure 4.

In this example the fact that
0≠ h � limn⟶∞ hn􏼈 􏼉< limn⟶∞ Kn􏼈 􏼉 � K is observed so
that the conditions of Teorem 1(ii) and Teorem 1(iii) are
satisfed. In fact, the Beverton–Holt equation (1) possesses
two equilibrium points given by (1). Concretely, such
equilibrium points are y1 � 142.855 and y2 � 600. One can
see that limn⟶∞ yn􏼈 􏼉 � y2 � 600 although the initial
condition y0 � 145 is close to the equilibrium point y1.
Such a fact illustrates that y1 is unstable while y2 is globally
asymptotically stable in the sense that all solutions gen-
erated by fnite initial conditions converge to such an
equilibrium.

6.2. Example 2. Tis example illustrates the results of
Teorem 3 related with the Allee efect for small number of
individuals in the species. Te intrinsic growth rate and
carrying capacity sequences, an􏼈 􏼉

∞
0 and Kn􏼈 􏼉

∞
0 , are given by

(88) with the same values for the parameters ε1, ε2, ρ1, and ρ2
than those pointed out in (89). Moreover, the harvesting
sequence hn􏼈 􏼉

∞
0 is zero for all nεZ0+ and the function f(yn)

appearing in the modifed Beverton-Holt equation (58) is
given by the following equation:

f yn( 􏼁 �
yn + α1

anyn + α2
, (91)

with α1 � 0.1 and α2 � 1. In this way, f(yn)< a− 1
n for all

nεZ0+ and the conditions of Teorem 3(i) are fulflled.
Figure 5 shows the evolution of the species population yn􏼈 􏼉 if
the population is initially y0 � 15. Figure 6 displays the
evolution of the function f(yn) and the inverse of the se-
quence an􏼈 􏼉

∞
0 . In Figure 5, one can see that the species

population converges to the extinction as Teorem 3(i)
establishes since f(yn)< a− 1

n for all nεZ0+ as it is shown in
Figure 6.
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Now, the function f(yn) appearing in the modifed
Beverton–Holt equation (58) is given by the following
equation:

f yn( 􏼁 � αny
p
n + βn, (92)

with αn � (0.7(an − 1)/anKn)y
1− p
n and βn � 0.8a− 1

n for all
nεZ0+. In this way, the conditions of Teorem 3(ii) are
fulflled. Figure 7 shows the evolution of the species
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Figure 1: Time evolution of the species population and that of the
environment carrying capacity if y0 � 200.
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Figure 2: Time evolution of the species population and that of the
environment carrying capacity if y0 � 10.
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Figure 3: Time evolution of the harvesting sequence.
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Figure 4: Evolution of the species population and that of the
environment carrying capacity if y0 � 145.
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Figure 5: Time evolution of the species population if y0 � 15 and
f(yn)< a− 1

n .

10 20 30 40 50 60 700
n (days)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/an
f (yn)

Figure 6: Time evolution of the inverse of an􏼈 􏼉
∞
0 and f(yn) if

y0 �15.
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population yn􏼈 􏼉 if the population is initially y0 � 15. One
can see that the species population converges to the ex-
tinction as Teorem 3(ii) establishes.

6.3. Example 3. Te following two examples illustrate the
results of Proposition 5 about the modifed Beverton–Holt
equation (63).

(i) Te sequences an􏼈 􏼉
∞
0 , Kn􏼈 􏼉

∞
0 and cn􏼈 􏼉

∞
0 are re-

spectively defned as

an � a0 1 + 0.5 sin 2πfan( 􏼁􏼂 􏼃, (93)

Kn � K0 1 + 0.02 sin 2πfKn( 􏼁􏼂 􏼃, (94)

cn � c0 1 + 0.3 sin 2πfcn( 􏼁􏼂 􏼃, (95)

to illustrated the result (i) of such a proposition with
a0 � 1.8, fa � 0.01, K0 � 500, fK � 0.02, c0 � 0.03
and fc � 0.03. Figure 8 shows the evolution of the
species population yn􏼈 􏼉 if the population is initially
y0 � 100. One can see that the species population
neither extinguishes nor increases in an un-
boundedness way as Proposition 5 (i) establishes.

(ii) Te sequences an􏼈 􏼉
∞
0 , Kn􏼈 􏼉

∞
0 , and cn􏼈 􏼉

∞
0 are, re-

spectively, generated by means of the following
diference equations:

an+1 � ε1an + ρ1,

Kn+1 � ε2Kn + ρ2,

cn+1 � ε3cn + ρ3,

(96)

with the following values for the parameters:

ε1 � 09, ρ1 � 0.4, ε2 � 0.8, ρ2 � 200,

ε3 � 0.75 and ρ3 � 0.005,
(97)

and the following initial conditions:

a0 � 1.5, K0 � 500 and c0 � 0.01. (98)

In this way the conditions of Proposition 5(ii) about the
sequences an􏼈 􏼉

∞
0 , Kn􏼈 􏼉

∞
0 and cn􏼈 􏼉

∞
0 are fulflled since

a � limn⟶∞ an􏼈 􏼉 � ρ1/(1 − ε1) � 4, K � limn⟶∞ Kn􏼈 􏼉 �

ρ2 /(1 − ε2) � 1000 and c � limn⟶∞ cn􏼈 􏼉 �

ρ3/(1 − ε3) � 0.02. Figure 9 shows the evolution of the
species population yn􏼈 􏼉 and that of the environment car-
rying capacity Kn􏼈 􏼉 if the population is initially y0 � 200.
One can see that y � limn⟶∞
yn􏼈 􏼉 � ((a − 1)/2c)(

�������������
1 + 4Kc/(a − 1)

􏽰
− 1) ≈ 319 <

min(K,
���������
K(a − 1)/c

􏽰
) � min(1000,

���������
K(a − 1)/c

􏽰
) ≈ 387 as

Proposition 1(ii) points out.
On the other hand, Figure 10 displays the evolution of the

species population and that of the environment carrying ca-
pacity if the population is initially y0 � 10. Again, one can see
that y � limn⟶∞ yn􏼈 􏼉 ≈ 319 although the initial population
is close to the equilibrium point y � 0. Te results displayed in
Figures 9 and 10 illustrate the fact that the equilibrium point
y � 0 is globally asymptotically unstable while the equilibrium
point y � K is globally asymptotically stable for c> 0.

6.4. Example 4. Te following examples illustrate the results
of Section 5 about the modifed Beverton–Holt equation
(63). Te sequences an􏼈 􏼉

∞
0 and Kn􏼈 􏼉

∞
0 are, respectively,

generated by means of the following diference equations:

an+1 � ε1an + ρ1,

Kn+1 � ε2Kn + ρ2,
(99)

with the following values for the parameters:

ε1 � 0.8, ρ1 � 0.1, ε2 � 0.9 and ρ2 � 50, (100)

and the following initial conditions:

a0 � 1.5 andK0 � 300. (101)

In this way the conditions of Section 5 about the se-
quences an􏼈 􏼉

∞
0 and Kn􏼈 􏼉

∞
0 are fulflled since a � limn⟶∞

an􏼈 􏼉 � ρ1/(1 − ε1) � 0.5 and K � limn⟶∞ Kn􏼈 􏼉 � ρ2/(1−

ε2) � 500. Several choices for the sequence cn􏼈 􏼉
∞
0 are con-

sidered to illustrate the results of Section 5:

(i) In the frst case cn􏼈 􏼉
∞
0 is given by the diference

equation:

cn+1 � ε3cn + ρ3, (102)

with the values for the parameters ε3 � 0.75 and
ρ3 � 0 and the initial condition c0 � 0.01. In this
way, c � limn⟶∞ cn􏼈 􏼉 � ρ3/(1 − ε3) � 0 and then,
the conditions that a< 1,K> 0 and c � 0 are fulflled
so that the modifed Beverton–Holt equation has
two equilibrium points, namely, the stable point
y1 � 0 (extinction) and the unstable one y2 � K.
Figure 11 shows the evolution of the species pop-
ulation yn􏼈 􏼉 and that of the environment carrying
capacity Kn􏼈 􏼉 if the population is initially y0 � 250.
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y n

Figure 7: Time evolution of the species population if y0 � 15 and
f(yn) � αny

p
n + βn.
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Te results displayed in Figure 11 illustrates the fact
that the equilibrium point y1 � 0 is globally as-
ymptotically stable while the equilibrium point y2 �

500 is unstable for c � 0 as Section 5 points out.
(ii) In the second case cn􏼈 􏼉

∞
0 is given by (102) with the

values for the parameters ε3 � 0.75 and ρ3 � (1 −

ε3)(1 − a)/4K � 6.25x10− 5 and the initial condition
c0 � 0.01. In this way, c � limn⟶∞ cn􏼈 􏼉 � ρ3/(1−

ε3) � 2.5x10− 4 and then, the conditions that a< 1,
K> 0 and c � (1 − a)/4K are fulflled so that the
modifed Beverton–Holt equation has two equi-
librium points, namely, the stable point y1 � 0
(extinction) and the unstable one
y2 � (1 − a)/2c � 1000. Figure 12 shows the evo-
lution of the species population yn􏼈 􏼉 and that of the
environment carrying capacity Kn􏼈 􏼉 if the pop-
ulation is initially y0 � 1050. Te results displayed
in Figure 12 illustrate the fact that the equilibrium
point y1 � 0 is globally asymptotically stable while
the equilibrium point y2 � 1000 is unstable as
Teorem 4 (i) establishes.

(iii) In the third case cn􏼈 􏼉
∞
0 is given by (102) with the

values for the parameters ε3 � 0.75 and
ρ3 � 0.001> (1 − ε3)(1 − a)/4K � 6.25x10− 5 and
the initial condition c0 � 0.01. In this way,
c � limn⟶∞ cn􏼈 􏼉 � ρ3/(1 − ε3) � 0.004 and then,
the conditions that a< 1, K> 0 and c> (1 − a)/4K �

2.5x10− 4 are fulflled so that the modifed Bev-
erton–Holt equation has only one equilibrium
point, namely, the stable point y1 � 0 (extinction).
Figure 13 shows the evolution of the species pop-
ulation yn􏼈 􏼉 and that of the environment carrying
capacity Kn􏼈 􏼉 if the population is initially y0 � 250.
Te results displayed in Figure 13 illustrate the fact
that the unique equilibrium point y1 � 0 is globally
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Figure 8: Time evolution of the species population if y0 � 100 and
the species evolution is given by (64).
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Figure 9: Time evolution of the species population and that of the
environment carrying capacity if y0 � 200 and the species evolu-
tion is given by (63).
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Figure 10: Time evolution of the species population and that of the
environment carrying capacity if y0 � 10 and the species evolution
is given by (63).
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Figure 11: Time evolution of the species population and that of the
environment carrying capacity if y0 � 250 and the species evolu-
tion is given by (64) with a< 1, K> 0, and c � 0.
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asymptotically stable, that is asymptotically stable
for any fnite initial condition, as Teorem 4 (ii)
establishes.

(iv) In the fourth case cn􏼈 􏼉
∞
0 is given by (102) with the

values for the parameters ε3 � 0.75 and
ρ3 � 3x10− 5 < (1 − ε3)(1 − a)/4K � 6.25x10− 5 and
the initial condition c0 � 0.01. In this way,
c � limn⟶∞ cn􏼈 􏼉 � ρ3/(1 − ε3) � 1.2x10− 4 and
then, the conditions that a< 1, K> 0 and
0< c< (1 − a)/4K � 2.5x10− 4 are fulflled so that
the modifed Beverton–Holt equation has three
equilibrium points, namely, the stable point y1 � 0

(extinction) and the unstable ones y2 � (1 − a −
������������������

(1 − a)2 − 4ck(1 − a)

􏽱

)/2c ≈ 581>K � 500 and y3

� (1 − a −

������������������

(1 − a)2 − 4ck(1 − a)

􏽱

)/2c ≈ 3586 <
(1 − a)/c ≈ 4167. Figure 14 shows the evolution of
the species population yn􏼈 􏼉 and that of the envi-
ronment carrying capacity Kn􏼈 􏼉 if the population is
initially y0 � 700. Te results displayed in Figure 14
illustrate the fact that the equilibrium point y1 � 0 is
globally asymptotically stable while the other ones
are unstable as Teorem 4 (ii) establishes.

7. Conclusions

Tis paper has discussed a generalized time-varying Bev-
erton–Holt equation which considers the presence of pos-
itive or negative harvesting and, eventually, a quadratic-type
penalty for the population excess. Such a term takes account
for the potential internal competence between the cohort
individuals for food, refuge, etc. Te harvesting action
(describing hunting/fshing actions) is considered jointly
with eventually present independent consumption (de-
scribing migrations from outside of the habitat to inside or
vice-versa). It is seen that the presence of the penalty term
can translate into the presence of two other positive equi-
librium points. Some particular stability results have been
also derived for the stationary equation, which arises when
its parameterizing sequences converge, for the case of small
levels of population by introducing a term taking account for
the Allee efect. Te paper has also designed some species
evolution control laws by monitoring the harvesting action
and has discussed the infuence in the stability results of
considering a modelling function of Allee efect which
makes difcult growing or even can cause extinction for
small numbers of reproductive individuals.

Te equilibrium points of the stationary solution in the
presence and absence of harvesting action have been
characterized and their local asymptotic stability properties
have been investigated in the case of intrinsic growth rate
exceeding unity and eventual execution of harvesting actions
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Figure 14: Time evolution of the species population and that of the
environment carrying capacity if y0 � 700 and the species evolu-
tion is given by (63) with a< 1, K> 0, and 0< c< (1 − a)/4K.
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Figure 12: Time evolution of the species population and that of the
environment carrying capacity if y0 � 1050 and the species evo-
lution is given by (63) with a< 1, K> 0, and c � (1 − a)/4K.
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Figure 13: Time evolution of the species population and that of the
environment carrying capacity if y0 � 250 and the species evolu-
tion is given by (63) with a< 1, K> 0, and c> (1 − a)/4K.
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and in the case of the intrinsic growth rate being less than
unity. Some numerical examples have been also discussed.

Data Availability

No underlying data were collected or produced in this study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te authors are grateful to the Basque Government for its
support through Grant no. IT1555-22 and to MCIN/AEI
269.10.13039/501100011033 for Grant no. PID2021-
1235430B-C21/C22. Te authors are also grateful to the
referees by their useful comments.

References

[1] F. Zimmermann, K. Enberg, and M. Mangel, “Density-
independent mortality at early life stages increases the
probability of overlooking and underlying stock-recruitment
relationship,” ICES Journal of Marine Science, vol. 78, no. 6,
pp. 2193–2203, 2021.

[2] S. Stevic, “A short proof of the Cushing-Henson conjecture,”
Discrete Dynamics in Nature and Society, vol. 2006, Article ID
37264, 12 pages, 2006.

[3] M. Bohner and S. H. Streipert, “Te second Cushing-Henson
conjecture for the Beverton-Holt q-diference equation,”
Opuscula Mathematica, vol. 37, no. 6, pp. 795–819, 2017.

[4] M. De la Sen and S. Alonso-Quesada, “A ControlTeory point
of view on Beverton–Holt equation in population dynamics
and some of its generalizations,” Applied Mathematics and
Computation, vol. 199, no. 2, pp. 464–481, 2008.

[5] M. De la Sen and S. Alonso-Quesada, “Model-matching-based
control of the Beverton-Holt equation in ecology,” Discrete
Dynamics in Nature and Society, vol. 2008, Article ID 793512,
21 pages, 2008.

[6] M. De la Sen, “About the properties of a modifed generalized
Beverton-Holt equation in ecology models,” Discrete Dy-
namics in Nature and Society, vol. 2008, Article ID 592950,
23 pages, 2008.

[7] M. De la Sen, “Te environment carrying capacity is not
independent of the intrinsic growth rate for subcritical
spawning stock biomass in the Beverton-Holt equation,”
Ecological Modelling, vol. 204, no. 1-2, pp. 271–273, 2007.

[8] M. De la Sen, A. Ibeas, S. Alonso-Quesada, A. J. Garrido, and
I. Garrido, “On the properties of a class of impulsive com-
petition Beverton-Holt equations,” Applied Sciences, vol. 11,
no. 19, p. 9020, 2021.

[9] T. Quinn, “Population Dynamics,” Encyclopedia Of Envi-
ronmetrics, John Wiley and Sons Ltd, Geneva, Switzerland, 2
edition, 2012.

[10] Z. Alsharawi and M. B. H. Rhouma, “Te Beverton-Holt
model with periodic and conditional harvesting,” Journal of
Biological Dynamics, vol. 3, no. 5, pp. 463–478, 2009.

[11] Y. Li and J. Li, “Discrete-time models for releases of sterile
mosquitoes with Beverton-Holt type of survivability,”
Ricerche di Matematica, vol. 67, no. 1, pp. 141–162, 2018.

[12] Y. Li and J. Li, “Stage-structured discrete-time models for
interacting wild and sterile mosquitoes with beverton-holt

survivability,” Mathematical Biosciences and Engineering,
vol. 16, no. 2, pp. 572–602, 2019.

[13] S. Al-Nasir and A. H. Lafta, “Analysis of a harvested discrete-
time biological models,” International Journal of Nonlinear
Analysis and Applications, vol. 12, no. 2, pp. 2235–2246, 2021.

[14] G. R. J. Gaut, K. Goldring, F. Grogan, C. Haskell, and
R. J. Sacker, “Diference Equations with the Allee efect and
the periodic sigmoid Beverton-Holt equation revisited,”
Journal of Biological Dynamics, vol. 6, no. 2, pp. 1019–1033,
2012.

[15] A. J. Harry, C. M. Kent, and V. L. Kocic, “Global behavior of
solutions of a periodically forced Sigmoid Beverton–Holt
model,” Journal of Biological Dynamics, vol. 6, no. 2,
pp. 212–234, 2012.

[16] E. J. Bertrand and M. R. S. Kulenovic, “Global dynamics of
higher-order transcendental-type generalized Beverton-Holt
equations,” International Journal of Diferential Equations,
vol. 13, no. 2, pp. 71–84, 2018.

[17] T. Khyat and M. R. S. Kulenovic, “Te invariant curve caused
by Neimark-Sacker bifurcation of a perturbed Beverton-Holt
diference equation,” International Journal of Diferential
Equations, vol. 12, no. 2, pp. 267–280, 2017.

[18] M. R. S. Kulenovic, S. Moranjkic, and Z. Nurkanovic, “Global
dynamics and bifurcation of a perturbed Sigmoid Beverton-
Holt diference equation: m. R. S. KULENOVIĆ, S. Moranjkić
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