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Abstract: Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive
molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular
scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic
therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal
dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical
properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent
photosensitizers. The conducted computationally aided spectroscopic study determined that the
fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not
only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can
be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we
propose regioselective formylation as an effective tool to modulate such a delicate photonic balance
in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular
intramolecular charge transfer as the key underlying process mediating fluorescence deactivation
vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging,
enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis.

Keywords: BODIPY dimers; fluorescence; PDT; photosensitizers; singlet oxygen

1. Introduction

Photodynamic therapy (PDT) has emerged as an alternative non-invasive treatment
for cancer and other diseases [1–8]. This approach consists of the generation of cytotoxic
reactive oxygen species (ROS), predominantly singlet oxygen (1O2), solely after irradiation
of a proper photosensitizer (PS) of molecular oxygen with light of a specific wavelength.
This photosensitizer should have a high enough intersystem crossing (ISC) probability to
populate a triplet state (3PS*), the bottleneck channel for the ulterior generation of 1O2
via the Type I mechanism for ROS generation (Figure 1) [9–11]. Alternatively, ROS photo-
generation can occur via the Type II mechanism, where a more complex process involving
single-electron transfer (SET) from a sufficiently charge-separated (CS) state to oxygen,
together with a proton transfer to a close biological specie, is involved (Figure 1). The
key ISC can be easily promoted by decorating the PS with heavy atoms [12]. However,
this functionalization induces high dark toxicity probability, short triplet lifetimes, and
reduced photostability [13]. To offset such shortcomings, different alternatives are being
currently explored to mediate ISC without heavy-atom participation. The main strategies
are promoting photo-induced charge transfer processes to allow spin–orbit charge transfer
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ISC (SOC-ISC) [14–16], minimizing the singlet–triplet energy gap [17], increasing the n-π*
character of the electronic transition (e.g., via thionation) [18], using π-conjugated twisted
chromophoric systems enabling symmetry-breaking charge transfer (SBCT) and ISC [19,20],
or radical-enhanced ISC [21]. As a result, smart heavy-atom-free PSs are currently being
designed and reported [22–26]. A proper modulation of ISC probability is also valuable to
retain a certain fluorescence capability along with triplet manifold population (Figure 1).
This photo-induced dual behaviour can serve to generate ROS for cancer PDT and to
simultaneously assess such a therapy by fluorescence bioimaging [27,28]. Indeed, small
all-organic monochromophoric PSs endowed with such challenging photo-theragnostic
ability embody the next generation of advanced agents for fighting aggressive cancers.
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first sight, it is not suitable as a molecular PS, since its chromophoric core stands out for 
its high fluorescence response and almost null ISC probability [32]. However, its synthetic 
accessibility and functionalization, readily available through workable reaction routes, en-
able a wide structural diversity [33], which at the same time serves to tailor the photo-
physical properties of BODIPY dye [34]. In other words, it is feasible to induce new pho-
tophysical pathways to enhance the ISC viability, just by adjusting the molecular design 
in terms of choosing a proper substitution pattern [35]. In this regard, directly linked BOD-
IPY dimers have been reported as efficient PSs of molecular oxygen (Figure 2). These 
heavy-atom-free PSs are actually in the spotlight owing to their inherent advantages re-
lated to the lack of heavy atoms. Indeed, the incorporation of heavy atoms enhances the 
dark toxicity, worsens the PS photostability, and shortens the triplet-state lifetimes [13]. 
In fact, heavy-atom-free BODIPY dimers are envisaged as the next generation of smart 
PSs to address such drawbacks and fit the clinical requirements for conducting PDT 
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tophysics to structural modifications at this position, although other geometries have also 
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The renowned BOron DIPYrromethene (BODIPY) chromophore has arisen as a suit-
able molecular scaffold to design heavy-atom-free PSs for photo-theragnosis [29–31]. At
first sight, it is not suitable as a molecular PS, since its chromophoric core stands out for its
high fluorescence response and almost null ISC probability [32]. However, its synthetic ac-
cessibility and functionalization, readily available through workable reaction routes, enable
a wide structural diversity [33], which at the same time serves to tailor the photophysical
properties of BODIPY dye [34]. In other words, it is feasible to induce new photophysical
pathways to enhance the ISC viability, just by adjusting the molecular design in terms of
choosing a proper substitution pattern [35]. In this regard, directly linked BODIPY dimers
have been reported as efficient PSs of molecular oxygen (Figure 2). These heavy-atom-free
PSs are actually in the spotlight owing to their inherent advantages related to the lack of
heavy atoms. Indeed, the incorporation of heavy atoms enhances the dark toxicity, worsens
the PS photostability, and shortens the triplet-state lifetimes [13]. In fact, heavy-atom-free
BODIPY dimers are envisaged as the next generation of smart PSs to address such draw-
backs and fit the clinical requirements for conducting PDT [36,37]. Such dimers usually
involve meso (8) BODIPY positions in the BODIPY-BODIPY linkage (mainly 2-8′ and 3-8′

linkages), owing to the known sensitivity of BODIPY’s photophysics to structural modifica-
tions at this position, although other geometries have also been tested [13,22–24,38,39]. In
these BODIPY dimers, the usually induced orthogonal disposition of the BODIPY subunits
is able to induce SBCT, facilitating ISC [40]. The elucidation of this mechanism allowing
triplet-state population has been the subject of controversy, with the SOC-ISC being the
most commonly accepted pathway [14–16], although other mechanisms cannot be fully
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excluded [41,42]. For instance, single fission has been shown to be involved in J-type
BODIPY dimers in the solid state [43].

Int. J. Mol. Sci. 2023, 24, 11837 3 of 13 
 

 

been tested [13,22–24,38,39]. In these BODIPY dimers, the usually induced orthogonal dis-
position of the BODIPY subunits is able to induce SBCT, facilitating ISC [40]. The elucida-
tion of this mechanism allowing triplet-state population has been the subject of contro-
versy, with the SOC-ISC being the most commonly accepted pathway [14–16], although 
other mechanisms cannot be fully excluded [41,42]. For instance, single fission has been 
shown to be involved in J-type BODIPY dimers in the solid state [43]. 

Recently, we have tested and evaluated the suitability of a number of synthetically 
accessible and heavy-atom-free BODIPY dimers and trimers as PDT PSs (Figure 2) [44]. 
We found that, according to the precedents [45], the 2-8′ dimer 1 was able to exhibit effi-
cient 1O2 photo-generation (1O2 photo-generation quantum yield, ϕΔ, higher than 40% re-
gardless of the polarity of the media). In spite of the promoted ISC, this dimer was able to 
retain a reasonable fluorescence emission. Obviously, its fluorescence quantum yield (ϕfl) 
decreased in polar media, owing to the ongoing ICT, but values as high as 45% were reg-
istered. Therefore, the dual photonic performance of 1 supported its suitability as a photo-
theragnostic PS. Interestingly, the 3-8′ linkage of the related BODIPY dimer 2 induced a 
higher ICT probability. As a result, the ISC probability was consequently enhanced, and a 
high ϕΔ was recorded (up to 96%). However, the fluorescence response was severely 
quenched by the efficient ongoing ICT, making 2 only suitable as a PS for PDT, but not for 
photo-theragnosis. 

 
Figure 2. Studied non-formylated (1–3) and formylated (1a,b, 2a,b, and 3a) BODIPY dimers as po-
tential fluorescent PSs for photo-theragnostic purposes. 

Herein, we propose a simple and effective strategy to modulate the dual performance 
(fluorescence vs. singlet oxygen generation) in these kinds of 2-8′ and 3-8′ BODIPY dimers 
via regioselective formylation at a single chromophoric subunit. Such formylated dimers 
were reported previously by us as key precursors of BODIPY trimers [44]. However, we 
have recently realized that such a regioselective modification can be very appealing to 
trigger the performance of BODIPY dimers as photo-theragnostic PSs. Hereafter, we ana-
lyse in depth the impact of such BODIPY derivatization at different chromophoric posi-
tions (α and β pyrrolic positions) in the fluorescence response and 1O2 generation capabil-
ity of BODIPY dimers involving 2-8′ or 3-8′ BODIPY-BODIPY linkages (see dimers 1 and 
3, and 2, respectively, in Figure 2) and differential steric overcrowding around the junction 
(see dimers 1 vs. 3 in Figure 2). The purpose of this study is to evaluate the suitability of 
constructing formylated BODIPY dimers as a simple chemical tool to enhance their singlet 
oxygen photo-generation for PDT applications, or to ameliorate their fluorescence re-
sponse for photo-theragnosis, regardless of the geometrical arrangement of the starting 
dimer. 
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potential fluorescent PSs for photo-theragnostic purposes.

Recently, we have tested and evaluated the suitability of a number of synthetically
accessible and heavy-atom-free BODIPY dimers and trimers as PDT PSs (Figure 2) [44].
We found that, according to the precedents [45], the 2-8′ dimer 1 was able to exhibit
efficient 1O2 photo-generation (1O2 photo-generation quantum yield, φ∆, higher than 40%
regardless of the polarity of the media). In spite of the promoted ISC, this dimer was able
to retain a reasonable fluorescence emission. Obviously, its fluorescence quantum yield
(φfl) decreased in polar media, owing to the ongoing ICT, but values as high as 45% were
registered. Therefore, the dual photonic performance of 1 supported its suitability as a
photo-theragnostic PS. Interestingly, the 3-8′ linkage of the related BODIPY dimer 2 induced
a higher ICT probability. As a result, the ISC probability was consequently enhanced, and
a high φ∆ was recorded (up to 96%). However, the fluorescence response was severely
quenched by the efficient ongoing ICT, making 2 only suitable as a PS for PDT, but not for
photo-theragnosis.

Herein, we propose a simple and effective strategy to modulate the dual performance
(fluorescence vs. singlet oxygen generation) in these kinds of 2-8′ and 3-8′ BODIPY dimers
via regioselective formylation at a single chromophoric subunit. Such formylated dimers
were reported previously by us as key precursors of BODIPY trimers [44]. However, we
have recently realized that such a regioselective modification can be very appealing to
trigger the performance of BODIPY dimers as photo-theragnostic PSs. Hereafter, we analyse
in depth the impact of such BODIPY derivatization at different chromophoric positions
(α and β pyrrolic positions) in the fluorescence response and 1O2 generation capability
of BODIPY dimers involving 2-8′ or 3-8′ BODIPY-BODIPY linkages (see dimers 1 and 3,
and 2, respectively, in Figure 2) and differential steric overcrowding around the junction
(see dimers 1 vs. 3 in Figure 2). The purpose of this study is to evaluate the suitability of
constructing formylated BODIPY dimers as a simple chemical tool to enhance their singlet
oxygen photo-generation for PDT applications, or to ameliorate their fluorescence response
for photo-theragnosis, regardless of the geometrical arrangement of the starting dimer.

2. Results and Discussion

The synthetic details and the corresponding structural characterization of all the
studied dimers (Figure 2) were previously reported by us [44]. The linking typology (2-8′

vs. 3-8′) of the dimer has a marked impact on the photophysical signatures. Thus, the 2-8′

dimer 1 featured a strong absorption at 510 nm (Figure S1 in Supplementary Materials),
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resulting from the sum of the individual, local excitation (LE) of each BODIPY subunit
(see HOMO-1→LUMO and HOMO→LUMO+1 transitions in Figure S2 in Supplementary
Materials), as well as a solvent-dependent emission at 525 nm (Table 1 and Table S1
in Supplementary Materials). The ongoing SBCT progressively quenched the emission
in polar media (φfl from 46% to just 3%, Table S1 in Supplementary Materials), but in
turn it promoted triplet-state population (SOC-ISC), rendering a high 1O2 generation (φ∆

between 40 and 95% depending on the media, Table S1 in Supplementary Materials). On
the other hand, in the 3-8′ dimer 2, the impact of the ICT was more marked. Thus, the
molar absorption decreased (Figure S3 in Supplementary Materials) and the fluorescence
response was almost negligible even in low-polarity solvents (Table 1 and Table S1 in
Supplementary Materials). This kind of BODIPY-BODIPY arrangement provided more ICT
character to the absorption transition (i.e., a more electronically forbidden character when
compared to the allowed LE one), as suggested theoretically by the increased contribution
of the HOMO→LUMO transition to the main absorption (Figure S4 in Supplementary
Materials) [44]. Moreover, a weak long-wavelength emission at 596 nm, assigned to its
own ICT emission, was detected following the quenched LE-emission band at 529 nm
(Figure S3 in Supplementary Materials). Such an enhancement and stabilization of the
charge separation by the solvent polarity completely removed the fluorescence emission
from both excited states, ICT and LE, but still allowed a high 1O2 generation, except
in the highly polar media (Table S1 in Supplementary Materials). It is likely that, in
acetonitrile, the charge separation was so stabilized by the solvent polarity that the charge
recombination required to reach the triplet manifold was hampered, yielding no measurable
1O2 emission. Nonetheless, we should bear in mind that determining φ∆, by measuring 1O2
phosphorescence, is more difficult in acetonitrile, due to the short lifetime of 1O2 in such
media. Therefore, whereas dimer 1 can be considered a fluorescent PS, dimer 2 cannot.

Table 1. Photophysical properties of non-formylated (1–3) and formylated (1a,b, 2a,b, and 3a,b)
BODIPY dimers in diluted solutions (2 µM) of chloroform. Full photophysical data in other solvents
are listed in Table S1 in Supplementary Materials.

λab
(±0.5 nm)

εmax *
(104 M−1 cm−1)

λfl
(±0.5 nm) φfl * τfl *

(ns) φ∆* τT *
(µs)

1 511.0 16.5 525.0 0.19 0.02 (78%)–5.02
(22%) 0.84 220

1a 509.0 6.2 521.5 0.01 1.54 (21%)–4.21
(79%) 0.50 165

1b 505.5 13.9 529.5
625.0 0.02

0.02 (94%)–1.65
(6%)

1.23 (38%)–1.91
(62%)

0.75 215

2 507.0 6.7 522.5 0.01 1.59 (25%)–4.84
(75%) 0.64 165

2a 499.5 5.4 519.0
638.0 0.02

1.85 (21%)–4.87
(79%)

1.18 (92%)–2.62
(8%)

0.62 110

2b 507.0 8.7 587.0 0.16 2.59 (32%)–4.36
(68%) 0.50 198

3 507.0 7.9 513.5
676.0 0.03

2.59 (15%)–4.36
(85%)
1.43

0.55 110

3a 518.0 4.8 559.5 0.19 0.50 (14%)–4.06
(86%) 0.22 -

Absorption (λab) and fluorescence (λfl) wavelength, molar absorption at the maximum (εmax), fluorescence
quantum yield (φfl) and fluorescence lifetime (τfl), 1O2 photo-generation quantum yield (φ∆), triplet-state lifetime
(τT). * The estimated relative standard deviation (RSD) is less than 5% in εmax, φfl and τfl, and up to 10% in φ∆

and τT.
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With the aim of investigating the possible modulation of the photophysical signatures
of BODIPY dimers 1–2, we considered their regioselective monoformylation to be a feasible
tool (Figure 2). BODIPY dimer monoformylation implies that the involved chromophoric
subunits are no longer similar, owing to the moderate electron-withdrawing electronic effect
exerted by the formyl group when compared to hydrogen or methyl. We hypothesized
that this loss of similarity could alter the ICT probability and the ensuing ISC, thereby
modulating the balance between fluorescence and 1O2 photo-generation. Formylation at
position 2′ of the 2-8′ dimer 1, to generate 1b, quenched the fluorescence response (Table 1).
Such a trend was even more marked upon formylation at position 3′ (1a), where not only
the fluorescence efficiency was further reduced, but also the absorption probability was
clearly lowered (Figure 3). In other words, BODIPY dimer monoformylation implies an
increase in the CT character of the absorption, as predicted theoretically in terms of a higher
contribution of the HOMO→LUMO transition for these dimers and a higher stabilization
of the corresponding CT states upon excitation, which leads to an efficient solvent-driven
quenching of the LE emission (Figure 4). Indeed, a broad and weak red-shifted emission
from the ICT was recorded at 625 nm in chloroform for 1b, and at 605 nm in toluene for
1a (Figure S1 in Supplementary Materials). The decay curves of these formylated dimers,
monitored at the ICT maximum, showed a higher contribution of the fast lifetimes than
at the LE maximum in those media where dual emission was detected (Table 1). Thus,
there is an optimal polarity to detect the ICT emission depending on the dimer’s molecular
structure. Beyond such a polarity point, the ICT fluorescence is completely lost, and just a
dim LE emission is detected (Figure 3 and Figure S1 in Supplementary Materials), likely
because the CT evolves into a “dark” charge-separated CS state. In agreement, with a
higher ICT population upon formylation, 1O2 photo-generation is very efficient in apolar
media for these formylated dimers (up to 93% for 1a), but it drops almost to null in polar
media, owing to the non-radiative dissipation provided by the stabilized charge separation
(Figure 4). Once again, as occurred with fluorescence, the solvent polarity triggers the
generation of 1O2, and there is an optimal solvent polarity optimizing it, which depends
on the dimer structure: chloroform for 1b (75%) and toluene for 1a (93%), the latter being
the one with the higher ICT character. Further increasing the solvent polarity beyond such
optimal points implies that the non-radiative decay of the CS prevails. Therefore, in dimer
1, as a representative example of the 2-8′ BODIPY dimers, regioselective monoformylation
worsens its performance as a fluorescent PS for 1O2 generation.
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BODIPY dimers in representative solvents of different polarities.

The same regioselective monoformylations were conducted on the 3-8′ BODIPY dimer
2 (Figure 2) and different photophysical trends were noted (Table 1). In all cases, the formy-
lation ameliorated the fluorescence response (Figure 4). Thus, formylation at position 3′ (2a)
clearly increased the fluorescence efficiency of 2 in apolar media, but such enhancement
was even more prominent and extended to polar media upon formylation at position 2′

(2b), suggesting a softened ICT quenching of the emission. Once again, the key role of sol-
vent polarity in ICT stabilization depending on the molecular geometry is unambiguously
stated. Thus, in this set of dimers, the absorption showed a long-wavelength shoulder,
and the fluorescence profile was dominated by the ICT emission (Figure 5 and Figure S3
in Supplementary Materials). Formylation at position 2´ (2b) allows the ICT contribution
in polar chloroform to be optimized, since not only the molar absorption increased in
this solvent (Figure 5), but also the fluorescence was ameliorated (Figure 4). Indeed, the
corresponding computed frontier molecular orbitals, albeit located mainly in one of the
BODIPY subunits, are spread over the whole dimer (Figure S4 in Supplementary Materials).
Such a trend is clearly visualized in HOMO and HOMO-1 of 2a, as well as in LUMO
and LUMO-1 of 2b. Note that the emission of these formylated dimers is well separated
from the absorption, suggesting that it holds an ICT character rather than LE (Figure 5
vs. Figure 3). Such ameliorated fluorescence response (φfl up to 27%) brings a lower 1O2
photo-generation, but the latter is high enough to make the formylated dimers 2a and 2b
candidates good PSs for 1O2 generation (Figure 4). Indeed, dimer 2b is able to exhibit a



Int. J. Mol. Sci. 2023, 24, 11837 7 of 13

reasonable φ∆ regardless of the solvent polarity (23–50%), sustaining that the key point in
modulating BODIPY dimers for photo-theragnostic performance is to balance their ICT
probabilities, as the bottleneck allows the triplet state to be reached and/or render the
fluorescence signal. Therefore, regioselective monoformylation at position 3 is a simple but
effective chemical strategy to transform a 3-8′ BODIPY-dimer PDT PS into a fluorescent PS
for photo-theragnosis.
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Figure S3, in Supplementary Materials.

Another way to modulate the ICT state is by acting on the twisted relative disposi-
tion (dihedral angle) of the involved BODIPY chromophores [46–48]. Hitherto, BODIPY
positions close to the BODIPY-BODIPY linkage were methylated, therefore inducing an
orthogonal disposition of the BODIPY chromophores that ensures ICT-mediated ISC via
enhanced SBCT. To investigate the influence of such a dihedral angle, and hence the ICT
induction, the methyl groups were removed in just one of the chromophoric subunits of
2-8′ BODIPY dimer 1 to generate dimer 3 (see Figure 2). Compared to dimer 1, in 3 both
the absorption and emission probabilities were clearly reduced, suggesting a higher ICT
probability (Table 1). In fact, the absorption profile of 3 was broader (Figure 6 and Figure S5
in Supplementary Materials). This fact can be attributed to the higher conformational
freedom of 3, which enables some degree of electronic coupling between the BODIPY
subunits, as suggested by the computed frontier molecular orbitals, which show a more
extended electron density pattern than in the case of related 1 (cf. Figures S6 and S2 in
Supplementary Materials). In fact, the higher ICT population in 3 allows one to record,
even in apolar media, the red-shifted weak emission from its ICT (Figure 6). Further in-
creasing the solvent polarity quenches the whole emission of 3, finally rendering a residual
LE emission (Figure 4 and Figure S5 in Supplementary Materials). Accordingly, the higher
φ∆ was detected in toluene for 3 (80%), whereas it was in chloroform for 1 (84%), and 1O2
photo-generation was silent in polar media for 3 (Figure 4). Therefore, the reduction in
the steric hindrance by an alkyl-alkyl (methyl-methyl) clash around the BODIPY-BODIPY
linkage reduces the fluorescent capability of the 3-8′ BODIPY-dimer PS.
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To investigate the possible further tuning of the photophysical properties of highly
flexible dimer 3, it was regioselectively monoformylated at position 5 to generate 3a. It
must be taken into account that related, but constrained, the monoformylated 2-8′ dimer
1a was poorly fluorescent. However, in less-crowded 3a, the formylation was profitable
from a fluorescent point of view (Table 1). Thus, this BODIPY dimer still undergoes ICT,
but its fluorescence-quenching effect is less strong than in the case of related 1a, enabling
the recording of quite bright fluorescence signals (Figure 6) in different solvents (φfl up
to 35%, Figure 4). Indeed, the computed key frontier molecular orbitals of 3a span along
the whole dimer (Figure S6 in Supplementary Materials). In contrast, the singlet oxygen
generation decreased but it was still high enough to be applied in therapy (φ∆ around
20–30%, see Figure 4). Therefore, in this case (flexible 2-8′ BODIPY dimer), formylation
allows fluorescent PSs to be obtained for photo-theragnosis.

To identify the T1 state populated by all the studied BODIPY dimers we used laser
flash photolysis. The recorded nanosecond-resolved transient absorption spectra (ns-TAS)
are plotted in Figure 7 and Figure S7 in the Supplementary Materials. All the spectra
showed a negative bleaching band, which matches the maximum of the ground-state
absorption. This band is flanked by a positive short-wavelength one peaked at 425 nm,
as well as by a flat and broad long-wavelength positive band corresponding to the T1-Tn
absorptions. The decay of the positive signal was fitted to a monoexponential function,
suggesting that only one transient state (T1) is populated, with triplet lifetimes, τT, ranging
from 110 µs to 220 µs (Table 1), which are long enough for efficient triplet oxygen to singlet
oxygen photosensitizing. Indeed, a general rule can be established from the recorded
BODIPY dimer behaviours; the higher the φ∆ (84% and 75% in 1 and 1b, respectively), the
longer the τT (220 µs and 215 µs, respectively). In air-saturated solutions, such lifetimes
decreased to hundreds of ns, whereas the profile and position of the ns-TAS spectral
bands remained similar. This oxygen-induced quenching supports that the positive bands
of the ns-TAS are due to T1-Tn absorptions. The T1 state was also theoretically studied
by means of their corresponding spin-density isosurfaces (see Figure 8 and Figure S8 in
Supplementary Materials). In most of them, the computed T1 spin density was located
in one BODIPY subunit, in particular at the non-mesithylated BODIPY subunit; that is,
at a BODIPY moiety connected through its 8 position, regardless of the BODIPY-BODIPY
linkage (2-8′ or 3-8′) (e.g., see Figure 8). The only exception to this trend is that exhibited by
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the formylated 2-8′ dimer 1b, where the spin density is shared by both BODIPYs (Figure S8
in Supplementary Materials).
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3. Materials and Methods
3.1. Spectroscopic Techniques

The photophysical properties were registered from diluted solutions (around 2 × 10−6 M),
prepared by adding the corresponding solvent to the residue from the adequate amount of
a concentrated stock solution in acetone, after vacuum evaporation of this solvent. UV-Vis
absorption and fluorescence spectra were recorded on a Varian model CARY 4E spectropho-
tometer and an Edinburgh Instruments spectrofluorometer (model FLSP 920), respectively.
Fluorescence quantum yields (φfl) were obtained using PM567 (φfl = 0.84 in ethanol) in
the spectral window 500–600 nm, cresyl violet (φfl = 0.54 in methanol) in the spectral
window 600–650 nm, and zinc phthalocyanine (φfl = 0.30 in toluene with 1% of pyridine) in
the 660–750 nm window, as references, from corrected spectra (detector sensibility to the
wavelength). The values were corrected by the refractive index of the solvent. Radiative
decay curves were registered with the time-correlated single-photon counting technique
as implemented in the aforementioned spectrofluorometer. Fluorescence emission was
monitored at the maximum emission wavelengths after excitation by means of a Fianium
pulsed laser (time resolution of picoseconds) with tunable wavelength. The fluorescence
lifetime (τfl) was obtained after the deconvolution of the instrumental response signal
from the recorded decay curves by means of an iterative method. The goodness of the
exponential fit was controlled by statistical parameters (chi-square, Durbin–Watson, and
the analysis of the residuals).

Nanosecond transient absorption spectra (ns-TAS) were recorded on an LP 980 laser
flash photolysis spectrometer (Edinburgh Instruments, Livingston, UK). Samples were
excited by a nanosecond pulsed laser (Nd:YAG laser, LOTIS TII 2134) operating at 1 Hz
and a pulse width of ≥7 ns, coupled to an OPO which allows the selection of the excitation
wavelength. The transient signals were recorded on single detector (PMT R928P), oscillo-
scope for kinetic traces, and ICCD detector DH320T TE cooled (Andor Technology, Belfast,
Northern Ireland) for time-resolved spectra. Samples were aerated and deaerated with
nitrogen or oxygen for ca. 15 min before each measurement.

The photoinduced production of singlet oxygen (1O2) was determined by direct
measurement of the luminescence at 1276 nm with an NIR detector integrated in the
aforementioned spectrofluorometer (InGaAs detector, Hamamatsu G8605-23). The 1O2
signal was registered in front configuration (front face), 40◦ and 50◦ to the excitation and
emission beams, respectively, and leaned 30◦ to the plane formed by the direction of
incidence and registration in cells of 1 cm. The signal was filtered by a low cut-off of 850
nm. 1O2-generation quantum yield (φ∆) was determined using the following equation:

φ∆ = φ∆,r·(αr/αPS)·(SePS/Ser)

where φ∆,r is the quantum yield of 1O2 generation for the used reference (2,6-diiodo-3,5-
dimethyl-8-methylthioBODIPY, MeSBDP), which was 0.89 in toluene, 0.91 in chloroform,
and 0.95 in acetonitrile [49]. Factor α = 1−10−Abs corrects the different amount of photons
absorbed by the sample (αPS) and reference (αr). Factor Se is the intensity of the 1O2
phosphorescence signal of the sample (SePS) and the reference (Ser) at 1276 nm. 1O2
quantum yields were averaged from at least five concentrations between 10−6 M and
10−5 M.

3.2. Quantum Mechanics Calculations

Ground-state geometries (S0 and T1) were optimized using a hybrid exchange-correlation
functional with the Coulomb-attenuating method (CAM-B3LYP), within Density Functional
Theory (DFT), and a triple valence basis set with a polarization function (6-311g*). All
the calculations were run without any geometrical constraint, and the geometries were
considered to be at minimum energy when the corresponding frequency analysis did not
give any negative value. The time-dependent (TD) method at the above detailed calculation
level (functional and basis set) was used to simulate the absorption spectra as vertical
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Franck–Condon transitions. The solvent effect (chloroform) was also simulated during the
calculations by the Self-Consistent Reaction Field (SCRF) using the Polarizable Continuum
Model (PCM). All calculations were run on the Gaussian 16 software implemented in the
“Arina” informatics cluster of the UPV/EHU.

4. Conclusions

Synthetically accessible regioselective monoformylation of BODIPY dimers is demon-
strated to be a reliable strategy to modulate the balance between fluorescence vs. 1O2
photo-generation towards the development of valuable fluorescence photosensitizers for
photo-theragnosis. However, the chromophoric position to be formylated must be selected
depending on the dimer’s typology (localization of the BODIPY-BODIPY linkage and steric
hindrance around it). Thus, in sterically hindered 2-8′ BODIPY dimers, monoformylation is
not recommended for obtaining fluorescent PSs. In contrast, in unconstrained 2-8′ BODIPY
dimers, monoformylation succeeds in increasing the fluorescence response while retaining
significant 1O2 generation. On the other hand, in 3-8′ BODIPY dimers, regioselective mono-
formylation, especially at the 3´ position, is highly recommended to achieve fluorescent PSs
endowed with dual performance. Thus, the conducted spectroscopic study provides the
basis for the development of advanced heavy-atom-free BODIPY-dimer-based PSs, where
the dual photo-theragnostic activity can be finely modulated by a simple and straightfor-
ward regioselective postfunctionalisation on accessible BODIPY dimers to increase 1O2
production to enhance PDT activity, or to increase the fluorescence signalling to enhance
diagnostics capability using fluorescence bioimaging.

Although the prediction of the impact of other types of functionalisation on the
photophysical properties of the BODIPY-based dimers is extremely risky, even when
selecting substituents with similar stereo-electronic properties. Surely, a possible predictive
approach should take into account that the modulation of the dimer photophysics depends
on each functionalization and should be optimized in each specific case. The herein
reported results support the construction of formylBODIPYs as a successful strategy to
modulate the performance of this interesting family of heavy-atom-free PSs via a low-cost
and easy chemical modification, regardless of the geometrical arrangement of the starting
BODIPY dimer.
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