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Abstract: This paper evaluates the impact of inter-speaker and inter-session variability on the
development of a silent speech interface (SSI) based on electromyographic (EMG) signals from the
facial muscles. The final goal of the SSI is to provide a communication tool for Spanish-speaking
laryngectomees by generating audible speech from voiceless articulation. However, before moving
on to such a complex task, a simpler phone classification task in different modalities regarding
speaker and session dependency is performed for this study. These experiments consist of processing
the recorded utterances into phone-labeled segments and predicting the phonetic labels using only
features obtained from the EMG signals. We evaluate and compare the performance of each model
considering the classification accuracy. Results show that the models are able to predict the phonetic
label best when they are trained and tested using data from the same session. The accuracy drops
drastically when the model is tested with data from a different session, although it improves when
more data are added to the training data. Similarly, when the same model is tested on a session from
a different speaker, the accuracy decreases. This suggests that using larger amounts of data could
help to reduce the impact of inter-session variability, but more research is required to understand if
this approach would suffice to account for inter-speaker variability as well.

Keywords: EMG signals; phone classification; silent speech interfaces; human–computer interaction;
speech processing

1. Introduction

This paper presents a study on classifying phones (speech sounds) using electromyo-
graphic (EMG) signals obtained from the recently developed Spanish ReSSInt-EMG database.
This database is part of the ReSSInt project [1], which aims to restore speech for laryngec-
tomees using an EMG-based silent speech interface (SSI). Laryngectomees are individuals
whose larynx (voice box) has been surgically removed, and as a result, they are no longer
able to produce speech naturally and thus depend on alternative methods to commu-
nicate verbally. There exist three main options for voice restoration after laryngectomy,
namely esophageal, tracheoesophageal, and electrolaryngeal speech. However, each of
these alternative speaking methods has some limitations [2].

For this reason, important research efforts are dedicated to developing technological
solutions to overcome those limitations. Technological approaches to restore speech for
laryngectomees include personalized text-to-speech systems, voice conversion, bionic
voices, lean-AI approaches, and SSIs, among others [3].

The ReSSInt project of which the current study is part of aims to create a database and
research the potential of developing an SSI for Spanish laryngectomees. Most of the works
and databases related to SSIs [4–6] have been developed for English, and there are some for
other languages [7–11]. However, none of these works focus on Spanish, and therefore, this
project intends to narrow that gap.

Appl. Sci. 2023, 13, 7746. https://doi.org/10.3390/app13137746 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137746
https://doi.org/10.3390/app13137746
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1490-8904
https://orcid.org/0000-0001-6510-778X
https://orcid.org/0000-0003-3804-4984
https://orcid.org/0000-0003-4447-7575
https://doi.org/10.3390/app13137746
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137746?type=check_update&version=1


Appl. Sci. 2023, 13, 7746 2 of 15

SSIs aim to convert non-acoustic biosignals into text or acoustic speech [12,13]. Biosig-
nals refer to the product of chemical, electrical, physical, and biological processes taking
place during speech production, such as neural activity, articulator motor control, muscle
activity, articulatory gestures, the vibration of the vocal folds, and pulmonary activity. Tech-
nologies to capture these biosignals include vocal tract imaging [14], magnetic tracing [15],
electroencephalogram [16], and EMG [17,18]. The conversion from these silent biosignals to
audible speech can be done directly—using some machine-learning algorithms that model
the relationship between the feature vectors extracted from the biosignals and the acoustic
signals [5,19]—or indirectly—by first producing the related text [20–22] and then using a
text-to-speech (TTS) model to generate synthetic speech.

The non-acoustic biosignals that are used in this work are EMG signals or, more
specifically, surface (i.e., non-invasive) EMG [23]. Electromyography is a technique used to
measure and record the electrical activity of muscles. When a muscle is active, it produces
an electrical signal, called an action potential, that can be detected by an electrode placed
on the skin over the muscle. Since for this study we are interested in speech, we target
muscles in the face and the neck.

In order to develop an EMG-to-speech SSI, a large database of EMG and speech data
is required. The main idea is to obtain a model trained on large amounts of parallel EMG
and speech data. To ensure the generalization capabilities of the models, it is important to
use a diverse and representative dataset for training. However, the process of acquiring the
data is complex and presents a number of difficulties.

Two prominent challenges in the development of these interfaces are the dependency
of the trained models on the session (session dependency) and on the speaker (speaker
dependency). Session dependency arises from the variations observed in the obtained EMG
signals when electrodes are positioned differently on the subject’s face. Speaker dependency
is due to differences in the way of speaking from person to person. Additionally, an
important issue arises from inadequate adhesion of the electrodes to the skin, leading
to the detachment of electrodes over time and the generation of noisy signals. As a
consequence, long sessions are difficult to carry out, thus limiting the amount of data
available per session.

EMG signals have been previously used to perform phone classification [24,25], sylla-
ble identification [9], word recognition [11,26], continuous speech recognition [27], speaker
recognition [28,29], and direct speech generation [22,30–32]. In this study, we perform a
set of phone classification experiments using data from different speakers and sessions.
Classifying phones offers a straightforward means of gaining valuable insights into the
information conveyed by each muscle involved in the speech production process, making
it an advantageous task for studying a setup performance [33].

This work is an extension of the study presented in [34], which describes a set of ex-
periments designed to validate the acquisition setup of the newly developed ReSSInt-EMG
database. Using data from nine recording sessions, in our previous study, we compared
the performance of the new database with that of a comparable subset extracted from the
well-known EMG-UKA Trial Corpus [4]. The results of the phone classification experiments
performed on both databases reassured us of the established data acquisition procedures.
In this paper, we extend the experiments and analysis to newly acquired data and analyze
the speaker and session dependency of the results while at the same time improving the
classification and feature-reduction methods.

This paper is structured as follows: Section 2 describes the data acquisition setup,
including the recording procedure and the electrode setup, as well as the ReSSInt-EMG
database, feature extraction method, and the phone classification experiments. The results
of the experiments are described in Section 3, which are then interpreted and discussed in
Section 4.
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2. Materials and Methods

This section provides a thorough description of our study’s methodology. Specifi-
cally, we detail the materials and procedures used to record the database and provide
comprehensive information on its contents. We also describe the methodology employed to
calculate the features extracted from the EMG signals. Finally, we describe the classification
experiments conducted in this research.

2.1. Acquisition Setup

This section describes in detail the devices used to record the database, the method-
ology employed to identify reference points on participants’ faces, and our approach to
mitigating inter-session variability. Additionally, we provide comprehensive information
regarding the set of tracked muscles and outline the procedure used to select them.

2.1.1. Recording Procedure

Each session is recorded in a soundproof room using a silent computer in an attempt
to reduce interference with the audio and EMG signals as much as possible. The EMG
signals are recorded with a Quattrocento bio-electrical amplifier at a sampling frequency
of 2048 Hz, and the voice is captured with a Neumann TLM103 (diaphragm) microphone
with a sampling frequency of 16 kHz.

For the acquisition and synchronization of the audio and EMG signals, we use publicly
available software (https://github.com/cognitive-systems-lab/EMG-GUI, accessed on
1 March 2022), which also includes a user interface. Additionally, a camera captures a
video of the facial movements, which is meant to provide supplementary data and allow
multi-modal experiments in the future, such as automatic lip reading. For this paper, the
video data are not considered. See Figure 1 for a photo of the complete acquisition setup.

Figure 1. Acquisition setup: (1) electromyographic (EMG) signal amplifier; (2) silent computer;
(3) computer screen; (4) camera; (5) microphone; and (6) audio interface.

In order to reduce inter-session variability in audio and video as much as possible, the
positions of the subject, microphone, and video camera are kept constant for all sessions.
Furthermore, a personalized 3D mask (Figure 2) is used to ensure that the electrode locations
remain constant throughout all sessions. Prior to the first session with each speaker, we
locate the positions of the electrodes using reference points and a measuring tape. To
give an example, to locate the risorius, or laughing muscle, we position the first electrode
adjacent to the corner of the mouth and place the second electrode in the direction of the

https://github.com/cognitive-systems-lab/EMG-GUI
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earlobe on the same side of the face. We mark three points: one on each outer side of both
electrodes and one in the middle. This process is repeated for all eight electrode pairs,
resulting in a total of 24 reference points. A 3D-printing professional then creates a 3D scan
of the face and prints a mask with holes corresponding to the reference points. During
subsequent sessions, we draw the points again on the subject’s face using the holes and
place the electrodes accordingly.

Prior to each recording session, speakers are instructed to articulate their speech
slightly more than usual. A supervisor is always present in the room to ensure the correct
pronunciation of the utterances.

Figure 2. A personalized 3D mask. The holes are used as reference points to find the positions of the
electrodes on the subject’s face.

2.1.2. Electrode Setup

Previous studies have employed various approaches in determining the optimal
electrode setup, such as targeting muscles specifically [31,35–38], analyzing anatomical
regions [20], and looking for patterns in a high-density electrode setup [39]. Knowing
that an activation potential travels along the muscle as a wave, the most appropriate way
to use bipolar acquisition is to place the two electrodes longitudinally over the muscle.
We decided to target muscles individually and performed a pilot study that consisted of
targeting all superficial muscles in the face and neck to find the muscles that were most
useful for the task. The final setup (see Figure 3) slightly differs from those used in the
previously mentioned studies. These are the targeted muscles (using one channel each):

1. Levator labii superioris (channel 1)
2. Masseter (channel 2)
3. Risorius (channel 3)
4. Depressor labii inferioris (channel 4)
5. Zygomaticus major (channel 5)
6. Depressor anguli oris (channel 6)
7. Anterior belly of the digastric (channel 7)
8. Stylohyoid (channel 8)
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Figure 3. Electrode setup for the ReSSInt-EMG database showing the eight bipolar electrode pairs
(eight channels), each targeting a different muscle. The numbers correspond to the channel that each
electrode pair captures (see Section 2.1.2).

2.2. The ReSSInt-EMG Database

Table 1 shows the details of the currently recorded sessions of the ReSSInt-EMG
database, namely, 16 sessions in total from 6 different speakers. Note that the acquisition
process is still ongoing and that the final database will be larger. The complete database
also includes data from laryngectomees, since they are our final target users. However, the
data from laryngectomees cannot be used for the phone classification experiments in this
study since aligned audio signals are required in order to obtain labeled segments.

Table 1. Speaker and session information for the ReSSInt-EMG database. The duration is expressed
in the format of mm:ss and is limited to the portion of each session that includes the sentences.

Speaker Gender Age Session Duration Train Test

001 M 29

101 16:51 13:28 03:23
102 17:32 14:04 03:28
103 17:00 13:48 03:12
104 19:22 15:14 04:08

002 F 29

101 25:25 20:20 05:05
102 30:34 24:27 06:07
103 22:36 18:17 04:19
104 27:06 21:18 05:48

003 M 51 101 24:38 19:50 04:48
102 21:43 17:27 04:16

004 F 46 101 26:04 20:46 05:18
102 24:09 19:17 04:52

005 M 45 101 23:39 18:56 04:43
102 22:31 18:00 04:31

006 F 61 101 32:57 26:21 06:36
102 29:01 23:21 05:40

In each recording session, three different kinds of items are recorded, namely: non-
sense words including vowel–consonant–vowel (VCV) structures, isolated words, and
sentences. The sentences are taken from the Sharvard Corpus [40] and from a text corpus
called Ahosyn that was developed to record TTS databases [41] (see Table 2).

For the current experiments, we only used the signals corresponding to the Sharvard
and Ahosyn sentences and not the VCV combinations or isolated words. The number
of Ahosyn sentences for each session is smaller than the number of Sharvard sentences
because they are generally longer.
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Each session is split into 80% training and 20% testing data. During the recording
process, utterances are presented in a unique and random order for each session. To ensure
consistency, we assigned the final 20% of each set of sentences as the testing set prior to
the experiment. This approach ensures that the time of recording within each session is
unrelated to the train–test split, and the utterances designated as the testing set remain
constant for each speaker.

Table 2. Corpus information for ReSSInt-EMG sessions.

Session Corpus

all
110 VCV combinations

100 isolated words
Sharvard sentences 1-100

101 Sharvard sentences 101-400
102 Sharvard sentences 401-700
103 Ahosyn sentences 1-150
104 Ahosyn sentences 151-300

Each utterance is segmented at the phone level using the Montreal Forced Aligner [42].
The phonetic dictionary was created using the Aholab transcriber, which uses the Spanish
SAMPA phone set, comprising 29 phones. Initial and final silences were removed, while
short pauses between words were considered in the classification experiments.

2.3. Feature Extraction

After removing the direct-current offsets from the EMG signals and normalizing them,
five time-domain (TD) features are calculated as proposed in [38]. Similar parameters with
small variations have also been used in [25,43]. The procedure to obtain these TD features
is described here for clarity purposes.

First, the signal (x[n]) is separated into two components: a low-frequency signal (w[n])
and a high-frequency signal (p[n]). To obtain the low-frequency signal, w[n], a double
average of x[n] is calculated using a nine-point window:

w[n] =
1
9

4

∑
k=−4

v[n + k], where v[n] =
1
9

4

∑
k=−4

x[n + k] (1)

Having calculated w[n], we can then obtain the high-frequency signal p[n] by subtracting
w[n] from x[n]:

p[n] = x[n]− w[n]. (2)

A rectified version r[n] of the high-frequency signal is also obtained, given by:

r[n] =

{
p[n], if p[n] ≥ 0
−p[n] if p[n] < 0

(3)

Once w[n], p[n], and r[n] are obtained, the set of five time-domain features of a frame
is defined as follows:

TD0 = [w̄, r̄, Pw, Pr, z] (4)

where:

w̄ =
1
N

N−1

∑
n=0

w[n], r̄ =
1
N

N−1

∑
n=0

r[n] (5)

Pw =
1
N

N−1

∑
n=0
|w[n]|2, Pr =

1
N

N−1

∑
n=0
|r[n]|2 (6)
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z =
N−1

∑
n=1

g(p[n]p[n− 1]), where g(x) =

{
1 if x < 0
0 if x ≥ 0

(7)

To provide the classifier with temporal context, a stacking filter concatenates the
features of 2k + 1 adjacent frames. Specifically, the stacked feature vector of the j-th frame,
denoted by S( f j, k), is given by:

S( f j, k) = [ f j−k, f j−k+1, . . . , f j, . . . , f j+k−1, f j+k] (8)

Here, j is the index of the central frame (i.e., the frame intended to be classified). A stacking
filter of k = 15 is chosen, combining a total of 31 frames.

Finally the stacked TD0 vectors from all eight channels are combined into a single
array, which serves as the input for the classifier.

We used a window with a duration of 25 ms and a frame-shift of 5 ms to extract the
EMG features. Since five TD features are calculated for each of the EMG channels, the
length of the parameter vector assigned to each frame is calculated as

M · 5 · (2k + 1), (9)

which results in 1240 features for a width of the stacking filter of k = 15 and M = 8 channels.
To reduce the dimension of the parameter vector, we apply linear discriminant analysis

(LDA) [44], as in [25,43]. To select the optimum dimension, we analyzed the effect of the
number of features on the frame-based phone classification accuracy. Figure 4 shows the
average validation accuracy per number of LDA features for the first session of each speaker.
Based on this graph, we chose to use 21 LDA features because the average accuracy reaches
a plateau at that value. Choosing a higher number of features would result in a more
complex model and a longer training time. The classifier used to search for the optimal
LDA value was a neural network with a batch size of 128 and 20 epochs.

Figure 4. Validation accuracy per number of Linear Discriminant Analysis (LDA) features averaged
over Session 101 of all speakers. Classification method: neural network with batch size of 128 and 20
epochs. The solid line represents the average accuracy, and the area above and below the line shows
the standard deviation range.

2.4. Experiments

This section describes the experimental part of the study, namely, the classifier used
and its configuration, the manner in which we considered speaker and session dependency
for the experiments, and how we applied cross-validation.
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2.4.1. Classification Method

The classifier used for the experimental part of this study is a feed-forward neural
network with one hidden layer using a batch size of 256 and 100 training epochs. We chose
these parameters based on a hyper-parameter search by tracking the validation accuracy
during 250 training epochs for three batch sizes: 64, 128, and 256. We repeated this for
Session 101 of all six speakers and averaged the results (see Figure 5). We chose 100 training
epochs because at that point the performance reaches a plateau, and we chose the largest
batch size because there is no difference between the three batch sizes, and a larger batch
size means lower training time. The network has an input dimension equal to the number
of features (21 nodes) and a dense layer with twice as many nodes as features (42 nodes in
total) using a rectified linear units activation function [45]. The output layer has the same
number of nodes as the number of classes (30, which includes 29 phones and a silence)
and uses a softmax activation function [46]. Furthermore, a categorical cross-entropy loss
function and the Adam optimizer [47] with a learning rate of 0.001 are applied.

Figure 5. Validation accuracy per number of epochs and three batch sizes averaged over Session 101
of all speakers. The solid line represents the average accuracy, and the area above and below the line
shows the standard deviation range.

2.4.2. Speaker and Session Dependency

Our study involves three separate rounds of experiments, each varying in terms
of speaker and session dependencies. The first round of experiments was both speaker-
dependent and also session-dependent, which means that the training and testing data were
taken from the same session. Additionally, we performed a second round of experiments
in which the data were speaker-dependent but session-independent. This means that the
training data came from a different session or different sessions than the testing data, but
that all sessions were recorded by the same speaker. This method allows for the evaluation
of the effect of increasing the amount of data from the same speaker on the performance
of the model as well as the impact of inter-session variability on the accuracy. In the third
round, we used speaker-independent data by training the model using data from multiple
sessions of one speaker and testing it using data from another speaker. The testing session
contains a session-specific corpus that was not included in the sessions used to train the
model, making the experiment both speaker-independent and session-independent. The
goal is to assess the potential to create a model that can be applied to new speakers without
the need for adaptation by training it only on data from the actual database.

2.4.3. Cross-Validation

We used five-fold cross-validation to obtain the validation accuracy. This means that
five different classifiers are trained, each time leaving out a different fold that functions
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as the validation set. The obtained results were then averaged. The testing accuracy was
obtained after a new classifier was trained using all the training data and then tested on the
unseen testing set.

3. Results

In this section, we show the results of the experiments, first from those in the session-
dependent mode and then from the ones we performed in the session-independent mode,
which are both speaker-dependent. Lastly, we also show the results from the speaker-
independent experiments.

3.1. Speaker-Dependent, Session-Dependent Classification

Table 3 shows the results for the session-dependent experiments, for which the model
was trained and tested with data from the same speaker and the same session. Some
speakers show higher classification accuracy (Speakers 001 and 005) than other speakers.
Speaker 006 has the worst results, in particular for Session 102. After reviewing the data
from sessions with relatively lower results, we realized that some channels presented
recording issues, probably due to the detachment of the electrodes. Specifically, in Sessions
003-102, 004-102, 005-101, and 006-102, we observed problems in the recordings, with some
ill-defined signals. Surprisingly, Table 3 does not show this problem for Speaker 004, but as
we will see next, it does affect the following speaker-independent experiments.

Table 3. Speaker-dependent, session-dependent classification results.

Speaker Session Validation Accuracy Testing Accuracy

001

101 50.48 ± 1.01 46.42
102 49.12 ± 0.86 47.15
103 45.80 ± 0.66 45.53
104 50.41 ± 1.05 50.54

002

101 43.71 ± 0.48 42.61
102 42.80 ± 0.96 42.52
103 38.76 ± 1.35 38.05
104 39.39 ± 0.77 39.64

003 101 46.73 ± 1.12 45.27
102 42.41 ± 1.07 39.45

004 101 43.22 ± 1.50 38.44
102 41.29 ± 1.37 39.62

005 101 43.61 ± 1.56 41.19
102 51.45 ± 0.54 50.40

006 101 35.92 ± 1.17 35.27
102 28.39 ± 1.31 24.72

Average 43.34 ± 5.80 41.68 ± 6.14

3.2. Speaker-Dependent, Session-Independent Classification

To evaluate session-independent classification, we first used the models from the
previous section (session-dependent experiments) and tested them using data from an-
other session. We then trained new models using a variable number of sessions from the
same speaker to analyze the impact of additional data on the classification accuracy. The
results (see Table 4) show that the testing accuracy decreases in a session-independent
scenario. This decrease in testing accuracy is not the same for every speaker. However,
when additional sessions are included in the set of training data, the testing accuracy
increases. Nevertheless, it is always lower than the testing accuracy obtained with session-
dependent classification.



Appl. Sci. 2023, 13, 7746 10 of 15

On the other hand, contrary to the testing accuracy, the validation accuracy decreases
as more sessions are added. This is an indication of less over-fitting, as it shows better
generalization capability.

The effect of some lower-quality signals in a few sessions (mentioned in Section 3.1)
is challenging to assess in these experiments because both training and testing sessions
include some of these defective signals. For instance, both experiments for Speaker 004
show very low results because Session 004-102 is used either for training or testing.

Table 4. Speaker-dependent, session-independent classification results.

Speaker Training Session(s) Testing Session Validation Accuracy Testing Accuracy

001

102
101

49.12 ± 0.86 23.40
102,103 45.08 ± 0.89 27.89

102,103,104 42.50 ± 0.74 30.41
101

102
50.48 ± 1.01 19.57

101,103 46.85 ± 1.07 22.11
101,103,104 43.81 ± 0.70 24.54

101
103

50.48 ± 1.01 14.19
101,102 48.16 ± 1.14 18.09

101,102,104 45.00 ± 0.34 18.25
101

104
50.48 ± 1.01 15.86

101,102 48.16 ± 1.14 22.38
101,102,103 44.49 ± 0.37 24.93

002

102
101

42.80 ± 0.96 10.00
102,103 39.69 ± 0.53 18.32

102,103,104 37.90 ± 0.61 21.93
101

102
43.71 ± 0.48 20.90

101,103 41.23 ± 1.09 23.81
101,103,104 37.79 ± 0.80 24.19

101
103

43.71 ± 0.48 17.79
101,102 42.46 ± 1.02 18.03

101,102,104 39.63 ± 0.53 16.73
101

104
43.71 ± 0.48 19.01

101,102 42.46 ± 1.02 20.84
101,102,103 39.42 ± 0.51 22.92

003 102 101 42.41 ± 1.07 20.66
101 102 46.73 ± 1.12 15.05

004 102 101 41.29 ± 1.37 10.95
101 102 43.22 ± 1.50 8.63

005 102 101 51.45 ± 0.54 11.83
101 102 43.61 ± 1.56 23.61

006 102 101 28.39 ± 1.31 16.02
101 102 35.92 ± 1.17 8.30

3.3. Speaker-Independent, Session-Independent Classification

To evaluate session-independent classification, we employed the models trained
with three sessions from the session-independent experiments and tested them with the
remaining session from each of the other speakers. The results, presented in Table 5,
indicate that classification accuracy varies greatly despite all models being trained on
similar amounts of data.

As explained above (Section 3.1), Session 004-102 contains ill-defined signals, probably
due to detaching of the electrodes. This explains the bad results when this session is used
to test any model. The same can be said for Sessions 003-102, 005-101, and 006-102. A com-
parison of speaker-independent experiments to speaker-dependent, session-independent
experiments reveals a substantial decrease in the accuracy compared to the former.
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Table 5. Speaker-independent, session-independent classification results.

Training
Speaker

Training
Sessions Testing Session Testing Speaker Testing

Accuracy

001

102,103,104 101

002 19.47
003 14.47
004 12.08
005 9.33
006 8.41

101,103,104 102

002 18.28
003 15.10
004 6.91
005 19.90
006 8.51

101,102,104 103 002 8.36

101,102,103 104 002 10.47

002

102,103,104 101

001 14.07
003 15.71
004 14.78
005 8.11
006 10.53

101,103,104 102

001 15.95
003 18.09
004 10.26
005 16.90
006 7.21

101,102,104 103 001 16.79

101,102,103 104 001 20.43

4. Discussion and Conclusions

This paper presents the results of phone classification experiments conducted on the
new ReSSInt-EMG database. Compared to previous work [34], we revisited the linear
discriminant analysis (LDA) reduction procedure, which resulted in changing the number
of LDA features from 28 to 21. The change in the number of features used to train the
model helped to reduce the training time and the complexity of the model, but the obtained
accuracy remained similar. Furthermore, we included new sessions from the speakers that
were already part of the database and recordings from two new speakers and extended
the experiments with different modalities regarding speaker and session dependency. To
accommodate the increased complexity of these experiments, we also used a neural network
as a classification method instead of a bagging classifier.

The session-dependent classification results show varying outcomes not only across
speakers but also across multiple sessions from the same speaker. Furthermore, the session-
independent results indicate a substantial decrease in testing accuracy when the model is
applied to data from sessions not included in the training phase, with the magnitude of
this effect differing between the two speakers.

The decrease in testing accuracy observed when training with data from a session
different from the one used to test the model is likely due to inter-session variability, which
can be attributed to several factors. First, despite the use of a 3D mask, variations in
electrode placement can occur between sessions. Second, the physical or mental state of the
speaker may lead to slight differences in articulation between sessions, as each is recorded
on a different day. For instance, a person may articulate differently when feeling exhausted,
resulting in less articulation effort. Third, environmental conditions such as temperature
and humidity can affect the speaker’s state and the contact between the electrodes and the
skin. High temperatures may cause increased sweating and decreased motivation. These
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factors can impact the recorded EMG signals, resulting in each session being recorded
under unique circumstances. Consequently, a model that can identify patterns in the EMG
signals of one session may struggle to recognize those same patterns in signals from a
different session.

Interestingly, when additional session data are added to the training data, testing
accuracy increases. Given a corresponding decrease in validation accuracy, we believe that
the improvement is due to enhanced diversity and representation of the data, allowing the
model to better generalize beyond the training data. These results suggest that developing
an EMG-based SSI with sufficient performance for real-world applications requires a large
and diverse database. While using a larger set of training data may potentially slow down
the experiments and require additional resources, we firmly believe that it is crucial to
leverage as much training data as possible, provided that sufficient processing capabilities
are available and the addition of new data leads to improved model performance. Our
rationale stems from the fact that an SSI system suitable for real-world applications requires
extensive preparation to handle unseen data.

The speaker-independent classification results demonstrate a substantial decrease in
model accuracy when trained with data from other speakers, even when the amount of
training data is comparable to the speaker-dependent, session-independent models. This
suggests that the differences between speakers’ data are substantial, making it challenging
for the model to generalize to a different speaker. These differences can be attributed
to various factors, such as differences in speakers’ physiognomy, articulation manner, or
speaking pace. These findings suggest that using an SSI trained on a different speaker
presents extra difficulty. Further experiments are needed to investigate whether training
the model with a more extensive database from a single speaker or with data from multiple
speakers can enhance speaker-independent performance.

It is important to note that during four sessions, we observed a deviation in the signals
of one channel, which cast uncertainty on its quality. The classification accuracy of these
sessions is indeed lower compared to the other sessions by the same speaker. The most
likely cause for these signal deviations is the detachment of electrodes in this channel
during recording or the use of defective electrodes or cables. Acquiring EMG data is a
sensitive technique and can result in variations in EMG signals depending on the speaker
and recording conditions.

Considering all of our findings, we plan to record more data from fewer speakers
for future studies to address the issue of inter-session variability. We believe that this
strategy will allow us to collect a more diverse range of data and enhance the performance
of the EMG-based SSI. Furthermore, we intend to undertake more complex tasks, such as
direct speech generation from EMG signals, to achieve our ultimate goal of developing an
EMG-based SSI for Spanish-speaking laryngectomees.
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