

Implicación de proteínas contenidas en vesículas extracelulares en la modulación del microambiente tumoral del melanoma cutáneo y análisis de su potencial como biomarcadores de pronóstico temprano

TESIS DOCTORAL

Andrea Agüera Lorente

Leioa, 2023

(c)2023 ANDREA AGÜERA LORENTE

RESUMEN

El melanoma cutáneo es un trastorno neoplásico de la piel que se origina por la transformación maligna de los melanocitos de la epidermis. Su tasa de incidencia ha aumentado constantemente en las últimas décadas en todo el mundo y es responsable de casi el 2 % de todos los cánceres a nivel mundial. Se trata de un tipo de cáncer muy agresivo debido a su gran capacidad de metastatizar y a la falta de tratamientos eficaces en estadios avanzados, y aunque solo representa el 5 % de todos los tumores de piel diagnosticados, es responsable del 90 % de las muertes por cáncer cutáneo. Actualmente, la ausencia de terapias efectivas hace que la supervivencia esté estrechamente ligada a la precocidad del diagnóstico y la extirpación del tumor, siendo la tasa de supervivencia a 5 años superior a un 90 % en el caso de los melanomas diagnosticados cuando no existen evidencias de que haya diseminación regional o a distancia (estadios I-II). Sin embargo, a pesar de que casi un 90 % de los pacientes de melanoma son diagnosticados en estadios tempranos (I-II) de la enfermedad, más de un 20 % de estos pacientes llega a desarrollar metástasis durante el seguimiento clínico. Por todo esto, los esfuerzos se están dirigiendo a la caracterización de los enfermos diagnosticados en fases tempranas del melanoma y a la identificación de biomarcadores con valor pronóstico capaces de discernir, en estadios tempranos de la enfermedad, los pacientes con mayor o menor riesgo metastásico.

Las vesículas extracelulares (EV), vesículas de origen diverso secretadas por la práctica totalidad de células, constituyen una vía de propagación de señales tanto de forma local como sistémica. Las células tumorales emplean las EV para establecer un microambiente tumoral típicamente proinflamatorio, modificar el comportamiento de las células con las que contactan y favorecer multitud de procesos clave en el desarrollo del cáncer como la angiogénesis, la transición epiteliomesénquima, la remodelación de la matriz extracelular, la intravasación y la extravasación de las células tumorales para su diseminación a distancia, la formación del nicho premetastásico y la colonización órgano-específica de las células tumorales. Por lo tanto, las EV representan un campo de estudio clave para comprender mejor los mecanismos de progresión del cáncer y para identificar nuevos marcadores tumorales, que permitan avanzar en el camino de la medicina personalizada en general, y categorizar los pacientes con melanoma en fases tempranas con buen o mal pronóstico en particular.

Por todo ello, los objetivos de esta tesis se han dirigido a: a) identificar proteínas clave liberadas por las células tumorales mediante EV que pudieran estar relacionadas con la progresión del melanoma cutáneo, b) caracterizar la implicación de CEMIP, una de las proteínas identificadas, en la modulación del microambiente tumoral, c) evaluar las técnicas de aislamiento de EV séricas y d) identificar nuevos biomarcadores de melanoma cutáneo presentes en EV séricas que permitan predecir la progresión tumoral en pacientes diagnosticados en estadios tempranos.

Para la búsqueda de biomarcadores, por un lado, se caracterizó el proteoma de las EV secretadas por líneas celulares humanas de melanocitos (HeMn-LP y HeMn-MP), melanoma primario (A375 y MEL-HO) y melanoma metastásico (COLO-800 y A2058) mediante cromatografía líquida y espectrometría de masas (LC-MS/MS). Los resultados revelaron diferencias significativas entre los componentes proteicos contenidos en EV de células normales (melanocitos) y tumorales (melanoma metastásico) y demostró que dicha fracción secretada contiene suficiente información para clasificar las muestras en función de su origen. A continuación, se seleccionaron 9 proteínas que presentaban enriquecimiento diferencial entre EV de melanocitos y melanoma metastásico para su validación mediante western blot. De entre las proteínas validadas se eligió la proteína CEMIP, una proteína principalmente relacionada con la remodelación de la matriz extracelular y

la motilidad en diversos modelos tumorales, para llevar a cabo los ensayos funcionales. Se generaron líneas celulares monoclonales modificadas genéticamente (con shRNA) derivadas de COLO-800 con una reducción estable en el nivel de CEMIP a nivel celular y de EV y, tras verificar la captación de las EV tumorales por parte de los fibroblastos dérmicos Detroit 551, se analizó la influencia del CEMIP contenido en EV tumorales sobre la capacidad migratoria de los fibroblastos (mediante ensayos de cierre de herida y ensayos en cámaras de Boyden). Así mismo, se evaluó el efecto sobre los niveles celulares de CEMIP y la adquisición de un perfil miofibroblástico caracterizado por la expresión de la isoforma α de la actina de la célula muscular lisa (α SMA) en dichas células. Los resultados mostraron que la exposición a EV tumorales con alta y baja presencia de CEMIP modulaba los niveles intracelulares de CEMIP en los fibroblastos dérmicos y su capacidad migratoria de manera CEMIP-dependiente. Dicha alteración de la motilidad celular no se asoció a cambios en los niveles celulares de α SMA por lo que la activación fibroblástica observada no se corresponde con la adquisición del perfil miofibroblástico clásico.

En cuanto a la búsqueda de biomarcadores con valor pronóstico en EV séricas, en primer lugar, se optimizó el protocolo de purificación de EV a partir de muestras de suero humano. El protocolo basado en ultracentrifugación diferencial resultó el más equilibrado en cuanto a la cantidad y pureza de EV obtenidas y permitió evaluar los niveles de CEMIP en EV séricas de voluntarios sanos y pacientes con melanoma cutáneo diagnosticados en estadios tempranos (I y II) con evolución favorable y desfavorable (metástasis). Los resultados obtenidos mediante ensayos de inmunoabsorción ligado a enzimas (ELISA) no mostraron diferencias significativas entre los diversos grupos. Así mismo, las EV séricas de pacientes en estadios II con y sin desarrollo de metástasis fueron analizadas mediante un estudio proteómico dirigido basado en ensayo de extensión por proximidad (PEA). La aplicación de esta técnica permitió identificar proteínas indetectables mediante técnicas proteómicas convencionales como la LC-MS/MS y determinar la presencia de una mayor cantidad de las proteínas CXCL11, CXCL13, VEGF-A y MMP-7 en pacientes diagnosticados en estadio II de melanoma con desarrollo posterior de metástasis que en pacientes con buena evolución. Por lo tanto, en el caso de que estos resultados se corroboraran en un número mayor de pacientes, estas proteínas podrían ser consideradas marcadores de pronóstico de melanoma asociadas a la progresión metastásica del melanoma cutáneo.

ÍNDICE DE CONTENIDOS

ABREVIATURAS	13
I. INTRODUCCIÓN	21
1. Melanoma cutáneo	23
1.1. Epidemiología	23
1.2. Etiología	24
1.3. Histopatología	27
1.3.1. La piel	27
1.3.2. Melanocitos	28
1.3.3. Lesiones cutáneas melanocíticas benignas y malignas	29
1.3.4. Estadificación del melanoma cutáneo	31
1.4. Abordaje terapéutico, recurrencia y supervivencia asociada	35
1.5. Biomarcadores actuales para el melanoma cutáneo	38
2. Procesos ligados a la progresión tumoral	39
2.1. Desarrollo inicial	40
2.2. Procesos ligados a la metástasis	42
2.3. Papel del microambiente tumoral en el desarrollo tumoral	44
3. Vesículas extracelulares	48
3.1. Tipos de EV	49
3.2. Caracterización de EV	51
3.3. Aplicación de las EV como biomarcadores	53
II. HIPÓTESIS Y OBJETIVOS	55
III. MATERIALES Y MÉTODOS	59
1. Cultivos celulares	61
1.1. Descongelación de células	62
1.2. Mantenimiento del cultivo	62
1.3. Congelación de células	62
1.4. Detección de micoplasma	63
2. Obtención y selección de muestras de suero humano	63
3. Transfección	64
3.1. Generación de líneas celulares estables genéticamente modificadas media	nte shRNA 65
4. Purificación de EV	67
4.1. EV de cultivos celulares	67
4.2. EV de suero humano	68

4.2.1. Cromatografía de exclusión por tamaño	. 70
4.2.2. Ultracentrifugación diferencial	. 71
5. Análisis del tamaño y la concentración de partículas	. 72
6. Análisis de la expresión génica	. 72
6.1. Extracción y cuantificación	. 72
6.2. Retrotranscripción	. 73
6.3. Cuantificación mediante PCR cuantitativa a tiempo real	. 73
7. Análisis de la expresión proteica	. 74
7.1. Extracción de proteína	. 74
7.2. Cuantificación de proteína	. 74
7.3. Western blot	. 74
8. Análisis proteómico de EV	. 76
8.1. Preparación de muestras para cromatografía líquida y espectrometría de masas	. 76
8.1.1. Herramientas bioinformáticas	. 79
8.1.1.1. Asignación de espectros obtenidos mediante LC-MS/MS	. 79
8.1.1.2. Análisis de agrupamiento de muestras	. 79
8.1.1.3. Análisis funcionales	. 79
8.2. Proteómica dirigida basada en extensión por proximidad	. 80
9. Ensayo de captación de EV	. 81
10. Ensayos de migración celular	. 82
10.1. Ensayos de cierre de herida	. 82
10.2. Ensayos en cámaras de Boyden	. 82
11. Técnicas microscópicas	. 83
11.1. Inmunofluorescencia	. 83
11.2. Tinción negativa y visualización mediante microscopía electrónica de transmisión	. 84
11.3. Crio-microscopía electrónica de transmisión	. 84
12. Ensayo de inmunoabsorción ligado a enzimas	. 84
13. Análisis estadístico	. 86
IV. RESULTADOS	. 87
1. Caracterización del proteoma de las EV derivadas de melanocitos y células de melano humano	oma . 89
1.1. Caracterización de las EV purificadas de líneas celulares	. 89
1.1.1. Enriquecimiento en marcadores proteicos propios de EV	. 89
1.1.2. Caracterización morfológica de las EV	. 90
1.1.3. Tamaño y concentración de las EV	. 92
1.2. Caracterización del proteoma de EV derivadas de líneas celulares	. 95

1.2.1. Análisis de agrupamiento95
1.2.2. Identificación de proteínas contenidas en EV diferencialmente enriquecidas100
1.2.3. Análisis funcional101
2. Identificación de proteínas potencialmente involucradas en la progresión tumoral106
2.1. Selección de proteínas106
2.2. Expresión diferencial de proteínas seleccionadas tanto a nivel celular como en EV108
2.3. Identificación de proteínas seleccionadas en EV de suero humano110
3. Generación y caracterización de líneas de melanoma humano modificadas genéticamente con reducción estable del contenido de CEMIP a nivel celular y en EV110
3.1. Selección de líneas modificadas genéticamente con reducción estable de CEMIP y líneas control correspondientes
3.1.1. Reducción de los niveles de mRNA y proteína113
3.1.2. Caracterización de las EV purificadas de líneas celulares con disminución estable de CEMIP114
3.1.2.1. Niveles de la proteína CEMIP y presencia de marcadores de EV115
3.1.2.2. Caracterización morfológica de las EV mediante crio-TEM116
3.1.2.3. Tamaño y concentración de las EV116
4. Implicación del CEMIP contenido en EV de origen tumoral en la regulación de la motilidad de
fibroblastos dérmicos119
fibroblastos dérmicos
fibroblastos dérmicos
fibroblastos dérmicos
fibroblastos dérmicos1194.1. Captación de EV tumorales por fibroblastos dérmicos1194.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido1214.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido1214.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en1254.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP126
fibroblastos dérmicos1194.1. Captación de EV tumorales por fibroblastos dérmicos1194.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral1214.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos1254.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral1265. Búsqueda de biomarcadores en EV de origen sérico128
fibroblastos dérmicos1194.1. Captación de EV tumorales por fibroblastos dérmicos1194.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral1214.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos1254.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral1265. Búsqueda de biomarcadores en EV de origen sérico1285.1. Comparación de métodos de aislamiento de fracciones enriquecidas en EV séricas128
fibroblastos dérmicos1194.1. Captación de EV tumorales por fibroblastos dérmicos1194.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral1214.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos1254.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral1265. Búsqueda de biomarcadores en EV de origen sérico1285.1. Comparación de métodos de aislamiento de fracciones enriquecidas en EV séricas1285.1.1. Pureza de las fracciones enriquecidas en EV en base al método de aislamiento128
fibroblastos dérmicos1194.1. Captación de EV tumorales por fibroblastos dérmicos1194.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral1214.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos1254.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral1265. Búsqueda de biomarcadores en EV de origen sérico1285.1. Comparación de métodos de aislamiento de fracciones enriquecidas en EV séricas1285.1.2. Caracterización morfológica de las fracciones enriquecidas en EV en base al método de aislamiento130
fibroblastos dérmicos1194.1. Captación de EV tumorales por fibroblastos dérmicos1194.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido1214.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en1254.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP1265. Búsqueda de biomarcadores en EV de origen sérico1285.1. Comparación de métodos de aislamiento de fracciones enriquecidas en EV séricas1285.1.2. Caracterización morfológica de las fracciones enriquecidas en EV en base al método1305.1.2.1. Morfología de las EV130
fibroblastos dérmicos 119 4.1. Captación de EV tumorales por fibroblastos dérmicos 119 4.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral 121 4.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos 125 4.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral 126 5. Búsqueda de biomarcadores en EV de origen sérico 128 5.1. Comparación de métodos de aislamiento de fracciones enriquecidas en EV séricas 128 5.1.2. Caracterización morfológica de las fracciones enriquecidas en EV en base al método de aislamiento 130 5.1.2.1. Morfología de las EV 130 5.1.2.2. Tamaño y concentración de las EV 131
fibroblastos dérmicos 119 4.1. Captación de EV tumorales por fibroblastos dérmicos 119 4.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral 121 4.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos 125 4.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral 126 5. Búsqueda de biomarcadores en EV de origen sérico 128 5.1. Comparación de métodos de aislamiento de fracciones enriquecidas en EV séricas 128 5.1.2. Caracterización morfológica de las fracciones enriquecidas en EV en base al método de aislamiento 130 5.1.2.1. Morfología de las EV 130 5.1.2.2. Tamaño y concentración de las EV 131 5.2. Valoración de la proteína CEMIP contenida en EV de origen sérico como biomarcador
fibroblastos dérmicos 119 4.1. Captación de EV tumorales por fibroblastos dérmicos 119 4.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral 121 4.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos 125 4.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral 126 5. Búsqueda de biomarcadores en EV de origen sérico 128 5.1. Comparación de métodos de aislamiento de fracciones enriquecidas en EV séricas 128 5.1.1. Pureza de las fracciones enriquecidas en EV en base al método de aislamiento 130 5.1.2. Caracterización morfológica de las fracciones enriquecidas en EV en base al método de aislamiento 130 5.1.2.1. Morfología de las EV 131 5.2. Valoración de la proteína CEMIP contenida en EV de origen sérico como biomarcador 133
fibroblastos dérmicos 119 4.1. Captación de EV tumorales por fibroblastos dérmicos 119 4.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral 121 4.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos 125 4.4. Caracterización de los niveles de αSMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral 126 5. Búsqueda de biomarcadores en EV de origen sérico 128 5.1.1. Pureza de las fracciones enriquecidas en EV en base al método de aislamiento 128 5.1.2. Caracterización morfológica de las fracciones enriquecidas en EV en base al método de aislamiento 130 5.1.2.1. Morfología de las EV 131 5.2. Valoración de la proteína CEMIP contenida en EV de origen sérico como biomarcador 133 5.2.1. Detección de CEMIP en fracciones enriquecidas en EV de origen sérico 133

5.3.1. Caracterización mediante proteómica no dirigida basada en LC-MS/MS135
5.3.2. Caracterización mediante proteómica dirigida basada en PEA
5.3.2.1. Selección de muestras séricas de pacientes con melanoma cutáneo 140
5.3.2.2. Caracterización de las EV purificadas a partir de las muestras de suero humano seleccionadas
5.3.2.2.1. Caracterización molecular de las EV141
5.3.2.2.2. Caracterización morfológica de las EV142
5.3.2.2.3. Análisis del tamaño y la concentración de las EV 143
5.3.2.3. PEA
<u>V. DISCUSIÓN</u>
1. Identificación del exoproteoma diferencial del melanoma
2. Implicación de la proteína CEMIP contenida en EV como modulador del microambiente tumoral
3. EV séricas como fuente de biomarcadores predictivos para la metástasis del melanoma cutáneo
VI. CONCLUSIONES
VII. BIBLIOGRAFÍA
<u>VIII. ANEXOS</u>
VIII. ANEXOS ANEXO 1. Composición de disoluciones y tampones
VIII. ANEXOS ANEXO 1. Composición de disoluciones y tampones
VIII. ANEXOS ANEXO 1. Composición de disoluciones y tampones
VIII. ANEXOS 187 ANEXO 1. Composición de disoluciones y tampones 189 ANEXO 2. Muestras de sueros analizados mediante ELISA 192 ANEXO 3. Muestras de sueros analizados mediante proteómica dirigida basada en PEA 195 ANEXO 4. Estudio proteómico de EV purificadas de líneas celulares realizado mediante LC-MS/MS 197
VIII. ANEXOS 187 ANEXO 1. Composición de disoluciones y tampones 189 ANEXO 2. Muestras de sueros analizados mediante ELISA 192 ANEXO 3. Muestras de sueros analizados mediante proteómica dirigida basada en PEA 195 ANEXO 4. Estudio proteómico de EV purificadas de líneas celulares realizado mediante LC-MS/MS 197 ANEXO 5. Componentes celulares significativamente enriquecidos en fracciones de EV purificadas de líneas celulares 252
VIII. ANEXOS 187 ANEXO 1. Composición de disoluciones y tampones 189 ANEXO 2. Muestras de sueros analizados mediante ELISA 192 ANEXO 3. Muestras de sueros analizados mediante proteómica dirigida basada en PEA 195 ANEXO 4. Estudio proteómico de EV purificadas de líneas celulares realizado mediante LC-MS/MS 197 ANEXO 5. Componentes celulares significativamente enriquecidos en fracciones de EV purificadas de líneas celulares 252 ANEXO 6. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanocitos 265
VIII. ANEXOS 187 ANEXO 1. Composición de disoluciones y tampones 189 ANEXO 2. Muestras de sueros analizados mediante ELISA 192 ANEXO 3. Muestras de sueros analizados mediante proteómica dirigida basada en PEA 195 ANEXO 4. Estudio proteómico de EV purificadas de líneas celulares realizado mediante LC-MS/MS 197 ANEXO 5. Componentes celulares significativamente enriquecidos en fracciones de EV purificadas de líneas celulares 252 ANEXO 6. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanocitos 265 ANEXO 7. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanoma metastásico 272
VIII. ANEXOS 187 ANEXO 1. Composición de disoluciones y tampones 189 ANEXO 2. Muestras de sueros analizados mediante ELISA 192 ANEXO 3. Muestras de sueros analizados mediante proteómica dirigida basada en PEA 195 ANEXO 4. Estudio proteómico de EV purificadas de líneas celulares realizado mediante LC-MS/MS 197 ANEXO 5. Componentes celulares significativamente enriquecidos en fracciones de EV purificadas de líneas celulares 252 ANEXO 6. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanocitos 265 ANEXO 7. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanoma metastásico 272 ANEXO 8. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 y 500 µl de suero mediante UC diferencial 276

ÍNDICE DE FIGURAS

Figura 1. Estructura de la piel2	28
Figura 2. Representación del modelo de Clark para el desarrollo de melanoma	30
Figura 3. Cronología de las terapias aprobadas por la FDA para el melanoma cutáneo	37
Figura 4. Principales fases de la cascada metastásica4	14
Figura 5. Esquema representativo de los principales componentes del microambiente tumoral 4	ł5
Figura 6. Clasificación de EV4	19
Figura 7. Esquema resumen de los principales pasos de la ruta de biogénesis de los exosomas. 5	51
Figura 8. Estructura del vector de expresión pGFP-C-shLenti de ORIGENE empleado para	la
generación de líneas celulares estables con expresión modificada de la proteína CEMIP mediant	te
shRNA	56
Figura 9. Esquema del protocolo de UC diferencial para la purificación de EV a partir de línea	as
celulares en cultivo6	58
Figura 10. Esquema del protocolo de cromatografía de exclusión por tamaño para la purificació	ίn
de EV a partir de suero humano7	1′
Figura 11. Esquema del protocolo de UC diferencial para la purificación de EV a partir de suer	٢O
humano7	/2
Figura 12. Enriquecimiento de marcadores propios de EV en las fracciones purificadas mediant	te
UC diferencial a partir de líneas celulares en cultivo9) 0
Figura 13. Imágenes de las EV presentes en las fracciones purificadas a partir de líneas celulare	es
en cultivo9) 1
Figura 14. Imagen de una EV con bicapa lipídica purificada a partir de líneas celulares en cultiv	/0
9) 2
Figura 15. Perfil de distribución de tamaño de las vesículas purificadas mediante UC diferencial	а
partir de la línea de melanocitos HEMn-MP en cultivo9) 3
Figura 16. Perfiles de distribución de tamaño de las vesículas purificadas a partir de líneas celulare	es
en cultivo9)4
Figura 17. Análisis de agrupamiento mediante mapa de calor del exoproteoma de 3 réplica	as
derivadas de melanocitos, células de melanoma primario y melanoma metastásico9	96
Figura 18. Análisis de agrupamiento mediante PCA de 3 réplicas derivadas de melanocitos, célula	as
de melanoma primario y melanoma metastásico9) 7
Figura 19. Análisis de agrupamiento mediante mapa de calor del exoproteoma de las 2 réplica	as
con mayor similitud derivadas de melanocitos, células de melanoma primario y melanom	าล
metastásico	99
Figura 20. Análisis de agrupamiento mediante PCA de las 2 réplicas con mayor similitud derivada	as
de melanocitos, células de melanoma primario y melanoma metastásico10)0
Figura 21. Proteínas diferencialmente representadas en perfiles proteómicos de fraccione	es
enriquecidas en EV obtenidas de cultivos de melanocitos y células de melanoma metastásico 10)1
Figura 22. Perfil funcional de proteínas sobrerrepresentadas en EV derivadas de las líneas d	le
melanocitos y melanoma metastásico10)5
Figura 23. Análisis comparativo de proteínas diferencialmente enriquecidas en EV de melanocito	SC
y melanoma metastásico incluyendo 2 y 3 réplicas independientes)8
Figura 24. Análisis de expresión de proteínas seleccionadas en líneas celulares y fraccione	es
enriquecidas en EV	19
Figura 25. Detección de proteínas selecciónadas del análisis proteómico a partir de líneas celulare	es
en EV obtenidas de suero humano11	10

Figura 26. Grado de expresión de la proteína CEMIP en líneas monoclonales modificadas
genéticamente
Figura 27. Expresión relativa de mRNA de CEMIP a nivel celular en líneas monoclonales
seleccionadas
Figura 28. Expresión de la proteína CEMIP a nivel celular y de EV en las líneas monoclonales seleccionadas
Figura 29. Caracterización de la presencia de marcadores propios de EV y CEMIP en las fracciones
purificadas a partir de líneas celulares modificadas mediante shRNA
Figura 30. Imágenes de las vesículas presentes en las fracciones purificadas a partir de líneas
celulares establemente modificadas
Figura 31. Perfil de distribución de tamaño de las vesículas purificadas mediante UC diferencial a
partir de la línea de melanocitos shØ1 en cultivo 117
Figura 32. Perfiles de distribución de tamaño de las vesículas purificadas a partir de líneas
modificadas
Figura 33. Captación de EV tumorales por fibroblastos dérmicos tras 15 horas de incubación. 120
Figura 34. Captación de EV tumorales por fibroblastos dérmicos tras 4 horas de incubación 121
Figura 35. Efecto de las EV tumorales sobre la capacidad de cierre de herida de fibroblastos 122
Figura 36. Efecto de las EV tumorales sobre la capacidad de migración de fibroblastos en cámaras
de Boyden
Figura 37. Efecto de las EV tumorales sobre la regulación del CEMIP celular en fibroblastos a nivel
de proteína
Figura 38. Efecto de EV tumorales sobre la regulación del α SMA celular en fibroblastos 126
Figura 39. Expresión de αSMA en fibroblastos incubados con EV tumorales
Figura 40. Pureza de las fracciones de EV séricas obtenidas mediante UC diferencial y
cromatografía de exclusión molecular con variantes
Figura 41. Imágenes representativas de las vesículas presentes en las fracciones purificadas a
partir de sueros humanos mediante UC diferencial y cromatografía de exclusión por tamaño. 131
Figura 42. Perfiles de distribución de tamano de las vesículas purificadas a partir de sueros
numanos mediante UC diferencial y cromatografia de exclusion por tamano
Figura 43. Detección de CEMIP en fracciones enriquecidas en EV de suero de voluntarios sanos y
de pacientes en estadio II con diferente evolucion
Figura 44. Cuantificación de CEIVIP en fracciones enriquecidas en EV de suero de voluntarios sanos
y de pacientes con diferente diagnostico y evolucion
nurificadas modianto UC diferencial a partir do 250 y 500 ul inicialos
Figura 46 Diagrama de Venn para las proteínas identificadas en fracciones de EV séricas digeridas
mediante distintos métodos
Figura 47 Marcadores de EV en fracciones obtenidas a partir de los sueros humano analizados
mediante PFA
Figura 48. Imágenes de las vesículas presentes en las fracciones purificadas a partir de los sueros
humano analizados mediante PFA
Figura 49. Perfiles de distribución de tamaño de las vesículas purificadas a partir de los sueros
humano analizados mediante PEA
Figura 50. Análisis de agrupamiento mediante PCA de exoproteomas parciales de sueros de
pacientes diagnosticados en estadio II de melanoma
Figura 51. Proteínas diferencialmente expresadas en EV séricas de pacientes en estadio II del
melanoma sin y con desarrollo de metástasis durante el seguimiento posterior a la exéresis
quirúrgica de la lesión primaria

ÍNDICE DE TABLAS

Tabla 1. Sistema de estadificación TNM para el melanoma cutáneo: categoría T
Tabla 2. Sistema de estadificación TNM para el melanoma cutáneo: categoría N
Tabla 3. Sistema de estadificación TNM para el melanoma cutáneo: categoría M
Tabla 4. Sistema de estadificación general para el melanoma cutáneo
Tabla 5. Descripción de las líneas celulares empleadas61
Tabla 6. Métodos de aislamiento de EV a partir de suero humano69
Tabla 7. Genes diana amplificados por RT-qPCR y secuencias de los cebadores empleados73
Tabla 8. Genes endógenos de referencia amplificados por RT-qPCR y secuencias de los cebadores
empleados74
Tabla 9. Anticuerpos primarios utilizados en western blot 76
Tabla 10. Anticuerpos secundarios utilizados en western blot
Tabla 11. Anticuerpos primarios y secundarios utilizados en inmunofluorescencia
Tabla 12. Muestras de sueros analizadas mediante ELISA85
Tabla 13. Moda promedio de las vesículas purificadas y concentración de partículas promedio de
las fracciones obtenidas a partir de cultivos celulares95
Tabla 14. Componentes celulares con mayor sobrerrepresentación en las fracciones de EV de
líneas celulares102
Tabla 15. Procesos biológicos significativamente enriquecidos en EV derivadas de las líneas de
melanocitos
Tabla 16. Procesos biológicos significativamente enriquecidos en EV derivadas de las líneas de
melanoma metastásico104
Tabla 17. Proteínas diferencialmente enriquecidas en EV de melanoma metastásico relacionadas
con la motilidad celular106
Tabla 18. Características proteómicas de proteínas seleccionadas con presencia diferencial en
fracciones enriquecidas en EV de melanocitos y melanoma metastásico
Tabla 19. Moda promedio de las vesículas purificadas y concentración de partículas promedio de
las fracciones obtenidas a partir de líneas celulares modificadas118
Tabla 20. Moda promedio de las vesículas purificadas y concentración de partículas promedio de
las fracciones aisladas a partir de sueros humanos mediante UC diferencial y cromatografía de
exclusión por tamaño132
Tabla 21. Resumen de las características de las muestras que se incluyeron en el ensayo de
cuantificación de CEMIP mediante ELISA
Tabla 22. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 y
500 μl de suero mediante UC diferencial
Tabla 23. Número de proteínas identificadas tras los distintos métodos de digestión de las
138
Tabla 24. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 μl
de suero mediante cromatografía de exclusión por tamaño y distintos métodos de procesamiento
de muestra
Tabla 25. Detección de los marcadores CD9 y CD63 mediante LC-MS/MS en las fracciones de EV
sericas tras aplicar los distintos métodos de digestión testados
Tabla 26. Características de las muestras que se incluyeron en el ensayo de proteómica dirigida
basada en PEA
Tabla 27. Moda promedio de las vesículas purificadas y concentración de partículas promedio de
las tracciones obtenidas a partir de los sueros humanos analizados mediante PEA144

Tabla 28. Proteínas identificadas en las muestras de EV séricas de pacientes analizadas mediante Tabla 29. Listado de las muestras de sueros humanos a partir de los cuales se purificaron las fracciones de EV incluidas en el ensayo de cuantificación de los niveles de CEMIP realizado Tabla 30. Listado de las muestras de sueros humanos a partir de los cuales se purificaron las fracciones de EV incluidas en el ensayo de proteómica dirigida basada en PEA 195 Tabla 31. Listado de proteínas identificadas en el análisis proteómico realizado mediante LC-MS/MS a partir de EV derivadas de líneas celulares de melanocitos y de melanoma metastásico Tabla 32. Componentes celulares enriquecidos en fracciones de EV purificadas a partir de líneas Tabla 33. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de Tabla 34. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de Tabla 35. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 y Tabla 36. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 µl de suero mediante cromatografía de exclusión por tamaño y distintos métodos de procesamiento

ABREVIATURAS

Α

 α SMA, isoforma α de la actina de la célula muscular lisa

AJCC, American Joint Committee on Cancer

AF4-MALS detector de dispersión de luz multiangular combinado con equipo de fraccionamiento en flujo mediante campo de flujo asimétrico

AFM, microscopía de fuerza atómica

ANG-2, angiopoyetina-2

AP-1, proteína activadora 1

ARF6, el factor 6 de ADP-ribosilación

В

BCA, ácido bicinconínico

BiP, proteína de inmunoglobulina de unión

BSA, albúmina de suero bovino

С

C3, componente 3 del complemento

CA 19-9, antígeno carbohidrato 19-9

CAF, fibroblastos asociados al cáncer

CANX, calnexina

CDKN2, gen inhibidor de quinasa dependiente de ciclina 2A

CEMIP, proteína inductora de la migración celular y de unión al ácido hialurónico

CM-Dil, Vybrant CM-Dil cell-labelling solution

COL10A1, colágeno tipo X cadena α1

CTC, células tumorales circulantes

ctDNA, DNA tumoral circulante

CSC, células madre tumorales

CTLA-4, antígeno-4 asociado al linfocito t citotóxico

CXCL10, proteína 10 inducida por interferón y

D

DAPI, 4',6-diamino-2-fenilindol

DCN, decorina

DMSO, dimetilsulfóxido

DNA, ácido desoxirribonucleico

cDNA, DNA complementario

DTT, dititreitol

Е

ECP, proteína catiónica de eosinófilos

EDIL3, repeticiones tipo factor de crecimiento epidérmico y dominios 3 tipo discoidina I

EGF, factor de crecimiento epidérmico

EGFR, receptor del factor de crecimiento epidérmico

ELISA, ensayos de inmunoabsorción ligado a enzimas

EMT, transición epitelio-mesénquima

ENG, engoglina

ER, retículo endoplasmático

ESCRT, complejo de clasificación endosomal necesario para el transporte

EV, vesículas extracelulares

F

FasL, ligando de Fas FASP, preparación de muestras asistida por filtro FBS, suero bovino fetal FCS, espectroscopía de correlación de fluorescencia FDA, Food and Drug Administration FDR, False Discovery Rate FGF, factor de crecimiento de los fibroblastos

FMOD, fibromodulina

G

GFP, proteína verde fluorescente GPI, glicosilfosfatidilinositol GPK, glucógeno fosforilasa quinasa GO, ontología génica GSEA, análisis de enriquecimiento de conjuntos de genes

Н

H₂Od, agua destilada HGF, factor de crecimiento de hepatocitos HIF-2α, factor inducible por hipoxia-2α HMGB1, proteínas de alta movilidad del grupo 1 HMGS-2, Human Melanocyte Growth Supplement-2

HRP, peroxidasa de rábano

HSP, proteínas de choque térmico

HYAL2, hialuronidasa 2

I

IDO, indoleamina 2,3-dioxigenasa sérica

IFN-α2b, interferón-α2b

IGF-1, factor de crecimiento insulínico tipo 1

II, interleuquina

ILV, vesículas intraluminales

ILK, quinasa unida a integrina

INF-γ, interferón-γ

ISEV, International Society for Extracellular Vesicles

I-TAC, quimioatrayente α de células T inducible por interferón

L

LC-MS/MS, cromatografía líquida y espectrometría de masas

LDH, lactato deshidrogenasa

- LFQ, cuantificación libre de etiquetas
- IncRNA, RNA no codificantes largo

Μ

MAPK, proteínas quinasas activadas por mitógenos

MC1R, receptor de melanocortina de tipo 1

MCP-1, proteína quimioatrayente de monocitos 1

MDSC, células mieloides supresoras derivadas de tumor

MFI2, melanotransferrina

MHC-I, complejo mayor de histocompatibilidad clase I

miRNA, microRNAs

MIA, proteína de actividad inhibidora del melanoma

MIP1 α , proteína inflamatoria de macrófagos 1 α

MISEV, Minimal Information for Studies of Extracellular Vesicles

MLANA, antígeno de diferenciación melanocítica reconocido por células T

MLCK, vía quinasa de la cadena ligera de la miosina

MMP, metalopreoteasa mRNA, RNA mensajero MV, microvesículas MVB, cuerpos multivesiculares MX, metástasis **N** NGS, secuenciación de nueva generación

NK, células Natural Killer

NF-kB, factor nuclear kB

NPX, valor de expresión normalizada para la proteína

NTA, análisis de rastreo de nanopartículas

0

OXCT1, 3-oxoacid-CoA transferasa 1

Ρ

p97, antígeno humano asociado al melanoma

PBS, tampón fosfato salino

PCA, análisis de componentes principales

PCR, reacción en cadena de la polimerasa

PD-1, proteína de muerte celular programada 1

PD-L1, ligando 1 de muerte programada

PDGF, factor de crecimiento derivado de plaquetas

PDGF-R α , receptor α de factor de crecimiento derivado de plaquetas

PDPN, podoplanina

PEA, ensayo de extensión por proximidad

PMEL, proteína premelanosoma

POSTN, periostina

PP2A, proteína fosfatasa 2A

R

RHAMM, receptor de motilidad mediado por hialuronano

RNA, ácido ribonucleico

RT, temperatura ambiente

RT-qPCR, PCR cuantitativa a tiempo real

S

S100B, proteína B fijadora de calcio S100 SD, desviación estándar SEM, microscopía electrónica de barrido SEMA3A, semaforina 3A SERPINE2, proteasa nexina-1 SGIker, Servicios Generales de Investigación shRNA, RNA corto en horquilla siRNA, RNA corto/pequeño de interferencia SNARE, proteínas solubles de unión al factor sensible a la N-etilmaleimida SPM, microscopía de barrido por sonda SPP1, osteopontina Т

TAM, macrófagos asociados a tumor

TBS, tris buffer salino

TBST, TBS con Tween20

TEM, microscopía electrónica de transmisión

TGF- β , factor de crecimiento transformante β

TGF- β 1, factor de crecimiento transformante β 1

TIMP, inhibidores tisulares endógenos de las MMP

TNF- α , factor de necrosis tumoral α

TRPS, detección de pulso resistivo sintonizable

TYR, tirosinasa

TYRP1, proteínas relacionadas con tirosinasa 1

TYRP2, proteínas relacionadas con tirosinasa 2

U

uAP, activador del plasminógeno tipo uroquinasa

UC, ultracentrifugación

UV, ultravioleta

V

VEGF, factor de crecimiento endotelial vascular

VLA-4, antígeno muy tardío 4

I. INTRODUCCIÓN

1. Melanoma cutáneo

El melanoma es el cáncer que se origina por la **transformación maligna de los melanocitos y su diseminación** a localizaciones secundarias. Los melanocitos son células originadas a partir de la cresta neural embrionaria, que forma parte del neuroectodermo. Durante el desarrollo embrionario, sus inmediatos precursores, los melanoblastos, migran desde la cresta neural a diversas regiones como la epidermis, los folículos pilosos, las meninges, membranas mucosas, el oído interno y los ojos (Castro-Pérez *et al.*, 2021), por lo que su transformación deriva en el desarrollo de diferentes tipos de melanoma. Se estima que aproximadamente el 90 % de los melanomas son de **tipo cutáneo**, que se desarrollan a partir de la transformación maligna de los melanocitos ubicados en la epidermis (Ali, Yousaf and Larkin, 2013).

1.1. Epidemiología

El **cáncer** sigue constituyendo una de las principales causas de morbimortalidad; se estima que en el año 2020 se diagnosticaron aproximadamente 19,3 millones de casos nuevos en el mundo y que esa cifra aumentará un 47 % en las dos próximas décadas, alcanzando los 28,4 millones de casos nuevos de cáncer al año en el 2040 (Sung *et al.*, 2021).

El **melanoma cutáneo** es responsable de casi el 2 % de todos los cánceres a nivel mundial (Bray *et al.*, 2018; Krattinger *et al.*, 2021; Sung *et al.*, 2021). Aunque representa solo un 5 % de todos los tipos de cáncer de piel diagnosticados (Matthews *et al.*, 2017; Krattinger *et al.*, 2021), es una de las formas más agresivas debido a su **alta tasa de metástasis** y a la **falta de tratamientos eficaces** en estadios avanzados, siendo responsable del 90 % de las muertes por cáncer de piel (Garbe *et al.*, 2016) y del 0,7 % de las muertes por cáncer (Krattinger *et al.*, 2021; Sung *et al.*, 2021).

Desde principios de la década de 1980, la **incidencia global** del melanoma cutáneo ha ido aumentando en torno a un 3 % cada año, afectando sobre todo a poblaciones de piel clara (Schadendorf *et al.*, 2018) donde se ha incrementado la tasa de incidencia de manera alarmante en mujeres adultas jóvenes de menos de 40 años (Lowe *et al.*, 2014). Aunque en la mayoría de países las tasas de incidencia siguen aumentando, en los últimos 10 - 15 años la tasa de incidencia en ciertos lugares se está estabilizando (en concreto en Nueva Zelanda) e incluso disminuyendo (como en Australia). Ello se debe probablemente a las campañas de concienciación que informan a la población de los peligros que conlleva no protegerse de la radiación solar y al cambio en el estilo de vida de la sociedad, que cada vez pasa menor parte de su tiempo el aire libre (Whiteman, Green and Olsen, 2016; Schadendorf *et al.*, 2018; Leiter, Keim and Garbe, 2020). En España, la tasa de incidencia estimada para el 2020 fue de 13,1 casos por cada 100.000 (Nagore *et al.*, 2022) y se calcula que en todo el mundo hubo 325.000 nuevos casos de melanoma (174.000 hombres y 151.000 mujeres) y 57.000 muertes asociadas a dicha enfermedad (32.000 hombres y 25.000 mujeres) (Sung *et al.*, 2021); para el año 2040, se prevé que el número de casos nuevos de melanoma ascienda a 510.000 y el de muertes a 96.000 (Arnold *et al.*, 2022).

A pesar del aumento significativo de la incidencia a nivel global del melanoma cutáneo en las últimas décadas, la **tasa de mortalidad** han mostrado una estabilización en los últimos 20 años, e incluso un descenso en los últimos años, probablemente fruto del aumento del diagnóstico precoz del cáncer y los nuevos tratamientos introducidos durante la última década para el manejo del melanoma metastásico y localmente avanzado (Horrell, Wilson and D'Orazio, 2015; Leiter, Keim and Garbe, 2020).

La **tasa de supervivencia** varía en función del estadio en el que se encuentre la enfermedad en el momento del diagnóstico. Las mayores tasas de supervivencia a 5 años (entre 82 - 99 %) y a 10 años (en torno a 75 - 98 %) corresponden a pacientes que presentan el melanoma confinado en su localización primaria en el momento del diagnóstico, cuando no hay signos de diseminación. Sin embargo, el porcentaje de pacientes que sobreviven tras 5 y 10 años del diagnóstico desciende de forma acusada cuando el tumor se ha diseminado a los ganglios linfáticos regionales (llegando a ser del 32 % a 5 años y del 24 % a 10 años), y de forma drástica cuando hay dispersión de células tumorales a partes distantes del cuerpo (inferior al 20 % a 5 años) (Gershenwald *et al.*, 2017; Polini *et al.*, 2019).

1.2. Etiología

Se han identificado algunos **factores de riesgo** que favorecen la aparición y el desarrollo del melanoma. Estos factores de riesgo pueden ser intrínsecos o inherentes al paciente, y extrínsecos o ambientales (Horrell, Wilson and D'Orazio, 2015).

Entre los **factores intrínsecos** más importantes en el desarrollo de un melanoma destacan variables como el fototipo de piel, la edad, el sexo, la predisposición genética ligada a la presencia de mutaciones concretas, la abundancia de lesiones melanocíticas benignas (*i. e.* nevi), situaciones de inmunodepresión crónica o el desarrollo previo de otro cáncer.

El fototipo de piel o la pigmentación de la piel de cada individuo. La escala de Fitzpatrick describe 6 fototipos cutáneos de acuerdo a los niveles basales de melanina y la tendencia del individuo a broncearse y quemarse, categorizando numéricamente la vulnerabilidad de un individuo a los rayos ultravioleta (UV) y, en consecuencia, su riesgo de desarrollar melanoma (Horrell, Wilson and D'Orazio, 2015). Las personas con piel blanca, ojos azules o verdes, con muchos nevi, pelo rubio o pelirrojo, con tendencia a quemarse en lugar de broncearse (catalogadas como fototipo I y II en la escala de Fitzpatrick) pertenecen al grupo de mayor riesgo de desarrollar melanoma. Las personas con cabello y ojos oscuros, que normalmente no se queman con el sol (fototipo III y IV) presentan un riesgo medio de desarrollar cáncer de piel. Las personas naturalmente morenas (fototipo V) y negras (fototipo VI), generalmente pueden tolerar con seguridad niveles relativamente altos de exposición al sol sin quemarse o aumentar en gran medida el riesgo de cáncer de piel, debido a que la melanina de los individuos de pigmentación más oscura forma una barrera que protege a las células de la radiación UV (D'Orazio et al., 2011). Los individuos de raza caucásica son hasta 10 veces más propensos a sufrir melanoma cutáneo que las personas con piel de pigmentación oscura; sin embargo, la supervivencia a los 5 años es menor para los pacientes afroamericanos, lo que se debe a que en ellos suele detectarse la enfermedad en estadios más avanzados, quizás porque las lesiones son menos llamativas en ellos por su tono de piel más oscuro, pero también por el impacto que tiene en su salud el bajo nivel socioeconómico al que se enfrentan (Ward et al., 2017; Carr, Smith and Wernberg, 2020).

Así mismo, se ha observado una correlación directa entre el riesgo de padecer melanoma cutáneo y la **edad**. El riesgo de desarrollar melanoma aumenta con la edad (Ferrari *et al.*, 2021). El melanoma cutáneo es un cáncer muy poco frecuente en niños menores de 10 años, con una incidencia anual de 2 casos por millón (Ferrari *et al.*, 2021), un 0,7 % de todos los canceres diagnosticados a nivel europeo (Indini *et al.*, 2018). La incidencia aumenta drásticamente en adolescentes (15 - 19 años) con una incidencia de 15 casos por millón (Ferrari *et al.*, 2021) en los que el melanoma cutáneo representa un 5,3 % de todos los canceres diagnosticados (Indini *et al.*, 2018). El melanoma afecta principalmente a adultos jóvenes y de mediana edad. Desde los 25

hasta los 50 años la incidencia aumenta de manera lineal y a partir de ahí se ralentiza, especialmente en mujeres; la edad promedio de diagnóstico son los 57 años (Rastrelli M., Tropea S., Rossi CM., 2014).

El **sexo** se ha descrito también como una variable asociada a la probabilidad de desarrollar melanoma cutáneo, así como a la localización del mismo. En general, el melanoma cutáneo tiene una mayor incidencia y mortalidad en hombres que en mujeres a nivel mundial (D'ecclesiis *et al.*, 2021); sin embargo, en la población de edad inferior a 45 años la incidencia es mayor en mujeres (6,2 y 9,5 por cada 100.000 para hombres y mujeres, respectivamente), mientras que en la población de edad más avanzada hay una mayor incidencia en hombres (46,4 y 39 por cada 100.000 para hombres y mujeres, respectivamente) (Indini *et al.*, 2018; Olsen *et al.*, 2020). Por otra parte, cada sexo presenta unas **localizaciones** predominantes del melanoma, lo que se atribuye, al menos en parte, a las zonas de piel más expuestas al sol debido a la vestimenta habitual, siendo las piernas y los brazos los lugares más frecuentes en mujeres y el tronco y la cabeza en hombres (Horrell, Wilson and D'Orazio, 2015; Carr, Smith and Wernberg, 2020; Olsen *et al.*, 2020).

La **predisposición genética** a ciertas enfermedades hereditarias aumenta el riesgo de desarrollar melanoma. El **síndrome de melanoma familiar** afecta aproximadamente al 10 % de las personas diagnosticas con melanoma. En más del 20 % de estas familias el gen inhibidor de quinasa dependiente de ciclina 2A (*CDKN2A* o *p16*) se encuentra mutado. Las personas diagnosticadas con esta enfermedad tienen un riesgo del 48,9 % de desarrollar melanoma a los 50 años y un riesgo del 82 % a los 72 años (Horrell, Wilson and D'Orazio, 2015). La **xerodermia pigmentosa** es una enfermedad autosómica recesiva que limita la reparación de lesiones del ácido desoxirribonucleico (DNA) mediante la escisión de nucleótidos debido a mutaciones en alguno de los genes ligados a esta vía de reparación. Las personas diagnosticadas con esta enfermedad no deben exponerse a radiación UV para prevenir el daño celular ya que no disponen de la maquinaria que repara mutaciones en oncogenes y genes supresores de tumores. El riesgo de melanoma en edades tempranas de la vida es 1.000 - 2.000 veces mayor respecto a la población general y a menudo se les diagnostica melanoma con 20 años, 40 años antes que al resto de la población (Horrell, Wilson and D'Orazio, 2015).

Otra de los factores relacionados con una mayor probabilidad de desarrollar melanoma es la presencia de una gran cantidad de lesiones melanocíticas tipo nevus. Tener de 16 a 40 nevi aumenta el riesgo de desarrollar melanoma en 1,47 veces y tener de 101 a 120 nevi incrementa el riesgo en casi 7 veces (D'Orazio et al., 2011). La mayoría de los nevi benignos y melanomas comparten una mutación en el gen BRAF (V600E), que produce ganancia de función y deriva en la desregulación del ciclo celular e incremento de la división celular. Sin embargo, se necesitan mutaciones adicionales para el desarrollo del melanoma y la transformación maligna de lunares comunes es poco habitual (Horrell, Wilson and D'Orazio, 2015). Los lunares que sí aumentan mucho el riesgo de desarrollar melanoma son los displásicos o atípicos, de manera que tener un nevus displásico aumenta el riesgo de desarrollar melanoma en 2 y tener 10 o más lo aumenta hasta 12 veces (Hawryluk and Fisher, 2011). Los nevi displásicos están presentes en el 34 - 56 % de los casos de melanoma (Horrell, Wilson and D'Orazio, 2015). Las personas con nevi congénitos, aquellos presentes desde el nacimiento, tienen mayor riesgo de desarrollar melanoma dependiendo del tamaño y la cantidad de los mismos; los pequeños no se asocian con un aumento del riesgo, pero los de gran tamaño aumentan el riesgo de desarrollar un melanoma un 5 - 10 % (Horrell, Wilson and D'Orazio, 2015).

Las personas con el **sistema inmunitario deprimido** corren un mayor riesgo de desarrollar melanoma. Por ejemplo, las personas con tratamiento para el SIDA tienen un 50 % más de probabilidad de desarrollarlo (Horrell, Wilson and D'Orazio, 2015) y las personas que han recibido un trasplante de órganos presentan un riesgo 2 - 4 veces superior que la población general (Carr, Smith and Wernberg, 2020).

Las personas que ya han sido **previamente diagnosticadas con otros tipos de cáncer** tienen un mayor riesgo de desarrollar melanoma posteriormente, debido a que son individuos que presentan una predisposición genética por mutaciones en el DNA o debido a la radiación recibida para tratar la neoplasia maligna previa (Yang *et al.*, 2011). El 11,4 % los pacientes diagnosticados con un melanoma primario desarrollará un segundo melanoma primario dentro de los cinco años siguientes (Hawryluk and Fisher, 2011).

Entre los **factores extrínsecos** que afectan al desarrollo del melanoma cutáneo encontramos una principal, la exposición a la radiación UV, si bien la exposición a otros compuestos mutagénicos ambientales también podría estar relacionado con una mayor probabilidad de desarrollo de esta patología.

La **radiación UV** se considera el carcinógeno más importante, produce daño en el DNA indirectamente mediante generación de radicales libres altamente reactivos y estrés oxidativo, y es responsable del 80 % de los melanomas cutáneos (Horrell, Wilson and D'Orazio, 2015). La exposición a este tipo de radiación se asocia, principalmente, a la **exposición solar**. En este sentido, la exposición alta e intermitente a los rayos UV solares, la exposición recreativa al sol, haber sufrido quemaduras solares en la infancia o adolescencia o tener una exposición UV acumulativa excesiva son factores que aumentan el riesgo para el desarrollo de melanoma cutáneo maligno (D'Orazio *et al.*, 2011). **Otras fuentes** de radiación UV, también relacionadas con una mayor incidencia de esta enfermedad, incluyen el uso de cabinas de bronceado (D'Orazio *et al.*, 2011) y la exposición a la radiación UV como parte de tratamiento médico. Los pacientes que reciben psoraleno y la radiación UV-A para el tratamiento de la psoriasis, el eccema y otras enfermedades dermatológicas tienen un riesgo 10 veces mayor de desarrollar melanoma 15 años después del tratamiento (Carr, Smith and Wernberg, 2020). La fototerapia de luz azul neonatal en niños con niveles elevados de bilirrubina es otro ejemplo de terapia de luz UV que aumenta el riesgo de desarrollar melanoma en la infancia y la adolescencia (Carr, Smith and Wernberg, 2020).

Así mismo, se ha establecido un vínculo entre el desarrollo de melanoma y la exposición a hidrocarburos policíclicos, radiaciones ionizantes, cloruro de polivinilo, metales pesados y pesticidas, **compuestos que generan mutaciones en el DNA** de las células, y por ende, en los melanocitos (Horrell, Wilson and D'Orazio, 2015).

Los factores intrínsecos y extrínsecos previamente descritos actúan a menudo conjuntamente creando **áreas geográficas** con diferente incidencia de esta enfermedad. En el año 2018 los países con la tasa de incidencia estimada más elevada fueron Australia (con 33,6 casos por cada 100.000 habitantes) y Nueva Zelanda (con 33,3 casos por cada 100.000), donde una gran parte de la población es de piel blanca y hay un elevado índice de radiación UV debido a su ubicación muy cercana al ecuador (Khazaei *et al.*, 2019). En Europa, al contrario de lo que se podría esperar, son los países del norte como Noruega (29,6 por 100.000), Dinamarca (27,6 por 100.000) y Suecia (24,7 por 100.000), y del centro como Alemania (21,6 por 100.000) y Suiza (21,3 por 100.000), los que presentaron un mayor número estimado de casos nuevos diagnosticados en comparación con los países del sur como España (6,4 por 100.000) y Portugal (6,7 por 100.000) (Khazaei *et al.*, 2019). Este hecho podría deberse a la piel más clara de la población de los países del norte que suelen

exponerse ocasionalmente al sol quemándose con facilidad, mientras que las personas en los países del sur tienen una exposición solar más frecuente pero menos agresiva y un fototipo de piel más protector.

1.3. Histopatología

1.3.1. La piel

La **piel** forma la cubierta externa del cuerpo y es su órgano más extenso, cubre un área media de 2 m² y pesa unos 4 kilos. Actúa como una barrera protectora contra la temperatura exterior, la luz UV, los patógenos, la deshidratación y las lesiones y consta de dos capas principales, la epidermis y la dermis, que se encuentran situadas sobre el tejido subcutáneo o hipodermis (Figura 1) (Elaine N. Marieb, 2008; McLafferty, Hendry and Alistair, 2012; Buendía, Mazuecos and Camacho, 2018; Dehdashtian *et al.*, 2018).

La epidermis es la capa más externa de la piel. Está compuesta por 4 tipos celulares (i. e. queratinocitos, melanocitos, células de Merkel y células de Langerhans) que forman un epitelio estratificado plano y queratinizado. Los diferentes estratos o capas, de la más interna a la más externa, se denominan capa basal, estrato espinoso, estrato granuloso, estrato lúcido (solo en palmas y plantas) y capa córnea. Los queratinocitos representan el 90 % de las células epidérmicas. Se generan por división de las células madre de la capa más interna de la epidermis (basal) y se van desplazando progresivamente por las distintas capas conforme se van diferenciando hasta formar el estrato más superficial (la capa córnea), una capa de grosor variable, formada por queratinocitos aplanados y muertos en los cuales predomina la acumulación de queratina y se desprenden en forma de escamas. Los melanocitos son células dendríticas que derivan de la cresta neural y que migran hacia la epidermis, los folículos pilosos y localizaciones no cutáneas durante la embriogénesis. En la piel se distribuyen por la capa basal, constituyen el 8 % de las células epidérmicas y su principal función es la producción de melanina. Las células de Merkel, localizadas en la capa basal, tienen una función mecano-receptora ya que se asocian con las terminaciones nerviosas intraepidérmicas aferentes. Las células de Langerhans son células presentadoras de antígenos y modulan las respuestas inmunitarias en la piel. La epidermis actúa como barrera física impidiendo la entrada de bacterias, virus, hongos y parásitos así como protegiendo de lesiones físicas y de sustancias químicas; así mismo, es el hábitat de numerosos microorganismos que componen la microbiota de la piel, la cual participa también en la protección frente a patógenos (Belkaid and Segre, 2014). Por último, aunque no menos importante, la epidermis, mediante la melanina incorporada a los queratinocitos que la forman, protege del potencial daño derivado de la exposición a la radiación UV.

La **dermis** corresponde a la capa más interna y gruesa de la piel, formada por tejido conectivo. Se divide a su vez en dos capas: la papilar, en contacto con la epidermis, y la reticular, la más interna. La dermis está constituida por una red de colágeno, elastina y ácido hialurónico sintetizadas por los fibroblastos, células residentes principales de este tipo de tejido conectivo. En ella se localizan folículos pilosos, glándulas sebáceas, glándulas sudoríparas, vasos sanguíneos y linfáticos, nervios, y una importante variedad de células que abarca desde los propios fibroblastos a mastocitos, macrófagos y otras células inmunes. La dermis se encarga de nutrir a la epidermis, que está en constante renovación y no dispone de vasos sanguíneos; regular la temperatura a través de la sudoración; retener el agua gracias al ácido hialurónico; amortiguar los golpes gracias a la red de

colágeno y elastina y captar el tacto, el dolor y la percepción de la temperatura mediante las terminaciones nerviosas que contiene.

Por debajo de la dermis se encuentra el **tejido subcutáneo o hipodermis**, que es tejido adiposo que presenta fibroblastos, macrófagos y vasos sanguíneos. Fija la piel a los órganos subyacentes y almacena grasa que sirve para aislar los tejidos de los cambios de temperatura del exterior, amortiguar golpes y de reserva energética.

Figura 1. Estructura de la piel. La piel está compuesta por dos capas principales, la epidermis (la más externa) y la dermis (la más interna), que reposan sobre una capa grasa denominada tejido subcutáneo o hipodermis. Imagen adaptada de Winslow, 2008.

1.3.2. Melanocitos

Los melanocitos derivan del **neuroectodermo embrionario**, en concreto, de la cresta neural, desde donde los **melanoblastos**, precursores de los mismos, migran a diversas zonas como la epidermis, los folículos pilosos, las meninges, membranas mucosas, el oído interno y los ojos (Castro-Pérez *et al.*, 2021), motivo por el que el melanoma puede surgir en cualquiera de estas localizaciones, aunque se desarrolla principalmente en la piel.

La **densidad** de los melanocitos es de media de unas 1.500 células/mm² y varía según la región anatómica (cara y cuello son los lugares con mayor densidad mientras que espalda baja y abdomen son los de densidad más baja) y la edad (tiende a disminuir con la edad, especialmente a partir de los 50 años) pero es muy constante entre individuos (Sun *et al.*, 2021). Tal y como se ha mencionado anteriormente, en condiciones fisiológicas los melanocitos se sitúan de manera uniforme en la **capa basal de la epidermis** y cada melanocito interactúa a través de sus proyecciones dendríticas con 30 - 40 queratinocitos constituyendo lo que se denomina una **unidad melanoepidérmica** (Cichorek *et al.*, 2013; Sun *et al.*, 2021). La actividad principal de los melanocitos consiste en la **fabricación de melanina**, un pigmento fotoprotector que absorbe la radiación UV y captura los radicales libres bloqueando los efectos nocivos que podrían causar en las células, como el estrés oxidativo y las mutaciones en el DNA. Los melanocitos contienen unos orgánulos específicos denominados **melanosomas**, en los que se sintetiza la melanina. A medida que maduran se cargan de melanina y se mueven hacia los extremos de las prolongaciones dendríticas desde donde se transfieren al citoplasma de los queratinocitos que forman la unidad melanoepidérmica (Kondo and Hearing, 2011; Ando *et al.*, 2012). Los melanosomas se localizan alrededor del núcleo de los queratinocitos protegiendo de este modo su material genético (Ernfors, 2010; Ando *et al.*, 2012).

El proceso de síntesis de melanina se denomina **melanogénesis** y está regulado por diversas enzimas que transforman el aminoácido tirosina en pigmentos melánicos que son de 2 tipos: la **feomelanina**, de color amarillo-naranja, predominante en los fototipos más claros (I y II), los más propensos a desarrollar melanoma; y la **eumelanina**, de color marrón-negro, propia de personas con piel y cabello oscuro y mucho más eficiente en la fotoprotección que la feomelanina (Hearing, 2011). La producción del pigmento en los melanocitos está regulada por el gen que codifica para el receptor de melanocortina de tipo 1 (MC1R), que presenta una variedad de polimorfismos que determinan en gran medida los distintos fototipos de piel en humanos (Lin and Fisher, 2007; Ali, Yousaf and Larkin, 2013).

El color de la piel no depende del número de melanocitos sino de la actividad melanogénica de los mismos, determinada por el número y tamaño de los melanosomas, la actividad de las enzimas que participan en la síntesis de melanina y la capacidad de los melanocitos de transferir el pigmento a los queratinocitos (Cichorek *et al.*, 2013).

1.3.3. Lesiones cutáneas melanocíticas benignas y malignas

El **modelo de Clark** describe la visión clásica del desarrollo del melanoma a partir de una lesión melanocítica previa a través de diferentes niveles de progresión (Figura 2); la formación del tumor se inicia desde un **nevus melanocítico benigno inicial** que se transforma en un **nevus displásico**, que posteriormente origina un **melanoma primario en fase de crecimiento radial** (no invasivo), que más tarde deriva en un **melanoma primario en fase de crecimiento vertical** (invasivo) para finalmente originar el **melanoma metastásico** (Coradeschi and Saffiotti, 2006).

Figura 2. Representación del modelo de Clark para el desarrollo de melanoma. Fases secuenciales de la evolución del melanoma descritas por la visión clásica propuesta por el modelo de Clark. Un nevus melanocítico benigno inicial se transforma en un nevus displásico, que posteriormente origina un melanoma primario en fase de crecimiento radial, que más tarde deriva en un melanoma primario en fase de crecimiento vertical para, finalmente, originar el melanoma metastásico. Imagen adaptada de Coradeschi and Saffiotti, 2006.

Aunque este modelo describe una transformación lineal por pasos, **la realidad es mucho más compleja**. A día de hoy se conoce que la evolución de un melanoma puede seguir el esquema clásico, pero también puede limitarse al crecimiento radial, presentar crecimiento principalmente vertical desde el principio, o bien, progresar directamente a tumores metastásicos sin seguir de forma ordenada los pasos propuestos por el modelo (Shain and Bastian, 2016). Por otro lado, tanto los melanomas en fase radial como en vertical, aunque pueden originarse a partir de lesiones de nevi comunes preexistentes (se estima que un 20 - 30 % de los casos de melanoma), mayoritariamente surgen *de novo* a partir de la transformación maligna de melanocitos normales presentes en la epidermis de la piel (70 - 80 % de los melanomas) (Cymerman *et al.*, 2016).

El **nevus melanocítico** es una **lesión benigna** en la que los melanocitos presentan algunos cambios moleculares que alteran el control de su crecimiento, pero a pesar de ello, su proliferación sigue siendo limitada. Corresponden a nevi de un tamaño inferior a 5 mm, color uniforme, forma redonda u ovalada y bordes regulares. Un ejemplo de alteración molecular presente en los melanocitos es la activación aberrante de la vía de señalización de las proteínas quinasas activadas por mitógenos (MAPK), debido a mutaciones en los genes *BRAF* y *NRAS*, que se traduce en una mayor proliferación y supervivencia celular. Estas mutaciones presentes en muchos nevi benignos también son identificadas en muchos melanomas; de hecho, las mutaciones de *BRAF* se han encontrado en el 40 - 50 % de los melanomas cutáneos (V600E representa alrededor del 80 - 90 % de todas las mutaciones detectadas en *BRAF*) y las mutaciones de *NRAS* en un 15 - 30 % aproximadamente de los mismos (las más comunes Q61R y Q61K) y, aunque tendrían un papel en la iniciación de la proliferación de los melanocitos, resultan insuficientes para la transformación maligna de los nevi, para lo que se requieren mutaciones adicionales (como en *TERT, CDKN2A* o *PTEN*) (Chiappetta *et al.*, 2015; Heppt *et al.*, 2017; Leonardi *et al.*, 2020).

El **nevus displásico** es una **lesión premaligna** con características intermedias entre el nevus benigno y el melanoma, y aunque aumentan el riego de desarrollar melanoma, la mayoría

permanecen estables en el tiempo y no progresan a formas malignas. Estos lunares atípicos tienen un tamaño inferior a 5 mm, color uniforme, forma redonda u ovalada y bordes regulares (Elder, 2010). A nivel molecular suelen presentan alteraciones en la ruta de las MAPK (genes *BRAF* y *NRAS*) o aumento de la actividad telomerasa (gen *TERT*) (Shain and Bastian, 2016), que junto con factores ambientales pueden llegar a convertirse en melanomas *in situ*. El riesgo de desarrollar melanoma es casi 10 veces mayor para individuos con más de 5 nevi displásicos que para los que no presentan ninguno, y cuantos más nevi displásicos tenga una persona, mayor será la posibilidad de desarrollar un melanoma (Gandini *et al.*, 2005).

El **melanoma cutáneo** se clasifica como **melanoma** *in situ* cuando está confinado dentro de la epidermis, o **invasivo** cuando los melanocitos atípicos invaden progresivamente la dermis. Dentro del melanoma cutáneo invasivo se distinguen cuatro subtipos clínico-patológicos principales: **melanoma de extensión superficial**, que se trata del melanoma cutáneo más diagnosticado en la población caucásica (41 % de todos los casos), **melanoma nodular** (16 %), **melanoma léntigo maligno** (8 %) y **melanoma lentiginoso acral** (inferior al 5 % de los casos en la población de piel blanca, pero el 60 - 70 % en la población asiática o afroamericana) (Kibbi, Kluger and Choi, 2016; Garbe *et al.*, 2022).

Durante el **crecimiento radial o intraepidérmico**, el tumor crece horizontalmente, bien a lo largo de la epidermis (*i. e.* melanoma *in situ*), bien extendiéndose más allá de la epidermis, pero con características poco invasivas (*i. e.* melanoma de extensión superficial). Estos tipos de melanomas, y en especial el melanoma *in situ*, rara vez se extienden a otras localizaciones (metástasis) y presentan una alta tasa de curación tras la extirpación quirúrgica (Kibbi, Kluger and Choi, 2016; Shain and Bastian, 2016).

Los melanomas con un **crecimiento principalmente vertical** (*e. g.* melanomas nodulares) (Kibbi, Kluger and Choi, 2016) o aquellos que evolucionan hacia un crecimiento vertical secundario, presentan mayor capacidad de invasión; las células tumorales atraviesan la membrana basal, colonizan capas más profundas en la piel y, en general, presentan mucha mayor capacidad de diseminación a otros órganos, por lo que se asocian a peor pronóstico (Shain and Bastian, 2016).

El **melanoma metastásico** es tendente a propagarse por otras localizaciones de la piel, ganglios linfáticos, pulmones, cerebro, hígado y huesos (Tas, 2012). Para ello, las células del melanoma pueden diseminarse de manera intravascular, a través de vías linfáticas o vasos sanguíneos; o mediante migración extravascular, un proceso denominado angiotropismo, en el que las células tumorales imitan a los pericitos de los vasos y migran a lo largo de las superficies vasculares luminales sin entrar en la vasculatura (un mecanismo migratorio propio de los melanoblastos de la cresta neural, precursores de los melanocitos) (Arozarena and Wellbrock, 2017). Los melanomas presentan una gran acumulación de mutaciones en genes y proteínas claves en vías de señalización que gobiernan la proliferación y el metabolismo celular (genes *BRAF, NRAS, NF1, PTEN* y *KIT*), la remodelación de la cromatina (ARID2), la resistencia a la apoptosis (TP53), el control del ciclo celular (gen *CDKN2A*), la actividad telomerasa (TERT) y la unión célula-célula (cadherina E), entre otras (Shain and Bastian, 2016; Eddy, Shah and Chen, 2021).

1.3.4. Estadificación del melanoma cutáneo

Hay ciertas características de las lesiones pigmentadas, sean preexistentes o desarrolladas *de novo*, que hacen sospechar de la existencia de un **melanoma incipiente**. La **regla del ABCDE** resume las características que los clínicos analizan para distinguir las lesiones benignas de las

malignas: Asimetría en la forma, **B**ordes irregulares, **C**olor variado y disparejo, **D**iámetro mayor de 6 mm y **E**volución durante las últimas semanas o meses. El dolor, quemazón, descamación o ulceración también son signos de alerta (Carr, Smith and Wernberg, 2020).

El sistema de estadificación que se emplea con más frecuencia para determinar los est**adios del melanoma** es el **sistema TNM**, creado por la American Joint Committee on Cancer (AJCC), (actualizado en el año 2016 en su octava edición), que se basa en **tres aspectos clave** de información que se describen a continuación (Cañueto and Román-Curto, 2017; Gershenwald *et al.*, 2017; Ward *et al.*, 2017):

Categoría T: describe la **extensión del tumor primario.** Se asignan los números del 0 al 4 según el grosor del tumor (índice de Breslow) y las letras «a» o «b» según si existe ulceración o no. La **profundidad de invasión de Breslow** es una medida del grosor de un melanoma, en su punto más grueso, indicada en milímetros (mm); un grosor mayor va asociado a un peor pronóstico. La ulceración es el desprendimiento del tejido muerto y suele ir asociado a mal pronóstico (Tabla 1).

Tabla 1. Sistema de estadificación TNM para el melanoma cutáneo: categoría T. Indica el grosor de la lesión (mm) y la presencia/ausencia de ulceración.

categoría T	grosor	ulceración
Tis	melanoma <i>in situ</i>	-
ТО	sin evidencia de tumor primario	-
T1	≤ 1,0 mm	desconocido o inespecificado
T1a	< 0,8 mm	sin
T1b	< 0,8 mm	con
110	0,8 - 1 mm	con o sin
T2	> 1,0 - 2,0 mm	desconocido o inespecificado
T2a	> 1,0 - 2,0 mm	sin
T2b	> 1,0 - 2,0 mm	con
Т3	> 2,0 - 4,0 mm	desconocido o inespecificado
T3a	> 2,0 - 4,0 mm	sin
T3b	> 2,0 - 4,0 mm	con
T4	> 4,0 mm	desconocido o inespecificado
T4a	> 4,0 mm	sin
T4b	> 4,0 mm	con

Categoría N: indica si hay presencia de células tumorales en los **ganglios regionales** y si la **propagación** es detectable únicamente mediante biopsia, es decir, **clínicamente oculta**, o bien es detectable por palpación, **clínicamente detectable**. También indica si hay **metástasis en tránsito**, es decir, hay diseminación de células tumorales a los vasos linfáticos de la piel a más de 2 cm del tumor primario, pero no hay invasión de ganglios linfáticos; **satélites**, que son tumores diseminados a menos de 2 cm de la lesión primaria; o **microsatélites**, que son tumores diseminados a menos de 2 cm de la lesión primaria, pero que únicamente se llegan a identificar con ayuda de un microscopio (Tabla 2).

Tabla 2. Sistema de estadificación TNM para el melanoma cutáneo: categoría N. Indica si hay afectación de los ganglios linfáticos (y si la propagación es clínicamente detectable o no) y si hay metástasis en tránsito, satélites y/o microsatélites.

categoría N	número de ganglios linfáticos afectados por el tumor	presencia de metástasis en tránsito, satélites y/o microsatélites
NO	ausencia de afectación ganglionar	no
N1	1 ganglio con afectación tumoral o presencia de metástasis en tránsito, satélites y/o microsatélites sin afectación ganglionar	
N1a	1 ganglio clínicamente oculto	no
N1b	1 ganglio clínicamente detectable	no
N1c	no hay diseminación de la enfermedad a los ganglios	sí
N2	2 o 3 ganglios con afectación tumoral o metástasis en tránsito, satélites y/o microsatélites con 1 ganglio afectado	
N2a	2 o 3 ganglios clínicamente ocultos	no
N2b	2 o 3 ganglios, al menos 1 de ellos fue detectado clínicamente	no
N2c	1 ganglio clínicamente oculto o detectable	sí
N3	4 o más ganglios con afectación tumoral o metástasis en tránsito, satélites y/o microsatélites con 2 o más ganglios afectados, o presencia de conglomerado adenopático con/sin metástasis en tránsito, satélites y/o microsatélites	
N3a	4 o más ganglios clínicamente ocultos	no
N3b	4 o más ganglios, al menos 1 de ellos fue detectado clínicamente, o presencia conglomerado adenopático	no
N3c	2 o más ganglios clínicamente ocultos o detectables y/o presencia de conglomerado adenopático	sí

Categoría M: describe la propagación a **ganglios linfáticos lejanos u órganos distantes** (metástasis) y el nivel de **lactato deshidrogenasa** (LDH) en sangre (Tabla 3).

categoría M	sitio anatómico	nivel LDH	
M0	sin evidencias de metástasis distante	no aplicable	
M1	evidencias de metástasis distante		
M1a	metástasis distante en piel, tejidos blandos (incluyendo músculo), y/o -	no grabado o inespecificado	
M1a(0)		no elevado	
M1a(1)	ganglios limaticos no regionales	elevado	
M1b	metástasis en pulmones con/sin m1a	no grabado o inespecificado	
M1b(0)		no elevado	
M1b(1)		elevado	
M1c	metástasis a distancia, pero no en vísceras del SNC, con/sin m1a o m1b	no grabado o inespecificado	
M1c(0)		no elevado	
M1c(1)		elevado	
M1d	metástasis al SNC con/sin m1a, m1b o	no grabado o inespecificado	
M1d(0)	m1c	normal	
M1d(1)		elevado	

Tabla 3. Sistema de estadificación TNM para el melanoma cutáneo: categoría M. Indica si hay metástasisy el nivel de LDH en sangre.

Una vez que los grupos T, N, y M han sido determinados, estos son combinados para **asignar un estadio general** del melanoma (agrupación por etapas) (Tabla 4).

Los melanomas *in situ* se identifican como **estadio 0**, los **estadios I y II** se consideran fases tempranas donde el melanoma está localizado y no hay pruebas de que el cáncer se haya extendido a los ganglios linfáticos o a lugares distantes, el **estadio III** corresponde a melanoma con metástasis a los ganglios linfáticos regionales y el **estadio IV** es considerada como enfermedad en fase avanzada donde el melanoma se ha extendido a lugares distantes de la zona original. Además, algunas etapas se dividen aún más, usando letras mayúsculas (Ward et al., 2017).

Tabla 4. Sistema de estadificación general para el melanoma cutáneo. Las categorías T, N y M asignadas en cada caso se combinan para poder establecer un estadio general de la enfermedad (Cañueto and Román-Curto, 2017; Keung and Gershenwald, 2018).

estadio	т	Ν	м	
0	Tis	NO	M0	
IA	T1a o T1b	NO	M0	
IB	T2a	NO	M0	
IIA	T2b o T3a	NO	M0	
IIB	T3b o T4a	NO	M0	
IIC	T4b	NO	M0	
IIIA	T1a/b o T2a	T2a N1a o N2a		
	то	N1b o N1c		
IIIB	T1a/b o T2a	N1b/c o N2b	M0	
	T2b o T3a	N1a/b/c o N2a/b		
	то	N2b/c o N3b/c		
IIIC	T1a/b, T2a/b o T3a	N2c o N3a/b/c	MO	
	T3b o T4a	N1-N3	1010	
	T4b	N1a/b/c o N2a/b/c		
IIID	T4b	N3a/b/c	M0	
IV	cualquier T	cualquier N	M1	

1.4. Abordaje terapéutico, recurrencia y supervivencia asociada

Actualmente, la posibilidad de **curación** del melanoma sigue estrechamente ligada a la **precocidad del diagnóstico y extirpación del tumor** ya que, a pesar de los recientes avances, no existen tratamientos eficaces para tratar la gran mayoría de los casos de melanoma metastásico (Davis, Shalin and Tackett, 2019).

Las **opciones terapéuticas** para el melanoma cutáneo son la resección quirúrgica, la quimioterapia, la radioterapia, la terapia dirigida y la inmunoterapia. La aplicación de un tratamiento u otro en cada caso depende de diversos factores como la localización del tumor, el grosor del melanoma primario, la posibilidad de que el cáncer se haya diseminado o la presencia de cambios genéticos específicos en las células del melanoma (Domingues *et al.*, 2018).

La gran mayoría de los casos de melanoma cutáneo son diagnosticados **en fases tempranas** de la enfermedad, cuando el tumor está localizado y no hay signos de afectación ganglionar (*i. e.* melanomas *in situ* y estadios I y II) (Leonardi *et al.*, 2018; Poklepovic and Luke, 2020). En estadios tempranos, el tratamiento de primera línea es la extirpación quirúrgica del tumor y del tejido sano circundante (desde 0,5 cm hasta 2 cm, según la profundidad de la lesión), lo que se denomina **escisión amplia** (Domingues *et al.*, 2018; Bruce *et al.*, 2021). En pacientes cuyos tumores son mayores de 0,8 mm de grosor o más delgados que esto, pero ulcerados (estadio pT1b o mayor) además de la escisión quirúrgica se hace un **mapeo de ganglios linfáticos** y una biopsia de ganglio linfático centinela para analizar si se hallan células tumorales en él (Davis, Shalin and Tackett, 2019).

Aproximadamente un 10 % de los melanomas cutáneos son diagnosticados **en fases avanzadas** (*i. e.* estadios III y IV), cuando ya se ha producido una propagación de las células tumorales o cuando las lesiones no son extirpables con cirugía (melanomas irresecables). Estos casos tienen un

pronóstico grave y una menor probabilidad de tener una respuesta sostenida al tratamiento (Leonardi *et al.*, 2018).

Desde hace una década ha habido **grandes avances** en el tratamiento del melanoma en fases avanzadas con el desarrollo de la **terapia dirigida** y, especialmente, de la **inmunoterapia** (Figura 3), que han demostrado ser más eficaces que los tratamientos tradicionales (quimioterapia y radioterapia) y han aumentado la esperanza de vida de estos pacientes, que tradicionalmente era inferior al 5 % (Jenkins and Fisher, 2021). Actualmente, la radioterapia y la quimioterapia no se usan como tratamiento de primera línea por su poca efectividad, aunque en combinación con otros tratamientos pueden mejorar la respuesta clínica (Domingues *et al.*, 2018; Krattinger *et al.*, 2021; Skudalski *et al.*, 2022).

Una gran proporción de los melanomas cutáneos presentan mutaciones en genes de las vías de señalización principales asociadas a la proliferación celular y el fenotipo maligno y pueden ser respondedores al tratamiento con **terapia dirigida** (Domingues *et al.*, 2018). La vía de señalización de MAPK está sobreactivada hasta en el 70 % de melanomas (Davis, Shalin and Tackett, 2019), lo que provoca una proliferación celular descontrolada y un aumento de la supervivencia celular. La aprobación por la Food and Drug Administration (FDA) de inhibidores de los genes *BRAF*, en 2011, y *MEK*, en 2013, ambos genes claves en dicha vía, permite limitar la sobreactivación de dicha ruta cuando existen mutaciones en ellos (Domingues *et al.*, 2018; Skudalski *et al.*, 2022).

La opción con más éxito actualmente es el tratamiento con **inmunoterapia**, dirigido a estimular el sistema inmunitario y potenciar su actividad contra las células tumorales. La FDA aprobó por primera vez en el año 2011 el uso de anticuerpos inhibidores de puntos de control inmunitario dirigidos a bloquear el efecto inhibitorio de receptores que bloquean la activación de células T, aumentar la activación de dichas células, para evitar prevenir la tolerancia inmunológica. En primer lugar, se aprobó la administración de anticuerpos anti- antígeno 4 asociado a los linfocitos T citotóxicos (CTLA-4); posteriormente, en 2014, se aprobó el uso de anticuerpos anti- proteína de muerte celular programada 1 (PD-1); y finalmente, en 2015, se aprobó la administración combinada de ambos anticuerpos. Ese mismo año, 2015, la FDA aprobó la terapia con virus oncolíticos genéticamente modificados, que infecta y se replica en el interior de las células tumorales y promueve la inmunidad antitumoral; en concreto, se aprobó el uso de T-VEC, una versión modificada del virus del herpes simple tipo 1 (Domingues *et al.*, 2018; Skudalski *et al.*, 2022).

Los melanomas diagnosticados con **afectación nodular** (estadio III) requieren la **escisión amplia** del tumor primario junto con la extracción de todos aquellos **ganglios linfáticos** que estén afectados por el tumor y la administración de **inmunoterapia o terapia dirigida**. Los melanomas en **estadio III irresecables**, los tumores diagnosticados en **estadio IV** y los **melanomas recurrentes** se tratan con diferentes **combinaciones** de quimioterapia, inmunoterapia y terapia dirigida (Bruce *et al.*, 2021; Jenkins and Fisher, 2021).

Figura 3. Cronología de las terapias aprobadas por la FDA para el melanoma cutáneo. Desde el año 2011, cuando se aprobó por primera vez el uso de inmunoterapia y terapia dirigida, se han ido desarrollando nuevos tratamientos que han mejorado el pronóstico de pacientes con melanoma en fases avanzadas (estadios III y IV). Imagen adaptada de Skudalski et al., 2022.

El melanoma tiene una **elevada tasa de recurrencia**; incluso tras la resección completa de la lesión primaria, supone un importante problema. Las recidivas son detectadas más frecuentemente en estadios más avanzados de melanoma, pero incluso pacientes diagnosticados en fases tempranas de la enfermedad las sufren. Un estudio reciente muestra que casi el 6 % de los pacientes con melanoma cutáneo diagnosticado en estadio IB sufre una recidiva en un periodo inferior a 2 años tras el momento del diagnóstico inicial y esta cifra asciende hasta aproximadamente un 16 % cuando los pacientes son diagnosticados en estadio IIA, a casi un 20 % en melanomas en estadio IIB y en torno al 25 % en estadio IIC; un 70 % de las recidivas ocurre en lugares regionales y un 30 % en lugares distantes (Von Schuckmann *et al.*, 2019). Diferentes estudios independientes han determinado que alrededor de un 30 % de los pacientes diagnosticados en estadio II experimentan recurrencia en un periodo inferior a 5 años, siendo los pacientes en estadio II experimentan un riesgo mayor de recurrencia (Berger *et al.*, 2017; Lee *et al.*, 2017; Bajaj *et al.*, 2020; Bleicher *et al.*, 2020). En melanomas cutáneos diagnosticados en estadio III la tasa de recurrencia en un periodo inferior a 5 años es superior al 60 % (Bajaj *et al.*, 2020).

El estadio del cáncer en el momento del diagnóstico influye en la **supervivencia**. La tasa de supervivencia a 10 años es hasta del 98 % en pacientes diagnosticados en estadio IA, disminuyendo hasta al 75 % en pacientes en estadio IIC (Von Schuckmann *et al.*, 2019; Poklepovic and Luke, 2020) y al 24 % en pacientes en estadio IIID (Dimitriou, Long and Menzies, 2021). Cuando el melanoma cutáneo es diagnosticado este se encuentra localizado la tasa de supervivencia a 5 años es de un 99 %, cuando hay evidencia de diseminación de células tumorales regionalmente la tasa de supervivencia cae drásticamente al 60 %, aunque varía en función de su grado de dispersión, y cuando hay diseminación a lugares distantes la tasa de supervivencia a 5 años es de tan solo un 20 % (Polini *et al.*, 2019).

Pese a los avances experimentados en los últimos años, el melanoma cutáneo sigue siendo un cáncer muy agresivo con elevadas tasas de recidivas, incluso en pacientes diagnosticados en fases tempranas y bajas tasas de curación y supervivencia en estadios avanzados de melanoma. Se estima que el 20 % de los pacientes con melanoma cutáneo diagnosticados en fases tempranas desarrollará metástasis (Scally and Wong, 2014; Gershenwald *et al.*, 2017). Por lo tanto, es esencial el desarrollo de nuevas estrategias que permitan identificar, en estadios tempranos, a los enfermos más propensos a desarrollar metástasis así como caracterizar mejor a pacientes en estadios avanzados e identificar las mejores opciones terapéuticas en cada caso.

1.5. Biomarcadores actuales para el melanoma cutáneo

Entre los actuales retos de la investigación científica en el ámbito del melanoma cutáneo se encuentra la **identificación de biomarcadores** que puedan ayudar tanto a identificar aquellos pacientes con **melanomas de gran potencial agresivo** incluso habiendo sido diagnosticados en fases tempranas (*i. e.* biomarcadores pronóstico) como a **predecir la respuesta a diferentes tratamientos** en fases más avanzadas (Ding *et al.*, 2022).

En la actualidad, el diagnóstico de melanoma cutáneo se basa en la detección e identificación clínica, seguida de la **confirmación histopatológica**. Es habitual el estudio inmunohistoquímico, por un lado, de **biomarcadores específicos de estirpes melanocíticas** como por ejemplo el antígeno de diferenciación melanocítica reconocido por células T (MLANA), la tirosinasa (TYR), la proteína S100 y la proteína premelanosoma (PMEL); y, por otro lado, de **biomarcadores usados para determinar el nivel proliferativo de la lesión** como el antígeno Ki67, cuya expresión está asociada a proliferación celular y se relaciona con melanomas más agresivos (Davis, Shalin and Tackett, 2019). La diferenciación entre ciertas lesiones de carácter benigno y otras de carácter maligno es, en algunos casos, complicado, por lo que, en los últimos años se han desarrollado **paneles de biomarcadores orientados a la mejor caracterización de las lesiones** (como por ejemplo el Test de Melanoma de DermTech o el myPath[®] Melanoma | DiffDx[™]-Melanoma de Castle Biosciences), que se basan en el análisis molecular de las lesiones primarias (Minca *et al.*, 2016; Deacon, Smith and Judson-Torres, 2021).

El estadiaje, ligado al pronóstico de la enfermedad y a la supervivencia de los pacientes, se establece en base al sistema TNM previamente descrito, el cual, en presencia de metástasis distante, toma en consideración el **nivel de LDH en suero**. Los niveles de LDH representan, a día de hoy, el único biomarcador de carácter pronóstico ampliamente aceptado, aunque ligado únicamente a estadios avanzados (Gershenwald *et al.*, 2017). Es, por lo tanto, necesario ahondar en este campo para contar con biomarcadores que, bien mediante el estudio del tejido o de otra fuente de material biológico, permita mejorar el seguimiento del paciente con melanoma cutáneo y la anticipación a eventos adversos. En este sentido, el estudio basado en el tejido afectado limita el seguimiento de los cambios en el tiempo mientras que la búsqueda de biomarcadores en fuentes como la sangre (ejemplo de una biopsia líquida) ofrecen la posibilidad de analizar cambios a lo largo del tiempo (Poulet, Massias and Taly, 2019).

La **biopsia líquida** es una herramienta no invasiva de diagnóstico y pronóstico alternativa y complementaria a la tradicional biopsia quirúrgica que utiliza **biomarcadores presentes en fluidos corporales** de pacientes con enfermedades, entre las que se incluye el cáncer, para tener un conocimiento más profundo y específico de la enfermedad (Mathai *et al.*, 2019). El análisis de **biomarcadores de diagnóstico, pronóstico y seguimiento del cáncer** mediante biopsia líquida se puede hacer a partir de la mayoría de fluidos orgánicos (como saliva, orina, líquido pleural, líquido amniótico, leche materna, líquido cefalorraquídeo y semen) aunque la **sangre periférica** es el más utilizado (Lone *et al.*, 2022).

Si bien el estudio del tejido afectado aporta información relevante y específica de la enfermedad, el empleo de las biopsias líquidas cuenta con importantes **ventajas** en algunos contextos (Mathai *et al.*, 2019; Poulet, Massias and Taly, 2019; Lone *et al.*, 2022). La biopsia líquida se puede llevar a cabo siempre, incluso cuando el tejido tumoral para realizar una biopsia no es accesible. Por otro lado, las biopsias líquidas aportan una información global de la enfermedad desde un enfoque más real que la biopsia clásica de la lesión primaria o accesible, ya que la muestra de fluido es una muestra representativa de la heterogeneidad de las poblaciones celulares que constituyen la enfermedad, mientras que la muestra de tejido biopsiado solo aporta información de una región concreta. Otra ventaja de la biopsia líquida sobre la tradicional biopsia de tejido es la posibilidad de tener una visión dinámica de la enfermedad ya que al ser un método mínimamente invasivo que no conlleva sufrimiento en el paciente ni riesgo de complicaciones, se pueden hacer controles más frecuentes de la enfermedad, monitorizar la efectividad de los tratamientos o la aparición de resistencias en tiempo real y detectar recidivas de manera temprana.

Debido a la gran variedad de componentes genéticos, proteicos y celulares derivados de tumores que se liberan constantemente a la circulación de los pacientes con cáncer, son diversos los componentes que se pueden analizar mediante biopsia líquida y proporcionar información valiosa. Las **fuentes de biomarcadores en biopsias líquidas** más estudiadas incluyen el DNA tumoral circulante (ctDNA), los microRNAs (miRNA) y los RNA no codificantes largos (IncRNA), las células tumorales circulantes (CTC), las células inmunes circulantes, las proteínas, los lípidos y las vesículas extracelulares (EV) (Lim *et al.*, 2018).

En lo que respecta al **melanoma cutáneo**, la sangre y sus derivados (suero y plasma), constituyen una de las principales fuentes exploradas en la búsqueda de biomarcadores (Lim *et al.*, 2018; Mumford *et al.*, 2018; Lattmann and Levesque, 2022). La proteína S100B y la proteína de actividad inhibidora del melanoma (MIA) han demostrado ser marcadores serológicos con valor pronóstico en algunos estudios científicos (Eisenstein *et al.*, 2018; Fan *et al.*, 2022); sin embargo, en la actualidad, la LDH sérica sigue siendo el único marcador sérico de pronóstico independiente incorporado por la AJCC en el sistema de estadiaje del melanoma (Gershenwald *et al.*, 2017; Eisenstein *et al.*, 2018; Ding *et al.*, 2022). Otros trabajos de investigación recientes apuntan a que el factor de crecimiento de hepatocitos (HGF) (Hügel *et al.*, 2016), la proteína catiónica de eosinófilos (ECP) (Krückel *et al.*, 2019), la indoleamina 2,3-dioxigenasa sérica (IDO) (de Lecea *et al.*, 2017) y la disminución del nivel de vitamina D (Timerman *et al.*, 2017) podrían ser útiles biomarcadores serológicos de pronóstico, aunque son necesarios estudios adicionales.

Si bien la búsqueda y el análisis de biomarcadores en biopsia líquida representa un campo de investigación en pleno auge y muy prometedor, no está exenta de **limitaciones**. Uno de los mayores retos actuales es poder acceder a información específica ligada a la patología en las biopsias líquidas evitando la interferencia de las **proteínas mayoritarias de la sangre** (la albumina, el fibrinógeno, las immunoglobulinas, la transferrina, las lipoproteínas y el plasminógeno suponen el 90 % de las proteínas totales) que dificultan la identificación de biomarcadores minoritarios, que son los realmente valiosos en este tipo de análisis (Boukouris and Mathivanan, 2015). Además, para poder implantar la biopsia líquida como protocolo rutinario en la práctica clínica, es necesaria la **estandarización** de los procedimientos preanalíticos (tipos de tubos de extracción de sangre, procedimientos para la separación del plasma o del suero, aislamiento de los componentes a analizar, etc.) y adecuar los centros hospitalarios con personal que conozca la técnica y maquinaria adecuada (Poulet, Massias and Taly, 2019).

2. Procesos ligados a la progresión tumoral

El **cáncer** es una **enfermedad multifactorial** en la que la combinación de factores genéticos y ambientales da como resultado la acumulación de lesiones genéticas o mutaciones en células normales que adquieren un **fenotipo maligno**, con capacidad parar invadir o diseminarse a otras partes del organismo (Fares *et al.*, 2020).

La adquisición de dichas capacidades **requiere de diversos procesos** que incluyen la proliferación incontrolada de las células, la adquisición de motilidad y capacidad invasiva local, la creación de nuevos vasos en la masa tumoral (*i. e.* angiogénesis) y la cascada de eventos relacionados con la diseminación a distancia o metástasis, entre otras (Hanahan and Weinberg, 2011). En el desarrollo de todas estas capacidades están involucradas tanto las propias células tumorales como los componentes celulares y acelulares que las rodean (*i. e.* microambiente tumoral).

2.1. Desarrollo inicial

Las **alteraciones o mutaciones no letales del material genético** son la base de la carcinogénesis y según su origen pueden ser heredadas, espontáneas o producidas por la acción de agentes carcinógenos endógenos (hormonas, inflamación, metabolismo celular, etc.) o exógenos (como sustancias químicas, radiación, virus, malos hábitos de vida...) (Wu *et al.*, 2018).

En el caso del melanoma cutáneo, se estima que un 5 - 10 % de los casos corresponden a mutaciones heredadas (por ejemplo, mutaciones en la línea germinal en genes de susceptibilidad como sucede en los casos de melanoma familiar), pero el factor inductor de mutaciones predominante es la exposición a **radiación UV**, en concreto, la exposición alta e intermitente al sol (Garbe *et al.*, 2022).

Las mutaciones acumuladas en las células con fenotipo maligno les confieren nuevas capacidades que suponen ciertas ventajas con respecto a las células normales (Hanahan and Weinberg, 2011) y promueven la aparición de la masa tumoral inicial en la que, habitualmente, las células se dividen de forma incontrolada pero sin sobrepasar el límite de la lámina basal (Gomez-Cuadrado et al., 2017) dando lugar **tumores benignos** (*e. g.* melanoma *in situ*). En las lesiones melanocíticas, inclusos aquellas benignas como los nevi, las mutaciones más comunes se encuentran en los genes **BRAF y NRAS** (Eddy, Shah and Chen, 2021), involucradas en vías se señalización ligadas a la proliferación celular.

La adquisición, por parte del tumor, de **características malignas** requiere de numerosos procesos entre los que destacan: a) la **transición epitelio-mesénquima**, que consiste en que las células tumorales de naturaleza epitelial desarrollen características propias de las células mesenquimales como la motilidad, y b) la **angiogénesis**, o generación de nuevos vasos relacionados tanto con la nutrición de la masa tumoral en crecimiento como con la dispersión del mismo.

La **transición epitelio-mesénquima (EMT)** es un proceso de **transdiferenciación reversible** descrito en diversos procesos biológicos, como la embriogénesis, la reparación de tejidos y los procesos neoplásicos, en el que una célula epitelial adquiere el fenotipo de una célula mesenquimal como respuesta a un estímulo interno o externo (Hanahan and Weinberg, 2011).

Las **células epiteliales** son células que poseen polaridad apical y basolateral, que establecen uniones e interacciones muy cohesivas entre ellas y con la matriz extracelular, de ahí su poca capacidad de moverse y migrar, y expresan proteínas como citoqueratinas, integrinas y E-cadherinas. Las **células mesenquimales**, en cambio, apenas establecen uniones intercelulares, carecen de polaridad, su morfología es alargada, presentan filopodios, y expresan marcadores moleculares como vimentina, N-cadherina y fibronectina (Pastushenko and Blanpain, 2019).

El proceso de EMT no se trata de una transición categórica, sino que en realidad comprende un espectro de etapas de transición entre el fenotipo epitelial y mesenquimal en las que se

producen una serie de cambios como la pérdida de la polaridad celular, reordenamientos en el citoesqueleto y cambios en la expresión génica.

Las **células tumorales** mediante el proceso de EMT exhiben un fenotipo no diferenciado acompañado de una baja expresión de marcadores epiteliales y de un incremento de la expresión de marcadores mesenquimales, que les otorga capacidad migratoria e invasiva, y una mayor resistencia al estrés y la apoptosis (Craene and Berx, 2013). Las células metastásicas con un fenotipo mesenquimal más pronunciado proliferan cerca de las células endoteliales e inflamatorias, liberan grandes cantidades de quimiocinas y proteínas promoviendo así el desarrollo de un nicho inflamatorio y altamente vascularizado (Pastushenko and Blanpain, 2019).

La EMT es un **proceso muy complejo**, regulado por multitud de vías de señalización como WNT/ β catenin y PI3K/Akt y factores de crecimiento, hormonas, citoquinas y otras moléculas bioactivas entre los que se encuentran el factor de crecimiento derivado de plaquetas (PDGF), TGF- β , TNF- α , FGF, IL-6 IL-8, factor nuclear kB (NF-kB) y VEGF (Lindsey and Langhans, 2014).

Los **melanocitos**, y por lo tanto las células de melanoma, son células no epiteliales, derivadas de la cresta neural, inmersos en la epidermis, que presentan uniones principalmente mediadas mediante E-Cadherinas con los queratinocitos adyacentes y una **polaridad celular** claramente marcada (Haass *et al.*, 2005). Al igual que se ha descrito para las células tumorales de origen epitelial, las células de melanoma son también susceptibles de sufrir un proceso similar al EMT denominado **proceso tipo-EMT** en el que se describe un cambio del fenotipo hacia características más mesenquimales ligado a la adquisición de características invasivas y pro-metastásicas. Actualmente, a este fenotipo ligado al proceso tipo-EMT se le conoce como **fenotipo "tipo-mesenquimal" o "estado indiferenciado"** e incluye una alta expresión de genes regulados por TGF-β o la pérdida de expresión de proteínas como la E-Cadherina o MLANA, propias de los melanocitos o melanomas en "estado melanocítico" (Pedri *et al.*, 2022).

El crecimiento de la masa tumoral termina generando una zona tumoral interna con dificultades para abastecerse de nutrientes y oxígeno que promueve la aparición de señales pro-angiogénicas. Tanto las células tumorales como otras células no tumorales (*e. g.* fibroblastos asociados al tumor, células perivasculares, células inflamatorias) del microambiente tumoral participan en la **vascularización del tumor**, necesaria para suplir la necesidad de oxígeno y nutrientes de las células cancerígenas y eliminar sus productos de desecho. Así mismo, la formación de nuevos vasos en el entorno tumoral favorece el crecimiento tumoral y eleva las posibilidades de diseminación o metástasis (Jászai and Schmidt, 2019).

La angiogénesis se induce mediante la liberación de **factores pro-angiogénicos** implicados en su regulación entre los que destaca el VEGF, aunque también se han descrito otros factores como la angiopoyetina-2 (ANG-2), el factor de crecimiento transformante β (TGF- β), el factor de crecimiento de los fibroblastos (FGF) y el factor de necrosis tumoral alfa (TNF- α). Estas señales pro-angiogénicas, además de promover la neovascularización en el entorno del tumor, aumentan la permeabilidad y porosidad vascular, que facilita la intravasación de las células tumorales, y estimulan la supervivencia de las células endoteliales en condiciones de privación de nutrientes y oxígeno (Jászai and Schmidt, 2019).

En el melanoma cutáneo la angiogénesis está principalmente ligada a la **fase de crecimiento vertical** y al igual que en todos los tumores, representa un paso importante hacia la metástasis. Se han descrito diferentes mecanismos ligados a la formación de nuevos vasos como son a) la formación de nuevos vasos a partir de los pre-existentes, b) el reclutamiento directo a áreas

tumorales hipóxicas de progenitores endoteliales desde la médula ósea y c) la adquisición, por parte de las propias células tumorales, de un fenotipo endotelial capaz de generar nuevos vasos (Jour, Ivan and Aung, 2016). Entre las moléculas más ligadas a la angiogénesis observada en el melanoma cutáneo se encuentran el VEGF, el FGF o el ANG-2, así como otros como la interleuquina-8 (IL-8) o el activador plasminógeno de la uroquinasa (uPA) (Jour, Ivan and Aung, 2016; Cho, Jour and Aung, 2019).

La adquisición de un fenotipo indiferenciado por parte del melanoma se asocia a la fase de **invasión local**. Esta fase implica cambios profundos en la adhesión y en las propiedades proteolíticas de las células tumorales enfocados a alcanzar el torrente circulatorio. Las células tumorales son capaces de desarrollar invadopodios, unas protuberancias ricas en actina de la membrana plasmática con forma de punta desde donde se secretan proteasas, especialmente generadas para degradar la matriz extracelular y atravesar la membrana basal (Sutoh Yoneyama *et al.*, 2014). En el caso del melanoma cutáneo, la invasión local se traduce en la invasión del tejido conectivo subyacente que forma la dermis, y se asocia al **crecimiento vertical del tumor**.

La **matriz extracelular** es un entramado de proteínas estructurales, glicosaminoglicanos, proteoglicanos y glicoproteínas que brinda soporte a las células presentes en todos los tejidos y órganos. La **degradación** de la matriz extracelular es un paso imprescindible para que se desarrolle la invasión celular y tiene lugar a través de enzimas como las metaloproteasas (MMP) (Botti *et al.*, 2013).

Las **MMP** constituyen una familia de 25 endopeptidasas dependientes de zinc (Löffek, Schilling and Franzke, 2011; Gonzalez-Avila *et al.*, 2019) cuya transcripción es inducida por citoquinas inflamatorias como IL-1, IL-6 y TNF- α y factores de crecimiento como VEGF y TGF- β (Cui, Hu and Khalil, 2017; Shimoda and Khokha, 2017). Estas enzimas degradan la matriz extracelular facilitando la migración de células precursoras endoteliales hasta el tumor al mismo tiempo que abren paso a las células tumorales para que alcancen los vasos sanguíneos; también modulan muchos otros procesos como la EMT, la angiogénesis y la linfagiogénesis, el metabolismo de las células tumorales, el ambiente inflamatorio tumoral, la resistencia celular a la apoptosis, etc. influyendo sobre citoquinas, factores de crecimiento y moléculas de adhesión (Kessenbrock, Plaks and Werb, 2010; Cui, Hu and Khalil, 2017; Shimoda and Khokha, 2017). Las MMP están elevadas en la mayoría de los tipos de cáncer y se asocian con un mal pronóstico (Fares *et al.*, 2020; Majidpoor and Mortezaee, 2021).

2.2. Procesos ligados a la metástasis

Los procesos hasta ahora descritos muestran un escenario desfavorable en el que las células de melanoma cutáneo han invadido las dermis, donde han promovido la formación de nuevos vasos necesarios para el crecimiento del tumor, pero también para su diseminación a otras localizaciones (*i. e.* metástasis). La **metástasis** es el proceso por el que las células tumorales se diseminan desde su lugar de origen hasta órganos o tejidos distantes, y constituye la causa de muerte para más del 90 % de los pacientes con cáncer (Wirtz, Konstantopoulos and Searson, 2011; Fares *et al.*, 2020). La **colonización** de forma efectiva de órganos distantes por las células tumorales que conforman la denominada **"cascada metastásica"** (Figura 4):

La intravasación es el proceso por el cual las células tumorales entran en la circulación ya sea a través de los vasos sanguíneos o linfáticos. Las células cancerosas que se introducen en la

circulación se denominan células tumorales circulantes (CTC) y son las que se dirigen desde el tumor primario hacia el lugar de diseminación diana. La entrada de las células tumorales al torrente sanguíneo puede estar facilitada por la mayor permeabilidad que presentan los vasos sanguíneos creados en el entorno tumoral debido a su estructura más irregular y caótica que la de los vasos normales. Igualmente puede facilitarse por cambios moleculares (integrinas, quimiocinas, factores de crecimiento, etc.) promovidos por las propias células tumorales y por la hipoxia del entorno tanto en los vasos sanguíneos como en las células, para facilitar su paso a través de la barrera endotelial (Jászai and Schmidt, 2019; Majidpoor and Mortezaee, 2021).

Durante su **tránsito por el torrente circulatorio**, las CTC deben sobrevivir a factores ambientales de estrés, fuerzas físicas y al ataque del sistema inmunitario. Las CTC pueden circular como células individuales o en grupo, lo que les confiere mayor capacidad para sobrevivir; aun así, la mayoría de CTC mueren en esta etapa de camino a su lugar de destino. Se estima que solo un 0,01 % de las CTC consigue formar tumores secundarios (Majidpoor and Mortezaee, 2021), por ello se dice que la metástasis es un proceso ineficiente.

Cuando las CTC llegan a su lugar de destino tiene lugar su extravasación. Una vez que salen del torrente circulatorio, las CTC pasan a denominarse células tumores diseminadas. La salida de las CTC de los vasos sanguíneos es un proceso complejo, que puede darse mediante diferentes mecanismos. En primer lugar, se ha demostrado que las CTC promueven la coagulación y pueden forman agregados plaquetarios en el torrente sanguíneo para detener el flujo sanguíneo y poder adherirse a la pared de los vasos sanguíneos (Lambert, Pattabiraman and Weinberg, 2017). De hecho, las anomalías de la coagulación se experimentan en más del 50 % de todos los casos de cáncer y en el 90 % de los pacientes con tumores metastásicos (Egeblad, Nakasone and Werb, 2010). Otro mecanismo de extravasación es mediante la microrrotura de capilares estrechos cuando quedan atrapadas las células tumorales que viajan en grupo (Massagué and Obenauf, 2016). Las células tumorales del torrente sanguíneo también pueden debilitar la barrera endotelial a través de la liberación de TGF-β y favorecer así su salida (Marcolino et al., 2020). Otra opción es atravesar la pared endotelial mediante la unión específica de las CTC al endotelio a través moléculas de adhesión (Osmani et al., 2019). Por último, se ha demostrado que las células cancerosas pueden inducir necrosis programada de las células endoteliales para debilitar los vasos sanguíneos (Strilic et al., 2016).

Muchos estudios apuntan a que la extravasación de las CTC ocurre preferentemente en órganos específicos que varían según el origen del tumor primario, es lo que se denomina **organotropismo metastásico** (Smith and Kang, 2017). El melanoma, por ejemplo, metastatiza preferentemente en piel y nódulos linfáticos regionales, seguido de pulmón, hígado, cerebro y hueso (Ronchi *et al.*, 2022). Esta predilección por ciertos lugares específicos donde extravasarse y comenzar la colonización viene determinada por las células tumorales del tumor primario, que se encargan de preparar y acondicionar el microambiente del órgano a colonizar. Esto ocurre antes de que lleguen las propias células neoplásicas, estableciendo un entorno favorable que asegure el éxito de la diseminación a distancia cuando las CTC alcancen el órgano (Costa-Silva *et al.*, 2015). Estos entornos favorables que las propias células tumorales crean lejos del tumor primario se denominan **nichos premetastásicos** y son el resultado de muchos eventos como aumentar la permeabilidad vascular, remodelar la matriz extracelular, conformar un ambiente inmunosupresor con efectos pro-tumorales, reprogramación de células, cambios metabólicos, etc. Todos ellos son cambios enfocados a crear un microambiente adecuado donde las células tumorales puedan asentarse, sobrevivir y se desarrolle el tumor a distancia (Peinado *et al.*, 2017).

En su nueva localización, las células tumorales que han sobrevivido pueden bien crecer formando **micrometástasis**, que generarán posteriormente las **macrometástasis**; o, de lo contrario, permanecer en un **estado de latencia** y crecer más adelante. Que tomen un camino u otro está determinado por complejas y múltiples señales intracelulares y extracelulares (Fares *et al.*, 2020).

Figura 4. Principales fases de la cascada metastásica. Las células tumorales crecen en el tumor primario, donde favorecen la angiogénesis para suplir sus requerimientos de nutrientes y oxígeno; y tiene lugar la EMT, que les confiere la capacidad de atravesar la membrana basal (invasión local) y alcanzar el torrente circulatorio. Las células tumorales capaces de atravesar la barrera endotelial de los vasos sanguíneos (proceso de intravasación) se convierten en CTC y, si sobreviven a las inclemencias del torrente circulatorio, pueden salir de la circulación (proceso de extravasación) en muchas ocasiones gracias a su unión con las plaquetas. La salida de las CTC de la circulación sanguínea (o linfática) ocurre en órganos específicos donde previamente las células del tumor primario han formado nichos premetastásicos por medio de EV. En el nuevo órgano elegido para que se produzca la diseminación a distancia, cuando existen las condiciones favorables para ello, las células tumorales supervivientes crean en primer lugar micrometástasis, para finalmente, terminar colonizando el órgano diana. Imagen adaptada de Gomez-Cuadrado *et al.*, 2017.

2.3. Papel del microambiente tumoral en el desarrollo tumoral

El tumor es un ecosistema complejo formado por las **células tumorales** propiamente dichas y el **estroma tumoral** que las rodea, que está constituido por **células no tumorales** asociadas al tumor, **matriz extracelular** y **moléculas de señalización libres o contenidas en EV**; el **microambiente tumoral** hace referencia a este **ecosistema** particular donde se establecen múltiples **interacciones** entre todos sus elementos (Figura 5). Las interacciones constantes entre las células tumorales y el microambiente tumoral juegan un papel decisivo en la iniciación, progresión, metástasis y respuesta a las terapias del tumor (Arneth, 2020; Zhang *et al.*, 2021).

Figura 5. Esquema representativo de los principales componentes del microambiente tumoral. Además de las propias células malignas, los tumores presentan una amplia gama de células no tumorales (fibroblastos y células inmunitarias son los tipos celulares más abundantes), y están constituidos por componentes no celulares como la matriz extracelular y las moléculas de señalización (libres o en EV). Imagen adaptada de Polidoro *et al.*, 2020.

Los fibroblastos, las células del sistema inmune, los adipocitos, las células endoteliales y los pericitos constituyen los **tipos celulares no tumorales** mayoritariamente presentes en el estroma tumoral.

En condiciones fisiológicas, los **fibroblastos** inmersos en la matriz extracelular del tejido conectivo se encuentran en un estado de quiescencia en el que su actividad metabólica y transcriptómica es mínima. En respuesta a una herida los fibroblastos migran, proliferan y se activan con objetivo de reparar y regenerar los tejidos dañados, un proceso complejo que hoy en día se sigue tratando de comprender. La activación de los fibroblastos es un proceso de transformación dinámica y reversible, en el que se han descrito fibroblastos con múltiples fenotipos que originan diferentes subpoblaciones, cada una de ellas especializada en una función (Foster *et al.*, 2021).

Los **miofibroblastos** son fibroblastos activados que exhiben características propias de la célula muscular lisa y presentan una morfología algo diferente a la de los fibroblastos normales: son células más delgadas, fusiformes o estrelladas, de un tamaño mayor que los fibroblastos normales, y presentan un prominente citoplasma con vimentina y fibras de la isoforma α de la actina de la célula muscular lisa (α SMA). Los miofibroblastos proliferan, adquieren propiedades contráctiles y se encargan de reparar y regenerar la matriz extracelular de los tejidos de los diferentes órganos. Si la activación de los fibroblastos persiste de manera incesante, incluso cuando la lesión inicial está reparada, los fibroblastos hiperactivados se convierten en poblaciones celulares

funcionalmente diversas (con capacidad de proliferación aumentada, fenotipo secretor y especial habilidad para remodelar la matriz extracelular) asociadas a procesos patológicos entre los cuales se encuentran los trastornos fibróticos como la fibrosis hepática y trastornos inflamatorios como el cáncer (Kalluri, 2016).

En el entorno tumoral, las células tumorales promueven, mediante la secreción de factores de crecimiento, citoquinas y miRNA, la adquisición del fenotipo hiperactivado de los fibroblastos, denominados **fibroblastos asociados al cáncer** (CAF). Los fibroblastos son el componente celular no tumoral predominante del microambiente tumoral y los CAF juegan papeles diversos en el soporte del tumor: fomentan el crecimiento celular tumoral secretando factores de crecimiento como TGF- β , FGF o el factor de crecimiento insulínico tipo 1 (IGF-1); impulsan la angiogénesis mediante la secreción de VEGF, PDGF, HGF o TGF- β ; promueven la EMT mediante TGF- β ; inducen inmunosupresión mediante la secreción de ligando 1 de muerte programada (PD-L1), IL-6, TGF- β , TNF- α , proteína 10 inducida por interferón gamma (CXCL10) y contribuyen a la remodelación de la matriz extracelular a través de la modulación del balance de MMP e inhibidores tisulares endógenos de las MMP (TIMP) (Gascard and Tlsty, 2016; Kalluri, 2016; Truffi, Sorrentino and Corsi, 2020).

Estudios científicos recientes apuntan a que la población de CAF presente en el microambiente tumoral en realidad está constituida por la combinación de fibroblastos en distintos estados de diferenciación que originan subpoblaciones funcionalmente muy diversas que cohabitan en variable proporción en el microambiente tumoral. Aunque es difícil definir subtipos de CAF, se han propuesto cuatro fenotipos principales en el microambiente tumoral y la presencia de unos u otros varía en función del estado del tumor. En estados tempranos del desarrollo del cáncer predominan los CAF con fenotipos que tienden a ser inhibidores del tumor denominados "inmune" y "desmoplásico", aún poco comprendidos; el primero de ellos caracterizado por la expresión del componente 3 del complemento (C3), engoglina (ENG), IL-6, receptor α de factor de crecimiento derivado de plaquetas (PDGF-Ra) y podoplanina (PDPN); y el segundo, por la expresión de decorina (DCN), LUM, periostina (POSTN) y colágeno tipo X cadena α1 (COL10A1). A medida que progresa el desarrollo del tumor, prevalecen los fenotipos que favorecen la progresión tumoral denominados "contráctil" y "agresivo", el primero de ellos con una alta expresión de factores involucrados en el reordenamiento del citoesqueleto de actina y la regulación del ciclo celular; y el segundo, una alta expresión de marcadores asociados con la EMT, como vimentina o VEGF-A, o las vías de TGF- β ; ambos caracterizados por una elevada expresión de aSMA y relacionados con una mala supervivencia/resultado del paciente (Simon and Salhia, 2022).

En el microambiente tumoral las células tumorales son capaces de controlar y modificar el comportamiento tanto de las **células inmunitarias** infiltrantes como de las que hay alrededor, favoreciendo así la supervivencia y progresión tumoral.

El microambiente tumoral en el melanoma está compuesto de macrófagos asociados a tumor (TAM) con fenotipo M2, linfocitos T, linfocitos B, células mieloides supresoras derivadas de tumor (MDSC), células dendríticas, neutrófilos, células Natural Killer (NK) y mastocitos (Botti *et al.*, 2013; Simiczyjew *et al.*, 2020).

De manera general, y de forma resumida, estas poblaciones de células del sistema inmune son reguladas por factores inflamatorios secretados por las células tumorales y las células del entorno inflamatorio para que a) lleven a cabo funciones inmunosupresoras mediante la secreción de factores inmunosupresores y de tolerancia (PD-L1, antígeno-4 asociado al linfocito t citotóxico

(CTLA-4), TGF- β , óxido nítrico, IL-10, IDO, ligando de Fas (FasL), miRNA), b) medien la extravasación de células tumorales vía VEGF, c) induzcan la EMT de las células malignas con la secreción de TGF- β y el TNF- α , d) promuevan la angiogénesis mediante la secreción de factores proangiogénicos (IGF-1, VEGF, MMP, plasmina, activador del plasminógeno tipo uroquinasa (uAP), IL-8 y FGF) y e) contribuyan a la remodelación de la matriz extracelular con la secreción de MMP-2 y 9 (Simiczyjew *et al.*, 2020).

Las **células endoteliales** y los **pericitos** asociados a ellas favorecen la progresión tumoral, por un lado, promoviendo la angiogénesis tumoral y, por otro, facilitando la intravasación/extravasación de las células cancerígenas. Los vasos sanguíneos neoformados en el microambiente tumoral tienen una estructura mal organizada e irregular, debido a la disminución en el número de pericitos asociados, lo que les confiere una permeabilidad superior a la de los vasos normales (Cho, Jour and Aung, 2019). Hay estudios que avalan que los pericitos inducen la supervivencia celular de células endoteliales mediante la expresión de VEGF y proteínas antiapoptóticas (Franco *et al.*, 2011).

Los **adipocitos**, además de su función canónica de almacenar grasas, están relacionados con el riesgo de desarrollar cáncer, incluido el melanoma. Hay estudios que demuestran que los adipocitos, a través del contacto con las células tumorales y el microambiente tumoral, pueden convertirse en adipocitos asociados a tumor y secretar multitud de moléculas (como TNF- α , INF- γ , TGF- β , IL-6, VEGF, adiponectina, osteopontina, leptina, entre otras), dirigidas a promover la angiogénesis en el entorno tumoral, estimular la proliferación, migración e invasión tumoral y reprogramar el metabolismo celular (Olszańska, Pietraszek-Gremplewicz and Nowak, 2021).

La **matriz extracelular** representa una red tridimensional de compuestos no celulares presente, en mayor o menor medida, en todos los tejidos del organismo. Su composición, y con ello sus características físico-químicas, varían en función de las células residentes que presente y el tejido en el que se analice. Sus principales funciones son la de proporcionar soporte a los tejidos y regular la comunicación intercelular.

En la piel, la mayor presencia de matriz extracelular se asocia con la dermis, constituida por tejido conectivo. Está formada principalmente por proteínas fibrosas (*e. g.* colágeno I, elastina), glucosaminoglicanos libres (*i. e.* ácido hialurónico), proteoglicanos (*e. g.* condroitín sulfato y queratán sulfato) y otras glicoproteínas estructurales (*e. g.* fibronectina, laminina, tenascina, vibronectina, osteonectina, osteopontina). Los componentes de la matriz extracelular de la dermis están principalmente sintetizados por los fibroblastos, células que en un contexto tumoral interaccionan con las células tumorales y participan en uno de los primeros pasos involucrados en la formación de un microambiente tumoral: la remodelación de la matriz extracelular (Botti *et al.*, 2013).

Las **moléculas bioactivas** procedentes de las células tumorales propiamente dichas y de las células no tumorales del microambiente influidas a su vez por las cancerosas son fundamentales en la regulación del proceso tumoral; estas pueden ser secretadas **de forma libre o transportadas en EV** (Zhang and Yu, 2019). Muchas de las moléculas ligadas al desarrollo tumoral en general y al desarrollo del melanoma en particular han sido mencionadas en los apartados anteriores. Sin embargo, cabe mencionar un cambio en el paradigma que se ha dado en la última década: la identificación de las EV y el análisis de su contenido ha demostrado que, muchas de las moléculas del microambiente tumoral se encuentran tanto de forma libre como asociadas a EV. Queda por esclarecer aspectos tales como si las moléculas bioactivas libres presentan funciones diferentes a aquellas asociadas a EV.

Debido a la importancia de las EV en este trabajo, sus características se describirán más extensamente en el siguiente apartado.

3. Vesículas extracelulares

Las **EV** son **vesículas** delimitadas por una **bicapa lipídica** y secretadas por la inmensa mayoría, si no todas, las células. Estas vesículas transportan **ácidos nucleicos, proteínas, lípidos y metabolitos** desde la célula parental o de origen a la célula receptora o diana (Colombo, Raposo and Théry, 2014).

Las EV son **secretadas** de manera constitutiva por las células en **condiciones fisiológicas**, y también bajo una **estimulación específica**, como ocurre, por ejemplo, en condiciones de enfermedad (Yuana, Sturk and Nieuwland, 2013), y están presentes en **fluidos biológicos** como sangre, saliva, orina, leche materna, semen, bilis, líquido cefalorraquídeo o líquido sinovial (Boukouris and Mathivanan, 2015; Yáñez-Mó *et al.*, 2015).

La comunicación celular por medio de EV **regula multitud de procesos fisiológicos**, entre los que se encuentran la respuesta del sistema inmune (Grieco *et al.*, 2021), la reparación de tejidos (Chen *et al.*, 2017), la coagulación (Aleman *et al.*, 2011), la reproducción humana (Sullivan *et al.*, 2005); así como diversos procesos fisiopatológicos como enfermedades cardiovasculares (Kapustin *et al.*, 2015), la osteoartritis (Ni *et al.*, 2020), la diabetes tipo 1 (Grieco *et al.*, 2021), enfermedades neurodegenerativas (Howitt and Hill, 2016) y el cáncer (Zhang *et al.*, 2021).

En el proceso tumoral, las células del microambiente tumoral emplean las EV para transmitir moléculas bioactivas entre células y favorecer el desarrollo del cáncer (Zhang et al., 2021). Las EV secretadas en el microambiente tumoral promueven el crecimiento y la supervivencia celular mediante numerosos mecanismos entre los que se encuentran: a) activación de rutas como la de las MAPK, b) promoción de la angiogénesis y modulación del comportamiento de las células endoteliales mediante factores proangiogénicos, c) reprogramación de fibroblastos en CAF, d) promoción de la EMT, e) contribución a la remodelación de la matriz extracelular liberando proteasas y MMP, f) generación de un ambiente inmunodeprimido por medio de factores inmunosupresores, g) regulación del metabolismo de las células estromales transportando enzimas, intermediarios metabólicos, ácidos grasos o miRNA, h) modulación del pH del microambiente tumoral, i) inducción de entornos proinflamatorios, j) formación del nicho premetastásico y el organotropismo mediante las integrinas que presentan en su membrana o k) contribución a la resistencia frente a terapia antitumoral transfiriendo miRNA que interfieren en las vías de metabolización del fármaco (Boomgarden, Sheehan and D'Souza-Schorey, 2020; Kabakov, Yakimova and Matchuk, 2020; Cheng et al., 2021; Zhang et al., 2021). Si bien se ha descrito la implicación de las EV en los procesos previamente mencionados, existe aún un largo camino por recorrer en cuanto a la identificación de moléculas concretas contenidas en las EV y los procesos específicos regulados por las mismas.

Según se ha descrito, las **células cancerígenas** aumentan la producción de EV (Szczepanski *et al.*, 2011; Peinado *et al.*, 2012; Tickner *et al.*, 2014) y la **concentración plasmática** de EV en pacientes oncológicos es superior a la que presentan las personas sanas (Eldh *et al.*, 2014; Ludwig *et al.*, 2017; Logozzi *et al.*, 2019; Osti *et al.*, 2019). También en este campo queda por determinar el mecanismo subyacente al fenómeno observado.

En el melanoma cutáneo, estudios científicos han corroborado que las EV son moduladores importantes de la **progresión del melanoma** y tienen un papel fundamental en el proceso metastásico regulando diferentes procesos que incluyen la angiogénesis, la linfangiogénesis y la transformación de fibroblastos en CAF. Además, las EV secretadas por células de melanoma contienen **potenciales biomarcadores de diagnóstico y seguimiento** de la enfermedad y estudiar la carga de dichas vesículas derivadas de suero y plasma para identificar biomarcadores es uno de los principales objetivos de la comunidad científica (Cheng *et al.*, 2021; Lattmann and Levesque, 2022).

3.1. Tipos de EV

En base al conocimiento actual, las EV generadas por células eucariotas se clasifican en: **cuerpos apoptóticos**, **microvesículas** (también denominadas ectosomas) **y exosomas**, según su origen o biogénesis (Figura 6) (Gurung *et al.*, 2021; Lattmann and Levesque, 2022).

Figura 6. Clasificación de EV. Se representan las tres clases diferentes de EV. Los cuerpos apoptóticos son liberados cuando las células experimentan apoptosis y tienen un tamaño superior a 1000 nm, las microvesículas se liberan a través de la evaginación de la membrana plasmática y su tamaño varía entre 100 y 1000 nm de diámetro, y los exosomas tienen su origen en los cuerpos multivesiculares y tienen un rango de tamaño de 50 a 200 nm de diámetro. Imagen adaptada de Gurung *et al.*, 2021.

Los **cuerpos apoptóticos** son las EV más heterogéneas respecto a morfología, tamaño y composición, y las menos estudiadas a día de hoy. Los cuerpos apoptóticos son las vesículas de mayor tamaño, **de 50 a 5000 nm** de diámetro (mayoritariamente > 1000 nm), y se originan por la **fragmentación de las células que sufren apoptosis** (Gurung *et al.*, 2021; Lattmann and Levesque, 2022).

Las **microvesículas** (MV) son EV formadas a partir de la **evaginación de la membrana plasmática** y presentan un tamaño de entre **100 y 1000 nm** (Gurung *et al.*, 2021; Lattmann and Levesque, 2022).

El proceso de biogénesis de las MV está poco caracterizado. La formación de MV tiene lugar cuando se origina un abultamiento o brote de la membrana plasmática hacia el exterior, se produce la fisión de la membrana plasmática y la vesícula se libera hacia el espacio extracelular. Se sabe que en respuesta a ciertos estímulos (como el nivel de calcio citosólico), la carga molecular a incluir en la vesícula se ubica en la membrana plasmática, los fosfolípidos de la membrana plasmática se redistribuyen (por ejemplo, la fosfatidilserina es traslocada por flipasas a la superficie externa de la vesícula), alterando la curvatura y la rigidez de la membrana y se genera una protuberancia en la membrana plasmática. El desprendimiento de la MV se produce como consecuencia de una cascada de señalización iniciada por el factor 6 de ADP-ribosilación (ARF6) que desencadena la reorganización del citoesqueleto vía Rho y la activación de la maquinaria contráctil (actomiosina) vía quinasa de la cadena ligera de la miosina (MLCK). También hay evidencias de que la maquinaria del complejo de clasificación endosomal necesario para el transporte (ESCRT) y en el que se enclavan proteínas como ALIX, TSG101, VPS4, VPS22 y CHMP1/3, participa en la formación de MV (Kalra, Drummen and Mathivanan, 2016; Tricarico, Clancy and D'Souza-Schorey, 2017; Teng and Fussenegger, 2021).

Los **exosomas** son EV con un tamaño de **50 - 200 nm** y tienen su origen ligado al sistema endosomal-lisosomal y, en concreto, a los **cuerpos multivesiculares** (MVB) (Gurung *et al.*, 2021; Lattmann and Levesque, 2022).

Los MVB son endosomas tardíos que contienen vesículas intraluminales (ILV) y su formación deriva de los endosomas tempranos, en los que se encuentran moléculas incorporadas bien mediante endocitosis como mediante la síntesis de novo (Figura 7). Los endosomas tempranos pueden retornar parte de su contenido a la membrana plasmática o medio extracelular (i. e. endosomas de reciclaje) o bien convertirse en MVB tras un proceso de invaginación de su membrana y generación de las ILV previamente mencionadas. Los endosomas tardíos o MVB, pueden, a su vez, intercambiar material con el aparato de Golgi y el citosol. Durante la invaginación de la membrana endosomal se produce el segundo cambio de orientación de la membrana que les proporciona a los exosomas la misma orientación en la bicapa lipídica a la de la membrana plasmáticas de las células parentales. El proceso de formación de ILV es un proceso que está generalmente dirigido por los complejos ESCRT y proteínas asociadas (e. g. ALIX), aunque se han descrito también vías independientes de ESCRT, guiadas por las tetraspaninas o lípidos (como colesterol, ceramidas y ácido lisobifosfatífico). Dependiendo del contenido en proteínas de su superficie (tetraspaninas, integrinas, proteoglicanos y lectinas) y del colesterol de sus membranas, los MVB se dirigen a la ruta lisosomal, para ser degradados mediante su fusión con los lisosomas, o a la ruta exocítica, y ser secretados al espacio extracelular. En la ruta exocítica, los MVB se transportan intracelularmente a la periferia celular regulados por proteínas de la familia Rab GTPasa, como por ejemplo, las Rab GTPasas Rab25 y Rab27a y Rab27b, y, finalmente, las proteínas solubles de unión al factor sensible a la N-etilmaleimida (SNARE) promueven la fusión de los MVB con la membrana plasmática, momento en el que las ILV, entonces denominados exosomas, se liberan al medio extracelular (Raposo and Stoorvogel, 2013; Colombo, Raposo and Théry, 2014; French, Antonyak and Cerione, 2017; Van Niel, D'Angelo and Raposo, 2018; Rodrigues et al., 2020; Gurung et al., 2021).

Figura 7. Esquema resumen de los principales pasos de la ruta de biogénesis de los exosomas. Moléculas del espacio extracelular son internalizadas por endocitosis (1), formando los endosomas tempranos (2) que también se cargan de material procedente también de la red trans Golgi. La formación de ILV en los endosomas tempranos (proceso dirigido por la maquinaria ESCRT, tetraspaninas o lípidos) origina los endosomas tardíos o MVB (3), que se cargan de material procedente del citosol y están en continuo intercambio de contenido con el aparato de Golgi (4). Los MVB se dirigen a la membrana plasmática (por medio de proteínas de la familia Rab GTPasa) (5) para finalmente fusionarse con ella (gracias a las proteínas SNARE) (6) y liberar los exosomas, hasta ese momento ILV, al medio extracelular (7). Imagen adaptada de Gurung *et al.*, 2021.

Si bien las vías de formación para las distintas EV varían, una vez liberadas por la célula de origen, las EV (principalmente las MV y los exosomas) pueden **interactuar y transferir su contenido** a la membrana o al citosol de la célula diana por **múltiples vías** (Van Niel, D'Angelo and Raposo, 2018; Teng and Fussenegger, 2021): fusión directa de la membrana de las EV con la membrana plasmática de la célula receptora mediante proteínas de fusión, interacciones de alta especificidad entre proteínas de membrana de las vesículas y receptores presentes en la superficie de la célula receptora, y mediante diferentes rutas de endocitosis como la fagocitosis, la macropinocitosis, la endocitosis dependiente de clatrina y la endocitosis dependiente de caveolina.

3.2. Caracterización de EV

Según los registros en PubMed, el **término "vesículas extracelulares"** fue usado por primera vez en 1971 (Aaronson *et al.*, 1971) y el **término "exosoma"** en 1981 (Trams *et al.*, 1981). A partir de ese momento, el estudio de los exosomas suscitó un creciente interés reflejado en el aumento exponencial de publicaciones científicas, especialmente desde el 2004. Durante muchos años se

estuvo empleando el término "exosoma" en los artículos científicos de forma general, sin demostrar su origen endosomal ni sus características específicas hasta que en el año **2011** se fundó la **International Society for Extracellular Vesicles (ISEV)** lo cual forzó a un amplio comité de expertos en el área a **definir un procedimiento de caracterización de las EV** de estudio.

En el año 2014 se publicó el primer documento Minimal Information for Studies of Extracellular Vesicles (MISEV) (Lötvall *et al.*, 2014), una guía en la que se unificaron y establecieron los criterios para el estudio de las EV, enfocándose principalmente en los exosomas. Posteriormente, tras una gran encuesta detallada de las prácticas mundiales usadas hasta el momento para el aislamiento y la caracterización de las EV, **en 2018 se publicó la actualización de la guía MISEV** (Théry *et al.*, 2018), que insta a no usar el término "exosomas" e invalida la selección tradicional de proteínas específicas esperadas o no en ellos y aconseja **emplear el término "vesículas extracelulares" como nombre genérico base**, y sobre él añadir detalles físicos y moleculares para designar cada población y subtipo, indicando su origen, condiciones de aislamiento, tamaño y los marcadores positivos o negativos a medida que se avanza en su caracterización.

En base a lo mencionado, la **correcta caracterización de las EV** debe de incluir pruebas ligadas a la determinación de características físicas (*e. g.* tamaño, forma), así como de características químicas (*e. g.* marcadores).

La determinación de **características físicas** debe incluir al menos un tipo de análisis perteneciente a cada una de las siguientes dos categorías:

1) Análisis de imagen de alta resolución. Ya sea mediante microscopía electrónica (microscopía electrónica de barrido (SEM), microscopía electrónica de transmisión (TEM), crio-TEM); microscopía de barrido por sonda (SPM), incluida microscopía de fuerza atómica (AFM); o microscopía de superresolución.

2) Análisis que proporcionen las características biofísicas individuales de un gran número de EV. El análisis de tamaño se puede realizar mediante análisis de rastreo de nanopartículas (NTA), citometría de flujo de alta resolución, detector de dispersión de luz multiangular combinado con equipo de fraccionamiento en flujo mediante campo de flujo asimétrico (AF4-MALS), detección de pulso resistivo sintonizable (TRPS) o espectroscopía de correlación de fluorescencia (FCS). La composición química puede ser evaluada por espectroscopía Raman.

La determinación de características químicas requiere la evaluación de cinco categorías de proteínas:

Categoría 1: proteínas transmembrana o ancladas a glicosilfosfatidilinositol (GPI) localizadas en la membrana plasmática y/o endosomas. Estas proteínas demuestran la presencia de la bicapa lipídica específica de EV en las fracciones aisladas, que puede ser de origen endosomal (exosomas) o de membrana plasmática (MV). Son ejemplo de esta categoría las tetraspaninas **CD63, CD81 o CD9** (esta última ausente en células NK, linfocitos B y algunas MSC), integrinas, complejo mayor de histocompatibilidad clase I (MHC-I).

Categoría 2: proteínas citosólicas incorporadas en las EV. Estas proteínas demuestran que las bicapas lipídicas analizadas encierran material intracelular, como se espera que ocurra en las EV y suelen ser proteínas con capacidad para unirse a proteínas transmembrana, enzimas citosólicas o proteínas del citoesqueleto. Por ejemplo, proteínas de los complejos ESCRT-I/II/III (*e. g.* **TSG101**) o proteínas asociadas (*e. g.* **ALIX**), caveolinas, proteínas de choque térmico (HSP), proteínas de citoesqueleto como actina y tubulina, etc.

Detectar la presencia de, al menos, una proteína de la categoría 1 y una de la categoría 2 es necesario para demostrar que las vesículas aisladas poseen bicapa lipídica, y que estas se encuentran intactas y no se trata solo de fragmentos de membrana y, que, además, las vesículas engloban material en su interior.

Categoría 3: proteínas de componentes o estructuras aisladas junto con EV. Son proteínas que sirven para evaluar el grado de pureza de las EV en las fracciones purificadas. Cuando se aíslan EV derivadas de sangre, ya sea **de suero o de plasma**, los mejores marcadores para evaluar la pureza son la **ApoA1/2** y la **albúmina**.

Categoría 4: proteínas transmembrana, unidas a lípidos o solubles asociadas a compartimentos intracelulares diferentes a la membrana plasmática y los endosomas. Las proteínas de esta categoría se relacionan con el enriquecimiento de EV de tamaño grande (> 200 nm de diámetro) por lo que son marcadores que pueden encontrase en algunos subtipos de EV, pero no enriquecidos *a priori* en las EV pequeñas (< 200 nm de diámetro). Por ejemplo, histonas de núcleo, proteínas de mitocondria como el citocromo C, o del retículo endoplasmático (ER) como la calnexina (**CANX**), entre otras.

Categoría 5: proteínas secretadas con actividades funcionales asociadas a EV aisladas. Por ejemplo, citoquinas, factores de crecimiento, proteínas de matriz extracelular, etc. Estos marcadores deben analizarse si se van a hacer ensayos funcionales.

Puesto que la muestra suele ser muy limitada, MISEV 2018 establece que **no es necesaria la evaluación de estos marcadores en cada tanda de aislamiento**, pero sí, cada vez que se modifiquen las condiciones de aislamiento de las EV.

En **esta tesis doctoral**, siguiendo las pautas establecidas, las fracciones aisladas se han caracterizado generalmente mediante crio-TEM y NTA, y se ha analizado la presencia de a) las tetraspaninas CD63, CD81 y CD9, b) las proteínas citosólicas ALIX y TSG101, c) las proteínas de citoesqueleto actina y tubulina, d) las proteínas ApoA1, ApoB100 y ApoE y albúmina para evaluar la pureza de las EV cuando se ha trabajado con muestras de suero humano, y e) la proteína de ER CANX, asociada a la presencia de EV de tamaño grande.

3.3. Aplicación de las EV como biomarcadores

Desde hace unos años, las EV se han convertido en uno de los principales focos de atención para la **búsqueda de biomarcadores de pronóstico, diagnóstico y seguimiento del cáncer**. Estas vesículas se han postulado como una **prometedora fuente de biomarcadores** debido al papel principal que desempeñan en la comunicación celular en procesos clave del desarrollo de la enfermedad tumoral y a la valiosa información que aportan en el diagnóstico y pronóstico del cáncer (origen celular del tumor, preferencia para posibles metástasis, etc.) así como en la monitorización de la respuesta a tratamientos (Urabe *et al.*, 2020; Tamura *et al.*, 2021).

Las CTC, el ctDNA y las EV son las **principales fuentes de biomarcadores** analizadas en las biopsias líquidas (Urabe *et al.*, 2020). Las **CTC** son células tumorales con elevada capacidad invasiva y metastásica que han alcanzado el sistema circulatorio, cuyos marcadores fenotípicos y características genéticas y epigenéticas pueden aportar información muy valiosa del estado del proceso tumoral (Haber and Velculescu, 2014; Mathai *et al.*, 2019). El **ctDNA** es el DNA libre circulante vertido por las células tumorales. La detección de mutaciones genéticas y metilaciones presentes en él mediante reacción en cadena de la polimerasa (PCR) o secuenciación de nueva

generación (NGS) permite identificar genes diana útiles, detectar enfermedad residual y monitorizar la respuesta a un tratamiento concreto (Haber and Velculescu, 2014; Mathai *et al.*, 2019). Las **EV** han surgido como una fuente de biomarcadores alternativa a las CTC y el ctDNA, que presentan algunas **ventajas** sobre ellas. En primer lugar, las EV son vesículas que presentan una gran estabilidad tras ser extraídas del organismo (Boukouris and Mathivanan, 2015) y la carga que portan (proteínas, DNA, ácido ribonucleico (RNA), miRNA, lípidos y metabolitos) está protegida y es biológicamente activa (Kalra *et al.*, 2013); por lo tanto, *a priori* representan un material de trabajo más estable que el ctDNA y más fácil de aislar en comparación a las CTC. En segundo lugar, la cantidad de EV presente en sangre es mayor que la de CTC y ctDNA, lo que permite obtener preparaciones más enriquecidas que facilita la búsqueda de biomarcadores (Alvarez Cubero *et al.*, 2017; Sisson *et al.*, 2019).

En lo referente al melanoma cutáneo, son varios los estudios que han propuesto nuevos biomarcadores a partir de EV (en numerosas ocasiones presentados como "marcadores exosomales", aun cuando no se determina el origen concreto de dichas vesículas). Uno de los trabajos pioneros en este campo propuso una "firma de melanoma" específica en EV circulantes de sujetos con melanoma avanzado, que podría usarse como indicador de la enfermedad metastásica; esta firma estaba compuesta por proteínas relacionadas con tirosinasa 2 (TYRP2), el antígeno muy tardío 4 (VLA-4), HSP70, una isoforma HSP90 y la oncoproteína MET característica (Peinado et al., 2012). Otros estudios han evidenciado que el contenido de algunos miRNA en las EV derivadas de melanoma se ve influido con el avance de la enfermedad. En base a estos estudios, los niveles de miR-125b en EV derivadas de suero de pacientes con melanoma se reducen (Alegre et al., 2014) mientras que los niveles de miRNA-106b y miRNA-532-5p aumentan en comparación con los niveles de individuos sanos (Tengda et al., 2018). Así mismo se ha relacionado la presencia de integrinas específicas en las EV con la tendencia de diversos tumores, incluido el melanoma, para metastatizar en órganos concretos; concretamente, se ha propuesto la asociación de las integrinas α 6 β 4 y α 6 β 1 con metástasis en pulmón, la α v β 5 con metástasis en hígado y la αvβ3 con metástasis en cerebro (Hoshino et al., 2015).

El campo del estudio de las EV como fuente de biomarcadores para el melanoma cutáneo no se limita a biomarcadores para el diagnóstico o evolución de la enfermedad ya que trabajos recientes han analizado su utilidad para la determinación de respuesta a tratamientos y principalmente, de respuesta a la inmunoterapia. En este sentido, niveles elevados de PD-L1 en EV secretadas por células de melanoma se han relacionado con la progresión tumoral, y concentraciones elevadas en sangre de dicha proteína en pacientes con melanoma se correlacionan con baja respuesta a la terapia con anticuerpos anti-PD-1 (Chen *et al.*, 2018). En la misma línea, se ha puesto de manifiesto que la resistencia a la inmunoterapia anti-PD-1 está causada en gran parte por el PD-L1 presente en la superficie de las EV, y su bloqueo podría ser una estrategia para superar dicha resistencia (Poggio *et al.*, 2019). Por otro lado, niveles elevados de CD73 (que participa en la producción de adenosina y contribuye a la progresión tumoral) en EV se han correlacionado con un peor pronóstico y no respuesta al tratamiento con inmunoterapia anti-PD-1 (Turiello *et al.*, 2022).

II. HIPÓTESIS Y OBJETIVOS

Hipótesis

Las EV han sido propuestas como un mecanismo de comunicación celular con una gran relevancia en la progresión tumoral en general, así como en el desarrollo del melanoma cutáneo, en particular. Los componentes moleculares de las EV varían en función de las células de origen y de los estímulos que estas reciben, por lo que la adquisición de un mayor conocimiento acerca de las moléculas contenidas en las EV, la identificación de aquellas ligadas a la progresión tumoral y la descripción de los mecanismos pro-tumorales mediados por las mismas, pueden representar una información esencial tanto para la mejor caracterización de los pacientes como para el diseño de futuras estrategias antitumorales.

Objetivos

Esta tesis doctoral presenta **dos vertientes diferenciadas pero complementarias** dirigidas, por un lado, a identificar y estudiar la implicación biológica de proteínas enriquecidas en EV tumorales, y por el otro, a desarrollar nuevas herramientas moleculares predictivas basadas en biopsia líquida dirigidas a categorizar a los pacientes con melanoma cutáneo diagnosticados en fases tempranas en base a su riesgo para desarrollar metástasis.

Los objetivos concretos planteados para alcanzar los dos objetivos principales son:

- a) Identificación de proteínas liberadas mediante EV tumorales que puedan estar relacionadas con el desarrollo del melanoma cutáneo humano.
- b) Determinación de los efectos funcionales de las proteínas seleccionadas en la modulación de componentes del microambiente tumoral.
- c) Evaluación y optimización de técnicas de aislamiento de EV de suero humano y estudio de su compatibilidad con ensayos proteómicos.
- d) Identificación de biomarcadores de melanoma cutáneo presentes en EV séricas que permitan predecir la progresión tumoral en pacientes diagnosticados en estadios tempranos.

III. MATERIALES Y MÉTODOS

1. Cultivos celulares

El cultivo celular es un modelo de estudio *in vitro* esencial en la investigación científica. Los cultivos celulares se mantienen en unas condiciones artificiales controladas que son óptimas para su supervivencia y crecimiento, de manera que las células conservan todas las funciones y actividades metabólicas tal y como las presentan *in vivo*.

Todos los cultivos celulares se mantuvieron dentro de un incubador (HERAcell 150i, Thermo Scientific) a 37 °C, con una humedad relativa del 95 % y una relación 5 % $CO_2/95$ % aire. Las células y las soluciones y materiales empleadas se manipularon siempre en el interior de una cabina de flujo laminar donde se conservó su esterilidad.

En este trabajo se utilizaron tanto cultivos primarios (HEMn-LP, HEMn-MP, Detroit 551), cuyo periodo de vida es limitado, como líneas celulares tumorales establecidas (A375, MEL-HO, COLO-800, A2058) que proliferan de forma ilimitada. Cada tipo celular se mantuvo en las condiciones descritas por la casa comercial de la que proceden: medios de cultivos, suplementos, condiciones de subcultivo (grado de confluencia anterior al subcultivo, velocidad de centrifugación, reactivos utilizados para levantarlas, dilución al subcultivar, etc.) y condiciones de congelación y descongelación.

Todas las líneas celulares utilizadas fueron comerciales y de origen humano, y se pueden clasificar en 4 grupos: melanocitos epidérmicos (HEMn-LP, HEMn-MP), melanomas primarios (A375, MEL-HO), melanomas metastásicos (COLO-800, A2058) y fibroblastos dérmicos (Detroit 551). En la Tabla 5 se resumen las características de cada línea celular.

Tabla 5. Descripción de las líneas celulares empleadas. Se indica el nombre de cada línea celular, a qué tipo
celular corresponden, la zona corporal de la que derivaron, la edad y el sexo de las personas de las que se
extrajeron, su referencia comercial y la casa comercial de la que se compraron.

línea celular	tipo celular	zona de origen	edad	sexo	referencia	casa comercial
HEMn-LP	melanocitos epidérmicos	prepucio ligeramente pigmentado	recién nacido	varón	C-002-5C	Cascade Biologics, Inc
HEMn-MP	melanocitos epidérmicos	prepucio moderadamente pigmentado	recién nacido	varón	C-102-5C	Cascade Biologics, Inc
A375	melanoma primario	piel	54	mujer	CRL-1619	ATCC
MEL-HO	melanoma primario	piel	-	mujer	ACC 62	Innoprot S.L.
COLO-800	melanoma metastásico	nódulo subcutáneo	14	varón	ACC 193	Innoprot S.L.
A2058	melanoma metastásico	nódulo linfático	43	varón	CRL-11147	ATCC
Detroit 551	fibroblastos	piel	feto	mujer	CCL-110	ATCC

1.1. Descongelación de células

El primer paso para comenzar con un cultivo celular es descongelar un vial del stock almacenado o descongelar un vial comprado. En cada caso, el criovial se calentó en el baño a 37 °C hasta su descongelación e inmediatamente se mezcló con 10 - 15 ml de medio. La suspensión celular se centrifugó el tiempo adecuado a la velocidad recomendada por la casa comercial y el pellet de células se sembró en un frasco de cultivo de 25 cm².

En el caso de los cultivos primarios de melanocitos, la casa comercial recomienda no centrifugar en el proceso de descongelación por lo que el contenido del vial se diluyó directamente en medio de cultivo correspondiente. Los restos de dimetilsulfóxido (DMSO) o componentes análogos se eliminaron mediante el reemplazo del medio pasadas 24 horas.

1.2. Mantenimiento del cultivo

Los melanocitos, HEMn-LP y HEMn-MP, se mantuvieron en Medium 254 (Gibco, M-254-500) suplementado con Human Melanocyte Growth Supplement-2 (HMGS-2) (Gibco, S-016-5). Las líneas A375, MEL-HO y COLO-800 se cultivaron en medio RPMI 1640 (Gibco, 21875-034); la línea celular A2058 en medio DMEM (Sigma, D5796-500ML) y los fibroblastos Detroit 551 en medio EMEM (ATCC, 30-2003); todos ellos suplementados con un 10 % de suero bovino fetal (FBS) (10270-106, Gibco).

El subcultivo de las células se realizó en todos los casos tras alcanzar el 80 - 90 % de confluencia. Los melanocitos en cultivo se levantaron con TripLE Select (12563-029, Gibco) y se centrifugaron durante 7 minutos a 180 xg para precipitar las células. Las células de melanoma se despegaron de los frascos con una solución enzimática de 0,05 % Tripsina-EDTA 1x (25300-062, Gibco) a 37 °C, que se inactivó con FBS, y la suspensión celular se centrifugó a 300 xg durante 5 minutos. De igual modo, los fibroblastos se levantaron con 0,05 % Tripsina-EDTA a 37 °C, pero se centrifugaron sólo cuando fue indispensable, a 125 xg durante 7 minutos.

Las células precipitadas se resuspendieron en medio de cultivo fresco y se procedió a su contaje en una solución de azul tripano 0,4 % (15250061, Gibco) a dilución 1:2 mediante el contador automático de células (TC20, Bio-Rad). Alternativamente, se subcultivaron mediante diluciones para su óptimo mantenimiento y crecimiento. Los melanocitos se sembraron en una concentración de 5.000 cels/cm² para alcanzar de nuevo el 80 % de confluencia en 7 - 9 días en el caso de HEMn-LP y en 12 - 15 días en HEMn-MP. Las líneas tumorales se subcultivaron con diluciones 1/4 - 1/5 para lograr el 90 % de confluencia de nuevo en 4 días. Los fibroblastos se diluyeron entre 1/2 - 1/5 y el medio de cultivo se renovó 2 - 3 veces por semana.

1.3. Congelación de células

Tras la adquisición de una línea celular es necesario hacer inmediatamente un amplio *stock* de células congeladas en pases tempranos. Es fundamental tener una reserva inicial de viales lo más amplia posible puesto que, en el caso de los cultivos primarios, el número de divisiones celulares que realizan las células en cultivo es muy limitado; y en el caso de las líneas celulares tumorales, aunque son inmortales, es conveniente retirar las células cuando estas lleven un cierto tiempo en cultivo para evitar la acumulación de alteraciones genéticas.

El procedimiento seguido para congelar las células fue el siguiente: las células en cultivo se levantaron cuando estaban en fase de crecimiento exponencial, se centrifugaron y resuspendieron en una disolución de congelación compuesta de FBS y DMSO (D2650, Sigma) en proporción 9:1, a una densidad celular de 2·10⁶ células/ml. Los crioviales se guardaron correctamente identificados en el congelador a -80 °C en el interior de un Mr. FrostyTM (Nalgene, Thermo Scientific), donde la temperatura baja de manera continua a la velocidad de 1 °C por minuto. 24 horas después, los crioviales se guardaron en el propio arcón de -80 °C o en nitrógeno líquido, dependiendo del tiempo estimado de almacenamiento.

1.4. Detección de micoplasma

La contaminación por micoplasma es muy habitual en los cultivos celulares y puede tener efectos sobre aspectos tales como la aparición de aberraciones cromosómicas, la alteración de la velocidad de proliferación o del metabolismo celular e incluso la afectación de la viabilidad celular.

La presencia de micoplasma se testó de manera rutinaria mediante PCR (11-8050, Venor GeM OneStep MinervaBiolabs) en sobrenadantes de cultivos celulares en densidad alta y de acuerdo a lo especificado por el fabricante. El producto de PCR se mezcló con tampón de carga 5x (BIO-33029, BIOLINE) y, a continuación, se migró en gel de agarosa al 2 % con tinte de gel de DNA SYBR™ Safe (S33102, Invitrogen) diluido 1:10.000, durante 20 minutos a 100 V en tampón TAE 1x (Anexo 1A). El resultado se visualizó en un documentador de geles DigiDoc-It Darkroom UVP.

2. Obtención y selección de muestras de suero humano

Desde hace más de 20 años, gracias a los proyectos que se han ido realizando dentro del grupo de investigación de la Dra. Boyano y a la estrecha colaboración con los investigadores clínicos de los hospitales de Basurto, Cruces y Galdakao en Vizcaya, y el Onkologikoa en Guipúzcoa, se han ido recogiendo muestras de suero de pacientes con melanoma, de los cuales además conocemos su historial clínico y evolución, que se han ido depositando en el Biobanco Vasco. Los criterios de inclusión de muestras en esta tesis doctoral fueron los siguientes: a) que hubiera un diagnóstico confirmado histológicamente de melanoma maligno, b) que no se hubiera comenzado ningún tratamiento excepto cirugía primaria y c) que no existiera infección a juzgar por la evaluación clínica y la ausencia de parámetros infecciosos aumentados en la sangre.

Las biopsias de lesiones sospechosas fueron analizadas por un patólogo y aquellos pacientes con resultado positivo para melanoma fueron sometidos a una segunda cirugía para una escisión local amplia. Los pacientes diagnosticados de melanoma en estadio I o II permanecieron bajo la supervisión de la Unidad de Dermatología mientras que los pacientes en estadio III o IV fueron derivados a la Unidad de Oncología. Tras la extirpación del tumor primario, se programaron revisiones clínicas de los pacientes con melanomas en estadio temprano cada 3 meses durante los 2 primeros años de seguimiento y cada 6 meses a partir de entonces, hasta completar un seguimiento de 5 años. Luego se programaron revisiones anuales hasta el décimo año postoperatorio. Los pacientes que desarrollaron metástasis durante el período de seguimiento fueron nuevamente examinados cada 3 meses durante 2 años después del diagnóstico de metástasis. La presencia o ausencia de metástasis se evaluó en todos los pacientes mediante examen físico, así como a través de pruebas de laboratorio y radiológicas (rayos X y/o tomografía

computarizada), y a algunos pacientes se les realizó biopsia de ganglio centinela, aunque no fue un procedimiento generalizado.

La clasificación de los pacientes diagnosticados de melanoma cutáneo se basó en la 8ª edición de la AJCC (Gershenwald *et al.*, 2017). Para este trabajo de investigación se utilizaron muestras de suero humano procedentes de:

- Individuos sanos, sin enfermedades conocidas.
- Pacientes diagnosticados de melanoma primario en estadio I que no desarrollaron metástasis en el seguimiento posterior, un periodo mínimo de 5 años.
- Pacientes diagnosticados de melanoma primario en estadio II que no desarrollaron metástasis en el seguimiento posterior, un periodo superior a 5 años.
- Pacientes diagnosticados de melanoma primario en estadio I que sí desarrollaron metástasis en el seguimiento posterior.
- Pacientes diagnosticados de melanoma primario en estadio II que sí desarrollaron metástasis en el seguimiento posterior.
- Pacientes diagnosticados con melanoma metastásico (en estadios III y IV).

Las muestras de suero se obtuvieron siguiendo el protocolo establecido en el Biobanco Vasco a partir de muestras de sangre venosa extraídas 1 mes después de la extirpación quirúrgica de las lesiones. De manera resumida, las muestras de sangre se dejaron coagular a temperatura ambiente durante 30 minutos y, a continuación, se centrifugaron a 1000 xg durante 10 minutos. Se recogió el suero y éste se dividió en alícuotas de 500 µl que se almacenaron a -80 °C en el Biobanco Vasco hasta su uso.

Este trabajo de investigación se enmarcó en una de las líneas de investigación del grupo (identificación de marcadores de diagnóstico y pronóstico en el melanoma humano) financiada por el proyecto de grupos consolidados que contó con el informe favorable del Comité de Ética de investigación clínica de Euskadi, código PI2014080, acta 04/2014 (código del Biobanco: 14-06). Siguiendo la normativa se informó a los pacientes y se obtuvo el consentimiento informado por escrito de todos los sujetos, tanto para su inclusión en el grupo como para la obtención de muestras biológicas. Este estudio se realizó según la Ley Orgánica 15/1999 de Protección de Datos de Carácter Personal, máxime en los que concierne al envío y manejo de datos a terceros.

3. Transfección

La transfección celular es el procedimiento por el cual el material genético foráneo es introducido en células eucariotas para inducir y aumentar o bloquear y disminuir la expresión de un gen de interés. Se trata de una técnica que permite estudiar la función de proteínas de interés y evaluar el impacto que tiene a diferentes niveles disminuir o aumentar la expresión de genes, bien de manera transitoria o estable. En las transfecciones transitorias el material genético extraño que se introduce no se integra en el genoma y permanece solo por un tiempo limitado y, por el contrario, en las estables el DNA foráneo introducido se incorpora en el genoma de la célula y se transmite a las células descendientes tras las divisiones celulares.

El proceso de transfección se puede llevar a cabo mediante métodos biológicos, a través de virus; físicos, usando la electroporación, la microinyección y la biobalística; y químicos, con fosfato de calcio o, tal y como se hizo en este trabajo, mediante liposomas catiónicos sintéticos. La transfección mediante liposomas se basa en la asociación de las regiones catiónicas del liposoma

con las cargas negativas de los ácidos nucleicos que se quieren introducir, una asociación de cargas que resulta en una carga total positiva o neutra del complejo lípido/DNA que permite que el liposoma se adhiera a la membrana celular mediante interacciones electrostáticas, al reducirse la repulsión electrostática entre el ácido nucleico y la membrana celular cargada negativamente, y sea incorporado por endocitosis (Fus-Kujawa *et al.*, 2021).

La eficiencia de la transfección depende de muchas variables: el tipo celular, la viabilidad celular, la confluencia de las células, la concentración óptima de DNA y lípido para cada tipo de células, el tiempo de la transfección, etc.

3.1. Generación de líneas celulares estables genéticamente modificadas mediante shRNA

En este trabajo se generaron líneas celulares monoclonales con disminución estable y permanente de expresión de la proteína inductora de la migración celular y de unión al ácido hialurónico (CEMIP) a partir de la línea tumoral COLO-800 (melanoma metastásico) usando RNA corto en horquilla (shRNA), un RNA de interferencia que, gracias al plásmido en el que está incluido, es capaz de integrarse en el genoma. Los shRNA están formados por 2 secuencias complementarias de 19 - 22 pares de bases unidas por un pequeño bucle de 4 - 11 nucleótidos que forman una horquilla similar a la que ocurre durante el proceso de maduración de los miRNA en el interior de la célula. Tras la transcripción en el núcleo, la secuencia de shRNA se exporta al citosol donde es reconocida por una enzima endógena, Dicer, que procesa el shRNA y genera los dúplex de RNA pequeño de interferencia (siRNA). Al igual que ocurre con los oligonucleótidos de siRNA sintéticos administrados de forma exógena en las transfecciones transitorias, este siRNA de origen endógeno se une al mRNA diana y se incorpora al complejo RISC para la degradación del mRNA específico de la diana.

Para este trabajo se utilizaron shRNA diseñados para el bloqueo especifico de la producción de la proteína CEMIP humana integrados en vectores lentivirales (pGFP-C-shLenti), unos plásmidos que contaban además con un gen codificante para la proteína verde fluorescente (GFP) para verificar visualmente la transfección de las células, y un gen de resistencia a puromicina para seleccionar las células transfectadas (Figura 8), ambos genes útiles para la selección de las células con incorporación estable del plásmido (TL303761, ORIGENE). Se testaron 4 constructos diferentes (TL303761A, TL303761B, TL303761C y TL303761D) y como condición control se usó un shRNA irrelevante incluido en un plásmido similar (TR30021).

Figura 8. Estructura del vector de expresión pGFP-C-shLenti de ORIGENE empleado para la generación de líneas celulares estables con expresión modificada de la proteína CEMIP mediante shRNA. En este plásmido de clonación la expresión del casete de shRNA introducido está dirigida por el promotor U6 de la polimerasa III (U6 Pr). Consta de un gen de resistencia a puromicina (Puro^r) que permite seleccionar las células transfectadas, cuya expresión está dirigida por un el promotor SV40 Pr, y de un gen que se traduce en la GFP (tGFP) para verificar visualmente la transfección, cuya expresión está dirigida por un promotor CMV Pr. El vector también presenta las secuencias LTR necesarias para la integración del plásmido en el genoma de las células transfectadas y un origen de replicación (Ori). El marcador de selección de bacterias transformadas es cloranfenicol (Cam^r). Imagen procedente del manual de la casa comercial.

Las células COLO-800 se sembraron en placas de 6 pocillos en una cantidad de 200.000 células/pocillo, en su medio de cultivo habitual (2 ml/pocillo) y 24 horas después, con el cultivo al 50 - 60 % de confluencia, se transfectaron de la siguiente manera: se mezclaron 500 ng de shRNA, 150 μ l Opti-MEM I (31985070, Gibco) y 2 μ l TransIT-X2 System (MIR6000, Mirus), y esta mezcla, después de 30 minutos de incubación a temperatura ambiente, se añadió a cada pocillo. 48 horas después de la transfección se inició la selección de las células que habían captado el shRNA. Las células se cultivaron en medio de cultivo con 2 μ g/ml de puromicina (4089, TOCRIS) que se reemplazó a diario durante 2 semanas, periodo suficiente para que las células que no habían incorporado el plásmido murieran. La concentración de puromicina se estableció previamente evaluando la supervivencia innata de las células COLO-800 no transfectadas a diferentes concentraciones de puromicina.

Una vez obtenido un cultivo resistente a la puromicina, se procedió a establecer líneas monoclonales con el método de dilución límite, que se basa en realizar diluciones sucesivas de una suspensión celular hasta conseguir una concentración de células que permita sembrar una única célula en cada pocillo. La expresión de la proteína CEMIP de todas las líneas monoclonales obtenidas, tanto las transfectadas con shRNA irrelevante como con los 4 shCEMIP diferentes, se analizó mediante western blot. Finalmente, se seleccionaron 2 líneas monoclonales con shRNA irrelevante (denominadas a partir de ahora como shØ1 y shØ2) cuyo nivel de expresión de CEMIP celular y exosomal era similar al nivel que presentaba la línea parental, y 2 líneas monoclonales con shCEMIP (denominadas shCEMIP1 y shCEMIP2) en las que el nivel de CEMIP celular y exosomal era muy inferior al de la línea originaria y estable a lo largo de los pases.

Materiales y Métodos

4. Purificación de EV

Para la purificación de EV, tanto de líneas celulares como de sueros humanos, se seleccionaron protocolos basados en ultracentrifugación (UC) diferencial, si bien en el caso de los sueros se testaron diferentes protocolos según se especifica en el apartado 4.2.

4.1. EV de cultivos celulares

Las líneas celulares se sembraron en sus medios de cultivo habituales complementados con FBS al 10 % en frascos de cultivo de 175 cm² a una densidad celular adecuada que les permitiera llegar al día de la purificación con un 90 % de confluencia en los frascos de cultivo (entre 3·10⁶ -5·10⁶ células/frasco). Transcurridas 24 horas desde la siembra, se realizaron 2 lavados consecutivos con tampón fosfato salino (PBS) y las células se dejaron crecer durante 48 horas en presencia de su medio de cultivo correspondiente suplementado con un 10 % de FBS comercial deplecionado de EV (A27208-01, Gibco) en el caso de las líneas de melanoma, y con HMGS-2 deplecionado previamente, mediante la ultracentrifugación a 100.000 xg durante 70 minutos del HMGS-2 diluido 1:4 en Medium 254, en el caso de los melanocitos. Pasadas las 48 horas de incubación se recogió el medio de cultivo y se procedió a aislar las EV secretadas por las células durante ese tiempo. El primer paso fue eliminar los restos celulares mediante una primera centrifugación a 2.000 xg durante 10 minutos a 4 ºC. Después, el medio se filtró mediante filtros de 0,22 µm con el fin de eliminar partículas o vesículas de gran tamaño. A continuación, el medio se concentró con centrifugaciones a 4.000 xg a 4 ºC mediante tubos con membranas capaces de retener complejos o estructuras superiores a 100 kDa de peso molecular (UFC910096, MILLIPORE). Posteriormente, las EV presentes en suspensión en el medio de cultivo se precipitaron mediante una ultracentrifugación a 100.000 xg durante 70 minutos a 4 °C, el pellet se resuspendió en PBS y se sometió a una segunda ultracentrifugación idéntica, que sirvió de lavado. Ambas ultracentrifugaciones se llevaron a cabo en una ultracentrífuga Optima L-100 XP con rotor 70Ti (Beckman Coulter) empleando tubos de policarbonato (355631, Beckman Coulter). El precipitado final, enriquecido en EV, se resuspendió en 100 - 140 µl de PBS y se guardó a -80 ºC en tubos de microcentrífuga LoBind (0030108116, Eppendorf). Generalmente, cada pellet de EV fue obtenido del medio procedente de 8 frascos de cultivo de 175 cm² y los 200 ml de medio iniciales se redujeron a 15 - 20 ml antes de la primera ultracentrifugación (Figura 9). En todo momento a lo largo del protocolo las muestras se mantuvieron en hielo y se trabajó en esterilidad.

Figura 9. Esquema del protocolo de UC diferencial para la purificación de EV a partir de líneas celulares en cultivo. Se sembraron 8 frascos de cultivo T175 con $3 \cdot 10^6$ - $5 \cdot 10^6$ células/frasco por cada línea celular en su medio de cultivo habitual suplementado con un 10 % de FBS. 24 horas después, se hicieron 2 lavados con PBS y se dejaron crecer las células durante 48 horas con su medio habitual suplementado con un 10 % de FBS. 24 horas después, se hicieron 2 lavados con PBS deplecionado en EV. Pasadas 48 horas, cuando el cultivo estuvo al 80 - 90 % de confluencia, se recogió el medio de cultivo, se centrifugó a 2.000 xg durante 10 minutos a 4 °C, se filtró mediante filtros de 0,22 μ m y se concentró con centrifugaciones a 4.000 xg a 4 °C mediante tubos con membranas de retención de 100 kDa. El medio de cultivo concentrado se ultracentrifugó a 100.000 xg durante 70 minutos a 4 °C 2 veces consecutivas con un lavado con PBS intermedio entre ambas. El precipitado final con las EV se resuspendió en 100 - 140 μ l de PBS y se guardó a -80 °C.

4.2. EV de suero humano

Se ensayaron diferentes métodos de aislamiento de EV a partir de sueros humanos para evaluar con qué método se conseguía una mayor cantidad de vesículas y una mayor eliminación de proteínas mayoritarias del suero, que son las que dificultarían los estudios proteómicos posteriores. En la Tabla 6 se muestran resumidamente los diferentes métodos comparados así como las variantes testadas para cada uno de ellos, y los resultados obtenidos en cada caso tras analizar en la presencia de marcadores propios de EV mediante western blot, analizar las muestras obtenidas mediante microscopía electrónica, NTA y cromatografía líquida y espectrometría de masas (LC-MS/MS).

Tabla 6. Métodos de aislamiento de EV a partir de suero humano. Se resumen los diferentes métodos de aislamiento de EV de suero humano comparados y las variantes testadas en cada método, así como las ventajas e inconvenientes obtenidas con cada uno de ellos.

método de aislamiento (referencia, casa comercial)	variantes testadas	ventajas e inconvenientes
Total Exosome Isolation	- Volumen de suero de partida: 250 μl	Pros: el protocolo era sencillo.
Reagent (from serum) (4478360, Invitrogen)	- Se siguieron instrucciones del fabricante	<u>Contras:</u> no se detectaron marcadores de EV mediante western blot.
Exosome Human CD81 Isolation Reagent (from cell culture) (10616C, Invitrogen)	 Se partió de las muestras obtenidas tras protocolo con Total Exosome Isolation Reagent 40 μl vs. 80 μl de partículas magnéticas Tampón de elución con SDS vs. sin SDS (para no lisar las vesículas) 	<u>Pros:</u> se detectaron marcadores de EV (TSG101, CD63 γ CD81) mediante western blot. <u>Contras:</u> no se observaron vesículas por TEM.
ExoQuick PLUS Exosome Purification Kit (EQPL10A-1, SBI)	- Volumen de suero de partida: 250 μl - 500 μg <i>vs.</i> 1500 μg de proteína en Resuspension Buffer	<u>Pros:</u> se detectaron marcadores de EV (TSG101 y CD63) mediante western blot. <u>Contras:</u> no se observaron vesículas por TEM.
Cromatografía de exclusión por tamaño (SP1, IZON)	 Volumen de suero de partida: 250 μl Recogida de 3 fracciones (7, 8 y 9) vs. 4 fracciones (7, 8, 9 y 10) Fracciones concentradas mediante: UC vs. filtros con membrana de retención de 30 kDa 	Pros: se detectaron marcadores de EV (ALIX, TSG101, CD63, CD81, CD9), las muestras no portaban mucha carga de proteína contaminantes de suero (ApoA1, ApoB100, ApoE y albúmina) y se identificaron vesículas compatibles con EV de pequeño tamaño mediante crio-TEM. <u>Contras:</u> era un método caro, las columnas se resquebrajaban en pocos usos, los datos del análisis de NTA no fueron buenos y no se obtuvo un número alto de proteínas identificadas mediante LC-MS/MS.
UC diferencial	 Volumen de suero de partida: 250 vs. 500 μl Con vs. sin centrifugación a 2.000 xg durante 15 min Con vs. sin filtrado por 0,22 μm Diluciones de suero en PBS: 1:5 vs. 1:8 vs. 1:50 	Pros: el método era económico y reproducible, se detectaron marcadores de EV en las fracciones purificadas (ALIX, TSG101, CD63, CD81, CD9), se observaron vesículas compatibles con EV de pequeño tamaño por crio-TEM y los datos del análisis de NTA fueron muy buenos. <u>Contras:</u> las muestras presentaban proteínas mayoritarias del suero y no se obtuvieron buenos resultados en el estudio proteómico por LC-MS/MS.

A continuación, se describen en detalle los protocolos seguidos para los métodos más prometedores en base a los resultados obtenidos en las primeras pruebas de optimización del método de purificación de EV séricas: cromatografía de exclusión por tamaño y UC diferencial.

4.2.1. Cromatografía de exclusión por tamaño

La cromatografía de exclusión por tamaño es una técnica que permite separar moléculas y partículas en base a su tamaño. Los exosomas séricos humanos se aislaron mediante columnas de exclusión molecular rellenas de una resina de 70 nm de tamaño de poro (SP1, IZON) diseñadas para eliminar gran parte de contaminantes séricos en este tipo de muestras, hasta un 99 % según la casa comercial.

Las EV de suero humano se aislaron a partir de 250 μ l de suero de voluntarios sanos centrifugados previamente a 2.000 xg durante 15 minutos a 4 °C. Una vez que la columna y los reactivos se encontraron a la temperatura óptima de trabajo (18 - 24 °C), la columna se equilibró con 10 ml de PBS como indica la casa comercial y se comprobó que la velocidad de elución estuviera dentro del rango normal (1 ml/minuto ± 0,2 ml/minuto). Se cargaron los 250 μ l de suero y se comenzó a recoger fracciones de 500 μ l de volumen cada una. Las 6 primeras fracciones se descartaron puesto que no contenían EV y se recogieron las fracciones donde se eluían predominantemente las EV (7, 8 y 9 versus 7, 8, 9 y 10). Después de recoger las fracciones con EV, la columna se lavó siguiendo las instrucciones del fabricante: se eluyeron 25 ml de PBS y se comprobó que la velocidad de elución seguía siendo adecuada, se añadieron 10 ml de NaOH 0,5 M y a continuación 40 ml de PBS, se verificó que el pH era neutro, se añadieron en 0,05 % azida sódica a 4 °C listas para su siguiente uso (hasta 5 usos si su estado lo permite).

Las fracciones enriquecidas en EV recogidas estaban demasiado diluidas para poder analizarlas directamente, por lo que se concentraron de 2 maneras diferentes: UC o filtros concentradores. El volumen total de las fracciones recogidas se ultracentrifugó a 100.000 xg durante 70 minutos a 4 °C en tubos de policarbonato (362305, Beckman Coulter) para la ultracentrífuga Optima MAX-XP con rotor TLA110 (Beckman Coulter) y el precipitado se resuspendió en 60 - 80 μ l PBS; o bien, las fracciones recogidas se concentraron mediante filtros concentradores con membrana de retención de 30 kDa con capacidad para 2 ml (UFC203024, Merck), centrifugando a 4.000 xg hasta tener el volumen deseado y a 1.000 xg durante 2 minutos para recuperar el volumen concentrado (Figura 10).

Figura 10. Esquema del protocolo de cromatografía de exclusión por tamaño para la purificación de EV a partir de suero humano. 1- Las muestras de 250 μ l de suero (centrifugadas previamente a 2.000 xg durante 15 minutos a 4 °C) se cargaron en la columna, 2- las primeras 6 fracciones eluidas (3 ml en total) se descartaron y 3- se recogieron las fracciones con mayor enriquecimiento en EV (7, 8 y 9 vs. 7, 8, 9 y 10). 4- Las 4 fracciones recuperadas se concentraron mediante a) ultracentrifugación a 100.000 xg durante 70 minutos a 4 °C o b) filtros concentradores con membrana de retención de 30 kDa con capacidad para 2 ml centrifugando a 4.000 xg. 5- Las fracciones enriquecidas en EV séricas se guardaron a -80 °C (unos 60 - 80 μ l de volumen total).

4.2.2. Ultracentrifugación diferencial

Se ensayaron diferentes variantes de aislamiento de EV a partir de sueros de pacientes por UC diferencial (Tabla 6), pero el protocolo que mejores resultados dio y el que se usó para purificar EV séricas para todos los análisis y estudios fue el siguiente:

Las EV de sueros humanos se aislaron a partir de 250 μ l de suero. El primer paso fue una centrifugación a 2.000 xg durante 15 minutos a 4 °C para eliminar restos celulares. A continuación, el suero se diluyó 1:5 en PBS y se centrifugó a 10.000 xg durante 35 minutos a 4 °C en tubos de policarbonato (362305, Beckman Coulter) para la ultracentrífuga Optima MAX-XP con rotor TLA110 (Beckman Coulter). El sobrenadante se traspasó a un tubo nuevo y las EV se precipitaron mediante 2 ultracentrifugaciones a 100.000 xg durante 70 minutos a 4 °C, la primera de ellas, para precipitar las EV del suero; y la segunda, en PBS, para limpiar la muestra de contaminantes. El precipitado final se resuspendió en 60 - 80 μ l de PBS y se guardó a -80 °C en tubos de microcentrífuga LoBind hasta su uso (Figura 11).

Figura 11. Esquema del protocolo de UC diferencial para la purificación de EV a partir de suero humano. Cada alícuota de 250 µl de suero se centrifugó a 2.000 xg durante 15 minutos a 4 °C. A continuación, el sobrenadante se diluyó 1:5 en PBS y se centrifugó a 10.000 xg durante 35 minutos a 4 °C. Posteriormente, el sobrenadante se ultracentrifugó a 100.000 xg durante 70 minutos a 4 °C 2 veces consecutivas con un lavado con PBS intermedio entre ambas. Por último, el precipitado final con las EV se resuspendió en 60 - 80 µl de PBS y se guardó a -80 °C.

5. Análisis del tamaño y la concentración de partículas

El NTA es una tecnología para visualizar y analizar partículas que están en suspensión en líquidos. A través de un software se monitoriza la dispersión de un haz de luz láser que provocan las partículas presentes en la muestra a medida que estas se mueven bajo el movimiento browniano. El equipo registra el movimiento de las partículas por video y relaciona la velocidad de movimiento con el tamaño, integrando esos valores junto a otros parámetros en la ecuación Stokes-Einstein y calculando así los diámetros de dichas partículas. Se realiza el seguimiento de muchas partículas individualmente de manera simultánea, lo que permite determinar la distribución de tamaño y la concentración de todos los tipos de nanopartículas con un diámetro comprendido entre 10 nm y 1000 nm presentes en la muestra.

El NTA de las EV purificadas a partir de líneas celulares y sueros humanos se realizó mediante un NanoSight LM10 (con el software NanoSight NTA 3.2), gracias a la colaboración con el Laboratorio de Exosomas liderado por el Dr. Juan Manuel Falcón en el CIC bioGUNE.

Para realizar este análisis se introdujo en la cámara del NanoSight 1 µg de proteína en el caso de las muestras derivadas de líneas celulares, y, 5 µg de proteína cuando se trató de muestras obtenidas a partir de sueros, cantidades de proteína diluidas en ambos casos en 250 µl de PBS filtrado. En todos los casos se realizaron 2 mediciones de 30 segundos por cada muestra y se analizaron 3 muestras independientes por cada una de las condiciones a estudiar. En cada vídeo se registraron al menos 200 partículas y se fijaron los valores para los parámetros camera level: 10 y threshold detection: 5 para todos los análisis.

6. Análisis de la expresión génica

6.1. Extracción y cuantificación

Los fibroblastos y las líneas celulares de melanoma modificadas genéticamente, que se encontraban en fase exponencial de crecimiento en placas de 6 pocillos (3516, Costar®-Corning), se ultracongelaron rápidamente sumergiendo la base de la placa de cultivo en nitrógeno líquido,
tras retirar previamente el medio de cultivo de los pocillos y hacer un lavado de los mismos con PBS, y se almacenaron a -80 ºC hasta el momento de extraer el RNA.

La extracción de RNA de las células se llevó a cabo mediante el kit comercial NZY Total RNA Isolation Kit (MB13402, Nzytech) siguiendo las instrucciones del fabricante. La concentración de RNA y su pureza se determinaron midiendo la absorbancia a 260 nm y ratio de absorbancia 260/280 nm, respectivamente, en un espectrofómetro BioTek Synergy HT con el accesorio para placas Take3.

6.2. Retrotranscripción

La síntesis de DNA complementario (cDNA) por transcripción reversa se llevó a cabo mediante el kit comercial NZYFirst-Strand cDNA Synthesis Kit (MB12501, Nzytech) siguiendo las indicaciones especificadas por el fabricante, y el equipo MJ Mini Personal Thermo Cycler de Bio-Rad. El proceso de retrotranscripción comenzó con la mezcla en tubos de microcentrífuga estériles libres de nucleasas (72.737.002, Sarstedt) a 4 °C de 10 μ L NZYRT 2× Master Mix, 2 μ L NZYRT Enzyme Mix, 1 μ g RNA y se completó con H₂O DEPC-treated hasta tener un volumen total de 20 μ L. Esta mezcla se incubó en primer lugar a 25 °C durante 10 minutos, y posteriormente, a 50 °C durante 30 minutos. A continuación, se llevó a cabo la inactivación de la reacción mediante una incubación a 85 °C durante 5 minutos y el enfriamiento de las muestras con hielo. Por último, tras añadir 1 μ L de NZY RNase H e incubar a 37 °C durante 20 minutos, los productos de cDNA se guardaron a -20 °C hasta su uso.

6.3. Cuantificación mediante PCR cuantitativa a tiempo real

Las PCR cuantitativas a tiempo real (RT-qPCR) se realizaron empleando el kit NZYSupreme qPCR Green Master Mix (2x) (MB419, Nzytech) y el equipo C1000 Touch Thermal Cycler de Bio-Rad, con el software Bio-Rad CFX Manager 3.1. El primer paso para el programa de amplificación de cDNA fue 1 ciclo a 95 °C durante 2 minutos, seguido de 40 ciclos posteriores a 95 °C durante 5 segundos y 60 °C durante 30 segundos cada uno.

Las secuencias de los cebadores (Integrated DNA Technologies) usados para amplificar los genes diana se muestran en la Tabla 7. Los niveles de RNA mensajero (mRNA) de los genes diana se normalizaron respecto a los genes endógenos de referencia utilizados, *RPS18* y *RPL13* (Tabla 8).

Tabla 7. Genes diana amplificados por RT-qPCR y secuencias de los cebadores empleados. Se indica el gen diana amplificado, la proteína que codifica el gen diana y las secuencias en dirección directa (5'-3') y reversa (3'-5') de los cebadores empleados. En todos los casos los cebadores se emplearon a una concentración de 10 μ M.

gen diana	proteína	secuencia directa 5'- xxx -3'	secuencia reversa 5'- xxx -3'
CEMIP	CEMIP	5'- ACG ACG AGC CGA TTG TTT -3'	5'- CCT TCA TCA GCC CTT CCA -3'
ACTA2	αSMA	5'- TGG CTA TTC CTT CGT TAC TAC TGC T -3'	5'- CTC ATT TTC AAA GTC CAG AGC TAC AT -3'

Tabla 8. Genes endógenos de referencia amplificados por RT-qPCR y secuencias de los cebadores empleados. Se indica el gen diana amplificado, la proteína que codifica el gen diana y las secuencias en dirección directa (5'-3') y reversa (3'-5') de los cebadores empleados. En todos los casos los cebadores se emplearon a una concentración de 10 μ M.

gen diana	proteína	secuencia directa 5'- xxx -3'	secuencia reversa 5'- xxx -3'
00010	proteína ribosómica	5'- CAG AAG GAT GTA AAG	5'- TAT TTC TTC TTG GAC
NF310	40S S18	GAT GG -3'	ACA CC -3'
RPL13	proteína ribosómica	5'- ATTCAC AAG AAG GGA	5'- GAA ATT CTT CTC TTC
	60S L13	GAC AG -3'	CTC AGT G -3'

7. Análisis de la expresión proteica

7.1. Extracción de proteína

La obtención de lisados de proteína celular se llevó a cabo mediante la lisis celular en tampón RIPA (R0278, Sigma) y un cóctel de inhibidores de proteasas (P8340, Sigma), que evitan que las enzimas liberadas en la ruptura celular degraden proteínas de la muestra, en proporción 100:1. Tras la lisis química con el detergente se procedió a la lisis mecánica a través de una jeringa con aguja de 25G para fragmentar el DNA. El lisado se centrifugó a 16.000 xg durante 5 minutos a 4 °C, y el sobrenadante se recuperó y almacenó a -80 °C hasta el momento de hacer la cuantificación.

Las EV se mantuvieron intactas, sin lisar, resuspendidas en PBS a -80 °C. Tanto en el caso de las EV derivadas de líneas celulares como en las procedentes de suero humano, se reservaron 6 µl de la suspensión que se mezclaron con otros 6 µl de RIPA y se mantuvieron congelados a -80 °C hasta su cuantificación.

7.2. Cuantificación de proteína

La cuantificación de proteína se realizó usando el método del ácido bicinconínico (BCA). En primer lugar, se prepararon muestras de albúmina de suero bovino (BSA) en agua destilada (H₂Od) para la recta patrón (0; 0,2; 0,4; 0,6; 0,8 y 1 mg/ml). Paralelamente se preparó una solución de BCA (B9643-1L, Sigma-Aldrich) y CuSO₄ (4 % w/v) en proporción 50:1, en cantidad suficiente para cuantificar todas las muestras por duplicado (200 µl/pocillo). Por último, se mezclaron 10 µl de cada muestra con 200 µl de la solución de BCA/CuSO₄ en una placa de 96 pocillos. Tras incubar la placa a 37 °C durante 30 minutos se midió la absorbancia a 562 nm en el lector de placas BioTek Synergy HT. Para la cuantificación de los lisados celulares, las muestras se diluyeron previamente 1:5 en H₂Od. En el caso de la proteína de EV, se usó directamente la muestra ya diluida 1:2 en RIPA. La concentración de proteína de cada muestra se calculó en base a la ecuación obtenida de la recta patrón teniendo en cuenta las diluciones en cada caso.

7.3. Western blot

El western blot es una técnica de inmunodetección de proteínas de interés con anticuerpos específicos. Esta técnica ha sido una herramienta clave en muchas fases clave del presente trabajo tales como: la puesta a punto del protocolo para la purificación de fracciones enriquecidas en EV

de diverso origen mediante la identificación de marcadores de EV descritos, la validación de del exoproteoma de líneas celulares tumorales y no tumorales, y la selección de líneas celulares establemente modificadas.

El primer paso fue desnaturalizar las proteínas y para ello se añadió tampón de carga Laemmli 5x (Anexo 1B) y dititreitol (DTT) 1M 10x a las muestras y se calentaron durante 5 minutos a 95 °C en un termobloque. En todos los casos la electroforesis se llevó a cabo en condiciones desnaturalizantes y reductoras, excepto cuando las proteínas de interés fueron CD9, CD81 y CD63, en los que se excluyó el uso de DTT, siguiendo las indicaciones del fabricante.

La separación de proteínas se llevó a cabo mediante electroforesis en geles de acrilamida polimerizada en condiciones desnaturalizantes con tampón de electroforesis 1x (Anexo 1B). Los geles usados se prepararon con 30 % acrilamida/Bis 29:1 (#1610156, Bio-Rad) al porcentaje idóneo según el peso molecular de la proteína a detectar. En los geles se cargaron entre 15 y 40 µg de proteína total por pocillo, según las necesidades o limitaciones del momento, y la electroforesis se mantuvo a 130 V durante el tiempo necesario para que el frente coloreado llegara al final del gel. Se usó el equipo Mini-PROTEAN Tetra System de Bio-Rad y el marcador de pesos moleculares Precision Plus Protein Dual Color Standards (#161-0374, Bio-Rad).

Las proteínas se transfirieron a una membrana de nitrocelulosa de 0,22 µm de tamaño de poro mediante transferencia húmeda durante 3 horas a 85 V en tampón de transferencia 1x (Anexo 1B) con un 10 % de metanol.

Transcurridas las 3 horas de transferencia la membrana se tiñó con rojo Ponceau (Anexo 1B), una tinción reversible que muestra las proteínas transferidas a la membrana y pone de manifiesto si la transferencia se ha desarrollado correctamente y si la carga de proteínas es similar en todas las calles.

Los lugares de unión no específicos al anticuerpo se bloquearon incubando la membrana con una solución de bloqueo de leche descremada en polvo al 5 % en TBS con Tween 20 (TBST) (Anexo 1B), durante 1 hora a temperatura ambiente en un agitador orbital.

Tras el bloqueo, la membrana se incubó con el anticuerpo primario (Tabla 9) diluido en solución de bloqueo (con 5 % de leche descremada en polvo o BSA, según indicaciones de la casa comercial del anticuerpo) durante toda la noche a 4 °C en agitación. Tras retirar el anticuerpo primario se añadió el anticuerpo secundario conjugado con peroxidasa de rábano (HRP) (Tabla 10) en solución de bloqueo y se incubó durante 2 horas a temperatura ambiente en agitación. Tras los periodos de incubación con los anticuerpos primario y secundario, las membranas se lavaron durante 10 minutos 3 veces con TBST en agitación.

Las proteínas de interés se detectaron mediante una reacción quimioluminiscente donde la enzima HRP conjugada al anticuerpo secundario cataliza la oxidación del luminol añadido en presencia del peróxido de hidrógeno. Esta reacción produce quimioluminiscencia que en nuestro caso se capturó con una cámara G:BOX (Syngene) y el programa GeneSnap. Se emplearon 3 sustratos quimioluminiscentes comerciales diferentes según sensibilidad requerida para detectar la proteína de interés: Luminol Reagent (sc-2048, Santa Cruz Biotechnology), SuperSignal West Pico PLUS (34580, Thermo Scientific) y SuperSignal West Femto (34095, Thermo Scientific). El análisis posterior de las imágenes tomadas se hizo con el programa Fiji (Wayne Rasband, NIH, USA).

anticuerpo	origen	dilución	referencia	casa comercial
α tubulina	ratón	1:3000	T9026	Sigma-Aldrich
ALIX	ratón	1:1000	#2171	Cell Signaling
ApoA1	conejo	1:2000	ab227455	Abcam
ApoB100	conejo	1:4000	AB742	Millipore
АроЕ	conejo	1:1000	ab183597	Abcam
β actina	conejo	1:1000	A2066	Sigma-Aldrich
CANX	ratón	1:200	sc-23954	Santa Cruz Biotechnology
CD63 *	ratón	1:500	sc-5275	Santa Cruz Biotechnology
CD81 *	ratón	1:300	sc-166029	Santa Cruz Biotechnology
CD9 *	ratón	1:500	MAB1880-100	RyD SYSTEMS
CEMIP	conejo	1:500	21129-1-AP	Proteintech
EDIL3	conejo	1:1000	12580-1-AP	Proteintech
FMOD	ratón	1:300	sc-166406	Santa Cruz Biotechnology
γ tubulina	conejo	1:1000	ab11321	Abcam
HMGB1	conejo	1:2000	ab79823	Abcam
ILK	conejo	1:1000	#3862	Cell Signaling
MLANA	ratón	1:200	NBP2-15-197-20ug	Novusbio
MFI2	ratón	1:400	sc-271633	Santa Cruz Biotechnology
OPN	ratón	1:400	sc-21742	Santa Cruz Biotechnology
SERPINE2	cabra	1:1000	AF2980	RyD SYSTEMS
TSG101	ratón	1:200	sc-7964	Santa Cruz Biotechnology

Tabla 9. Anticuerpos primarios utilizados en western blot. Se indica el anticuerpo primario, el animal de origen, la dilución empleada, su referencia y la casa comercial que lo suministra.

* requieren condiciones no reductoras

Tabla 10. Anticuerpos secundarios utilizados en western blot. Se indica el anticuerpo secundario, el animal de origen, la dilución empleada, su referencia y la casa comercial que lo suministra.

anticuerpo	origen	dilución	referencia	casa comercial
anti-ratón IgG HRP	cabra	1:4000	1032-05	Southern Biotech
anti-conejo IgG HRP	cabra	1:5000	ab102279	Abcam
anti-cabra IgG HRP	burro	1:5000	A50-101P	Bethyl Laboratories

8. Análisis proteómico de EV

8.1. Preparación de muestras para cromatografía líquida y espectrometría de masas

El estudio proteómico de las EV por cromatografía líquida y espectrometría de masas (LC-MS/MS) tuvo como objetivo identificar y cuantificar proteínas que pudieran tener utilidad como biomarcadores.

En primer lugar, se llevó a cabo el análisis proteómico de las EV purificadas a partir de 2 líneas de melanocitos (HEMn-LP y HEMn-MP), 2 líneas de melanoma primario (A375 y MEL-HO) y 2 líneas de melanoma metastásico (COLO-800 y A2058). Se procesaron 3 fracciones enriquecidas en EV independientes por cada una de las líneas celulares y de todas las proteínas detectadas por LC-MS/MS se seleccionaron 9 proteínas de interés (en base a los criterios que se mencionan en el apartado 2.1. de la sección de Resultados) que se encontraron diferencialmente expresadas en los

proteomas de EV de melanocitos y de melanoma metastásico cuya expresión se validó mediante western blot.

Posteriormente, se procedió a analizar el proteoma de EV séricas. En una primera aproximación se procesaron las fracciones enriquecidas en EV obtenidas mediante UC diferencial a partir de 250 μ l y de 500 μ l de suero iniciales, que derivaban de una misma mezcla de sueros de individuos sanos, con 2 objetivos principalmente: por un lado, conocer si el volumen de suero inicial condicionaba de manera importante el número de proteínas identificadas y, por otro lado, poder determinar la validez de este tipo de análisis como herramienta para la búsqueda de biomarcadores de pronóstico de melanoma en análisis futuros a mayor escala. En el intento de obtener un número mayor de proteínas identificadas por LC-MS/MS, se procesaron fracciones enriquecidas en EV obtenidas a partir de 250 µl de suero mediante cromatografía de exclusión por tamaño y posterior concentración mediante filtros concentradores con membrana de retención ≥ 30 kDa, con el objetivo de comparar los resultados obtenidos tras llevar a cabo diferentes protocolos de digestión de las muestras. Se compararon procedimientos basados en a) la digestión en solución, mediante preparación de muestras asistida por filtro (FASP) (que fue el método empleado previamente en los análisis proteómicos de las EV purificadas de líneas celulares y de las EV séricas purificadas mediante UC diferencial) y mediante RapiGest, y b) la digestión de muestras aisladas de gel, recogiendo toda la muestra en una única banda y recogiendo la muestra en 3 bandas que fueron digeridas y analizadas individualmente, con una posterior unificación de las proteínas identificadas.

Todo este análisis exoproteómico mediante LC-MS/MS se realizó en el Servicio de Proteómica de los Servicios Generales de Investigación (SGIker) de la UPV/EHU, y fue el personal técnico experto, al que agradecemos su trabajo, el que se encargó de llevar a cabo todo el proceso (digestión de proteínas, análisis LC-MS/MS y análisis de datos) que se describe a continuación.

Tras determinar la cantidad de proteína total presente en las fracciones aisladas mediante el método del BCA se llevó a cabo el proceso de digestión de las muestras, bien mediante la digestión en solución (FASP y RapiGest) bien mediante la digestión en gel:

a) FASP

Se digirieron con tripsina 25 µg de muestra utilizando el protocolo de Wiśniewski *et al.*, 2009. Para ello, las muestras se homogenizaron en el tampón de lisis SDT (Anexo 1C), se sonicaron durante 3 minutos para reducir la viscosidad, se incubaron durante 3 minutos a 95 °C y se centrifugaron a 16.000 ×*g* durante 10 minutos. Los sobrenadantes se mezclaron con 400 µl de tampón UA (Anexo 1C) en filtros Amicon de 0,5 ml con membrana de retención de 30 kDa (Millipore) y se centrifugaron a 14.000 ×*g* durante 15 minutos. Este paso se volvió a repetir, pero añadiendo esta vez 360 µl de UA. A continuación, se añadieron a los filtros 100 µl de iodoacetamida (Sigma-Aldrich) 50 mM en UA y se incubaron las muestras durante 20 minutos a temperatura ambiente y en oscuridad. Se lavaron los filtros tres veces con 200 µl de UA seguidos de tres lavados con 100 µl de NH₄HCO₃ 50 mM. Finalmente, se añadieron 40 µl de tripsina (Roche) en NH₄HCO₃ 50 mM a cada filtro en una proporción de proteína:enzima de 50:1. Se incubaron las muestras a 37 °C durante 16 horas y se recogieron los péptidos mediante centrifugación y posterior lavado de los filtros con 50 µl de NH₄HCO₃ 50 mM. Los filtrados resultantes se desalaron mediante la utilización de columnas C-18 Micro SpinColumn[™] (Harvard Apparatus) y se guardaron secos a -20 °C.

b) RapiGest

24 µg de muestra se digirieron con tripsina. Las muestras se precipitaron utilizando el kit 2-D Clean-Up Kit (Cytiva) siguiendo las instrucciones del fabricante. El precipitado obtenido se resuspendió en tampón de solubilización (Anexo 1C) a 85 °C durante 15 minutos. La concentración de RapiGest se diluyó a 0,1 % con 50 mM NH₄HCO₃ y las muestras se incubaron con DTT (Sigma-Aldrich) a una concentración final de 5 mM a 60 °C durante 25 minutos, y iodoacetamida a una concentración final de 15 mM a temperatura ambiente (RT) durante 30 minutos en oscuridad. Posteriormente se añadió tripsina en una proporción enzima: proteína de 1:50 y la digestión se incubó durante toda la noche a 37 °C. Los péptidos digeridos se desalaron mediante la utilización de columnas C-18 Micro SpinColumn[™] y se guardaron secos a -20 °C.

c) Digestión en gel

15 µg de muestra se separaron mediante electroforesis en gel de poliacrilamida 1D (1D PAGE, 12 %, Mini-PROTEAN Electrophoresis Cell, Bio-Rad) y se tiñeron con GelCode Blue Stain Reagent (Thermo Scientific). Las bandas seleccionadas se cortaron manualmente y se procedió a la digestión en gel con endopeptidasas siguiendo el protocolo de Shevchenko *et al.*, 2007 con pequeñas modificaciones. Las bandas de gel se incubaron con DTT (Sigma-Aldrich) 10 mM en 50 mM NH₄HCO₃ a 56 °C durante 45 minutos, y iodoacetamida (Sigma-Aldrich) 25 mM en 50 mM NH₄HCO₃ a RT durante 30 minutos en oscuridad. Las bandas se incubaron en tampón de digestión (Anexo 1C) durante toda la noche a 37 °C. El sobrenadante se recuperó y los péptidos se extrajeron del gel dos veces: la primera con 25 mM NH₄HCO₃ y acetonitrilo y posteriormente con 0,1 % de ácido trifluoroacético y acetonitrilo. El contenido del sobrenadante y las extracciones se juntaron, se secaron en un SpeedVac (Thermo Scientific), se desalaron con columnas C-18 Micro SpinColumn[™] y se guardaron secos a -20 °C.

El análisis LC-MS/MS se realizó en un espectrómetro de masas Q Exactive HF-X (Thermo Scientific) acoplado a un sistema cromatográfico Easy-nLC 1200 nanoUPLC System (Thermo Scientific). Los péptidos digeridos se disolvieron en ácido fórmico al 0,1 % y se cargaron en una precolumna Acclaim PepMap100 (75 µm x 2 cm) (Thermo Scientific) conectada a una columna analítica Acclaim PepMap RSLC (70 μm x 25 cm) (Thermo Scientific). Los péptidos se eluyeron mediante el siguiente gradiente: 60 minutos del 2,4 % al 24 %, 2 minutos del 24 % al 32 %, 1 minuto del 32 % al 80 % y 12 minutos al 80 % de acetonitrilo en 0,1 % de ácido fórmico a un flujo de 300 nl/min. El espectrómetro de masas adquirió los datos en modo positivo. Los espectros MS se adquirieron en un rango m/z de 375 a 1.800 con una resolución de 60.000 a m/z 200. Los 10 iones más intensos se fragmentaron mediante "higher energy C-trap dissociation" con una energía de colisión normalizada de 28 y los espectros MS/MS se adquirieron a una resolución de 15.000 a m/z 200. El tiempo máximo de inyección fue de 80 ms para las adquisiciones MS y 60 ms para las MS/MS. Se utilizaron valores de AGC de 3 x 10⁶ para las adquisiciones MS y de 5 x 10⁵ para las MS/MS. Para el aislamiento de los péptidos se utilizó una ventana de 1.4 m/z y se aplicó una ventana de exclusión dinámica de 20 s. Los iones a los que no se pudo asignar el estado de carga y los iones con una carga fueron excluidos de la adquisición MS/MS. Los datos fueron adquiridos con el software Xcalibur (Thermo Scientific).

8.1.1. Herramientas bioinformáticas

8.1.1.1. Asignación de espectros obtenidos mediante LC-MS/MS

La asignación de espectros para la identificación de proteínas se realizó mediante el software MaxQuant software (versión 1.5.3.17 / versión 1.6.0.16) (Tyanova, Temu and Cox, 2016) utilizando el motor de búsqueda Andromeda. Se utilizó una base de datos UniProt restringida a proteínas de Homo sapiens (versión 2017_02 / 2018_11). Se seleccionó la carbamidometilación (C) como modificación fija y la oxidación (M), la acetilación N-terminal de proteínas y la deamidación (N, Q) como modificaciones variables. Se seleccionaron 8 y 20 ppm como tolerancia para los espectros MS y MS/MS respectivamente y se permitió un máximo de 2 omisiones de corte para la tripsina. Se activó la opción "match between runs" para encontrar identificaciones entre diferentes muestras con una ventana de 1.5 minutos de match y de 20 minutos para el alineamiento. La ratio de falsos positivos para péptidos y proteínas se limitó al 1 %.

8.1.1.2. Análisis de agrupamiento de muestras

Los datos obtenidos por MaxQuant se analizaron en primer lugar mediante Perseus (versión 1.5.6.0). Se utilizó el algoritmo MaxLFQ para el cálculo de la intensidad normalizada de cada proteína (LFQ). Los datos obtenidos por MaxQuant se analizaron con la plataforma Perseus (Tyanova *et al.*, 2016) (versión 1.5.6.0). Las proteínas identificadas únicamente con un péptido modificado, las secuencias reversas y los posibles contaminantes se excluyeron del análisis y los valores de intensidad de cuantificación libre de etiquetas (LFQ) se transformaron a valores log₂. Solamente se cuantificaron las proteínas con al menos 2 valores de LFQ en una condición y los valores perdidos (missing value) se imputaron con valores de una distribución normal que simulaba la expresión por debajo del límite de detección (width 0.3 y down shift 1.8). La comparación entre diferentes grupos se realizó mediante una prueba T de student y se consideraron diferencialmente expresadas aquellas proteínas que tenían un valor p menor de 0,05 y un valor en el log₂ del ratio de intensidad de expresión entre melanocitos y melanoma metastásico mayor de 2 puntos (log₂ fold change) (o lo que es lo mismo, que hubiera una diferencia al menos de 4 veces en el nivel de expresión entre los 2 grupos de muestras estudiadas).

Posteriormente, se realizó el mismo tipo de análisis mediante la herramienta LFQ-Analyst (v1.2.2) (<u>https://bioinformatics.erc.monash.edu/apps/LFQ-Analyst/</u>) con el objetivo de comparar los resultados obtenidos mediante ambos programas y, en caso de obtener resultados comparables, seleccionar aquel de uso más sencillo. Los criterios establecidos fueron comparables a aquellos previamente seleccionados para el análisis mediante Perseus: Adjusted p-value cutoff: 0,05. Log₂ fold change cutoff: 2. Missing value imputation: Perseus-type; the missing values are replaced by random numbers drawn from a normal distribution of 1.8 standard deviation down shift and with a width of 0.3 of each simple. Type of False Discovery Rate (FDR) correction: Benjamini Hochberg. Number of clusters in heatmap: 6.

8.1.1.3. Análisis funcionales

Los análisis de ontología génica (GO) identifican aquellos términos biológicos que están relacionados con el grupo de genes en estudio y es extensible al estudio de grupos de proteínas. A cada termino biológico se le asigna un valor p que indica la importancia de un término biológico

con respecto a un conjunto de genes/proteínas analizado. El valor p va de 0 a 1, siendo el valor p = 0 el enriquecimiento perfecto y los valores más alejados del 0, resultados más relacionados con el azar; normalmente cuando el valor p es igual o menor que 0,05 se considera que ese término biológico está fuertemente enriquecido. Aunque existen 3 ontologías diferentes: función molecular, componente celular o proceso biológico, en nuestro estudio se han realizado solo análisis de enriquecimiento de componentes celulares (GOTERM CC ALL) y de procesos biológicos (GOTERM_BP_ALL) para determinar de esa manera qué estructuras celulares estaban enriquecidas de manera significativa en las muestras purificadas de EV y qué procesos biológicos estaban enriquecidos en base a los proteomas de las EV de melanocitos y de melanoma metastásico así como en las fracciones de EV séricas. Los análisis de GO se realizaron a través de DAVID la herramienta de anotación funcional Bioinformatics Resources 2021 (https://david.ncifcrf.gov/tools.jsp) donde se aplicó el paquete estadístico de la aplicación. Todos los análisis se llevaron a cabo estableciendo los mismos parámetros: identificador: offical_gene_symbol; especie: Homo sapiens; herramienta de anotación funcional: functional Annotation Chart; valores umbrales preestablecidos por la herramienta: Count: 2 y EASE: 0.1.

El análisis de enriquecimiento de conjuntos de genes (GSEA) identifica el perfil funcional de los genes o proteínas que están sobrerrepresentadas en un gran conjunto de genes o proteínas. El análisis GSEA se llevó a cabo mediante la herramienta facilitada por WebGestalt (<u>http://www.webgestalt.org/#</u>). El análisis se llevó a cabo manteniendo parámetros preestablecidos por la herramienta y además se marcaron los siguientes: organismo de interés: *Homo sapiens*; método de interés: Gene Set Enrichment Analysis (GSEA); base de datos funcional: community-contributed y el conjunto de sets de genes: Hallmark50; nivel de significancia: FDR: 0,05.

El diagrama de Venn representa gráficamente mediante círculos los diferentes conjuntos de datos que se están analizando, de manera que los elementos comunes en los diferentes conjuntos quedan en la zona de los círculos superpuestos mientras que el exterior de los círculos representa los elementos que son exclusivos de ese conjunto. Este análisis se llevó a cabo a través de la herramienta online facilitada por el Centro Nacional de Biotecnología (https://bioinfogp.cnb.csic.es/tools/venny/).

8.2. Proteómica dirigida basada en extensión por proximidad

La empresa sueca Olink ha desarrollado paneles con biomarcadores específicos de procesos biológicos o ciertas enfermedades en los que se analiza, simultáneamente en las mismas muestras, la concentración de 92 proteínas de interés. La tecnología en la que se sustentan es la proteómica basada en ensayo de extensión por proximidad (PEA). Para cada proteína que se estudia, se utilizan dos anticuerpos ligados a unas sondas de DNA; al unirse ambos anticuerpos a la misma proteína diana, las sondas se acercan e hibridan entre sí. La DNA polimerasa que se añade al sistema crea, para cada proteína específica, un amplicón de DNA que se cuantifica mediante RT-qPCR (vídeo explicativo de la técnica: https://www.youtube.com/watch?v=itzfXoAcOe0).

Se llevó a cabo un análisis proteómico comparativo de muestras de EV séricas de pacientes en estadio II de melanoma con y sin desarrollo de metástasis durante el periodo de seguimiento posterior al diagnóstico. Para ello se seleccionó el panel denominado *Olink Target 96 Immuno-Oncology* que analiza proteínas relacionadas con la metástasis, la regulación inmunológica y la progresión del cáncer (listado de proteínas analizadas en este panel:

https://www.olink.com/products-services/target/immuno-oncology/). Se analizaron 38 muestras de EV séricas obtenidas por UC diferencial, 19 muestras de pacientes en estadio II que no desarrollaron metástasis durante el seguimiento posterior mínimo de 5 años, y las otras 19 muestras de pacientes en estadio II que desarrollaron metástasis en un periodo promedio de 15 meses, abarcando desde 5 a 36 meses (Anexo 3, Tabla 30). Todas las muestras se resuspendieron en una mezcla de PBS/RIPA en proporción 1:1, se ajustaron a una concentración comprendida en el rango de 0,5 - 1 $\mu g/\mu l$ en un volumen final máximo de 40 μl y se enviaron en las condiciones establecidas por la empresa para su análisis mediante PEA. De los resultados obtenidos se seleccionaron aquellas proteínas detectadas en el 75 % de las muestras o más (missing data frequency inferior al 25 %). Tras seleccionar dichas proteínas, se calculó el antilogaritmo de los valores de expresión normalizada (valores NPX) obtenidos para cada una de ellas en las diferentes muestras analizadas, se aplicó el factor de dilución correspondiente en cada caso y se calculó de nuevo el logaritmo en base 2 de los valores obtenidos. Los datos se analizaron con el propio software que ofrece la empresa (Olink Insights Stat Analysis APP) y que utiliza las pruebas estadísticas pertinentes para determinar si hay proteínas diferencialmente expresadas en alguno de los grupos de estudio.

9. Ensayo de captación de EV

En este ensayo se analizó la captación de EV purificadas de líneas celulares tumorales modificadas genéticamente con shRNA por parte de los fibroblastos Detroit 551 en cultivo. El procedimiento seguido fue, resumidamente, el siguiente: el primer paso fue teñir las EV con Vybrant CM-Dil Celllabelling solution (CM-Dil) (V22888, Invitrogen), un colorante fluorescente específico de lípidos y membranas celulares; después, las EV se purificaron mediante ultracentrifugación en colchón de sacarosa (Théry *et al.*, 2006; Conde-Vancells *et al.*, 2008); y finalmente, se añadieron las EV teñidas a los fibroblastos en cultivo. La incorporación de las EV por los fibroblastos se verificó mediante microscopía confocal.

Cada una de las líneas celulares modificadas genéticamente derivadas de COLO-800 empleadas en este ensayo (shØ1 y shCEMIP1) se sembraron en 2 placas de cultivo de 150 cm² (168381, Thermo) con 1·10⁶ de células por placa en un volumen total de 15 ml de medio de cultivo con FBS deplecionado en EV. 24 horas después se añadió el colorante a los cultivos en una dilución 1:200. Como control negativo del experimento se siguió este mismo procedimiento con 2 placas de cultivo de 150 cm² sin células. Tras 24 horas de incubación, las células se lavaron con PBS 3 veces y el medio con el colorante se reemplazó por medio fresco con FBS deplecionado en EV. 24 horas más tarde, el medio de cultivo se renovó de nuevo con medio fresco con FBS deplecionado en EV. Transcurridas 48 horas, se recogió el medio de las 2 placas de cultivo para purificar las EV marcadas secretadas por las células tumorales. El medio se centrifugó 10 minutos a 110 xg y el sobrenadante se centrifugó 10 minutos a 1.500 xg. A continuación, el medio se depositó sobre un colchón de 4 ml de sacarosa al 30 % (Anexo 1D) en tubos de ultracentrífuga (344058, Beckman Coulter) y se centrifugó 75 minutos a 100.000 xg a 4 ºC en un rotor SW-32 Ti (Beckman Coulter). Se aspiraron 3,5 ml del colchón de sacarosa con una jeringa de 5 ml y aguja de 18 G, se añadió PBS hasta tener un volumen final aproximado de 30 ml, y se centrifugó 60 minutos a 100.000 xg a 4 ºC. Las EV teñidas precipitadas se resuspendieron en 50 µl de medio de cultivo sin FBS, se añadieron sobre los fibroblastos cultivados en cámaras µ-Slide 8 Well Poli-L-Lisina (80824, Ibidi) en ausencia de FBS e incubaron durante 4 y 15 horas. En cada experimento la totalidad de las EV obtenidas a partir 2 placas de cultivo de 150 cm² se añadió a un único pocillo con células Detroit 551. Los fibroblastos se procesaron para el estudio de inmunofluorescencia (protocolo descrito en el apartado 11.1) y se marcaron con Phalloidin-iFluor 594 Reagent (ab176757, Abcam) durante 45 minutos en dilución 1:1000, para observar los filamentos de actina, y con 4',6-diamino-2-fenilindol (DAPI) (D1306, Invitrogen), para marcar los núcleos celulares. Las imágenes se tomaron con un microscopio ZEISS LSM880 Fast Airyscan, con una cámara Axiocam MRm monocromo y el software ZEISS ZEN Black.

10. Ensayos de migración celular

10.1. Ensayos de cierre de herida

El ensayo de cierre de herida tiene como objetivo estudiar la capacidad de las células para moverse individualmente o en grupo. Este experimento consiste en generar un espacio vacío de células (herida) sobre un cultivo confluente, y posteriormente hacer un seguimiento del cierre progresivo de la herida por el movimiento de las células adyacentes para así determinar la tasa de cierre de la brecha tras un tiempo determinado. En este trabajo de investigación, más concretamente, se analizó el efecto de EV de origen tumoral con contenido variable de la proteína CEMIP sobre la capacidad migratoria de fibroblastos Detroit 551.

Los fibroblastos se sembraron en placas de 24 pocillos (3524, Sarstedt) a una concentración de 50.000 células/pocillo en 500 μ l de medio con FBS. Cuando el cultivo alcanzó una monocapa confluente, el medio completo se reemplazó por medio sin FBS y tras 24 horas se generó la herida mediante una punta de micropipeta de 200 μ l. Los pocillos se lavaron 3 veces con PBS para eliminar las células despegadas y a continuación se añadieron las EV derivadas de líneas celulares en una concentración de 50 μ g/ml. Se capturaron imágenes de 2 zonas diferentes del área libre de células inmediatamente después de hacer la herida (t = 0 horas), y a diferentes tiempos de incubación para poder comparar el cierre de la herida en las diferentes condiciones del experimento. Las fotos se tomaron con un microscopio Nikon eclipse TS100 (objetivo 4x) con una cámara JENOPTIK ProgRes CT3 acoplada y software de adquisición fue el ProgRes CapturePro v2.8.0. El análisis posterior del área libre se hizo con Fiji.

Los fibroblastos Detroit 551, al ser una línea fibroblástica primaria, cultivadas en ausencia de factores de crecimiento del suero presentaban una muy baja tasa de proliferación celular y, por lo tanto, no fue necesario aplicar en ningún experimento de migración celular ningún fármaco citostático como la Mitomicina C.

10.2. Ensayos en cámaras de Boyden

Los ensayos de migración celular a través de cámaras de Boyden permiten cuantificar la migración de las células situadas en un compartimento superior hacia un compartimento inferior donde se localiza la sustancia quimioatrayente. Para llevar a cabo este ensayo se seleccionaron cámaras de Boyden con una membrana de 8,0 µm de tamaño de poro (353097, Corning) situadas en pocillos de placas de 24 pocillos especialmente diseñadas para ello (353504, Falcon®-Corning). En este trabajo se quiso analizar la actividad migratoria de los fibroblastos Detroit 551 sembrados en medio, bajo el efecto de EV derivadas de las líneas celulares shØ1, shØ2, shCEMIP1 y shCEMIP2, hacia la solución quimioatrayente, en este caso, medio de cultivo con un 10 % de FBS deplecionado en EV.

Los fibroblastos se mantuvieron durante 24 horas en cultivo en medio sin FBS y, pasado ese tiempo de ayuno, se sembraron 23.500 células en 100 μl de medio de cultivo sin FBS en la parte superior del inserto. En el pocillo se cargaron 600 µl de medio con un 10 % de FBS deplecionado en EV. 2 horas después de la siembra de las células, se añadieron 5 µg de EV procedentes de líneas celulares en la parte superior del inserto (quedando así las EV a una concentración de 50 µg/ml). Tras 36 horas de incubación, las cámaras de Boyden se procesaron de la siguiente manera: se aspiró el medio de cultivo del compartimento superior, se retiraron las células que no habían migrado a la parte inferior de la membrana con un bastoncillo y el medio de cultivo del pocillo se reemplazó por una solución para fijar y teñir las células (Anexo 1E) que se incubó durante 30 minutos a temperatura ambiente. Siempre se comprobó que no hubiera células adheridas en el fondo de los pocillos, lo que hubiera indicado un periodo excesivo de incubación para la migración de las células. Para eliminar la tinción inespecífica se realizaron 8 lavados con PBS; tras ello se recortaron las membranas con un bisturí y se montaron sobre portaobjetos para ser observados en el microscopio. Se capturaron imágenes de 7 zonas diferentes en cada una de las membranas y se contó el número de células presentes en cada una de ellas para así obtener un número representativo de células que habían migrado en cada una de las condiciones en estudio. Las fotos se tomaron con un microscopio OLYMPUS BX50 (objetivo 10x) equipado con una cámara OLYMPUS XC50 y el programa informático Cell^.

11. Técnicas microscópicas

11.1. Inmunofluorescencia

La inmunofluorescencia es una técnica que permite detectar antígenos de interés mediante el uso de anticuerpos específicos fluorescentes. En concreto, se quiso determinar la presencia de α SMA en fibroblastos dérmicos Detroit 551 a los se les añadió bien EV de origen tumoral (50 µg/ml) o bien, factor de crecimiento transformante β 1 (TGF- β 1) (10ng/ml) (PEPROTECH, 100-21). α SMA es un marcador citoplasmático clásicamente ligado a la activación y conversión de fibroblastos a miofibroblastos (Webber *et al.*, 2010), y la incubación con TGF- β 1 se empleó a modo de control positivo, debido a la extensa literatura que relaciona esta citoquina con la transformación de fibroblastos a miofibroblastos (Vong and Kalluri, 2011; Goulet and Pouliot, 2021).

Los fibroblastos se sembraron en cámaras μ -Slide 8 Well Poli-L-Lisina (80824, Ibidi) (9.000 células/pocillo) en 200 μ l de su medio habitual suplementado con FBS y, trascurridas 24 horas desde la siembra se les privó de FBS durante las 24 horas posteriores. Se añadieron las EV tumorales y el TGF- β 1, y tras 72 horas de incubación, las células se marcaron con anticuerpo primario anti α SMA (MCA5781GA, Bio-Rad) y anticuerpo secundario Alexa Fluor 488 anti Mouse (A21131, Invitrogen) (Tabla 11) y DAPI (D1306, Invitrogen).

El protocolo de inmunofluorescencia seguido fue el descrito a continuación: las células se lavaron 3 veces con PBS y se fijaron con paraformaldehído al 4 % durante 20 minutos a temperatura ambiente. Los fibroblastos ya fijados se lavaron 3 veces con PBS durante 10 minutos y, después se permeabilizaron con PBT (Anexo 1F) durante 10 minutos. A continuación, las posibles interacciones no específicas de los anticuerpos se bloquearon con solución de bloqueo (Anexo 1F) durante 1 hora a temperatura ambiente. El anticuerpo primario se diluyó en solución de bloqueo y se incubó toda la noche a 4 ºC. Los pocillos se lavaron 3 veces durante 10 minutos con PBT para retirar el anticuerpo y se incubó el anticuerpo secundario en solución de bloqueo durante 2 horas en oscuridad a temperatura ambiente. Se realizaron de nuevo 3 lavados de 10 minutos con PBT para retirar el anticuerpo y los núcleos celulares se marcaron con una solución de DAPI 300 nM incubada durante 10 minutos. Se hicieron 2 lavados con PBS y las muestras se guardaron en PBS a 4 °C y en oscuridad hasta el momento de su observación al microscopio. El marcaje de las células se capturó con un microscopio Zeiss Apotome 2 (objetivo 20x) con una cámara Axiocam506 monocromo acoplada, el software de adquisición es el ZEISS ZEN Blue y el posterior análisis se hizo con Fiji.

Tabla 11. Anticuerpos primarios y secundarios utilizados en inmunofluorescencia. Se indica el anticuerpo, el animal de origen, la dilución empleada, su referencia y la casa comercial que lo suministra.

anticuerpo	origen	dilución	referencia	casa comercial
αSMA	ratón	1:100	MCA5781GA	Bio-Rad
Alexa Fluor 488 anti-ratón	cabra	1:1000	A21131	Invitrogen

11.2. Tinción negativa y visualización mediante microscopía electrónica de transmisión

El estudio de las muestras por TEM se llevó a cabo en los SGIker de la UPV/EHU, y fue el personal técnico experto del Servicio de Microscopía el que llevó a cabo todo el procesamiento de las muestras, así como la toma de fotografías.

Las muestras de EV resuspendidas en PBS se adsorbieron en rejillas de carbono, se fijaron con glutaraldehído al 2 % durante 10 minutos, se lavaron con H₂Od y se contrastaron con acetato de uranilo al 2 %. Una vez secas, las muestras se examinaron en un microscopio electrónico de transmisión JEM 1400 Plus (JEOL) equipado con filamento de tungsteno operado a un voltaje de trabajo de 120 kV. Las imágenes se tomaron con una cámara digital sCMOS integrada en el software de control del equipo.

11.3. Crio-microscopía electrónica de transmisión

El análisis de las muestras por crio-TEM se realizó en colaboración con el grupo de Juan Manuel Falcón Pérez y fue el personal del Servicio de Microscopía Electrónica del CIC bioGUNE, en el Parque Tecnológico de Vizcaya, el que procesó las muestras y capturó las imágenes.

Las muestras de EV resuspendidas en PBS se adsorbieron directamente sobre rejillas de carbono fenestradas mediante descarga lumínica (Quantifoil). Las rejillas se transfirieron a 95 % de humedad y se sumergieron rápidamente en etanol líquido con la ayuda de Vitrobot (Maastricht Instruments BV). Las muestras vitrificadas se fotografiaron a temperatura de nitrógeno líquido usando un microscopio electrónico de transmisión criogénica JEM-2200FS/CR (JEOL) equipado con un cañón de emisión de campo y operado a un voltaje de aceleración de 200 kV.

12. Ensayo de inmunoabsorción ligado a enzimas

La cuantificación de los niveles de CEMIP presente en las EV de sueros humanos se realizó mediante ensayos de inmunoabsorción ligado a enzimas (ELISA). En concreto, para ello se utilizó un kit comercial de ELISA tipo sándwich (SER965Hu, Cloud-Clone Corp.) específicamente diseñado

para medir CEMIP cuantitativamente *in vitro*. Este tipo de placas comerciales están recubiertas por un anticuerpo primario específico para un antígeno al que se une, si este se encuentra en la muestra que se ha incorporado a los pocillos. Después se añade un anticuerpo secundario conjugado con biotina que se une al complejo antígeno-anticuerpo primario formado previamente, y en siguiente lugar, se incorpora avidina conjugada con HRP. La avidina se une a la biotina del anticuerpo secundario y el HRP reacciona con el sustrato TMB que se añade posteriormente, produciéndose una reacción que genera color de manera proporcional a la cantidad de antígeno presente en la muestra. La reacción cromogénica se detiene con ácido sulfúrico transcurrido un tiempo determinado, la placa se lee a una determinada longitud de onda en un espectrofotómetro de placas y los datos obtenidos se extrapolan en la ecuación de la curva patrón para determinar la concentración de antígeno en las muestras (ng/ml).

Se analizó la concentración de CEMIP en un total de 88 muestras de EV séricas obtenidas por UC diferencial, en el estudio se incluyeron muestras derivadas de voluntarios sanos, pacientes diagnosticados con melanoma en estadios I y II que no desarrollaron metástasis durante el seguimiento posterior mínimo de 4 años y pacientes diagnosticados con melanoma en estadios I y II que desarrollaron metástasis en un periodo promedio de 28 meses, abarcando desde 4 meses a 14 años (Anexo 2, Tabla 29). En la Tabla 12 se muestran los grupos de estudio y el número de muestras analizadas en cada uno.

Tabla 12. Muestras de sueros analizadas mediante ELISA. Se indica el número de muestras incluidas en los ensayos de cuantificación de CEMIP mediante ELISA por cada grupo: voluntarios sanos y pacientes con melanoma diagnosticados en estadio I y estadio II (sin desarrollo de metástasis durante un periodo de seguimiento posterior superior a 4 años y con desarrollo de metástasis en un periodo promedio de 28 meses); se incluyeron 88 muestras en total.

	desarrollo de metástasis durante el seguimiento	número de muestras analizadas
voluntarios sanos	-	21
ostadio I	no	21
estadio i	sí	6
ostadia II	no	16
estadio II	sí	24

Para llevar a cabo este ensayo se purificaron las EV mediante UC partiendo de muestras de 250 μ l de suero; el precipitado final se resuspendió en 200 μ l de PBS/RIPA en proporción 1:1. Los 200 μ l de la suspensión de vesículas se repartieron en 2 pocillos de la placa de ELISA y se siguió el protocolo indicado por la casa comercial. El sustrato TMB se incubó durante 20 minutos y finalmente las placas se leyeron a 450 nm en un espectrofotómetro BioTek Synergy HT. Como control interno entre las diversas placas de ELISA empleadas se usaron 2 muestras diferentes: EV de suero de un individuo sano y lisado de proteína celular de la línea COLO-800; se comprobó de este modo que las lecturas de las concentraciones para estas muestras se mantenían y, por tanto, los valores obtenidos para el resto de muestras eran válidos.

13. Análisis estadístico

El análisis estadístico de los datos obtenidos del análisis proteómico por LC-MS/MS se hizo con los paquetes estadísticos de LFQ-Analyst (Shah *et al.*, 2019) y Perseus (Tyanova and Cox, 2018). Los datos obtenidos del análisis proteómico por PEA se analizaron con un paquete de R que ejecuta la propia aplicación de OLINK, que aplicó la prueba t de Welch.

En los análisis funcionales de GO se aplicó el paquete estadístico de DAVID Bioinformatics Resources 2021 con corrección de Benjamini y en el análisis de GSEA se aplicó el paquete estadístico de la propia herramienta facilitada por WebGestalt.

El análisis estadístico de los ensayos de migración, ELISA, inmunofluorescencia y RT-qPCR se llevó a cabo mediante el software GraphPad Prism 5.01. En todos los casos se estudió si los datos eran paramétricos o no con el test de Kolmogorov-Smirnov y, en función de la distribución normal o no de los datos, las diferentes condiciones experimentales se compararon con el análisis paramétrico T de student o no paramétrico pareado Wilcoxon, en caso de la comparación fuera solo entre 2 medias; y el análisis paramétrico ANOVA con corrección de Bonferroni o no paramétrico Kruskal Wallis seguido de post hoc Dunn, cuando se compararon más de 2 medias. Se consideró que existía una diferencia estadísticamente significativa entre condiciones cuando el valor p era menor que 0,05, considerando: p<0,05 diferencia significativa (*), p<0,01 diferencia muy significativa (**) y p<0,001 diferencia altamente significativa (***). El test de Grubbs se empleó para detectar valores atípicos (outliers). Los resultados representados en las gráficas están expresados con promedio \pm desviación estándar (SD) y, en muchos casos, estos valores están normalizados con el control. Salvo que se especifique de otra manera, se realizaron 3 experimentos independientes.

IV. RESULTADOS

1. Caracterización del proteoma de las EV derivadas de melanocitos y células de melanoma humano

Como punto de partida en este trabajo de investigación se caracterizaron las EV secretadas por líneas celulares humanas en cultivo no tumorales (melanocitos) y de melanoma cutáneo maligno (diferenciando líneas derivadas de tumores primarios y metastásicos) purificadas mediante el protocolo de UC diferencial establecido.

Tras la caracterización cualitativa y cuantitativa de las vesículas purificadas, se llevó a cabo un análisis del perfil proteómico comparativo de las líneas celulares en estudio con el objetivo de identificar proteínas secretadas mediante las EV relacionadas con la progresión tumoral. Describir la composición proteica de las vesículas secretadas por los melanocitos y por líneas tumorales (primarios y metastásicos) se traduce en caracterizar una importante vía de señalización intercelular de la que se podría servir el melanoma para crecer localmente, para adquirir capacidad invasora o para modular el comportamiento de otras células; su estudio, por consiguiente, podría dar lugar a la identificación de dianas terapéuticas y marcadores pronóstico.

1.1. Caracterización de las EV purificadas de líneas celulares

Las fracciones enriquecidas en vesículas obtenidas a partir de cultivos celulares de melanocitos y melanoma humano se caracterizaron siguiendo los criterios establecidos por el ISEV (Théry *et al.*, 2018). Para ello, se llevó a cabo tanto una caracterización bioquímica mediante la evaluación del enriquecimiento en marcadores propios de las EV, como una caracterización morfológica para analizar la forma, el tamaño y la concentración de las vesículas purificadas.

1.1.1. Enriquecimiento en marcadores proteicos propios de EV

Las fracciones obtenidas tras el protocolo de UC diferencial definido para los cultivos celulares se caracterizaron bioquímicamente siguiendo la guía del MISEV 2018 (Théry *et al.*, 2018). Por una parte, se analizó la presencia de las tetraspaninas CD63, CD81 y CD9, pertenecientes a la categoría de proteínas transmembrana o asociadas a GPI de membrana plasmática y/o endosomas, que son específicas de EV; y, por otra parte, se analizó la presencia de TSG101 y ALIX, proteínas citosólicas ambas con capacidad de unión a lípidos o membrana, las cuales no se consideran marcadores exclusivos de exosomas pero se asocian más con exosomas que con MV porque están asociados a los complejos ESCRT. Así mismo se evaluó la presencia de la proteína CANX, un marcador específico de vesículas con origen en el ER, que puede estar presente en algunos tipos de EV de gran tamaño (oncosomas y otras EV muy grandes), pero no en EV de tamaño inferior a 200 nm con origen endosomal o de membrana plasmática.

Resultados

Figura 12. Enriquecimiento de marcadores propios de EV en las fracciones purificadas mediante UC diferencial a partir de líneas celulares en cultivo. Se analizó, mediante western blot, la presencia de marcadores característicos de EV, en lisados celulares de melanocitos y de melanoma humano, y en sus respectivos lisados de las fracciones purificadas mediante el protocolo de UC diferencial. Se cargaron 40 µg de proteína en los lisados celulares y 20 µg en los lisados de las vesículas purificadas. Como control de carga se usó β actina y la tinción de la membrana con rojo Ponceau (no mostrado). Se muestra una imagen representativa de 3 experimentos independientes realizados.

Tal y como se muestra la Figura 12, pese a la diferencia de carga entre lisados procedentes del medio de cultivos (20 µg) y los lisados celulares (40 µg), las proteínas ALIX, TSG101, CD63, CD81 y CD9 se hallaron claramente enriquecidas en los extractos proteicos de las fracciones obtenidas a partir del medio de los cultivos celulares. Por el contrario, la proteína CANX se detectó únicamente en los lisados celulares. Estos datos prueban la presencia de EV en las fracciones obtenidas mediante el protocolo de UC diferencial y sugieren un enriquecimiento en EV de tamaño pequeño (< 200 nm) ligados a origen endosomal o de membrana plasmática, sin aparente presencia de marcadores específicos de vesículas grandes o muy grandes (Théry et al., 2018).

1.1.2. Caracterización morfológica de las EV

Las fracciones enriquecidas en EV se examinaron visualmente mediante TEM para tener una descripción morfológica, determinar el tamaño y la forma de las vesículas purificadas, y evaluar la homogeneidad de las muestras. En una primera aproximación, las muestras se visualizaron mediante tinción negativa para verificar la presencia de vesículas; y posteriormente, las fracciones purificadas se evaluaron a través de crio-TEM, una técnica con la que se obtienen imágenes que reflejan mejor la estructura nativa de las vesículas ya que las muestras son vitrificadas y analizadas en el microscopio sin tratamientos intermedios que las alteren ni creen artefactos (Shao *et al.*, 2018; Théry *et al.*, 2018).

Figura 13. Imágenes de las EV presentes en las fracciones purificadas a partir de líneas celulares en cultivo. Se analizó el contenido de las fracciones obtenidas mediante UC diferencial a partir de cultivos celulares de melanocitos, melanoma primario y melanoma metastásico por medio de **A**, TEM, con tinción negativa, **B**, crio-TEM. Barra de escala: 100 o 200 nm, según se indique en la imagen. Las muestras examinadas se prepararon a partir de una concentración de proteína de 1 µg/µl. Se muestran imágenes representativas de cada condición.

En el análisis mediante tinción negativa (Figura 13A) se observó que las vesículas purificadas mediante el protocolo de UC diferencial a partir de cultivos celulares presentaban la forma de copa característica de los exosomas cuando estos son analizados mediante esta técnica (Raposo

В

91

and Stoorvogel, 2013) y que estas tenían un tamaño aparente < 150 nm, correspondiente a EV de tamaño pequeño y especialmente acorde con el rango descrito para los exosomas. Sin embargo, es cierto que las imágenes no eran del todo claras debido a agregados originados durante el procesado de las muestras requerido en esta técnica y a la deformación que sufren las vesículas por el recubrimiento que implica la tinción negativa. En el estudio de las fracciones purificadas eran de forma esférica, que estaban limitadas por una bicapa lipídica (que se evidencia mejor en la Figura 14) y que el tamaño de las mismas se encontraba en el rango ya observado anteriormente mediante tinción negativa, compatible con el de las EV de tamaño pequeño, entre las que predominan los exosomas. Con ambas técnicas se observó que las muestras analizadas eran homogéneas, todas las vesículas tenían un aspecto parecido, y todas las muestras eran similares, independientemente del tipo celular del que procedieran.

Figura 14. Imagen de una EV con bicapa lipídica purificada a partir de líneas celulares en cultivo. Se muestra un ejemplo representativo de una vesícula, obtenida mediante UC diferencial a partir de cultivos celulares, en la que se distingue con claridad la bicapa lipídica que la delimita. Imagen obtenida mediante crio-TEM, barra de escala: 200 nm.

1.1.3. Tamaño y concentración de las EV

Las fracciones purificadas a partir de cultivos celulares se analizaron mediante NTA para determinar la distribución de tamaño de las vesículas obtenidas y su diámetro medio, así como la concentración de partículas que presentaban las muestras.

Para evaluar la variabilidad entre experimentos, de cada una de las 6 líneas celulares incluidas en el estudio se analizaron 3 fracciones purificadas mediante el protocolo de UC diferencial en experimentos independientes; y cada una de las fracciones se analizó 2 veces para evaluar la variabilidad dentro de una misma muestra por lo que para cada línea celular se obtuvieron 6 lecturas. A continuación, a modo de ejemplo representativo, en la Figura 15, se muestran los 6 perfiles de distribución de tamaño de las partículas obtenidas tras 3 purificaciones a partir de la línea de melanocitos HEMn-MP en cultivo.

Figura 15. Perfil de distribución de tamaño de las vesículas purificadas mediante UC diferencial a partir de la línea de melanocitos HEMn-MP en cultivo. Se estudió mediante NTA la distribución de tamaño de las partículas purificadas en 3 experimentos independientes por duplicado. En la imagen se muestran las curvas de las 3 fracciones purificadas de manera independiente (1, 2 y 3), cada una de ellas analizada en duplicado (A y B) y la curva resultante de la media de las 6 lecturas realizadas (representada con trazo de color negro punteado). Se cargó 1 µg de proteína diluido en 250 µl de PBS filtrado por cada muestra analizada. En cada lectura se registró un mínimo de 200 partículas. Se fijaron los parámetros: camera level: 11 y detection threshold: 5.

Como se muestra en la Figura 15, las 6 lecturas proporcionaron perfiles de distribución de tamaño comparables. Las 3 muestras obtenidas en las diferentes purificaciones llevadas a cabo presentaron una población principal de partículas de un tamaño similar (de unos 160 nm), lo que demostró que el protocolo de UC diferencial empleado para purificar las EV secretadas por las líneas celulares en cultivo es reproducible.

En todas las muestras, independientemente de la línea celular de origen, se halló una población principal de vesículas de unos 140 - 160 nm de diámetro (Figura 16), un tamaño en sintonía con el observado previamente por microscopía electrónica y compatible con EV de tamaño pequeño que incluyen tanto los exosomas (originados a partir de cuerpos multivesiculares) como las MV pequeñas (originados a partir de la membrana plasmática).

Resultados

Figura 16. Perfiles de distribución de tamaño de las vesículas purificadas a partir de líneas celulares en cultivo. Se estudió mediante NTA la distribución de tamaño de las partículas purificadas por medio de UC a partir de cultivos celulares de melanocitos, melanoma primario y melanoma metastásico. Se analizaron 3 muestras independientes en duplicado por cada línea celular, en la imagen se muestra la curva resultante de la media de las 6 lecturas realizadas. Se cargó 1 µg de proteína diluido en 250 µl de PBS filtrado por cada muestra analizada. En cada lectura se registró un mínimo de 200 partículas. Se fijaron los parámetros: camera level: 11 y detection threshold: 5.

Como se muestra en la Tabla 13, la distribución de tamaño de las partículas purificadas se mantuvo constante en las diferentes réplicas de cada línea celular y el tamaño de las vesículas encontrado con mayor frecuencia (moda) en las fracciones purificadas fue siempre de en torno a los 150 nm (en concreto 151,42 ± 10,99 nm de media). La concentración de partículas en las fracciones purificadas también se mantuvo relativamente estable en las diferentes réplicas de cada línea celular y sin relación aparente entre la concentración y malignidad de las células.

Tabla 13. Moda promedio de las vesículas purificadas y concentración de partículas promedio de las fracciones obtenidas a partir de cultivos celulares. Se analizaron mediante NTA 3 muestras independientes analizadas en duplicado por cada condición. Los resultados de moda (nm) y concentración de partículas (partículas/ml) se muestran como promedio ± SD.

	moda (nm)	concentración (partículas/ml)
HEMn-LP	145,27 ± 12,62	$1,23\cdot10^9 \pm 3,51\cdot10^8$
HEMn-MP	160,17 ± 7,17	$1,39 \cdot 10^9 \pm 3,68 \cdot 10^8$
A375	156,63 ± 6,02	$1,36\cdot10^9 \pm 6,95\cdot10^8$
MEL-HO	152,72 ± 21,00	$1,18 \cdot 10^9 \pm 4,27 \cdot 10^8$
COLO-800	150,80 ± 14,94	$1,00.10^9 \pm 2,89.10^8$
A2058	142,95 ± 4,19	$0,97 \cdot 10^9 \pm 2,83 \cdot 10^8$
media 6 líneas	151,42 ± 10,99	$1,19\cdot10^9 \pm 4,02\cdot10^8$

En su conjunto, estos resultados, *i. e.* la presencia de marcadores propios de EV tales como ALIX, TSG101, CD63, CD81 y CD9; la ausencia de CANX (proteína asociada al ER y únicamente presente en algunas EV de tamaño > 200 nm) y el tamaño estimado para las vesículas mediante microscopía electrónica y NTA, indican que las fracciones purificadas están enriquecidas en EV de tamaño pequeño, rango en el que se ubican las MV de pequeño tamaño y el conjunto de los exosomas.

1.2. Caracterización del proteoma de EV derivadas de líneas celulares

Una vez verificada la naturaleza de las EV obtenidas a partir de líneas celulares en cultivo, se caracterizaron los perfiles proteómicos de las mismas. Se analizaron mediante LC/MS-MS fracciones enriquecidas en EV a partir de cultivos de melanocitos (HEMn-LP y HEMn-MP), líneas de melanoma primario (A375 y MEL-HO) y líneas de melanoma metastásico (COLO-800 y A2058) para identificar marcadores vinculados a la progresión del melanoma. En concreto, se analizaron 3 fracciones purificadas de manera independiente por cada línea celular incluida en el estudio.

1.2.1. Análisis de agrupamiento

Los análisis de agrupamiento mediante mapas de calor y análisis de componentes principales (PCA) permiten determinar niveles de similitud entre las muestras. Estos análisis se realizaron por medio de la herramienta LFQ-Analyst en base a los criterios mencionados en el apartado 8.1.1.2. de la sección de Materiales y Métodos.

Los mapas de calor son matrices cromáticas que representan el nivel de expresión de determinados genes o proteínas en una serie de condiciones diferentes. Este tipo de gráficos son representaciones en 2 dimensiones donde las diferentes proteínas analizadas (o genes en otros casos) se representan en las filas y las condiciones o muestras analizadas en columnas (en este estudio en concreto, las 3 fracciones enriquecidas en EV purificadas a partir de cada línea celular). La cantidad de cada una de las proteínas analizadas se representa con un cuadrado o rectángulo, situado a la altura correspondiente para esa proteína y debajo la condición correspondiente, cuyo color estará dentro de una escala tricolor, que va del azul (cantidades relativamente bajas) al rojo (cantidades relativamente abundantes) pasando por blanco (cantidades intermedias).

Como refleja la Figura 17, el análisis de agrupamiento mediante mapa de calor de los perfiles exoproteómicos evidenció que, a grandes rasgos, las muestras se agrupaban en base a su

naturaleza ya que, por un lado, se agrupan las 6 réplicas derivadas de melanocitos y, por otro lado, todas las muestras obtenidas de las líneas de melanoma. Dentro del grupo de muestras obtenidas a partir de líneas de melanoma se distinguieron 2 subgrupos principales, uno de ellos con muestras exclusivamente de melanoma primario, y el otro, con todas las muestras de melanoma metastásico y algunas réplicas de melanoma primario (MEL-HO_1 y MEL-HO_2).

Figura 17. Análisis de agrupamiento mediante mapa de calor del exoproteoma de 3 réplicas derivadas de melanocitos, células de melanoma primario y melanoma metastásico. En el mapa de calor, obtenido mediante LFQ-Analyst, se representa la agrupación de las fracciones enriquecidas en EV analizadas de acuerdo a la semejanza de sus perfiles proteómicos. Se analizaron 3 muestras independientes por cada línea celular. La escala de la cantidad de proteína se muestra en la parte superior del mapa de calor: el color rojo representa una presencia relativa aumentada de la proteína, el color azul indica una presencia relativa disminuida de la misma y el color blanco significa una cantidad intermedia de dicha proteína.

El análisis de agrupamiento mediante PCA consiste en un método estadístico que permite condensar la información original de muchas variables iniciales en nuevas variables, denominadas componentes principales, que recogen información suficiente para describir al menos los aspectos más relevantes del conjunto de datos inicial (por ejemplo, en la Figura 18 los componentes principales recogen el 60,4 % de la información inicial). Este tipo de gráficos permiten reducir la dimensión del número de variables inicialmente consideradas en el análisis y muestran en 2 dimensiones las diferencias y similitudes existentes entre las muestras estudiadas de manera que las muestras que están correlacionadas se muestran más agrupadas, y las muestras que no están correlacionadas entre sí se disponen separadas unas de las otras.

Los resultados del análisis mediante PCA (Figura 18) mostraron, una vez más, una clara separación entre las muestras provenientes de melanocitos y aquellas derivadas de líneas de melanoma; sin embargo, no se observó ningún agrupamiento claro ligado a las muestras provenientes de líneas de melanoma primario frente a metastásico. Así mismo el PCA evidenció la presencia de réplicas biológicas que distaban del grupo correspondiente, manifestando la presencia de diferencias ligadas al propio procedimiento experimental.

Figura 18. Análisis de agrupamiento mediante PCA de 3 réplicas derivadas de melanocitos, células de melanoma primario y melanoma metastásico. En este PCA, obtenido mediante LFQ-Analyst, se muestra la organización de las 3 réplicas independientes analizadas por cada línea celular en función de la semejanza de sus perfiles exoproteómicos. En color verde se representan las 6 muestras obtenidas a partir de melanocitos; en color azul, las 6 réplicas de melanoma primario; y en color rojo, las 6 muestras de melanoma metastásico.

Más detalladamente, el análisis mediante PCA (Figura 18) reflejó que:

- Las muestras de melanocitos conformaron un único grupo (color verde), aunque la muestra HEMn-LP_1 se alejó sustancialmente del resto y la réplica HEMn-MP_1 también distó del grupo, pero más ligeramente.

- Las muestras de melanoma metastásico mostraron perfiles de expresión de proteínas similares, reflejado en la agrupación tan próxima de las 5 muestras (color rojo). Sin embargo, la muestra A2058_3 se distinguió ligeramente de las otras.

- Las muestras de las líneas de melanoma primario no se localizaron formando un único grupo (color azul): MEL-HO fue un grupo muy heterogéneo y disperso en el que las 3 réplicas estaban muy alejadas unas de otras; 2 de ellas (MEL-HO_1 y MEL-HO_2) se aproximaron al grupo formado

por las muestras de melanoma metastásico y MEL-HO_3 se situó más cerca del grupo formado por las 3 réplicas de A375.

En resumen, se observó, por un lado, mucha discrepancia en los perfiles exoproteómicos identificados de las 2 líneas analizadas de melanoma primario y, por otro lado, en la mayoría de las líneas, una de las 3 réplicas analizadas se alejaba, en mayor o menor medida, de las otras 2.

Tras las discrepancias observadas en el PCA entre las réplicas biológicas (Figura 18) se procedió a eliminar la réplica más divergente y se llevó a cabo un nuevo análisis de los datos teniendo en cuenta en cada línea celular solo las 2 réplicas con mayor semejanza en base a sus perfiles exoproteómicos.

El mapa de calor resultante del análisis de agrupamiento de los perfiles exoproteómicos teniendo en cuenta únicamente las 2 réplicas más similares derivadas de cada línea celular, evidenció, como era de esperar, que, por un lado, se agruparon las 4 réplicas derivadas de melanocitos y, por otro lado, las 8 muestras obtenidas de las líneas de melanoma (Figura 19). Dentro del grupo de muestras obtenidas a partir de líneas de melanoma se distinguieron 2 subgrupos, uno de ellos con las 2 muestras de melanoma primario (A375), y el otro formado a su vez por 2 subgrupos, uno con las 4 muestras de melanoma metastásico (COLO-800 y A2058) y otro con las 2 réplicas de melanoma primario (MEL-HO). En definitiva, las muestras derivadas de células de melanocitos presentaron perfiles proteómicos similares entre sí formando un único grupo y las muestras derivadas de células de melanoma formaron otro grupo en el que las muestras derivadas de melanoma metastásico formaron un subgrupo, pero las muestras derivadas de melanoma primario no presentaron perfiles proteómicos similares y no se agruparon.

Figura 19. Análisis de agrupamiento mediante mapa de calor del exoproteoma de las 2 réplicas con mayor similitud derivadas de melanocitos, células de melanoma primario y melanoma metastásico. En el mapa de calor, obtenido mediante LFQ-Analyst, se representa la agrupación de las 2 fracciones enriquecidas en EV más próximas de cada línea celular analizadas en base a la semejanza de sus perfiles proteómicos. La escala de la cantidad de proteína se muestra en la parte superior del mapa de calor: el color rojo representa una presencia aumentada de la proteína, el color azul indica una presencia disminuida de la misma y el color blanco significa una cantidad intermedia de dicha proteína.

El PCA resultante del nuevo análisis de los datos (Figura 20), al igual que el mapa de calor, mostró 3 grupos: uno de ellos con las 4 muestras de melanocitos, otro con las 2 muestras de A375 (melanoma primario), y otro con las 2 muestras de MEL-HO (melanoma primario) y las 4 muestras de melanoma metastásico.

Figura 20. Análisis de agrupamiento mediante PCA de las 2 réplicas con mayor similitud derivadas de melanocitos, células de melanoma primario y melanoma metastásico. En este PCA, obtenido mediante LFQ-Analyst, se muestra la organización de las fracciones enriquecidas en EV analizadas teniendo en cuenta las 2 réplicas más próximas analizadas de cada línea celular. En color verde se representan las 4 muestras de melanocitos; en color azul, las 4 muestras de melanoma primario; y en color rojo, las 4 muestras de melanoma metastásico.

En resumen, el estudio de agrupación mostró que las EV purificadas por UC derivadas tanto de las 2 líneas de melanocitos como de las 2 líneas de melanomas metastásicos presentaban perfiles proteómicos que los agruparon en base a su naturaleza, formando 2 grupos independientes bien definidos, y, por el contrario, las muestras derivadas de melanoma primario eran muestras heterogéneas con perfiles proteómicos diferentes. Por esta heterogeneidad encontrada en las muestras purificadas de melanoma primario, para los análisis posteriores destinados a la identificación de proteínas clave para el desarrollo tumoral, bien para el desarrollo inicial bien para la metástasis, se tuvieron en cuenta las muestras de los 2 grupos más homogéneos, es decir, 2 líneas de melanocitos y 2 líneas de melanoma metastásico.

1.2.2. Identificación de proteínas contenidas en EV diferencialmente enriquecidas

Una vez seleccionados los grupos de muestras con los que continuar el estudio, se ahondó en la naturaleza y función de las proteínas diferencialmente enriquecidas en EV derivadas de melanocitos y de melanoma metastásico. Se llevaron a cabo análisis comparativos de los perfiles proteómicos mediante las herramientas LFQ-Analyst y Perseus, estableciendo en ambas los mismos criterios en cuanto al umbral de significancia o tipo de imputación de valores ausentes (descritos en el apartado 8.1.1.2. de la sección de Materiales y Métodos).

Mediante LFQ-Analyst se determinó que 731 proteínas de las 1.945 que superaban los criterios de inclusión del programa (un 37,6 %) estaban expresadas diferencialmente en las fracciones enriquecidas en EV de melanocitos y melanoma metastásico (Figura 21, Anexo 4 Tabla 31), mientras que a través de Perseus se identificaron 978 proteínas diferencialmente expresadas de un total de 2.137 proteínas (un 45,8 %).

Figura 21. Proteínas diferencialmente representadas en perfiles proteómicos de fracciones enriquecidas en EV obtenidas de cultivos de melanocitos y células de melanoma metastásico. El volcano plot, obtenido mediante LFQ-Analyst, muestra en el lado izquierdo del gráfico las proteínas con mayor presencia en EV derivadas de melanocitos (HEMn-LP y HEMn-MP), en el lado derecho del gráfico las que presentan mayor presencia en EV obtenidas a partir de melanoma metastásico (COLO-800 y A2058) y en la zona de color gris del gráfico se sitúan las proteínas con diferencias no significativas estadísticamente entre melanocitos y melanoma metastásico y aquellas con diferencias significativas estadísticamente que no cumplen con el criterio de selección fijado de tener un valor en el log₂ del ratio de intensidad de expresión (log₂ fold change) igual o superior a 2 puntos. En el análisis se incluyeron las 2 fracciones enriquecidas en EV purificadas de manera independiente más próximas en el PCA por cada línea celular incluida en el estudio. Para el análisis se establecieron los parámetros: Adjusted p-value cutoff: 0,05; log₂ fold change cutoff: 2; Imputation type: Perseus-type; Type of FDR correction: Benjamini Hochberg.

Tras obtener la lista de proteínas diferencialmente representadas en perfiles proteómicos de fracciones enriquecidas en EV obtenidas de cultivos de melanocitos y células de melanoma metastásico, se llevaron a cabo análisis funcionales de dichas proteínas con el propósito de identificar proteínas que pudieran estar implicadas en la progresión tumoral.

1.2.3. Análisis funcional

Para identificar posibles proteínas de interés relacionadas con la malignización celular se realizaron los análisis de GO a través de la herramienta de anotación funcional DAVID y de GSEA mediante la herramienta facilitada por WebGestalt.

En primer lugar, se identificaron los componentes celulares especialmente enriquecidos en las fracciones de EV analizadas (4 muestras de melanocitos y 4 de melanoma metastásico) y para ello se realizó un análisis de GO en el que se incluyeron todas las proteínas identificadas mediante

LFQ-Analyst. Este análisis, como muestra la Tabla 14, reportó que vesículas, exosomas y orgánulos extracelulares fueron los componentes celulares enriquecidos con mayor significancia en las muestras (el valor p = 0 representa el enriquecimiento perfecto).

Tabla 14. Componentes celulares con mayor sobrerrepresentación en las fracciones de EV de líneas celulares. Se muestran los 10 componentes celulares enriquecidos con mayor significancia estadística en base a las proteínas identificadas en el análisis proteómico por LC-MS/MS. Se indica el % de genes identificados pertenecientes a cada término GO, el ratio de enriquecimiento de dicho término y el valor p tras la corrección de Benjamini. Para realizar este análisis se empleó la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_CC_ALL), se establecieron los parámetros Thresholds: Count 2, EASE 0.1 y se aplicó el paquete estadístico propio de la aplicación. La tabla completa se encuentra en el Anexo 5 (Tabla 32).

términos GO: componentes celulares	% genes identificados	ratio enriquecimiento	valor p Benjamini
vesículas extracelulares	44,5	4,0	0
exosomas extracelulares	44,3	4,2	0
orgánulos extracelulares	44,5	4,0	0
vesículas	56,4	2,8	1,7·10 ⁻²⁹²
parte de región extracelular	50,2	2,7	9,8·10 ⁻²³⁰
región extracelular	52,8	2,3	9,9·10 ⁻¹⁹³
parte citoplasmática	80,1	1,6	5,0·10 ⁻¹⁷⁷
citosol	55,2	2,1	1,1·10 ⁻¹⁶⁵
citoplasma	85,4	1,4	8,2·10 ⁻¹⁴⁵
unión célula-sustrato	12,7	6,1	4,6·10 ⁻¹³¹

También se llevó a cabo un análisis de enriquecimiento en procesos biológicos para conocer los procesos en los que participan las proteínas identificadas en las muestras. Estos análisis revelaron que las EV derivadas de las líneas de melanocitos incorporan selectivamente proteínas de procesos metabólicos (Tabla 15), y las EV derivadas de las líneas de melanoma metastásico estaban enriquecidos en proteínas implicadas en la adhesión, proliferación y migración celular (Tabla 16).

Tabla 15. Procesos biológicos significativamente enriquecidos en EV derivadas de las líneas de melanocitos. Se muestran los 10 procesos biológicos enriquecidos con mayor significancia estadística en base a las proteinas identificadas por LC-MS/MS a partir de las muestras de EV de melanocitos (HEMn-LP y HEMn-MP). Se indica el % de genes identificados pertenecientes a cada término GO, el ratio de enriquecimiento de dicho término y el valor p tras la corrección de Benjamini. Para llevar a cabo este análisis se empleó la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_BP_ALL), se establecieron los parámetros Thresholds: Count 2, EASE 0.1 y se aplicó el paquete estadístico propio de la aplicación. La tabla completa se encuentra en en el Anexo 6 (Tabla 33).

términos GO: procesos biológicos	% genes identificados	ratio enriquecimiento	valor p Benjamini
proceso metabólico de ácido carboxílico	20,7	4,1	3,9·10 ⁻¹⁷
proceso metabólico de molécula pequeña	30,0	2,8	1,9·10 ⁻¹⁶
proceso metabólico de oxoácido	21,0	3,8	4,3·10 ⁻¹⁶
proceso metabólico de ácido orgánico	21,0	3,7	6,2·10 ⁻¹⁶
proceso catabólico	32,4	2,5	6,9·10 ⁻¹⁵
proceso metabólico de un solo organismo	43,1	2,1	7,8·10 ⁻¹⁵
proceso catabólico de molécula pequeña	11,7	6,2	7,9·10 ⁻¹⁴
proceso catabólico sustancias orgánicas	27,2	2,6	1,6·10 ⁻¹²
proceso catabólico ácido orgánico	8,6	6,6	2,8·10 ⁻¹⁰
proceso catabólico ácido carboxílico	8,6	6,6	2,8·10 ⁻¹⁰

Tabla 16. Procesos biológicos significativamente enriquecidos en EV derivadas de las líneas de melanoma metastásico. Se muestran los 10 procesos biológicos enriquecidos con mayor significancia estadística en base a las proteinas identificadas por LC-MS/MS a partir de las muestras de EV de melanoma metastásico (COLO-800 y A2058). Se indica el % de genes identificados pertenecientes a cada término GO, el ratio de enriquecimiento de dicho término y el valor p tras la corrección de Benjamini. Para este análisis se empleó la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_BP_ALL), se establecieron los parámetros Thresholds: Count 2, EASE 0.1 y se aplicó el paquete estadístico propio de la aplicación. La tabla completa se encuentra se encuentra en en el Anexo 7 (Tabla 34).

términos GO: procesos biológicos	% genes identificados	ratio enriquecimiento	valor p Benjamini
regulación de adhesión celular	22,5	5,1	1,28·10 ⁻⁴
adhesión celular	28,7	3,5	1,98·10 ⁻⁴
adhesión biológica	28,7	3,5	1,98·10 ⁻⁴
proliferación celular	32,5	3,1	2,35·10 ⁻⁴
desarrollo tisular	31,3	3,0	6,94·10 ⁻⁴
adhesión homotípica célula-célula	8,8	17,6	1,28·10 ⁻³
regulación positiva de proliferación celular	21,3	4,0	1,28·10 ⁻³
morfogénesis de estructura anatómica	36,3	2,5	1,28·10 ⁻³
regulación de migración celular	21,3	4,0	1,28·10 ⁻³
regulación positiva de migración celular	16,3	5,3	1,37·10 ⁻³

Posteriormente, mediante el análisis de GSEA, se realizó un análisis de enriquecimiento de conjuntos para determinar qué perfiles funcionales tenían las proteínas expresadas diferencialmente en EV derivadas de melanocitos y de melanoma metastásico.

Figura 22. Perfil funcional de proteínas sobrerrepresentadas en EV derivadas de las líneas de melanocitos y melanoma metastásico. Los extremos superior e inferior de la lista corresponden a procesos biológicos enriquecidos en EV de melanoma metastásico (azul) y melanocitos (naranja). Para el análisis se empleó la herramienta facilitada por WebGestalt, se mantuvieron los parámetros preestablecidos por la herramienta y se marcaron los siguientes: organismo de interés: Homo sapiens; método de interés: Gene Set Enrichment Analysis (GSEA); base de datos funcional: community-contributed y el conjunto de sets de genes: Hallmark50; nivel de significancia: FDR: 0,05; y se aplicó el paquete estadístico propio de la aplicación.

Como se observa en la Figura 22, el análisis de enriquecimiento funcional mostró un enriquecimiento en proteínas relacionados con la fosforilación oxidativa y ciclo del ácido cítrico, el desarrollo de adipocitos y el metabolismo de ácidos grasos en EV derivadas de células benignas (melanocitos) mientras que se observó un enriquecimiento en la vía de KRAS, la coagulación de la sangre, la transición epitelio-mesénquima y la progresión del ciclo celular en las EV derivadas de líneas de melanoma metastásico.

En relación al proteoma de EV obtenidas a partir de células de melanoma metastásico, tanto el estudio de GO a través de DAVID como el de mediante GSEA resaltaron el enriquecimiento en proteínas relacionadas con procesos íntimamente relacionados con la progresión tumoral tales como la proliferación y la migración celular. De estos últimos procesos biológicos destaca especialmente el de migración celular puesto que la motilidad celular es una de las características del proceso de transición epitelio-mesénquima y, por lo tanto, está estrechamente relacionada con el desarrollo de la metástasis. Por esta relación estrecha con la metástasis, el estudio se centró principalmente en las proteínas enriquecidas en EV obtenidas a partir de células malignas y relacionadas con la migración celular (Tabla 17).

Tabla 17. Proteínas diferencialmente enriquecidas en EV de melanoma metastásico relacionadas con la motilidad celular. Se muestran las proteínas con enriquecimiento en EV de melanoma metastásico incluidas en el epígrafe de regulación de migración celular el análisis de GO mediante DAVID y en el término transición epitelio-mesénquima en el análisis llevado a cabo a través de GSEA.

regulación de migración celular (DAVID)	transición epitelio-mesénquima (GSEA)
FERMT3	ANPEP
CEMIP	CAP2
CORO1A	CDH2
DAPK2	COMP
HMGB1	CTHRC1
ILK	EDIL3
LAMB1	FMOD
MAPRE2	HTRA1
NRP1	LAMC1
PIK3CG	MGP
SPARC	MMP-1
SEMA3A	PLAUR
SEMA3G	PLOD1
	PLOD3
	PTX3
	SERPINE2
	SFRP1
	SPARC
	SPP1
	TGF-β1
	TGM2
	THBS1
	THBS2
	TNC
	VCAN

En resumen, el análisis funcional de componentes celulares llevado a cabo a partir de los proteomas identificados de las EV reveló que las fracciones purificadas estaban enriquecidas principalmente en proteínas pertenecientes a EV, un resultado que concordaba con los resultados obtenidos en la caracterización bioquímica y morfológica de las muestras. Por otra parte, el análisis funcional de procesos biológicos mostró que los melanocitos en cultivo secretaban EV con un contenido enriquecido de proteínas relacionadas con procesos metabólicos mientras que las células de melanoma metastásico en cultivo secretaban EV con enriquecimiento en proteínas relacionadas con la proliferación y la migración celular, siendo la motilidad celular el proceso sobre el que se centraría la búsqueda de biomarcadores.

2. Identificación de proteínas potencialmente involucradas en la progresión tumoral

2.1. Selección de proteínas

Se seleccionaron un total de 9 proteínas con enriquecimiento diferencial en las fracciones de EV purificadas a partir de melanocitos y melanoma metastásico (Tabla 18). El estudio se enfocó principalmente en proteínas enriquecidas en EV obtenidas a partir de células malignas cuya

función estuviera directamente ligada a la migración celular y la transición epitelio-mesénquima (Tabla 17). En concreto, se seleccionaron la proteína inductora de la migración celular y de unión al ácido hialurónico (CEMIP), proteínas de alta movilidad del grupo 1 (HMGB1), quinasa unida a integrina (ILK), repeticiones tipo factor de crecimiento epidérmico y dominios 3 tipo discoidina I (EDIL3), fibromodulina (FMOD), proteasa nexina-1 (SERPINE2) y osteopontina (SPP1). También se incluyó una proteína, melanotransferrina (MFI2), por la amplia relación descrita con el desarrollo del melanoma cutáneo (Dunn *et al.*, 2006; Rahmanto *et al.*, 2012), y una proteína enriquecida en EV obtenidas a partir de células benignas, el antígeno de diferenciación melanocítica reconocido por células T (MLANA), estrechamente ligada a la naturaleza melanocítica de las células (De Mazière et al., 2002).

La selección de candidatos para los estudios funcionales o su evaluación como biomarcador tuvo también en cuenta criterios proteómicos tales como: a) 3 o más péptidos únicos identificados exclusivos de dicha proteína, b) un porcentaje de secuencia identificada de la proteína igual o superior al 10 %, c) un valor en el log₂ del ratio de intensidad de expresión entre melanocitos y melanoma metastásico igual o superior a 2 puntos (log₂ fold change \geq 2) (o lo que es lo mismo, que hubiera una diferencia al menos de 4 veces en el nivel de expresión entre los 2 grupos de muestras estudiados).

Tabla 18. Características proteómicas de proteínas seleccionadas con presencia diferencial en fracciones enriquecidas en EV de melanocitos y melanoma metastásico. Las proteínas se seleccionaron en base a los siguientes criterios generales: a) péptidos únicos identificados \geq 3; b) secuencia identificada \geq 10 %; c) log₂ fold change \geq 2. En la parte superior de la tabla se presenta la proteína enriquecida en EV de melanocitos y en la parte inferior de la tabla se presentan las proteínas con enriquecimiento en EV de melanoma metastásico ordenadas de mayor a menor log₂ fold change.

proteína	péptidos únicos	% secuencia cubierta	log ₂ fold change
MLANA	4	40,7	-6,64
SPP1	4	22,3	7,31
CEMIP	18	13,7	6,39
EDIL3	12	25,1	5,92
FMOD	4	7,2	5,39
HMGB1	5	22,8	4,54
ILK	12	24,8	2,86
MFI2	19	31	2,72
SERPINE2	17	39,5	2,39

sobreexpresada en EV de melanocitos

sobreexpresadas en EV de melanoma metastásico

Una vez seleccionadas las proteínas de interés diferencialmente enriquecidas en las EV de melanocitos y melanoma metastásico tras los análisis comparativos de los perfiles proteómicos de ambos grupos de muestras, y previo a elegir una proteína determinada cuyo efecto estudiar en los experimentos funcionales, se evaluó la robustez de los resultados obtenidos. Para ello se incluyó en el análisis mediante LFQ-Analyst la réplica técnica más dispar de cada línea celular no incluida hasta el momento (Figura 23).

Resultados

Figura 23. Análisis comparativo de proteínas diferencialmente enriquecidas en EV de melanocitos y melanoma metastásico incluyendo 2 y 3 réplicas independientes. En los volcano plots, obtenidos mediante LFQ-Analyst, se representan las proteínas con enriquecimiento en las EV purificadas de cultivos celulares de células benignas (melanocitos) y células de melanoma metastásico teniendo en cuenta **A**, las 2 réplicas más similares por cada línea celular; y **B**, 3 réplicas independientes por cada línea celular. En ambos gráficos las proteínas con mayor presencia en EV obtenidas a partir de melanocitos se sitúan en la mitad izquierda, las proteínas con mayor presencia en EV obtenidas a partir de melanoma metastásico en la mitad derecha y las proteínas con diferencias no significativas estadísticamente entre melanocitos y melanoma metastásico y aquellas estadísticamente significativas que no cumplen con el criterio de selección fijado de un log₂ fold change \geq a 2 puntos se sitúan en la zona de color gris. Para ambos análisis se establecieron los siguientes parámetros: Adjusted p-value cutoff: 0,05; log₂ fold change cutoff: 2; Imputation type: Perseus-type; Type of FDR correction: Benjamini Hochberg.

Como muestra la Figura 23, de todas las proteínas seleccionadas, únicamente SPP1 dejó de tener diferencias estadísticamente significativas al incluir en el análisis las 3 fracciones enriquecidas en EV obtenidas a partir de melanocitos y de melanoma metastásico. El resto de proteínas seleccionadas (MLANA, CEMIP, EDIL3, FMOD, HMGB1, ILK, MFI2 y SERPINE2), a pesar de incorporar la heterogeneidad de algunas de las réplicas técnicas en el análisis, mantuvieron un enriquecimiento diferencial estadísticamente significativo en EV de melanocitos y melanoma metastásico. Estos resultados sugerían una considerable robustez de los candidatos seleccionados.

2.2. Expresión diferencial de proteínas seleccionadas tanto a nivel celular como en EV

Una vez seleccionadas las proteínas con enriquecimiento diferencial en las EV de melanocitos y melanoma metastásico (Tabla 18), candidatas a biomarcadores de progresión tumoral, se procedió a validar los resultados obtenidos mediante western blot (Figura 24). Para ello se analizó la presencia de dichas proteínas tanto a nivel celular como de EV, en líneas de melanocitos (HEMn-LP, HEMn-MP) y líneas celulares de melanoma primario (A375, MEL-HO) y metastásico (COLO-800, A2058).
Resultados

Figura 24. Análisis de expresión de proteínas seleccionadas en líneas celulares y fracciones enriquecidas en EV. Se analizó mediante western blot la presencia de las 9 proteínas seleccionadas a nivel celular y de EV en melanocitos y líneas de melanoma primario y metastásico. Se cargaron 40 µg de proteína en los lisados celulares y 20 µg de proteína en las fracciones enriquecidas en EV. Como control de carga se visualizó la carga proteica de la membrana con la tinción de la membrana con rojo Ponceau (no mostrado) y se detectaron las proteínas γ tubulina en los lisados celulares y β actina en las fracciones enriquecidas en EV. Se muestra un experimento representativo de los 3 realizados de manera independiente.

Si se analiza en detalle cada una de las proteínas seleccionadas, se puede observar que en línea con el análisis proteómico, MLANA presentó un enriquecimiento a nivel de EV en melanocitos en comparación con las líneas de melanoma metastásico, aunque su expresión en MEL-HO (línea derivada de un melanoma primario) fue notable.

En cuanto a las proteínas seleccionadas por su mayor expresión a nivel de EV en líneas metastásicas, a rasgos generales, se validaron los resultados obtenidos en el estudio proteómico para todas las proteínas a excepción de EDIL3, que presentó un enriquecimiento en EV en melanoma primario y, al contrario de lo esperado, mostró una menor expresión en EV de melanoma metastásico en comparación con la de melanocitos. La mayor presencia de FMOD y HMGB1 en EV derivadas de líneas metastásicas esperada en base a los resultados proteómicos pudo ser únicamente corroborada para la línea A2058 ya que en COLO-800 las 2 proteínas fueron casi indetectables. Además, FMOD mostró una expresión notable en EV de la línea de melanoma primario A375. SERPINE2, CEMIP, SPP1, ILK y MFI2, mostraron una mayor expresión en EV de células tumorales que en EV de melanoma primario A375 fue mayor que la de EV de líneas metastásicas; SPP1 e ILK1 mostraron una expresión similar en EV de melanoma primario y metastásico; y MFI2 mostró una expresión aumento gradual que se correlacionó con la malignidad de las líneas.

2.3. Identificación de proteínas seleccionadas en EV de suero humano

La utilidad de las proteínas como biomarcadores requiere de su detección en muestras humanas. Por ello se analizó, como primera aproximación, la presencia de las proteínas seleccionadas (Tabla 18) en fracciones enriquecidas en EV purificadas mediante UC diferencial a partir de suero humano.

Figura 25. Detección de proteínas seleccionadas del análisis proteómico a partir de líneas celulares en EV obtenidas de suero humano. Se analizó mediante western blot la presencia de las proteínas diferencialmente representadas en proteomas de EV de melanocitos y células de melanoma metastásico. **A**, marcadores de EV analizados; **B**, proteínas diferencialmente enriquecidas en EV de melanocitos y melanoma metastásico. Se cargaron 40 μg proteína de la fracción enriquecida en EV obtenida mediante UC diferencial a partir de 250 μl de una mezcla de suero de voluntarios sanos.

Como se muestra en la Figura 25, se detectó la presencia de EDIL3, FMOD, HMGB1 y CEMIP en fracciones enriquecidas en EV séricas humanas (en las que se detectaron los marcadores propios de EV como ALIX, TSG101, CD63 y CD9); sin embargo, no se lograron detectar el resto de proteínas seleccionadas y analizadas en la sección anterior (resultados no mostrados).

En resumen, y con el objeto de seleccionar las proteínas presentes en EV, diferencialmente enriquecidas entre las poblaciones comparadas y con mayores posibilidades de estar implicados en la progresión del melanoma, así como ejercer de biomarcadores de progresión del melanoma cutáneo, se realizaron diversas pruebas y se aplicaron criterios adicionales tales como:

- 1. La inclusión de mayor heterogeneidad al análisis comparativo incorporando una réplica más por línea celular.
- 2. La evaluación mediante western blot de la cantidad de todas las proteínas seleccionadas tanto a nivel celular como de EV en células benignas y malignas, incluyendo melanoma primario y metastásico.
- 3. La evaluación de la presencia de todas ellas en EV purificadas de muestras de sueros humanos.

3. Generación y caracterización de líneas de melanoma humano modificadas genéticamente con reducción estable del contenido de CEMIP a nivel celular y en EV

La obtención de EV a partir de cultivos celulares requiere de un número elevado de células. Por lo tanto, el estudio del efecto de niveles alterados de una proteína en EV en el contexto de procesos biológicos básicos ligados al desarrollo tumoral requiere de modelos de estudio que permitan disponer de EV con alto y bajo contenido de esa proteína de manera estable. Es por ello que se

optó por el desarrollo de líneas celulares con modificaciones estables en la producción de la proteína objeto de estudio en lugar de la utilización de aproximaciones transitorias como pudieran ser aquellas basadas en siRNA.

Entre todas las proteínas seleccionadas, nos centramos en la proteína CEMIP para llevar a cabo su estudio funcional por diversos motivos: en primer lugar, en base al estudio del exoproteoma, las EV derivadas de melanocitos y de líneas de melanoma metastásico presentaban cantidades de proteína claramente diferentes (Tabla 18); es más, esa diferencia se mantuvo incluso incorporando al estudio proteómico las réplicas que se separaban de sus respectivos grupos (Figura 23). Junto a ello, se detectaron diferencias en su contenido no sólo a nivel de EV sino también a nivel celular entre células normales (melanocitos) y tumorales de melanoma (Figura 24); así mismo se detectó su presencia en EV séricas mediante western blot (Figura 25), lo cual apoyaba su análisis como posible biomarcador sérico.

Los datos empíricos obtenidos en este trabajo de investigación, fueron, a su vez, apoyados por la literatura existente en la que se relacionaba la proteína CEMIP con la progresión de diversos tumores de naturaleza diferente al melanoma. En más detalle, CEMIP, también denominado KIAA1199, HYBID o TMEM2L, estaba principalmente relacionada con la proliferación y migración de células tumorales (Birkenkamp-Demtroder *et al.*, 2011; Zhang *et al.*, 2017) y una elevada expresión se había relacionado con mal pronóstico en cáncer colorrectal, entre otros (Fink *et al.*, 2015). Así mismo estaba descrita su involucración en el catabolismo del ácido hialurónico (Yoshida *et al.*, 2013). El ácido hialurónico, uno de los componentes principales de la matriz extracelular, está ampliamente distribuido en los tejidos humanos siendo especialmente abundante en el cordón umbilical, líquido sinovial de las articulaciones, en el humor vítreo y en la dermis, lugar, esta última, de desarrollo de los melanomas cutáneos (Lee-Sayer *et al.*, 2015; Garantziotis and Savani, 2019; Tavianatou *et al.*, 2019).

CEMIP, es, a su vez, una proteína secretada al medio tal y como avalan los resultados ya mostrados y trabajos de otros grupos. Sin embargo, aunque son numerosos los estudios centrados en las funciones del CEMIP celular, eran, y siguen siendo, pocos aquellos centrados en la función de la proteína CEMIP secretada (Chen *et al.*, 2019; Rodrigues *et al.*, 2019). Cabe mencionar que el único estudio centrado en el CEMIP exosomal demostraba la capacidad de esta proteína para modular el comportamiento de células del nicho metastásico cerebral en un modelo de cáncer de mama (Rodrigues *et al.*, 2019).

Por consiguiente, con el objetivo de desarrollar estudios funcionales y ahondar en el efecto de la proteína CEMIP secretada a través de EV sobre el microambiente tumoral, se generaron líneas monoclonales de melanoma humano con expresión disminuida de dicho biomarcador, tanto a nivel celular como de EV.

3.1. Selección de líneas modificadas genéticamente con reducción estable de CEMIP y líneas control correspondientes

La línea celular de melanoma humano seleccionada para generar líneas monoclonales con expresión disminuida de CEMIP para los ensayos funcionales posteriores fue COLO-800. Se optó por COLO-800 puesto que era, de las dos líneas de melanoma metastásico incluidas en esta tesis doctoral, la que tenía una mayor cantidad de CEMIP, tanto a nivel celular como de EV; por tanto, partiendo de COLO-800 en lugar de A2058, *a priori*, se podría obtener líneas con una mayor diferencia en el nivel de CEMIP en comparación con las líneas controles.

Resultados

Se generaron líneas celulares con el shRNA irrelevante (shØ) en su interior y líneas celulares con cada uno de los 4 constructos diferentes de shRNA para silenciar CEMIP (shCEMIP). Se establecieron numerosas líneas monoclonales mediante la técnica de dilución límite y se evaluó, mediante western blot, el grado de expresión de la proteína en todas ellas, tanto a nivel celular como de EV secretadas (Figura 26).

De todas las líneas generadas, se seleccionaron 2 líneas transfectadas con shRNA irrelevante que mostraron un nivel de expresión de CEMIP celular similar al de la línea parental COLO-800 (a las que nombramos a partir de ese momento shØ1 y shØ2) y 2 líneas transfectadas con shRNA CEMIP; en concreto, 2 líneas monoclonales derivadas de la población celular obtenida a partir de la transfección de la línea parental con el constructo TL303761B, (denominadas de ahí en adelante shCEMIP1 y shCEMIP2) que presentaron una disminución de la expresión de la proteína CEMIP a nivel celular, y una reducción especialmente acusada a nivel de EV en comparación con la línea parental y las shØ, que se mantuvo a lo largo de los sucesivos pases del cultivo (datos no mostrados).

3.1.1. Reducción de los niveles de mRNA y proteína

Se analizó la expresión de mRNA de CEMIP celular en las 4 líneas monoclonales genéticamente modificadas seleccionadas y se verificó una disminución significativa de la expresión de mRNA en las líneas shCEMIP1 y shCEMIP2 con respecto a las líneas shØ1 y shØ2 (Figura 27).

В

	niveles relativos de mRNA de CEMIP
shØ1	1,00 ± 0,19
shØ2	0,74 ± 0,26
shCEMIP1	0,19 ± 0,09
shCEMIP2	0,37 ± 0,09

Figura 27. Expresión relativa de mRNA de CEMIP a nivel celular en líneas monoclonales seleccionadas. Se analizó mediante RT-qPCR la expresión de mRNA de CEMIP a nivel celular en las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2. Se cuantificó mediante el método $2^{\Lambda}-\Delta\Delta Ct$. Los genes *RPL13* y *RPS18* se usaron como normalizadores. **A,** Representación gráfica de la expresión relativa de CEMIP. Los resultados se analizaron estadísticamente con el test paramétrico ANOVA y post hoc de Bonferroni: ns = no significativo; * = p<0,05; ** = p<0,01; *** = p<0,001. **B,** Valores relativos de expresión de mRNA de CEMIP obtenidos. Los resultados se muestran como promedio ± SD y están normalizados respecto a la expresión en shØ1. Se realizaron 2 experimentos independientes.

El objeto de la generación de líneas modificadas fue disponer no sólo de líneas celulares con expresión disminuida de CEMIP, sino, principalmente de EV tumorales con bajo contenido relativo de la proteína. Por ello, se evaluó el contenido de dicha proteína no sólo a nivel celular sino también en la fracción enriquecida en EV en las 4 líneas seleccionadas (Figura 28).

В

	CÉLULAS	EV
shØ1	1,00 ± 0,00	1,00 ± 0,00
shØ2	1,03 ± 0,29	0,80 ± 0,18
shCEMIP1	0,37 ± 0,01	0,30 ± 0,12
shCEMIP2	0,55 ± 0,05	0,41 ± 0,02

Figura 28. Expresión de la proteína CEMIP a nivel celular y de EV en las líneas monoclonales seleccionadas. Se analizó la cantidad de proteína CEMIP en las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2 a nivel celular y en EV mediante western blot. Se cargaron 30 µg de proteína por calle. Como control de carga se usó α tubulina y la tinción con rojo Ponceau de la membrana (no mostrado). Se realizaron 3 experimentos independientes. A, Imágenes representativas de las bandas obtenidas mediante western blot. B, nivel de expresión de la proteína CEMIP en lisados celulares de las 4 líneas seleccionadas y en fracciones enriquecidas en EV purificadas a partir de ellas, normalizado respecto a la expresión en shØ1. Se muestra el valor promedio ± SD. El nivel de expresión se determinó mediante un estudio de densidad de las bandas con el programa Fiji.

Como muestra la Figura 28, el análisis proteico de CEMIP en las líneas modificadas genéticamente seleccionadas mostró una clara reducción en el contenido celular de CEMIP en las líneas shCEMIP1 y shCEMIP2, reducción que se mantuvo en porcentajes similares en las fracciones enriquecidas en EV obtenidas de dichas líneas celulares. Así mismo, y a diferencia de ensayos anteriores en los que se cargaban diferentes cantidades de proteína procedente de lisado celular y de fracción de EV, la equiparación de cantidades dejó patente el nivel de enriquecimiento que muestra esta proteína en la fracción de EV con respecto a la fracción celular.

3.1.2. Caracterización de las EV purificadas de líneas celulares con disminución estable de CEMIP

De la misma manera que se hizo con las líneas celulares de melanocitos y de melanoma primario y metastásico, las fracciones enriquecidas en EV obtenidas a partir de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2 se caracterizaron bioquímicamente mediante western blot y morfológicamente mediante crio-TEM y análisis NTA.

3.1.2.1. Niveles de la proteína CEMIP y presencia de marcadores de EV

Las fracciones purificadas mediante UC diferencial a partir de las 4 líneas celulares monoclonales se caracterizaron bioquímicamente analizando la presencia de los marcadores especificados por el MISEV 2018 (Théry *et al.*, 2018) y CEMIP mediante western blot (Figura 29). De forma resumida, las tetraspaninas CD63, CD81 y CD9 se usaron como marcadores generales de EV mientras que ALIX y TSG101, se utilizaron como marcadores principalmente, si bien no exclusivamente, asociados a la presencia de exosomas, debido a su implicación en la formación de cuerpos multivesiculares. Por su parte, la proteína CANX se empleó para evaluar el enriquecimiento en EV de tamaño grande o muy grande (> 200 nm).

Figura 29. Caracterización de la presencia de marcadores propios de EV y CEMIP en las fracciones purificadas a partir de líneas celulares modificadas mediante shRNA. Se analizó mediante western blot la presencia de marcadores proteicos específicos de EV y de CEMIP, así como la ausencia del control negativo CANX, tanto a nivel celular como de las EV purificadas. Se cargaron 30 µg de proteína por calle. Como control de carga se analizó la proteína α tubulina y la membrana se tiñó con rojo Ponceau (no mostrado). Se hicieron 3 experimentos independientes, en la figura se muestra un ejemplo representativo de ellos.

Los resultados indicaron que la pérdida de expresión de CEMIP en las EV en las líneas shCEMIP1 y shCEMIP2 no interfería en la secreción de las mismas ya que el nivel de expresión de los marcadores de EV analizados fue similar en todos los casos. Adicionalmente, una vez más, se corroboró el enriquecimiento en todos los marcadores de EV analizados y la ausencia de CANX en las fracciones obtenidas a partir de cultivos celulares mediante UC diferencial, sugiriendo el enriquecimiento de EV de tamaño pequeño (preferentemente exosomas, pero sin descartar la presencia de MV), esta vez partiendo de las líneas celulares seleccionadas modificadas genéticamente.

3.1.2.2. Caracterización morfológica de las EV mediante crio-TEM

Las vesículas purificadas a partir de las líneas celulares modificadas genéticamente mostraron características similares a las observadas en las líneas celulares de melanocitos y melanoma (Figura 13), y no se encontraron diferencias morfológicas entre las vesículas de las 4 líneas celulares en estudio, siendo, todas ellas, homogéneas.

Figura 30. Imágenes de las vesículas presentes en las fracciones purificadas a partir de líneas celulares establemente modificadas. Se analizó el tamaño y la forma de las vesículas contenidas en las fracciones obtenidas mediante UC a partir de cultivos celulares mediante crio-TEM. Barra de escala: 100 nm. En todos los casos las muestras tenían una concentración de proteína de 1 μ g/ μ l. Se analizaron 3 muestras independientes por condición, se muestran imágenes representativas de cada condición.

Como se pone de manifiesto en las imágenes de la Figura 30, las vesículas purificadas se encontraban íntegras, eran de forma esférica, limitadas por una bicapa lipídica y presentaban un tamaño máximo cercano a los 100 nm de diámetro. Las muestras eran homogéneas y todas tenían un aspecto parecido, independientemente del tipo celular del que procedieran.

3.1.2.3. Tamaño y concentración de las EV

Tal y como se realizó en apartados anteriores, la distribución de tamaño de las partículas, así como su concentración, en las fracciones purificadas por UC diferencial a partir de las líneas modificadas genéticamente en cultivo se analizó mediante NTA. Como control se empleó la fracción obtenida a partir de medio RPMI suplementado con un 10 % de FBS deplecionado en EV en el que se aplicó el mismo protocolo de purificación de EV empleado a partir de cultivos celulares. En todos los casos se analizaron 3 fracciones purificadas de manera independiente por cada una de las condiciones, y cada una de las fracciones se analizó 2 veces.

Tal y como muestra la Figura 31, los 6 perfiles de distribución de tamaño de las partículas de las fracciones que se analizaron purificadas de la línea shØ1 tras llevar a cabo el protocolo de UC diferencial eran siempre muy similares.

Figura 31. Perfil de distribución de tamaño de las vesículas purificadas mediante UC diferencial a partir de la línea de melanocitos shØ1 en cultivo. La distribución de tamaño de las partículas purificadas se determinó mediante NTA en 3 experimentos independientes y por duplicado. En la imagen se muestran las curvas de las 3 fracciones purificadas de manera independiente (1, 2 y 3), cada una de ellas analizada en duplicado (A y B) y la curva resultante de la media de las 6 lecturas realizadas (representada con trazo de color negro punteado). Se cargó 1 µg de proteína diluido en 250 µl de PBS filtrado por cada muestra analizada. En cada lectura se registró un mínimo de 200 partículas. Se fijaron los parámetros camera level: 11 y detection threshold: 5.

Las fracciones purificadas mediante UC diferencial a partir de las 4 líneas celulares mostraron una única población de vesículas con un diámetro en torno a los 115 nm (Figura 32). El diámetro medio de las vesículas purificadas varió entre 112 y 117 nm, siendo el diámetro medio general de las 4 líneas de 115,76 ± 8,02 nm (Tabla 19). La concentración de partículas de las fracciones enriquecidas en EV se mantuvo entre 4,7·10⁹ y 5,71·10⁹ partículas/ml en las distintas líneas celulares, siendo 5,39·10⁹ ± 7,64·10⁸ partículas/ml la media de las 4 líneas celulares en conjunto (Tabla 19).

En cuanto a la muestra control (*i. e.* obtenido a partir de medio con suero deplecionado en EV), la concentración de partículas fue de $9,71 \cdot 10^6 \pm 8,73 \cdot 10^6$ partículas/ml, 3 órdenes de magnitud menor que la concentración de las muestras celulares (por lo cual no se aprecia el pico en la Figura 32), con un diámetro medio de las partículas de 154,75 ± 61,13 nm (Tabla 19), que corresponden, probablemente, a exosomas y otro tipo de partículas residuales presentes en el FBS deplecionado en EV.

Figura 32. Perfiles de distribución de tamaño de las vesículas purificadas a partir de líneas modificadas. Se estudió mediante NTA la distribución de tamaño de las partículas purificadas por medio de UC diferencial a partir de cultivos celulares de shØ1, shØ2, shCEMIP1 y shCEMIP2, y la condición control (medio RPMI suplementado con un 10 % de FBS deplecionado en EV). Se cargó 1 µg de proteína diluido en 250 µl de PBS filtrado por cada muestra analizada excepto en la muestra control, que, debido a su baja concentración en proteína, se cargó un volumen equivalente al de 1 µg de proteína en las fracciones de líneas celulares diluido en 250 µl de PBS filtrado. Se analizaron 3 muestras independientes en duplicado por cada línea celular. En la gráfica cada curva mostrada por condición es la curva promedio de las 6 lecturas realizadas. En cada lectura se registraron al menos 200 partículas. Se fijaron los parámetros camera level: 11 y detection threshold: 5.

Tabla 19. Moda promedio de las vesículas purificadas y concentración de partículas promedio de las fracciones obtenidas a partir de líneas celulares modificadas. Se analizaron mediante NTA 3 muestras independientes analizadas en duplicado por cada condición. Los resultados de moda (nm) y concentración de partículas (partículas/ml) se muestran como promedio ± SD.

	moda (nm)	concentración (partículas/ml)
shØ1	117,60 ± 9,05	$5,43\cdot10^9 \pm 8,80\cdot10^8$
shØ2	117,73 ± 6,62	$5,71\cdot10^9 \pm 1,09\cdot10^9$
shCEMIP1	112,77 ± 11,18	$4,70\cdot10^9 \pm 4,09\cdot10^8$
shCEMIP2	114,93 ± 5,22	$5,70\cdot10^9 \pm 6,75\cdot10^8$
media 4 líneas	115,76 ± 8,02	5,39·10 ⁹ ± 7,64·10 ⁸
control	154,75 ± 61,13	9,71·10 ⁶ ± 8,73·10 ⁶

En su conjunto, los resultados mostraron que la reducción de los niveles celulares de CEMIP mediante la incorporación estable de un shRNA específico conllevaba una disminución equivalente de dicha proteína en las fracciones de EV obtenidas, sin que ello afectara al tipo ni cantidad de EV generadas. Así mismo, se determinó que las fracciones purificadas mediante UC diferencial a partir de las 4 líneas monoclonales generadas estaban enriquecidas en EV de tamaño pequeño; por un lado, por los rangos de tamaño observados mediante microscopía electrónica y NTA (apuntan a un tamaño medio de las vesículas inferior a 120 nm), y por otro, por la ausencia de CANX (ausente en vesículas de tamaño < 200 nm). Además, aunque no se descartó la presencia de microvesículas del rango de 100 - 120 nm, la presencia de marcadores como ALIX y TSG101 sugerían un enriquecimiento de las fracciones en exosomas.

4. Implicación del CEMIP contenido en EV de origen tumoral en la regulación de la motilidad de fibroblastos dérmicos

Una vez caracterizadas las EV de las líneas celulares generadas con reducción estable de CEMIP, se procedió a estudiar la capacidad del CEMIP presente en EV en la modulación del microambiente tumoral.

Como se ha mencionado en la sección de Introducción, las EV tumorales constituyen un sistema de comunicación intercelular con un papel fundamental en la progresión tumoral, debido a que, entre otros muchos aspectos, modulan el microambiente tumoral (Casadei *et al.*, 2019; Qian *et al.*, 2020; Guimarães-Bastos *et al.*, 2022). El microambiente tumoral local está compuesto por múltiples células, tumorales y no tumorales, que forman un complejo ecosistema necesario para la progresión tumoral (Fares *et al.*, 2020). Trabajos recientes ponen de manifiesto la vinculación de CEMIP con la progresión tumoral relacionándola principalmente con la motilidad celular así como con la adaptación del microambiente ligado al nicho metastásico (Jia *et al.*, 2017; Rodrigues *et al.*, 2019). Es por todo ello que, en este estudio, ligado a la evolución del melanoma cutáneo, se seleccionaron los fibroblastos dérmicos para evaluar la implicación de CEMIP presente en EV tumorales sobre la modulación funcional de los mismos.

4.1. Captación de EV tumorales por fibroblastos dérmicos

Se llevaron a cabo diferentes ensayos de captación por fibroblastos dérmicos Detroit 551 de vesículas secretadas por las líneas tumorales para evaluar si las EV eran captadas e internalizadas, así como para acotar los tiempos de internalización y otros parámetros necesarios para el diseño de ensayos funcionales.

Para ello, se aislaron EV de las líneas tumorales modificadas genéticamente con shRNA marcadas en origen con la sonda Vybrant CM-Dil cell-labelling solution (CM-Dil) y se incubaron con los fibroblastos dérmicos Detroit 551 durante 15 horas en un primer ensayo (Figura 33), y durante 4 horas en un segundo ensayo (Figura 34).

Figura 33. Captación de EV tumorales por fibroblastos dérmicos tras 15 horas de incubación. Se analizó mediante microscopía de fluorescencia la internalización por parte de fibroblastos Detroit 551 de EV tumorales teñidas con la sonda CM-Dil derivadas de las líneas shØ1 y shCEMIP1 tras 15 horas de incubación. Los núcleos celulares, teñidos con DAPI, se representan en color azul; la actina del citoesqueleto marcada con faloidina se muestran en color verde; y las EV tumorales, teñidas en origen con CM-Dil, se indican en color rojo. Como control del experimento se usó medio de cultivo RPMI con un 10 % de FBS deplecionado en EV tratado con CM-Dil durante el mismo tiempo que las líneas celulares. Se muestran imágenes representativas de cada condición. Barra de escala: 50 μM.

Como manifiesta la marcación con faloidina fluorescente en la Figura 33, los fibroblastos presentaron en las tres situaciones analizadas una organización de los filamentos de actina del citoesqueleto en fibras de estrés, un hecho propio de estas células. Las fibras de estrés se componen principalmente de actina y miosina, y su actividad contráctil juega un papel importante en la adhesión y la migración celular.

Tal y como se muestra en la Figura 33, tras 15 horas de incubación de las EV tumorales purificadas de shØ1 y de shCEMIP1 en los cultivos de fibroblastos Detroit 551, se observó un marcaje rojo en el citoplasma de los mismos que apuntaba a que las EV teñidas habían sido captadas e internalizadas por los fibroblastos dérmicos. Así mismo, no se detectaron diferencias evidentes en la internalización de EV relacionadas con los niveles de CEMIP. En este experimento como condición control se empleó medio de cultivo RPMI con un 10 % de FBS deplecionado en EV tratado con CM-Dil durante el mismo tiempo que las líneas celulares, que se sometió al protocolo de UC de manera idéntica a las líneas celulares; como era de esperar, no hubo marcaje alguno en los fibroblastos incubados con la fracción purificada del control.

Previo a los ensayos funcionales y con el objeto de conocer más acerca del tiempo mínimo necesario de incubación de las EV para su internalización, se realizó un segundo ensayo en el que se evaluó la captación de EV tumorales derivadas de las mismas líneas celulares, pero a tiempos más cortos; en concreto, tras solo 4 horas de incubación (Figura 34).

Figura 34. Captación de EV tumorales por fibroblastos dérmicos tras 4 horas de incubación. Se analizó mediante microscopía de fluorescencia la internalización de EV tumorales derivadas de las líneas shØ1 y shCEMIP1 teñidas con la sonda CM-Dil por los fibroblastos Detroit 551 tras 4 horas de incubación. Los núcleos celulares teñidos con DAPI se muestran en color azul y las EV tumorales marcadas en origen con CM-Dil se identifican con color rojo. Se muestran imágenes representativas de cada condición.

El resultado tras 4 horas de incubación (Figura 34) fue similar al obtenido tras 15 horas de incubación (Figura 33). Las imágenes de microscopio de fluorescencia mostraron la presencia de EV teñidas en el interior de los fibroblastos tras 4 horas de incubación, si bien el marcaje derivado de la internalización fue menor. Tampoco a estos tiempos se detectaron diferencias en la internalización de EV relacionadas con los niveles de CEMIP.

4.2. Regulación de la motilidad de fibroblastos Detroit 551 mediada por el CEMIP contenido en EV de origen tumoral

Una vez comprobado que las EV eran captadas e internalizadas por los fibroblastos, se analizó el efecto de las EV con diferente carga de CEMIP sobre la capacidad migratoria de fibroblastos Detroit 551. En primer lugar, se realizaron ensayos de cierre de herida en los que, en un contexto de dos dimensiones, se evaluó el efecto tanto de las EV de origen tumoral como de la cantidad de la proteína CEMIP contenida en las mismas, sobre la motilidad de los fibroblastos. Después, se llevaron a cabo ensayos en cámaras de Boyden para corroborar mediante otra técnica el efecto de las EV tumorales y del CEMIP contenido en ellas en la capacidad migratoria de los fibroblastos, en este caso en presencia de sustancias quimioatrayentes presentes en el suero.

Los ensayos de cierre de herida se llevaron a cabo en fibroblastos cocultivados en presencia de 50 μ g/ml de EV derivadas de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2 (Figura 35).

Figura 35. Efecto de las EV tumorales sobre la capacidad de cierre de herida de fibroblastos. Se analizó mediante ensayo de cierre de herida la migración de fibroblastos Detroit 551 en confluencia incubados durante 10 horas con 50 µg/ml de EV aisladas de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2. **A**, Imágenes representativas obtenidas tras realizar la herida (t = 0 h) y tras 10 horas de incubación (t = 10 h), en Detroit 551 con medio de cultivo sin FBS (control), o en presencia de EV de líneas tumorales (+ EV). Se hicieron 3 experimentos independientes con 3 réplicas por condición donde se tomaron imágenes de 2 zonas diferentes de cada herida. **B**, % de cierre del área de herida en cada condición (calculado de la diferencia entre el área libre de células a t = 0 h y a t = 10 h). Los resultados se analizaron estadísticamente con el test paramétrico ANOVA y post hoc de Bonferroni. El resultado estadístico derivado de analizar cada condición respecto a la situación control se muestra encima de las barras; el resultado derivado de analizar las condiciones de exposición a EV con mayor cantidad de CEMIP respecto a las condiciones con menor cantidad de CEMIP se indican sobre las líneas (ns = no significativo; * = p<0,05; ** = p<0,01 y *** = p<0,001). El gráfico muestra el promedio ± SD de 3 experimentos independientes. **C**, Valores relativos de porcentaje de cierre del área de herida obtenidos en cada condición (promedio ± SD).

Los resultados indicaron, como refleja la Figura 35, que los fibroblastos incubados con EV de shØ1 y shØ2 incrementaron significativamente su motilidad en relación a los que no habían estado en contacto con EV (control). Sin embargo, cuando los fibroblastos se incubaron con EV derivadas de shCEMIP1 y shCEMIP2, que presentan una cantidad de proteína CEMIP mucho menor que las anteriores, los fibroblastos se comportaron de manera similar a los cultivados sin EV (sin diferencias significativas). Este ensayo demostró que las EV con más carga de CEMIP aumentaban la capacidad motriz de los fibroblastos. Deducimos por lo tanto que, en estas condiciones, gran

parte de la activación de los fibroblastos provocada por las EV tumorales estaba mediada por el CEMIP contenido en dichas vesículas.

Como un control añadido al ensayo, se comparó la migración de fibroblastos cultivados en medio de cultivo sin EV con fibroblastos cultivados con la fracción purificada de medio con 10 % de FBS deplecionado en EV. En ambas situaciones los fibroblastos mostraron una capacidad migratoria muy similar, sin diferencias significativas en el cierre de herida entre ambas situaciones (resultados no mostrados).

Una vez determinado el efecto de las EV de origen tumoral sobre la motilidad de fibroblastos dérmicos, así como la clara implicación de CEMIP en dicha motilidad, el estudio se amplió a ensayos de motilidad basado en cámaras de Boyden (Figura 36). Mediante este ensayo se evaluó la capacidad migratoria de fibroblastos en presencia o ausencia de EV con niveles variables de CEMIP hacia sustancias quimioatrayentes (medio suplementado con FBS deplecionado en EV). La capacidad migratoria de los fibroblastos se evaluó tras 36 horas en cocultivo con EV derivadas de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2 a una concentración final de 50 µg/ml.

Figura 36. Efecto de las EV tumorales sobre la capacidad de migración de fibroblastos en cámaras de Boyden. Se analizó, mediante ensayos en cámaras de Boyden, la migración de fibroblastos Detroit 551 hacia la sustancia quimioatrayente tras su cocultivo durante 36 horas con una concentración de 50 μg/ml de EV aisladas de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2. Se hicieron 3 experimentos independientes, 2 réplicas por condición en cada experimento. A, Imágenes representativas de las células que migraron a la parte inferior de la membrana en presencia de medio de cultivo sin FBS (control) o de EV de líneas tumorales (+ EV). Se tomaron 7 imágenes por cada réplica de cada condición. B, Nivel de migración de las células en cada condición relativo a la situación control sin EV obtenido en cada uno de los 3 experimentos independientes realizados (las 2 réplicas de cada condición están representadas en el mismo color). Para cada experimento se contó el número de células que habían migrado en las 7 zonas distintas fotografiadas y se relativizó a la condición control (fibroblastos sin tratar). Los resultados se analizaron estadísticamente con el test no paramétrico pareado Wilcoxon debido a la variación inter-experimental observada y reflejada en la gráfica. En la gráfica, por un lado, se muestra encima de los puntos de cada condición la significancia estadística de analizar dicha condición respecto a la situación control; y, por otro lado, se indica sobre las líneas la significancia estadística derivada de analizar las condiciones de exposición a EV con mayor cantidad de CEMIP respecto a las condiciones con menor cantidad de CEMIP (ns = no significativo; * = p<0,05; ** = p<0,01 y *** = p<0,001). **C**, Valores de migración relativos obtenidos en cada condición (promedio ± SD).

Como se muestra en la Figura 36, las EV tumorales estimularon los fibroblastos en respuesta a un gradiente de FBS incrementando significativamente su capacidad de migración en todos los casos en relación a los que no habían estado en contacto con EV (control). Al igual que lo observado

anteriormente en los ensayos de cierre de herida, las EV tumorales derivadas de shØ1 y shØ2 estimularon los fibroblastos incrementando significativamente su capacidad de migración en comparación con los fibroblastos cocultivados con EV derivadas de shCEMIP1 y shCEMIP2, es decir, las EV con más CEMIP aumentaron sustancialmente la capacidad de migración de los fibroblastos hacia una sustancia quimioatrayente. Estos resultados refuerzan la idea de que gran parte de la activación de los fibroblastos estuvo mediada por el CEMIP contenido en EV.

También en estos ensayos, como control añadido al experimento, se comparó la migración de los fibroblastos cultivados con medio sin EV y cultivados con la fracción exosomal purificada de medio con 10 % de FBS deplecionado en EV, no apreciándose diferencias significativas en el resultado de ambas situaciones (resultados no mostrados).

4.3. Efecto del CEMIP contenido en EV tumorales en los niveles de CEMIP celular en fibroblastos

Una vez determinada la implicación del CEMIP contenido en EV de origen tumoral en la motilidad de células relevantes del microambiente tumoral como son los fibroblastos dérmicos se profundizó en los mecanismos moleculares que subyacen al efecto observado. Uno de los posibles mecanismos pudiera estar ligado a la variación de los niveles celulares de CEMIP tras la exposición a EV. Con el objeto de verificar esta hipótesis, se incubaron 50 µg/ml de EV derivadas de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2 durante 8 horas en los fibroblastos Detroit 551 y transcurrido ese tiempo se evaluó, mediante western blot, si las EV tumorales modificaban el nivel celular de la proteína CEMIP en los mismos (Figura 37).

Figura 37. Efecto de las EV tumorales sobre la regulación del CEMIP celular en fibroblastos a nivel de proteína. Se analizó mediante western blot el efecto de las EV tumorales derivadas de shØ1, shØ2, shCEMIP1 y shCEMIP2 sobre el nivel de proteína CEMIP celular en fibroblastos Detroit 551 tras 8 horas de cocultivo. Como condición control se emplearon fibroblastos en condiciones normales de cultivo. Como control positivo se incubaron los fibroblastos con TGF- β 1 (10 ng/ml). Se cargaron 25 µg de proteína por calle. Como control de carga se utilizó la proteína α tubulina. Se realizaron 2 experimentos independientes.

Como se muestra en la Figura 37, se observó una diferencia de proteína CEMIP a nivel celular en los fibroblastos ligado a los niveles de CEMIP de las EV tumorales: la incubación de fibroblastos dérmicos con EV tumorales con contenido reducido de CEMIP (shCEMIP1, shCEMIP2) no dio lugar a variaciones detectables en los niveles celulares de CEMIP en comparación con lo observado en la situación control (*i. e.* fibroblastos no expuestos a EV tumorales), mientras que la exposición a EV tumorales con niveles de origen (*i. e.* shØ1, shØ2) incrementaron los niveles celulares de CEMIP en las células diana. El TGF- β 1 está descrito como un regulador negativo de los niveles de CEMIP intracelulares (Nagaoka *et al.*, 2015) si bien en las condiciones testadas apenas indujo cambios.

4.4. Caracterización de los niveles de α SMA en fibroblastos Detroit 551 en respuesta al CEMIP contenido en EV de origen tumoral

El aumento de la motilidad de fibroblastos en respuesta a factores secretados por las células de un entorno determinado se asocia a la activación fibroblástica. En el contexto tumoral, la activación de los fibroblastos deriva en la conversión de los fibroblastos en miofibroblastos denominados CAF. Tal y como se ha mencionado en la sección de Introducción, la expresión de α SMA es uno de los marcadores clásicos de miofibroblastos. Es por ello que se analizó el efecto de las EV, y concretamente del CEMIP contenido en las mismas, en la adquisición de características miofibroblásticas por parte de los fibroblastos dérmicos.

Según se ha descrito en el apartado 4.2. de esta misma sección, la exposición a EV derivadas de células de melanoma indujo un aumento de la migración detectable tras 10 horas (ensayo de cierre de herida) y 36 horas (ensayo en cámaras de Boyden). Por ello, en primer lugar, se evaluó el nivel de expresión de α SMA a nivel de mRNA en fibroblastos Detroit 551 tras 24 horas en cocultivo con 50 µg/ml de EV derivados de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2 (Figura 38). Se seleccionó el punto de 24 horas por corresponderse con un tiempo de incubación intermedio entre los ensayos de motilidad previamente mencionados. Como control positivo de activación de fibroblastos, estos se incubaron con TGF- β 1 (10 ng/ml), una citoquina con reconocida capacidad para inducir la expresión de α SMA y, junto a ello, la conversión de fibroblastos.

Figura 38. Efecto de EV tumorales sobre la regulación del αSMA celular en fibroblastos. Se analizó el efecto de las EV tumorales derivadas de shØ1, shØ2, shCEMIP1 y shCEMIP2 sobre el αSMA celular tras 24 horas de incubación a nivel de mRNA mediante RT-qPCR. Se cuantificó mediante el método $2^{\Lambda}-\Delta\Delta Ct$. Los genes *RPL13* y *RPS18* se usaron como normalizadores. **A**, Representación grafica de la expresión relativa de mRNA de αSMA a nivel celular. Los resultados se analizaron estadística de analizar cada condición respecto a la situación control (medio sin EV): ns = no significativo; * = p<0,05; ** = p<0,01; *** = p<0,001. **B**, Niveles relativos de expresión de mRNA de αSMA. Los valores se muestran como promedio ± SD y están normalizados respecto a la expresión en shØ1. Se realizaron 2 experimentos independientes.

Tal y como se observa en la Figura 38, 24 horas de incubación de las EV tumorales no provocaron una variación significativa de niveles de mRNA de α SMA celular en los fibroblastos.

Así mismo, y con el objetivo de determinar si el efecto sobre la expresión de αSMA pudiera ser un evento más tardío, se estudió la presencia de la proteína αSMA mediante inmunofluorescencia en fibroblastos Detroit 551 incubados durante 72 horas con 50 µg/ml de EV derivadas de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2 (Figura 39).

Figura 39. Expresión de αSMA en fibroblastos incubados con EV tumorales. Se analizó mediante inmunofluorescencia la expresión de αSMA en fibroblastos Detroit 551 incubados durante 72 horas con 50 µg/ml de EV derivadas de las líneas shØ1, shØ2, shCEMIP1 y shCEMIP2. Como control se incubaron con medio sin EV y como control positivo de activación con TGF-β1 (10 ng/ml). Se hicieron 2 experimentos independientes. A, Imágenes representativas de cada condición. **B**, Representación del porcentaje de células positivas para αSMA en cada condición. Se contó el número de células positivas para αSMA y el número total de células en 10 regiones al azar. En el análisis estadístico se aplicó el test no paramétrico Kruskal-Wallis y post hoc de Dunn. Se muestra la significancia estadística de analizar cada condición respecto a la situación control (medio sin EV): ns = no significativo; * = p<0,05; ** = p<0,01; *** = p<0,001. **C**, Valores de porcentaje de células positivas para αSMA en cada condición (promedio ± SD).

El porcentaje de células positivas para α SMA en fibroblastos incubados con EV tumorales fue, en todos los casos, en torno al 6 %, similar al observado en la condición control (medio sin EV), sin diferencias estadísticamente significativas. Estos resultados evidencian que las EV tumorales no

activan la transformación miofibroblástica en los términos estudiados. Como cabía esperar, el tratamiento con TGF- β 1 induce la expresión de α SMA en el 100 % de los fibroblastos dérmicos. Tampoco se observaron diferencias significativas en los niveles de α SMA al cultivar las células con la fracción exosomal purificada de medio con un 10 % de FBS deplecionado en EV (resultados no mostrados).

En su conjunto, los resultados indican que los fibroblastos dérmicos incorporan activamente las EV secretadas por las células tumorales y que ello aumenta su motilidad. La activación de la capacidad migratoria en los fibroblastos inducida por las EV se debe, en gran parte, al CEMIP contenido en las mismas, y pudiera estar mediada por los cambios en los niveles celulares observados si bien este efecto no está relacionado con la inducción de la expresión de la proteína α SMA.

5. Búsqueda de biomarcadores en EV de origen sérico

Tal y como se ha mencionado en la introducción, el melanoma cutáneo es un tipo de cáncer con un buen pronóstico general tras la exéresis del tumor en estadios tempranos, si bien es cierto que aproximadamente un 20 % de los pacientes diagnosticados en estas fases tempranas desarrollan metástasis. Por ello, el objetivo de esta parte del trabajo fue la identificación de biomarcadores contenidos en las EV séricas que permitieran estratificar los pacientes diagnosticados en fases tempranas del melanoma (estadios I y II) en función de su peor o mejor pronóstico, esto es, discernir entre aquellos con mayor y menor probabilidad de desarrollar metástasis.

5.1. Comparación de métodos de aislamiento de fracciones enriquecidas en EV séricas

Uno de los problemas asociados al uso de sueros humanos para la búsqueda de biomarcadores proteicos es la dificultad de obtener fracciones libres de elementos mayoritarios del suero (por ejemplo, la albúmina sérica, las lipoproteínas, etc.) que representan "contaminantes" para este tipo de estudios. En este trabajo, el objetivo planteado fue caracterizar los perfiles proteómicos de las EV purificadas de suero mediante LC-MS/MS, de forma similar a como se hizo con las EV obtenidas de líneas celulares en cultivo. El análisis proteómico mediante LC-MS/MS requiere de muestras puras con poca proporción de proteínas séricas mayoritarias que dificultan la identificación de proteínas minoritarias de interés. Por este motivo, previo a los análisis proteómicos, se compararon varios métodos de aislamiento de EV a partir de muestras de suero humano y se evaluó tanto la pureza de las fracciones obtenidas como el tamaño y la concentración de las EV purificadas.

5.1.1. Pureza de las fracciones enriquecidas en EV en base al método de aislamiento

Se evaluó la pureza de las fracciones de vesículas obtenidas a partir de 250 µl de suero humano mediante UC diferencial y cromatografía de exclusión por tamaño (con columnas de exclusión por tamaño de IZON). En el caso de la cromatografía de exclusión por tamaño se recolectaron conjuntamente aquellas fracciones enriquecidas principalmente con EV, bien las fracciones 7, 8 y 9, o bien las fracciones 7, 8, 9 y 10 y, posteriormente, las muestras se concentraron por UC o con filtros concentradores con membrana de retención de 30 kDa.

La pureza de estas muestras se determinó en base a, por un lado, la presencia de marcadores propios de EV de tamaño pequeño (Théry *et al.*, 2018) como ALIX, CD63 y CD9 y, por otro lado, la presencia de proteínas séricas mayoritarias contaminantes. La presencia de proteínas contaminantes que pudieran condicionar la pureza de las fracciones y alterar el resultado de nuestros análisis posteriores se determinó analizando diferentes proteínas asociadas a lipoproteínas, abundantes en el suero y cuyo tamaño se solapa con el de los exosomas, como ApoA1, ApoB100 y ApoE; y la principal proteína mayoritaria en suero, la albúmina (Figura 40).

Figura 40. Pureza de las fracciones de EV séricas obtenidas mediante UC diferencial y cromatografía de exclusión molecular con variantes. Se hizo mediante western blot un análisis comparativo de la pureza de las fracciones de EV obtenidas mediante UC diferencial y cromatografía de exclusión molecular (IZON) recogiendo las fracciones 7, 8 y 9 o bien 7, 8, 9 y 10, y concentrándolas posteriormente por UC o con filtros concentradores con membranas de retención de 30 kDa (filtro). Con cada método se procesó una muestra de 250 μl de suero humano, todas ellas obtenidas de una misma mezcla de sueros de individuos sanos. Se cargó 1/3 del volumen total de la fracción de vesículas obtenida en cada método. Se analizó la presencia de **A**, marcadores de EV (ALIX, CD63 y CD9) mediante anticuerpos específicos para evaluar el enriquecimiento en EV de las muestras obtenidas y, **B**, apolipoproteínas (ApoA1, ApoB100 y ApoE) mediante anticuerpos específicos, y albúmina (67 kDa) mediante la tinción con rojo Ponceau de la membrana.

En las muestras obtenidas mediante cromatografía de exclusión por tamaño con recogida de 3 o 4 fracciones y concentración por UC (IZON 7, 8, 9 (10) + UC) la contaminación con apolipoproteínas fue casi inexistente, al igual que la presencia de los marcadores de EV, lo que apunta a una muy pobre presencia tanto de componentes mayoritarios del suero como de EV. Al utilizar filtros con membranas de retención de 30 kDa para concentrar las fracciones (IZON 7, 8, 9 (10) + filtro), la presencia de marcadores de EV mejoró levemente, pero incrementó muchísimo la contaminación por apolipoproteínas y albúmina. Con la purificación de EV a partir de suero mediante UC diferencial se consiguieron fracciones en las que los marcadores de EV estaban muy presentes, lo

que indicaba enriquecimiento en EV, mientras que se detectaron niveles intermedios de apolipoproteínas y elevados de albúmina.

Por lo tanto, y en base a los marcadores analizados, el empleo de columnas de exclusión por tamaño no mejoró los resultados obtenidos mediante UC diferencial y ninguna de las variables testadas fue capaz, simultáneamente, de eliminar la presencia de componentes no vesiculares mayoritarios en el suero y proveer de un enriquecimiento significativo de EV.

5.1.2. Caracterización morfológica de las fracciones enriquecidas en EV en base al método de aislamiento

Tras la caracterización bioquímica de las muestras obtenidas a partir de suero humano mediante los métodos descritos, se prosiguió con la caracterización morfológica únicamente de las fracciones obtenidas mediante UC diferencial y cromatografía de exclusión por tamaño recogiendo las fracciones 7, 8 y 9 y concentrándolas posteriormente con filtros. Se seleccionaron estos protocolos para el análisis de las muestras por crio-TEM y NTA, ya que, en base al análisis de pureza realizado, fueron los protocolos que mejores resultados dieron en el balance entre presencia de marcadores de EV y de proteínas contaminantes del suero.

5.1.2.1. Morfología de las EV

Las fracciones de las EV a estudio anteriormente mencionadas se analizaron por crio-TEM, técnica que permite mantener la ultraestructura y, por lo tanto, evaluarla de la manera más fidedigna (Figura 41).

Figura 41. Imágenes representativas de las vesículas presentes en las fracciones purificadas a partir de sueros humanos mediante UC diferencial y cromatografía de exclusión por tamaño. Se analizó por crio-TEM el tamaño y la forma de las vesículas en las fracciones obtenidas a partir de suero humano de voluntario sano mediante UC diferencial y cromatografía de exclusión por tamaño recogiendo las fracciones 7, 8 y 9 y concentrándolas posteriormente con filtros concentradores con membranas de retención de 30 kDa (IZON 7, 8, 9 + filtro). Barra de escala: 200 nm. En todos los casos las muestras tenían una concentración de proteína de 1 μ g/ μ l. Se analizaron 3 muestras independientes por condición. Se muestran imágenes representativas de cada condición.

Como se visualiza en las imágenes de la Figura 41, las vesículas purificadas con ambos procedimientos se encontraban íntegras, eran de forma esférica y estaban limitadas por una bicapa lipídica, pero también presentaron grandes diferencias entre ellas. Por un lado, las vesículas obtenidas por UC diferencial eran homogéneas en cuanto a tamaño, la gran mayoría de ellas con un tamaño inferior a los 200 nm y, por el contrario, las muestras obtenidas a partir de cromatografía de exclusión por tamaño presentaban vesículas dispuestas unas dentro de otras, de tamaño muy heterogéneo.

5.1.2.2. Tamaño y concentración de las EV

Las fracciones obtenidas mediante los 2 métodos seleccionados se analizaron mediante NTA para determinar la distribución de tamaño de las partículas aisladas, así como su concentración en las muestras (Figura 42, Tabla 20).

Figura 42. Perfiles de distribución de tamaño de las vesículas purificadas a partir de sueros humanos mediante UC diferencial y cromatografía de exclusión por tamaño. Se estudió mediante análisis de NTA la distribución de tamaño de las partículas presentes en las fracciones obtenidas por UC diferencial y cromatografía de exclusión molecular recogiendo las fracciones 7, 8 y 9, y concentrándolas posteriormente mediante filtro con membrana de retención de 30 kDa (IZON 7, 8 ,9 + filtro). Se analizaron 3 muestras independientes en duplicado por cada grupo de estudio. Se cargaron 5 µg de proteína diluido en 250 µl de PBS filtrado por cada muestra analizada. En cada lectura se registró un mínimo de 200 partículas. Se fijaron los parámetros camera level: 11 y detection threshold: 5.

Tal y como muestra la Figura 42, los perfiles de distribución de tamaño de las partículas de las fracciones obtenidas diferían mucho el uno del otro en función del procedimiento seguido para la purificación de EV. Por un lado, las muestras obtenidas mediante UC diferencial presentaron un perfil de distribución de tamaño más homogéneo y un valor de moda promedio más próximo al de las EV de pequeño tamaño en comparación con las muestras obtenidas por cromatografía de exclusión por tamaño (116,90 ± 28,37 nm frente a 203,93 ± 50,69 nm) (Tabla 20). Por otro lado, como se puede ver en la Figura 42 (eje Y), las muestras obtenidas mediante UC diferencial presentaron una concentración de partículas un orden de magnitud mayor que la concentración de las obtenidas por cromatografía de exclusión por tamaño (6,10 \cdot 10⁸ ± 1,46 \cdot 10⁸ frente a 9,77 \cdot 10⁷ ± 4,58 \cdot 10⁷ partículas/ml) (Tabla 20).

Tabla 20. Moda promedio de las vesículas purificadas y concentración de partículas promedio de las fracciones aisladas a partir de sueros humanos mediante UC diferencial y cromatografía de exclusión por tamaño. Se analizaron mediante NTA 3 muestras independientes analizadas en duplicado por cada condición. Los resultados de moda (nm) y concentración de partículas (partículas/ml) se muestran como promedio ± SD.

	moda (nm)	concentración (partículas/ml)
UC diferencial	116,90 ± 28,37	$6,10\cdot10^8 \pm 1,46\cdot10^8$
IZON 7, 8, 9 + filtro	203,93 ± 50,69	$9,77 \cdot 10^7 \pm 4,58 \cdot 10^7$

En definitiva, tras analizar la pureza, morfología y concentración de las EV obtenidas por ambos métodos de aislamiento de EV, se concluyó que el mejor método para aislar EV de suero humano era el de UC diferencial.

5.2. Valoración de la proteína CEMIP contenida en EV de origen sérico como biomarcador

Los resultados obtenidos en las pruebas funcionales mostraron claramente la capacidad de la proteína CEMIP de origen tumoral (*i. e.* melanoma cutáneo) y secretado mediante EV para modular el comportamiento de células típicas de su microambiente tumoral tales como los fibroblastos dérmicos. Así mismo, se pudo comprobar la presencia de CEMIP en fracciones enriquecidas en EV obtenidas a partir de muestras de suero (Figura 25). Es por ello que se decidió evaluar su potencial como biomarcador de progresión tumoral a nivel sérico.

5.2.1. Detección de CEMIP en fracciones enriquecidas en EV de origen sérico

La determinación de los niveles de una proteína dada y su valoración como potencial biomarcador requiere de una consistente detección de la misma. Es por ello que, como primera aproximación, se evaluó la presencia de la proteína CEMIP en las fracciones enriquecidas en EV obtenidas no sólo de suero de voluntarios sanos sino también pacientes diagnosticados de melanoma en estadio II que no desarrollaron metástasis durante un periodo superior a 5 años posterior al diagnóstico (sin MX) o que sí la desarrollaron en un periodo promedio de 15 meses, abarcando desde 5 a 36 meses (MX) (Figura 43).

Figura 43. Detección de CEMIP en fracciones enriquecidas en EV de suero de voluntarios sanos y de pacientes en estadio II con diferente evolución. A, Se analizó mediante western blot la expresión de la proteína CEMIP en fracciones enriquecidas en EV de 9 muestras de suero humano independientes: 3 obtenidas de voluntarios sanos, 3 de pacientes en estadio II que no desarrollaron metástasis durante al menos los 5 años posteriores al diagnóstico (sin MX) y 3 de pacientes en estadio II con desarrollo de metástasis posterior en un periodo de tiempo promedio de 15 meses (MX). Se cargaron 30 μg de proteína/calle. B, Tinción de la membrana tras la transferencia con rojo Ponceau, usado como control de carga.

Como muestra la Figura 43, en todos los grupos estudiados se detectó CEMIP en las fracciones de EV; sin embargo, no se observó un mayor o menor enriquecimiento de CEMIP en ningún grupo específico, es decir, no se encontraron diferencias aparentes entre los grupos de pacientes y los voluntarios sanos ni entre los dos grupos de pacientes de melanoma. El western blot es una técnica semicuantitativa que no permite el análisis y comparación simultánea de una gran cantidad de muestras, por consiguiente, una vez determinada la presencia de CEMIP en muestras

de EV séricas en pacientes con melanoma, se procedió a su análisis cuantitativo en un mayor número de muestras mediante la técnica ELISA.

5.2.2. Selección de muestras y cuantificación de CEMIP en fracciones enriquecidas en EV de origen sérico

Tal y como se ha mencionado en la Introducción, el melanoma cutáneo es un tipo de tumor agresivo y con difícil abordaje en fases avanzadas y muestra capacidad para generar metástasis en un 20 % de los pacientes diagnosticados en fases tempranas (estadios I y II). Es por ello que, con el fin de evaluar la potencialidad de CEMIP como biomarcador de pronóstico temprano se seleccionaron individuos sanos así como pacientes diagnosticados en fases tempranas (I y II) que desarrollaron o no metástasis durante el seguimiento. El periodo de seguimiento mínimo en aquellos clasificados en el subgrupo libre de metástasis (sin MX) fue de 4 años mientras que en el grupo MX se incluyeron pacientes que desarrollaron metástasis en un periodo promedio de 28 meses, abarcando desde 4 meses hasta 14 años. En total se incluyeron en el análisis 88 individuos, cuyos datos se resumen en la Tabla 21.

Tabla 21. Resumen de las características de las muestras que se incluyeron en el ensayo de cuantificación de CEMIP mediante ELISA. Se indica el número de muestras analizadas por cada grupo, el % de muestras correspondientes a hombres y a mujeres en cada grupo, la edad promedio en el momento del diagnóstico de los hombres y las mujeres en cada grupo, el tiempo promedio de seguimiento posterior al diagnóstico (en años) en cada grupo y el tiempo promedio (en meses) en el que se desarrolló metástasis en los grupos I MX y II MX.

	sanos	l sin MX	IMX	II sin MX	іі мх
nº muestras	21	21	6	16	24
% hombres	-	47,6	33,3	56,3	37,5
% mujeres	-	52,4	66,6	43,7	62,5
edad promedio al diagnóstico en hombres (años)	-	59,4	58	65,7	68,1
edad promedio al diagnóstico en mujeres (años)	-	44,9	63,8	50,7	63,1
tiempo promedio seguimiento (años)	-	14,8	6,0	9,1	6,0
tiempo promedio hasta desarrollo metástasis (meses)	-	-	47,3	-	23,1

La proteína CEMIP se cuantificó en duplicados de 88 muestras de EV de suero de voluntarios sanos y pacientes en diferentes fases de la enfermedad y con diferente evolución mediante la técnica de ELISA. Como refleja la Figura 44, a pesar de observarse una ligera tendencia creciente en la concentración de CEMIP en EV de los individuos de los estadios I y II que no desarrollaron metástasis (sin MX) con respecto a los pacientes de sus respectivos grupos que sí la desarrollaron (I y II MX), dichas variaciones no resultaron estadísticamente significativas. Así mismo, tampoco se observaron diferencias ligadas al estadio ni a la presencia o ausencia de la enfermedad (*i. e.* sanos versus pacientes con melanoma). En definitiva, la proteína CEMIP no presentó, a nivel de EV séricas, una relación estadísticamente significativa con la progresión del melanoma.

Figura 44. Cuantificación de CEMIP en fracciones enriquecidas en EV de suero de voluntarios sanos y de pacientes con diferente diagnóstico y evolución. Se analizó mediante ELISA la concentración de CEMIP en un total de 88 fracciones enriquecidas en EV obtenidas a partir de sueros de voluntarios sanos y pacientes con melanoma diagnosticados en diferentes estadios (estadio I y estadio II), que no desarrollaron metástasis en el periodo de 4 años de seguimiento tras el diagnóstico (sin MX) o con desarrollo de metástasis posterior en un periodo de tiempo promedio de 28 meses (MX). Las características de cada una de las muestras incluidas en el estudio se presentan en el Anexo 2 (Tabla 29). Se realizó el test de outliers con la prueba de Grubbs. Se hizo el análisis estadístico de los resultados con el test no paramétrico Kruskal-Wallis y post hoc de Dunn, no se encontraron diferencias significativas en ningún caso (ns = sin diferencias significativas). En la gráfica se muestra con barras en color rojo el valor promedio ± SD.

5.3. Aproximaciones metodológicas para el estudio del proteoma de EV séricas

Independientemente de los resultados obtenidos en la evaluación del CEMIP presente en EV séricas, parte de este trabajo de Tesis Doctoral ha estado dirigido a la mejora de metodologías relacionadas con la identificación de nuevos biomarcadores a partir de biopsias líquida. Por ello, una vez establecido el protocolo que proporcionaba fracciones de EV séricas con mayor pureza y calidad, se procedió al análisis del proteoma de dichas EV con el objetivo de identificar algún biomarcador que permitiera clasificar pacientes diagnosticados en fases tempranas del melanoma con mayor y menor probabilidad de desarrollar metástasis.

5.3.1. Caracterización mediante proteómica no dirigida basada en LC-MS/MS

La identificación de posibles biomarcadores requiere, óptimamente, de metodologías de identificación masiva, y por ello, se llevó a cabo un estudio proteómico no dirigido mediante LC-MS/MS de las fracciones enriquecidas en EV obtenidas por UC diferencial a partir de muestras de suero humano. A las dificultades ligadas a la presencia de proteínas mayoritarias como la albúmina o lipoproteínas en las fracciones enriquecidas en EV (reflejado en la Figura 40), se le debe añadir la limitación en el volumen de suero disponible (en algunos pacientes menor de 500 µl). Se procesaron muestras de 250 µl y de 500 µl, ambas obtenidas de una misma mezcla de sueros de individuos sanos, para determinar si el volumen de suero de partida condicionaba de manera importante el número de proteínas identificadas. También se realizó este análisis proteómico para conocer qué tipo de proteínas eran capaces de ser identificadas y valorar de esta manera su

utilidad como herramienta para la búsqueda de biomarcadores de pronóstico de melanoma en análisis futuros a mayor escala.

Ambas condiciones dieron como resultado la identificación de un número muy similar de proteínas (239 proteínas en la muestra obtenida a partir de 250 μ l de suero iniciales y 240 proteínas en la fracción purificada a partir de 500 μ l de suero) entre las que abundaban componentes del complemento, subunidades de las inmunoglobulinas y las apolipoproteínas, además de la albúmina. Un 62,4 % (184) de las proteínas fueron comunes en ambos grupos (Figura 45) y pertenecían a funciones relacionadas con la respuesta inmune en general (Tabla 22).

Figura 45. Diagrama de Venn para el número de proteínas identificadas en fracciones de EV séricas purificadas mediante UC diferencial a partir de 250 y 500 µl iniciales. Se indica el número de proteínas identificadas mediante LC-MS/MS partiendo de 250 µl (color violeta) y de 500 µl iniciales (color amarillo) de suero de voluntarios sanos. La zona en la que se solapan ambos colores representa las proteínas en común identificadas en ambas condiciones (184 proteínas, un 62,4 %).

Tabla 22. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 y 500 μl de suero mediante UC diferencial. Se muestran los 10 procesos biológicos enriquecidos con mayor significancia estadística en las proteínas comunes identificadas mediante LC/MS-MS partiendo de diferentes volúmenes de suero iniciales. Se indica el % de genes identificados que pertenecen a cada uno de los términos de GO, el ratio de enriquecimiento de cada término y el valor p tras la corrección de Benjamini. Para el análisis se empleó la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_BP_ALL), se establecieron los parámetros Thresholds: Count 2, EASE 0.1 y se aplicó el paquete estadístico propio de la aplicación. La tabla completa se encuentra en el Anexo 8 (Tabla 35).

términos GO: procesos biológicos	% genes identificados	ratio enriquecimiento	valor p Benjamini
cascada de activación de proteína	35,1	39,5	1,6·10 ⁻⁷⁵
activación complemento	31,6	40,0	1,2·10 ⁻⁶⁷
respuesta inmune adaptativa	47,6	12,0	8,5·10 ⁻⁶³
respuesta inmune	64,9	6,3	1,2·10 ⁻⁶²
respuesta inmune humoral	38,1	19,6	4,4·10 ⁻⁶²
activación complemento, vía clásica	26,2	40,5	9,6·10 ⁻⁵⁶
respuesta inmune humoral mediada por inmunoglobulina circulante	26,8	37,6	1,6·10 ⁻⁵⁵
proceso inmune sistémico	69,1	4,5	1,2·10 ⁻⁵²
respuesta inmune mediada por inmunoglobulina	27,4	22,8	4,9·10 ⁻⁴⁶
inmunidad mediada por células B	27,4	22,5	8,1·10 ⁻⁴⁶

En la muestra obtenida de 250 μ l de suero no se identificó ningún marcador propio de EV (*e. g.* CD9, CD63, ALIX...) y tampoco las proteínas FMOD, HMGB1, EDIL3 y CEMIP que sí se habían detectado previamente mediante western blot en 40 μ g de las mismas muestras (Figura 25, Figura 40); mientras que en la muestra obtenida a partir de 500 μ l de suero sí se identificaron las proteínas CD9 y CEMIP, pero ninguna proteína más de las identificadas anteriormente.

En definitiva, el aumento del material de partida no conllevó un aumento en el número de proteínas identificadas ni tampoco una variación sustancial en el perfil de las mismas, siendo, también principalmente proteínas relacionadas con la respuesta inmune ligada a las proteínas mayoritarias del suero como las inmunoglobulinas. Tampoco el aumento del volumen inicial de suero facilitó de manera robusta la identificación de marcadores de EV o proteínas previamente identificadas con técnicas no masivas como el western blot.

En nuestro afán por mejorar la parte técnica relacionada con la identificación de proteínas de EV a partir de fracciones séricas optamos también por analizar el potencial de la LC-MS/MS partiendo de fracciones enriquecidas en EV mediante cromatografía de exclusión por tamaño (*i. e.* columnas IZON; 250 µl de suero de partida por condición) y posterior concentración mediante filtros concentradores (retención \ge 30 kDa). En base a los resultados mostrados en la Figura 40, la condición en las que se aunaban las fracciones 7, 8 y 9 permitían la identificación de ciertos marcadores de EV (*e. g.* CD63, CD9) en condiciones de ausencia de acumulación de albúmina y valores intermedios de apolipoproteínas. Así mismo, testamos diferentes protocolos de digestión de las muestras, comparando procedimientos basados en la digestión en solución (*i. e.* FASP, RapiGest) versus la digestión de muestras aisladas de gel, y analizamos las posibles ventajas de recoger toda la muestra en una única banda versus recoger la muestra en gel en 3 bandas digeridas y analizadas individualmente con una posterior unificación de las proteínas identificadas en las 3 bandas. Tal y como recoge la Tabla 23, obtuvimos diferencias significativas en el número de proteínas identificadas en base al proceso de digestión testado siendo la digestión en gel a partir de 3 bandas el proceso por el que obtuvimos una mayor identificación de proteínas (329 proteínas) seguido de la metodología de digestión empleada previamente para las fracciones obtenidas mediante UC diferencial (*i. e.* digestión mediante FASP; 264 proteínas identificadas). La cantidad de proteína digerida cargada en el LC-MS/MS (1 banda 2,5 μ g versus 1 banda 5 μ g) no supuso un aumento significativo en el número de proteínas identificadas (212 versus 236 proteínas).

Tabla 23. Número de proteínas identificadas tras los distintos métodos de digestión de las fracciones de EV séricas. Se indica el número de proteínas identificadas mediante LC-MS/MS en muestras enriquecidas en EV purificadas mediante cromatografía de exclusión por tamaño a partir de 250 μ l de suero de voluntarios sanos tras su digestión en solución (FASP y RapiGest) o tras ser corridas en gel (en una única banda o en 3 bandas).

	protocolos de digestión	número de proteínas identificadas
digestión de muestras	FASP	264
en solución	RapiGest	143
digestión de muestras aisladas de gel	1 banda 2,5 μg	212
	1 banda 5 μg	236
	3 bandas	329

Se identificaron un total de 103 proteínas comunes en la totalidad de las condiciones testadas (Figura 46) en las que se encontraron especialmente enriquecidas funciones relacionadas con la respuesta inmune (ver Tabla 24). El listado de los 10 procesos biológicos con mayor enriquecimiento es prácticamente idéntico al obtenido en las fracciones enriquecidas en EV obtenidas mediante UC diferencial. Sin embargo, a diferencia del procesamiento basado en UC, la purificación de EV séricas mediante columnas de exclusión por tamaño facilitó la identificación consistente de proteínas relacionadas con la adhesión celular (*e. g.* VTN, LRP1, ACTN1, ITGB3, ITGA2B, APOD, TLN1 y LIMS1, pertenecientes al término GO de adhesión celular a la matriz; el 9,4 % genes identificados correspondían a este término, ratio de enriquecimiento 7,7 y valor p tras la corrección de Benjamini de 1,5·10⁻³).

Figura 46. Diagrama de Venn para las proteínas identificadas en fracciones de EV séricas digeridas mediante distintos métodos. Se indica el número de proteínas identificadas, partiendo en todos los casos de 250 µl de suero y purificando las EV mediante cromatografía de exclusión por tamaño, en base al proceso de digestión así como el número de proteínas identificadas en común de cada una de las técnicas con el resto.

Tabla 24. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 µl de suero mediante cromatografía de exclusión por tamaño y distintos métodos de procesamiento de muestra. Se muestran los 10 procesos biológicos enriquecidos con mayor significancia estadística considerando las 103 proteínas identificadas en común por LC-MS/MS tras aplicar a las muestras diferentes protocolos de digestión, partiendo en todos los casos de 250 µl de suero y purificando las EV mediante cromatografía de exclusión por tamaño. Se indica el % de genes identificados que pertenecen a cada uno de los términos de GO, el ratio de enriquecimiento de cada término y el valor p tras la corrección de Benjamini. Para el análisis se empleó la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_BP_ALL), se establecieron los parámetros Thresholds: Count 2, EASE 0.1 y se aplicó el paquete estadístico propio de la aplicación. La tabla completa se encuentra en el Anexo 9 (Tabla 36).

términos GO: procesos biológicos	% genes identificados	ratio enriquecimiento	valor p Benjamini
cascada de activación de proteína	40,0	44,7	4,2·10 ⁻⁴³
activación complemento	34,1	43,0	1,5·10 ⁻³⁵
respuesta inmune humoral	41,2	21,1	2,1·10 ⁻³³
activación complemento, vía clásica	27,1	41,6	4,6·10 ⁻²⁷
respuesta inmune humoral mediada por inmunoglobulina circulante	27,1	37,8	3,7·10 ⁻²⁶
proceso inmune sistémico	69,4	4,5	1,1·10 ⁻²⁵
respuesta inmune	60,0	5,8	1,1·10 ⁻²⁵
respuesta defensiva	55,3	5,8	6,6·10 ⁻²³
respuesta inmune mediada por inmunoglobulina	27,1	22,4	3,0·10- ²¹
inmunidad mediada por células B	27,1	22,1	3,6·10 ⁻²¹

En relación a los marcadores de EV, los mejores resultados fueron arrojados por los 2 procedimientos basados en digestión en gel ya que en ambos fue posible detectar tanto el CD9 como el CD63 (Tabla 25), si bien no se detectaron otros marcadores o proteínas previamente detectadas en fracciones de EV séricas mediante western blot (Figura 25).

Tabla 25. Detección de los marcadores CD9 y CD63 mediante LC-MS/MS en las fracciones de EV séricas tras aplicar los distintos métodos de digestión testados. Se indica si se identificaron o no los marcadores propios de EV (CD9 y CD63) mediante LC-MS/MS tras distintos métodos de digestión (FASP, RapiGest y digestión en gel en una banda o en 3 bandas) de fracciones de EV séricas purificadas mediante cromatografía de exclusión por tamaño partiendo de un volumen inicial de 250 µl de suero.

	FASP	RapiGest	1 banda 2,5 μg	1 banda 5 µg	3 bandas
CD9	sí	no	SÍ	SÍ	sí
CD63	no	no	no	sí	SÍ

Por lo tanto, el empleo de la cromatografía por exclusión de tamaño y digestión en solución mediante el procedimiento denominado FASP no reportó mejoras significativas en relación al enriquecimiento en EV obtenido mediante UC diferencial. Se detectó, sin embargo, una mejora en el número de proteínas identificadas, en la identificación consistente de marcadores de EV y de proteínas relacionadas con funciones adicionales a la respuesta inmune y la coagulación en las muestras digeridas en gel, especialmente al obtener 3 submuestras de una inicial (3 bandas). Sin embargo, la optimización ligada al método de preparación de muestra para el LC-MS/MS no permitió la identificación de proteínas detectadas mediante técnicas no-masivas como el western blot (*e. g.* CEMIP, EDIL3...).

5.3.2. Caracterización mediante proteómica dirigida basada en PEA

Tras verificar que la caracterización de las EV séricas mediante la identificación masiva de proteínas por LC-MS/MS no proporcionaba los resultados esperados, se optó por la búsqueda de biomarcadores mediante técnicas alternativas como la proteómica dirigida basada en PEA. Esta se trata de una metodología innovadora, es más sensible que los métodos de proteómica tradicionales como la LC-MS/MS, y permite cuantificar proteínas poco abundantes en muestras de manera fiable y reproducible.

5.3.2.1. Selección de muestras séricas de pacientes con melanoma cutáneo

Para llevar a cabo el ensayo de proteómica dirigida para buscar biomarcadores de pronóstico, se seleccionaron los pacientes diagnosticados en estadio II de la enfermedad porque, habiendo sido diagnosticados en una fase temprana, estos pacientes siguen teniendo un riesgo no desdeñable de desarrollar metástasis, según se ha mencionado en el apartado de Introducción.

Se seleccionaron 38 muestras de suero de individuos diagnosticados en estadio II de melanoma: 19 de ellos, pacientes diagnosticados en estadio II que no desarrollaron metástasis durante el periodo de seguimiento posterior al diagnóstico, y los otros 19, pacientes diagnosticados en estadio II que desarrollaron metástasis durante el seguimiento posterior a la exéresis quirúrgica de la lesión maligna. El periodo de seguimiento mínimo en aquellos clasificados en el subgrupo libre de metástasis (sin MX) fue de 5 años mientras que en el grupo MX se incluyeron pacientes que desarrollaron metástasis en un periodo promedio de 15 meses, abarcando desde 5 a 36 meses; los datos de los individuos incluidos en el estudio se resumen en la Tabla 26.

Tabla 26. Características de las muestras que se incluyeron en el ensayo de proteómica dirigida basada en PEA. En el ensayo se incluyeron 38 muestras en total, 19 muestras de pacientes que no desarrollaron metástasis durante al menos los 5 años posteriores al diagnóstico (sin MX) y 19 muestras de pacientes que sí desarrollaron metástasis en un periodo inferior a 36 meses de seguimiento (MX). Se indica el % de muestras correspondientes a hombres y a mujeres en cada grupo, la edad promedio en el momento del diagnóstico en hombres y mujeres en cada grupo, el tiempo promedio de seguimiento (en años) en cada grupo y el tiempo promedio (en meses) en el que se desarrolló metástasis en el grupo que la desarrolló.

	II sin MX	II MX
nº muestras	19	19
% hombres	42,1	42,1
% mujeres	57,9	57,9
edad promedio al diagnóstico en hombres (años)	60,4	68
edad promedio al diagnóstico en mujeres (años)	52,5	71,9
tiempo promedio seguimiento (años)	9,9	4,2
tiempo promedio hasta desarrollo metástasis (meses)	-	15,2

5.3.2.2. Caracterización de las EV purificadas a partir de las muestras de suero humano seleccionadas

Antes de llevar a cabo el análisis proteómico dirigido mediante PEA, algunas de las muestras que se incluyeron en el estudio se caracterizaron molecularmente mediante la detección de algunos marcadores propios de EV, y morfológicamente para verificar que las muestras tuvieran las características esperadas para así tener la certeza de que el análisis se llevaría a cabo con muestras óptimas.

5.3.2.2.1. Caracterización molecular de las EV

Se analizó la presencia de marcadores propios de EV (Théry *et al.*, 2018) en las fracciones obtenidas mediante el protocolo de UC diferencial a partir de 250 μ l de suero humano de algunos de los pacientes diagnosticados en estadio II (Figura 47).

Figura 47. Marcadores de EV en fracciones obtenidas a partir de los sueros humano analizados mediante PEA. Se analizó mediante western blot la presencia de los marcadores de EV ALIX, TSG101 y CD63 en 6 muestras diferentes obtenidas a partir de UC diferencial de sueros humanos: 3 de pacientes en estadio II que no desarrollaron metástasis tras al diagnóstico, como mínimo durante un periodo de seguimiento de 5 años (sin MX), y 3 de pacientes en estadio II con desarrollo de metástasis en un periodo inferior a 36 meses de seguimiento (MX). Se cargaron 30 µg de proteína/calle. Como control de carga se usó la tinción de la membrana con rojo Ponceau (no mostrado).

Como muestra la Figura 47, se detectaron los marcadores propios de EV analizados (ALIX, TSG101 y CD63) en las fracciones purificadas mediante UC diferencial a partir de muestras de sueros humanos de los 2 grupos incluidos en el estudio.

5.3.2.2.2. Caracterización morfológica de las EV

El análisis de las fracciones enriquecidas en EV séricas mediante crio-TEM (Figura 48) permitió observar en todas ellas vesículas de entre 100 y 150 nm y morfología compatible con la de las EV. Las muestras eran homogéneas y similares, independientemente de si derivaban de pacientes que desarrollaron metástasis o no durante el seguimiento posterior, y tenían un aspecto similar al observado en las muestras obtenidas a partir de cultivos celulares.

Figura 48. Imágenes de las vesículas presentes en las fracciones purificadas a partir de los sueros humano analizados mediante PEA. Se analizaron morfológicamente mediante crio-TEM las fracciones enriquecidas en EV séricas obtenidas por UC diferencial de sueros humanos de pacientes en estadio II que no desarrollaron metástasis durante el seguimiento posterior de 5 años (sin MX), y de pacientes en estadio II con desarrollo de metástasis posterior (MX). Barra de escala: 200 nm. Se muestran imágenes representativas de cada condición.

5.3.2.2.3. Análisis del tamaño y la concentración de las EV

Las fracciones enriquecidas en EV purificadas a partir de sueros humanos se analizaron mediante NTA para determinar la distribución de tamaño de las vesículas aisladas (Figura 49) así como la concentración de partículas en las fracciones purificadas (Tabla 27).

Figura 49. Perfiles de distribución de tamaño de las vesículas purificadas a partir de los sueros humano analizados mediante PEA. Se estudió, mediante análisis de NTA, la distribución de tamaño de las partículas presentes en las fracciones de EV obtenidas mediante UC diferencial a partir de sueros de pacientes en estadio II que no desarrollaron metástasis durante los 5 años posteriores al diagnóstico (sin MX) y de pacientes en estadio II con desarrollo de metástasis posterior (MX). Se analizaron 3 muestras independientes en duplicado por cada grupo de estudio. Se cargaron 5 µg de proteína diluido en 250 µl de PBS filtrado por cada muestra analizada. En cada lectura se registró un mínimo de 200 partículas. Se fijaron los parámetros camera level: 11 y detection threshold: 5.

Como muestra la Figura 49, los 2 grupos estudiados presentaron una población principal de vesículas con un tamaño muy parecido entre sí. En general, las fracciones de EV purificadas a partir de muestras de suero humano mostraron una moda promedio de 118,69 ± 20,67 nm (Tabla 27),

un tamaño similar al valor medio de las vesículas purificadas a partir de las líneas celulares en cultivo (Tabla 13, Tabla 19).

En cuanto a la concentración de partículas en las fracciones de EV séricas, las fracciones derivadas de los pacientes que desarrollaron metástasis durante el seguimiento presentaron una concentración similar a los pacientes sin desarrollo de metástasis posterior (Tabla 27). Por otro lado, se observó que las fracciones enriquecidas en EV séricas presentaron una concentración de partículas/ml un orden de magnitud inferior a la obtenida en las muestras de cultivos celulares (Tabla 13, Tabla 19), pese a haber cargado las muestras con una concentración en proteína 5 veces mayor en el NanoSight.

Tabla 27. Moda promedio de las vesículas purificadas y concentración de partículas promedio de las fracciones obtenidas a partir de los sueros humanos analizados mediante PEA. Se analizaron mediante NTA 3 muestras independientes analizadas en duplicado por cada grupo. Los resultados de moda (nm) y concentración de partículas (partículas/ml) se muestran como promedio ± SD.

	moda (nm)	concentración (partículas/ml)
estadio II sin MX	113,95 ± 15,19	$6,92 \cdot 10^8 \pm 7,28 \cdot 10^7$
estadio II MX	123,42 ± 26,14	$8,01\cdot10^8 \pm 1,08\cdot10^8$
media 2 grupos	118,69 ± 20,67	$7,47 \cdot 10^8 \pm 9,04 \cdot 10^7$

En resumen, las EV séricas aisladas con el objetivo de llevar a cabo el análisis de proteómica dirigida mediante PEA presentaban unas características adecuadas en cuanto a presencia de marcadores de EV, tamaño y concentración.

5.3.2.3. PEA

El panel de proteínas de Olink analizado en este trabajo y denominado Olink Target 96 Immuno-Oncology permite analizar, de manera simultánea, 92 proteínas relacionadas con la respuesta inmune y la progresión tumoral (<u>https://www.olink.com/products-services/target/immuneresponse-panel/</u>).

De las 92 proteínas analizadas en el panel Olink Target 96 Immuno-Oncology, se identificaron 33 proteínas al menos en el 75 % de las muestras y se escogieron para el posterior análisis estadístico. Entre las proteínas con niveles de detección menores no se detectó ninguno que pudiera correlacionarse con el grupo de pertenencia (*i. e.* MX versus sin MX) y que, por lo tanto, pudiera ser de interés particular. En la Tabla 28 se detalla el nombre de las 33 proteínas identificadas, así como los valores promedio y desviación estándar obtenidos para cada una de ellas en los 2 grupos de muestras analizados. Ninguna de las 33 proteínas detectadas de manera robusta mediante esta tecnología habían sido previamente identificadas en los ensayos realizados mediante LC-MS/MS (datos no mostrados).
Tabla 28. Proteínas identificadas en las muestras de EV séricas de pacientes analizadas mediante PEA. Se muestran las proteínas identificadas en más del 75 % de las 38 muestras analizadas mediante proteómica dirigida basada en PEA (promedio ± SD).

proteínas	estadio II sin MX	estadio II MX
CD244	4,80 ± 0,60	4,77 ± 0,62
EGF	4,53 ± 0,95	4,30 ± 1,06
ANGPT1	10,44 ± 0,48	10,42 ± 0,51
PGF	3,13 ± 0,35	3,29 ± 0,45
MCP-1	4,34 ± 0,43	4,55 ± 0,68
CXCL11	5,06 ± 0,42	5,65 ± 0,89
MCP-4	4,94 ± 0,61	5,46 ± 0,95
CD8A	5,15 ± 0,29	5,23 ± 0,44
ADA	6,55 ± 0,55	6,56 ± 0,62
CD4	3,41 ± 0,41	3,72 ± 0,67
Gal-9	4,65 ± 0,53	4,67 ± 0,45
CD40	5,64 ± 0,47	5,96 ± 0,52
IL-18	7,87 ± 0,85	7,85 ± 0,77
LAP	2,96 ± 0,36	3,15 ± 0,60
TGF-β1	6,24 ± 0,64	6,22 ± 0,61
CXCL1	3,89 ± 0,63	4,02 ± 0,57
TWEAK	5,30 ± 0,60	5,47 ± 0,49
PDGF subunidad B	7,86 ± 0,57	8,14 ± 0,46
CCL19	4,69 ± 0,88	5,28 ± 1,12
CXCL5	4,02 ± 0,69	4,06 ± 0,75
HGF	7,09 ± 0,59	7,43 ± 0,57
GZMA	3,58 ± 0,44	3,86 ± 0,58
HO-1	5,04 ± 0,56	5,11 ± 0,74
CXCL10	3,97 ± 0,40	4,47 ± 0,96
CD5	6,39 ± 0,53	6,26 ± 0,61
MMP-7	5,66 ± 0,61	6,17 ± 0,74
DCN	4,00 ± 0,53	4,28 ± 0,73
CCL17	3,34 ± 0,67	3,79 ± 0,78
ANGPT2	3,07 ± 0,57	3,41 ± 0,64
MMP-12	3,20 ± 0,51	3,60 ± 0,97
CXCL13	3,85 ± 0,45	4,36 ± 0,84
VEGF-A	5,24 ± 0,66	5,73 ± 0,61
CSF-1	3,97 ± 0,35	4,14 ± 0,44

Como se muestra en el PCA, (Figura 50), la variabilidad entre los proteomas parciales de las EV aisladas de pacientes diagnosticados en estadio II que desarrollaron metástasis (MX; n = 19) y aquellos que no desarrollaron metástasis (sin MX; n = 19) no permitió establecer 2 grupos diferenciados en función de su origen.

Figura 50. Análisis de agrupamiento mediante PCA de exoproteomas parciales de sueros de pacientes diagnosticados en estadio II de melanoma. Se muestra la distribución, según la similitud de sus perfiles proteómicos, de las 38 muestras de EV independientes analizadas mediante PEA de pacientes diagnosticados en estadio II: 19 de ellas procedentes de personas que no desarrollaron metástasis durante el seguimiento posterior al diagnóstico (color azul), y 19 de pacientes que sí desarrollaron metástasis durante el seguimiento (color rojo).

Por su parte, el análisis estadístico centrado en las 33 proteínas seleccionadas mostró diferencias significativas en 4 de estas proteínas: las quimiocinas CXCL11 y CXCL13, la metaloproteasa MMP-7 y el factor VEGF-A. En todos los casos, los valores en el grupo de pacientes que desarrolló metástasis durante el seguimiento fueron mayores a aquellos obtenidos en las muestras provenientes de pacientes que no desarrollaron metástasis (Figura 51).

Figura 51. Proteínas diferencialmente expresadas en EV séricas de pacientes en estadio II del melanoma sin y con desarrollo de metástasis durante el seguimiento posterior a la exéresis quirúrgica de la lesión primaria. Se llevó a cabo un estudio de proteómica dirigida basada en PEA en el que se analizó la expresión de 92 proteínas en 38 muestras de EV de suero de pacientes en estadio II de melanoma que no desarrollaron metástasis durante al menos los 5 años de seguimiento tras el diagnóstico (sin MX, color azul) y los que desarrollaron metástasis (MX, color rojo). El análisis estadístico de los resultados se hizo mediante test paramétrico T de student (ns = no significativo; * = p<0,05; ** = p<0,01; *** = p<0,001). Los valores se expresan como promedio \pm SD. Los valores NPX (eje Y) son la unidad arbitraria que utiliza Olink y hace referencia a los valores de expresión normalizados de las proteínas.

Por lo tanto, la aplicación de esta metodología permitió la identificación y cuantificación de proteínas contenidas en EV de sueros previamente no detectadas mediante LC-MS/MS, así como la identificación de 4 proteínas (CXCL11, CXCL13, MMP-7 y VEGF-A) que fueron capaces de diferenciar los pacientes con evolución metastásica en las fases iniciales de la enfermedad.

V. DISCUSIÓN

El melanoma cutáneo solo representa un 5 % de todos los tipos de cáncer de piel diagnosticados pero es el causante del 90 % de las muertes por cáncer de piel, siendo un cáncer muy agresivo por su alta propensión a desarrollar metástasis y la resistencia que presenta frente a la mayoría de las estrategias terapéuticas (Garbe *et al.*, 2016; Matthews *et al.*, 2017). El aumento de la incidencia del melanoma cutáneo en las últimas décadas, la elevada tasa de recurrencia incluso detectándose la enfermedad en fases tempranas y la ausencia de estrategias eficaces para tratar el melanoma metastásico han puesto de manifiesto la necesidad que existe de seguir ahondando en los mecanismos ligados a la progresión de la enfermedad así como de identificar biomarcadores de pronóstico capaces de diferenciar, en estadios tempranos de la enfermedad, los pacientes con mayor o menor riesgo metastásico (Garbe *et al.*, 2016; Von Schuckmann *et al.*, 2019; Poklepovic and Luke, 2020).

En los últimos años se ha descrito el papel multifactorial que ejercen las EV en el desarrollo de la enfermedad tumoral ya que constituyen una vía de comunicación celular local y sistémica que modula muchos de los procesos que dirigen la carcinogénesis tales como proliferación celular, angiogénesis, EMT, remodelación del microambiente tumoral, evasión del sistema inmune, colonización de nuevos órganos y resistencia frente a la terapia (Kahlert and Kalluri, 2013; Whiteside, 2016). Por lo tanto, constituyen una importante fuente de conocimiento tanto en lo relativo a vías de señalización ligadas a la progresión local o sistémica del melanoma cutáneo como en lo relativo a la búsqueda de biomarcadores.

1. Identificación del exoproteoma diferencial del melanoma

El área de investigación relativo a las EV ha sufrido un desarrollo exponencial en la última década lo cual ha permitido el desarrollo tanto metodológico, terminológico como de conocimiento. Si bien no existe un único método óptimo de aislamiento de EV, la UC es el método de aislamiento que brinda un nivel intermedio tanto de recuperación como de especificidad (Théry *et al.*, 2018) y ha sido el empleado para la purificación de EV a partir de cultivos celulares en este trabajo. La caracterización de las EV mediante UC aisladas a partir de cultivos celulares mostró que poseían rasgos morfológicos (forma esférica y presencia de bicapa lipídica), de tamaño (50 - 150 nm) y moleculares (expresión de los marcadores ALIX, TSG101, CD63, CD81 y CD9 y ausencia de CANX) típicos de EV de pequeño tamaño como MV pequeñas y exosomas (Théry *et al.*, 2018). Estos resultados fueron confirmados por el enriquecimiento de ontologías génicas relacionadas con EV obtenidas tras el análisis del exoproteoma.

La identificación de moléculas ligadas al desarrollo de un tumor y a la progresión de la enfermedad requiere del estudio de un amplio espectro de condiciones. Este no es el primer trabajo dirigido a la comprensión de la señalización mediada por proteínas contenidas en EV en el contexto del melanoma (Peinado *et al.*, 2012; Xiao *et al.*, 2012; Lazar *et al.*, 2015) si bien es el primero en incluir un amplio rango de condiciones, desde EV secretados por melanocitos hasta EV secretados por células de melanoma incluía una línea celular de cada tipo (HEMn-LP y A375) (Xiao *et al.*, 2012). Las mejoras metodológicas han permitido en nuestro estudio la identificación de un rango muy superior de proteínas si bien nuestros resultados recogen ampliamente las proteínas detectadas en ese estudio. Sin embargo, ambos trabajos coinciden únicamente en una (3-oxoacid-CoA transferasa 1 o OXCT1) de las 11 proteínas con expresión diferencial mostradas por Xiao *et al.*, 2012. En nuestro caso, las líneas A375 y MEL-HO fueron retiradas del análisis inicial debido a

la disparidad mostrada en los perfiles exoproteómicos por lo que no descartamos coincidencias adicionales analizando exclusivamente una línea de melanocitos y la línea A375 si bien la identificación de diferencias extensibles al campo requiere de la comparación de más muestras o líneas celulares. Por su parte, el estudio proteómico realizado por Lazar et al., 2015, comparando exoproteomas de líneas de melanoma cutáneo con diferente agresividad, concuerda con nuestros resultados en cuanto al enriquecimiento de ontologías relacionadas con la adhesión y migración celular, así como con el desarrollo tisular ligado a las EV derivadas de las líneas metastásicas. Así mismo, el análisis mediante GSEA de nuestros resultados revelaron el enriquecimiento en vías o procesos como la señalización mediada por KRAS o la progresión del ciclo celular ligada a genes diana de los factores de transcripción E2F, ambos 2 estrechamente ligados a la proliferación celular (Paluncic et al., 2016). Mutaciones en los genes codificantes para NRAS (otro miembro de la familia de las RAS GTPasas) y del intermediario común BRAF son de las más comunes en los melanomas (Paluncic et al., 2016) y, de hecho, todas las líneas tumorales empleadas presentan el gen BRAF mutado (https://www.cellosaurus.org/) por lo que lo observado en las EV reflejaría la consecuencia de la vía sobreactivada. Por su parte, la identificación del enriquecimiento en proteínas relacionadas con la EMT en EV derivadas de melanoma metastásico se relaciona con las ontologías ligadas a la adhesión y migración celular. Si bien este término se asocia a un proceso de transdiferenciación característico de tumores de origen epitelial, las células melanocíticas, originados a partir de la cresta neural, desarrollan un proceso similar por el que dejan de estar unidos a los queratinocitos adyacentes y adquieren capacidades motiles e invasivas relacionadas con la progresión maligna de la enfermedad (Pedri et al., 2022). La identificación de esta firma proteica no es de extrañar teniendo en cuenta la procedencia de las células empleadas (i. e. nódulo subcutáneo y nódulo linfático) si bien es de señalar el hecho de que este conjunto de proteínas se encuentre enriquecido también en las EV. En este sentido se ha descrito la capacidad de las EV liberadas por células de melanoma para inducir un proceso tipo-EMT en melanocitos (Xiao et al., 2016).

En un sentido más general, las proteínas contenidas en EV derivadas de melanomas invasivos e identificadas y relacionadas con las funciones previamente descritas podrían estar induciendo cambios en las células circundantes (*i. e.* microambiente tumoral). A modo de ejemplo, la semaforina 3A (SEMA3A) liberada en EV se ha relacionado con el aumento de la permeabilidad vascular en un modelo de glioblastoma (Treps *et al.*, 2016). La diferencia en las proteínas enriquecidas en EV derivados de melanocitos y melanoma deja patente las diferencias en la señalización mediada por células transformadas y no transformadas y sugiere que las células de melanoma metastásico secretan EV con una carga selectiva de proteínas que promocionan la carcinogénesis.

Tal y como se menciona en el apartado de resultados, la selección de las proteínas para la verificación de los resultados se realizó en base a criterios tanto funcionales como proteómicos. Dichas proteínas estaban, bien especialmente ligadas a la naturaleza melanocítica de las células (*e. g.* MLANA y MFI2), bien relacionadas con el proceso de migración o EMT. Los resultados obtenidos mediante western blot confirmaron de manera general los resultados proteómicos al comparar las líneas de melanocitos en su conjunto (HEMn-LP, HEMn-MP) con las líneas derivadas de melanoma metastásico en su conjunto (COLO-800, A2058). Sin embargo, ninguna de las proteínas seleccionadas diferenciaba claramente las líneas derivadas de melanoma primario y las de melanoma metastásico, sugiriendo que, en aquellos casos en los que la proteína se detectó en EV de todas las líneas tumorales (EDIL3, CEMIP, SPP1, ILK, MFI2), dicha proteína estaba ligada tanto al establecimiento del tumor como a la progresión del mismo.

MLANA (también conocido como MART1) es una proteína clave en la ruta de melanogénesis que marca específicamente los melanocitos, cuya expresión en melanoma se correlaciona con buen pronóstico, ya que niveles elevados de expresión de dicha proteína se asocian a un estado más diferenciado de las células y niveles bajos de expresión se vinculan a estadios más avanzados de la enfermedad y peor pronóstico (Hofbauer et al., 1998; Berset et al., 2001; Du et al., 2003). Los resultados de este trabajo mostraron una clara correlación entre los niveles celulares y aquellos observados en las EV, así como una clara disminución en las células tumorales (salvo la línea MEL-HO). En este sentido, los resultados exoproteómicos mostraron también enriquecimiento de proteínas relacionadas con la pigmentación (e. g. PMEL, TYR, y proteínas relacionadas con tirosinasa 1 (TYRP1)) (Tabla 31), proteínas presentes en los melanosomas de los melanocitos, pero no en TYRP2. Desde el punto de vista del desarrollo, la expresión de TYRP2 parece ser temprana, correspondiente con la fase de melanoblasto mientras que la expresión de otras proteínas como TYR o TYRP1 se relaciona con la aparición de los melanosomas funcionales en melanocitos (células maduras) (Li, Knapp and Iden, 2020). Extrapolando lo observado en las EV a los niveles celulares, estos datos (junto con los previamente mencionados sobre MLANA) sugieren que el perfil de las células metastásicas se corresponde con uno menos diferenciado que el de los melanocitos. Así mismo, la detección de proteínas clásicamente ubicadas en los melanosomas abre 2 posibles escenarios: 1) los MVB generados en melanocitos y relacionados con la generación de exosomas podrían contener también proteínas ligadas a la pigmentación y 2) los melanosomas pueden considerarse una especie de endosomas tardíos específicos de melanocitos y del epitelio pigmentado de la retina, ya que su formación, al igual que la de los MVB, deriva de los endosomas tempranos y son estructuras que, en su inicio, muestran algunas vesículas intraluminales. Así mismo, la tetraspanina CD63 parece ser clave para la selección de proteínas estructurales de los melanosomas como PMEL (van Niel et al., 2011; Fukuda, 2016). Si bien el tamaño y la forma de las vesículas identificadas no se corresponde con la de los melanosomas maduros, nuestras fracciones enriquecidas en EV obtenidas podrían contener una contaminación residual de las mismas o bien podrían derivar de la liberación de vesículas contenidas en premelanosomas (melanosomas inmaduros en estadios I y II), un proceso no descrito hasta el momento. Esta podría ser también una posible explicación relacionada con el mayor número de proteínas enriquecidas observado en EV de melanocitos en comparación con aquellas derivadas de melanoma metastásico.

En las proteínas seleccionadas hay, en general, una concordancia entre la expresión a nivel celular y a nivel de EV, con algunas excepciones, lo que implica que mayoritariamente el contenido de las EV en estas proteínas es un reflejo del contenido celular.

Una de esas excepciones es EDIL3, que muestra un patrón claramente diferente. Su presencia a nivel celular es más o menos similar en todas las líneas celulares, melanocitos incluidos, pero no ocurre lo mismo en las EV. En base a nuestros resultados, existe un enriquecimiento de EDIL3 en EV de melanoma primario y una menor expresión en melanoma metastásico, que contrasta con la de EV de melanocitos donde es mayor. Desconocemos el significado que ello puede tener en este contexto concreto puesto que EDIL3 se encuentra sobreexpresada en muchos cánceres (Beckham *et al.*, 2014; Jiang *et al.*, 2016; Lee *et al.*, 2016; Jeong *et al.*, 2017); y concretamente en el melanoma, se ha descrito que un mayor contenido en EV está asociado a agresividad (Schnödl et al., 2022).

HMGB1 es otra de las proteinas cuya presencia a nivel celular y en EV es muy diferente, según lo obtenido en nuestro estudio. Niveles elevados de esta proteína en suero se asocian con estadios más avanzados y menor respuesta a terapias en diversos tipos de cáncer, entre los que se

encuentran el melanoma (Li *et al.*, 2014; Liikanen *et al.*, 2015; Huber *et al.*, 2016; Wang *et al.*, 2019; Li Pomi *et al.*, 2022), y su liberación en EV se ha demostrado que promueve la progresión tumoral (Li *et al.*, 2019; Wang *et al.*, 2021). Nuestros resultados, de acuerdo con otros trabajos, reflejan que su contenido a nivel celular es mayor en melanoma que en melanocitos; sin embargo, a nivel de EV no ocurre lo esperado. En EV hay un enriquecimiento muy llamativo de dicha proteína únicamente en una de las líneas de melanoma metastásico mientras que, en el resto de líneas de melanoma, su carga en EV secretadas es inexistente.

SPP1 e ILK1, ambas con unos niveles en células y en EV secretadas más o menos en concordancia, presentan niveles notablemente mayores en las EV de células de melanoma. Según los resultados obtenidos en nuestro estudio, ambas proteinas podrían estar relacionadas con el desarrollo tumoral, resultados en sintonía con trabajos realizados por otros autores donde su sobreexpresión se relaciona con estadios más avanzados del tumor y un peor pronostico en multitud de tipos de cáncer, incluido el melanoma (Wani *et al.*, 2011; Zheng *et al.*, 2019; Deng *et al.*, 2020; Gil *et al.*, 2020, 2021; Jámbor *et al.*, 2022; Wang *et al.*, 2022).

Nuestros resultados muestran una mayor presencia de FMOD y SERPINE2 en las EV de células de melanoma, a excepción de una de las líneas de melanoma primario, que contrasta con las EV de melanocitos donde los niveles son notablemente menores. Centrándonos en los trabajos que estudian su implicación con el melanoma, FMOD se ha propuesto como promotora (junto a SOX2) del desarrollo de metástasis cerebral derivada de células de melanoma en ratones (Oria *et al.*, 2022) mientras que SERPINE2 potencia la capacidad invasiva del melanoma y su nivel de expresión se correlaciona con la progresión tumoral el potencial invasivo (Wu, 2016; Perego *et al.*, 2018).

El contenido de MFI2 en las EV presenta en nuestro estudio un aumento más o menos gradual asociado a la malignidad: con muy poca presencia en EV de melanocitos, algo mayor en EV de melanomas primarios y más pronunciado en metastásicos. MFI2, también conocido como antígeno humano asociado al melanoma (p97), fue uno de los primeros marcadores de superficie celular asociados al melanoma (Dunn *et al.*, 2006; Rahmanto *et al.*, 2012), y, recientemente, se ha demostrado que pacientes con melanoma tienen niveles elevados de esta proteína en exosomas derivados de plasma en comparación con individuos sanos (Bonhoure *et al.*, 2021), aspecto que concuerda con nuestros resultados en EV de líneas celulares malignas y benignas.

CEMIP, con unos niveles muy superiores en EV de células de melanoma que en melanocitos y una excelente correlación entre los niveles presentes en células y en las EV exportadas por estas, se trata de la proteína en la que hemos enfocado muchos de nuestros esfuerzos; merece una mención especial y será discutido en el siguiente apartado.

2. Implicación de la proteína CEMIP contenida en EV como modulador del microambiente tumoral

Los resultados que obtuvimos en el estudio proteómico, la asociación entre CEMIP y otros tipos de cáncer descrita por otros autores y la ausencia de estudios en relación al melanoma sumado a la posibilidad de detección de dicha proteína en EV de suero humano, nos llevaron a seleccionar CEMIP para realizar estudios en los que determinar el papel de dicha proteína presente en las EV secretadas por células de melanoma sobre procesos biológicos ligados a la progresión tumoral.

CEMIP (también conocida como Cell Migration-Inducing and Hyalyronan-Binding Protein y Cell Migration Inducing Hyaluronidase 1, HYBID o KIAA1199) es una proteína ampliamente asociada a

la progresión tumoral y el desarrollo de metástasis. Desde hace años son muchos trabajos de investigación los que declaran una asociación entre la expresión incrementada de CEMIP y la invasión tumoral, estadios más avanzados de cáncer, peor pronóstico y menor supervivencia (Dong *et al.*, 2021). Nuestros resultados se muestran acordes con este hecho, ya que la expresión de CEMIP se muestra claramente elevada en las células de melanoma en comparación con la observada en los melanocitos. El efecto protumoral de CEMIP se ha confirmado en numerosos tipos de cáncer como el cáncer de estómago (Matsuzaki *et al.*, 2009; Jia *et al.*, 2017), de colon (Fink *et al.*, 2015), de mama (Jami *et al.*, 2014), de páncreas (Suh *et al.*, 2016; Koga *et al.*, 2017), de pulmón (Deng *et al.*, 2017), de ovario (F. Shen *et al.*, 2019) y de hígado (Xu *et al.*, 2019), pero su posible implicación en el desarrollo del melanoma cutáneo apenas se ha descrito (Chen *et al.*, 2022). Esta proteína no solo es considerada un marcador de pronóstico en diferentes tipos de cáncer sino también una diana terapéutica (Chen *et al.*, 2022) e incluso se ha propuesto como oncogén (Dong *et al.*, 2021).

En base a la literatura, la implicación de CEMIP en la progresión tumoral se podría relacionar con las 3 funciones principales asociadas a los niveles celulares de esta proteína: la regulación de la proliferación celular, la inducción de la motilidad y de la capacidad invasiva de las células (la función más frecuentemente asociada a CEMIP) y, por último, la remodelación de la matriz extracelular mediante la despolimerización del HA (Domanegg, Sleeman and Schmaus, 2022). De hecho, numerosos trabajos han demostrado que células humanas de cáncer de colon, de mama, de cuello uterino de estómago y glioblastoma disminuyen su capacidad de migración cuando se les reduce, ya sea de manera estable o transitoria, el nivel celular de la proteína CEMIP (Birkenkamp-Demtroder et al., 2011; Evensen et al., 2013; Shostak et al., 2014; Jia et al., 2017; Zhao et al., 2019; Tsuji et al., 2021). Así mismo, la presencia de CEMIP parece ser relevante no únicamente en las células tumorales, sino también en las células del microambiente tumoral. Recientemente, un estudio llevado a cabo con un modelo de ratón CEMIP^{+/+} y CEMIP^{-/-} ha puesto de manifiesto que solo los TAM derivados del animal con CEMIP responden aumentando su motilidad y la liberación de citoquinas oncogénicas (proteína quimioatrayente de monocitos 1 (MCP-1), proteína inflamatoria de macrófagos 1α (MIP1 α), MMP-2, MMP-9, TGF- β y VEGF) tras ser incubados con medio condicionado de células tumorales; sin embargo, si los macrófagos derivan del modelo animal carente de CEMIP, estos no responden al medio condicionado (Tsuji et al., 2021).

En cuanto a la parte mecaniscista, numerosos trabajos realizados en células tumorales han identificado la capacidad de CEMIP para activar la vía de señalización WNT/ β -catenina promoviendo la EMT y la expresión de MMP, dos aspectos claves en la migración e invasión celular. Según algunos estudios, el CEMIP celular activa la expresión de β -catenina que forma un complejo con el factor de transcripción TCF que aumenta la expresión del propio CEMIP, produciéndose, por lo tanto, una retroalimentación sobre la propia vía que induce su expresión (Birkenkamp-Demtroder *et al.*, 2011; Jia *et al.*, 2017; Xue *et al.*, 2020; Chen *et al.*, 2022). Otras rutas menos descritas pero relacionadas con CEMIP e involucradas en la motilidad celular incluyen la señalización mediada por EGFR (Xu *et al.*, 2019), en la que CEMIP tiene un papel activador, y la modulación de la vía PP2A/estatmina (Zhao *et al.*, 2019).

Más allá de la modulación de la proliferación, motilidad o capacidad invasiva de las células, CEMIP es, también, una proteína con una gran influencia sobre la remodelación de la matriz extracelular puesto que regula tanto la cantidad de HA como el peso molecular de este en la matriz extracelular (Yoshida *et al.*, 2013; de Vega, Yoshida and Okada, 2020). El HA es uno de los componentes principales de la matriz extracelular y está ampliamente distribuido por todos los tejidos siendo

de especial relevancia en la dermis de la piel donde se encuentra hasta el 50 % del HA total (Lee-Sayer *et al.*, 2015). CEMIP media el catabolismo de HA con su actividad despolimerimerizadora del HA de elevado peso molecular y, además, modula la actividad de otras proteínas que también despolimerizan el HA como la hialuronidasa 2 (HYAL2) (Li *et al.*, 2017).

Junto con las funciones mencionadas, CEMIP cuenta con funciones relevantes en patologías no tumorales como la osteoartritis en los que se ha descrito la importancia de la degradación del HA mediada por CEMIP, pero también la capacidad de esta proteína para promover procesos profibróticos en condrocitos o células de la membrana sinovial (Deroyer *et al.*, 2019, 2022; Shiozawa *et al.*, 2020).

Si bien la mayoría de los estudios se han centrado en la función del CEMIP celular (i. e. aquel presente dentro de la célula), es conocido que esta proteína se secreta al medio (Fink et al., 2015; Chen et al., 2019; Rodrigues et al., 2019), por lo que se deduce que pudiera tener efecto en las células receptoras, bien ubicadas en el entorno (e. g. microambiente tumoral) bien en tejidos lejanos (e. g. nichos metastásicos). Chen et al., (2019) describieron la capacidad del CEMIP secretado al medio para inducir el reclutamiento de células madre osteoblásticas mediado, al menos en parte, por la alteración de la ruta WNT/ β -catenina. Es esta misma línea se encuentra la propuesta de Dong et al. (2021) en la que, mediante análisis bioinformáticos de diversos bancos de datos, indican que los niveles aumentados de CEMIP en el tumor se relacionan con una mayor infiltración de CAF, TAM M2, neutrófilos, células NK en reposo, y una menor presencia de células B, células T CD8+ y células NK activadas. La literatura actual cuenta con un único estudio relacionado con el efecto de la proteína CEMIP liberada mediante EV (Rodrigues et al., 2019). Sus autores ponen de manifiesto que el CEMIP contenido en las EV secretadas por células tumorales promueve la metástasis cerebral en cáncer de pulmón y de mama (Rodrigues et al., 2019). En este trabajo se demuestra que el CEMIP empaquetado por las células tumorales en EV es incorporado por las células endoteliales de los vasos sanguíneos del cerebro y por las células inmunes residentes (células microgliales), lo que desencadena un incremento de la expresión de citoquinas proinflamatorias (Ptgs2, Tnf y Ccl/Cxcl) que promueven la remodelación vascular en el nicho premetastásico y la metástasis cerebral. Además, se propone que monitorizar los niveles de CEMIP en pacientes humanos podría predecir el riesgo de metástasis cerebral y bloquear CEMIP podría ser una buena estrategia para prevenir la metástasis cerebral.

Nuestros resultados muestran que la secreción de CEMIP mediante EV de tamaño pequeño (< 200 nm) que incluye principalmente a los exosomas, pero sin descartar la presencia de microvesículas de tamaño pequeño, está ligada a la presencia del melanoma. Por lo tanto, en presencia del tumor, el entorno o microambiente se encontraría enriquecido en esta proteína. Entre las posibles células diana de las EV tumorales derivadas del melanoma cutáneo se encuentran los fibroblastos dérmicos (e. g. Detroit 551). Estudios previos han mostrado la capacidad que presentan las EV (a menudo referidas como exosomas) para inducir la motilidad de los fibroblastos (Li et al., 2020) y promover un perfil miofibroblástico (Webber et al., 2010; Li et al., 2020), caracterizado por el aumento en la expresión de α SMA. Nuestros resultados muestran la captación rápida de EV por parte de los fibroblastos dérmicos, una temprana elevación de los niveles de CEMIP en las células receptoras y muestra, por primera vez, la estimulación de su motilidad de manera CEMIPdependiente, si bien no se han observado variaciones en los niveles de α SMA. Sería interesante comprobar si estas diferencias en cuanto al perfil miofibroblástico podrían deberse al tipo de tumor del que se originan las EV (i. e. ninguno de los estudios mencionados se basaba en modelos de melanoma) o bien en el origen de los fibroblastos empleados. Por otra parte, debemos recordar que la activación de los fibroblastos no necesariamente está ligada al desarrollo de un fenotipo contráctil (*i. e.* miofibroblasto). Tal y como recogen cada vez más estudios, existe un amplio abanico de perfiles fibroblásticos involucrados en la resolución de situaciones fisiológicas como la reparación de heridas (Foster *et al.*, 2021), pero también entre aquellos fibroblastos del entorno tumoral, denominados CAF (Simon and Salhia, 2022).

Sería interesante analizar qué cambios moleculares están regulados por CEMIP. Por ejemplo, determinar si la mayor motilidad de los fibroblastos, que apunta a estar promovida por el CEMIP de EV tumorales, va acompañada de un aumento de la expresión del gen CEMIP en los fibroblastos. También evaluar si el aumento de la capacidad de migración va asociada a la expresión de marcadores característicos de fenotipos agresivos de CAF que favorecen el desarrollo tumoral como son la vimentina, proteína asociada al proceso EMT, y el VEGF-A, un factor pro-angiogénico (Simon and Salhia, 2022).

El aumento de la motilidad de los fibroblastos dérmicos Detroit 551 en respuesta al CEMIP contenido en EV tumorales podría ser debido a la regulación que ejercería el CEMIP incorporado sobre la vía WNT/ β -catenina. El trabajo publicado por Liu *et al.*, (2019) demuestra que el eje de señalización β -catenina-YAP, modulado por la vía WNT/ β -catenina, regula la activación y promueve el fenotipo promotor tumoral de los fibroblastos estromales, y que la perdida de alguno de ellos suprime la habilidad de los fibroblastos de remodelar la matriz extracelular y disminuye la capacidad de migración de los mismos. Sería interesante evaluar si hay una variación en los niveles de β -catenina en los fibroblastos tras estar en contacto con EV tumorales con diferente carga de CEMIP y estudiar si el aumento de la motilidad de los mismos (propio de fibroblastos activados) puede estar relacionado con la regulación del CEMIP incorporado sobre la vía WNT/ β -catenina.

3. EV séricas como fuente de biomarcadores predictivos para la metástasis del melanoma cutáneo

La biopsia líquida (i. e. la extracción o toma de muestra a partir de fluidos corporales) representa una fuente importante de información asociada a la enfermedad o al estado del paciente ya que, a diferencia de las biopsias tisulares, permite la monitorización de la evolución mediante extracciones de muestra periódicas. Así mismo, su obtención se basa en métodos habitualmente menos invasivo para el paciente (Poulet, Massias and Taly, 2019; Lone et al., 2022). A grandes rasgos, las biopsias líquidas incluyen desde un reservorio de células (e. g. células cancerígenas circulantes), moléculas libres (e. g. citocinas, ácidos nucléicos libres) o EV, que representan la fuente de información, de las que se estudian, principalmente, bien los ácidos nucléicos (e. g. RNAm, DNA, miRNA) bien las proteínas. Sin embargo, la identificación de biomarcadores basados en biopsia líquida es también un reto debido a múltiples aspectos principalmente metodológicos (Lone et al., 2022). En el ámbito de la oncología, la biopsia líquida más extensamente empleada se basa en la sangre y las fracciones plasmáticas o séricas derivadas de la misma. En el caso concreto de la búsqueda de nuevos biomarcadores de naturaleza proteica, la aproximación general se basa en la utilización de metodologías ómicas como la basada el LC-MS/MS. Sin embargo, tanto el suero como el plasma cuentan con la presencia de proteínas mayoritarias como la albúmina, inmunoglobulinas etc. con una presencia de hasta 10 órdenes de magnitud superior a proteínas minoritarias, pero de gran significancia biológica como pueden ser la citocinas (Rifai, Gillette and Carr, 2006). Este problema era, y sigue siendo, un problema relevante a la hora de realizar búsquedas mediante aproximaciones proteómicas clásicas.

El aislamiento de fracciones plasmáticas o séricas enriquecidas en EV es una aproximación que podría, al menos en parte, soslayar las dificultades ligadas a la presencia de proteínas mayoritarias. Así mismo, las EV se han considerado una fuente más adecuada que las células cancerígenas circulantes o el DNA libre por motivos relacionados con la estabilidad, la presencia en cualquier tipo de fluido corporal, la disponibilidad de kits comerciales para su aislamiento o la clara identificación mediada por los marcadores proteicos (*e. g.* CD63, ALIX etc) ampliamente aceptados (Zhou *et al.*, 2020). En nuestras manos, la obtención de una fracción sérica enriquecida en EV de calidad en cuanto a las características morfológicas y moleculares ha requerido del empleo de métodos basados en UC o cromatografía por exclusión de tamaño (y posterior concentración mediante filtración selectiva). Sin embargo, en ninguna de las condiciones testadas se obtenían fracciones libres de proteínas mayoritarias como la albúmina o las apolipoproteínas, hecho que ya se ha mencionado anteriormente (Sódar *et al.*, 2016) y que para su resolución requeriría de la combinación de métodos de aislamiento basados en diferentes características físico-químicas.

Aún sin ser una fracción pura, las EV aisladas mediante UC presentaron marcadores de EV (ALIX, CD63 y CD9) y características morfológicas correspondientes a EV de tamaño pequeño y resultaron válidas para la detección, mediante western blot, de algunas de las proteínas previamente detectadas en EV derivadas de líneas celulares (*i. e.* EDIL3, FMOD, HMGB1 y CEMIP). Así mismo, esta metodología fue válida para para la determinación y cuantificación de los niveles de CEMIP en EV séricas mediante ELISA, así como para la identificación y cuantificación relativa de numerosas proteínas minoritarias mediante proteómica dirigida basada en extensión por proximidad (PEA), que se comentará más adelante.

Tal y como se ha discutido en el apartado anterior, son muchos los trabajos que observan un aumento en la expresión de CEMIP en el tejido tumoral (*e. g.* Jami *et al.*, 2014; Fink *et al.*, 2015; Jia *et al.*, 2017), aspecto que concuerda con nuestros resultados tanto a nivel celular como a nivel de EV secretadas por las líneas celulares seleccionadas. Más aún, muchos de estos estudios relacionan elevados niveles de expresión tisular de CEMIP con una mala evolución de la enfermedad, y en un estudio reciente Lee *et al.*, (2018) propusieron a CEMIP, en combinación con el antígeno carbohidrato 19-9 (CA 19-9), como biomarcador diagnóstico de cáncer de páncreas. En contra de lo esperado, nuestros resultados en líneas celulares no mostraron diferencias en cuanto a la expresión o secreción directamente relacionadas con el origen de la línea tumoral, ni tampoco en los niveles de CEMIP asociado a las EV séricas de voluntarios sanos o pacientes en estadios tempranos o con diferente progresión. Hay que tener en cuenta que el conjunto de EV obtenidas de suero incluye EV secretadas por el conjunto de las células al torrente sanguíneo, por lo que únicamente una fracción corresponde a EV secretados por las células tumorales. Si bien representa un reto metodológico, sería interesante observar los niveles de CEMIP en aquellas EV séricas originadas a partir de las células tumorales.

En cuanto a la búsqueda de biomarcadores mediante técnicas proteómicas clásicas basadas en LC/MS-MS a partir de EV aisladas de suero por UC, no se obtuvieron resultados satisfactorios; si bien este método de aislamiento nos permitió eliminar gran parte de las proteínas más abundantes contaminantes del suero, el número de proteínas identificadas era bajo (inferior a 250 proteínas) y las identificaciones se correspondían, en gran medida, a proteínas ligadas a la coagulación, inmunoglobulinas o albúmina. Así mismo, no nos fue posible la identificación consistente de proteínas previamente identificadas mediante western blot (*e. g.* CD63, CD9, EDIL3, CEMIP...). El empleo del protocolo de aislamiento basado en columnas de exclusión por tamaño y concentración mediante filtro que, según nuestros datos reducía la presencia de

proteínas como la albúmina o la ApoA1, permitió un ligero aumento en el número de proteínas identificadas (239 versus 264) que se elevó aún más (hasta 329 proteínas) tras un procesamiento más laborioso de digestión y análisis de la muestra. Así mismo, se identificaron proteínas pertenecientes a categorías como la adhesión celular, ausentes en el análisis anterior y el procedimiento basado en digestión en gel permitió la identificación consistente de los marcadores CD9 y CD63. Estos resultados muestran la posibilidad de mejorar el número y la tipología de proteínas en base a la metodología de aislamiento y procesamiento de la muestra, pero siguen reflejando el efecto negativo derivado de las proteínas mayoritarias del suero y se corresponden con los resultados obtenidos con otros grupos (Palviainen *et al.*, 2020). Tal y como se ha mencionado anteriormente, la mejora en cuanto a la detección de proteínas minoritarias contenidas en EV requiere de varios procesos en tándem y un volumen de suero o plasma mayor al empleado en nuestros análisis (Karimi *et al.*, 2018).

Tanto el western blot como la ELISA y el propio PEA se basan en un primer paso de reconocimiento mediante anticuerpos. El western blot y la ELISA fueron metodologías capaces de identificar proteínas minoritarias en fracciones séricas enriquecidas en EV por lo que decidimos apostar por el estudio proteómico dirigido basado en PEA y analizar 92 proteínas relacionadas con la metástasis, la regulación inmunológica y la progresión del cáncer en muestras de pacientes diagnosticados en estadio II con buena y mala evolución. La PEA se basa en una tecnología de reciente desarrollo que está mostrando resultados esperanzadores en cuanto al análisis de muestras complejas (*e. g.* suero, plasma) de analizar mediante LC-MS/MS (Q. Shen *et al.*, 2019; Petrera *et al.*, 2021), si bien la búsqueda de biomarcadores en fracciones séricas o plasmáticas específicas como los EV está muy poco desarrollada. Existen referencias acerca del interés de emplear esta técnica con fracciones enriquecidas en EV (Chandran *et al.*, 2019; Gidlöf *et al.*, 2019), aunque ninguna relativa al ámbito específico de este estudio.

El análisis de la concentración de EV en suero mostró que los pacientes con melanoma en estadio Il que desarrollaron metástasis durante el seguimiento posterior al diagnóstico presentan una concentración similar a aquellos que no desarrollaron metástasis, e individuos sanos. De hecho, tampoco encontramos diferencias significativas en el número de EV secretadas por melanocitos y células tumorales. Estos resultados contrastan con estudios que señalan que las células tumorales secretan una mayor cantidad de EV que las normales (Bebelman *et al.*, 2021) o aquellos que establecen una asociación entre el aumento en la concentración sérica de EV en pacientes con cáncer con un peor pronóstico (Eldh et al., 2014; Ludwig et al., 2017; Logozzi et al., 2019; Osti et al., 2019).

En cuanto a la proteómica dirigida, los resultados mostraron que los pacientes diagnosticados con melanoma cutáneo en estadio II con evolución metastásica presentaban un aumento en la concentración de las proteínas CXCL11, CXCL13, VEGF-A y MMP-7 en EV en suero en comparación con los pacientes diagnosticados con melanoma cutáneo en estadio II sin evolución metastásica durante el periodo de seguimiento posterior a la exéresis quirúrgica de la lesión primaria. Los resultados concuerdan con los propuestos en otros trabajos científicos publicados en los que se describe la relación de las quimiocinas CXCL11 y CXCL13, el factor VEGF-A y la metaloproteasa MMP-7 con el desarrollo tumoral.

Brevemente, la quimiocina CXCL11, también conocida como quimioatrayente α de células T inducible por interferón (I-TAC), controla el crecimiento tumoral, la metástasis y la infiltración linfocitaria mediante su unión a los receptores CXCR3 y/o CXCR7 (Ge *et al.*, 2020; Puchert *et al.*, 2020). Los estudios relacionados con esta quimiocina son algo confusos y en ocasiones contradictorios. En cancer de colon, por ejemplo, se han publicado estudios recientes que

sostienen que niveles elevados de CXCL11 en tejido tumoral están asociados a peor pronóstico (Liu *et al.*, 2021), pero también a mayor supervivencia (Cao *et al.*, 2021). Li *et al.*, (2022) han descrito que la expresión de CXCL11 está aumentada, en comparación con tejido sano, en tejidos de diversos tipos de cáncer, incluido el melanoma; sin embargo, Zhou *et al.*, (2021) muestran que no hay diferencias significativas entre la expresión de esta quimiocina en tejido de melanoma y tejido normal. En relación a los niveles de esta proteína en sangre, Koguchi *et al.*, (2015) relacionan niveles elevados con peores resultados para los pacientes con melanoma tratados con inmunoterapia.

La quimiocina CXCL13 se une al receptor CXCR5 y desempeña un papel fundamental en la infiltración de múltiples tipos células en el tumor y en la inmunidad tumoral. Estudios recientemente publicados ponen de manifiesto que la expresión de CXCL13 está aumentada en el tejido de multitud de tipos de cáncer (incluido el melanoma cutáneo) en comparación con el tejido sano; sin embargo, su relación con el pronóstico y la supervivencia depende de cada tipo de tumor concreto (Zhang *et al.*, 2022). Concretamente en melanoma, su expresión aumentada se asocia a tumores con buena respuesta a la inmunoterapia (Zhang *et al.*, 2022), debido a que la expresión de esta quimiocina se correlaciona con la expresión de PD-1/PD-L1/CTLA-4 en el tumor (Si and Hu, 2021), y, por lo tanto, CXCL13 podría considerarse un biomarcador capaz de discernir tumores con buena respuesta a tratamientos anti-PD-1/PD-L1/CTLA4 y aumentar la supervivencia (Cabrita *et al.*, 2020).

VEGF-A, una isoforma de VEGF, es un importante factor proangiogénico que modula diversas rutas de señalización y contribuye a la progresión tumoral. El aumento de los niveles de VEGF-A, ya sea en tejido o en circulación, se correlaciona con formas más agresivas y un peor pronóstico en varios tipos de cáncer, incluidos el de estómago (Ding *et al.*, 2005), mama (Sa-nguanraksa and O-charoenrat, 2012), pulmón (Jung, Min and Oh, 2021), ovario (Premalata *et al.*, 2016), cáncer colorrectal (Bernaards *et al.*, 2010) y renal (Situ *et al.*, 2022). En melanoma se ha descrito que el aumento de los niveles de expresión de VEGF (% de células positivas e intensidad de la expresión) se asocian con una profundidad de Breslow mayor y con la progresión tumoral (Rajabi *et al.*, 2012) y que los niveles elevados de VEGF en suero en pacientes con melanoma avanzado se relacionan con escasa respuesta a inmunoterapia anti-CTLA-4 (Khattak *et al.*, 2020).

La MMP-7 juega un papel fundamental en la invasión tumoral debido a la actividad proteolítica que presenta sobre la matriz extracelular (Napoli *et al.*, 2020). Su sobreexpresión va ligada a formas tumorales avanzadas y a un pronóstico desfavorable en diferentes tipos de cáncer (cáncer de mama, páncreas, esófago, riñón y cáncer colorrectal) (Ramankulov *et al.*, 2008). En melanoma esta proteína se considera un marcador tisular de pronóstico: su expresión se asocia a lesiones tanto primarias (más de un 80 % de las lesiones positivas) como metastásicas (100 % de las lesiones positivas), mientras que en tejido sano está ausente; y su nivel de expresión se relaciona con la profundidad de Breslow (mayor expresión, mayor profundidad) y la supervivencia a los 5 años (100 % de supervivencia en melanomas negativos y 26,3 % de supervivencia en lesiones positivas) (Kawasaki *et al.*, 2007).

En base a los resultados obtenidos en esta tesis doctoral, que se encuentra en sintonía con lo descrito en la bibliografía, las proteínas CXCL11, CXCL13, VEGF-A y MMP-7 podrían constituir una firma proteica que permitiera diferenciar aquellos pacientes diagnosticados en estadio II que van a desarrollar metástasis durante los años posteriores al diagnóstico. Son resultados muy prometedores; sin embargo, deben ser validados en estudios en los que se incluyan un número mayor de pacientes. Así mismo, sería de interés determinar si el potencial predictivo de estas proteínas contenidas en EV pudiera ser extensible a pacientes diagnosticados en estadio III (con

metástasis regional) para identificar a aquellos con mayor riesgo de desarrollar metástasis a distancia o en proceso de desarrollarla.

VI. CONCLUSIONES

Considerando la hipótesis y los objetivos planteados al inicio de esta tesis doctoral, las principales conclusiones obtenidas son las siguientes:

- El perfil exoproteómico de EV de tamaño pequeño obtenido a partir de melanocitos y células transformadas difiere claramente y refleja la naturaleza de las células. El estudio de las proteínas enriquecidas en EV derivadas de melanoma de origen metastásico es válido para la identificación de proteínas relacionadas con la progresión tumoral.
- El incremento en los niveles de CEMIP observado en EV secretadas por las células de melanoma está relacionado con la modulación del microambiente tumoral mediante el aumento de la motilidad de los fibroblastos dérmicos, si bien presentan un perfil de activación diferente al del miofibroblasto.
- 3. El ensayo de proteómica dirigida mediante PEA representa la mejor aproximación metodológica para la identificación de biomarcadores a partir de EV séricas de tamaño pequeño ya que soslaya el efecto negativo de las proteínas séricas mayoritarias y permite la identificación y cuantificación relativa de proteínas minoritarias.
- 4. Los resultados presentados muestran la ausencia de correlación entre los niveles de CEMIP en EV séricas humanas y la progresión del melanoma, posiblemente ligada a la diversidad de células que dan origen a las EV séricas. Por el contrario, los niveles de EV séricas relativos a las proteínas CXCL11, CXCL13, VEGF-A y MMP-7 son capaces de diferenciar entre pacientes con melanoma cutáneo diagnosticado en estadio II con buena y mala evolución por lo que se podrían considerar posibles biomarcadores tempranos de metástasis para este conjunto de pacientes.

VII. BIBLIOGRAFÍA

Aaronson, S. *et al.* (1971) 'Ultrastructure of intracellular and extracellular vesicles, membranes, and myelin figures produced by Ochromonas danica', *Journal of Ultrasructure Research*, 35(5–6), pp. 418–430. doi:10.1016/S0022-5320(71)80003-5.

Alegre, E. *et al.* (2014) 'Study of circulating MicroRNA-125b levels in serum exosomes in advanced melanoma', *Archives of Pathology and Laboratory Medicine*, 138(6), pp. 828–832. doi:10.5858/arpa.2013-0134-OA.

Aleman, M.M. *et al.* (2011) 'Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability', *Journal of Thrombosis and Haemostasis*, 9(11), pp. 2251–2261. doi:10.1111/j.1538-7836.2011.04488.x.

Ali, Z., Yousaf, N. and Larkin, J. (2013) 'Melanoma epidemiology, biology and prognosis', *European Journal of Cancer*, 11, pp. 81–91. doi:10.1016/j.ejcsup.2013.07.012.

Alvarez Cubero, M.J. *et al.* (2017) 'Circulating tumor cells: Markers and methodologies for enrichment and detection', *Methods in Molecular Biology*, 1634, pp. 283–303. doi:10.1007/978-1-4939-7144-2_24.

Ando, H. *et al.* (2012) 'Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion', *Journal of Investigative Dermatology*, 132(4), pp. 1222–1229. doi:10.1038/JID.2011.413.

Arneth, B. (2020) 'Tumor microenvironment', Medicina, 56(15). doi:10.3390/medicina56010015.

Arnold, M. *et al.* (2022) 'Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040', *JAMA Dermatology*, 158(5), pp. 495–503. doi:10.1001/JAMADERMATOL.2022.0160.

Arozarena, I. and Wellbrock, C. (2017) 'Targeting invasive properties of melanoma cells', *FEBS Journal*, 284(14), pp. 2148–2162. doi:10.1111/FEBS.14040.

Bajaj, S. *et al.* (2020) 'Melanoma prognosis: Accuracy of the american joint committee on cancer staging manual eighth edition', *Journal of the National Cancer Institute*, 112(9), pp. 921–928. doi:10.1093/jnci/djaa008.

Bebelman, M.P. *et al.* (2021) 'The forces driving cancer extracellular vesicle secretion', *Neoplasia*, 23(1), pp. 149–157. doi:10.1016/j.neo.2020.11.011.

Beckham, C.J. *et al.* (2014) 'Bladder Cancer Exosomes Contain EDIL-3/Del1 and Facilitate Cancer Progression', *The Journal of Urology*, 192(2), pp. 583–592. doi:10.1016/J.JURO.2014.02.035.

Belkaid, Y. and Segre, J.A. (2014) 'Dialogue between skin microbiota and immunity', *Science*, 346(6212), pp. 954–959. doi:10.1126/science.1260144.

Berger, A.C. *et al.* (2017) 'Patient Symptoms Are the Most Frequent Indicators of Recurrence in Patients with American Joint Committee on Cancer Stage II Melanoma', *Journal of the American College of Surgeons*, 224(4), pp. 652–659. doi:10.1016/J.JAMCOLLSURG.2016.12.038.

Bernaards, C. *et al.* (2010) 'Circulating vascular endothelial growth factor (VEGF) as a biomarker for bevacizumab-based therapy in metastatic colorectal, non-small cell lung, and renal cell cancers: Analysis of phase III studies.', *Journal of Clinical Oncology*, 28, pp. 10519–10519. doi:10.1200/jco.2010.28.15_suppl.10519.

Berset, M. *et al.* (2001) 'Expression of Melan-A/MART-1 antigen as a prognostic factor in primary cutaneous melanoma', *International Journal of Cancer*, 95, pp. 73–77.

Birkenkamp-Demtroder, K. et al. (2011) 'Repression of KIAA1199 attenuates Wnt-signalling and decreases the proliferation of colon cancer cells', British Journal of Cancer, 105, pp. 552–561.

doi:10.1038/bjc.2011.268.

Bleicher, J. *et al.* (2020) 'Recurrence patterns in patients with Stage II melanoma: The evolving role of routine imaging for surveillance', *Journal of Surgical Oncology*, 122(8), pp. 1770–1777. doi:10.1002/jso.26214.

Bonhoure, A. *et al.* (2021) 'Melanotransferrin is efficiently sorted on the surface of exosomes secreted by melanoma cells', *Melanoma Research*, pp. 338–351. doi:10.1097/CMR.00000000000741.

Boomgarden, A.C., Sheehan, C. and D'Souza-Schorey, C. (2020) 'Extracellular Vesicles in the Tumor Microenvironment: Various Implications in Tumor Progression', *Advances in Experimental Medicine and Biology*, 1259, pp. 155–170. doi:10.1007/978-3-030-43093-1_9.

Botti, G. *et al.* (2013) 'Microenvironment and tumor progression of melanoma: New therapeutic prospectives', *Journal of Immunotoxicology*, 10(3), pp. 235–252. doi:10.3109/1547691X.2012.723767.

Boukouris, S. and Mathivanan, S. (2015) 'Exosomes in bodily fluids are a highly stable resource of disease biomarkers', *Proteomics - Clinical Applications*, 9(3–4), pp. 358–367. doi:10.1002/prca.201400114.

Bray, F. *et al.* (2018) 'Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries', *CA: a cancer journal for clinicians*, 68(6), pp. 394–424. doi:10.3322/CAAC.21492.

Bruce, W.J. *et al.* (2021) 'Adjuvant and Neoadjuvant Therapeutics for the Treatment of Cutaneous Melanoma', *Clinics in Plastic Surgery*, 48(4), pp. 651–658. doi:10.1016/J.CPS.2021.06.001.

Buendía, A., Mazuecos, J. and Camacho, Francisco M (2018) *Anatomía y fisiología de la piel, Manual de dermatología*. Edited by J. Conejo-Mir, J.C. Moreno, and F. M. Camacho. ISBN: 978-84-7885-628-2, Grupo Aula Médica.

Cabrita, R. *et al.* (2020) 'Tertiary lymphoid structures improve immunotherapy and survival in melanoma', *Nature*, 577, pp. 561–565. doi:10.1038/s41586-019-1914-8.

Cañueto, J. and Román-Curto, C. (2017) 'Los nuevos sistemas de estadificación del AJCC incorporan novedades en el cáncer cutáneo', *Actas Dermo-Sifiliográficas*, 108(9), pp. 818–826. doi:10.1016/J.AD.2017.05.012.

Cao, Y. *et al.* (2021) 'CXCL11 Correlates With Antitumor Immunity and an Improved Prognosis in Colon Cancer', *Frontiers in Cell and Developmental Biology*, 9(646252), pp. 1–10. doi:10.3389/fcell.2021.646252.

Carr, S., Smith, C. and Wernberg, J. (2020) 'Epidemiology and Risk Factors of Melanoma', *Surgical Clinics of North America*, 100(1), pp. 1–12. doi:10.1016/j.suc.2019.09.005.

Casadei, L. *et al.* (2019) 'MDM2 derived from dedifferentiated liposarcoma extracellular vesicles induces MMP2 production from preadipocytes', *Cancer Research*, 79(19), pp. 4911–4922. doi:10.1158/0008-5472.CAN-19-0203.

Castro-Pérez, E. *et al.* (2021) 'Melanoma-derived induced pluripotent stem cells', *Cell Sources for iPSCs*, pp. 191–219. doi:10.1016/b978-0-12-822135-8.00012-4.

Chandran, V.I. *et al.* (2019) 'Ultrasensitive immunoprofiling of plasma extracellular vesicles identifies syndecan-1 as a potential tool for minimally invasive diagnosis of glioma', *Clinical Cancer Research*, 25(10), pp. 3115–3127. doi:10.1158/1078-0432.CCR-18-2946.

Chen, B. *et al.* (2017) 'Stem Cell-Derived Extracellular Vesicles as a Novel Potential Therapeutic Tool for Tissue Repair', *Stem Cells Translational Medicine*, 6(9), pp. 1753–1758. doi:10.1002/sctm.16-0477.

Chen, G. *et al.* (2018) 'Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response', *Nature*, 560, pp. 382–386. doi:10.1038/s41586-018-0392-8.

Chen, L. *et al.* (2019) 'KIAA1199 is a secreted molecule that enhances osteoblastic stem cell migration and recruitment', *Cell Death and Disease*, 10(2). doi:10.1038/s41419-018-1202-9.

Chen, Y. *et al.* (2022) 'The role of CEMIP in tumors: An update based on cellular and molecular insights', *Biomedicine and Pharmacotherapy*, 146(112504). doi:10.1016/j.biopha.2021.112504.

Cheng, Y.C. *et al.* (2021) 'The roles of extracellular vesicles in malignant melanoma', *Cells*, 10(2740). doi:10.3390/cells10102740.

Chiappetta, C. *et al.* (2015) 'BRAF and NRAS mutations are heterogeneous and not mutually exclusive in nodular melanoma', *Applied Immunohistochemistry and Molecular Morphology*, 23(3), pp. 172–177. doi:10.1097/PAI.0000000000000071.

Cho, W.C., Jour, G. and Aung, P.P. (2019) 'Role of angiogenesis in melanoma progression: Update on key angiogenic mechanisms and other associated components', *Seminars in Cancer Biology*, 59, pp. 175–186. doi:10.1016/j.semcancer.2019.06.015.

Cichorek, M. *et al.* (2013) 'Skin melanocytes: Biology and development', *Postepy Dermatologii i Alergologii*, XXX(1), pp. 30–41. doi:10.5114/pdia.2013.33376.

Colombo, M., Raposo, G. and Théry, C. (2014) 'Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles', *Annual review of cell and developmental biology*, 30, pp. 255–289. doi:10.1146/annurev-cellbio-101512-122326.

Conde-Vancells, J. *et al.* (2008) 'Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes', *Journal of Proteome Research*, 7(12), pp. 5157–5166. doi:10.1021/pr8004887.

Coradeschi, S. and Saffiotti, A. (2006) 'Anchoring symbols to sensor data: preliminary report', *Robotics*, 355(1), pp. 51–65. doi:10.1056/NEJMra052166.

Costa-Silva, B. *et al.* (2015) 'Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver', *Nature Cell Biology*, 17(6), pp. 816–826. doi:10.1038/ncb3169.

Craene, B. De and Berx, G. (2013) 'Regulatory networks defining EMT during cancer initiation and progression', *Nature Reviews Cancer*, 13(2), pp. 97–110. doi:10.1038/nrc3447.

Cui, N., Hu, M. and Khalil, R.A. (2017) 'Biochemical and Biological Attributes of Matrix Metalloproteinases', *Progress in Molecular Biology and Translational Science*, 147, pp. 1–73. doi:10.1016/bs.pmbts.2017.02.005.

Cymerman, R.M. *et al.* (2016) 'De Novo vs Nevus-Associated Melanomas: Differences in Associations With Prognostic Indicators and Survival', *Journal of the National Cancer Institute*, 108(10), pp. 1–9. doi:10.1093/jnci/djw121.

D'ecclesiis, O. *et al.* (2021) 'Gender-dependent specificities in cutaneous melanoma predisposition, risk factors, somatic mutations, prognostic and predictive factors: A systematic review', *International Journal of Environmental Research and Public Health*, 18(7945), pp. 1–17. doi:10.3390/ijerph18157945.

D'Orazio, J.A. et al. (2011) Skin Pigmentation and Melanoma Risk, Advances in Malignant

Melanoma - Clinical and Research Perspectives. Edited by A. Armstrong. ISBN: 978-953-307-575-4, InTech. Available at: http://www.intechopen.com/books/advances-in-malignant-melanomaclinical-and-research-perspectives/skin-pigmentation-and-melanoma-risk (Accessed: 26 November 2022).

Davis, L.E., Shalin, S.C. and Tackett, A.J. (2019) 'Current state of melanoma diagnosis and treatment', *Cancer Biology and Therapy*, 20(11), pp. 1366–1379. doi:10.1080/15384047.2019.1640032.

Deacon, D.C., Smith, E.A. and Judson-Torres, R.L. (2021) 'Molecular Biomarkers for Melanoma Screening, Diagnosis and Prognosis: Current State and Future Prospects', *Frontiers in Medicine*, 8(642380), pp. 1–26. doi:10.3389/fmed.2021.642380.

Dehdashtian, A. *et al.* (2018) 'Anatomy and physiology of the skin', in *Melanoma: A Modern Multidisciplinary Approach*, pp. 15–26. doi:10.1007/978-3-319-78310-9_2.

Deng, F. *et al.* (2017) 'Overexpression of KIAA1199: An independent prognostic marker in nonsmall cell lung cancer', *Journal of cancer research and therapeutics*, 13(4), pp. 664–668. doi:10.4103/JCRT.JCRT_61_17.

Deng, G. *et al.* (2020) 'BET inhibitor suppresses melanoma progression via the noncanonical NF- κ B/SPP1 pathway', *Theranostics*, 10(25), pp. 11428–11443. doi:10.7150/THNO.47432.

Deroyer, C. *et al.* (2019) 'CEMIP (KIAA1199) induces a fibrosis-like process in osteoarthritic chondrocytes', *Cell Death and Disease*, 10(103), pp. 1–17. doi:10.1038/s41419-019-1377-8.

Deroyer, C. *et al.* (2022) 'CEMIP (KIAA1199) regulates inflammation, hyperplasia and fibrosis in osteoarthritis synovial membrane', *Cellular and Molecular Life Sciences*, 79(260), pp. 1–17. doi:10.1007/s00018-022-04282-6.

Dimitriou, F., Long, G. V. and Menzies, A.M. (2021) 'Novel adjuvant options for cutaneous melanoma', *Annals of Oncology*, 32(7), pp. 854–865. doi:10.1016/J.ANNONC.2021.03.198.

Ding, L. *et al.* (2022) 'Prognostic biomarkers of cutaneous melanoma', *Photodermatology Photoimmunology and Photomedicine*, 38, pp. 418–434. doi:10.1111/phpp.12770.

Ding, S. *et al.* (2005) 'Potential prognostic value of circulating levels of vascular endothelial growth factor-A in patients with gastric cancer', *In Vivo*, 19(4), pp. 793–796.

Domanegg, K., Sleeman, J.P. and Schmaus, A. (2022) 'CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer', *Cancers*, 14(5093), pp. 1–21. doi:10.3390/cancers14205093.

Domingues, B. *et al.* (2018) 'Melanoma treatment in review', *ImmunoTargets and Therapy*, 7, pp. 35–49. doi:10.2147/itt.s134842.

Dong, X. *et al.* (2021) 'High Expression of CEMIP Correlates Poor Prognosis and the Tumur Microenvironment in Breast Cancer as a Promisingly Prognostic Biomarker', *Frontiers in Genetics*, 12(768140), pp. 1–18. doi:10.3389/fgene.2021.768140.

Du, J. *et al.* (2003) 'MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma', *American Journal of Pathology*, 163(1), pp. 333–343. doi:10.1016/S0002-9440(10)63657-7.

Dunn, L.L. *et al.* (2006) 'The function of melanotransferrin: a role in melanoma cell proliferation and tumorigenesis', *Carcinogenesis*, 27(11), pp. 2157–2169. doi:10.1093/CARCIN/BGL045.

Eddy, K., Shah, R. and Chen, S. (2021) 'Decoding Melanoma Development and Progression:

Identification of Therapeutic Vulnerabilities', *Frontiers in Oncology*, 10(626129), pp. 1–13. doi:10.3389/fonc.2020.626129.

Egeblad, M., Nakasone, E.S. and Werb, Z. (2010) 'Tumors as organs: Complex tissues that interface with the entire organism', *Developmental Cell*, 18(6), pp. 884–901. doi:10.1016/j.devcel.2010.05.012.

Eisenstein, A. *et al.* (2018) 'Emerging Biomarkers in Cutaneous Melanoma', *Molecular Diagnosis and Therapy*, 22(2), pp. 203–218. doi:10.1007/s40291-018-0318-z.

Elaine N. Marieb (2008) *Anatomía Y Fisiología Humana*. 9 EDITION. ISBN: 9788478290949, Pearson Education. doi:10.5005/jp/books/10278.

Elder, D.E. (2010) 'Dysplastic naevi: An update', *Histopathology*, 56, pp. 112–120. doi:10.1111/j.1365-2559.2009.03450.x.

Eldh, M. *et al.* (2014) 'MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma', *BMC Cancer*, 14(962). doi:10.1186/1471-2407-14-962.

Ernfors, P. (2010) 'Cellular origin and developmental mechanisms during the formation of skin melanocytes', *Experimental Cell Research*, 316(8), pp. 1397–1407. doi:10.1016/j.yexcr.2010.02.042.

Evensen, N.A. *et al.* (2013) 'Unraveling the Role of KIAA1199, a Novel Endoplasmic Reticulum Protein, in Cancer Cell Migration', *JNCI: Journal of the National Cancer Institute*, 105(18), pp. 1402–1416. doi:10.1093/JNCI/DJT224.

Fan, S. *et al.* (2022) 'Prognostic Value of Lactate Dehydrogenase, Melanoma Inhibitory Protein, and S-100B Protein in Patients with Malignant Melanoma', *Evidence-based Complementary and Alternative Medicine*, 2022. doi:10.1155/2022/9086540.

Fares, J. *et al.* (2020) 'Molecular principles of metastasis: a hallmark of cancer revisited', *Signal Transduction and Targeted Therapy*, 5(28), pp. 1–17. doi:10.1038/s41392-020-0134-x.

Ferrari, A. *et al.* (2021) 'Cutaneous melanoma in children and adolescents: The EXPeRT/PARTNER diagnostic and therapeutic recommendations', *Pediatric Blood and Cancer*, 68(S4). doi:10.1002/pbc.28992.

Fink, S.P. *et al.* (2015) 'Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival', *Oncotarget*, 6(31), pp. 30500–30515. doi:10.18632/ONCOTARGET.5921.

Foster, D.S. *et al.* (2021) 'Integrated spatial multiomics reveals fibroblast fate during tissue repair', *Proceedings of the National Academy of Sciences of the United States of America*, 118(41 e2110025118), pp. 1–10. doi:10.1073/pnas.2110025118.

Franco, M. *et al.* (2011) 'Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression', *Blood*, 118(10), p. 2906. doi:10.1182/BLOOD-2011-01-331694.

French, K.C., Antonyak, M.A. and Cerione, R.A. (2017) 'Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake', *Seminars in Cell and Developmental Biology*, 67, pp. 48–55. doi:10.1016/j.semcdb.2017.01.002.

Fukuda, M. (2016) 'Lysosome-Related Organelles', *Encyclopedia of Cell Biology*, 2, pp. 235–242. doi:10.1016/B978-0-12-394447-4.20020-5.

Fus-Kujawa, A. et al. (2021) 'An Overview of Methods and Tools for Transfection of Eukaryotic

Cells in vitro', *Frontiers in Bioengineering and Biotechnology*, 9(701031), pp. 1–15. doi:10.3389/fbioe.2021.701031.

Gandini, S. *et al.* (2005) 'Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi', *European Journal of Cancer*, 41, pp. 28–44. doi:10.1016/j.ejca.2004.10.015.

Garantziotis, S. and Savani, R.C. (2019) 'Hyaluronan biology: A complex balancing act of structure, function, location and context', *Matrix Biology*, 78–79, pp. 1–10. doi:10.1016/j.matbio.2019.02.002.

Garbe, C. *et al.* (2016) 'Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline - Update 2016', *European Journal of Cancer*, 63, pp. 201–217. doi:10.1016/j.ejca.2016.05.005.

Garbe, C. *et al.* (2022) 'European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics: Update 2022', *European Journal of Cancer*, 170, pp. 236–255. doi:10.1016/J.EJCA.2022.03.008.

Gascard, P. and Tlsty, T.D. (2016) 'Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy', *Genes and Development*, 30(9), pp. 1002–1019. doi:10.1101/GAD.279737.116.

Ge, W.L. *et al.* (2020) 'The YY1/miR-548t-5p/CXCL11 signaling axis regulates cell proliferation and metastasis in human pancreatic cancer', *Cell Death and Disease*, 11(4). doi:10.1038/s41419-020-2475-3.

Gershenwald, J.E. *et al.* (2017) 'Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual', *CA: A Cancer Journal for Clinicians*, 67(6), pp. 472–492. doi:10.3322/caac.21409.

Gidlöf, O. *et al.* (2019) 'Proteomic profiling of extracellular vesicles reveals additional diagnostic biomarkers for myocardial infarction compared to plasma alone', *Scientific Reports*, 9(8991), pp. 1–13. doi:10.1038/s41598-019-45473-9.

Gil, D. *et al.* (2020) 'Integrin linked kinase regulates endosomal recycling of N-cadherin in melanoma cells', *Cellular Signalling*, 72, p. 109642. doi:10.1016/j.cellsig.2020.109642.

Gil, D. *et al.* (2021) 'Inhibition effect of chloroquine and integrin-linked kinase knockdown on translation in melanoma cells', *International Journal of Molecular Sciences*, 22(7), p. 3682. doi:10.3390/ijms22073682.

Gomez-Cuadrado, L. *et al.* (2017) 'Mouse models of metastasis: Progress and prospects', *DMM Disease Models and Mechanisms*, 10, pp. 1061–1074. doi:10.1242/dmm.030403.

Gonzalez-Avila, G. *et al.* (2019) 'Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer', *Critical Reviews in Oncology/Hematology*, 137, pp. 57–83. doi:10.1016/j.critrevonc.2019.02.010.

Goulet, C.R. and Pouliot, F. (2021) 'TGFβ signaling in the tumor microenvironment', *Advances in Experimental Medicine and Biology*, 1270, pp. 89–105. doi:10.1007/978-3-030-47189-7_6.

Grieco, G.E. *et al.* (2021) 'Extracellular Vesicles in Immune System Regulation and Type 1 Diabetes: Cell-to-Cell Communication Mediators, Disease Biomarkers, and Promising Therapeutic Tools', *Frontiers in Immunology*, 12, p. 1. doi:10.3389/fimmu.2021.682948.

Guimarães-Bastos, D. *et al.* (2022) 'Melanoma-derived extracellular vesicles skew neutrophils into a pro-tumor phenotype', *Journal of leukocyte biology*, 111(3), pp. 585–596. doi:10.1002/JLB.3A0120-050RR.

Gurung, S. *et al.* (2021) 'The exosome journey: from biogenesis to uptake and intracellular signalling', *Cell Communication and Signaling*, 19(47), pp. 1–19. doi:10.1186/s12964-021-00730-1.

Haass, N.K. *et al.* (2005) 'Adhesion, migration and communication in melanocytes and melanoma', *Pigment Cell Research*, 18(3), pp. 150–159. doi:10.1111/J.1600-0749.2005.00235.X.

Haber, D.A. and Velculescu, V.E. (2014) 'Blood-based analyses of cancer: Circulating tumor cells and circulating tumor DNA', *Cancer Discovery*, pp. 650–661. doi:10.1158/2159-8290.CD-13-1014.

Hanahan, D. and Weinberg, R.A. (2011) 'Hallmarks of cancer: The next generation', *Cell*, 144, pp. 646–674. doi:10.1016/j.cell.2011.02.013.

Hawryluk, E.B. and Fisher, D.E. (2011) *Melanoma Epidemiology, Risk Factors, and Clinical Phenotypes, Advances in Malignant Melanoma - Clinical and Research Perspectives*. Edited by A. Armstrong. ISBN: 978-953-307-575-4, InTech. Available at: http://www.intechopen.com/books/advances-in-malignant-melanoma-clinical-and-research-perspectives/melanoma-epidemiology-risk-factors-and-clinical-phenotypes (Accessed: 6 July 2022).

Hearing, V.J. (2011) 'Determination of Melanin Synthetic Pathways', *Journal of Investigative Dermatology*, 131, pp. E8–E11. doi:10.1038/SKINBIO.2011.4.

Heppt, M. V. *et al.* (2017) 'Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care', *BMC cancer*, 17(536), pp. 1–12. doi:10.1186/s12885-017-3529-5.

Hofbauer, G.F.L. *et al.* (1998) 'Melan A/MART-1 immunoreactivity in formalin-fixed paraffinembedded primary and metastatic melanoma: frequency and distribution', *Melanoma research*, 8(4), pp. 337–343. doi:10.1097/00008390-199808000-00007.

Horrell, E.M.W., Wilson, K. and D'Orazio, J.A. (2015) *Melanoma — Epidemiology, Risk Factors, and the Role of Adaptive Pigmentation, Melanoma - Current Clinical Management and Future Therapeutics*. Edited by M. Murph. ISBN: 978-953-51-2036-0, InTechOpen. doi:10.5772/58994.

Hoshino, A. *et al.* (2015) 'Tumour exosome integrins determine organotropic metastasis', *Nature*, 527(7578), pp. 329–335. doi:10.1038/nature15756.

Howitt, J. and Hill, A.F. (2016) 'Exosomes in the Pathology of Neurodegenerative Diseases', *The Journal of biological chemistry*, 291(52), pp. 26589–26597. doi:10.1074/JBC.R116.757955.

Huber, R. *et al.* (2016) 'Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages', *Scientific Reports*, 6:29914, pp. 1–14. doi:10.1038/srep29914.

Hügel, R. *et al.* (2016) 'Serum levels of hepatocyte growth factor as a potential tumor marker in patients with malignant melanoma', *Melanoma research*, 26(4), pp. 354–360. doi:10.1097/CMR.00000000000269.

Indini, A. *et al.* (2018) 'Cutaneous melanoma in adolescents and young adults', *Pediatric Blood and Cancer*, 65(11). doi:10.1002/pbc.27292.

Jámbor, K. *et al.* (2022) 'Gene Expression Patterns of Osteopontin Isoforms and Integrins in Malignant Melanoma', *Pathology and Oncology Research*, 28, p. 86. doi:10.3389/PORE.2022.1610608/BIBTEX.

Jami, M.S. *et al.* (2014) 'Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness', *BMC Cancer*, 14(194), pp. 1–16.

doi:10.1186/1471-2407-14-194/TABLES/3.

Jászai, J. and Schmidt, M.H.H. (2019) 'Trends and challenges in tumor anti-angiogenic therapies', *Cells*, 8(1102), pp. 1–35. doi:10.3390/cells8091102.

Jenkins, R.W. and Fisher, D.E. (2021) 'Treatment of Advanced Melanoma in 2020 and Beyond', *Journal of Investigative Dermatology*, 141, pp. 23–31. doi:10.1016/J.JID.2020.03.943.

Jeong, D. *et al.* (2017) 'Prognostic Significance of EDIL3 Expression and Correlation with Mesenchymal Phenotype and Microvessel Density in Lung Adenocarcinoma', *Scientific Reports* 2017 7:1, 7(8649), pp. 1–9. doi:10.1038/s41598-017-08851-9.

Jia, S. *et al.* (2017) 'KIAA1199 promotes migration and invasion by Wnt/ β -catenin pathway and MMPs mediated EMT progression and serves as a poor prognosis marker in gastric cancer', *PLoS ONE*, pp. 1–16. doi:10.1371/journal.pone.0175058.

Jiang, S.H. *et al.* (2016) 'Overexpressed EDIL3 predicts poor prognosis and promotes anchorageindependent tumor growth in human pancreatic cancer', *Oncotarget*, 7(4), pp. 4226–4240. doi:10.18632/ONCOTARGET.6772.

Jour, G., Ivan, D. and Aung, P.P. (2016) 'Angiogenesis in melanoma: An update with a focus on current targeted therapies', *Journal of Clinical Pathology*, 69(6), pp. 472–483. doi:10.1136/jclinpath-2015-203482.

Jung, W.Y., Min, K.W. and Oh, Y.H. (2021) 'Increased VEGF-A in solid type of lung adenocarcinoma reduces the patients' survival', *Scientific Reports*, 11(1321), pp. 1–9. doi:10.1038/s41598-020-79907-6.

Kabakov, A., Yakimova, A. and Matchuk, O. (2020) 'Molecular Chaperones in Cancer Stem Cells: Determinants of Stemness and Potential Targets for Antitumor Therapy', *Cells*, 9(892), pp. 1–54. doi:10.3390/cells9040892.

Kahlert, C. and Kalluri, R. (2013) 'Exosomes in tumor microenvironment influence cancer progression and metastasis', *Journal of Molecular Medicine*, 91(4), pp. 431–437. doi:10.1007/s00109-013-1020-6.

Kalluri, R. (2016) 'The biology and function of fibroblasts in cancer', *Nature Reviews Cancer*, 16(9), pp. 582–598. doi:10.1038/NRC.2016.73.

Kalra, H. *et al.* (2013) 'Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma', *Proteomics*, 13(22), pp. 3354–3364. doi:10.1002/pmic.201300282.

Kalra, H., Drummen, G.P.C. and Mathivanan, S. (2016) 'Focus on extracellular vesicles: Introducing the next small big thing', *International Journal of Molecular Sciences*, 17(170), pp. 1–30. doi:10.3390/ijms17020170.

Kapustin, A.N. et al. (2015) 'Vascular smooth muscle cell calcification is mediated by regulatedexosomesecretion',CirculationResearch,116(8),pp.1312–1323.doi:10.1161/CIRCRESAHA.116.305012.

Karimi, N. *et al.* (2018) 'Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins', *Cellular and Molecular Life Sciences*, 75, pp. 2873–2886. doi:10.1007/s00018-018-2773-4.

Kawasaki, K. *et al.* (2007) 'Expression of matrilysin (matrix metalloproteinase-7) in primary cutaneous and metastatic melanoma', *The British journal of dermatology*, 156(4), pp. 613–619. doi:10.1111/J.1365-2133.2006.07678.X.

Kessenbrock, K., Plaks, V. and Werb, Z. (2010) 'Matrix Metalloproteinases: Regulators of the Tumor Microenvironment', *Cell*, 141, pp. 52–67. doi:10.1016/j.cell.2010.03.015.

Keung, E.Z. and Gershenwald, J.E. (2018) 'The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care', *Expert Review of Anticancer Therapy*, 18(8), pp. 775–784. doi:10.1080/14737140.2018.1489246.

Khattak, M.A. *et al.* (2020) 'Role of Serum Vascular Endothelial Growth Factor (VEGF) as a Potential Biomarker of Response to Immune Checkpoint Inhibitor Therapy in Advanced Melanoma: Results of a Pilot Study', *Frontiers in Oncology*, 10(1041), pp. 1–5. doi:10.3389/FONC.2020.01041/BIBTEX.

Khazaei, Z. *et al.* (2019) 'Global incidence and mortality of skin cancer by histological subtype and its relationship with the human development index (HDI); an ecology study in 2018', *World Cancer Research Journal*, 6: e1265, pp. 1–14. doi:10.4103/aihb.aihb_15_19.

Kibbi, N., Kluger, H. and Choi, J.N. (2016) 'Melanoma: Clinical presentations', *Cancer Treatment and Research*, 167, pp. 107–129. doi:10.1007/978-3-319-22539-5_4.

Koga, A. *et al.* (2017) 'KIAA1199/CEMIP/HYBID overexpression predicts poor prognosis in pancreatic ductal adenocarcinoma', *Pancreatology*, 17(1), pp. 115–122. doi:10.1016/j.pan.2016.12.007.

Koguchi, Y. *et al.* (2015) 'Serum immunoregulatory proteins as predictors of overall survival of metastatic melanoma patients treated with ipilimumab', *Cancer Research*, 75(23), pp. 5084–5092. doi:10.1158/0008-5472.CAN-15-2303.

Kondo, T. and Hearing, V.J. (2011) 'Update on the regulation of mammalian melanocyte function and skin pigmentation', *Expert review of dermatology*, 6(1), pp. 97–108. doi:10.1586/EDM.10.70.

Krattinger, R. *et al.* (2021) 'Is single versus combination therapy problematic in the treatment of cutaneous melanoma?', *Expert Review of Clinical Pharmacology*, 14(1), pp. 9–23. doi:10.1080/17512433.2019.1650641.

Krückel, A. *et al.* (2019) 'Eosinophil-cationic protein - A novel liquid prognostic biomarker in melanoma', *BMC Cancer*, 19(207), pp. 1–7. doi:10.1186/s12885-019-5384-z.

Lambert, A.W., Pattabiraman, D.R. and Weinberg, R.A. (2017) 'Emerging Biological Principles of Metastasis', *Cell*, 168(4), pp. 670–691. doi:10.1016/J.CELL.2016.11.037.

Lattmann, E. and Levesque, M.P. (2022) 'The Role of Extracellular Vesicles in Melanoma Progression', *Cancers*, 14(3086), pp. 1–22. doi:10.3390/cancers14133086.

Lazar, I. *et al.* (2015) 'Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines', *Pigment Cell and Melanoma Research*, 28, pp. 464–475. doi:10.1111/pcmr.12380.

de Lecea, M. V. *et al.* (2017) 'Indoleamine 2,3 dioxygenase as a prognostic and follow-up marker in melanoma. A comparative study with LDH and S100B', *Journal of the European Academy of Dermatology and Venereology*, 31(4), pp. 636–642. doi:10.1111/jdv.13968.

Lee-Sayer, S.S.M. *et al.* (2015) 'The where, when, how and why of hyaluronan binding by immune cells', *Frontiers in Immunology*, 6(150), pp. 1–12. doi:10.3389/fimmu.2015.00150.

Lee, A.Y. et al. (2017) 'Patterns and Timing of Initial Relapse in Pathologic Stage II Melanoma Patients', Annals of Surgical Oncology, 24, pp. 939–946. doi:10.1245/s10434-016-5642-0.

Lee, H.S. *et al.* (2018) 'Combined use of CEMIP and CA 19-9 enhances diagnostic accuracy for pancreatic cancer', *Scientific Reports*, 8(3383), pp. 1–7. doi:10.1038/s41598-018-21823-x.

Lee, J.E. *et al.* (2016) 'Identification of EDIL3 on extracellular vesicles involved in breast cancer cell invasion', *Journal of Proteomics*, 131, pp. 17–28. doi:10.1016/J.JPROT.2015.10.005.

Leiter, U., Keim, U. and Garbe, C. (2020) 'Epidemiology of skin cancer: Update 2019', *Advances in Experimental Medicine and Biology*, 1268, pp. 123–139. doi:10.1007/978-3-030-46227-7_6.

Leonardi, G.C. *et al.* (2018) 'Cutaneous melanoma: From pathogenesis to therapy (Review)', *International Journal of Oncology*, 52, pp. 1071–1080. doi:10.3892/ijo.2018.4287.

Leonardi, G.C. *et al.* (2020) 'Cutaneous melanoma and the immunotherapy revolution (Review)', *International Journal of Oncology*, 57, pp. 609–618. doi:10.3892/ijo.2020.5088.

Li, B. *et al.* (2019) 'Tumor-derived exosomal HMGB1 promotes esophageal squamous cell carcinoma progression through inducing PD1 + TAM expansion', *Oncogenesis*, 8(17), pp. 1–10. doi:10.1038/s41389-019-0126-2.

Li, K. *et al.* (2020) 'Survivin in breast cancer-derived exosomes activates fibroblasts by upregulating SOD1, whose feedback promotes cancer proliferation and metastasis', *Journal of Biological Chemistry*, 295(40), pp. 13737–13752. doi:10.1074/jbc.RA120.013805.

Li, L. *et al.* (2017) 'Central role of CEMIP in tumorigenesis and its potential as therapeutic target', *Journal of Cancer*, 8(12), pp. 2238–2246. doi:10.7150/jca.19295.

Li, M., Knapp, S.K. and Iden, S. (2020) 'Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages?', *Current Opinion in Cell Biology*, 67, pp. 99–108. doi:10.1016/j.ceb.2020.09.001.

Li Pomi, F. *et al.* (2022) 'Role of HMGB1 in Cutaneous Melanoma: State of the Art', *International Journal of Molecular Sciences*, 23(9327), pp. 1–18. doi:10.3390/ijms23169327.

Li, Q. *et al.* (2014) 'Overexpression of HMGB1 in melanoma predicts patient survival and suppression of HMGB1 induces cell cycle arrest and senescence in association with p21 (Waf1/Cip1) up-regulation via a p53-independent, Sp1-dependent pathway', *Oncotarget*, 5(15), pp. 6387–6403. doi:10.18632/ONCOTARGET.2201.

Li, Y. *et al.* (2022) 'CXCL11 Correlates with Immune Infiltration and Impacts Patient Immunotherapy Efficacy: A Pan-Cancer Analysis', *Frontiers in Immunology*, 13(951247), pp. 1–15. doi:10.3389/fimmu.2022.951247.

Liikanen, I. *et al.* (2015) 'Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy', *Oncoimmunology*, 4:3(e989771), pp. 1–13. doi:10.4161/2162402X.2014.989771.

Lim, S.Y. et al. (2018) 'Liquid biomarkers in melanoma: Detection and discovery', Molecular Cancer, 17:8, pp. 1–14. doi:10.1186/s12943-018-0757-5.

Lin, J.Y. and Fisher, D.E. (2007) 'Melanocyte biology and skin pigmentation', *Nature*, 445(7130), pp. 843–850. doi:10.1038/nature05660.

Lindsey, S. and Langhans, S.A. (2014) 'Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition', *Frontiers in Oncology*, 4(358), pp. 1–10. doi:10.3389/fonc.2014.00358.

Liu, M.J. *et al.* (2021) 'Elevated RBP-Jk and CXCL11 expression in colon cancer is associated with an unfavorable clinical outcome', *Cancer Management and Research*, 13, pp. 3651–3661. doi:10.2147/CMAR.S298580.

Liu, T. *et al.* (2019) 'The β -catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts', *Signal Transduction and Targeted Therapy*, 4(63), pp. 1–15. doi:10.1038/s41392-019-

0100-7.

Löffek, S., Schilling, O. and Franzke, C.W. (2011) 'Biological role of matrix metalloproteinases: a critical balance', *European Respiratory Journal*, 38, pp. 191–208. doi:10.1183/09031936.00146510.

Logozzi, M. *et al.* (2019) 'Extracellular acidity and increased exosome release as key phenotypes of malignant tumors', *Cancer and Metastasis Reviews*, 38(1–2), pp. 93–101. doi:10.1007/s10555-019-09783-8.

Lone, S.N. *et al.* (2022) 'Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments', *Molecular Cancer*, 21(79), pp. 1–22. doi:10.1186/s12943-022-01543-7.

Lötvall, J. *et al.* (2014) 'Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles', *Journal of Extracellular Vesicles*, 3(26913), pp. 1–6. doi:10.3402/jev.v3.26913.

Lowe, G.C. *et al.* (2014) 'Increasing incidence of melanoma among middle-aged adults: An epidemiologic study in olmsted county, minnesota', *Mayo Clinic Proceedings*, 89(1), pp. 52–59. doi:10.1016/j.mayocp.2013.09.014.

Ludwig, S. *et al.* (2017) 'Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer', *Clinical Cancer Research*, 23(16), pp. 4843–4854. doi:10.1158/1078-0432.CCR-16-2819.

Majidpoor, J. and Mortezaee, K. (2021) 'Steps in metastasis: an updated review', *Medical Oncology*, 38(3), pp. 1–17. doi:10.1007/s12032-020-01447-w.

Marcolino, E. *et al.* (2020) 'Blood platelets stimulate cancer extravasation through TGFβ-mediated downregulation of PRH/HHEX', *Oncogenesis*, 9(10), pp. 1–12. doi:10.1038/s41389-020-0189-0.

Massagué, J. and Obenauf, A.C. (2016) 'Metastatic colonization by circulating tumour cells', *Nature*, 529(7586), pp. 298–306. doi:10.1038/NATURE17038.

Mathai, R.A. *et al.* (2019) 'Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: Implications in the precision oncology', *Journal of Clinical Medicine*, 8(373), pp. 1–17. doi:10.3390/jcm8030373.

Matsuzaki, S. *et al.* (2009) 'Clinicopathologic significance of KIAA1199 overexpression in human gastric cancer', *Annals of surgical oncology*, 16, pp. 2042–2051. doi:10.1245/S10434-009-0469-6.

Matthews, N.H. *et al.* (2017) *Epidemiology of Melanoma, Cutaneous Melanoma: Etiology and Therapy*. Edited by W.H. Ward and J.M. Farma. ISBN: 978-0-9944381-4-0, Codon Publications. doi:10.15586/CODON.CUTANEOUSMELANOMA.2017.CH1.

De Mazière, A.M. *et al.* (2002) 'The melanocytic protein Melan-A/MART-1 has a subcellular localization distinct from typical melanosomal proteins', *Traffic*, 3, pp. 678–693. doi:10.1034/j.1600-0854.2002.30909.x.

McLafferty, E., Hendry, C. and Alistair, F. (2012) 'The integumentary system: anatomy, physiology and function of skin.', *Nursing standard*, 27(3), pp. 35–42. doi:10.7748/ns2012.09.27.3.35.c9299.

Minca, E.C. *et al.* (2016) 'Comparison between melanoma gene expression score and fluorescence in situ hybridization for the classification of melanocytic lesions', *Modern Pathology*, 29(8), pp. 832–843. doi:10.1038/modpathol.2016.84.

Mumford, S.L. *et al.* (2018) 'Circulating microRNA biomarkers in melanoma: Tools and challenges in personalised medicine', *Biomolecules*, 8(21), pp. 1–25. doi:10.3390/biom8020021.

Nagaoka, A. *et al.* (2015) 'Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA synthases in growth factor-stimulated fibroblasts', *Journal of Biological Chemistry*, 290(52), pp. 30910–30923. doi:10.1074/jbc.M115.673566.

Nagore, E. *et al.* (2022) 'Epidemiology of Melanoma in Spain: Estimation of Number of Patients With Stage III Disease Eligible for Adjuvant Therapies', *Actas Dermo-Sifiliográficas*, 113, pp. T354–T362. doi:10.1016/j.ad.2021.11.008.

Napoli, S. *et al.* (2020) 'Functional Roles of Matrix Metalloproteinases and Their Inhibitors in Melanoma', *Cells*, 9(1151), pp. 1–23. doi:10.3390/cells9051151.

Ni, Z. *et al.* (2020) 'Exosomes: roles and therapeutic potential in osteoarthritis', *Bone Research*, 8(25), pp. 1–18. doi:10.1038/s41413-020-0100-9.

van Niel, G. *et al.* (2011) 'The Tetraspanin CD63 Regulates ESCRT-Independent and -Dependent Endosomal Sorting during Melanogenesis', *Developmental Cell*, 21(4), pp. 708–721. doi:10.1016/J.DEVCEL.2011.08.019.

Van Niel, G., D'Angelo, G. and Raposo, G. (2018) 'Shedding light on the cell biology of extracellular vesicles', *Nature Reviews Molecular Cell Biology*, 19, pp. 213–228. doi:10.1038/nrm.2017.125.

Olsen, C.M. *et al.* (2020) 'Evaluation of Sex-Specific Incidence of Melanoma', *JAMA Dermatology*, 156(5), pp. 553–560. doi:10.1001/jamadermatol.2020.0470.

Olszańska, J., Pietraszek-Gremplewicz, K. and Nowak, D. (2021) 'Melanoma progression under obesity: Focus on adipokines', *Cancers*, 13(2281), pp. 1–31. doi:10.3390/cancers13092281.

Oria, V.O. *et al.* (2022) 'Coupled fibromodulin and SOX2 signaling as a critical regulator of metastatic outgrowth in melanoma', *Cellular and Molecular Life Sciences*, 79(377), pp. 1–21. doi:10.1007/s00018-022-04364-5.

Osmani, N. *et al.* (2019) 'Metastatic Tumor Cells Exploit Their Adhesion Repertoire to Counteract Shear Forces during Intravascular Arrest', *Cell Reports*, 28(10), pp. 2491–2500. doi:10.1016/j.celrep.2019.07.102.

Osti, D. *et al.* (2019) 'Clinical significance of extracellular vesicles in plasma from glioblastoma patients', *Clinical Cancer Research*, 25(1), pp. 266–276. doi:10.1158/1078-0432.CCR-18-1941.

Paluncic, J. *et al.* (2016) 'Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling', *Biochimica et Biophysica Acta - Molecular Cell Research*, 1863, pp. 770–784. doi:10.1016/j.bbamcr.2016.01.025.

Palviainen, M. *et al.* (2020) 'Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—Implications for biomarker discovery', *PLoS ONE*, 15(8 e0236439), pp. 1–19. doi:10.1371/journal.pone.0236439.

Pastushenko, I. and Blanpain, C. (2019) 'EMT Transition States during Tumor Progression and Metastasis', *Trends in Cell Biology*, 29(3), pp. 212–226. doi:10.1016/j.tcb.2018.12.001.

Pedri, D. *et al.* (2022) 'Epithelial-to-mesenchymal-like transition events in melanoma', *The FEBS Journal*, 289(5), pp. 1352–1368. doi:10.1111/FEBS.16021.

Peinado, H. *et al.* (2012) 'Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET', *Nature Medicine*, 18(6), pp. 883–891. doi:10.1038/nm.2753.

Peinado, H. et al. (2017) 'Pre-metastatic niches: Organ-specific homes for metastases', Nature
Reviews Cancer, 17(5), pp. 302–317. doi:10.1038/nrc.2017.6.

Perego, M. *et al.* (2018) 'A slow-cycling subpopulation of melanoma cells with highly invasive properties', *Oncogene*, 37, pp. 302–312. doi:10.1038/onc.2017.341.

Petrera, A. *et al.* (2021) 'Multiplatform Approach for Plasma Proteomics: Complementarity of Olink Proximity Extension Assay Technology to Mass Spectrometry-Based Protein Profiling', *Journal of Proteome Research*, 20(1), pp. 751–762. doi:10.1021/acs.jproteome.0c00641.

Poggio, M. *et al.* (2019) 'Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory', *Cell*, 177(2), pp. 414–427. doi:10.1016/j.cell.2019.02.016.

Poklepovic, A.S. and Luke, J.J. (2020) 'Considering adjuvant therapy for stage II melanoma', *Cancer*, 15MARCH, pp. 1166–1174. doi:10.1002/CNCR.32585.

Polidoro, M.A. *et al.* (2020) 'Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells', *World journal of gastroenterology*, 26(33), pp. 4900–4918. doi:10.3748/WJG.V26.I33.4900.

Polini, B. *et al.* (2019) 'Circulating cell-free microRNAs in cutaneous melanoma staging and recurrence or survival prognosis', *Pigment Cell and Melanoma Research*, 32(4), pp. 486–499. doi:10.1111/PCMR.12755.

Poulet, G., Massias, J. and Taly, V. (2019) 'Liquid Biopsy: General Concepts', Acta Cytologica, 63(6), pp. 449–455. doi:10.1159/000499337.

Premalata, C.S. *et al.* (2016) 'Expression of VEGF-A in Epithelial Ovarian Cancer: Correlation with Morphologic Types, Grade and Clinical Stage', *The Gulf journal of oncology*, 1(21), pp. 49–54.

Puchert, M. *et al.* (2020) 'CXCL11 promotes tumor progression by the biased use of the chemokine receptors CXCR3 and CXCR7', *Cytokine*, 125(154809), pp. 1–8. doi:10.1016/j.cyto.2019.154809.

Qian, M. *et al.* (2020) 'Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-kB pathways', *Oncogene*, 39, pp. 428–442. doi:10.1038/S41388-019-0996-Y.

Rahmanto, Y.S. *et al.* (2012) 'Melanotransferrin: Search for a function', *Biochimica et Biophysica Acta - General Subjects*, 1820, pp. 237–243. doi:10.1016/j.bbagen.2011.09.003.

Rajabi, P. et al. (2012) 'The role of VEGF in melanoma progression', *Journal of Research in Medical Sciences*, 17, pp. 534–539.

Ramankulov, A. *et al.* (2008) 'Plasma matrix metalloproteinase-7 as a metastatic marker and survival predictor in patients with renal cell carcinoma', *Cancer Science*, 99(6), pp. 1188–1194. doi:10.1111/j.1349-7006.2008.00802.x.

Raposo, G. and Stoorvogel, W. (2013) 'Extracellular vesicles: Exosomes, microvesicles, and friends', *Journal of Cell Biology*, 200(4), pp. 373–383. doi:10.1083/jcb.201211138.

Rastrelli M., Tropea S., Rossi CM., A.M. (2014) 'Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification', *In Vivo*, 28, pp. 1005–1012. doi:10.1093/med/9780199971015.003.0002.

Rifai, N., Gillette, M.A. and Carr, S.A. (2006) 'Protein biomarker discovery and validation: The long and uncertain path to clinical utility', *Nature Biotechnology*, 24(8), pp. 971–983. doi:10.1038/nbt1235.

Rodrigues, G. et al. (2019) 'Tumour exosomal CEMIP protein promotes cancer cell colonization in

brain metastasis', Nature Cell Biology, 21(11), pp. 1403–1412. doi:10.1038/s41556-019-0404-4.

Rodrigues, P. *et al.* (2020) 'An overview of exosomes in cancer therapy: A small solution to a big problem', *Processes*, 8(12), pp. 1–23. doi:10.3390/pr8121561.

Ronchi, A. *et al.* (2022) 'Cytologic diagnosis of metastatic melanoma by FNA: A practical review', *Cancer Cytopathology*, 130(1), pp. 18–29. doi:10.1002/CNCY.22488.

Sa-nguanraksa, D. and O-charoenrat, P. (2012) 'The Role of Vascular Endothelial Growth Factor A Polymorphisms in Breast Cancer', *International Journal of Molecular Sciences*, 13, pp. 14845–14864. doi:10.3390/IJMS131114845.

Scally, C.P. and Wong, S.L. (2014) 'Intensity of follow-up after melanoma surgery', Annals of Surgical Oncology, 21(3), pp. 752–757. doi:10.1245/s10434-013-3295-9.

Schadendorf, D. *et al.* (2018) 'Melanoma', *The Lancet*, 392(10151), pp. 971–984. doi:10.1016/S0140-6736(18)31559-9.

Von Schuckmann, L.A. *et al.* (2019) 'Risk of Melanoma Recurrence after Diagnosis of a High-Risk Primary Tumor', *JAMA Dermatology*, 155(6), pp. 688–693. doi:10.1001/jamadermatol.2019.0440.

Shah, A.D. *et al.* (2019) 'Lfq-Analyst: An easy-To-use interactive web platform to analyze and visualize label-free proteomics data preprocessed with maxquant', *Journal of Proteome Research*, 19(1), pp. 204–211. doi:10.1021/acs.jproteome.9b00496.

Shain, A.H. and Bastian, B.C. (2016) 'From melanocytes to melanomas', *Nature Reviews Cancer*, 16(6), pp. 345–358. doi:10.1038/NRC.2016.37.

Shao, H. *et al.* (2018) 'New Technologies for Analysis of Extracellular Vesicles', *Chemical Reviews*, 118, pp. 1917–1950. doi:10.1021/acs.chemrev.7b00534.

Shen, F. *et al.* (2019) 'CEMIP promotes ovarian cancer development and progression via the PI3K/AKT signaling pathway', *Biomedicine and Pharmacotherapy*, 114(108787), pp. 1–8. doi:10.1016/j.biopha.2019.108787.

Shen, Q. *et al.* (2019) 'A targeted proteomics approach reveals a serum protein signature as diagnostic biomarker for resectable gastric cancer', *EBioMedicine*, 44, pp. 322–333. doi:10.1016/j.ebiom.2019.05.044.

Shevchenko, A. *et al.* (2007) 'In-gel digestion for mass spectrometric characterization of proteins and proteomes', *Nature Protocols*, 1(6), pp. 2856–2860. doi:10.1038/nprot.2006.468.

Shimoda, M. and Khokha, R. (2017) 'Metalloproteinases in extracellular vesicles', *Biochimica et Biophysica Acta - Molecular Cell Research*, 1864(11), pp. 1989–2000. doi:10.1016/j.bbamcr.2017.05.027.

Shiozawa, J. *et al.* (2020) 'Implication of HYBID (Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization) in Hyaluronan Degradation by Synovial Fibroblasts in Patients with Knee Osteoarthritis', *American Journal of Pathology*, 190(5), pp. 1046–1058. doi:10.1016/j.ajpath.2020.01.003.

Shostak, K. *et al.* (2014) 'NF-κB-induced KIAA1199 promotes survival through EGFR signalling', *Nature Communications*, 5:5232, pp. 1–19. doi:10.1038/ncomms6232.

Si, Z. and Hu, K. (2021) 'Identification of CXCL13 as an Immune-Related Biomarker Associated with Tumorigenesis and Prognosis in Cutaneous Melanoma Patients', *Medical Science Monitor*, 27(e932052), pp. 1–12. doi:10.12659/MSM.932052.

Simiczyjew, A. *et al.* (2020) 'The influence of tumor microenvironment on immune escape of melanoma', *International Journal of Molecular Sciences*, 21(8359), pp. 1–28. doi:10.3390/ijms21218359.

Simon, T. and Salhia, B. (2022) 'Cancer-Associated Fibroblast Subpopulations With Diverse and Dynamic Roles in the Tumor Microenvironment', *Molecular Cancer Research*, 20, pp. 183–192. doi:10.1158/1541-7786.MCR-21-0282.

Sisson, B.A. *et al.* (2019) 'Technical and Regulatory Considerations for Taking Liquid Biopsy to the Clinic: Validation of the JAX PlasmaMonitorTM Assay', *Biomarker Insights*, 14, pp. 1–11. doi:10.1177/1177271919826545.

Situ, Y. *et al.* (2022) 'System analysis of VEGFA in renal cell carcinoma: The expression, prognosis, gene regulation network and regulation targets', *International Journal of Biological Markers*, 37(1), pp. 90–101. doi:10.1177/17246008211063501.

Skudalski, L. *et al.* (2022) 'Melanoma: An update on systemic therapies', *Journal of the American Academy of Dermatology*, 86(3), pp. 515–524. doi:10.1016/J.JAAD.2021.09.075.

Smith, H.A. and Kang, Y. (2017) 'Determinants of organotropic metastasis', *Annual Review of Cancer Biology*, 1, pp. 403–423. doi:10.1146/annurev-cancerbio-041916-064715.

Sódar, B.W. *et al.* (2016) 'Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection', *Scientific Reports*, 6(24316), pp. 1–12. doi:10.1038/srep24316.

Strilic, B. *et al.* (2016) 'Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis', *Nature*, 536(7615), pp. 215–218. doi:10.1038/NATURE19076.

Suh, H.N. *et al.* (2016) 'Identification of KIAA1199 as a Biomarker for Pancreatic Intraepithelial Neoplasia', *Scientific Reports*, 6(38273), pp. 1–10. doi:10.1038/srep38273.

Sullivan, R. *et al.* (2005) 'Role of exosomes in sperm maturation during the transit along the male reproductive tract', *Blood Cells, Molecules, and Diseases*, 35, pp. 1–10. doi:10.1016/j.bcmd.2005.03.005.

Sun, K.L. *et al.* (2021) 'A Study of Normal Epidermal Melanocyte Distribution', *International Journal of Dermatology and Venereology*, 4(1), pp. 32–35. doi:10.1097/JD9.000000000000125.

Sung, H. *et al.* (2021) 'Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries', *CA: A Cancer Journal for Clinicians*, 71(3), pp. 209–249. doi:10.3322/caac.21660.

Sutoh Yoneyama, M. *et al.* (2014) 'Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis', *European Journal of Cell Biology*, 93(4), pp. 157–169. doi:10.1016/J.EJCB.2014.03.002.

Szczepanski, M.J. *et al.* (2011) 'Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1', *Haematologica*, 96(9), pp. 1302–1309. doi:10.3324/haematol.2010.039743.

Tamura, T. *et al.* (2021) 'Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer', *Extracellular Vesicles and Circulating Nucleic Acids*, 2, pp. 148–174. doi:10.20517/EVCNA.2021.06.

Tas, F. (2012) 'Metastatic behavior in melanoma: Timing, pattern, survival, and influencing factors', *Journal of Oncology*, 2012(647684), pp. 1–9. doi:10.1155/2012/647684.

Tavianatou, A.G. *et al.* (2019) 'Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer', *FEBS Journal*, 286(15), pp. 2883–2908. doi:10.1111/febs.14777.

Teng, F. and Fussenegger, M. (2021) 'Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering', *Advanced Science*, 8(2003505), pp. 1–17. doi:10.1002/advs.202003505.

Tengda, L. *et al.* (2018) 'Serum exosomal microRNAs as potent circulating biomarkers for melanoma', *Melanoma Research*, 28(4), pp. 295–303. doi:10.1097/CMR.000000000000450.

Théry, C. *et al.* (2006) 'Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids', *Current Protocols in Cell Biology*, 30(1). doi:10.1002/0471143030.cb0322s30.

Théry, C. *et al.* (2018) 'Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines', *Journal of Extracellular Vesicles*, 7(1535750), pp. 1–43. doi:10.1080/20013078.2018.1535750.

Tickner, J.A. *et al.* (2014) 'Functions and therapeutic roles of exosomes in cancer', *Frontiers in Oncology*, 4(127), pp. 1–8. doi:10.3389/fonc.2014.00127.

Timerman, D. *et al.* (2017) 'Vitamin D deficiency is associated with a worse prognosis in metastatic melanoma', *Oncotarget*, 8(4), pp. 6873–6882. doi:10.18632/ONCOTARGET.14316.

Trams, E.G. *et al.* (1981) 'Exfoliation of membrane ecto-enzymes in the form of micro-vesicles', *BBA - Biomembranes*, 645(1), pp. 63–70. doi:10.1016/0005-2736(81)90512-5.

Treps, L. *et al.* (2016) 'Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma', *Oncogene*, 35(20), pp. 2615–2623. doi:10.1038/ONC.2015.317.

Tricarico, C., Clancy, J. and D'Souza-Schorey, C. (2017) 'Biology and biogenesis of shed microvesicles', *Small GTPases*, 8(4), pp. 220–232. doi:10.1080/21541248.2016.1215283.

Truffi, M., Sorrentino, L. and Corsi, F. (2020) 'Fibroblasts in the Tumor Microenvironment', *Advances in Experimental Medicine and Biology*, 1234, pp. 15–29. doi:10.1007/978-3-030-37184-5_2.

Tsuji, S. *et al.* (2021) 'HYBID derived from tumor cells and tumor-associated macrophages contribute to the glioblastoma growth', *Brain research*, 1764(147490), pp. 1–15. doi:10.1016/j.brainres.2021.147490.

Turiello, R. *et al.* (2022) 'Exosomal CD73 from serum of patients with melanoma suppresses lymphocyte functions and is associated with therapy resistance to anti-PD-1 agents', *Journal for ImmunoTherapy of Cancer*, 10(e004043), pp. 1–11. doi:10.1136/jitc-2021-004043.

Tyanova, S. *et al.* (2016) 'The Perseus computational platform for comprehensive analysis of (prote)omics data', *Nature Methods*, 13(9), pp. 731–740. doi:10.1038/nmeth.3901.

Tyanova, S. and Cox, J. (2018) 'Perseus: A bioinformatics platform for integrative analysis of proteomics data in cancer research', in Von Stechow, L. (ed.) *Methods in Molecular Biology*. Humana Press, pp. 133–148. doi:10.1007/978-1-4939-7493-1_7.

Tyanova, S., Temu, T. and Cox, J. (2016) 'The MaxQuant computational platform for mass spectrometry-based shotgun proteomics', *Nature Protocols*, 11(12), pp. 2301–2319. doi:10.1038/nprot.2016.136.

Urabe, F. et al. (2020) 'Extracellular vesicles as biomarkers and therapeutic targets for cancer',

American Journal of Physiology - Cell Physiology, 318, pp. 29–39. doi:10.1152/ajpcell.00280.2019.

de Vega, S., Yoshida, H. and Okada, Y. (2020) 'Expression and characterization of hyaluronanbinding protein involved in hyaluronan depolymerization: HYBID, Alias KIAA1199 and CEMIP', *Methods in Molecular Biology*, 2132, pp. 129–138. doi:10.1007/978-1-0716-0430-4_13/COVER.

Vong, S. and Kalluri, R. (2011) 'The Role of Stromal Myofibroblast and Extracellular Matrix in Tumor Angiogenesis', *Genes and Cancer*, 2(12), pp. 1139–1145. doi:10.1177/1947601911423940.

Wang, C. *et al.* (2022) 'Serum anti-SPP1 autoantibody as a potential novel biomarker in detection of esophageal squamous cell carcinoma', *BMC cancer*, 22(932), pp. 1–12. doi:10.1186/S12885-022-10012-9/FIGURES/6.

Wang, J. Der *et al.* (2021) 'Exosomal HMGB1 Promoted Cancer Malignancy', *Cancers*, 13(4), pp. 1– 16. doi:10.3390/CANCERS13040877.

Wang, Y. *et al.* (2019) 'HMGB1 as a potential biomarker and therapeutic target for malignant mesothelioma', *Disease Markers*, 2019(4183157), pp. 1–10. doi:10.1155/2019/4183157.

Wani, A.A. *et al.* (2011) 'Integrin-linked kinase regulates melanoma angiogenesis by activating NFκB/interleukin-6 signaling pathway', *Oncogene*, 30(24), pp. 2778–2788. doi:10.1038/ONC.2010.644.

Ward, W.H. et al. (2017) Clinical Presentation and Staging of Melanoma, Cutaneous Melanoma: Etiology and Therapy. Edited by W.H. Ward and J.M. Farma. ISBN: 978-0-9944381-4-0, Codon Publications. doi:10.15586/codon.cutaneousmelanoma.2017.ch6.

Webber, J. *et al.* (2010) 'Cancer exosomes trigger fibroblast to myofibroblast differentiation', *Cancer Research*, 70(23), pp. 9621–9630. doi:10.1158/0008-5472.CAN-10-1722.

Whiteman, D.C., Green, A.C. and Olsen, C.M. (2016) 'The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031', *Journal of Investigative Dermatology*, 136, pp. 1161–1171. doi:10.1016/j.jid.2016.01.035.

Whiteside, T.L. (2016) 'Tumor-Derived Exosomes and Their Role in Cancer Progression', *Advances in Clinical Chemistry*, 74, pp. 103–141. doi:10.1016/bs.acc.2015.12.005.

Winslow, T. (2008) 'Anatomía de la Piel con Melanocitos (Skin With Melanocyte Anatomy)', *Ilustraciones Médicas en Español, National Cancer Institute*, CDR595151. Available at: https://visualsonline.cancer.gov/details.cfm?imageid=7287.

Wirtz, D., Konstantopoulos, K. and Searson, P.C. (2011) 'The physics of cancer: The role of physical interactions and mechanical forces in metastasis', *Nature Reviews Cancer*, 11, pp. 512–522. doi:10.1038/nrc3080.

Wiśniewski, J.R. *et al.* (2009) 'Universal sample preparation method for proteome analysis', *Nature Methods*, 6, pp. 359–362. doi:10.1038/nmeth.1322.

Wu, Q.W. (2016) 'Serpine2, a potential novel target for combating melanoma metastasis', *American Journal of Translational Research*, 8(5), pp. 1985–1997.

Wu, S. *et al.* (2018) 'Evaluating intrinsic and non-intrinsic cancer risk factors', *Nature Communications*, 9(3490), pp. 1–12. doi:10.1038/s41467-018-05467-z.

Xiao, D. *et al.* (2012) 'Identifying mRNA, MicroRNA and Protein Profiles of Melanoma Exosomes', *PLoS ONE*, 7(10 e46874), pp. 1–15. doi:10.1371/journal.pone.0046874.

Xiao, D. et al. (2016) 'Melanoma cell-derived exosomes promote epithelial-mesenchymal

transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment', *Cancer Letters*, 376(2), pp. 318–327. doi:10.1016/j.canlet.2016.03.050.

Xu, Y. *et al.* (2019) 'KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular carcinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition program', *Cancer Letters*, 454, pp. 78–89. doi:10.1016/j.canlet.2019.03.049.

Xue, Q. *et al.* (2020) 'CEMIP regulates the proliferation and migration of vascular smooth muscle cells in atherosclerosis through the WNT-beta-catenin signaling pathway', *Biochemistry and Cell Biology*, 98(2), pp. 249–257. doi:10.1139/bcb-2019-0249.

Yáñez-Mó, M. *et al.* (2015) 'Biological properties of extracellular vesicles and their physiological functions', *Journal of Extracellular Vesicles*, 4, pp. 1–60. doi:10.3402/jev.v4.27066.

Yang, G.B. *et al.* (2011) 'Risk and survival of cutaneous melanoma diagnosed subsequent to a previous cancer', *Archives of Dermatology*, 147(12), pp. 1395–1402. doi:10.1001/archdermatol.2011.1133.

Yoshida, H. *et al.* (2013) 'KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization', *Proceedings of the National Academy of Sciences of the United States of America*, 110(14), pp. 5612–5617. doi:10.1073/PNAS.1215432110/SUPPL_FILE/PNAS.201215432SI.PDF.

Yuana, Y., Sturk, A. and Nieuwland, R. (2013) 'Extracellular vesicles in physiological and pathological conditions', *Blood Reviews*, 27, pp. 31–39. doi:10.1016/j.blre.2012.12.002.

Zhang, D. *et al.* (2017) 'Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer', *International journal of cancer*, 140, pp. 2298–2309. doi:10.1002/IJC.30656.

Zhang, D.X. *et al.* (2021) 'Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance', *Seminars in Cancer Biology*, 74, pp. 24–44. doi:10.1016/j.semcancer.2021.01.007.

Zhang, H. *et al.* (2022) 'An Integrated Pan-Cancer Analysis of 33 Human Cancers Reveals the Potential Clinical Implications and Immunotherapeutic Value of C-X-C Motif Chemokine Ligand 13', *Frontiers in Oncology*, 12(791962), pp. 1–18. doi:10.3389/fonc.2022.791962.

Zhang, L. and Yu, D. (2019) 'Exosomes in cancer development, metastasis, and immunity', *BBA* - *Reviews on Cancer*, 1871(2), pp. 455–468. doi:10.1016/j.bbcan.2019.04.004.

Zhao, L. *et al.* (2019) 'KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway', *Oncogene*, 38(7), pp. 935–949. doi:10.1038/s41388-018-0493-8.

Zheng, C.-C. *et al.* (2019) 'Significance of integrin-linked kinase (ILK) in tumorigenesis and its potential implication as a biomarker and therapeutic target for human cancer', *American journal of cancer research*, 9(1), pp. 186–197.

Zhou, B. *et al.* (2020) 'Application of exosomes as liquid biopsy in clinical diagnosis', *Signal Transduction and Targeted Therapy*, 5(1). doi:10.1038/s41392-020-00258-9.

VIII. ANEXOS

ANEXO 1. Composición de disoluciones y tampones

A continuación, se describe la composición de los tampones y disoluciones empleadas en los diferentes procedimientos.

A) Detección de micoplasma

TAE 10x

- 48,5 g tris (T1503-500G, Sigma)
- 11,4 ml ácido acético glacial (211008.1211, PanReac)
- 20 ml 0,5M EDTA pH 8,0 (E5134-500G, Sigma)

B) Western blot

Tampón de carga Laemmli 5x

125 mM tris-HCl pH 6,8 (T1503-500G, Sigma) 2 % o 20 % SDS (para lisados celulares o para lisados de EV) (L4509-100G, Sigma-Aldrich) 20 % glicerol (G2025-1L, Sigma) 0,01 % azul bromofenol (B-8026, Sigma)

Tampón de electroforesis 10x

30 g/l trizma base (T1503-500G, Sigma) 144 g/l glicina (131340.1211, PanReac) 10 g/l SDS (L4509-100G, Sigma-Aldrich)

Tampón de transferencia 10x

30 g/l trizma base (T1503-500G, Sigma) 144 g/l glicina (131340.1211, PanReac) 5 g/l SDS (L4509-100G, Sigma-Aldrich) Ajustar pH a 8,3

TBS 10x

24,2 g/l trizma base (T1503-500G, Sigma) 80 g/l NaCl (141659.1211, PanReac) Ajustar pH a 7,6

TBST 1x

100 ml TBS 10x 900 ml H₂Od 1 ml Tween20 (P1379-100ML, Sigma)

Solución rojo Ponceau

0,1 % (w/v) rojo Ponceau

5 % (v/v) ácido acético (211008.1211, PanReac)

C) LC-MS/MS

Tampón de lisis SDT

4 % SDS

0,1 M DTT

en 0,1 M Tris-HCl pH 7,6

Tampón UA

8 M urea en Tris/HCl 0,1 M pH 8,5

Tampón de solubilización

0,2 % RapiGest SF (Waters) en 50 mM NH₄HCO₃

Tampón de digestión

12,5 ng/µl tripsina

 $en \ 50 \ mM \ NH_4HCO_3$

D) Ensayo de captación de EV

Colchón sacarosa para ultracentrifugación

2,4 g trizma base (T1503-500G, Sigma) 30 g sacarosa libre de proteasas (419762500, Acros Organics) 50 ml óxido de deuterio (151882-25G, Sigma-Aldrich) Ajustar pH a 7,4 con 10 N HCl Ajustar volumen a 100 ml con óxido de deuterio Esterilizar a través de filtro de 0,22 μm

E) Ensayo en cámara de Boyden

Solución para fijar y teñir las células

- 0,2 % (w/v) cristal violeta (C0775, Sigma)
- 2 % (v/v) etanol (131086.1611, PanReac)
- 4 % (v/v) paraformaldehído (15710, Electron Microscopy Sciences)

F) Inmunofluorescencia

PBT

0,1 % (v/v) Tritón X-100 (T9284-500ML) en PBS

Solución de bloqueo

10 % (v/v) FBS y 5 % (w/v) BSA

en PBT

ANEXO 2. Muestras de sueros analizados mediante ELISA

Tabla 29. Listado de las muestras de sueros humanos a partir de los cuales se purificaron las fracciones de EV incluidas en el ensayo de cuantificación de los niveles de CEMIP realizado mediante ELISA. Se indica el nombre asignado para la muestra empleada, el sexo del paciente, la edad en la que se diagnosticó el melanoma (en años), el estadio de la enfermedad asignado en el momento del diagnóstico (según la 8ª edición de la AJCC), si se ha desarrollado metástasis o no durante el seguimiento posterior al diagnóstico, el tiempo durante el que se les ha hecho seguimiento a los pacientes (en años) desde el momento del diagnóstico y el tiempo transcurrido (en meses) desde el diagnóstico de la enfermedad hasta el desarrollo de la metástasis en los grupos MX.

muestra	sexo	edad al diagnóstico (años)	estadio en el diagnóstico (8ª AJCC)	desarrollo de metástasis durante el seguimiento	tiempo de seguimiento (años)	tiempo hasta desarrollo metástasis (meses)
C1	-	-	sano	-	-	-
C2	-	-	sano	-	-	-
C3	-	-	sano	-	-	-
C4	-	-	sano	-	-	-
C5	-	-	sano	-	-	-
C6	-	-	sano	-	-	-
C7	-	-	sano -		-	-
C8	-	-	sano	sano -		-
67C	-	-	sano	-	-	-
68C	-	-	sano	-	-	-
69C	-	-	sano	-	-	-
70C	-	-	sano	-	-	-
71C	-	-	sano -		-	-
72C	-	-	sano	-	-	-
73C	-	-	sano	-	-	-
74C	-	-	sano	-	-	-
80C	-	-	sano	-	-	-
89C	-	-	sano	-	-	-
90C	-	-	sano	-	-	-
102C	-	-	sano	-	-	-
107C	-	-	sano	-	-	-
EL-B013	hombre	66	IA	NO	19	-
EL-B085	hombre	60	IA	NO	20	-
EL-B097	mujer	23	IA	NO	20	-
EL-C010	mujer	23	IA	NO	8	-
EL-C011	hombre	45	IA	NO	5	-
EL-B021	mujer	44	IA	NO	21	-
EL-B027	hombre	57	IA	NO	17	-
EL-B043	mujer	72	IA	NO	14	-
EL-B047	hombre	43	IA	NO	17	-
EL-B076	hombre	54	IA	NO	17	-
EL-B080	hombre	72	IA	NO	12	-

EL-B191	mujer	56	IA	NO	19	-
EL-C128	hombre	68	IA	NO	5	-
EL-B001	mujer	32	IB	NO	12	-
EL-B009	mujer	61	IB	NO	9	-
EL-B086	mujer	72	IB	NO	15	-
EL-B026	hombre	48	IB	NO	18	-
EL-B038	mujer	34	IB	NO	20	-
EL-B040	mujer	29	IB	NO	11	-
EL-B069	hombre	81	IB	NO	8	-
EL-B084	mujer	48	IB	NO	22	-
EL-C008	mujer	69	IB	SÍ	9	4
EL-C034	hombre	51	IB	SÍ	4	44
EL-C091	mujer	60	IB	SÍ	2	23
EL-C113	mujer	72	IB	SÍ	2	14
EL-C017	hombre	65	IB	SÍ	4	34
EL-B089	mujer	54	IB	SÍ	14	165
EL-B067	mujer	80	IIA	NO	4	-
EL-B077	hombre	68	IIA	NO	10	-
EL-B091	hombre	38	IIA	NO	9	-
EL-C003	mujer	60	IIA	NO	9	-
EL-C004	hombre	73	IIA	NO	9	-
EL-B153	hombre	76	IIA	NO	5	-
EL-C057	mujer	42	IIA	NO	10	-
EL-C061	mujer	69	IIA	NO	5	-
EL-C077	hombre	66	IIA	NO	5	-
EL-C139	mujer	50	IIA	NO	4	-
EL-B028	mujer	30	IIB	NO	20	-
EL-B115	mujer	24	IIB	NO	22	-
EL-B161	hombre	69	IIB	NO	7	-
EL-C080	hombre	83	IIB	NO	5	-
EL-B207	hombre	55	IIC	NO	14	-
EL-C102	hombre	63	IIC	NO	8	-
EL-C159	hombre	68	IIA	SÍ	5	47
EL-C170	mujer	69	IIA	SÍ	3	8
EL-C015	mujer	76	IIA	SÍ	1	12
EL-C096	mujer	54	IIA	SÍ	5	57
EL-C029	mujer	46	IIA	SÍ	9	14
EL-B204	mujer	39	IIA	SÍ	22	88
EL-B057	mujer	32	IIB	SÍ	25	54
EL-B095	mujer	52	IIB	SÍ	4	36
EL-B103	mujer	49	IIB	SÍ	3	19
EL-B148	mujer	65	IIB	SÍ	2	16
EL-B042	hombre	61	IIB	SÍ	17	9
EL-C047	mujer	83	IIB	SÍ	5	19

EL-C138	hombre	64	IIB	SÍ	1	5
EL-B186	hombre	49	IIC	SÍ	4	16
EL-B010	hombre	56	IIC	SÍ	4	17
EL-B164	hombre	84	IIC	SÍ	2	7
EL-B063	hombre	77	IIC	SÍ	7	8
EL-B006	hombre	82	IIC	SÍ	3	19
EL-C002	mujer	82	IIC	SÍ	4	32
EL-B065	mujer	76	IIC	SÍ	1	5
EL-C042	mujer	78	IIC	SÍ	2	9
EL-C059	hombre	71	IIC	Sí	1	9
EL-C107	mujer	63	IIC	SÍ	9	23
EL-C154	mujer	83	IIC	Sí	5	32
EL-C184	hombre	83	IIC	SÍ	1	16

ANEXO 3. Muestras de sueros analizados mediante proteómica dirigida basada en PEA

Tabla 30. Listado de las muestras de sueros humanos a partir de los cuales se purificaron las fracciones de EV incluidas en el ensayo de proteómica dirigida basada en PEA. Se indica el nombre asignado para la muestra empleada, el sexo del paciente, la edad en la que se diagnosticó el melanoma (en años), el estadio de la enfermedad asignado en el momento del diagnóstico (según la 8ª edición de la AJCC), si se ha desarrollado metástasis o no durante el seguimiento posterior al diagnóstico, el tiempo durante el que se les ha hecho seguimiento a los pacientes (en años) desde el momento del diagnóstico y el tiempo transcurrido (en meses) desde el diagnóstico de la enfermedad hasta el desarrollo de la metástasis en el grupo MX.

muestra	sexo	edad al diagnóstico (años)	estadio en el diagnóstico (8ª AJCC)	desarrollo de metástasis durante el seguimiento	tiempo de seguimiento (años)	tiempo hasta desarrollo metástasis (meses)
EL-B011	mujer	35	IIA	NO	10	-
EL-B091	hombre	38	IIA	NO	9	-
EL-C077	hombre	66	IIA	NO	5	-
EL-C173	hombre	51	IIA	NO	5	-
EL-C192	mujer	53	IIA	NO	5	-
EL-C003	mujer	60	IIA	NO	9	-
EL-C075	mujer	71	IIA	NO	8	-
EL-C142	mujer	65	IIA	NO	5	-
EL-B077	hombre	68	IIA	NO	10	-
EL-C074	mujer	80	IIA	NO	5	-
EL-B084	mujer	48	IIA	NO	22	-
EL-C004	hombre	73	IIA	NO	9	-
EL-C057	mujer	42	IIA	NO	10	-
EL-C061	mujer	69	IIA	NO	5	-
EL-B161	hombre	69	IIB	NO	7	-
EL-B028	mujer	30	IIB	NO	20	-
EL-B115	mujer	24	IIB	NO	22	-
EL-C102	hombre	63	IIC	NO	8	-
EL-B207	hombre	55	IIC	NO	14	-
EL-C170	mujer	69	IIA	SÍ	3	8
EL-C015	mujer	76	IIA	SÍ	1	12
EL-B148	mujer	65	IIB	SÍ	2	16
EL-C195	mujer	73	IIB	SÍ	2	6
EL-C082	hombre	68	IIB	SÍ	6	19
EL-B042	hombre	61	IIB	SÍ	17	9
EL-B066	mujer	74	IIB	SÍ	7	8
EL-B095	mujer	52	IIB	SÍ	4	36
EL-B164	hombre	84	IIC	SÍ	2	7
EL-C002	mujer	82	IIC	SÍ	4	32
EL-B010	hombre	56	IIC	SÍ	4	17
EL-B063	hombre	77	IIC	SÍ	7	8

EL-B065	mujer	76	IIC	SÍ	1	5
EL-C107	mujer	63	IIC	SÍ	9	23
EL-C184	hombre	83	IIC	SÍ	1	16
EL-C154	mujer	83	IIC	SÍ	5	32
EL-C042	mujer	78	IIC	SÍ	2	9
EL-C059	hombre	71	IIC	SÍ	1	9
AST_C28466	hombre	44	IIB	SÍ	2	17

ANEXO 4. Estudio proteómico de EV purificadas de líneas celulares realizado mediante LC-MS/MS

Tabla 31. Listado de proteínas identificadas en el análisis proteómico realizado mediante LC-MS/MS a partir de EV derivadas de líneas celulares de melanocitos y de melanoma metastásico. Se muestran los resultados obtenidos tras el análisis mediante LFQ-Analyst de los perfiles proteómicos identificados a partir 2 fracciones independientes de EV purificadas a partir de 2 líneas celulares de melanocitos y 2 lineas de melanoma metastásico. En color rosa se muestran las proteínas enriquecidas en muestras de melanoma metastásico, en color azul las proteínas enriquecidas en muestras de melanocitos y sin color las proteínas sin enriquecimiento diferencial, las proteínas seleccionadas para su validación por western blot se encuentran resaltadas en negrita. Parámetros establecidos en la herramienta LFQ-Analyst para el análisis de los datos: Adjusted p-value cutoff: 0,05. Log₂ fold change cutoff: 2. Missing value imputation: Perseus-type; the missing values are replaced by random numbers drawn from a normal distribution of 1.8 standard deviation down shift and with a width of 0.3 of each simple. Type of False Discovery Rate (FDR) correction: Benjamini Hochberg.

gene nameª	protein IDs ^b	metastatic_vs melanocyte_ log2 fold change ^c	metastatic_vs melanocyte_ p value ^d	metastatic_vs melanocyte_ p adjusted ^e	metastatic_vs melanocyte_ significant ^f	num_ NAs ^g	protein name ^h
FGA	P02671	8,29	0,00	0,00	TRUE	4	Fibrinogen alpha chain
SPP1	P10451-5	7,31	0,00	0,00	TRUE	7	Osteopontin
CTHRC1	Q96CG8	7,29	0,00	0,00	TRUE	3	Collagen triple helix repeat-containing protein 1
EEA1	Q15075	7,23	0,00	0,00	TRUE	4	Early endosome antigen 1
CEMIP	Q8WUI3	6,39	0,00	0,01	TRUE	1	Cell migration-inducing and hyaluronan-binding protein
TNC	P24821-4	6,20	0,00	0,00	TRUE	0	Tenascin
OGN	P20774	6,15	0,00	0,01	TRUE	1	Mimecan
AKR1C2	P52895	6,05	0,00	0,00	TRUE	2	Aldo-keto reductase family 1 member C2
EDIL3	043854-2	5,92	0,00	0,02	TRUE	5	EGF-like repeat and discoidin I-like domain- containing protein 3
MRC2	Q9UBG0	5,91	0,00	0,00	TRUE	5	C-type mannose receptor 2
EXT1	Q16394	5,90	0,00	0,00	TRUE	4	Exostosin-1
РТХЗ	P26022	5,75	0,00	0,00	TRUE	6	Pentraxin-related protein PTX3
FMOD	Q06828	5,39	0,00	0,01	TRUE	6	Fibromodulin
MMP1	P03956	5,30	0,00	0,00	TRUE	5	Interstitial collagenase
NES	P48681	5,12	0,00	0,00	TRUE	1	Nestin
GPX3	P22352	4,98	0,00	0,01	TRUE	2	Glutathione peroxidase 3
RPLP2	P05387	4,85	0,00	0,01	TRUE	3	60S acidic ribosomal protein P2
TUBA4A	P68366-2	4,74	0,00	0,00	TRUE	0	Tubulin alpha-4A chain
EXT2	Q93063	4,55	0,00	0,02	TRUE	4	Exostosin-2
MST1	P26927	4,55	0,00	0,00	TRUE	8	Hepatocyte growth factor- like protein
HMGB1	P09429	4,54	0,00	0,01	TRUE	2	High mobility group protein B1
PIK3CG	P48736	4,49	0,00	0,01	TRUE	5	Phosphatidylinositol 4,5- bisphosphate 3-kinase catalytic subunit gamma isoform
TGFBI	Q15582	4,40	0,00	0,03	TRUE	3	Transforming growth factor-beta-induced protein ig-h3

MEGF10	Q96KG7	4,31	0,00	0,00	TRUE	5	Multiple epidermal growth factor-like domains protein 10
SPARC	P09486	4,26	0,00	0,02	TRUE	5	SPARC
BPGM	P07738	4,16	0,00	0,03	TRUE	3	Bisphosphoglycerate mutase
SEMA3A	Q14563	4,04	0,00	0,01	TRUE	5	Semaphorin-3A
LGALSL	Q3ZCW2	4,02	0,00	0,02	TRUE	6	Galectin-related protein
MAPRE2	Q15555-5	3,97	0,00	0,02	TRUE	1	Microtubule-associated protein RP/EB family member 2
TMEM2	Q9UHN6	3,90	0,00	0,01	TRUE	1	Transmembrane protein 2
SEMA3G	Q9NS98	3,76	0,00	0,00	TRUE	8	Semaphorin-3G
SHMT1	P34896-3	3,75	0,00	0,02	TRUE	5	Serine hydroxymethyltransferase , cytosolic
NRP1	014786	3,73	0,00	0,00	TRUE	5	Neuropilin-1
CLEC11A	Q9Y240	3,71	0,00	0,00	TRUE	0	C-type lectin domain family 11 member A
GALNT1 0	Q86SR1-2	3,65	0,00	0,02	TRUE	4	Polypeptide N- acetylgalactosaminyltrans ferase 10
DPP3	Q9NY33-4	3,60	0,01	0,05	TRUE	1	Dipeptidyl peptidase 3
NUCKS1	Q9H1E3	3,58	0,00	0,00	TRUE	8	Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1
GSTA2	P09210	3,57	0,00	0,03	TRUE	6	Glutathione S-transferase A2
ROR1	Q01973	3,51	0,00	0,02	TRUE	3	Tyrosine-protein kinase transmembrane receptor ROR1
SHISA2	Q6UWI4	3,51	0,00	0,02	TRUE	2	Protein shisa-2 homolog
AKR1A1	P14550	3,45	0,00	0,00	TRUE	0	Alcohol dehydrogenase [NADP(+)]
HAPLN3	Q96586	3,44	0,01	0,03	TRUE	6	Hyaluronan and proteoglycan link protein 3
H2AFX	P16104	3,42	0,00	0,01	TRUE	0	Histone H2AX
ACSS2	Q9NR19	3,40	0,00	0,02	TRUE	6	Acetyl-coenzyme A synthetase, cytoplasmic
HMHA1	Q92619	3,39	0,00	0,02	TRUE	6	Minor histocompatibility protein HA-1
FERMT3	Q86UX7-2	3,24	0,00	0,00	TRUE	0	Fermitin family homolog 3
HIST1H2 BL	Q99880	3,22	0,00	0,01	TRUE	0	Histone H2B type 1-L
FAT4	Q6V0I7-3	3,21	0,01	0,04	TRUE	6	Protocadherin Fat 4
COL15A 1	P39059	3,13	0,01	0,04	TRUE	7	Collagen alpha-1(XV) chain
SMC4	Q9NTJ3-2	3,11	0,00	0,02	TRUE	3	Structural maintenance of chromosomes protein 4
LAMB1	P07942	3,09	0,00	0,00	TRUE	0	Laminin subunit beta-1
MRTO4	Q9UKD2	3,08	0,00	0,02	TRUE	5	mRNA turnover protein 4 homolog
NCL	P19338	3,03	0,00	0,01	TRUE	0	Nucleolin
PDE5A	076074-2	3,02	0,01	0,04	TRUE	5	cGMP-specific 3,5-cyclic phosphodiesterase
B4GAT1	O43505	3,00	0,00	0,01	TRUE	0	Beta-1,4- glucuronyltransferase 1
SF3B2	Q13435	2,98	0,00	0,01	TRUE	1	Splicing factor 3B subunit 2
PPM1G	015355	2,97	0,00	0,02	TRUE	2	Protein phosphatase 1G
SLC2A3	P11169	2,95	0,00	0,02	TRUE	2	Solute carrier family 2, facilitated glucose transporter member 3

HIST1H1 B	P16401	2,88	0,01	0,04	TRUE	0	Histone H1.5
TFRC	P02786	2,87	0,00	0,01	TRUE	0	Transferrin receptor protein 1
YOD1	Q5VVQ6-2	2,87	0,00	0,02	TRUE	6	Ubiquitin thioesterase OTU1
ILK	Q13418	2,86	0,00	0,01	TRUE	0	Integrin-linked protein kinase
МСМ3	P25205	2,78	0,00	0,01	TRUE	3	DNA replication licensing factor MCM3
F13A1	P00488	2,77	0,00	0,01	TRUE	0	Coagulation factor XIII A chain
MFI2	P08582	2,72	0,00	0,02	TRUE	0	Melanotransferrin
CORO1A	P31146	2,65	0,00	0,00	TRUE	0	Coronin-1A
NPM1	P06748-3	2,64	0,00	0,01	TRUE	0	Nucleophosmin
TPP2	P29144	2,58	0,00	0,01	TRUE	0	Tripeptidyl-peptidase 2
UXS1	Q8NBZ7	2,52	0,01	0,04	TRUE	9	UDP-glucuronic acid decarboxylase 1
втк	Q06187	2,43	0,00	0,01	TRUE	8	Tyrosine-protein kinase BTK
NCAPH	Q15003-2	2,43	0,01	0,04	TRUE	7	Condensin complex subunit 2
PLOD3	O60568	2,39	0,00	0,03	TRUE	0	Procollagen-lysine,2- oxoglutarate 5- dioxygenase 3
SERPINE 2	P07093-2	2,39	0,00	0,01	TRUE	0	Glia-derived nexin
NOLC1	Q14978	2,37	0,01	0,04	TRUE	7	Nucleolar and coiled-body
BZW1	Q7L1Q6-2	2,36	0,01	0,03	TRUE	1	Basic leucine zipper and W2 domain-containing protein 1
IGLL5	B9A064	2,36	0,01	0,04	TRUE	1	Immunoglobulin lambda- like polypeptide 5
HIST1H4 A	P62805	2,34	0,00	0,01	TRUE	0	Histone H4
PLOD1	Q02809	2,30	0,00	0,02	TRUE	0	Procollagen-lysine,2- oxoglutarate 5- dioxygenase 1
HIST2H3 A	Q71DI3	2,23	0,01	0,04	TRUE	0	Histone H3.2
LPHN2	O95490-3	2,20	0,01	0,04	TRUE	5	Latrophilin-2
TAGLN2	P37802	2,14	0,00	0,01	TRUE	0	Transgelin-2
C8B	P07358	2,09	0,01	0,04	TRUE	0	Complement component C8 beta chain
RRM1	P23921	2,07	0,00	0,01	TRUE	0	Ribonucleoside- diphosphate reductase large subunit
LAMA4	Q16363-2	2,05	0,01	0,04	TRUE	0	Laminin subunit alpha-4
PARP1	P09874	2,04	0,00	0,01	TRUE	0	Poly [ADP-ribose] polymerase 1
DAPK2	Q9UIK4	1,97	0,01	0,05	TRUE	5	Death-associated protein kinase 2
TLN1	Q9Y490	1,97	0,00	0,01	TRUE	0	Talin-1
EPHA3	P29320	1,94	0,01	0,04	TRUE	6	Ephrin type-A receptor 3
MAN2A 2	P49641-2	1,77	0,01	0,04	TRUE	4	Alpha-mannosidase 2x
РКМ	P14618	-1,52	0,01	0,04	TRUE	0	Pyruvate kinase PKM
YWHAQ	P27348	-1,54	0,01	0,04	TRUE	0	14-3-3 protein theta
PCBP1	Q15365	-1,56	0,01	0,04	TRUE	0	Poly(rC)-binding protein 1
PGM1	P36871	-1,75	0,00	0,03	TRUE	0	Phosphoglucomutase-1
RAD23B	P54727	-1,75	0,01	0,04	TRUE	6	UV excision repair protein RAD23 homolog B
C2CD5	Q86YS7	-1,80	0,00	0,03	TRUE	7	C2 domain-containing protein 5

DCPS	Q96C86	-1,88	0,01	0,05	TRUE	2	m7GpppX diphosphatase
MSN	P26038	-1,89	0,01	0,04	TRUE	0	Moesin
YWHAG	P61981	-1,89	0,00	0,01	TRUE	0	14-3-3 protein gamma
PCSK1	P29120-2	-1,91	0,01	0,05	TRUE	6	Neuroendocrine convertase 1
PGLS	O95336	-1,92	0,01	0,05	TRUE	9	6- phosphogluconolactonase
USP7	Q93009-3	-1,96	0,00	0,03	TRUE	9	Ubiquitin carboxyl- terminal hydrolase 7
HYOU1	Q9Y4L1	-1,97	0,00	0,02	TRUE	0	Hypoxia up-regulated protein 1
PEBP1	P30086	-2,01	0,00	0,02	TRUE	0	Phosphatidylethanolamin e-binding protein 1
MAT2A	P31153	-2,03	0,00	0,03	TRUE	9	S-adenosylmethionine synthase isoform type-2
CELSR2	Q9HCU4	-2,07	0,01	0,05	TRUE	8	Cadherin EGF LAG seven- pass G-type receptor 2
SARS	P49591	-2,08	0,00	0,01	TRUE	0	SerinetRNA ligase, cytoplasmic
SMARC D2	Q92925-3	-2,11	0,00	0,02	TRUE	7	SWI/SNF-related matrix- associated actin- dependent regulator of chromatin subfamily D member 2
ALDOA	P04075	-2,12	0,00	0,02	TRUE	0	Fructose-bisphosphate aldolase A
HIF1AN	Q9NWT6	-2,12	0,01	0,05	TRUE	2	Hypoxia-inducible factor 1-alpha inhibitor
RHBDF1	Q96CC6	-2,16	0,01	0,05	TRUE	6	Inactive rhomboid protein 1
SKP1	P63208	-2,17	0,00	0,02	TRUE	8	S-phase kinase-associated protein 1
SEC23IP	Q9Y6Y8	-2,18	0,00	0,02	TRUE	9	SEC23-interacting protein
CUL4A	Q13619	-2,21	0,01	0,04	TRUE	5	Cullin-4A
KIF13B	Q9NQT8	-2,21	0,00	0,01	TRUE	8	Kinesin-like protein KIF13B
PES1	000541-2	-2,22	0,00	0,02	TRUE	3	Pescadillo homolog
CALD1	Q05682-5	-2,23	0,01	0,05	TRUE	9	Caldesmon
ACADSB	P45954-2	-2,25	0,00	0,01	TRUE	9	Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial
ADAM1 7	P78536	-2,25	0,00	0,02	TRUE	0	Disintegrin and metalloproteinase domain-containing protein 17
VCP	P55072	-2,27	0,00	0,01	TRUE	0	Transitional endoplasmic reticulum ATPase
CCDC93	Q567U6	-2,30	0,00	0,02	TRUE	5	Coiled-coil domain- containing protein 93
RPL34	P49207	-2,32	0,00	0,02	TRUE	0	60S ribosomal protein L34
TST	Q16762	-2,32	0,01	0,05	TRUE	7	Thiosulfate sulfurtransferase
PPME1	Q9Y570-2	-2,33	0,01	0,03	TRUE	2	Protein phosphatase methylesterase 1
TCEA2	Q15560-2	-2,35	0,00	0,01	TRUE	8	Transcription elongation factor A protein 2
DTNA	Q9Y4J8-16	-2,37	0,00	0,02	TRUE	8	Dystrobrevin alpha
DCTN2	Q13561	-2,39	0,00	0,01	TRUE	3	Dynactin subunit 2
MYO6	Q9UM54-5	-2,40	0,00	0,02	TRUE	7	Unconventional myosin-VI
UTRN	P46939	-2,41	0,00	0,02	TRUE	0	Utrophin
RPL19	P84098	-2,42	0,00	0,01	TRUE	0	60S ribosomal protein L19
SWAP70	Q9UH65	-2,42	0,01	0,03	TRUE	7	Switch-associated protein 70

TRAPPC 3	043617	-2,43	0,00	0,02	TRUE	6	Trafficking protein particle complex subunit 3
VAMP7	P51809-3	-2,46	0,01	0,04	TRUE	5	Vesicle-associated
PFKFB2	O60825-2	-2,47	0,01	0,04	TRUE	4	6-phosphofructo-2- kinase/fructose-2,6- bisphosphatase 2
ATP1A3	P13637	-2,50	0,01	0,04	TRUE	8	Sodium/potassium- transporting ATPase subunit alpha-3
PRKCA	P17252	-2,52	0,01	0,05	TRUE	1	Protein kinase C alpha type
HNRNP U	Q00839	-2,55	0,01	0,04	TRUE	0	Heterogeneous nuclear ribonucleoprotein U
TCAF1	Q9Y4C2-2	-2,55	0,00	0,03	TRUE	5	TRPM8 channel- associated factor 1
HP1BP3	Q5SSJ5	-2,56	0,00	0,02	TRUE	2	Heterochromatin protein 1-binding protein 3
NUCB1	Q02818	-2,56	0,00	0,02	TRUE	6	Nucleobindin-1
PCK2	Q16822	-2,57	0,00	0,02	TRUE	6	Phosphoenolpyruvate carboxykinase [GTP], mitochondrial
HTATSF 1	043719	-2,60	0,01	0,04	TRUE	5	HIV Tat-specific factor 1
ILF3	Q12906-5	-2,60	0,01	0,04	TRUE	8	Interleukin enhancer- binding factor 3
GNA11	P29992	-2,61	0,01	0,05	TRUE	6	Guanine nucleotide- binding protein subunit alpha-11
FGF2	P09038-2	-2,62	0,00	0,02	TRUE	9	Fibroblast growth factor 2
HMCN1	Q96RW7-2	-2,63	0,01	0,04	TRUE	6	Hemicentin-1
CTSD	P07339	-2,64	0,00	0,02	TRUE	0	Cathepsin D
PRKRA	075569-3	-2,65	0,00	0,01	TRUE	7	Interferon-inducible double-stranded RNA- dependent protein kinase activator A
PRPF31	Q8WWY3- 2	-2,65	0,00	0,03	TRUE	5	U4/U6 small nuclear ribonucleoprotein Prp31
KTN1	Q86UP2-2	-2,66	0,00	0,02	TRUE	7	Kinectin
PDCD4	Q53EL6-2	-2,66	0,01	0,04	TRUE	7	Programmed cell death protein 4
PRPF6	O94906	-2,67	0,01	0,04	TRUE	4	Pre-mRNA-processing factor 6
AHCYL2	Q96HN2-2	-2,69	0,00	0,01	TRUE	6	Putative adenosylhomocysteinase 3
RPS14	P62263	-2,69	0,00	0,01	TRUE	0	40S ribosomal protein S14
RABGGT A	Q92696	-2,70	0,00	0,02	TRUE	4	Geranylgeranyl transferase type-2 subunit alpha
BPNT1	095861-4	-2,71	0,01	0,03	TRUE	2	3(2),5-bisphosphate nucleotidase 1
LSS	P48449-2	-2,71	0,00	0,02	TRUE	7	Lanosterol synthase
SH3PXD 2A	Q5TCZ1-2	-2,73	0,00	0,02	TRUE	8	SH3 and PX domain- containing protein 2A
SLFN5	Q08AF3	-2,73	0,01	0,04	TRUE	6	Schlafen family member 5
RAB6B	Q9NRW1	-2,75	0,00	0,01	TRUE	8	Ras-related protein Rab- 6B
ATP6V1 A	P38606-2	-2,76	0,00	0,01	TRUE	0	V-type proton ATPase catalytic subunit A
HCFC1	P51610-2	-2,78	0,00	0,03	TRUE	6	Host cell factor 1
PEPD	P12955-3	-2,79	0,00	0,02	TRUE	4	Xaa-Pro dipeptidase
STOM	P27105	-2,80	0,00	0,02	TRUE	0	Erythrocyte band 7 integral membrane protein
SKIV2L	Q15477	-2,81	0,01	0,04	TRUE	4	Helicase SKI2W

UQCRC1	P31930	-2,81	0,00	0,00	TRUE	8	Cytochrome b-c1 complex subunit 1, mitochondrial
ADD1	P35611-2	-2,83	0,00	0,02	TRUE	4	Alpha-adducin
GOT1	P17174	-2,83	0,00	0,01	TRUE	3	Aspartate aminotransferase, cytoplasmic
STIP1	P31948-3	-2,84	0,00	0,03	TRUE	1	Stress-induced- phosphoprotein 1
HNRNPA 2B1	P22626-2	-2,87	0,00	0,02	TRUE	2	Heterogeneous nuclear ribonucleoproteins A2/B1
MFSD12	Q6NUT3-2	-2,87	0,01	0,04	TRUE	2	Major facilitator superfamily domain- containing protein 12
CAPN1	P07384	-2,88	0,00	0,02	TRUE	4	Calpain-1 catalytic subunit
SCPEP1	Q9HB40	-2,90	0,00	0,03	TRUE	4	Retinoid-inducible serine carboxypeptidase
CRBN	Q96SW2-2	-2,93	0,00	0,01	TRUE	5	Protein cereblon
ADCY6	O43306-2	-2,96	0,00	0,01	TRUE	8	Adenylate cyclase type 6
PLCD1	P51178	-2,97	0,00	0,02	TRUE	6	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-1
SAFB	Q15424-2	-2,97	0,00	0,02	TRUE	9	Scaffold attachment factor B1
SGCB	Q16585	-2,97	0,00	0,02	TRUE	9	Beta-sarcoglycan
FAS	P25445-6	-2,98	0,00	0,02	TRUE	0	Tumor necrosis factor receptor superfamily member 6
RPL15	P61313	-2,98	0,00	0,02	TRUE	0	60S ribosomal protein L15
PSMA7	014818	-3,00	0,01	0,04	TRUE	1	Proteasome subunit alpha type-7
PFDN5	Q99471	-3,02	0,00	0,00	TRUE	8	Prefoldin subunit 5
DENR	O43583	-3,04	0,00	0,01	TRUE	3	Density-regulated protein
CCAR2	Q8N163-2	-3,06	0,00	0,01	TRUE	6	Cell cycle and apoptosis regulator protein 2
ABCC2	Q92887	-3,07	0,01	0,04	TRUE	8	Canalicular multispecific organic anion transporter 1
ATP6V1 C1	P21283	-3,08	0,00	0,01	TRUE	5	V-type proton ATPase subunit C 1
CHP1	Q99653	-3,08	0,00	0,00	TRUE	8	Calcineurin B homologous protein 1
BCKDHA	P12694	-3,09	0,00	0,01	TRUE	3	2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial
CUL1	Q13616	-3,09	0,00	0,01	TRUE	2	Cullin-1
PGM2	Q96G03	-3,10	0,00	0,00	TRUE	0	Phosphoglucomutase-2
RBX1	P62877	-3,12	0,00	0,00	TRUE	4	E3 ubiquitin-protein ligase RBX1
ТРРР	094811	-3,13	0,00	0,02	TRUE	7	Tubulin polymerization- promoting protein
SRP72	076094	-3,14	0,00	0,01	TRUE	4	Signal recognition particle subunit SRP72
SLC2A13	Q96QE2	-3,16	0,00	0,00	TRUE	7	Proton myo-inositol cotransporter
AK1	P00568	-3,20	0,00	0,01	TRUE	2	Adenylate kinase isoenzyme 1
EXOC6B	Q9Y2D4	-3,20	0,00	0,01	TRUE	5	Exocyst complex component 6B
GPHN	Q9NQX3	-3,20	0,01	0,03	TRUE	5	Gephyrin
HSP90B 1	P14625	-3,20	0,00	0,00	TRUE	0	Endoplasmin
RPL37A	P61513	-3,20	0,00	0,01	TRUE	2	60S ribosomal protein L37a
PGM2L1	Q6PCE3	-3,21	0,00	0,00	TRUE	6	Glucose 1,6-bisphosphate synthase

AIFM1	095831-5	-3,23	0,00	0,01	TRUE	7	Apoptosis-inducing factor 1, mitochondrial
ATP6V1 D	Q9Y5K8	-3,24	0,00	0,03	TRUE	2	V-type proton ATPase subunit D
DMD	P11532-10	-3,24	0,01	0,05	TRUE	3	Dystrophin
KIF21A	Q7Z4S6-6	-3,24	0,00	0,01	TRUE	6	Kinesin-like protein KIF21A
TDRD7	Q8NHU6-2	-3,24	0,00	0,00	TRUE	4	Tudor domain-containing protein 7
UEVLD	Q8IX04-6	-3,24	0,01	0,03	TRUE	6	Ubiquitin-conjugating enzyme E2 variant 3
PRDX1	Q06830	-3,25	0,00	0,01	TRUE	0	Peroxiredoxin-1
PARK7	Q99497	-3,28	0,00	0,01	TRUE	2	Protein deglycase DJ-1
SMC3	Q9UQE7	-3,28	0,00	0,01	TRUE	5	Structural maintenance of chromosomes protein 3
CD2AP	Q9Y5K6	-3,30	0,00	0,02	TRUE	4	CD2-associated protein
CPT2	P23786	-3,31	0,00	0,01	TRUE	7	Carnitine O- palmitoyltransferase 2, mitochondrial
NDUFS1	P28331	-3,31	0,00	0,00	TRUE	8	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial
LYST	Q99698	-3,32	0,00	0,01	TRUE	7	Lysosomal-trafficking regulator
MADD	Q8WXG6-6	-3,33	0,00	0,01	TRUE	4	MAP kinase-activating death domain protein
DHDH	Q9UQ10	-3,34	0,00	0,00	TRUE	9	Trans-1,2- dihydrobenzene-1,2-diol dehydrogenase
PPP2R4	Q15257-3	-3,34	0,00	0,03	TRUE	9	Serine/threonine-protein phosphatase 2A activator
SPTAN1	Q13813-3	-3,36	0,00	0,01	TRUE	0	Spectrin alpha chain, non- erythrocytic 1
PGM3	O95394	-3,38	0,00	0,02	TRUE	2	Phosphoacetylglucosamin e mutase
RENBP	P51606	-3,39	0,00	0,00	TRUE	7	N-acylglucosamine 2- epimerase
RSL1D1	076021	-3,39	0,00	0,01	TRUE	7	Ribosomal L1 domain- containing protein 1
TRAF2	Q12933-4	-3,39	0,01	0,03	TRUE	7	TNF receptor-associated factor 2
COPS3	Q9UNS2	-3,41	0,00	0,03	TRUE	2	COP9 signalosome complex subunit 3
WDR18	Q9BV38	-3,41	0,00	0,01	TRUE	5	WD repeat-containing protein 18
DYNC1LI 2	043237-2	-3,44	0,00	0,01	TRUE	3	Cytoplasmic dynein 1 light intermediate chain 2
CSRP2	Q16527	-3,45	0,00	0,00	TRUE	8	cysteine and glycine-rich protein 2
МАРКЗ	P27361	-3,45	0,01	0,04	TRUE	2	Mitogen-activated protein kinase 3
TRPV2	Q9Y5S1	-3,45	0,00	0,01	TRUE	1	Transient receptor potential cation channel subfamily V member 2
CSRP1	P21291	-3,46	0,00	0,02	TRUE	3	Cysteine and glycine-rich protein 1
SFPQ	P23246	-3,46	0,00	0,02	TRUE	2	Splicing factor, proline- and glutamine-rich
COPS7A	Q9UBW8	-3,47	0,00	0,00	TRUE	4	COP9 signalosome complex subunit 7a
DNPEP	Q9ULA0	-3,47	0,00	0,00	TRUE	6	Aspartyl aminopeptidase
OCA2	Q04671-3	-3,47	0,00	0,00	TRUE	8	P protein
HSPA2	P54652	-3,48	0,00	0,01	TRUE	3	Heat shock-related 70 kDa protein 2
GOT2	P00505-2	-3,49	0,00	0,01	TRUE	5	Aspartate aminotransferase, mitochondrial
LAP3	P28838-2	-3,49	0,00	0,01	TRUE	1	Cytosol aminopeptidase

							ATD damagedant Cla
CLPP	Q16740	-3,51	0,00	0,00	TRUE	8	protease proteolytic subunit, mitochondrial
SERBP1	Q8NC51-4	-3,51	0,00	0,01	TRUE	1	Plasminogen activator inhibitor 1 RNA-binding protein
ADAMT S4	075173	-3,52	0,00	0,01	TRUE	8	A disintegrin and metalloproteinase with thrombospondin motifs 4
KCNJ13	O60928	-3,52	0,00	0,01	TRUE	8	Inward rectifier potassium channel 13
NDUFV1	P49821-2	-3,53	0,00	0,01	TRUE	8	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial
SNTB2	Q13425	-3,53	0,00	0,03	TRUE	2	Beta-2-syntrophin
SOD1	P00441	-3,54	0,00	0,02	TRUE	6	Superoxide dismutase [Cu- Zn]
ABAT	P80404	-3,56	0,00	0,00	TRUE	8	4-aminobutyrate aminotransferase, mitochondrial
ATP6V1 B2	P21281	-3,56	0,00	0,00	TRUE	0	V-type proton ATPase subunit B, brain isoform
CADPS	Q9ULU8-2	-3,56	0,00	0,01	TRUE	6	Calcium-dependent secretion activator 1
EPHX1	P07099	-3,56	0,01	0,03	TRUE	5	Epoxide hydrolase 1
LZTS1	Q9Y250-5	-3,56	0,00	0,01	TRUE	7	Leucine zipper putative tumor suppressor 1
PLD3	Q8IV08	-3,56	0,00	0,01	TRUE	6	Phospholipase D3
FDXR	P22570-7	-3,59	0,00	0,01	TRUE	9	NADPH:adrenodoxin oxidoreductase, mitochondrial
IFIT1	P09914-2	-3,60	0,00	0,00	TRUE	8	Interferon-induced protein with tetratricopeptide repeats 1
PTRF	Q6NZI2	-3,60	0,00	0,02	TRUE	8	Polymerase I and transcript release factor
EXOC1	Q9NV70-2	-3,62	0,00	0,02	TRUE	10	Exocyst complex component 1
NPEPPS	P55786	-3,62	0,00	0,01	TRUE	2	Puromycin-sensitive aminopeptidase
HK1	P19367-4	-3,63	0,00	0,00	TRUE	1	Hexokinase-1
RPL14	P50914	-3,65	0,00	0,01	TRUE	0	60S ribosomal protein L14
HSPA12 A	O43301	-3,67	0,00	0,00	TRUE	8	Heat shock 70 kDa protein 12A
ADAMT S2	O95450	-3,69	0,00	0,01	TRUE	6	A disintegrin and metalloproteinase with thrombospondin motifs 2
PIP4K2B	P78356	-3,69	0,00	0,00	TRUE	4	Phosphatidylinositol 5- phosphate 4-kinase type-2 beta
PCSK2	P16519-2	-3,70	0,00	0,01	TRUE	7	Neuroendocrine convertase 2
UBA2	Q9UBT2	-3,71	0,00	0,02	TRUE	3	SUMO-activating enzyme subunit 2
SHMT2	P34897-3	-3,72	0,00	0,00	TRUE	1	Serine hydroxymethyltransferase , mitochondrial
HPRT1	P00492	-3,74	0,00	0,02	TRUE	4	Hypoxanthine-guanine phosphoribosyltransferas e
OAT	P04181	-3,78	0,00	0,00	TRUE	8	Ornithine aminotransferase, mitochondrial
IDH2	P48735-2	-3,83	0,00	0,01	TRUE	6	Isocitrate dehydrogenase [NADP], mitochondrial
HNRNPA 1	P09651-3	-3,84	0,00	0,01	TRUE	5	Heterogeneous nuclear ribonucleoprotein A1
TPM4	P67936	-3,85	0,00	0,01	TRUE	6	Tropomyosin alpha-4 chain

CEACAM 1	P13688-2	-3,87	0,00	0,03	TRUE	6	Carcinoembryonic antigen-related cell adhesion molecule 1
SYT1	P21579	-3,87	0,00	0,00	TRUE	8	Synaptotagmin-1
CCDC50	Q8IVM0	-3,89	0,01	0,05	TRUE	4	Coiled-coil domain- containing protein 50
CRMP1	Q14194	-3,92	0,00	0,00	TRUE	6	Dihydropyrimidinase- related protein 1
QPRT	Q15274	-3,93	0,00	0,01	TRUE	6	Nicotinate-nucleotide pyrophosphorylase [carboxylating]
DDAH2	O95865	-3,94	0,00	0,01	TRUE	6	N(G),N(G)- dimethylarginine dimethylaminohydrolase 2
FKBP3	Q00688	-3,94	0,00	0,00	TRUE	8	Peptidyl-prolyl cis-trans isomerase FKBP3
MICAL1	Q8TDZ2	-3,94	0,00	0,01	TRUE	5	Protein-methionine sulfoxide oxidase MICAL1
NAA10	P41227-2	-3,95	0,00	0,01	TRUE	7	N-alpha-acetyltransferase 10
LMNA	P02545-2	-3,96	0,00	0,02	TRUE	2	Prelamin-A/C
COL12A 1	Q99715	-3,98	0,01	0,04	TRUE	3	Collagen alpha-1(XII) chain
GRN	P28799-3	-3,99	0,00	0,01	TRUE	7	Granulins
HNRNP D	Q14103-4	-4,00	0,00	0,01	TRUE	4	Heterogeneous nuclear ribonucleoprotein D0
CRYL1	Q9Y2S2-2	-4,01	0,00	0,01	TRUE	7	Lambda-crystallin homolog
ATP6V0 D1	P61421	-4,02	0,00	0,01	TRUE	4	V-type proton ATPase subunit d 1
ATP6V1 E1	P36543	-4,05	0,01	0,04	TRUE	5	V-type proton ATPase subunit E 1
ALDH7A 1	P49419-2	-4,07	0,00	0,00	TRUE	2	Alpha-aminoadipic semialdehyde dehydrogenase
PRELP	P51888	-4,12	0,00	0,01	TRUE	6	Prolargin
HSPD1	P10809	-4,15	0,00	0,00	TRUE	0	60 kDa heat shock protein, mitochondrial
FMN1	Q68DA7	-4,16	0,00	0,02	TRUE	6	Formin-1
CYB561 A3	Q8NBI2	-4,17	0,00	0,02	TRUE	6	Cytochrome b ascorbate- dependent protein 3
FARP2	O94887	-4,17	0,00	0,01	TRUE	6	FERM, RhoGEF and pleckstrin domain- containing protein 2
LIMA1	Q9UHB6	-4,20	0,00	0,01	TRUE	4	LIM domain and actin- binding protein 1
TAGLN	Q01995	-4,21	0,00	0,00	TRUE	8	Transgelin
ATP6V0 A1	Q93050-1	-4,23	0,00	0,01	TRUE	2	V-type proton ATPase 116 kDa subunit a isoform 1
DPYSL2	Q16555-2	-4,25	0,00	0,01	TRUE	2	Dihydropyrimidinase- related protein 2
SYN1	P17600-2	-4,25	0,00	0,00	TRUE	8	Synapsin-1
DKK1	094907	-4,27	0,00	0,01	TRUE	7	Dickkopf-related protein 1
RBM28	Q9NW13	-4,27	0,00	0,00	TRUE	7	RNA-binding protein 28
RAB3C	Q96E17	-4,29	0,00	0,01	TRUE	9	Ras-related protein Rab- 3C
IGFBP7	Q16270-2	-4,30	0,00	0,02	TRUE	4	Insulin-like growth factor- binding protein 7
COL1A2	P08123	-4,32	0,00	0,01	TRUE	7	Collagen alpha-2(I) chain
ENOPH1	Q9UHY7-2	-4,32	0,00	0,00	TRUE	8	Enolase-phosphatase E1
MDH1	P40925	-4,34	0,00	0,00	TRUE	0	Malate dehydrogenase, cytoplasmic
ATP5A1	P25705	-4,35	0,00	0,01	TRUE	3	ATP synthase subunit alpha, mitochondrial

HNRNP UL2	Q1KMD3	-4,37	0,00	0,00	TRUE	2	Heterogeneous nuclear ribonucleoprotein U-like protein 2
UBA6	A0AVT1	-4,37	0,00	0,00	TRUE	5	Ubiquitin-like modifier- activating enzyme 6
HIBADH	P31937	-4,38	0,00	0,00	TRUE	8	3-hydroxyisobutyrate dehydrogenase, mitochondrial
CS	075390	-4,40	0,00	0,03	TRUE	1	Citrate synthase, mitochondrial
RPL13A	P40429	-4,42	0,00	0,01	TRUE	3	60S ribosomal protein L13a
DNAJA4	Q8WW22- 3	-4,43	0,00	0,01	TRUE	6	DnaJ homolog subfamily A member 4
HADHB	P55084-2	-4,44	0,00	0,01	TRUE	5	Trifunctional enzyme subunit beta, mitochondrial
GMPPA	Q96IJ6	-4,46	0,00	0,00	TRUE	5	Mannose-1-phosphate guanyltransferase alpha
PHLDA3	Q9Y5J5	-4,53	0,00	0,00	TRUE	8	Pleckstrin homology-like domain family A member 3
CUL4B	Q13620-3	-4,56	0,00	0,00	TRUE	1	Cullin-4B
FBN1	P35555	-4,56	0,00	0,01	TRUE	4	Fibrillin-1
ME2	P23368	-4,56	0,00	0,00	TRUE	8	NAD-dependent malic enzyme, mitochondrial
HNRNPA 3	P51991-2	-4,57	0,00	0,00	TRUE	4	Heterogeneous nuclear ribonucleoprotein A3
СКВ	P12277	-4,59	0,00	0,00	TRUE	8	Creatine kinase B-type
MAP4	P27816	-4,60	0,00	0,00	TRUE	8	Microtubule-associated protein 4
IDH3A	P50213	-4,61	0,00	0,00	TRUE	7	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial
RAB32	Q13637	-4,62	0,00	0,03	TRUE	3	Ras-related protein Rab- 32
DAK	Q3LXA3	-4,64	0,00	0,00	TRUE	7	Bifunctional ATP- dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing)
DECR1	Q16698-2	-4,64	0,00	0,00	TRUE	4	2,4-dienoyl-CoA reductase, mitochondrial
SLC18B1	Q6NT16	-4,67	0,00	0,00	TRUE	8	MFS-type transporter SLC18B1
DLD	P09622-3	-4,70	0,00	0,00	TRUE	8	Dihydrolipoyl dehydrogenase, mitochondrial
FKBP5	Q13451	-4,70	0,00	0,00	TRUE	7	Peptidyl-prolyl cis-trans isomerase FKBP5
ALDOC	P09972	-4,74	0,00	0,00	TRUE	3	Fructose-bisphosphate aldolase C
SEMA3C	Q99985	-4,75	0,00	0,02	TRUE	6	Semaphorin-3C
PTPRM	P28827	-4,76	0,00	0,01	TRUE	3	Receptor-type tyrosine- protein phosphatase mu
SAE1	Q9UBE0-2	-4,77	0,00	0,00	TRUE	3	SUMO-activating enzyme subunit 1
LGALS3	P17931	-4,89	0,00	0,01	TRUE	4	Galectin-3
IVD	P26440-2	-4,93	0,00	0,00	TRUE	7	Isovaleryl-CoA dehydrogenase, mitochondrial
RAB3D	095716	-4,95	0,00	0,00	TRUE	6	Ras-related protein Rab- 3D
NSG1	P42857	-5,00	0,00	0,00	TRUE	7	Neuron-specific protein family member 1
BCAN	Q96GW7-2	-5,06	0,00	0,00	TRUE	5	Brevican core protein
PMEL	P40967-4	-5,06	0,00	0,01	TRUE	5	Melanocyte protein PMEL
FLNB	075369-6	-5,08	0,00	0,00	TRUE	4	Filamin-B

SCG2	P13521	-5,08	0,00	0,00	TRUE	7	Secretogranin-2
ALDH1A 1	P00352	-5,09	0,00	0,00	TRUE	0	Retinal dehydrogenase 1
DDB1	Q16531	-5,09	0,00	0,00	TRUE	3	DNA damage-binding protein 1
MYO5A	Q9Y4I1-2	-5,09	0,00	0,00	TRUE	0	Unconventional myosin- Va
SUCLG1	P53597	-5,09	0,00	0,00	TRUE	8	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial
IGSF1	Q8N6C5-2	-5,11	0,00	0,00	TRUE	5	Immunoglobulin superfamily member 1
VAT1L	Q9HCJ6	-5,11	0,00	0,00	TRUE	6	Synaptic vesicle membrane protein VAT-1 homolog-like
ALDH18 A1	P54886-2	-5,18	0,00	0,00	TRUE	8	Delta-1-pyrroline-5- carboxylate synthase
BASP1	P80723	-5,20	0,00	0,00	TRUE	8	Brain acid soluble protein 1
CMAS	Q8NFW8	-5,20	0,00	0,00	TRUE	3	N-acylneuraminate cytidylyltransferase
PLXNC1	O60486	-5,21	0,00	0,01	TRUE	1	Plexin-C1
SLC16A6	015403	-5,24	0,00	0,01	TRUE	3	Monocarboxylate transporter 7
TYR	P14679	-5,26	0,00	0,00	TRUE	5	Tyrosinase
OXCT1	P55809	-5,28	0,00	0,00	TRUE	6	Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial
DLAT	P10515	-5,29	0,00	0,00	TRUE	3	Dihydrolipoyllysine- residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial
HSPA9	P38646	-5,35	0,00	0,00	TRUE	5	Stress-70 protein, mitochondrial
CYR61	000622	-5,36	0,00	0,00	TRUE	3	Protein CYR61
EZR	P15311	-5,40	0,00	0,00	TRUE	2	Ezrin
ETFA	P13804-2	-5,47	0,00	0,00	TRUE	8	Electron transfer flavoprotein subunit alpha, mitochondrial
ACSS3	Q9H6R3	-5,50	0,00	0,00	TRUE	8	Acyl-CoA synthetase short-chain family member 3, mitochondrial
RAB3A	P20336	-5,51	0,00	0,00	TRUE	8	Ras-related protein Rab- 3A
ACAT1	P24752	-5,66	0,00	0,00	TRUE	7	Acetyl-CoA acetyltransferase, mitochondrial
RAB38	P57729	-5,67	0,00	0,00	TRUE	6	Ras-related protein Rab- 38
RALY	Q9UKM9-2	-5,68	0,00	0,00	TRUE	2	RNA-binding protein Raly
SGCD	Q92629	-5,84	0,00	0,00	TRUE	2	Delta-sarcoglycan
ENO2	P09104-2	-5,96	0,00	0,00	TRUE	8	Gamma-enolase
ETFB	P38117	-6,01	0,00	0,00	TRUE	8	Electron transfer flavoprotein subunit beta
ACO2	Q99798	-6,02	0,00	0,00	TRUE	3	Aconitate hydratase, mitochondrial
GLUD1	P00367	-6,03	0,00	0,00	TRUE	5	Glutamate dehydrogenase 1, mitochondrial
DPYSL3	Q14195-2	-6,07	0,00	0,00	TRUE	4	Dihydropyrimidinase- related protein 3
NCAM2	015394	-6,07	0,00	0,00	TRUE	4	Neural cell adhesion molecule 2
OGDH	Q02218-2	-6,25	0,00	0,00	TRUE	4	2-oxoglutarate dehydrogenase, mitochondrial

AVP	P01185	-6,29	0,00	0,00	TRUE	8	Vasopressin-neurophysin 2-copeptin
L1CAM	P32004-3	-6,30	0,00	0,00	TRUE	4	Neural cell adhesion molecule L1
MY01D	094832	-6,38	0,00	0,00	TRUE	1	Unconventional myosin-Id
DPP4	P27487	-6,42	0,00	0,00	TRUE	0	Dipeptidyl peptidase 4
CRYM	Q14894	-6,43	0,00	0,00	TRUE	6	Ketimine reductase mu- crystallin
HADHA	P40939	-6,49	0,00	0,00	TRUE	6	Trifunctional enzyme subunit alpha, mitochondrial
MLANA	Q16655	-6,64	0,00	0,00	TRUE	1	Melanoma antigen recognized by T-cells 1
LGI3	Q8N145-2	-6,65	0,00	0,00	TRUE	2	Leucine-rich repeat LGI family member 3
EEF1A2	Q05639	-6,76	0,00	0,00	TRUE	7	Elongation factor 1-alpha 2
GDF15	Q99988	-6,79	0,00	0,02	TRUE	3	Growth/differentiation factor 15
ALDH2	P05091	-6,83	0,00	0,00	TRUE	5	Aldehyde dehydrogenase, mitochondrial
MDH2	P40926	-7,00	0,00	0,00	TRUE	5	Malate dehydrogenase, mitochondrial
PDHA1	P08559-3	-7,07	0,00	0,00	TRUE	6	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial
GPR143	P51810	-7,26	0,00	0,00	TRUE	6	G-protein coupled receptor 143
UCHL1	P09936	-7,98	0,00	0,00	TRUE	6	Ubiquitin carboxyl- terminal hydrolase isozyme L1
ATP5B	P06576	-8,49	0,00	0,00	TRUE	6	ATP synthase subunit beta, mitochondrial
TYRP1	P17643	-8,88	0,00	0,00	TRUE	5	5,6-dihydroxyindole-2- carboxylic acid oxidase
P2RX7	Q99572	-9,08	0,00	0,00	TRUE	1	P2X purinoceptor 7
THBS2	P35442	4,46	0,05	0,15	FALSE	1	Thrombospondin-2
DNAH8	Q96JB1-2	3,95	0,02	0,07	FALSE	9	Dynein heavy chain 8, axonemal
HLA- DRB1	Q29974	3,92	0,04	0,13	FALSE	2	HLA class II histocompatibility antigen, DRB1-16 beta chain
ANPEP	P15144	3,83	0,05	0,16	FALSE	0	Aminopeptidase N
MGP	P08493	3,33	0,15	0,31	FALSE	7	Matrix Gla protein
NBEAL2	Q6ZNJ1-2	3,29	0,01	0,06	FALSE	4	Neurobeachin-like protein 2
PLAUR	Q03405-3	3,29	0,09	0,22	FALSE	4	Urokinase plasminogen activator surface receptor
EMILIN1	Q9Y6C2	3,27	0,07	0,19	FALSE	0	EMILIN-1
ALDH1A 3	P47895	3,26	0,05	0,16	FALSE	3	Aldehyde dehydrogenase family 1 member A3
C1QTNF 3	Q9BXJ4-3	3,17	0,05	0,16	FALSE	2	Complement C1q tumor necrosis factor-related protein 3
DNAJB1 1	Q9UBS4	3,12	0,02	0,08	FALSE	5	DnaJ homolog subfamily B member 11
HIST1H1 C	P16403	3,09	0,03	0,11	FALSE	0	Histone H1.2
BLVRA	P53004	3,00	0,02	0,09	FALSE	7	Biliverdin reductase A
HMGB2	P26583	2,97	0,02	0,09	FALSE	7	High mobility group protein B2
UROC1	Q96N76	2,96	0,04	0,12	FALSE	5	Urocanate hydratase
HLA- DRB1.1	Q95IE3	2,94	0,03	0,12	FALSE	8	HLA class II histocompatibility antigen, DRB1-12 beta chain

MAN1A 1	P33908	2,94	0,03	0,10	FALSE	4	Mannosyl-oligosaccharide 1.2-alpha-mannosidase IA
F10	P00742	2,91	0,01	0,06	FALSE	3	Coagulation factor X
APOM	095445-2	2,78	0,09	0,21	FALSE	2	Apolipoprotein M
SRGAP2	075044	2,77	0,05	0,14	FALSE	6	SLIT-ROBO Rho GTPase- activating protein 2
LIMS1	P48059	2,73	0,03	0,10	FALSE	3	LIM and senescent cell antigen-like-containing domain protein 1
SET	Q01105-2	2,73	0,06	0,16	FALSE	3	Protein SET
SUB1	P53999	2,72	0,03	0,11	FALSE	5	Activated RNA polymerase II transcriptional coactivator p15
ZRANB2	095218-2	2,72	0,01	0,05	FALSE	6	Zinc finger Ran-binding domain-containing protein 2
PTGES3	Q15185-3	2,64	0,05	0,14	FALSE	2	Prostaglandin E synthase 3
SRSF7	Q16629-3	2,64	0,02	0,08	FALSE	8	Serine/arginine-rich splicing factor 7
RSU1	Q15404	2,62	0,01	0,06	FALSE	4	Ras suppressor protein 1
SERPINA 3	P01011	2,62	0,05	0,14	FALSE	7	Alpha-1-antichymotrypsin
HTRA1	Q92743	2,58	0,02	0,09	FALSE	0	Serine protease HTRA1
AOC3	Q16853	2,57	0,05	0,14	FALSE	7	Membrane primary amine oxidase
СКМ	P06732	2,56	0,01	0,06	FALSE	4	Creatine kinase M-type
HMGCS 1	Q01581	2,56	0,07	0,19	FALSE	3	Hydroxymethylglutaryl- CoA synthase, cytoplasmic
COMMD 5	Q9GZQ3	2,55	0,05	0,15	FALSE	4	COMM domain-containing protein 5
UBR4	Q5T4S7-3	2,55	0,04	0,13	FALSE	1	E3 ubiquitin-protein ligase UBR4
SLC26A2	P50443	2,53	0,01	0,05	FALSE	1	Sulfate transporter
PPP1R1 2A	014974-5	2,53	0,02	0,09	FALSE	4	Protein phosphatase 1 regulatory subunit 12A
RGN	Q15493	2,51	0,04	0,13	FALSE	1	Regucalcin
HLA- DRA	P01903	2,51	0,26	0,44	FALSE	7	HLA class II histocompatibility antigen, DR alpha chain
DSP	P15924-2	2,50	0,03	0,10	FALSE	5	Desmoplakin
OSBPL3	Q9H4L5-2	2,50	0,02	0,07	FALSE	6	Oxysterol-binding protein- related protein 3
SEMA4B	Q9NPR2-2	2,50	0,08	0,21	FALSE	7	Semaphorin-4B
GALNT2	Q10471	2,49	0,04	0,13	FALSE	2	Polypeptide N- acetylgalactosaminyltrans ferase 2
SULT1E1	P49888	2,48	0,03	0,10	FALSE	7	Estrogen sulfotransferase
GPRC5B	Q9NZH0	2,46	0,11	0,25	FALSE	6	G-protein coupled receptor family C group 5 member B
LSAMP	Q13449	2,44	0,16	0,32	FALSE	8	Limbic system-associated membrane protein
PARVB	Q9HBI1-3	2,44	0,06	0,18	FALSE	2	Beta-parvin
EHD3	Q9NZN3	2,43	0,03	0,11	FALSE	2	EH domain-containing protein 3
P4HA1	P13674-3	2,42	0,02	0,09	FALSE	5	Prolyl 4-hydroxylase subunit alpha-1
IKBKAP	095163	2,41	0,11	0,26	FALSE	4	Elongator complex protein 1
BAG2	095816-2	2,40	0,02	0,08	FALSE	4	BAG family molecular chaperone regulator 2
SPRR2D	P22532	2,40	0,09	0,23	FALSE	5	Small proline-rich protein 2D
CLSTN1	094985	2,38	0,03	0,12	FALSE	6	Calsyntenin-1

HLA- DRB4	P13762	2,38	0,11	0,26	FALSE	7	HLA class II histocompatibility antigen, DR beta 4 chain
LOXL4	Q96JB6	2,37	0,17	0,33	FALSE	4	Lysyl oxidase homolog 4
LARP1	Q6PKG0-3	2,35	0,03	0,11	FALSE	3	La-related protein 1
VGF	015240	2,34	0,04	0,12	FALSE	3	Neurosecretory protein VGF
PLAT	P00750	2,33	0,02	0,07	FALSE	0	Tissue-type plasminogen activator
THBS4	P35443	2,32	0,09	0,22	FALSE	1	Thrombospondin-4
FAT1	Q14517	2,31	0,03	0,12	FALSE	0	Protocadherin Fat 1
PPIC	P45877	2,30	0,07	0,19	FALSE	9	Peptidyl-prolyl cis-trans isomerase C
SLC7A2	P52569	2,30	0,02	0,08	FALSE	8	Cationic amino acid transporter 2
PXDN	Q92626	2,25	0,07	0,19	FALSE	2	Peroxidasin homolog
HIST1H2 AJ	Q99878	2,25	0,14	0,29	FALSE	7	Histone H2A type 1-J
PLCG2	P16885	2,25	0,05	0,15	FALSE	2	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2
FAM3C	Q92520	2,24	0,04	0,14	FALSE	4	Protein FAM3C
U2AF2	P26368-2	2,22	0,01	0,06	FALSE	5	Splicing factor U2AF 65 kDa subunit
SFRP1	Q8N474	2,22	0,05	0,15	FALSE	5	Secreted frizzled-related protein 1
IGHG1	P01857	2,18	0,02	0,08	FALSE	4	lg gamma-1 chain C region
BLVRB	P30043	2,17	0,06	0,17	FALSE	8	Flavin reductase (NADPH)
CNN2	Q99439	2,17	0,02	0,08	FALSE	5	Calponin-2
MDK	P21741-2	2,16	0,10	0,24	FALSE	6	Midkine
AKR1D1	P51857-2	2,13	0,05	0,15	FALSE	5	3-oxo-5-beta-steroid 4- dehydrogenase
NACA	Q13765	2,12	0,24	0,42	FALSE	5	Nascent polypeptide- associated complex subunit alpha
ITGA9	Q13797	2,08	0,15	0,31	FALSE	7	Integrin alpha-9
SIPA1	Q96FS4	2,08	0,29	0,48	FALSE	7	Signal-induced proliferation-associated protein 1
CDH2	P19022-2	2,06	0,06	0,16	FALSE	4	Cadherin-2
PTMS	P20962	2,04	0,09	0,23	FALSE	7	Parathymosin
LEPRE1	Q32P28-4	2,02	0,02	0,07	FALSE	6	Prolyl 3-hydroxylase 1
PCDH7	O60245	1,99	0,08	0,20	FALSE	8	Protocadherin-7
KARS	Q15046	1,97	0,15	0,31	FALSE	6	LysinetRNA ligase
FARSA	Q9Y285	1,95	0,10	0,25	FALSE	6	PhenylalaninetRNA ligase alpha subunit
MASP2	O00187	1,95	0,12	0,27	FALSE	7	Mannan-binding lectin serine protease 2
СОМР	P49747	1,94	0,12	0,27	FALSE	1	Cartilage oligomeric matrix protein
RAB3GA P2	Q9H2M9	1,94	0,11	0,26	FALSE	3	Rab3 GTPase-activating protein non-catalytic subunit
ERGIC3	Q9Y282	1,93	0,13	0,28	FALSE	2	Endoplasmic reticulum- Golgi intermediate compartment protein 3
CAP2	P40123-3	1,92	0,08	0,21	FALSE	7	Adenylyl cyclase- associated protein 2
SLC39A1 4	Q15043-2	1,91	0,11	0,26	FALSE	1	Zinc transporter ZIP14
TG	P01266	1,91	0,05	0,16	FALSE	1	Thyroglobulin

ARHGEF 1	Q92888-2	1,90	0,01	0,06	FALSE	8	Rho guanine nucleotide exchange factor 1
ADK	P55263-3	1,89	0,11	0,26	FALSE	3	Adenosine kinase
DSG1	Q02413	1,88	0,04	0,12	FALSE	10	Desmoglein-1
SH3GLB 1	Q9Y371	1,88	0,06	0,16	FALSE	2	Endophilin-B1
DDX5	P17844-2	1,86	0,06	0,16	FALSE	5	Probable ATP-dependent RNA helicase DDX5
PVRL3	Q9NQS3	1,83	0,03	0,10	FALSE	6	Nectin-3
HPD	P32754-2	1,81	0,13	0,28	FALSE	2	4-hydroxyphenylpyruvate dioxygenase
PIP4K2A	P48426	1,80	0,04	0,13	FALSE	10	Phosphatidylinositol 5- phosphate 4-kinase type-2 alpha
PYCRL	Q53H96-2	1,79	0,04	0,14	FALSE	5	Pyrroline-5-carboxylate reductase 3
WNT5B	Q9H1J7	1,77	0,12	0,27	FALSE	6	Protein Wnt-5b
EML2	095834	1,75	0,01	0,05	FALSE	0	Echinoderm microtubule- associated protein-like 2
PELO	Q9BRX2	1,72	0,03	0,11	FALSE	2	Protein pelota homolog
MASP1	P48740	1,71	0,06	0,17	FALSE	0	Mannan-binding lectin serine protease 1
AEBP1	Q8IUX7	1,70	0,09	0,21	FALSE	0	Adipocyte enhancer- binding protein 1
COL6A1	P12109	1,70	0,25	0,43	FALSE	5	Collagen alpha-1(VI) chain
KIF23	Q02241	1,68	0,02	0,07	FALSE	8	Kinesin-like protein KIF23
EPB41	P11171-6	1,67	0,09	0,22	FALSE	9	Protein 4.1
VWF	P04275	1,67	0,06	0,16	FALSE	2	von Willebrand factor
MTPN	P58546	1,65	0,08	0,21	FALSE	3	Myotrophin
CTPS1	P17812	1,64	0,12	0,28	FALSE	5	CTP synthase 1
GLOD4	Q9HC38-2	1,62	0,18	0,35	FALSE	1	Glyoxalase domain- containing protein 4
HS3ST1	014792	1,62	0,06	0,16	FALSE	9	Heparansulfateglucosamine3-O-sulfotransferase 1
PLEKHO 2	Q8TD55-2	1,60	0,16	0,32	FALSE	1	Pleckstrin homology domain-containing family O member 2
PURB	Q96QR8	1,60	0,13	0,28	FALSE	5	Transcriptional activator protein Pur-beta
LAMC1	P11047	1,58	0,01	0,05	FALSE	0	Laminin subunit gamma-1
CLASP1	Q7Z460-2	1,57	0,05	0,15	FALSE	0	CLIP-associating protein 1
SLC44A1	Q8WWI5	1,56	0,06	0,16	FALSE	0	Choline transporter-like protein 1
SH3BP4	Q9P0V3	1,56	0,29	0,48	FALSE	6	SH3 domain-binding protein 4
HGD	Q93099	1,55	0,22	0,39	FALSE	6	Homogentisate 1,2- dioxygenase
EIF5B	O60841	1,54	0,04	0,13	FALSE	0	Eukaryotic translation initiation factor 5B
RELN	P78509-3	1,52	0,08	0,21	FALSE	6	Reelin
ANP32A	P39687	1,50	0,26	0,45	FALSE	9	Acidic leucine-rich nuclear phosphoprotein 32 family member A
ITGA7	Q13683-9	1,50	0,36	0,54	FALSE	6	Integrin alpha-7
PTGFRN	Q9P2B2	1,49	0,01	0,06	FALSE	0	Prostaglandin F2 receptor negative regulator
FLRT3	Q9NZU0	1,49	0,06	0,17	FALSE	6	Leucine-rich repeat transmembrane protein FLRT3
FZD1	Q9UP38	1,49	0,07	0,19	FALSE	1	Frizzled-1

GALNT1	Q10472	1,49	0,14	0,30	FALSE	8	Polypeptide N- acetylgalactosaminyltrans ferase 1
LPL	P06858	1,49	0,21	0,38	FALSE	8	Lipoprotein lipase
PRPF4B	Q13523	1,49	0,02	0,09	FALSE	9	Serine/threonine-protein kinase PRP4 homolog
SNF8	Q96H20-2	1,49	0,08	0,20	FALSE	8	Vacuolar-sorting protein SNF8
ACAP2	Q15057	1,48	0,11	0,25	FALSE	4	Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2
PODXL	000592-2	1,48	0,17	0,33	FALSE	8	Podocalyxin
COG4	Q9H9E3-3	1,47	0,16	0,32	FALSE	9	Conserved oligomeric Golgi complex subunit 4
ZDHHC2 0	Q5W0Z9-2	1,47	0,14	0,30	FALSE	4	Probable palmitoyltransferase ZDHHC20
DOCK2	Q92608	1,46	0,04	0,13	FALSE	6	Dedicator of cytokinesis protein 2
SRSF1	Q07955	1,46	0,02	0,08	FALSE	0	Serine/arginine-rich splicing factor 1
THBS1	P07996	1,46	0,12	0,26	FALSE	0	Thrombospondin-1
XYLB	075191-2	1,46	0,16	0,32	FALSE	2	Xylulose kinase
PBLD	P30039-2	1,42	0,09	0,23	FALSE	9	Phenazine biosynthesis- like domain-containing protein
HLA-A	P10316	1,41	0,27	0,45	FALSE	4	HLA class I histocompatibility antigen, A-69 alpha chain
SLC29A1	Q99808	1,40	0,16	0,32	FALSE	1	Equilibrative nucleoside transporter 1
VCAN	P13611-2	1,39	0,16	0,32	FALSE	9	Versican core protein
XRCC6	P12956-2	1,38	0,27	0,45	FALSE	2	X-ray repair cross- complementing protein 6
HMGA1	P17096	1,37	0,23	0,41	FALSE	7	High mobility group protein HMG-I/HMG-Y
ITGA6	P23229-5	1,37	0,14	0,29	FALSE	0	Integrin alpha-6
MYOF	Q9NZM1-2	1,37	0,14	0,29	FALSE	1	Myoferlin
NUP205	Q92621	1,37	0,12	0,27	FALSE	6	Nuclear pore complex protein Nup205
FAM171 A1	Q5VUB5	1,36	0,25	0,43	FALSE	9	Protein FAM171A1
FRY	Q5TBA9	1,36	0,04	0,12	FALSE	6	Protein furry homolog
PHGDH	043175	1,36	0,01	0,06	FALSE	0	D-3-phosphoglycerate dehydrogenase
CNTN1	Q12860-2	1,35	0,19	0,36	FALSE	2	Contactin-1
PREP	P48147	1,35	0,21	0,39	FALSE	3	Prolyl endopeptidase
SEMA4C	Q9C0C4	1,35	0,10	0,23	FALSE	3	Semaphorin-4C
COTL1	Q14019	1,34	0,03	0,11	FALSE	0	Coactosin-like protein
СТЅН	P09668	1,34	0,32	0,50	FALSE	8	Pro-cathepsin H
SNX5	Q9Y5X3	1,34	0,14	0,30	FALSE	4	Sorting nexin-5
CC2D1A	Q6P1N0-2	1,32	0,34	0,52	FALSE	8	Coiled-coil and C2 domain- containing protein 1A
MOXD1	Q6UVY6	1,32	0,24	0,42	FALSE	2	DBH-like monooxygenase protein 1
CD55	P08174-4	1,31	0,16	0,32	FALSE	0	Complement decay- accelerating factor
IGF2R	P11717	1,31	0,37	0,55	FALSE	1	Cation-independent mannose-6-phosphate receptor
TNS3	Q68CZ2-2	1,31	0,12	0,27	FALSE	8	Tensin-3
CAD	P27708	1,30	0,06	0,16	FALSE	0	CAD protein

EPHB3	P54753	1,30	0,15	0,31	FALSE	6	Ephrin type-B receptor 3
HARS	P12081-3	1,30	0,23	0,40	FALSE	3	HistidinetRNA ligase, cytoplasmic
BMP1	P13497	1,29	0,09	0,23	FALSE	0	Bone morphogenetic protein 1
DEK	P35659	1,29	0,13	0,29	FALSE	0	Protein DEK
PTPRS	Q13332-6	1,29	0,27	0,45	FALSE	1	Receptor-type tyrosine- protein phosphatase S
CHD4	Q14839	1,28	0,04	0,12	FALSE	0	Chromodomain-helicase- DNA-binding protein 4
FMNL2	Q96PY5	1,27	0,08	0,21	FALSE	2	Formin-like protein 2
PDCD6	075340	1,27	0,34	0,52	FALSE	3	Programmed cell death protein 6
LAMA2	P24043	1,27	0,05	0,15	FALSE	6	Laminin subunit alpha-2
ICAM1	P05362	1,26	0,17	0,33	FALSE	1	Intercellular adhesion molecule 1
C1R	P00736	1,26	0,28	0,46	FALSE	3	Complement C1r subcomponent
CACNA2 D1	P54289-4	1,26	0,17	0,34	FALSE	6	Voltage-dependent calcium channel subunit alpha-2/delta-1
EIF5	P55010	1,26	0,14	0,30	FALSE	2	Eukaryotic translation initiation factor 5
MVB12B	Q9H7P6	1,24	0,06	0,18	FALSE	0	Multivesicular body subunit 12B
GART	P22102	1,24	0,16	0,32	FALSE	4	Trifunctional purine biosynthetic protein adenosine-3
NID1	P14543-2	1,24	0,07	0,19	FALSE	0	Nidogen-1
FBLN5	Q9UBX5	1,23	0,13	0,29	FALSE	4	Fibulin-5
FXR1	P51114-3	1,23	0,18	0,34	FALSE	4	Fragile X mental retardation syndrome- related protein 1
DNAJB4	Q9UDY4	1,22	0,19	0,35	FALSE	5	DnaJ homolog subfamily B member 4
F2R	P25116	1,22	0,25	0,43	FALSE	4	Proteinase-activated receptor 1
PICALM	Q13492-4	1,21	0,18	0,34	FALSE	6	Phosphatidylinositol- binding clathrin assembly protein
RAB12	Q6IQ22	1,21	0,49	0,66	FALSE	6	Ras-related protein Rab- 12
SLC1A5	Q15758	1,20	0,04	0,13	FALSE	0	Neutral amino acid transporter B(0)
ABCF1	Q8NE71-2	1,19	0,19	0,36	FALSE	0	ATP-binding cassette sub- family F member 1
SRRM1	Q8IYB3-2	1,19	0,19	0,36	FALSE	8	Serine/arginine repetitive matrix protein 1
TUBB	P07437	1,19	0,18	0,34	FALSE	0	Tubulin beta chain
ТАОКЗ	Q9H2K8	1,18	0,20	0,37	FALSE	8	Serine/threonine-protein kinase TAO3
τνικ	Q9UKE5-8	1,18	0,22	0,40	FALSE	2	TRAF2 and NCK- interacting protein kinase
ITGA1	P56199	1,17	0,38	0,55	FALSE	2	Integrin alpha-1
SUPT16 H	Q9Y5B9	1,17	0,13	0,28	FALSE	0	FACT complex subunit SPT16
THBS3	P49746-2	1,17	0,13	0,28	FALSE	4	Thrombospondin-3
CTSZ	Q9UBR2	1,15	0,15	0,30	FALSE	3	Cathepsin Z
DNAH3	Q8TD57	1,15	0,53	0,69	FALSE	4	Dynein heavy chain 3, axonemal
ITIH5	Q86UX2-2	1,14	0,27	0,45	FALSE	7	Inter-alpha-trypsin inhibitor heavy chain H5
MAGED 2	Q9UNF1-2	1,14	0,15	0,31	FALSE	1	Melanoma-associated antigen D2
PRKAR1 A	P10644	1,14	0,37	0,55	FALSE	2	cAMP-dependent protein kinase type I-alpha regulatory subunit

ΡΤΜΑ	P06454-2	1,14	0,09	0,23	FALSE	10	Prothymosin alpha
FAP	Q12884	1,13	0,18	0,34	FALSE	8	Prolyl endopeptidase FAP
RELL1	Q8IUW5	1,13	0,47	0,64	FALSE	4	RELT-like protein 1
TGM2	P21980-2	1,13	0,26	0,44	FALSE	7	Protein-glutamine gamma- glutamyltransferase 2
NCAPD2	Q15021	1,12	0,12	0,27	FALSE	7	Condensin complex subunit 1
XRCC5	P13010	1,12	0,18	0,34	FALSE	0	X-ray repair cross- complementing protein 5
DAAM2	Q86T65-4	1,11	0,31	0,49	FALSE	2	Disheveled-associated activator of morphogenesis 2
GALK1	P51570	1,11	0,13	0,28	FALSE	0	Galactokinase
EIF4G2	P78344-2	1,10	0,33	0,51	FALSE	3	Eukaryotic translation initiation factor 4 gamma 2
FGL2	Q14314	1,07	0,31	0,49	FALSE	8	Fibroleukin
LUC7L2	Q9Y383	1,07	0,08	0,21	FALSE	0	Putative RNA-binding protein Luc7-like 2
KDM6A	015550	1,06	0,60	0,75	FALSE	9	Lysine-specific demethylase 6A
MON2	Q7Z3U7-2	1,06	0,20	0,38	FALSE	4	Protein MON2 homolog
PDLIM1	000151	1,05	0,38	0,56	FALSE	1	PDZ and LIM domain protein 1
RPLPO	P05388-2	1,05	0,20	0,37	FALSE	0	60S acidic ribosomal protein P0
SLC6A15	Q9H2J7	1,05	0,37	0,55	FALSE	7	Sodium-dependent neutral amino acid transporter B(0)AT2
ATL3	Q6DD88	1,04	0,12	0,27	FALSE	5	Atlastin-3
ITGB1	P05556	1,04	0,08	0,21	FALSE	0	Integrin beta-1
SPRY4	Q9C004	1,04	0,14	0,30	FALSE	4	Protein sprouty homolog 4
ITGA2	P17301	1,03	0,33	0,51	FALSE	0	Integrin alpha-2
LRP1	Q07954	1,03	0,14	0,29	FALSE	0	Prolow-density lipoprotein receptor-related protein 1
MMP9	P14780	1,02	0,16	0,32	FALSE	5	Matrix metalloproteinase- 9
PFAS	015067	1,02	0,33	0,51	FALSE	2	Phosphoribosylformylglyci namidine synthase
ZNF622	Q969S3	1,02	0,22	0,39	FALSE	10	Zinc finger protein 622
CAP1	Q01518-2	1,01	0,08	0,21	FALSE	0	Adenylyl cyclase- associated protein 1
RANBP9	Q96S59-2	1,01	0,12	0,27	FALSE	4	Ran-binding protein 9
DCBLD2	Q96PD2	1,00	0,15	0,31	FALSE	1	Discoidin, CUB and LCCL domain-containing protein 2
PYGL	P06737-2	1,00	0,07	0,18	FALSE	0	Glycogen phosphorylase, liver form
SLC52A2	Q9HAB3	1,00	0,37	0,55	FALSE	2	Solute carrier family 52, riboflavin transporter, member 2
TALDO1	P37837	1,00	0,42	0,60	FALSE	0	Transaldolase
PTTG1IP	P53801	0,99	0,33	0,51	FALSE	3	Pituitary tumor- transforming gene 1 protein-interacting protein
PTPN11	Q06124-2	0,98	0,35	0,53	FALSE	2	Tyrosine-protein phosphatase non-receptor type 11
CHMP1 A	Q9HD42	0,98	0,38	0,56	FALSE	1	Charged multivesicular body protein 1a
RAB34	Q9BZG1-4	0,97	0,47	0,64	FALSE	9	Ras-related protein Rab- 34
ZC3HAV 1	Q7Z2W4-3	0,97	0,26	0,45	FALSE	1	Zinc finger CCCH-type antiviral protein 1

MAPRE1	Q15691	0,97	0,26	0,45	FALSE	3	Microtubule-associated protein RP/EB family member 1
UBASH3 B	Q8TF42	0,97	0,31	0,49	FALSE	5	Ubiquitin-associated and SH3 domain-containing
ARHGEF 2	Q92974-3	0,96	0,39	0,56	FALSE	0	Rho guanine nucleotide exchange factor 2
ENDOD1	094919	0,96	0,34	0,52	FALSE	4	Endonuclease domain- containing 1 protein
SRSF6	Q13247-3	0,95	0,09	0,21	FALSE	0	Serine/arginine-rich splicing factor 6
PPP6R1	Q9UPN7	0,95	0,22	0,39	FALSE	8	Serine/threonine-protein phosphatase 6 regulatory subunit 1
RMND5 A	Q9H871	0,94	0,31	0,50	FALSE	5	Protein RMD5 homolog A
SLC7A1	P30825	0,93	0,31	0,49	FALSE	0	High affinity cationic amino acid transporter 1
U2AF1	P0DN76	0,93	0,12	0,27	FALSE	0	Splicing factor U2AF 35 kDa subunit
OLFML3	Q9NRN5	0,91	0,17	0,33	FALSE	0	Olfactomedin-like protein 3
RACGAP 1	Q9H0H5	0,91	0,22	0,39	FALSE	1	Rac GTPase-activating protein 1
CORO1B	Q9BR76	0,91	0,25	0,43	FALSE	0	Coronin-1B
USP15	Q9Y4E8-2	0,91	0,24	0,43	FALSE	3	Ubiquitin carboxyl- terminal hydrolase 15
SEC61A 1	P61619	0,91	0,40	0,57	FALSE	7	Protein transport protein Sec61 subunit alpha isoform 1
ITGA4	P13612	0,90	0,28	0,46	FALSE	0	Integrin alpha-4
GPR37	015354	0,89	0,36	0,54	FALSE	10	Prosaposin receptor GPR37
RTN4	Q9NQC3-2	0,89	0,14	0,29	FALSE	0	Reticulon-4
RALA	P11233	0,88	0,49	0,66	FALSE	6	Ras-related protein Ral-A
LAMA1	P25391	0,88	0,71	0,82	FALSE	1	Laminin subunit alpha-1
INF2	Q27J81-2	0,87	0,15	0,31	FALSE	7	Inverted formin-2
STK24	Q9Y6E0-2	0,87	0,51	0,67	FALSE	7	Serine/threonine-protein kinase 24
NAP1L4	Q99733	0,87	0,43	0,61	FALSE	3	Nucleosome assembly protein 1-like 4
BRE	Q9NXR7-4	0,87	0,57	0,73	FALSE	3	BRCA1-A complex subunit BRE
DNMT1	P26358-2	0,87	0,28	0,46	FALSE	9	DNA (cytosine-5)- methyltransferase 1
CTGF	P29279-2	0,87	0,34	0,52	FALSE	4	Connective tissue growth factor
SCAMP3	014828	0,86	0,54	0,70	FALSE	5	Secretory carrier- associated membrane protein 3
THRAP3	Q9Y2W1	0,86	0,39	0,57	FALSE	2	Thyroid hormone receptor-associated protein 3
ENO1	P06733	0,86	0,11	0,25	FALSE	0	Alpha-enolase
CAT	P04040	0,85	0,35	0,53	FALSE	4	Catalase
HEG1	Q9ULI3	0,85	0,32	0,50	FALSE	8	Protein HEG homolog 1
ZZEF1	O43149	0,85	0,41	0,59	FALSE	5	Zinc finger ZZ-type and EF- hand domain-containing protein 1
SLC47A1	Q96FL8	0,85	0,22	0,39	FALSE	10	Multidrug and toxin extrusion protein 1
PTPN6	P29350-2	0,85	0,43	0,60	FALSE	5	Tyrosine-protein phosphatase non-receptor type 6
SEC16A	015027-2	0,84	0,20	0,37	FALSE	4	Protein transport protein Sec16A

	SRSF2	Q01130	0,84	0,42	
	XPO5	Q9HAV4	0,84	0,29	
	LOXL2	Q9Y4K0	0,84	0,57	
	GDI2	P50395	0,84	0,22	
	PCDHGA 12	O60330	0,83	0,31	
	RRP15	Q9Y3B9	0,83	0,20	
	TMEM1 71	Q8WVE6	0,83	0,29	
	STAM	Q92783-2	0,83	0,43	

SRSF2	Q01130	0,84	0,42	0,60	FALSE	2	Serine/arginine-rich splicing factor 2
XPO5	Q9HAV4	0,84	0,29	0,47	FALSE	7	Exportin-5
LOXL2	Q9Y4K0	0,84	0,57	0,73	FALSE	2	Lysyl oxidase homolog 2
GDI2	P50395	0,84	0,22	0,39	FALSE	0	Rab GDP dissociation inhibitor beta
PCDHGA 12	O60330	0,83	0,31	0,49	FALSE	9	Protocadherin gamma- A12
RRP15	Q9Y3B9	0,83	0,20	0,36	FALSE	6	RRP15-like protein
TMEM1 71	Q8WVE6	0,83	0,29	0,47	FALSE	8	Transmembrane protein 171
STAM	Q92783-2	0,83	0,43	0,60	FALSE	2	Signal transducing adapter molecule 1
UAP1	Q16222-2	0,83	0,22	0,40	FALSE	0	UDP-N-acetylhexosamine pyrophosphorylase
ASPH	Q12797	0,83	0,22	0,39	FALSE	4	Aspartyl/asparaginyl beta- hydroxylase
TUBB2A	Q13885	0,82	0,28	0,46	FALSE	0	Tubulin beta-2A chain
DHFRL1	Q86XF0	0,82	0,40	0,58	FALSE	5	Dihydrofolate reductase, mitochondrial
A2M	P01023	0,81	0,44	0,62	FALSE	2	Alpha-2-macroglobulin
HABP2	Q14520-2	0,80	0,23	0,40	FALSE	5	Hyaluronan-binding protein 2
FASN	P49327	0,79	0,16	0,32	FALSE	0	Fatty acid synthase
UNC45A	Q9H3U1-2	0,79	0,41	0,59	FALSE	8	Protein unc-45 homolog A
RRP1	P56182	0,78	0,27	0,45	FALSE	9	Ribosomal RNA processing protein 1 homolog A
FEN1	P39748	0,78	0,40	0,58	FALSE	7	Flap endonuclease 1
AOX1	Q06278	0,77	0,36	0,54	FALSE	1	Aldehyde oxidase
ABCF2	Q9UG63	0,77	0,37	0,55	FALSE	7	ATP-binding cassette sub- family F member 2
MMP14	P50281	0,77	0,34	0,52	FALSE	0	Matrix metalloproteinase- 14
RASA3	Q14644	0,77	0,29	0,47	FALSE	2	Ras GTPase-activating protein 3
MATN2	O00339-3	0,76	0,48	0,65	FALSE	3	Matrilin-2
RABL6	Q3YEC7	0,76	0,35	0,53	FALSE	5	Rab-like protein 6
GAS7	O60861-1	0,75	0,23	0,41	FALSE	2	Growth arrest-specific protein 7
MYO5C	Q9NQX4	0,75	0,70	0,82	FALSE	5	Unconventional myosin- Vc
EXOC2	Q96KP1	0,74	0,47	0,65	FALSE	3	Exocyst complex component 2
ASS1	P00966	0,74	0,21	0,39	FALSE	0	Argininosuccinate synthase
TUBA1B	P68363	0,74	0,16	0,32	FALSE	0	Tubulin alpha-1B chain
GDI1	P31150	0,74	0,45	0,62	FALSE	2	Rab GDP dissociation inhibitor alpha
DOCK7	Q96N67-4	0,73	0,58	0,74	FALSE	2	Dedicator of cytokinesis protein 7
UBE3C	Q15386	0,73	0,37	0,55	FALSE	4	Ubiquitin-protein ligase E3C
RPS6KA 3	P51812	0,73	0,43	0,61	FALSE	6	Ribosomal protein S6 kinase alpha-3
TSPAN6	043657	0,73	0,39	0,57	FALSE	0	Tetraspanin-6
LHFPL2	Q6ZUX7	0,73	0,68	0,80	FALSE	2	Lipoma HMGIC fusion partner-like 2 protein
IGSF8	Q969P0	0,72	0,25	0,43	FALSE	0	Immunoglobulin superfamily member 8
TNXA	Q16473	0,72	0,32	0,50	FALSE	2	Putative tenascin-XA
PACSIN2	Q9UNF0-2	0,72	0,58	0,73	FALSE	2	Protein kinase C and casein kinase substrate in neurons protein 2
RAB13	P51153	0,72	0,29	0,48	FALSE	0	Ras-related protein Rab- 13
-------------	----------	------	------	------	-------	----	---
TNPO1	Q92973-3	0,72	0,49	0,66	FALSE	2	Transportin-1
ADSL	P30566	0,71	0,57	0,73	FALSE	2	Adenylosuccinate lyase
DDX21	Q9NR30-2	0,71	0,53	0,70	FALSE	3	Nucleolar RNA helicase 2
PSMG2	Q969U7-2	0,71	0,36	0,54	FALSE	9	Proteasome assembly chaperone 2
RUVBL2	Q9Y230	0,71	0,46	0,64	FALSE	0	RuvB-like 2
IPO7	095373	0,71	0,37	0,55	FALSE	0	Importin-7
CDH13	P55290-5	0,70	0,63	0,77	FALSE	4	Cadherin-13
PPFIBP1	Q86W92-3	0,70	0,36	0,54	FALSE	3	Liprin-beta-1
RCC2	Q9P258	0,70	0,43	0,61	FALSE	6	Protein RCC2
SLCO3A 1	Q9UIG8	0,70	0,34	0,52	FALSE	4	Solute carrier organic anion transporter family member 3A1
TWF2	Q6IBS0	0,70	0,63	0,76	FALSE	4	Twinfilin-2
RAB27B	O00194	0,69	0,32	0,50	FALSE	6	Ras-related protein Rab- 27B
CD109	Q6YHK3-2	0,69	0,52	0,69	FALSE	0	CD109 antigen
ITGA3	P26006	0,67	0,51	0,68	FALSE	0	Integrin alpha-3
RAB5A	P20339-2	0,67	0,61	0,75	FALSE	1	Ras-related protein Rab- 5A
NCS1	P62166-2	0,66	0,37	0,55	FALSE	10	Neuronal calcium sensor 1
RUVBL1	Q9Y265-2	0,66	0,60	0,75	FALSE	2	RuvB-like 1
VPS28	Q9UK41	0,65	0,40	0,58	FALSE	0	Vacuolar protein sorting- associated protein 28 homolog
ARPC1B	015143	0,65	0,48	0,65	FALSE	2	Actin-related protein 2/3 complex subunit 1B
CD151	P48509	0,65	0,41	0,59	FALSE	0	CD151 antigen
KRT6B	P04259	0,64	0,55	0,72	FALSE	8	Keratin, type II cytoskeletal 6B
SVIP	Q8NHG7	0,64	0,56	0,72	FALSE	8	small VCP/p97-interacting protein
SRSF3	P84103-2	0,62	0,48	0,65	FALSE	1	Serine/arginine-rich splicing factor 3
PSEN1	P49768-3	0,62	0,63	0,77	FALSE	8	Presenilin-1
RASGRP 2	Q7LDG7-3	0,62	0,45	0,63	FALSE	10	RAS guanyl-releasing protein 2
CALR	P27797	0,60	0,58	0,74	FALSE	4	Calreticulin
KIF3B	015066	0,60	0,47	0,64	FALSE	10	Kinesin-like protein KIF3B
POLR2B	P30876	0,59	0,32	0,50	FALSE	4	DNA-directed RNA polymerase II subunit RPB2
ASL	P04424-3	0,59	0,54	0,70	FALSE	2	Argininosuccinate lyase
HLA-B	P30481	0,59	0,69	0,81	FALSE	3	HLA class l histocompatibility antigen, B-44 alpha chain
TOP1	P11387	0,58	0,58	0,74	FALSE	0	DNA topoisomerase 1
UGDH	O60701-3	0,58	0,27	0,45	FALSE	0	UDP-glucose 6- dehydrogenase
FNTA	P49354-2	0,58	0,42	0,60	FALSE	6	Protein farnesyltransferase/geran ylgeranyltransferase type- 1 subunit alpha
TUBGCP 3	Q96CW5-2	0,57	0,38	0,56	FALSE	0	Gamma-tubulin complex component 3
ARGLU1	Q9NWB6	0,56	0,62	0,76	FALSE	9	Arginine and glutamate- rich protein 1
DNM1L	000429-4	0,56	0,54	0,71	FALSE	0	Dynamin-1-like protein

PCSK5	Q92824-2	0,55	0,59	0,74	FALSE	9	Proprotein convertase subtilisin/kexin type 5
GOLGA7	Q7Z5G4-3	0,54	0,51	0,68	FALSE	0	Golgin subfamily A member 7
DDX46	Q7L014	0,54	0,52	0,68	FALSE	2	Probable ATP-dependent RNA helicase DDX46
SLC30A1	Q9Y6M5	0,54	0,61	0,76	FALSE	6	Zinc transporter 1
PRKAG1	P54619-2	0,54	0,50	0,67	FALSE	9	5-AMP-activated protein kinase subunit gamma-1
SEC24D	O94855	0,54	0,34	0,53	FALSE	7	Protein transport protein Sec24D
HLA-C	P10321	0,53	0,56	0,72	FALSE	10	HLA class l histocompatibility antigen, Cw-7 alpha chain
RRP9	O43818	0,53	0,47	0,65	FALSE	6	U3 small nucleolar RNA- interacting protein 2
SNRNP2 00	075643	0,53	0,57	0,73	FALSE	1	U5 small nuclear ribonucleoprotein 200 kDa helicase
SLC38A1	Q9H2H9	0,53	0,53	0,70	FALSE	9	Sodium-coupled neutral amino acid transporter 1
DCD	P81605	0,52	0,64	0,77	FALSE	1	Dermcidin
USP9X	Q93008-1	0,51	0,68	0,80	FALSE	2	Probable ubiquitin carboxyl-terminal hydrolase FAF-X
FLOT1	075955-2	0,51	0,51	0,67	FALSE	0	Flotillin-1
QSOX1	000391-2	0,51	0,64	0,77	FALSE	4	Sulfhydryl oxidase 1
SLC16A3	015427	0,50	0,48	0,65	FALSE	4	Monocarboxylate transporter 4
FLOT2	Q14254	0,50	0,39	0,57	FALSE	0	Flotillin-2
RPA1	P27694	0,50	0,57	0,72	FALSE	2	Replication protein A 70 kDa DNA-binding subunit
TMEM5 1	Q9NW97	0,50	0,60	0,75	FALSE	3	Transmembrane protein 51
PCNA	P12004	0,49	0,68	0,80	FALSE	1	Proliferating cell nuclear antigen
NDFIP2	Q9NV92	0,49	0,60	0,75	FALSE	9	NEDD4 family-interacting protein 2
KRIT1	000522-2	0,49	0,43	0,60	FALSE	9	Krev interaction trapped protein 1
MSH2	P43246-2	0,48	0,51	0,67	FALSE	8	DNA mismatch repair protein Msh2
U2SURP	015042-2	0,48	0,71	0,82	FALSE	6	U2 snRNP-associated SURP motif-containing protein
EPHA2	P29317	0,48	0,66	0,79	FALSE	0	Ephrin type-A receptor 2
PDIA3	P30101	0,47	0,37	0,55	FALSE	0	Protein disulfide- isomerase A3
SLC39A6	Q13433	0,46	0,58	0,74	FALSE	2	Zinc transporter ZIP6
FDPS	P14324-2	0,45	0,68	0,80	FALSE	2	Farnesyl pyrophosphate synthase
INPP5F	Q9Y2H2	0,45	0,65	0,78	FALSE	6	Phosphatidylinositide phosphatase SAC2
ASAH1	Q13510	0,45	0,65	0,79	FALSE	9	Acid ceramidase
AGRN	000468-6	0,44	0,60	0,75	FALSE	0	Agrin
нтт	P42858	0,44	0,51	0,68	FALSE	10	Huntingtin
FHL1	Q13642-1	0,44	0,69	0,80	FALSE	0	Four and a half LIM domains protein 1
ACE	P12821-2	0,43	0,67	0,80	FALSE	8	Angiotensin-converting enzyme
LUC7L3	095232	0,42	0,70	0,82	FALSE	5	Luc7-like protein 3
CAPZA2	P47755	0,42	0,76	0,86	FALSE	3	F-actin-capping protein subunit alpha-2
FBP1	P09467	0,42	0,59	0,74	FALSE	3	Fructose-1,6- bisphosphatase 1
TUBB4B	P68371	0,42	0,41	0,59	FALSE	0	Tubulin beta-4B chain

CUL5	Q93034	0,41	0,57	0,73	FALSE	2	Cullin-5
ERBB2IP	Q96RT1-7	0,41	0,61	0,75	FALSE	4	Protein LAP2
MOCOS	Q96EN8	0,41	0,60	0,75	FALSE	10	Molybdenum cofactor sulfurase
CAPN2	P17655	0,40	0,73	0,84	FALSE	1	Calpain-2 catalytic subunit
IL1RAP	Q9NPH3	0,40	0,63	0,77	FALSE	2	Interleukin-1 receptor accessory protein
DYNC1LI 1	Q9Y6G9	0,40	0,66	0,79	FALSE	1	Cytoplasmic dynein 1 light intermediate chain 1
SYNM	O15061-2	0,39	0,64	0,77	FALSE	9	Synemin
STAT5A	P42229-2	0,39	0,78	0,87	FALSE	5	Signal transducer and activator of transcription 5A
ADAM1 0	014672	0,39	0,63	0,77	FALSE	0	Disintegrin and metalloproteinase domain-containing protein 10
PLCB3	Q01970-2	0,38	0,59	0,74	FALSE	4	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3
MARS	P56192	0,38	0,72	0,83	FALSE	0	MethioninetRNA ligase, cytoplasmic
QPCT	Q16769	0,37	0,79	0,88	FALSE	3	Glutaminyl-peptide cyclotransferase
HDGFRP 2	Q7Z4V5-2	0,37	0,50	0,67	FALSE	4	Hepatoma-derived growth factor-related protein 2
SRGAP1	Q7Z6B7-2	0,36	0,63	0,77	FALSE	3	SLIT-ROBO Rho GTPase- activating protein 1
PRKG1	Q13976	0,35	0,75	0,85	FALSE	2	cGMP-dependent protein kinase 1
NEK9	Q8TD19	0,35	0,68	0,80	FALSE	3	Serine/threonine-protein kinase Nek9
FAM129 A	Q9BZQ8	0,34	0,74	0,84	FALSE	2	Protein Niban
COL4A3 BP	Q9Y5P4-2	0,34	0,67	0,80	FALSE	2	Collagen type IV alpha-3- binding protein
TSPAN1 4	Q8NG11	0,33	0,66	0,79	FALSE	0	Tetraspanin-14
СТЅВ	P07858	0,33	0,79	0,88	FALSE	2	Cathepsin B
IGFBP5	P24593	0,33	0,65	0,79	FALSE	10	Insulin-like growth factor- binding protein 5
ACAT2	Q9BWD1	0,32	0,79	0,88	FALSE	2	Acetyl-CoA acetyltransferase, cytosolic
ARF4	P18085	0,32	0,70	0,82	FALSE	0	ADP-ribosylation factor 4
CSE1L	P55060-3	0,32	0,79	0,88	FALSE	0	Exportin-2
REPS1	Q96D71-2	0,32	0,71	0,82	FALSE	8	RalBP1-associated Eps domain-containing protein 1
BZW2	Q9Y6E2	0,31	0,76	0,86	FALSE	1	Basic leucine zipper and W2 domain-containing protein 2
ANXA7	P20073-2	0,31	0,56	0,72	FALSE	0	Annexin A7
SERINC1	Q9NRX5	0,31	0,78	0,87	FALSE	2	Serine incorporator 1
TMEM2 37	Q96Q45-2	0,31	0,79	0,88	FALSE	4	Transmembrane protein 237
SYNCRIP	O60506-4	0,30	0,78	0,87	FALSE	4	Heterogeneous nuclear ribonucleoprotein Q
TUBG1	P23258	0,30	0,79	0,88	FALSE	3	Tubulin gamma-1 chain
ADAM1 5	Q13444-11	0,30	0,69	0,81	FALSE	3	Disintegrin and metalloproteinase domain-containing protein 15
HSPH1	Q92598-2	0,30	0,77	0,86	FALSE	3	Heat shock protein 105 kDa
LDLR	P01130-2	0,29	0,75	0,85	FALSE	3	Low-density lipoprotein receptor

UBE3A	Q05086-2	0,29	0,71	0,83	FALSE	9	Ubiquitin-protein ligase E3A
RAB23	Q9ULC3	0,29	0,79	0,88	FALSE	6	Ras-related protein Rab- 23
FCGBP	Q9Y6R7	0,29	0,60	0,75	FALSE	0	IgGFc-binding protein
FST	P19883-2	0,28	0,83	0,90	FALSE	8	Follistatin
NAA15	Q9BXJ9	0,28	0,68	0,80	FALSE	0	N-alpha-acetyltransferase 15, NatA auxiliary subunit
SMC2	095347-2	0,28	0,85	0,92	FALSE	6	Structural maintenance of chromosomes protein 2
IGF2BP2	Q9Y6M1-5	0,28	0,85	0,92	FALSE	2	Insulin-like growth factor 2 mRNA-binding protein 2
РІКЗСВ	P42338	0,27	0,61	0,75	FALSE	4	Phosphatidylinositol 4,5- bisphosphate 3-kinase catalytic subunit beta isoform
PLEC	Q15149	0,27	0,83	0,90	FALSE	0	Plectin
SRI	P30626-3	0,27	0,67	0,80	FALSE	0	Sorcin
RAB20	Q9NX57	0,26	0,75	0,85	FALSE	10	Ras-related protein Rab- 20
GPRC5A	Q8NFJ5	0,26	0,88	0,93	FALSE	3	Retinoic acid-induced protein 3
DSG2	Q14126	0,26	0,83	0,90	FALSE	7	Desmoglein-2
FSCN1	Q16658	0,26	0,61	0,76	FALSE	0	Fascin
SYNGR1	043759-2	0,25	0,86	0,92	FALSE	7	Synaptogyrin-1
GNL1	P36915	0,25	0,78	0,87	FALSE	3	Guanine nucleotide- binding protein-like 1
MTOR	P42345	0,25	0,74	0,84	FALSE	2	Serine/threonine-protein kinase mTOR
CD276	Q5ZPR3	0,24	0,83	0,90	FALSE	2	CD276 antigen
GANAB	Q14697-2	0,24	0,68	0,80	FALSE	0	Neutral alpha-glucosidase AB
TSPAN4	014817	0,24	0,73	0,84	FALSE	0	Tetraspanin-4
IGFBP2	P18065	0,23	0,75	0,85	FALSE	5	Insulin-like growth factor- binding protein 2
TCOF1	Q13428-2	0,23	0,73	0,84	FALSE	7	Treacle protein
BHMT	Q93088	0,23	0,81	0,89	FALSE	5	Betainehomocysteine S- methyltransferase 1
LFNG	Q8NES3-2	0,23	0,77	0,86	FALSE	10	Beta-1,3-N- acetylglucosaminyltransfe rase lunatic fringe
GSTP1	P09211	0,22	0,67	0,80	FALSE	0	Glutathione S-transferase P
SERINC3	Q13530-2	0,22	0,76	0,86	FALSE	1	Serine incorporator 3
FH	P07954-2	0,21	0,81	0,89	FALSE	2	Fumarate hydratase, mitochondrial
CDK1	P06493	0,20	0,80	0,88	FALSE	9	Cyclin-dependent kinase 1
ACAN	P16112-2	0,20	0,81	0,89	FALSE	9	Aggrecan core protein
TMEM1 06B	Q9NUM4	0,20	0,87	0,93	FALSE	1	Transmembrane protein 106B
MCM7	P33993-3	0,20	0,84	0,91	FALSE	6	DNA replication licensing factor MCM7
SEMA5A	Q13591	0,20	0,85	0,91	FALSE	8	Semaphorin-5A
SERPINH 1	P50454	0,19	0,86	0,92	FALSE	5	Serpin H1
ACO1	P21399	0,18	0,77	0,86	FALSE	0	Cytoplasmic aconitate hydratase
ANXA11	P50995-2	0,18	0,85	0,92	FALSE	0	Annexin A11
RAC1	P63000	0,18	0,73	0,84	FALSE	0	Ras-related C3 botulinum toxin substrate 1
RAP2A	P10114	0,18	0,87	0,93	FALSE	4	Ras-related protein Rap-2a
DDX3X	000571-2	0,18	0,77	0,86	FALSE	0	ATP-dependent RNA helicase DDX3X

ITGB3	P05106	0,18	0,74	0,84	FALSE	0	Integrin beta-3
NEDD1	Q8NHV4	0,18	0,81	0,89	FALSE	3	Protein NEDD1
LDHA	P00338	0,17	0,91	0,95	FALSE	2	L-lactate dehydrogenase A chain
PRKAR2 A	P13861-2	0,17	0,86	0,92	FALSE	1	cAMP-dependent protein kinase type II-alpha regulatory subunit
ENO3	P13929-2	0,17	0,90	0,94	FALSE	2	Beta-enolase
CHMP6	Q96FZ7	0,17	0,88	0,93	FALSE	6	Charged multivesicular body protein 6
DNM2	P50570-3	0,17	0,87	0,93	FALSE	2	Dynamin-2
PABPC1	P11940-2	0,17	0,86	0,92	FALSE	2	Polyadenylate-binding protein 1
LAMP1	P11279	0,17	0,85	0,91	FALSE	0	Lysosome-associated membrane glycoprotein 1
SNX27	Q96L92-3	0,16	0,83	0,90	FALSE	3	Sorting nexin-27
SLC35F6	Q8N357	0,16	0,87	0,92	FALSE	8	Solute carrier family 35 member F6
RANBP3	Q9H6Z4-3	0,14	0,82	0,89	FALSE	8	Ran-binding protein 3
TMEM1 81	Q9P2C4	0,14	0,83	0,90	FALSE	1	Transmembrane protein 181
BAG6	P46379-5	0,14	0,81	0,89	FALSE	2	Large proline-rich protein BAG6
ETF1	P62495	0,14	0,90	0,94	FALSE	2	Eukaryotic peptide chain release factor subunit 1
ATXN10	Q9UBB4-2	0,13	0,91	0,95	FALSE	7	Ataxin-10
RBM39	Q14498-3	0,13	0,92	0,96	FALSE	4	RNA-binding protein 39
LSR	Q86X29-4	0,12	0,94	0,97	FALSE	6	Lipolysis-stimulated lipoprotein receptor
DYNC1H 1	Q14204	0,12	0,90	0,94	FALSE	0	Cytoplasmic dynein 1 heavy chain 1
EIF4A1	P60842-2	0,12	0,88	0,93	FALSE	0	Eukaryotic initiation factor 4A-I
GPS1	Q13098-5	0,12	0,91	0,95	FALSE	2	COP9 signalosome complex subunit 1
MITD1	Q8WV92	0,12	0,88	0,93	FALSE	4	MIT domain-containing protein 1
PYGB	P11216	0,12	0,85	0,92	FALSE	0	Glycogen phosphorylase, brain form
GIPC1	014908	0,10	0,94	0,97	FALSE	2	PDZ domain-containing protein GIPC1
EHD1	Q9H4M9	0,10	0,88	0,93	FALSE	0	EH domain-containing protein 1
PACS1	Q6VY07	0,10	0,87	0,92	FALSE	9	Phosphofurin acidic cluster sorting protein 1
CCAR1	Q8IX12-2	0,10	0,85	0,91	FALSE	6	Cell division cycle and apoptosis regulator protein 1
APP	P05067-7	0,10	0,93	0,96	FALSE	7	Amyloid beta A4 protein
ACSL3	095573	0,10	0,90	0,94	FALSE	10	Long-chain-fatty-acid CoA ligase 3
SLC15A4	Q8N697	0,10	0,87	0,92	FALSE	0	Solute carrier family 15 member 4
ASNS	P08243-3	0,10	0,92	0,96	FALSE	5	Asparagine synthetase [glutamine-hydrolyzing]
FLNA	P21333-2	0,09	0,86	0,92	FALSE	0	Filamin-A
FIP1L1	Q6UN15-3	0,09	0,91	0,95	FALSE	10	Pre-mRNA 3-end- processing factor FIP1
AIFM2	Q9BRQ8-2	0,09	0,90	0,94	FALSE	8	Apoptosis-inducing factor 2
NUDCD1	Q96RS6	0,09	0,92	0,96	FALSE	8	NudC domain-containing protein 1
CEP55	Q53EZ4	0,09	0,94	0,96	FALSE	1	Centrosomal protein of 55 kDa
TOP2A	P11388	0,08	0,94	0,97	FALSE	6	DNA topoisomerase 2- alpha

VPS36	Q86VN1-2	0,08	0,89	0,94	FALSE	4	Vacuolar protein-sorting- associated protein 36
AHCY	P23526	0,08	0,89	0,94	FALSE	0	Adenosylhomocysteinase
ITM2B	Q9Y287-2	0,08	0,93	0,96	FALSE	1	Integral membrane protein 2B
PEF1	Q9UBV8	0,08	0,89	0,94	FALSE	0	Peflin
SMARCA 4	P51532-5	0,07	0,92	0,95	FALSE	7	Transcription activator BRG1
PRSS23	095084-2	0,07	0,94	0,97	FALSE	0	Serine protease 23
ITGB5	P18084	0,07	0,91	0,95	FALSE	0	Integrin beta-5
SF3B1	075533	0,07	0,93	0,96	FALSE	4	Splicing factor 3B subunit
CNDP2	Q96KP4	0,06	0,97	0,98	FALSE	2	Cytosolic non-specific dipeptidase
FN1	P02751-17	0,05	0,95	0,97	FALSE	0	Fibronectin
AKAP12	Q02952-3	0,05	0,95	0,98	FALSE	3	A-kinase anchor protein 12
LYN	P07948-2	0,05	0,97	0,98	FALSE	2	Tyrosine-protein kinase Lyn
PRKDC	P78527	0,03	0,95	0,97	FALSE	0	DNA-dependent protein kinase catalytic subunit
NONO	Q15233-2	0,03	0,97	0,99	FALSE	3	Non-POU domain- containing octamer- binding protein
DDX19B	Q9UMR2-2	0,03	0,97	0,98	FALSE	7	ATP-dependent RNA helicase DDX19B
EIF3B	P55884	0,03	0,96	0,98	FALSE	0	Eukaryotic translation initiation factor 3 subunit B
APOB	P04114	0,03	0,96	0,98	FALSE	0	Apolipoprotein B-100
LAMA5	015230	0,03	0,98	0,99	FALSE	2	Laminin subunit alpha-5
COL6A3	P12111-4	0,03	0,98	0,99	FALSE	1	Collagen alpha-3(VI) chain
SCUBE2	Q9NQ36	0,02	0,99	0,99	FALSE	2	Signal peptide, CUB and EGF-like domain- containing protein 2
G6PD	P11413	0,02	0,98	0,99	FALSE	1	Glucose-6-phosphate 1- dehydrogenase
EEF1D	P29692	0,02	0,98	0,99	FALSE	10	Elongation factor 1-delta
PDCD6IP	Q8WUM4	0,02	0,97	0,98	FALSE	0	Programmed cell death 6- interacting protein
RAP1B	P61224-3	0,02	0,97	0,99	FALSE	0	Ras-related protein Rap- 1b
RAB11A	P62491-2	0,01	0,98	0,99	FALSE	0	Ras-related protein Rab- 11A
TM9SF2	Q99805	0,01	0,99	1,00	FALSE	4	Transmembrane 9 superfamily member 2
MIPEP	Q99797	0,01	0,99	1,00	FALSE	3	Mitochondrial intermediate peptidase
ARF3	P61204-2	0,01	0,99	1,00	FALSE	0	ADP-ribosylation factor 3
WDR1	075083	0,01	0,99	1,00	FALSE	0	WD repeat-containing protein 1
S100A6	P06703	0,00	1,00	1,00	FALSE	0	Protein S100-A6
CLIC1	O00299	0,00	1,00	1,00	FALSE	0	Chloride intracellular channel protein 1
MYH9	P35579	0,00	1,00	1,00	FALSE	0	Myosin-9
HSPA1B	P0DMV9	0,00	1,00	1,00	FALSE	0	Heat shock 70 kDa protein 1B
SNAP23	000161	0,00	1,00	1,00	FALSE	0	Synaptosomal-associated protein 23
TRA2B	P62995	-0,01	1,00	1,00	FALSE	2	Transformer-2 protein homolog beta
SNX1	Q13596-2	-0,01	0,99	1,00	FALSE	3	Sorting nexin-1
ITGA5	P08648	-0,01	0,99	1,00	FALSE	2	Integrin alpha-5

NEDD4	P46934-4	-0,01	0,99	0,99	FALSE	3	E3 ubiquitin-protein ligase NEDD4
DOCK1	Q14185	-0,02	0,99	0,99	FALSE	7	Dedicator of cytokinesis protein 1
LDHB	P07195	-0,02	0,97	0,99	FALSE	0	L-lactate dehydrogenase B chain
USO1	O60763	-0,02	0,98	0,99	FALSE	1	General vesicular transport factor p115
MBTPS1	Q14703	-0,02	0,97	0,98	FALSE	5	Membrane-bound transcription factor site-1 protease
UBE2Z	Q9H832-2	-0,02	0,98	0,99	FALSE	2	Ubiquitin-conjugating enzyme E2 Z
CLU	P10909-4	-0,03	0,98	0,99	FALSE	4	Clusterin
ESYT2	A0FGR8-2	-0,03	0,96	0,98	FALSE	3	Extended synaptotagmin- 2
ENPP1	P22413	-0,03	0,97	0,99	FALSE	2	Ectonucleotide pyrophosphatase/phosph odiesterase family member 1
UGP2	Q16851-2	-0,04	0,97	0,98	FALSE	2	UTPglucose-1-phosphate uridylyltransferase
MAP2K1	Q02750	-0,04	0,96	0,98	FALSE	0	Dual specificity mitogen- activated protein kinase kinase 1
FSTL1	Q12841-2	-0,04	0,96	0,98	FALSE	7	Follistatin-related protein 1
СОРА	P53621	-0,05	0,93	0,96	FALSE	0	Coatomer subunit alpha
DDX20	Q9UHI6	-0,05	0,94	0,96	FALSE	6	Probable ATP-dependent RNA helicase DDX20
RHEB	Q15382	-0,05	0,97	0,98	FALSE	2	GTP-binding protein Rheb
NAMPT	P43490	-0,05	0,95	0,97	FALSE	7	Nicotinamide phosphoribosyltransferas e
RPS4X	P62701	-0,05	0,93	0,96	FALSE	0	40S ribosomal protein S4, X isoform
ANXA1	P04083	-0,06	0,97	0,99	FALSE	1	Annexin A1
ACP2	P11117	-0,06	0,94	0,97	FALSE	2	Lysosomal acid phosphatase
IPO5	000410-2	-0,06	0,96	0,98	FALSE	2	Importin-5
SLC25A5	P05141	-0,06	0,97	0,99	FALSE	6	ADP/ATP translocase 2
SSRP1	Q08945	-0,06	0,96	0,98	FALSE	5	FACT complex subunit SSRP1
RAB1B	Q9H0U4	-0,06	0,91	0,95	FALSE	0	Ras-related protein Rab- 1B
HGS	O14964	-0,06	0,96	0,98	FALSE	1	Hepatocyte growth factor- regulated tyrosine kinase substrate
CCT6A	P40227	-0,07	0,89	0,94	FALSE	0	T-complex protein 1 subunit zeta
NAGK	Q9UJ70	-0,07	0,93	0,96	FALSE	3	N-acetyl-D-glucosamine kinase
ATP1A1	P05023-4	-0,07	0,90	0,94	FALSE	0	Sodium/potassium- transporting ATPase subunit alpha-1
DLST	P36957-2	-0,07	0,95	0,97	FALSE	2	Dihydrolipoyllysine- residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex, mitochondrial
CLTA	P09496-2	-0,08	0,93	0,96	FALSE	2	Clathrin light chain A
CHD1L	Q86WJ1-3	-0,08	0,90	0,95	FALSE	9	Chromodomain-helicase- DNA-binding protein 1-like
TUBGCP 2	Q9BSJ2	-0,08	0,92	0,96	FALSE	1	Gamma-tubulin complex component 2
EPB41L2	043491-4	-0,08	0,88	0,93	FALSE	0	Band 4.1-like protein 2

NT5C3B	Q969T7	-0,08	0,91	0,95	FALSE	9	7-methylguanosine phosphate-specific 5- nucleotidase
CLIC4	Q9Y696	-0,09	0,89	0,93	FALSE	0	Chloride intracellular channel protein 4
RAN	P62826	-0,09	0,85	0,92	FALSE	0	GTP-binding nuclear protein Ran
PNN	Q9H307-2	-0,09	0,93	0,96	FALSE	3	Pinin
HIP1R	075146-2	-0,10	0,95	0,97	FALSE	3	Huntingtin-interacting protein 1-related protein
GNG5	P63218	-0,10	0,86	0,92	FALSE	0	Guanine nucleotide- binding protein G(I)/G(S)/G(O) subunit gamma-5
EMILIN2	Q9BXX0	-0,10	0,96	0,98	FALSE	1	EMILIN-2
DIAPH1	O60610-2	-0,10	0,85	0,91	FALSE	0	Protein diaphanous homolog 1
RAP2C	Q9Y3L5	-0,10	0,93	0,96	FALSE	8	Ras-related protein Rap-2c
PFKP	Q01813	-0,10	0,94	0,97	FALSE	1	ATP-dependent 6- phosphofructokinase, platelet type
HERC1	Q15751	-0,10	0,86	0,92	FALSE	10	Probable E3 ubiquitin- protein ligase HERC1
ACLY	P53396-2	-0,11	0,84	0,91	FALSE	0	ATP-citrate synthase
IARS	P41252	-0,11	0,91	0,95	FALSE	2	IsoleucinetRNA ligase, cytoplasmic
PDCD10	Q9BUL8	-0,12	0,90	0,94	FALSE	2	Programmed cell death protein 10
PIP4K2C	Q8TBX8-3	-0,12	0,86	0,92	FALSE	7	Phosphatidylinositol 5- phosphate 4-kinase type-2 gamma
CCT3	P49368	-0,12	0,84	0,91	FALSE	0	T-complex protein 1 subunit gamma
GPD1L	Q8N335	-0,12	0,86	0,92	FALSE	1	Glycerol-3-phosphate dehydrogenase 1-like protein
MTAP	Q13126-4	-0,12	0,89	0,94	FALSE	3	S-methyl-5-thioadenosine phosphorylase
LRRC47	Q8N1G4	-0,13	0,88	0,93	FALSE	8	Leucine-rich repeat- containing protein 47
RPL5	P46777	-0,13	0,91	0,95	FALSE	2	60S ribosomal protein L5
NT5E	P21589-2	-0,14	0,93	0,96	FALSE	2	5-nucleotidase
PRNP	P04156-2	-0,14	0,81	0,89	FALSE	0	Major prion protein
RALB	P11234	-0,14	0,82	0,90	FALSE	0	Ras-related protein Ral-B
RAP1A	P62834	-0,14	0,90	0,94	FALSE	2	Ras-related protein Rap- 1A
CCT4	P50991-2	-0,14	0,81	0,89	FALSE	0	T-complex protein 1 subunit delta
PRPF8	Q6P2Q9	-0,14	0,87	0,92	FALSE	2	Pre-mRNA-processing- splicing factor 8
CLTC	Q00610-2	-0,15	0,77	0,86	FALSE	0	Clathrin heavy chain 1
SDC2	P34741	-0,15	0,93	0,96	FALSE	3	Syndecan-2
EIF3A	Q14152	-0,15	0,85	0,91	FALSE	0	Eukaryotic translation initiation factor 3 subunit A
NQ01	P15559-3	-0,16	0,89	0,94	FALSE	1	NAD(P)H dehydrogenase [quinone] 1
HAPLN1	P10915	-0,16	0,88	0,93	FALSE	9	Hyaluronan and proteoglycan link protein 1
DCTN4	Q9UJW0	-0,16	0,81	0,89	FALSE	9	Dynactin subunit 4
UBB	P0CG47	-0,16	0,78	0,87	FALSE	0	Polyubiquitin-B
UBE2V2	Q15819	-0,17	0,84	0,91	FALSE	1	Ubiquitin-conjugating enzyme E2 variant 2
LITAF	Q99732	-0,18	0,90	0,94	FALSE	6	Lipopolysaccharide- induced tumor necrosis factor-alpha factor

HADH	Q16836	-0,18	0,88	0,93	FALSE	2	Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial
ITGAV	P06756-3	-0,18	0,76	0,86	FALSE	0	Integrin alpha-V
MGAT1	P26572	-0,18	0,85	0,92	FALSE	8	Alpha-1,3-mannosyl- glycoprotein 2-beta-N- acetylglucosaminyltransfe rase
CRLF3	Q8IUI8-2	-0,19	0,74	0,84	FALSE	8	Cytokine receptor-like factor 3
ACIN1	Q9UKV3-3	-0,19	0,78	0,87	FALSE	6	Apoptotic chromatin condensation inducer in the nucleus
SMIM7	Q9BQ49	-0,19	0,79	0,88	FALSE	4	Small integral membrane protein 7
ZDHHC5	Q9C0B5-2	-0,20	0,83	0,90	FALSE	2	Palmitoyl transferase ZDHHC5
COLGAL T1	Q8NBJ5	-0,21	0,82	0,90	FALSE	3	Procollagen galactosyltransferase 1
ME1	P48163-2	-0,21	0,82	0,90	FALSE	2	NADP-dependent malic enzyme
CD46	P15529-7	-0,22	0,85	0,92	FALSE	1	Membrane cofactor protein
COL4A2	P08572	-0,22	0,85	0,91	FALSE	0	Collagen alpha-2(IV) chain
YES1	P07947	-0,22	0,86	0,92	FALSE	1	Tyrosine-protein kinase Yes
SLC7A6	Q92536	-0,22	0,82	0,90	FALSE	4	Y+L amino acid transporter 2
M6PR	P20645	-0,22	0,87	0,92	FALSE	0	Cation-dependent mannose-6-phosphate receptor
HLA-A.1	P13746	-0,22	0,88	0,93	FALSE	2	HLA class l histocompatibility antigen, A-11 alpha chain
FAM126 A	Q9BYI3	-0,22	0,80	0,88	FALSE	6	Hyccin
SH3GL1	Q99961	-0,22	0,84	0,91	FALSE	3	Endophilin-A2
EPS8	Q12929	-0,23	0,71	0,82	FALSE	0	Epidermal growth factor receptor kinase substrate 8
BUB3	O43684-2	-0,23	0,76	0,86	FALSE	0	Mitotic checkpoint protein BUB3
NSUN2	Q08J23	-0,23	0,82	0,90	FALSE	7	tRNA (cytosine(34)-C(5))- methyltransferase
CMTM7	Q96FZ5-2	-0,23	0,84	0,91	FALSE	4	CKLF-like MARVEL transmembrane domain- containing protein 7
GSK3A	P49840	-0,23	0,86	0,92	FALSE	6	Glycogen synthase kinase- 3 alpha
ANKFY1	Q9P2R3	-0,24	0,76	0,85	FALSE	2	Rabankyrin-5
GAPDH	P04406	-0,24	0,69	0,81	FALSE	0	Glyceraldehyde-3- phosphate dehydrogenase
UBE2N	P61088	-0,24	0,75	0,85	FALSE	0	Ubiquitin-conjugating enzyme E2 N
MFSD1	Q9H3U5-3	-0,24	0,80	0,88	FALSE	5	Major facilitator superfamily domain- containing protein 1
ACOT7	000154-4	-0,24	0,81	0,89	FALSE	3	Cytosolic acyl coenzyme A thioester hydrolase
PIEZO1	Q92508	-0,24	0,88	0,93	FALSE	7	Piezo-type mechanosensitive ion channel component 1
RPS9	P46781	-0,24	0,83	0,90	FALSE	1	40S ribosomal protein S9
GDF11	095390	-0,25	0,82	0,90	FALSE	5	Growth/differentiation factor 11
AGL	P35573-2	-0,25	0,78	0,87	FALSE	2	Glycogen debranching enzyme
PIK3R1	P27986	-0,25	0,75	0,85	FALSE	2	Phosphatidylinositol 3- kinase regulatory subunit alpha

LMAN2	Q12907	-0,25	0,80	0,88	FALSE	1	Vesicular integral- membrane protein VIP36
NOTCH2	Q04721	-0,25	0,74	0,84	FALSE	5	Neurogenic locus notch homolog protein 2
KIRREL	Q96J84	-0,26	0,72	0,83	FALSE	0	Kin of IRRE-like protein 1
ΡΡΙΑ	P62937	-0,26	0,80	0,88	FALSE	0	Peptidyl-prolyl cis-trans isomerase A
CIB1	Q99828	-0,26	0,72	0,83	FALSE	6	Calcium and integrin- binding protein 1
RHOG	P84095	-0,26	0,62	0,76	FALSE	0	Rho-related GTP-binding protein RhoG
EIF4E	P06730	-0,26	0,70	0,82	FALSE	5	Eukaryotic translation initiation factor 4E
WDR33	Q9C0J8-3	-0,26	0,79	0,88	FALSE	7	pre-mRNA 3 end processing protein WDR33
PSME4	Q14997-2	-0,26	0,74	0,84	FALSE	9	Proteasome activator complex subunit 4
DDR2	Q16832	-0,27	0,71	0,83	FALSE	5	Discoidin domain- containing receptor 2
sep-08	Q92599-2	-0,27	0,68	0,80	FALSE	5	Septin-8
CD58	P19256-2	-0,27	0,78	0,87	FALSE	2	Lymphocyte function- associated antigen 3
MAEA	Q7L5Y9	-0,27	0,69	0,81	FALSE	4	Macrophage erythroblast attacher
IDE	P14735	-0,27	0,69	0,81	FALSE	9	Insulin-degrading enzyme
CLDND1	Q9NY35-2	-0,28	0,78	0,87	FALSE	2	Claudin domain- containing protein 1
BLM	P54132	-0,28	0,80	0,88	FALSE	4	Bloom syndrome protein
DPP9	Q86TI2-4	-0,28	0,76	0,86	FALSE	2	Dipeptidyl peptidase 9
GMPS	P49915	-0,28	0,73	0,84	FALSE	0	GMP synthase [glutamine- hydrolyzing]
TTLL12	Q14166	-0,28	0,76	0,86	FALSE	0	Tubulintyrosine ligase- like protein 12
FUCA1	P04066	-0,28	0,73	0,84	FALSE	2	Tissue alpha-L-fucosidase
RFC5	P40937-2	-0,28	0,65	0,79	FALSE	8	Replication factor C subunit 5
ACSL4	O60488-2	-0,28	0,67	0,79	FALSE	3	Long-chain-fatty-acid CoA ligase 4
WASL	000401	-0,29	0,70	0,82	FALSE	2	Neural Wiskott-Aldrich syndrome protein
NPC2	P61916-2	-0,29	0,78	0,87	FALSE	5	Epididymal secretory protein E1
PLIN3	O60664-4	-0,29	0,73	0,84	FALSE	7	Perilipin-3
ECM29	Q5VYK3	-0,29	0,58	0,73	FALSE	5	Proteasome-associated protein ECM29 homolog
WASF2	Q9Y6W5	-0,29	0,68	0,80	FALSE	4	Wiskott-Aldrich syndrome protein family member 2
MMP2	P08253-3	-0,30	0,75	0,85	FALSE	4	72 kDa type IV collagenase
SLC35B2	Q8TB61-3	-0,30	0,76	0,86	FALSE	2	Adenosine 3-phospho 5- phosphosulfate transporter 1
ST13	P50502	-0,30	0,61	0,75	FALSE	0	Hsc70-interacting protein
PTPN23	Q9H3S7	-0,30	0,70	0,82	FALSE	2	Tyrosine-protein phosphatase non-receptor type 23
UROD	P06132	-0,30	0,79	0,88	FALSE	7	Uroporphyrinogen decarboxylase
RPS11	P62280	-0,31	0,59	0,75	FALSE	0	40S ribosomal protein S11
ACACA	Q13085-3	-0,31	0,68	0,80	FALSE	9	Acetyl-CoA carboxylase 1
CYFIP1	Q7L576	-0,31	0,58	0,73	FALSE	0	Cytoplasmic FMR1- interacting protein 1
ATP6AP	075787-2	-0,31	0,74	0,84	FALSE	6	Renin receptor
MTHFD1	P11586	-0,31	0,77	0,86	FALSE	1	C-1-tetrahydrofolate synthase, cytoplasmic

CAPZA1	P52907	-0,31	0,62	0,76	FALSE	0	F-actin-capping protein subunit alpha-1
PGK1	P00558	-0,31	0,51	0,68	FALSE	0	Phosphoglycerate kinase 1
PRKD3	O94806	-0,31	0,74	0,84	FALSE	6	Serine/threonine-protein kinase D3
РТК7	Q13308-4	-0,31	0,80	0,88	FALSE	1	Inactive tyrosine-protein kinase 7
GNG12	Q9UBI6	-0,32	0,72	0,83	FALSE	0	Guanine nucleotide- binding protein G(I)/G(S)/G(O) subunit gamma-12
STMN2	Q93045	-0,33	0,69	0,81	FALSE	2	Stathmin-2
CSK	P41240	-0,33	0,68	0,80	FALSE	2	Tyrosine-protein kinase CSK
TMEM3 0A	Q9NV96	-0,33	0,77	0,86	FALSE	4	Cell cycle control protein 50A
EIF3H	015372	-0,34	0,54	0,70	FALSE	0	Eukaryotic translation initiation factor 3 subunit H
RBMXL1	Q96E39	-0,34	0,70	0,82	FALSE	4	RNA binding motif protein, X-linked-like-1
МАР4К4	O95819	-0,34	0,49	0,66	FALSE	0	Mitogen-activated protein kinase kinase kinase kinase 4
ABI1	Q8IZP0-10	-0,35	0,62	0,76	FALSE	1	Abl interactor 1
CCT2	P78371	-0,35	0,49	0,66	FALSE	0	T-complex protein 1 subunit beta
MFAP2	P55001-3	-0,35	0,79	0,88	FALSE	7	Microfibrillar-associated protein 2
EIF3C	Q99613-2	-0,35	0,56	0,72	FALSE	0	Eukaryotic translation initiation factor 3 subunit C
DHX29	Q7Z478	-0,35	0,53	0,70	FALSE	3	ATP-dependent RNA helicase DHX29
CD63	P08962-2	-0,35	0,63	0,77	FALSE	0	CD63 antigen
IGSF3	075054	-0,35	0,83	0,90	FALSE	1	Immunoglobulin superfamily member 3
HEXB	P07686	-0,35	0,59	0,74	FALSE	0	Beta-hexosaminidase subunit beta
HSP90A B1	P08238	-0,36	0,54	0,70	FALSE	0	Heat shock protein HSP 90-beta
EIF2A	Q9BY44-4	-0,36	0,67	0,80	FALSE	3	Eukaryotic translation initiation factor 2A
CCT5	P48643	-0,36	0,52	0,68	FALSE	0	T-complex protein 1 subunit epsilon
GBA	P04062-4	-0,36	0,73	0,84	FALSE	2	Glucosylceramidase
PLAA	Q9Y263	-0,36	0,63	0,77	FALSE	4	Phospholipase A-2- activating protein
GNAI1	P63096	-0,36	0,66	0,79	FALSE	3	Guanine nucleotide- binding protein G(i) subunit alpha-1
NEDD4L	Q96PU5-3	-0,36	0,65	0,79	FALSE	0	E3 ubiquitin-protein ligase NEDD4-like
ATP1B3	P54709	-0,37	0,60	0,75	FALSE	0	Sodium/potassium- transporting ATPase subunit beta-3
CHMP4 A	Q9BY43	-0,37	0,75	0,85	FALSE	2	Charged multivesicular body protein 4a
UNC13D	Q70J99	-0,37	0,68	0,80	FALSE	6	Protein unc-13 homolog D
CAPN7	Q9Y6W3	-0,37	0,62	0,76	FALSE	3	Calpain-7
PTPRJ	Q12913	-0,37	0,79	0,88	FALSE	2	Receptor-type tyrosine- protein phosphatase eta
QDPR	P09417	-0,37	0,59	0,74	FALSE	0	Dihydropteridine reductase
VPS25	Q9BRG1	-0,37	0,77	0,86	FALSE	6	Vacuolar protein-sorting- associated protein 25
S100A1 6	Q96FQ6	-0,38	0,69	0,80	FALSE	1	Protein S100-A16

SULT4A 1	Q9BR01-2	-0,38	0,57	0,73	FALSE	10	Sulfotransferase 4A1
RRAS2	P62070	-0,38	0,62	0,76	FALSE	1	Ras-related protein R-Ras2
SEC31A	O94979-6	-0,38	0,74	0,84	FALSE	2	Protein transport protein Sec31A
EIF3J	075822-3	-0,38	0,53	0,69	FALSE	6	Eukaryotic translation initiation factor 3 subunit J
BTN2A1	Q7KYR7-6	-0,39	0,72	0,83	FALSE	7	Butyrophilin subfamily 2 member A1
CSPG4	Q6UVK1	-0,39	0,61	0,75	FALSE	0	Chondroitin sulfate proteoglycan 4
TOR3A	Q9H497	-0,39	0,61	0,75	FALSE	2	Torsin-3A
ATP1B1	P05026-2	-0,39	0,71	0,82	FALSE	1	Sodium/potassium- transporting ATPase subunit beta-1
SLC6A8	P48029	-0,39	0,67	0,80	FALSE	8	Sodium- and chloride- dependent creatine transporter 1
EVA1B	Q9NVM1	-0,40	0,66	0,79	FALSE	2	Protein eva-1 homolog B
HLA-C.1	P30508	-0,40	0,74	0,84	FALSE	3	HLA class I histocompatibility antigen, Cw-12 alpha chain
CHMP2 A	O43633	-0,41	0,57	0,73	FALSE	0	Charged multivesicular body protein 2a
UBE2M	P61081	-0,41	0,44	0,61	FALSE	0	NEDD8-conjugating enzyme Ubc12
COL1A1	P02452	-0,41	0,66	0,79	FALSE	7	Collagen alpha-1(I) chain
COPB1	P53618	-0,41	0,71	0,83	FALSE	2	Coatomer subunit beta
GFPT1	Q06210-2	-0,41	0,73	0,84	FALSE	3	Glutaminefructose-6- phosphate aminotransferase [isomerizing] 1
ҮКТ6	015498-2	-0,42	0,66	0,79	FALSE	2	Synaptobrevin homolog YKT6
XPO1	014980	-0,42	0,40	0,58	FALSE	0	Exportin-1
VTI1B	Q9UEU0	-0,42	0,71	0,82	FALSE	3	Vesicle transport through interaction with t-SNAREs homolog 1B
СРМ	P14384	-0,42	0,64	0,78	FALSE	10	Carboxypeptidase M
TMEM5 5B	Q86T03	-0,42	0,77	0,86	FALSE	5	Type 1 phosphatidylinositol 4,5- bisphosphate 4- phosphatase
DHX15	O43143	-0,42	0,65	0,79	FALSE	2	Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15
FAM129 B	Q96TA1-2	-0,42	0,73	0,84	FALSE	1	Niban-like protein 1
UPP1	Q16831	-0,43	0,72	0,83	FALSE	2	Uridine phosphorylase 1
VPS4A	Q9UN37	-0,43	0,44	0,62	FALSE	0	Vacuolar protein sorting- associated protein 4A
LGALS3B P	Q08380	-0,43	0,46	0,64	FALSE	0	Galectin-3-binding protein
PTPRA	P18433-4	-0,43	0,67	0,80	FALSE	2	Receptor-type tyrosine- protein phosphatase alpha
RPS21	P63220	-0,43	0,50	0,67	FALSE	9	40S ribosomal protein S21
BSG	P35613-2	-0,43	0,58	0,74	FALSE	0	Basigin
CAPN5	015484	-0,43	0,42	0,60	FALSE	4	Calpain-5
CKAP5	Q14008-2	-0,44	0,71	0,82	FALSE	4	Cytoskeleton-associated protein 5
DHX9	Q08211	-0,44	0,49	0,66	FALSE	0	ATP-dependent RNA helicase A
GULP1	Q9UBP9	-0,44	0,47	0,64	FALSE	10	PTB domain-containing engulfment adapter protein 1

MME	P08473	-0,44	0,81	0,89	FALSE	2	Neprilysin
IMPDH2	P12268	-0,44	0,57	0,73	FALSE	0	Inosine-5-monophosphate dehydrogenase 2
COPG1	Q9Y678	-0,44	0,68	0,80	FALSE	2	Coatomer subunit gamma- 1
SLK	Q9H2G2-2	-0,45	0,45	0,63	FALSE	7	STE20-like serine/threonine-protein kinase
NAPA	P54920	-0,46	0,61	0,75	FALSE	1	Alpha-soluble NSF attachment protein
SRC	P12931	-0,46	0,49	0,66	FALSE	2	Proto-oncogene tyrosine- protein kinase Src
SNX2	O60749-2	-0,46	0,62	0,76	FALSE	1	Sorting nexin-2
SRSF9	Q13242	-0,46	0,63	0,77	FALSE	5	Serine/arginine-rich splicing factor 9
PLXND1	Q9Y4D7	-0,46	0,45	0,62	FALSE	8	Plexin-D1
EIF4A2	Q14240	-0,46	0,39	0,57	FALSE	0	Eukaryotic initiation factor 4A-II
sep-02	Q15019	-0,46	0,54	0,70	FALSE	0	Septin-2
TOM1L1	075674-2	-0,46	0,74	0,84	FALSE	6	TOM1-like protein 1
CARM1	Q86X55-1	-0,47	0,45	0,62	FALSE	8	Histone-arginine methyltransferase CARM1
SPG20	Q8N0X7	-0,47	0,52	0,68	FALSE	2	Spartin
SRRT	Q9BXP5-5	-0,47	0,42	0,60	FALSE	0	Serrate RNA effector molecule homolog
IQGAP2	Q13576	-0,47	0,66	0,79	FALSE	2	Ras GTPase-activating-like protein IQGAP2
CORO1C	Q9ULV4	-0,47	0,48	0,65	FALSE	0	Coronin-1C
HLA-B.1	Q95365	-0,47	0,60	0,75	FALSE	0	HLA class l histocompatibility antigen, B-38 alpha chain
CHMP4 B	Q9H444	-0,47	0,47	0,65	FALSE	0	Charged multivesicular body protein 4b
ТТҮНЗ	Q9C0H2-2	-0,47	0,53	0,69	FALSE	0	Protein tweety homolog 3
EPRS	P07814	-0,48	0,36	0,54	FALSE	0	Bifunctional glutamate/prolinetRNA ligase
CAB39	Q9Y376	-0,48	0,65	0,79	FALSE	2	Calcium-binding protein 39
DARS	P14868	-0,48	0,38	0,56	FALSE	0	AspartatetRNA ligase, cytoplasmic
ANXA5	P08758	-0,48	0,54	0,70	FALSE	0	Annexin A5
VPS37B	Q9H9H4	-0,48	0,47	0,64	FALSE	0	Vacuolar protein sorting- associated protein 37B
PSAP	P07602	-0,48	0,66	0,79	FALSE	2	Prosaposin
PTPRZ1	P23471-3	-0,49	0,59	0,74	FALSE	4	Receptor-type tyrosine- protein phosphatase zeta
RPS5	P46782	-0,49	0,38	0,55	FALSE	0	40S ribosomal protein S5
YARS	P54577	-0,49	0,50	0,67	FALSE	2	TyrosinetRNA ligase, cytoplasmic
HDLBP	Q00341-2	-0,49	0,64	0,78	FALSE	2	Vigilin
SERINC5	Q86VE9-3	-0,50	0,74	0,84	FALSE	0	Serine incorporator 5
TBCA	075347	-0,50	0,59	0,74	FALSE	3	Tubulin-specific chaperone A
SLC4A7	Q9Y6M7-6	-0,50	0,71	0,83	FALSE	2	Sodium bicarbonate cotransporter 3
SMEK1	Q6IN85-5	-0,50	0,55	0,71	FALSE	9	Serine/threonine-protein phosphatase 4 regulatory subunit 3A
MAPK1	P28482	-0,50	0,73	0,84	FALSE	4	Mitogen-activated protein kinase 1
PLSCR1	015162-2	-0,51	0,63	0,77	FALSE	0	Phospholipid scramblase 1
CALU	043852-2	-0,51	0,66	0,79	FALSE	5	Calumenin

AKR1B1	P15121	-0,51	0,68	0,80	FALSE	2	Aldose reductase
DNAH17	Q9UFH2-2	-0,51	0,56	0,72	FALSE	8	Dynein heavy chain 17, axonemal
HUWE1	Q7Z6Z7-2	-0,52	0,42	0,60	FALSE	0	E3 ubiquitin-protein ligase HUWE1
PSMD1	Q99460-2	-0,52	0,40	0,58	FALSE	0	26S proteasome non- ATPase regulatory subunit 1
PRPF4	043172-2	-0,52	0,50	0,67	FALSE	8	U4/U6 small nuclear ribonucleoprotein Prp4
ABCE1	P61221	-0,52	0,60	0,75	FALSE	3	ATP-binding cassette sub- family E member 1
PPP1CB	P62140	-0,52	0,30	0,48	FALSE	0	Serine/threonine-protein phosphatase PP1-beta catalytic subunit
DLG1	Q12959-8	-0,52	0,61	0,76	FALSE	2	Disks large homolog 1
CNP	P09543-2	-0,52	0,43	0,60	FALSE	0	2,3-cyclic-nucleotide 3- phosphodiesterase
NRP2	O60462-4	-0,52	0,61	0,75	FALSE	1	Neuropilin-2
STX12	Q86Y82	-0,52	0,66	0,79	FALSE	2	Syntaxin-12
DOCK10	Q96BY6-3	-0,52	0,61	0,75	FALSE	3	Dedicator of cytokinesis protein 10
UPF1	Q92900-2	-0,53	0,59	0,74	FALSE	2	Regulator of nonsense transcripts 1
DHRS11	Q6UWP2	-0,53	0,46	0,64	FALSE	4	Dehydrogenase/reductase SDR family member 11
NOP56	O00567	-0,53	0,55	0,71	FALSE	3	Nucleolar protein 56
ST3GAL 4	Q11206-7	-0,53	0,51	0,68	FALSE	3	CMP-N- acetylneuraminate-beta- galactosamide-alpha-2,3- sialyltransferase 4
CD97	P48960-2	-0,53	0,66	0,79	FALSE	8	CD97 antigen
EXOC3	O60645-2	-0,53	0,61	0,76	FALSE	9	Exocyst complex component 3
TRAPPC 8	Q9Y2L5-2	-0,53	0,49	0,66	FALSE	7	Trafficking protein particle complex subunit 8
CAPZB	P47756-2	-0,54	0,61	0,75	FALSE	1	F-actin-capping protein subunit beta
RAB4A	P20338	-0,54	0,42	0,60	FALSE	4	Ras-related protein Rab- 4A
LANCL2	Q9NS86	-0,54	0,41	0,59	FALSE	3	LanC-like protein 2
PGRMC 1	000264	-0,54	0,45	0,62	FALSE	6	Membrane-associated progesterone receptor component 1
VPS29	Q9UBQ0	-0,54	0,57	0,73	FALSE	2	Vacuolar protein sorting- associated protein 29
ATRN	075882	-0,54	0,66	0,79	FALSE	3	Attractin
PCYT2	Q99447	-0,54	0,51	0,67	FALSE	3	Ethanolamine-phosphate cytidylyltransferase
MCAM	P43121	-0,54	0,33	0,51	FALSE	0	Cell surface glycoprotein MUC18
PRKACB	P22694-4	-0,54	0,55	0,71	FALSE	1	cAMP-dependent protein kinase catalytic subunit beta
EIF3F	000303	-0,54	0,66	0,79	FALSE	2	Eukaryotic translation initiation factor 3 subunit F
RPL35A	P18077	-0,54	0,38	0,55	FALSE	0	60S ribosomal protein L35a
ESD	P10768	-0,55	0,57	0,73	FALSE	3	S-formylglutathione hydrolase
PPP2CB	P62714	-0,55	0,67	0,80	FALSE	2	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform
UTP18	Q9Y5J1	-0,56	0,39	0,56	FALSE	5	U3 small nucleolar RNA- associated protein 18 homolog
ERP44	Q9BS26	-0,56	0,53	0,70	FALSE	2	Endoplasmic reticulum resident protein 44

SDC4	P31431	-0,56	0,32	0,50	FALSE	0	Syndecan-4
TCP1	P17987	-0,56	0,75	0,85	FALSE	2	T-complex protein 1 subunit alpha
NDRG2	Q9UN36-4	-0,57	0,52	0,68	FALSE	9	Protein NDRG2
KRAS	P01116-2	-0,57	0,61	0,75	FALSE	1	GTPase KRas
ССТ7	Q99832	-0,58	0,33	0,52	FALSE	0	T-complex protein 1 subunit eta
HSPG2	P98160	-0,58	0,31	0,49	FALSE	0	Basement membrane- specific heparan sulfate proteoglycan core protein
ATIC	P31939	-0,58	0,23	0,41	FALSE	0	Bifunctional purine biosynthesis protein PURH
SACM1L	Q9NTJ5	-0,58	0,33	0,51	FALSE	5	Phosphatidylinositide phosphatase SAC1
RAB7A	P51149	-0,58	0,25	0,43	FALSE	0	Ras-related protein Rab-7a
SIRPA	P78324-4	-0,58	0,74	0,84	FALSE	1	Tyrosine-protein phosphatase non-receptor type substrate 1
РКР4	Q99569-2	-0,58	0,53	0,70	FALSE	7	Plakophilin-4
ARL6IP5	075915	-0,58	0,56	0,72	FALSE	4	PRA1 family protein 3
TJP2	Q9UDY2-5	-0,58	0,47	0,65	FALSE	6	Tight junction protein ZO- 2
MOB1A	Q9H8S9	-0,58	0,56	0,72	FALSE	8	MOB kinase activator 1A
GNB4	Q9HAV0	-0,59	0,36	0,54	FALSE	0	Guanine nucleotide- binding protein subunit beta-4
ARF5	P84085	-0,59	0,60	0,75	FALSE	1	ADP-ribosylation factor 5
SLC20A1	Q8WUM9	-0,59	0,61	0,75	FALSE	5	Sodium-dependent phosphate transporter 1
IST1	P53990-2	-0,59	0,41	0,58	FALSE	0	IST1 homolog
APOD	P05090	-0,60	0,77	0,86	FALSE	3	Apolipoprotein D
RPN1	P04843	-0,60	0,49	0,66	FALSE	6	Dolichyl- diphosphooligosaccharide protein glycosyltransferase subunit 1
SEC13	P55735-2	-0,60	0,45	0,62	FALSE	2	Protein SEC13 homolog
RPL26	P61254	-0,60	0,56	0,72	FALSE	2	60S ribosomal protein L26
FLII	Q13045-2	-0,60	0,46	0,64	FALSE	2	Protein flightless-1 homolog
IGF1R	P08069	-0,61	0,54	0,70	FALSE	2	Insulin-like growth factor 1 receptor
SLC12A7	Q9Y666	-0,61	0,30	0,48	FALSE	5	Solute carrier family 12 member 7
NEMF	O60524-4	-0,61	0,45	0,62	FALSE	4	Nuclear export mediator factor NEMF
CDC42	P60953	-0,62	0,37	0,55	FALSE	0	Cell division control protein 42 homolog
SAMHD 1	Q9Y3Z3-4	-0,62	0,38	0,55	FALSE	10	Deoxynucleoside triphosphate triphosphohydrolase SAMHD1
SCARB2	Q14108	-0,62	0,63	0,77	FALSE	2	Lysosome membrane protein 2
MPP6	Q9NZW5	-0,62	0,59	0,74	FALSE	3	MAGUK p55 subfamily member 6
MY01E	Q12965	-0,62	0,43	0,61	FALSE	0	Unconventional myosin-le
FMR1	Q06787-8	-0,62	0,31	0,49	FALSE	8	Fragile X mental retardation protein 1
EIF3I	Q13347	-0,62	0,30	0,49	FALSE	0	Eukaryotic translation initiation factor 3 subunit I
MYL6	P60660-2	-0,63	0,36	0,54	FALSE	0	Myosin light polypeptide 6
TES	Q9UGI8-2	-0,63	0,40	0,58	FALSE	1	Testin

RPS25	P62851	-0,63	0,68	0,80	FALSE	7	40S ribosomal protein S25
TSG101	Q99816	-0,63	0,28	0,46	FALSE	0	Tumor susceptibility gene 101 protein
SLC7A5	Q01650	-0,63	0,48	0,65	FALSE	0	Large neutral amino acids transporter small subunit 1
NCAM1	P13591-1	-0,64	0,48	0,65	FALSE	1	Neural cell adhesion molecule 1
TPI1	P60174-1	-0,64	0,26	0,44	FALSE	0	Triosephosphate isomerase
PSMD8	P48556	-0,64	0,48	0,65	FALSE	2	26S proteasome non- ATPase regulatory subunit 8
HSPB1	P04792	-0,64	0,56	0,72	FALSE	0	Heat shock protein beta-1
ATP2B4	P23634-5	-0,65	0,22	0,39	FALSE	0	Plasma membrane calcium-transporting ATPase 4
TNFRSF1 OB	014763-2	-0,65	0,48	0,65	FALSE	5	Tumor necrosis factor receptor superfamily member 10B
SYNJ1	043426-4	-0,65	0,37	0,55	FALSE	8	Synaptojanin-1
MSH6	P52701-4	-0,66	0,58	0,73	FALSE	6	DNA mismatch repair protein Msh6
PA2G4	Q9UQ80	-0,66	0,20	0,37	FALSE	0	Proliferation-associated protein 2G4
TSPAN3	O60637-3	-0,66	0,61	0,75	FALSE	1	Tetraspanin-3
RPS19	P39019	-0,66	0,31	0,49	FALSE	0	40S ribosomal protein S19
ADRM1	Q16186	-0,66	0,43	0,60	FALSE	2	Proteasomal ubiquitin receptor ADRM1
YWHAZ	P63104	-0,66	0,24	0,42	FALSE	0	14-3-3 protein zeta/delta
PSMB1	P20618	-0,67	0,37	0,55	FALSE	1	Proteasome subunit beta type-1
EEF1A1P 5	Q5VTE0	-0,67	0,18	0,34	FALSE	0	Putative elongation factor 1-alpha-like 3
AARS	P49588	-0,67	0,55	0,72	FALSE	2	AlaninetRNA ligase, cytoplasmic
LCMT1	Q9UIC8	-0,67	0,47	0,65	FALSE	5	Leucine carboxyl methyltransferase 1
RDX	P35241	-0,67	0,18	0,34	FALSE	0	Radixin
CBR3	075828	-0,68	0,53	0,69	FALSE	6	Carbonyl reductase [NADPH] 3
MYH10	P35580	-0,68	0,26	0,44	FALSE	0	Myosin-10
PKLR	P30613-2	-0,68	0,31	0,49	FALSE	9	Pyruvate kinase PKLR
RPS3A	P61247	-0,68	0,25	0,43	FALSE	0	40S ribosomal protein S3a
NUDC	Q9Y266	-0,68	0,49	0,66	FALSE	4	Nuclear migration protein nudC
ADAM9	Q13443	-0,68	0,33	0,51	FALSE	0	Disintegrin and metalloproteinase domain-containing protein 9
GCN1L1	Q92616	-0,68	0,56	0,72	FALSE	2	Translational activator GCN1
GSTM1	P09488	-0,69	0,67	0,80	FALSE	8	Glutathione S-transferase Mu 1
SORD	Q00796	-0,69	0,49	0,66	FALSE	3	Sorbitol dehydrogenase
TGFBR3	Q03167-2	-0,69	0,35	0,54	FALSE	6	Transforming growth factor beta receptor type 3
ANGPTL 3	Q9Y5C1	-0,69	0,38	0,56	FALSE	2	Angiopoietin-related protein 3
POSTN	Q15063	-0,70	0,46	0,63	FALSE	6	Periostin
TWF1	Q12792	-0,70	0,65	0,79	FALSE	4	Twinfilin-1
RAB10	P61026	-0,70	0,37	0,55	FALSE	0	Ras-related protein Rab- 10
EIF5A	P63241	-0,70	0,37	0,55	FALSE	0	Eukaryotic translation initiation factor 5A-1

OAS3	Q9Y6K5	-0,71	0,51	0,68	FALSE	8	2-5-oligoadenylate synthase 3
GMDS	O60547-2	-0,71	0,35	0,54	FALSE	2	GDP-mannose 4,6 dehydratase
RPS2	P15880	-0,71	0,33	0,51	FALSE	0	40S ribosomal protein S2
SPRR1A	P35321	-0,71	0,66	0,79	FALSE	6	Cornifin-A
MANBA	O00462	-0,71	0,47	0,64	FALSE	2	Beta-mannosidase
OTUB1	Q96FW1	-0,71	0,51	0,68	FALSE	1	Ubiquitin thioesterase OTUB1
ITGB4	P16144-4	-0,71	0,56	0,72	FALSE	7	Integrin beta-4
PSAT1	Q9Y617-2	-0,71	0,52	0,68	FALSE	8	Phosphoserine aminotransferase
SLC16A1	P53985	-0,71	0,23	0,41	FALSE	0	Monocarboxylate transporter 1
ALDH9A 1	P49189	-0,72	0,50	0,67	FALSE	0	4- trimethylaminobutyraldeh yde dehydrogenase
EIF4A3	P38919	-0,72	0,27	0,45	FALSE	0	Eukaryotic initiation factor 4A-III
RPL18	Q07020	-0,72	0,38	0,55	FALSE	0	60S ribosomal protein L18
RPS13	P62277	-0,72	0,46	0,63	FALSE	7	40S ribosomal protein S13
GNB2L1	P63244	-0,72	0,26	0,44	FALSE	0	Guanine nucleotide- binding protein subunit beta-2-like 1
SLC43A3	Q8NBI5	-0,72	0,55	0,71	FALSE	8	Solute carrier family 43 member 3
WDR91	A4D1P6-3	-0,73	0,47	0,64	FALSE	4	WD repeat-containing protein 91
UBE2D3	P61077	-0,73	0,60	0,75	FALSE	5	Ubiquitin-conjugating enzyme E2 D3
CXorf36	Q9H7Y0-2	-0,73	0,38	0,55	FALSE	4	Deleted in autism-related protein 1
STX3	Q13277-2	-0,73	0,55	0,71	FALSE	2	Syntaxin-3
NCKAP1	Q9Y2A7	-0,74	0,26	0,45	FALSE	0	Nck-associated protein 1
RAB27A	P51159-2	-0,74	0,40	0,58	FALSE	3	Ras-related protein Rab- 27A
PRDX2	P32119	-0,74	0,43	0,61	FALSE	2	Peroxiredoxin-2
XPO7	Q9UIA9	-0,74	0,40	0,57	FALSE	2	Exportin-7
SPTLC1	015269	-0,74	0,31	0,49	FALSE	10	Serine palmitoyltransferase 1
GRB2	P62993-2	-0,74	0,28	0,46	FALSE	5	Growth factor receptor- bound protein 2
RPL10A	P62906	-0,74	0,52	0,69	FALSE	2	60S ribosomal protein L10a
ITGB8	P26012-2	-0,75	0,37	0,55	FALSE	5	Integrin beta-8
TIMP3	P35625	-0,75	0,47	0,64	FALSE	1	Metalloproteinase inhibitor 3
GNB2	P62879	-0,75	0,18	0,34	FALSE	0	Guanine nucleotide- binding protein G(I)/G(S)/G(T) subunit beta-2
EHD2	Q9NZN4	-0,75	0,48	0,66	FALSE	7	EH domain-containing protein 2
LAMP2	P13473-2	-0,75	0,56	0,72	FALSE	1	Lysosome-associated membrane glycoprotein 2
C15orf5 2	Q6ZUT6-2	-0,76	0,31	0,49	FALSE	9	Uncharacterized protein C15orf52
EDC4	Q6P2E9	-0,76	0,43	0,60	FALSE	5	Enhancer of mRNA- decapping protein 4
MPZL1	095297-2	-0,76	0,59	0,74	FALSE	3	Myelin protein zero-like protein 1
PRDX6	P30041	-0,76	0,18	0,34	FALSE	0	Peroxiredoxin-6
DDX60	Q8IY21	-0,76	0,31	0,49	FALSE	10	Probable ATP-dependent RNA helicase DDX60
ATG9A	Q7Z3C6	-0,77	0,17	0,33	FALSE	8	Autophagy-related protein 9A

ARCN1	P48444	-0,77	0,19	0,35	FALSE	0	Coatomer subunit delta
GNAS	P63092-3	-0,79	0,23	0,41	FALSE	0	Guanine nucleotide- binding protein G(s) subunit alpha isoforms short
HSP90A A1	P07900	-0,79	0,25	0,43	FALSE	0	Heat shock protein HSP 90-alpha
MAP1B	P46821	-0,79	0,18	0,35	FALSE	9	Microtubule-associated protein 1B
CD81	P60033	-0,79	0,27	0,45	FALSE	0	CD81 antigen
KPNB1	Q14974	-0,79	0,18	0,34	FALSE	0	Importin subunit beta-1
RNF123	Q5XPI4	-0,79	0,41	0,59	FALSE	5	E3 ubiquitin-protein ligase RNF123
GNAI3	P08754	-0,79	0,31	0,49	FALSE	0	Guanine nucleotide- binding protein G(k) subunit alpha
RPS18	P62269	-0,79	0,34	0,52	FALSE	0	40S ribosomal protein S18
SLC3A2	P08195-2	-0,79	0,23	0,41	FALSE	0	4F2 cell-surface antigen heavy chain
PLEKHB 2	Q96CS7-5	-0,80	0,46	0,63	FALSE	1	Pleckstrin homology domain-containing family B member 2
ATP11A	P98196	-0,80	0,24	0,42	FALSE	9	Probable phospholipid- transporting ATPase IH
NMT1	P30419	-0,81	0,30	0,48	FALSE	2	Glycylpeptide N- tetradecanoyltransferase 1
MYH14	Q7Z406	-0,81	0,47	0,65	FALSE	4	Myosin-14
CHMP5	Q9NZZ3	-0,81	0,44	0,62	FALSE	0	Charged multivesicular body protein 5
CKMT1A	P12532	-0,81	0,41	0,59	FALSE	9	Creatine kinase U-type, mitochondrial
FKBP4	Q02790	-0,81	0,36	0,55	FALSE	0	Peptidyl-prolyl cis-trans isomerase FKBP4
AGAP3	Q96P47-5	-0,81	0,26	0,44	FALSE	5	Arf-GAP with GTPase, ANK repeat and PH domain- containing protein 3
RAPH1	Q70E73-8	-0,82	0,54	0,70	FALSE	6	Ras-associated and pleckstrin homology domains-containing protein 1
ATP6V0 A2	Q9Y487	-0,82	0,26	0,44	FALSE	7	V-type proton ATPase 116 kDa subunit a isoform 2
AMPD2	Q01433-3	-0,83	0,16	0,32	FALSE	0	AMP deaminase 2
CDK2	P24941	-0,83	0,62	0,76	FALSE	3	Cyclin-dependent kinase 2
PAK2	Q13177	-0,84	0,38	0,56	FALSE	2	Serine/threonine-protein kinase PAK 2
H2AFY	075367-3	-0,84	0,63	0,76	FALSE	3	Core histone macro-H2A.1
DOCK5	Q9H7D0	-0,84	0,36	0,54	FALSE	9	Dedicator of cytokinesis protein 5
SPRYD7	Q5W111-2	-0,84	0,32	0,51	FALSE	4	SPRY domain-containing protein 7
RAB5C	P51148	-0,85	0,12	0,26	FALSE	0	Ras-related protein Rab- 5C
PPP1R7	Q15435	-0,85	0,40	0,57	FALSE	7	Protein phosphatase 1 regulatory subunit 7
EPB41L3	Q9Y2J2-2	-0,86	0,42	0,60	FALSE	1	Band 4.1-like protein 3
PPP2R1 A	P30153	-0,86	0,14	0,30	FALSE	0	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform
TLN2	Q9Y4G6	-0,86	0,36	0,54	FALSE	1	Talin-2
DIP2B	Q9P265	-0,87	0,16	0,32	FALSE	0	Disco-interacting protein 2 homolog B
STAT1	P42224-2	-0,87	0,17	0,33	FALSE	0	Signal transducer and activator of transcription 1-alpha/beta

GLO1	Q04760-2	-0,87	0,44	0,61	FALSE	6	Lactoylglutathione lyase
QARS	P47897-2	-0,87	0,49	0,66	FALSE	2	GlutaminetRNA ligase
VARS	P26640	-0,87	0,37	0,55	FALSE	1	ValinetRNA ligase
BCAP31	P51572	-0,87	0,20	0,37	FALSE	0	B-cell receptor-associated protein 31
HMGA2	P52926-3	-0,88	0,22	0,40	FALSE	8	High mobility group protein HMGI-C
ACTC1	P68032	-0,88	0,52	0,68	FALSE	2	Actin, alpha cardiac muscle 1
VPS4B	075351	-0,88	0,38	0,55	FALSE	1	Vacuolar protein sorting- associated protein 4B
HNRNP H1	P31943	-0,88	0,31	0,49	FALSE	3	Heterogeneous nuclear ribonucleoprotein H
RPL12	P30050	-0,88	0,24	0,42	FALSE	0	60S ribosomal protein L12
SDCBP	O00560	-0,88	0,20	0,37	FALSE	0	Syntenin-1
TCEB2	Q15370	-0,89	0,20	0,37	FALSE	2	Transcription elongation factor B polypeptide 2
ITFG3	Q9H0X4	-0,89	0,39	0,56	FALSE	3	Protein ITFG3
PCDHGC 3	Q9UN70	-0,89	0,39	0,56	FALSE	2	Protocadherin gamma-C3
UBA1	P22314-2	-0,89	0,10	0,23	FALSE	0	Ubiquitin-like modifier- activating enzyme 1
RPS16	P62249	-0,90	0,13	0,29	FALSE	0	40S ribosomal protein S16
CD36	P16671-4	-0,90	0,52	0,68	FALSE	7	Platelet glycoprotein 4
FKBP1A	P62942	-0,90	0,35	0,53	FALSE	1	Peptidyl-prolyl cis-trans isomerase FKBP1A
EPN1	Q9Y6I3-3	-0,90	0,19	0,35	FALSE	3	Epsin-1
SEC23A	Q15436	-0,90	0,27	0,45	FALSE	3	Protein transport protein Sec23A
PRPF40 A	075400-2	-0,90	0,36	0,54	FALSE	6	Pre-mRNA-processing factor 40 homolog A
KIAA019 6	Q12768	-0,90	0,15	0,31	FALSE	2	WASH complex subunit strumpellin
CAV1	Q03135-2	-0,90	0,52	0,68	FALSE	3	Caveolin-1
PGD	P52209-2	-0,90	0,56	0,72	FALSE	1	6-phosphogluconate dehydrogenase, decarboxylating
РРРЗСВ	P16298-3	-0,91	0,25	0,43	FALSE	8	Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform
CCT8	P50990-2	-0,91	0,15	0,30	FALSE	0	T-complex protein 1 subunit theta
SH3KBP 1	Q96B97-3	-0,92	0,31	0,49	FALSE	4	SH3 domain-containing kinase-binding protein 1
RECQL	P46063	-0,93	0,25	0,43	FALSE	2	ATP-dependent DNA helicase Q1
MY01C	000159-3	-0,93	0,10	0,24	FALSE	0	Unconventional myosin-Ic
ARHGAP 1	Q07960	-0,93	0,33	0,52	FALSE	6	Rho GTPase-activating protein 1
ACTN1	P12814-2	-0,93	0,23	0,41	FALSE	3	Alpha-actinin-1
ATP6V1 G2	O95670-2	-0,93	0,16	0,32	FALSE	8	V-type proton ATPase subunit G 2
TF	P02787	-0,93	0,61	0,75	FALSE	2	Serotransferrin
RPL10	P27635	-0,94	0,35	0,53	FALSE	1	60S ribosomal protein L10
ROCK1	Q13464	-0,94	0,26	0,44	FALSE	2	Rho-associated protein kinase 1
SNRPF	P62306	-0,94	0,18	0,34	FALSE	7	Small nuclear ribonucleoprotein F
TBC1D1 0A	Q9BXI6	-0,94	0,45	0,62	FALSE	7	TBC1 domain family member 10A
SSBP1	Q04837	-0,94	0,40	0,58	FALSE	3	Single-stranded DNA- binding protein, mitochondrial

RAB21	0911125	-0.94	0.29	0.48	FALSE	3	Ras-related protein Rab-
	004017	0.04	0.05	0,40	EALSE	0	21
BMS1	014692	-0.94	0.15	0.31	FAISE	8	Ribosome biogenesis
SLC39A1	0014052	0,04	0,13	0,51	FALSE	-	protein BMS1 homolog
0	Q90LF5	-0,94	0,40	0,58	FALSE	1	Constitutive coactivator of
FAM120 A	Q9NZB2	-0,95	0,31	0,49	FALSE	4	PPAR-gamma-like protein 1
EIF2S3	P41091	-0,95	0,33	0,51	FALSE	1	Eukaryotic translation initiation factor 2 subunit 3
IL13RA2	Q14627	-0,95	0,66	0,79	FALSE	7	Interleukin-13 receptor subunit alpha-2
GLB1	P16278-3	-0,95	0,14	0,30	FALSE	8	Beta-galactosidase
TGOLN2	O43493-4	-0,95	0,14	0,29	FALSE	0	Trans-Golgi network integral membrane protein 2
RPL27A	P46776	-0,95	0,19	0,35	FALSE	0	60S ribosomal protein L27a
SNX3	060493-2	-0,95	0,40	0,58	FALSE	8	Sorting nexin-3
RAB8B	Q92930	-0,95	0,36	0,54	FALSE	2	Ras-related protein Rab- 8B
DNAJC3	Q13217	-0,95	0,35	0,53	FALSE	2	DnaJ homolog subfamily C member 3
EIF3L	Q9Y262	-0,95	0,10	0,23	FALSE	0	Eukaryotic translation initiation factor 3 subunit L
PSMA5	P28066	-0,96	0,49	0,66	FALSE	2	Proteasome subunit alpha type-5
HNRNP M	P52272-2	-0,96	0,43	0,61	FALSE	1	Heterogeneous nuclear ribonucleoprotein M
RAB8A	P61006	-0,97	0,09	0,23	FALSE	0	Ras-related protein Rab- 8A
XPNPEP 1	Q9NQW7- 2	-0,97	0,49	0,66	FALSE	4	Xaa-Pro aminopeptidase 1
SLC7A8	Q9UHI5	-0,97	0,36	0,55	FALSE	9	Large neutral amino acids transporter small subunit 2
CYB5R3	P00387-2	-0,97	0,16	0,32	FALSE	5	NADH-cytochrome b5 reductase 3
BTN3A2	P78410-3	-0,98	0,20	0,37	FALSE	7	Butyrophilin subfamily 3 member A2
DNAJA2	O60884	-0,98	0,11	0,26	FALSE	0	DnaJ homolog subfamily A member 2
AIMP1	Q12904	-0,98	0,17	0,33	FALSE	8	Aminoacyl tRNA synthase complex-interacting multifunctional protein 1
CHORDC 1	Q9UHD1-2	-0,98	0,31	0,49	FALSE	6	Cysteine and histidine-rich domain-containing protein 1
DNAJB1	P25685	-0,98	0,34	0,52	FALSE	2	DnaJ homolog subfamily B member 1
AP1B1	Q10567-4	-0,98	0,26	0,44	FALSE	3	AP-1 complex subunit beta-1
APEX1	P27695	-0,98	0,26	0,45	FALSE	2	DNA-(apurinic or apyrimidinic site) lyase
F11R	Q9Y624	-0,98	0,53	0,69	FALSE	3	Junctional adhesion molecule A
DSTN	P60981	-0,99	0,41	0,58	FALSE	1	Destrin
AHSA1	095433	-0,99	0,25	0,43	FALSE	2	Activator of 90 kDa heat shock protein ATPase homolog 1
CRABP1	P29762	-1,00	0,25	0,43	FALSE	3	Cellular retinoic acid- binding protein 1
PANK4	Q9NVE7	-1,00	0,07	0,19	FALSE	2	Pantothenate kinase 4
PSMD14	O00487	-1,00	0,29	0,47	FALSE	1	26S proteasome non- ATPase regulatory subunit 14

MTA2	094776	-1,00	0,12	0,27	FALSE	4	Metastasis-associated protein MTA2
MYBBP1 A	Q9BQG0	-1,00	0,33	0,51	FALSE	4	Myb-binding protein 1A
ZMPSTE 24	075844	-1,00	0,13	0,29	FALSE	6	CAAX prenyl protease 1 homolog
CMBL	Q96DG6	-1,00	0,16	0,32	FALSE	10	Carboxymethylenebuteno lidase homolog
TSPAN1 0	Q9H1Z9	-1,00	0,21	0,39	FALSE	7	Tetraspanin-10
СТЅК	P43235	-1,01	0,33	0,52	FALSE	2	Cathepsin K
GSTM3	P21266	-1,01	0,41	0,59	FALSE	2	Glutathione S-transferase Mu 3
MARCKS	P29966	-1,01	0,10	0,24	FALSE	0	Myristoylated alanine-rich C-kinase substrate
DPYSL5	Q9BPU6	-1,01	0,61	0,75	FALSE	1	Dihydropyrimidinase- related protein 5
GMFB	P60983	-1,01	0,35	0,53	FALSE	3	Glia maturation factor beta
RPS26	P62854	-1,01	0,11	0,25	FALSE	0	40S ribosomal protein S26
SCRIB	Q14160-2	-1,01	0,32	0,51	FALSE	2	Protein scribble homolog
VPS35	Q96QK1	-1,01	0,35	0,53	FALSE	1	Vacuolar protein sorting- associated protein 35
GSPT1	P15170	-1,02	0,27	0,46	FALSE	1	Eukaryotic peptide chain release factor GTP-binding subunit ERF3A
HINT1	P49773	-1,02	0,27	0,45	FALSE	2	Histidine triad nucleotide- binding protein 1
RAB1A	P62820	-1,02	0,07	0,18	FALSE	0	Ras-related protein Rab- 1A
TCEB1	Q15369	-1,02	0,18	0,34	FALSE	9	Transcription elongation factor B polypeptide 1
HDGF	P51858	-1,02	0,20	0,36	FALSE	5	Hepatoma-derived growth factor
MMS19	Q96T76-9	-1,02	0,19	0,35	FALSE	9	MMS19 nucleotide excision repair protein homolog
SLC44A2	Q8IWA5-3	-1,03	0,33	0,51	FALSE	2	Choline transporter-like protein 2
VIM	P08670	-1,03	0,17	0,33	FALSE	0	Vimentin
ACTG1	P63261	-1,03	0,05	0,14	FALSE	0	Actin, cytoplasmic 2
OTUD7B	Q6GQQ9-2	-1,03	0,31	0,49	FALSE	6	OTU domain-containing protein 7B
SCAMP1	015126	-1,03	0,27	0,45	FALSE	6	Secretory carrier- associated membrane protein 1
TAX1BP 3	014907	-1,03	0,08	0,21	FALSE	10	Tax1-binding protein 3
GGH	Q92820	-1,04	0,21	0,38	FALSE	4	Gamma-glutamyl hydrolase
COL6A2	P12110	-1,04	0,35	0,54	FALSE	2	Collagen alpha-2(VI) chain
CPNE8	Q86YQ8	-1,04	0,26	0,44	FALSE	4	Copine-8
WDR61	Q9GZS3	-1,05	0,22	0,39	FALSE	4	WD repeat-containing protein 61
FAH	P16930-2	-1,05	0,28	0,46	FALSE	5	Fumarylacetoacetase
HSPA8	P11142	-1,05	0,05	0,14	FALSE	0	Heat shock cognate 71 kDa protein
PFKL	P17858	-1,05	0,15	0,31	FALSE	4	ATP-dependent 6- phosphofructokinase, liver type
PLSCR3	Q9NRY6	-1,05	0,42	0,60	FALSE	1	Phospholipid scramblase 3
RAP2B	P61225	-1,05	0,16	0,32	FALSE	0	Ras-related protein Rap- 2b
RPS7	P62081	-1,05	0,43	0,61	FALSE	6	40S ribosomal protein S7
TTC37	Q6PGP7	-1,05	0,11	0,26	FALSE	6	Tetratricopeptide repeat protein 37

EEF2 P13639 -1,06 0,05 FALSE 0 0,14 Elongation factor 2 Phenylalanine--tRNA 09NSD9-2 2 FARSB -1,06 0,27 0,45 FALSE ligase beta subunit B2M P61769 -1,06 0,48 0,65 FALSE 3 Beta-2-microglobulin Elongation factor 1-EEF1G P26641 -1,06 0,07 0,19 FALSE 0 gamma ΗP P00738-2 -1,06 0,43 0,61 FALSE 2 Haptoglobin Asparagine--tRNA ligase, NARS 043776 -1,06 0,28 0,47 FALSE 1 cytoplasmic CSNK1A Casein kinase I isoform P48729 -1,07 0,25 0,43 FALSE 1 1 alpha 26S protease regulatory PSMC5 P62195 -1,07 0,34 0,53 FALSE 1 subunit 8 26S proteasome non-PSMD2 Q13200 -1,07 0,55 FALSE 1 ATPase regulatory subunit 0,38 Tubulin-specific TBCD O9BTW9 -1.07 0.31 FALSE 3 0.49 chaperone D Peptidyl-prolyl cis-trans PPIB P23284 -1,08 0,46 FALSE 4 0,64 isomerase B Very long-chain specific ACADVL P49748-2 -1,08 0,10 0,24 FALSE 6 acyl-CoA dehydrogenase, mitochondrial CDC42B Serine/threonine-protein Q5VT25-4 -1,08 0,26 FALSE 6 0,44 PA kinase MRCK alpha P2RX4 Q99571-3 -1,08 0,20 0,37 FALSE 6 P2X purinoceptor 4 26S proteasome non-PSMD12 000232 -1,08 0,27 0,45 FALSE 1 ATPase regulatory subunit 12 26S proteasome non-PSMD6 Q15008 FALSE 2 ATPase regulatory subunit -1,09 0,30 0,48 6 Succinate dehydrogenase SDHA P31040-2 -1,09 0,07 0,18 FALSE 10 [ubiquinone] flavoprotein subunit, mitochondrial Synaptosomal-associated SNAP29 095721 -1.09 8 0.08 0.20 FALSE protein 29 Serine/threonine-protein OXSR1 095747 -1,09 0,20 0,37 FALSE 3 kinase OSR1 FERM, RhoGEF and FARP1 Q9Y4F1 -1.10 0.29 0.47 FALSE 0 pleckstrin domaincontaining protein 1 NHSL1 Q5SYE7-2 FALSE -1.10 0.20 0.38 3 NHS-like protein 1 26S proteasome non-PSMD3 043242 -1,10 0,41 0,58 FALSE 1 ATPase regulatory subunit 3 Leukocyte surface antigen 0,41 CD47 008722-2 -1 11 0.58 FALSE 2 CD47 Ras-related protein Rab-RAB33A Q14088 -1,11 0,07 0,19 FALSE 8 33A CTTN Q14247-3 FALSE 5 -1.11 0.22 0.39 Src substrate cortactin NCSTN Q92542-2 -1,11 0,25 0,43 FALSE 4 Nicastrin Transcription TRIM28 Q13263-2 -1,11 0,29 0,48 FALSE 2 intermediary factor 1-beta Vacuolar fusion protein CCZ1 P86791 -1,12 0,06 0,17 FALSE 8 CCZ1 homolog Eukaryotic translation EIF4G1 3 004637-6 -1,12 0,31 0,49 FALSE initiation factor 4 gamma 1 Exocyst complex EXOC5 000471 0 -1,12 0,05 FALSE 0,14 component 5 26S proteasome non-PSMD11 000231 -1,13 0,35 0,54 FALSE 1 ATPase regulatory subunit 11 26S proteasome non-PSMD7 P51665 -1,13 0,29 0,47 FALSE 2 ATPase regulatory subunit S100A1

1

P31949

-1,13

0,07

0,19

FALSE

0

Protein S100-A11

P4HB	P07237	-1,13	0,30	0,49	FALSE	1	Protein disulfide- isomerase
PFN1	P07737	-1,13	0,36	0,54	FALSE	1	Profilin-1
TBC1D1 6	Q8TBP0	-1,13	0,33	0,52	FALSE	7	TBC1 domain family member 16
YWHAE	P62258	-1,13	0,05	0,14	FALSE	0	14-3-3 protein epsilon
IFI16	Q16666-3	-1,14	0,29	0,48	FALSE	2	Gamma-interferon- inducible protein 16
RPSA	P08865	-1,14	0,09	0,23	FALSE	0	40S ribosomal protein SA
TSPAN9	075954	-1,14	0,20	0,38	FALSE	0	Tetraspanin-9
CD82	P27701-2	-1,15	0,52	0,69	FALSE	2	CD82 antigen
GLG1	Q92896	-1,15	0,28	0,46	FALSE	2	Golgi apparatus protein 1
GNA13	Q14344	-1,15	0,37	0,55	FALSE	2	Guanine nucleotide- binding protein subunit alpha-13
KIF26B	Q2KJY2	-1,15	0,35	0,54	FALSE	8	Kinesin-like protein KIF26B
LMAN1	P49257	-1,15	0,15	0,31	FALSE	4	Protein ERGIC-53
SMC1A	Q14683	-1,15	0,28	0,46	FALSE	4	Structural maintenance of chromosomes protein 1A
SUCLG2	Q96199	-1,15	0,37	0,55	FALSE	5	Succinyl-CoA ligase [GDP- forming] subunit beta, mitochondrial
ALDH16 A1	Q8IZ83-3	-1,16	0,33	0,52	FALSE	2	Aldehyde dehydrogenase family 16 member A1
CHID1	Q9BWS9-3	-1,16	0,12	0,26	FALSE	9	Chitinase domain- containing protein 1
FABP5	Q01469	-1,16	0,25	0,44	FALSE	0	Fatty acid-binding protein, epidermal
RARS	P54136	-1,16	0,17	0,33	FALSE	0	ArgininetRNA ligase,
PPP1R2 1	Q6ZMI0-5	-1,17	0,06	0,16	FALSE	6	Protein phosphatase 1 regulatory subunit 21
МАРКАР КЗ	Q16644	-1,17	0,25	0,43	FALSE	4	MAP kinase-activated protein kinase 3
RAI14	Q9P0K7-4	-1,17	0,08	0,21	FALSE	7	Ankycorbin
DDX39B	Q13838	-1,18	0,31	0,49	FALSE	2	Spliceosome RNA helicase DDX39B
GSS	P48637-2	-1,18	0,11	0,26	FALSE	8	Glutathione synthetase
HSPA13	P48723	-1,18	0,44	0,61	FALSE	3	Heat shock 70 kDa protein 13
PCMT1	P22061	-1,18	0,13	0,28	FALSE	9	Protein-L-isoaspartate(D- aspartate) O- methyltransferase
LARS	Q9P2J5-2	-1,19	0,56	0,72	FALSE	2	LeucinetRNA ligase, cytoplasmic
PPP1R1 2C	Q9BZL4-5	-1,19	0,10	0,24	FALSE	7	Protein phosphatase 1 regulatory subunit 12C
AP3B1	O00203-3	-1,20	0,34	0,52	FALSE	2	AP-3 complex subunit beta-1
PSMC6	P62333	-1,20	0,31	0,49	FALSE	0	26S protease regulatory subunit 10B
DNAJC1 3	075165	-1,20	0,16	0,32	FALSE	3	DnaJ homolog subfamily C member 13
EFEMP1	Q12805-2	-1,20	0,26	0,45	FALSE	5	EGF-containing fibulin-like extracellular matrix protein 1
IQGAP1	P46940	-1,20	0,03	0,12	FALSE	0	Ras GTPase-activating-like protein IQGAP1
RPL17	P18621	-1,20	0,23	0,40	FALSE	0	60S ribosomal protein L17
MBP	P02686	-1,21	0,23	0,41	FALSE	4	Myelin basic protein
PDHB	P11177-3	-1,21	0,22	0,40	FALSE	4	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial
DNAJB2	P25686-2	-1,21	0,13	0,28	FALSE	7	DnaJ homolog subfamily B member 2

RPL7A	P62424	-1,21	0,15	0,31	FALSE	0	60S ribosomal protein L7a
SNRNP7 0	P08621-2	-1,21	0,26	0,44	FALSE	2	U1 small nuclear ribonucleoprotein 70 kDa
KIAA103 3	Q2M389	-1,22	0,19	0,36	FALSE	4	WASH complex subunit 7
NSF	P46459	-1,22	0,17	0,33	FALSE	1	Vesicle-fusing ATPase
CD44	P16070-18	-1,22	0,05	0,15	FALSE	0	CD44 antigen
CSNK2B	P67870	-1,22	0,29	0,48	FALSE	4	Casein kinase II subunit beta
EPHB4	P54760	-1,22	0,13	0,28	FALSE	10	Ephrin type-B receptor 4
PSMD13	Q9UNM6	-1,23	0,37	0,55	FALSE	2	26S proteasome non- ATPase regulatory subunit 13
BROX	Q5VW32	-1,23	0,05	0,15	FALSE	0	BRO1 domain-containing protein BROX
CSDE1	075534-2	-1,23	0,39	0,57	FALSE	4	Cold shock domain- containing protein E1
MPP1	Q00013-2	-1,23	0,16	0,33	FALSE	6	55 kDa erythrocyte membrane protein
CD99	P14209-3	-1,24	0,20	0,37	FALSE	0	CD99 antigen
MATR3	P43243	-1,24	0,08	0,20	FALSE	0	Matrin-3
OLA1	Q9NTK5	-1,24	0,19	0,35	FALSE	1	Obg-like ATPase 1
PAICS	P22234	-1,24	0,05	0,14	FALSE	0	Multifunctional protein ADE2
PSMC3	P17980	-1,24	0,31	0,49	FALSE	2	26S protease regulatory subunit 6A
TOM1L2	Q6ZVM7-3	-1,24	0,06	0,17	FALSE	3	TOM1-like protein 2
MARCKS L1	P49006	-1,24	0,03	0,10	FALSE	0	MARCKS-related protein
RPS3	P23396	-1,24	0,05	0,16	FALSE	0	40S ribosomal protein S3
SF3B3	Q15393	-1,24	0,13	0,29	FALSE	10	Splicing factor 3B subunit 3
ТВСВ	Q99426-2	-1,24	0,21	0,38	FALSE	3	Tubulin-folding cofactor B
TOLLIP	Q9H0E2	-1,24	0,13	0,28	FALSE	0	Toll-interacting protein
ARL8B	Q9NVJ2	-1,25	0,26	0,44	FALSE	3	ADP-ribosylation factor- like protein 8B
UBE2V1	Q13404-8	-1,25	0,15	0,30	FALSE	3	Ubiquitin-conjugating enzyme E2 variant 1
VTA1	Q9NP79	-1,25	0,28	0,46	FALSE	2	Vacuolar protein sorting- associated protein VTA1 homolog
SRP68	Q9UHB9-4	-1,26	0,12	0,28	FALSE	2	Signal recognition particle subunit SRP68
ENG	P17813-2	-1,26	0,04	0,13	FALSE	0	Endoglin
MGRN1	O60291-4	-1,26	0,25	0,44	FALSE	3	E3 ubiquitin-protein ligase MGRN1
MINK1	Q8N4C8-2	-1,26	0,03	0,10	FALSE	0	Misshapen-like kinase 1
PLXNB2	015031	-1,26	0,28	0,46	FALSE	1	Plexin-B2
RPL31	P62899	-1,26	0,12	0,26	FALSE	0	60S ribosomal protein L31
ELMO2	Q96JJ3-3	-1,27	0,11	0,25	FALSE	2	Engulfment and cell motility protein 2
NPTN	Q9Y639-3	-1,27	0,21	0,38	FALSE	2	Neuroplastin
CTNNB1	P35222	-1,27	0,07	0,19	FALSE	0	Catenin beta-1
EIF2S1	P05198	-1,27	0,07	0,19	FALSE	0	Eukaryotic translation initiation factor 2 subunit 1
TGFBR2	P37173	-1,27	0,17	0,33	FALSE	10	TGF-beta receptor type-2
AHCYL1	O43865-2	-1,28	0,04	0,12	FALSE	0	Putative adenosylhomocysteinase 2
PARP4	Q9UKK3	-1,28	0,18	0,34	FALSE	1	Poly [ADP-ribose] polymerase 4

BCHE	P06276	-1,29	0,22	0,39	FALSE	4	Cholinesterase
MYL12A	P19105	-1,29	0,17	0,33	FALSE	3	Myosin regulatory light chain 12A
STXBP2	Q15833-2	-1,29	0,27	0,45	FALSE	3	Syntaxin-binding protein 2
RPL11	P62913	-1,30	0,15	0,31	FALSE	0	60S ribosomal protein L11
USP5	P45974-2	-1,30	0,23	0,41	FALSE	2	Ubiquitin carboxyl- terminal hydrolase 5
RPS8	P62241	-1,30	0,11	0,25	FALSE	0	40S ribosomal protein S8
APEH	P13798	-1,31	0,01	0,06	FALSE	0	Acylamino-acid-releasing enzyme
PITPNB	P48739	-1,31	0,05	0,15	FALSE	6	Phosphatidylinositol transfer protein beta isoform
AP2A1	095782-2	-1,32	0,11	0,25	FALSE	0	AP-2 complex subunit alpha-1
DNAJA1	P31689	-1,32	0,04	0,12	FALSE	0	DnaJ homolog subfamily A member 1
NGFR	P08138-2	-1,32	0,17	0,33	FALSE	3	Tumor necrosis factor receptor superfamily member 16
sep-07	Q16181	-1,32	0,03	0,10	FALSE	0	Septin-7
ATM	Q13315	-1,32	0,16	0,33	FALSE	4	Serine-protein kinase ATM
SCFD1	Q8WVM8- 2	-1,32	0,17	0,33	FALSE	1	Sec1 family domain- containing protein 1
STK10	O94804	-1,32	0,16	0,32	FALSE	2	Serine/threonine-protein kinase 10
VASP	P50552	-1,33	0,05	0,15	FALSE	0	Vasodilator-stimulated phosphoprotein
EIF2S2	P20042	-1,33	0,28	0,46	FALSE	1	Eukaryotic translation initiation factor 2 subunit 2
PPP1CA	P62136	-1,33	0,18	0,34	FALSE	6	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit
LGALS1	P09382	-1,34	0,33	0,51	FALSE	2	Galectin-1
SLC12A2	P55011-3	-1,34	0,21	0,38	FALSE	2	Solute carrier family 12 member 2
TIMP2	P16035	-1,34	0,26	0,44	FALSE	4	Metalloproteinase inhibitor 2
ALDH1L 1	075891-2	-1,35	0,25	0,43	FALSE	1	Cytosolic 10- formyltetrahydrofolate dehydrogenase
CUL2	Q13617	-1,35	0,17	0,33	FALSE	1	Cullin-2
GMPPB	Q9Y5P6	-1,35	0,41	0,59	FALSE	3	Mannose-1-phosphate guanyltransferase beta
PSMB6	P28072	-1,36	0,18	0,34	FALSE	2	Proteasome subunit beta type-6
ALDH4A 1	P30038-2	-1,36	0,07	0,19	FALSE	1	Delta-1-pyrroline-5- carboxylate dehydrogenase, mitochondrial
RPL28	P46779-4	-1,37	0,04	0,13	FALSE	0	60S ribosomal protein L28
RRAS	P10301	-1,37	0,20	0,36	FALSE	1	Ras-related protein R-Ras
ECM1	Q16610	-1,37	0,21	0,38	FALSE	4	Extracellular matrix protein 1
RPTOR	Q8N122-3	-1,37	0,06	0,18	FALSE	10	Regulatory-associated protein of mTOR
SLC19A1	P41440-2	-1,37	0,29	0,47	FALSE	4	Folate transporter 1
ACTR1A	P61163	-1,38	0,22	0,39	FALSE	0	Alpha-centractin
CAPG	P40121-2	-1,38	0,44	0,61	FALSE	4	Macrophage-capping protein
ARPC2	015144	-1,39	0,20	0,37	FALSE	1	Actin-related protein 2/3 complex subunit 2
CFL1	P23528	-1,39	0,06	0,17	FALSE	0	Cofilin-1

Anexos

ZMYND 8	Q9ULU4-2	-1,39	0,05	0,16	FALSE	8	Protein kinase C-binding protein 1
EHD4	Q9H223	-1,39	0,06	0,17	FALSE	0	EH domain-containing protein 4
HLA-A.2	P30457	-1,39	0,14	0,30	FALSE	0	HLA class I histocompatibility antigen, A-66 alpha chain
AP3D1	014617-3	-1,40	0,08	0,20	FALSE	3	AP-3 complex subunit delta-1
CAND1	Q86VP6	-1,40	0,07	0,18	FALSE	0	Cullin-associated NEDD8- dissociated protein 1
PSMA1	P25786	-1,40	0,36	0,54	FALSE	2	Proteasome subunit alpha type-1
RPL22	P35268	-1,40	0,37	0,55	FALSE	3	60S ribosomal protein L22
STRIP1	Q5VSL9-3	-1,40	0,21	0,39	FALSE	6	Striatin-interacting protein 1
ZCCHC1 1	Q5TAX3	-1,40	0,15	0,31	FALSE	9	Terminal uridylyltransferase 4
DKC1	O60832	-1,41	0,26	0,45	FALSE	3	H/ACA ribonucleoprotein complex subunit 4
RAD50	Q92878-3	-1,41	0,09	0,23	FALSE	7	DNA repair protein RAD50
AHNAK	Q09666	-1,42	0,05	0,14	FALSE	0	Neuroblast differentiation-associated protein AHNAK
PSMA6	P60900	-1,42	0,01	0,05	FALSE	0	Proteasome subunit alpha type-6
RNH1	P13489	-1,42	0,15	0,31	FALSE	2	Ribonuclease inhibitor
ARHGDI A	P52565	-1,42	0,24	0,42	FALSE	2	Rho GDP-dissociation inhibitor 1
PSMA3	P25788-2	-1,42	0,15	0,30	FALSE	1	Proteasome subunit alpha type-3
PSMC4	P43686-2	-1,42	0,11	0,26	FALSE	0	26S protease regulatory subunit 6B
SMU1	Q2TAY7-2	-1,42	0,07	0,19	FALSE	6	WD40 repeat-containing protein SMU1
CASK	014936-3	-1,43	0,08	0,20	FALSE	1	Peripheral plasma membrane protein CASK
CMPK1	P30085	-1,43	0,05	0,14	FALSE	2	UMP-CMP kinase
ROCK2	075116	-1,43	0,07	0,19	FALSE	2	Rho-associated protein kinase 2
SFN	P31947-2	-1,43	0,02	0,09	FALSE	0	14-3-3 protein sigma
SND1	Q7KZF4	-1,43	0,13	0,28	FALSE	0	Staphylococcal nuclease domain-containing protein 1
KIAA132 4	Q6UXG2-3	-1,43	0,08	0,21	FALSE	9	UPF0577 protein KIAA1324
ADH5	P11766	-1,44	0,29	0,47	FALSE	1	Alcohol dehydrogenase class-3
CDC42B PB	Q9Y5S2	-1,44	0,14	0,29	FALSE	2	Serine/threonine-protein kinase MRCK beta
GSN	P06396-2	-1,44	0,18	0,34	FALSE	0	Gelsolin
CHMP1 B	Q7LBR1	-1,44	0,07	0,19	FALSE	0	Charged multivesicular body protein 1b
STAT3	P40763-3	-1,44	0,19	0,35	FALSE	3	Signal transducer and activator of transcription 3
TPCN2	Q8NHX9	-1,45	0,14	0,30	FALSE	9	Two pore calcium channel protein 2
GNAO1	P09471-2	-1,45	0,24	0,42	FALSE	1	Guanine nucleotide- binding protein G(o) subunit alpha
HNRNPA 0	Q13151	-1,45	0,13	0,28	FALSE	5	Heterogeneous nuclear ribonucleoprotein A0
MAPRE3	Q9UPY8-2	-1,45	0,24	0,42	FALSE	5	Microtubule-associated protein RP/EB family member 3
RBBP4	Q09028-3	-1,45	0,11	0,26	FALSE	1	Histone-binding protein RBBP4
TSPAN7	P41732	-1,45	0,24	0,42	FALSE	6	Tetraspanin-7

IFIT5	Q13325-2	-1,46	0,10	0,24	FALSE	5	Interferon-induced protein with tetratricopeptide repeats 5
LASP1	Q14847	-1,46	0,14	0,30	FALSE	2	LIM and SH3 domain protein 1
CD9	P21926	-1,46	0,11	0,26	FALSE	0	CD9 antigen
EIF3G	075821	-1,47	0,07	0,19	FALSE	5	Eukaryotic translation initiation factor 3 subunit G
RFTN1	Q14699	-1,47	0,05	0,15	FALSE	5	Raftlin
TMEM8 7A	Q8NBN3-2	-1,47	0,04	0,13	FALSE	9	Transmembrane protein 87A
TXN	P10599-2	-1,47	0,02	0,09	FALSE	0	Thioredoxin
CHMP2 B	Q9UQN3	-1,47	0,09	0,23	FALSE	2	Charged multivesicular body protein 2b
YWHAB	P31946-2	-1,47	0,02	0,08	FALSE	0	14-3-3 protein beta/alpha
GARS	P41250	-1,48	0,04	0,13	FALSE	0	GlycinetRNA ligase
ABCC4	015439	-1,48	0,15	0,31	FALSE	9	Multidrug resistance- associated protein 4
ASPSCR 1	Q9BZE9	-1,48	0,16	0,32	FALSE	5	Tether containing UBX domain for GLUT4
SMARCA 5	O60264	-1,48	0,09	0,22	FALSE	3	SWI/SNF-related matrix- associated actin- dependent regulator of chromatin subfamily A member 5
SMARCE 1	Q969G3-6	-1,48	0,19	0,36	FALSE	7	SWI/SNF-related matrix- associated actin- dependent regulator of chromatin subfamily E member 1
HNRNPK	P61978-3	-1,49	0,03	0,10	FALSE	0	Heterogeneous nuclear ribonucleoprotein K
PGAM1	P18669	-1,49	0,02	0,08	FALSE	0	Phosphoglycerate mutase 1
PLEKHA 5	Q9HAU0-5	-1,49	0,04	0,13	FALSE	10	Pleckstrin homology domain-containing family A member 5
PPID	Q08752	-1,49	0,19	0,36	FALSE	4	Peptidyl-prolyl cis-trans isomerase D
DNAJC7	Q99615	-1,49	0,11	0,26	FALSE	5	DnaJ homolog subfamily C member 7
RPL7	P18124	-1,50	0,17	0,33	FALSE	1	60S ribosomal protein L7
TSNAX	Q99598	-1,50	0,06	0,17	FALSE	5	Translin-associated protein X
UMAD1	C9J7I0	-1,50	0,21	0,39	FALSE	6	UBAP1-MVB12-associated (UMA)-domain containing protein 1
NANS	Q9NR45	-1,51	0,10	0,23	FALSE	1	Sialic acid synthase
USP14	P54578-2	-1,51	0,13	0,29	FALSE	2	Ubiquitin carboxyl- terminal hydrolase 14
CYGB	Q8WWM9	-1,51	0,16	0,32	FALSE	3	Cytoglobin
JUP	P14923	-1,51	0,28	0,47	FALSE	3	Junction plakoglobin
MFGE8	Q08431	-1,51	0,02	0,07	FALSE	0	Lactadherin
ENAH	Q8N8S7-3	-1,52	0,07	0,19	FALSE	5	Protein enabled homolog
GNB1	P62873	-1,52	0,06	0,17	FALSE	0	Guanine nucleotide- binding protein G(I)/G(S)/G(T) subunit beta-1
RAB35	Q15286	-1,52	0,04	0,13	FALSE	0	Ras-related protein Rab- 35
ANXA2	P07355	-1,53	0,01	0,06	FALSE	0	Annexin A2
AP2M1	Q96CW1-2	-1,53	0,13	0,29	FALSE	1	AP-2 complex subunit mu
MVP	Q14764	-1,53	0,13	0,29	FALSE	0	Major vault protein

UBXN1	Q04323	-1,53	0,04	0,14	FALSE	7	UBX domain-containing protein 1
DIP2A	Q14689-6	-1,53	0,12	0,26	FALSE	7	Disco-interacting protein 2 homolog A
FYN	P06241-3	-1,53	0,28	0,46	FALSE	3	Tyrosine-protein kinase Fyn
PCBP2	Q15366-6	-1,53	0,13	0,28	FALSE	3	Poly(rC)-binding protein 2
PRKAR2 B	P31323	-1,53	0,15	0,31	FALSE	5	cAMP-dependent protein kinase type II-beta regulatory subunit
SGCE	O43556	-1,53	0,15	0,31	FALSE	4	Epsilon-sarcoglycan
VAMP5	095183	-1,53	0,10	0,23	FALSE	1	Vesicle-associated membrane protein 5
EIF4B	P23588-2	-1,54	0,02	0,08	FALSE	3	Eukaryotic translation initiation factor 4B
TRIOBP	Q9H2D6-5	-1,54	0,02	0,08	FALSE	3	TRIO and F-actin-binding protein
WARS	P23381	-1,54	0,13	0,28	FALSE	2	TryptophantRNA ligase, cytoplasmic
CALM1	P62158	-1,55	0,14	0,29	FALSE	0	Calmodulin
PSMA2	P25787	-1,55	0,11	0,25	FALSE	2	Proteasome subunit alpha type-2
RPL8	P62917	-1,55	0,11	0,25	FALSE	1	60S ribosomal protein L8
LIN7C	Q9NUP9	-1,55	0,11	0,25	FALSE	0	Protein lin-7 homolog C
SRP54	P61011-2	-1,55	0,02	0,09	FALSE	7	Signal recognition particle 54 kDa protein
VPS13C	Q709C8-4	-1,55	0,01	0,06	FALSE	9	Vacuolar protein sorting- associated protein 13C
PEA15	Q15121	-1,56	0,05	0,15	FALSE	3	Astrocytic phosphoprotein PEA-15
PSIP1	075475	-1,56	0,18	0,34	FALSE	3	PC4 and SFRS1-interacting protein
STAMBP	O95630-2	-1,56	0,07	0,19	FALSE	3	STAM-binding protein
ATP5H	075947-2	-1,56	0,04	0,12	FALSE	9	ATP synthase subunit d, mitochondrial
FAM49B	Q9NUQ9-2	-1,56	0,04	0,12	FALSE	8	Protein FAM49B
PFN2	P35080-2	-1,56	0,22	0,40	FALSE	7	Profilin-2
SMARCC 2	Q8TAQ2-2	-1,56	0,04	0,13	FALSE	7	SWI/SNF complex subunit SMARCC2
VAMP3	Q15836	-1,56	0,02	0,09	FALSE	0	Vesicle-associated membrane protein 3
ACTN4	043707	-1,57	0,18	0,34	FALSE	2	Alpha-actinin-4
ARPC3	015145	-1,57	0,17	0,33	FALSE	3	Actin-related protein 2/3 complex subunit 3
FBLN7	Q53RD9-3	-1,57	0,02	0,07	FALSE	6	Fibulin-7
HSPA5	P11021	-1,57	0,02	0,07	FALSE	0	78 kDa glucose-regulated protein
TXNRD1	Q16881-5	-1,57	0,03	0,11	FALSE	2	Thioredoxin reductase 1, cytoplasmic
EFR3A	Q14156-3	-1,57	0,07	0,18	FALSE	10	Protein EFR3 homolog A
H1F0	P07305	-1,57	0,06	0,16	FALSE	8	Histone H1.0
CTNNA1	P35221	-1,58	0,03	0,10	FALSE	0	Catenin alpha-1
DDX17	Q92841-1	-1,58	0,02	0,09	FALSE	0	Probable ATP-dependent RNA helicase DDX17
TENM3	Q9P273	-1,58	0,30	0,48	FALSE	5	Teneurin-3
CCDC80	Q76M96	-1,59	0,12	0,26	FALSE	5	Coiled-coil domain- containing protein 80
ANGPTL 2	Q9UKU9	-1,59	0,13	0,29	FALSE	7	Angiopoietin-related protein 2
ZG16B	Q96DA0	-1,59	0,15	0,31	FALSE	9	Zymogen granule protein 16 homolog B
DDX27	Q96GQ7	-1,60	0,06	0,16	FALSE	5	Probable ATP-dependent RNA helicase DDX27

RAB2A	P61019	-1,60	0,15	0,31	FALSE	3	Ras-related protein Rab- 2A
VTI1A	Q96AJ9-1	-1,60	0,04	0,12	FALSE	7	Vesicle transport through interaction with t-SNAREs homolog 1A
BAX	Q07812-5	-1,60	0,04	0,14	FALSE	10	Apoptosis regulator BAX
PI4K2A	Q9BTU6	-1,60	0,12	0,27	FALSE	6	Phosphatidylinositol 4- kinase type 2-alpha
PSMB2	P49721	-1,60	0,26	0,44	FALSE	4	Proteasome subunit beta type-2
SLC9A3R 2	Q15599-2	-1,60	0,03	0,12	FALSE	0	Na(+)/H(+) exchange regulatory cofactor NHE- RF2
CAMK2 D	Q13557-8	-1,61	0,10	0,24	FALSE	4	Calcium/calmodulin- dependent protein kinase type II subunit delta
FTSJ3	Q8IY81	-1,61	0,02	0,07	FALSE	7	pre-rRNA processing protein FTSJ3
JAM3	Q9BX67	-1,61	0,12	0,27	FALSE	1	Junctional adhesion molecule C
RAB5B	P61020-2	-1,61	0,25	0,43	FALSE	2	Ras-related protein Rab- 5B
LAMTOR 2	Q9Y2Q5	-1,63	0,06	0,17	FALSE	2	Ragulator complex protein LAMTOR2
PSMC2	P35998	-1,63	0,02	0,08	FALSE	0	26S protease regulatory subunit 7
SLC6A6	P31641	-1,63	0,05	0,16	FALSE	6	Sodium- and chloride- dependent taurine transporter
EEF1E1	043324-2	-1,64	0,08	0,20	FALSE	6	Eukaryotic translation elongation factor 1 epsilon-1
RHOA	P61586	-1,64	0,01	0,06	FALSE	0	Transforming protein RhoA
WDR48	Q8TAF3-4	-1,64	0,02	0,07	FALSE	9	WD repeat-containing protein 48
FERMT2	Q96AC1-2	-1,65	0,15	0,31	FALSE	2	Fermitin family homolog 2
NOP2	P46087	-1,65	0,06	0,16	FALSE	3	Probable 28S rRNA (cytosine(4447)-C(5))- methyltransferase
CYSLTR2	Q9NS75	-1,65	0,04	0,12	FALSE	10	Cysteinyl leukotriene receptor 2
PMPCA	Q10713	-1,65	0,03	0,10	FALSE	9	Mitochondrial-processing peptidase subunit alpha
EIF3E	P60228	-1,67	0,18	0,35	FALSE	2	Eukaryotic translation initiation factor 3 subunit E
TPD52L2	O43399	-1,67	0,01	0,06	FALSE	4	Tumor protein D54
IDH1	075874	-1,68	0,17	0,33	FALSE	3	Isocitrate dehydrogenase [NADP] cytoplasmic
KHSRP	Q92945	-1,68	0,01	0,06	FALSE	6	Far upstream element- binding protein 2
sep-09	Q9UHD8-7	-1,68	0,01	0,07	FALSE	0	Septin-9
EIF3D	015371-2	-1,68	0,10	0,25	FALSE	3	Eukaryotic translation initiation factor 3 subunit D
HSPA4	P34932	-1,68	0,15	0,31	FALSE	1	Heat shock 70 kDa protein 4
MY01B	043795-2	-1,68	0,07	0,18	FALSE	0	Unconventional myosin-Ib
SRPX	P78539-5	-1,68	0,03	0,10	FALSE	0	Sushi repeat-containing protein SRPX
PSMD5	Q16401-2	-1,69	0,06	0,17	FALSE	5	26S proteasome non- ATPase regulatory subunit 5
S100A8	P05109	-1,69	0,19	0,36	FALSE	6	Protein S100-A8
PRPS1	P60891	-1,70	0,13	0,28	FALSE	2	Ribose-phosphate pyrophosphokinase 1
NME2	P22392-2	-1,71	0,07	0,19	FALSE	4	Nucleoside diphosphate kinase B
TROVE2	P10155-3	-1,71	0,06	0,17	FALSE	5	60 kDa SS-A/Ro ribonucleoprotein

DRG2	P55039	-1,72	0,04	0,14	FALSE	3	Developmentally- regulated GTP-binding
ARPC4	P59998	-1,72	0,10	0,24	FALSE	5	Actin-related protein 2/3 complex subunit 4
VAC14	Q08AM6	-1,72	0,15	0,31	FALSE	5	Protein VAC14 homolog
GPC1	P35052	-1,73	0,02	0,07	FALSE	2	Glypican-1
MYO18	Q92614-2	-1,73	0,06	0,17	FALSE	3	Unconventional myosin-
PPA1	Q15181	-1,73	0,05	0,15	FALSE	4	Inorganic
	000005	1.72	0.10	0.25	EALCE	_	pyrophosphatase AP-1 complex subunit mu-
AP1M1	Q9BXS5	-1,/3	0,18	0,35	FALSE	5	1 Type L inecited 145
INPP5A	Q14642	-1,74	0,04	0,12	FALSE	7	trisphosphate 5- phosphatase
RPS27	P42677	-1,74	0,12	0,27	FALSE	1	40S ribosomal protein S27
SART3	Q15020-4	-1,74	0,01	0,06	FALSE	2	Squamous cell carcinoma antigen recognized by T- cells 3
VPS18	Q9P253	-1,74	0,10	0,24	FALSE	3	Vacuolar protein sorting- associated protein 18 homolog
RP2	075695	-1,75	0,05	0,16	FALSE	2	Protein XRP2
CLTB	P09497-2	-1,75	0,11	0,25	FALSE	8	Clathrin light chain B
PACSIN3	Q9UKS6	-1,75	0,09	0,23	FALSE	2	Protein kinase C and casein kinase substrate in neurons protein 3
DYNC1I2	Q13409-6	-1,76	0,04	0,14	FALSE	0	Cytoplasmic dynein 1 intermediate chain 2
NUTF2	P61970	-1,76	0,09	0,23	FALSE	1	Nuclear transport factor 2
CRYZ	Q08257-3	-1,77	0,07	0,18	FALSE	0	Quinone oxidoreductase
RPL24	P83731	-1,77	0,06	0,18	FALSE	0	60S ribosomal protein L24
SDC3	075056	-1,77	0,09	0,23	FALSE	2	Syndecan-3
RPL3	P39023	-1,78	0,01	0,06	FALSE	0	60S ribosomal protein L3
VPS37C	A5D8V6	-1,78	0,15	0,31	FALSE	2	Vacuolar protein sorting- associated protein 37C
GATAD2 A	Q86YP4-2	-1,79	0,05	0,14	FALSE	7	Transcriptional repressor p66-alpha
PSMA4	P25789	-1,79	0,13	0,29	FALSE	2	Proteasome subunit alpha type-4
PSMB7	Q99436	-1,79	0,09	0,23	FALSE	2	Proteasome subunit beta type-7
ARRDC1	Q8N5I2	-1,79	0,03	0,10	FALSE	0	Arrestin domain- containing protein 1
sep-11	Q9NVA2	-1,79	0,19	0,35	FALSE	1	Septin-11
SBDS	Q9Y3A5	-1,80	0,05	0,15	FALSE	1	Ribosome maturation
KHDRBS 1	Q07666-2	-1,80	0,13	0,28	FALSE	6	KH domain-containing, RNA-binding, signal transduction-associated protein 1
ACTR2	P61160	-1,81	0,14	0,30	FALSE	1	Actin-related protein 2
CD59	P13987	-1,81	0,02	0,07	FALSE	0	CD59 glycoprotein
ALDH1L 2	Q3SY69	-1,81	0,09	0,22	FALSE	6	Mitochondrial 10- formyltetrahydrofolate dehydrogenase
GNAI2	P04899	-1,81	0,02	0,09	FALSE	0	Guanine nucleotide- binding protein G(i) subunit alpha-2
SYNGR2	O43760	-1,81	0,10	0,24	FALSE	7	Synaptogyrin-2
RPL32	P62910	-1,82	0,05	0,16	FALSE	10	60S ribosomal protein L32
PALM	075781-2	-1,83	0,02	0,07	FALSE	9	Paralemmin-1

RNPEP	Q9H4A4	-1.83	0.01	0.06	FALSE	4	Aminopeptidase B
ADAR	P55265-5	-1,83	0,02	0,09	FALSE	4	Double-stranded RNA- specific adenosine
CSNK1G	0926M4-6	-1 83	0.02	0.09	FAISE	6	deaminase Casein kinase I isoform
3 COP52	P61201	-1.84	0.02	0.11	FAISE	1	gamma-3 COP9 signalosome
HNRNPI	P14866	-1 84	0.13	0.28	FALSE	2	complex subunit 2 Heterogeneous nuclear
THOP1	P52888	-1 84	0.05	0.15	FALSE	7	ribonucleoprotein L
CANX	P27824-3	-1.85	0.02	0.09	FALSE	2	Calnexin
SEC22B	075396	-1,85	0,02	0,18	FALSE	2	Vesicle-trafficking protein
RNF213	Q63HN8	-1,85	0,16	0,31	FALSE	2	E3 ubiquitin-protein ligase
ANXA6	P08133-2	-1,86	0,04	0,13	FALSE	0	Annexin A6
TARS	P26639	-1.86	0.16	0.32	FALSE	2	ThreoninetRNA ligase,
PRKCE	002156	-1.87	0.03	0.12	FAISE	2	cytoplasmic Protein kinase C epsilon
PIRCE	002130	-1,87	0,03	0,12	TALSE	4	type
PLP1	P60201	-1,87	0,02	0,08	FALSE	0	Myelin proteolipid protein
YBX1	P67809	-1,87	0,05	0,15	FALSE	1	element-binding protein 1
CDC37	Q16543	-1,88	0,06	0,17	FALSE	3	Cdc37
GAA	P10253	-1,88	0,11	0,25	FALSE	7	Lysosomal alpha- glucosidase
PAFAH1 B1	P43034	-1,88	0,01	0,06	FALSE	0	Platelet-activating factor acetylhydrolase IB subunit alpha
COL14A 1	Q05707-2	-1,89	0,27	0,45	FALSE	3	Collagen alpha-1(XIV) chain
QTRT1	Q9BXR0	-1,89	0,04	0,12	FALSE	5	Queuine tRNA- ribosyltransferase
PSMB4	P28070	-1,90	0,11	0,26	FALSE	2	Proteasome subunit beta type-4
RAB14	P61106	-1,90	0,02	0,08	FALSE	0	Ras-related protein Rab- 14
RPS17	P08708	-1,90	0,01	0,05	FALSE	9	40S ribosomal protein S17
BMPR1A	P36894	-1,90	0,02	0,09	FALSE	6	Bone morphogenetic protein receptor type-1A
ANO6	Q4KMQ2-3	-1,91	0,04	0,12	FALSE	1	Anoctamin-6
NUDT12	Q9BQG2	-1,91	0,04	0,13	FALSE	9	Peroxisomal NADH pyrophosphatase NUDT12
TARDBP	Q13148	-1,91	0,03	0,12	FALSE	3	TAR DNA-binding protein 43
RAP1GD S1	P52306-6	-1,91	0,03	0,10	FALSE	9	Rap1 GTPase-GDP dissociation stimulator 1
RPS15A	P62244	-1,91	0,29	0,47	FALSE	4	40S ribosomal protein S15a
SNX6	Q9UNH7	-1,91	0,12	0,27	FALSE	2	Sorting nexin-6
CBR1	P16152	-1,92	0,03	0,12	FALSE	1	Carbonyl reductase [NADPH] 1
EXOC4	Q96A65	-1,92	0,10	0,25	FALSE	2	Exocyst complex component 4
GMPR2	Q9P2T1-3	-1,92	0,12	0,27	FALSE	1	GMP reductase 2
НРСА	P84074	-1,92	0,09	0,22	FALSE	3	Neuron-specific calcium- binding protein hippocalcin
GMPR	P36959	-1,93	0,15	0,30	FALSE	3	GMP reductase 1
IFIT3	014879	-1,93	0,07	0,18	FALSE	9	Interferon-induced protein with tetratricopeptide repeats 3

MAT2B	Q9NZL9-4	-1,93	0,02	0,09	FALSE	5	Methionine adenosyltransferase 2 subunit beta
IGHA1	P01876	-1,94	0,14	0,30	FALSE	8	Ig alpha-1 chain C region
sep-06	Q14141-2	-1,94	0,22	0,39	FALSE	9	Septin-6
DAG1	Q14118	-1,95	0,10	0,25	FALSE	3	Dystroglycan
GLIPR2	Q9H4G4	-1,95	0,09	0,23	FALSE	7	Golgi-associated plant pathogenesis-related protein 1
GPI	P06744	-1,95	0,14	0,30	FALSE	3	Glucose-6-phosphate isomerase
TMBIM1	Q969X1	-1,96	0,07	0,18	FALSE	2	Protein lifeguard 3
TMEM5 0B	P56557	-1,96	0,01	0,05	FALSE	3	Transmembrane protein 50B
AP2B1	P63010	-1,97	0,07	0,19	FALSE	1	AP-2 complex subunit beta
CBS	P0DN79	-1,97	0,02	0,07	FALSE	1	Cystathionine beta- synthase
SUPT6H	Q7KZ85	-1,97	0,06	0,17	FALSE	8	Transcription elongation factor SPT6
VCL	P18206-2	-1,98	0,03	0,10	FALSE	0	Vinculin
ERBB3	P21860-4	-1,98	0,01	0,06	FALSE	8	Receptor tyrosine-protein kinase erbB-3
USP47	Q96K76-2	-1,99	0,02	0,07	FALSE	4	Ubiquitin carboxyl- terminal hydrolase 47
ACADM	P11310	-1,99	0,07	0,19	FALSE	5	Medium-chain specific acyl-CoA dehydrogenase, mitochondrial
SORT1	Q99523	-1,99	0,17	0,34	FALSE	1	Sortilin
C16orf6 2	Q7Z3J2	-2,00	0,02	0,09	FALSE	7	UPF0505 protein C16orf62
CPNE3	075131	-2,01	0,11	0,26	FALSE	2	Copine-3
MTM1	Q13496-2	-2,01	0,07	0,19	FALSE	4	Myotubularin
TTC7B	Q86TV6	-2,01	0,08	0,20	FALSE	5	Tetratricopeptide repeat protein 7B
DCTN1	Q14203-5	-2,02	0,04	0,13	FALSE	1	Dynactin subunit 1
BAIAP2	Q9UQB8-3	-2,02	0,04	0,13	FALSE	2	Brain-specific angiogenesis inhibitor 1- associated protein 2
GPR56	Q9Y653-2	-2,05	0,08	0,20	FALSE	1	G-protein coupled receptor 56
RPL21	P46778	-2,05	0,09	0,23	FALSE	7	60S ribosomal protein L21
PSMC1	P62191-2	-2,06	0,17	0,33	FALSE	3	26S protease regulatory subunit 4
LSM6	P62312	-2,07	0,01	0,06	FALSE	2	U6 snRNA-associated Sm- like protein LSm6
SLC9A3R 1	014745	-2,07	0,09	0,23	FALSE	4	Na(+)/H(+) exchange regulatory cofactor NHE- RF1
PLS3	P13797-3	-2,09	0,06	0,17	FALSE	3	Plastin-3
WWP2	O00308-4	-2,09	0,02	0,07	FALSE	9	NEDD4-like E3 ubiquitin- protein ligase WWP2
GBE1	Q04446	-2,10	0,06	0,16	FALSE	2	1,4-alpha-glucan- branching enzyme
TSPAN3 1	Q12999	-2,10	0,04	0,12	FALSE	2	Tetraspanin-31
S100A1 3	Q99584	-2,10	0,12	0,27	FALSE	5	Protein S100-A13
ACTR3	P61158	-2,11	0,01	0,06	FALSE	0	Actin-related protein 3
STXBP3	000186	-2,11	0,02	0,09	FALSE	0	Syntaxin-binding protein 3
GAPDHS	014556	-2,11	0,03	0,11	FALSE	9	Glyceraldehyde-3- phosphate dehydrogenase, testis- specific

DIP2C	Q9Y2E4	-2,12	0,11	0,26	FALSE	1	Disco-interacting protein 2
PPP5C	P53041	-2,12	0,05	0,14	FALSE	4	Serine/threonine-protein
BDH2	Q9BUT1	-2,13	0,03	0,10	FALSE	2	3-hydroxybutyrate
EDNRB	P24530	-2.13	0.04	0.12	FALSE	3	Endothelin B receptor
FTL	P02792	-2,13	0,02	0,09	FALSE	8	Ferritin light chain
GNAQ	P50148	-2,13	0,07	0,19	FALSE	1	Guanine nucleotide- binding protein G(q) subunit alpha
ΡΙ4ΚΑ	P42356	-2,13	0,03	0,11	FALSE	2	Phosphatidylinositol 4- kinase alpha
BST2	Q10589	-2,13	0,22	0,39	FALSE	3	Bone marrow stromal antigen 2
KCNAB2	Q13303-2	-2,14	0,04	0,12	FALSE	8	Voltage-gated potassium channel subunit beta-2
LTA4H	P09960-4	-2,14	0,02	0,07	FALSE	3	Leukotriene A-4 hydrolase
USP8	P40818-2	-2,14	0,01	0,06	FALSE	8	Ubiquitin carboxyl- terminal hydrolase 8
CUL3	Q13618-2	-2,15	0,02	0,07	FALSE	1	Cullin-3
MX1	P20591	-2,15	0,05	0,15	FALSE	10	Interferon-induced GTP- binding protein Mx1
ALCAM	Q13740-2	-2,16	0,02	0,07	FALSE	3	CD166 antigen
NUMA1	Q14980-4	-2,16	0,02	0,08	FALSE	6	Nuclear mitotic apparatus protein 1
SLC1A4	P43007	-2,17	0,03	0,10	FALSE	0	Neutral amino acid transporter A
ACTL6A	O96019	-2,17	0,12	0,27	FALSE	4	Actin-like protein 6A
RPL36AL	Q969Q0	-2,18	0,03	0,12	FALSE	1	60S ribosomal protein L36a-like
SEMA3B	Q13214-2	-2,18	0,05	0,15	FALSE	6	Semaphorin-3B
SLC1A3	P43003-2	-2,18	0,05	0,15	FALSE	2	Excitatory amino acid transporter 1
COPB2	P35606-2	-2,19	0,06	0,17	FALSE	2	Coatomer subunit beta
GNG7	O60262	-2,20	0,03	0,10	FALSE	6	Guanine nucleotide- binding protein G(I)/G(S)/G(O) subunit gamma-7
ADAMT S13	Q76LX8-3	-2,20	0,14	0,30	FALSE	6	A disintegrin and metalloproteinase with thrombospondin motifs 13
NAPG	Q99747-2	-2,20	0,03	0,11	FALSE	4	Gamma-soluble NSF attachment protein
GNG2	P59768	-2,21	0,05	0,14	FALSE	8	Guanine nucleotide- binding protein G(I)/G(S)/G(O) subunit gamma-2
COL11A 1	P12107-4	-2,22	0,14	0,30	FALSE	4	Collagen alpha-1(XI) chain
DDX1	Q92499	-2,23	0,05	0,14	FALSE	2	ATP-dependent RNA helicase DDX1
STRAP	Q9Y3F4	-2,23	0,04	0,13	FALSE	1	Serine-threonine kinase receptor-associated protein
ERBB2	P04626-5	-2,24	0,04	0,13	FALSE	7	Receptor tyrosine-protein kinase erbB-2
LAMB2	P55268	-2,24	0,12	0,27	FALSE	2	Laminin subunit beta-2
ALDH6A 1	Q02252-2	-2,25	0,12	0,27	FALSE	3	Methylmalonate- semialdehyde dehydrogenase [acylating], mitochondrial
PIP5K1C	O60331-4	-2,25	0,12	0,27	FALSE	5	Phosphatidylinositol 4- phosphate 5-kinase type-1 gamma
ANXA4	P09525	-2,26	0,18	0,35	FALSE	3	Annexin A4

PRPF19	Q9UMS4	-2,28	0,08	0,20	FALSE	3	Pre-mRNA-processing factor 19
RPL18A	Q02543	-2,28	0,05	0,16	FALSE	1	60S ribosomal protein L18a
PSMB5	P28074	-2,29	0,03	0,10	FALSE	1	Proteasome subunit beta type-5
RAB6A	P20340-2	-2,33	0,04	0,13	FALSE	2	Ras-related protein Rab- 6A
TXNL1	O43396	-2,33	0,01	0,06	FALSE	3	Thioredoxin-like protein 1
COL5A2	P05997	-2,33	0,04	0,13	FALSE	4	Collagen alpha-2(V) chain
TOM1	O60784-3	-2,33	0,03	0,10	FALSE	3	Target of Myb protein 1
FTH1	P02794	-2,34	0,02	0,09	FALSE	0	Ferritin heavy chain
KIF5B	P33176	-2,34	0,05	0,14	FALSE	4	Kinesin-1 heavy chain
MYCBP2	075592-2	-2,34	0,03	0,12	FALSE	5	E3 ubiquitin-protein ligase MYCBP2
NPLOC4	Q8TAT6	-2,34	0,01	0,06	FALSE	3	Nuclear protein localization protein 4 homolog
CTNND1	060716-5	-2,35	0,17	0,34	FALSE	2	Catenin delta-1
AASS	Q9UDR5	-2,36	0,03	0,10	FALSE	10	Alpha-aminoadipic semialdehyde synthase, mitochondrial
PLXNA1	Q9UIW2	-2,36	0,14	0,30	FALSE	1	Plexin-A1
AP1G1	043747	-2,37	0,02	0,08	FALSE	2	AP-1 complex subunit gamma-1
RPL13	P26373	-2,37	0,03	0,10	FALSE	1	60S ribosomal protein L13
кіт	P10721-2	-2,37	0,05	0,14	FALSE	6	Mast/stem cell growth factor receptor Kit
SCRN1	Q12765	-2,37	0,04	0,13	FALSE	4	Secernin-1
HNRNPR	O43390-4	-2,38	0,03	0,10	FALSE	4	Heterogeneous nuclear ribonucleoprotein R
PRMT5	014744-5	-2,38	0,03	0,12	FALSE	2	Protein arginine N- methyltransferase 5
ARF6	P62330	-2,39	0,01	0,05	FALSE	6	ADP-ribosylation factor 6
SF3A1	Q15459-2	-2,40	0,01	0,06	FALSE	9	Splicing factor 3A subunit 1
MGEA5	O60502-2	-2,40	0,01	0,05	FALSE	5	Protein O-GlcNAcase
CDH1	P12830	-2,41	0,08	0,20	FALSE	1	Cadherin-1
RPL4	P36578	-2,42	0,03	0,10	FALSE	0	60S ribosomal protein L4
SNX9	Q9Y5X1	-2,42	0,05	0,15	FALSE	7	Sorting nexin-9
GPX1	P07203	-2,43	0,03	0,12	FALSE	7	Glutathione peroxidase 1
RPS6	P62753	-2,43	0,16	0,32	FALSE	2	40S ribosomal protein S6
ATP6V1 H	Q9UI12-2	-2,44	0,05	0,16	FALSE	2	V-type proton ATPase subunit H
MYO9B	Q13459-2	-2,44	0,02	0,09	FALSE	3	Unconventional myosin- IXb
MLPH	Q9BV36-2	-2,44	0,03	0,10	FALSE	5	Melanophilin
APRT	P07741-2	-2,45	0,12	0,27	FALSE	2	Adenine phosphoribosyltransferas e
PDK3	Q15120	-2,45	0,03	0,10	FALSE	5	[Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3, mitochondrial
CTBP1	Q13363-2	-2,46	0,01	0,07	FALSE	2	C-terminal-binding protein 1
ADCY9	O60503	-2,47	0,02	0,09	FALSE	5	Adenylate cyclase type 9
KLC1	Q07866-8	-2,48	0,02	0,07	FALSE	4	Kinesin light chain 1
REEP5	Q00765	-2,49	0,04	0,14	FALSE	4	Receptor expression- enhancing protein 5

EML4	Q9HC35-2	-2,50	0,01	0,07	FALSE	4	Echinoderm microtubule- associated protein-like 4
PLXNB1	043157-2	-2,50	0,02	0,09	FALSE	8	Plexin-B1
RPL6	Q02878	-2,51	0,06	0,16	FALSE	1	60S ribosomal protein L6
DCT	P40126	-2,54	0,02	0,09	FALSE	1	L-dopachrome tautomerase
RTCB	Q9Y3I0	-2,57	0,02	0,09	FALSE	1	tRNA-splicing ligase RtcB homolog
SPTBN1	Q01082-3	-2,57	0,05	0,16	FALSE	3	Spectrin beta chain, non- erythrocytic 1
STX4	Q12846-2	-2,57	0,02	0,09	FALSE	4	Syntaxin-4
COL18A 1	P39060-2	-2,57	0,11	0,25	FALSE	3	Collagen alpha-1(XVIII) chain
WDFY1	Q8IWB7	-2,59	0,02	0,07	FALSE	1	WD repeat and FYVE domain-containing protein 1
SCARB1	Q8WTV0-4	-2,59	0,12	0,27	FALSE	1	Scavenger receptor class B member 1
SNTB1	Q13884	-2,63	0,01	0,05	FALSE	5	Beta-1-syntrophin
LRBA	P50851-2	-2,63	0,03	0,11	FALSE	7	Lipopolysaccharide- responsive and beige-like anchor protein
OSTM1	Q86WC4	-2,63	0,03	0,10	FALSE	4	Osteopetrosis-associated transmembrane protein 1
ARPC1A	Q92747-2	-2,70	0,03	0,11	FALSE	2	Actin-related protein 2/3 complex subunit 1A
RPS20	P60866	-2,70	0,02	0,09	FALSE	3	40S ribosomal protein S20
HDAC2	Q92769-3	-2,71	0,07	0,18	FALSE	6	Histone deacetylase 2
ARHGEF 7	Q14155-6	-2,72	0,01	0,06	FALSE	5	Rho guanine nucleotide exchange factor 7
FAM175 B	Q15018	-2,73	0,01	0,06	FALSE	3	BRISC complex subunit Abro1
PAG1	Q9NWQ8	-2,74	0,03	0,10	FALSE	5	Phosphoprotein associated with glycosphingolipid- enriched microdomains 1
CYBRD1	Q53TN4-3	-2,75	0,01	0,06	FALSE	3	Cytochrome b reductase 1
РНВ	P35232	-2,75	0,01	0,05	FALSE	9	Prohibitin
HNRNP UL1	Q9BUJ2-4	-2,75	0,01	0,06	FALSE	6	Heterogeneous nuclear ribonucleoprotein U-like protein 1
KIF5C	O60282	-2,80	0,02	0,07	FALSE	3	Kinesin heavy chain isoform 5C
CA14	Q9ULX7	-2,81	0,07	0,19	FALSE	4	Carbonic anhydrase 14
CFL2	Q9Y281	-2,85	0,01	0,06	FALSE	6	Cofilin-2
VAT1	Q99536	-2,90	0,04	0,13	FALSE	1	Synaptic vesicle membrane protein VAT-1 homolog
MAN2C 1	Q9NTJ4-3	-2,90	0,04	0,13	FALSE	5	Alpha-mannosidase 2C1
RRBP1	Q9P2E9-3	-2,90	0,07	0,19	FALSE	2	Ribosome-binding protein 1
MVB12A	Q96EY5-3	-2,93	0,08	0,21	FALSE	3	Multivesicular body subunit 12A
RPL23	P62829	-2,94	0,01	0,06	FALSE	3	60S ribosomal protein L23
STX7	015400-2	-2,96	0,03	0,12	FALSE	1	Syntaxin-7
TPP1	014773-2	-2,96	0,03	0,11	FALSE	1	Tripeptidyl-peptidase 1
CLCN7	P51798-2	-2,96	0,03	0,10	FALSE	6	H(+)/Cl(-) exchange transporter 7
TANC1	Q9C0D5-2	-2,96	0,03	0,10	FALSE	4	Protein TANC1
STXBP1	P61764	-3,00	0,03	0,10	FALSE	2	Syntaxin-binding protein 1
HNRNPC	P07910-2	-3,05	0,12	0,27	FALSE	2	Heterogeneous nuclear ribonucleoproteins C1/C2

RBMX	P38159-2	-3,06	0,04	0,13	FALSE	2	RNA-binding motif protein, X chromosome
CAPNS1	P04632	-3,07	0,02	0,09	FALSE	5	Calpain small subunit 1
LANCL1	043813	-3,08	0,04	0,13	FALSE	3	LanC-like protein 1
HEBP1	Q9NRV9	-3,10	0,04	0,12	FALSE	4	Heme-binding protein 1
PPP2R2 A	P63151	-3,10	0,01	0,05	FALSE	3	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform
SSB	P05455	-3,11	0,01	0,05	FALSE	2	Lupus La protein
ткт	P29401	-3,11	0,04	0,13	FALSE	2	Transketolase
GPM6B	Q13491-4	-3,13	0,05	0,15	FALSE	4	Neuronal membrane glycoprotein M6-b
SNRPD2	P62316	-3,16	0,02	0,09	FALSE	3	Small nuclear ribonucleoprotein Sm D2
APOE	P02649	-3,20	0,02	0,07	FALSE	0	Apolipoprotein E
CELSR1	Q9NYQ6	-3,20	0,13	0,28	FALSE	8	Cadherin EGF LAG seven- pass G-type receptor 1
PRMT1	Q99873-4	-3,21	0,02	0,08	FALSE	2	Protein arginine N- methyltransferase 1
RHOB	P62745	-3,23	0,01	0,05	FALSE	5	Rho-related GTP-binding protein RhoB
MYO10	Q9HD67	-3,31	0,02	0,07	FALSE	4	Unconventional myosin-X
GPNMB	Q14956-2	-3,33	0,01	0,05	FALSE	2	Transmembrane glycoprotein NMB
PNP	P00491	-3,33	0,01	0,06	FALSE	5	Purine nucleoside phosphorylase
EVA1A	Q9H8M9	-3,34	0,03	0,10	FALSE	6	Protein eva-1 homolog A
SUCLA2	Q9P2R7-2	-3,35	0,02	0,09	FALSE	4	Succinyl-CoA ligase [ADP- forming] subunit beta, mitochondrial
POP1	Q99575	-3,38	0,01	0,05	FALSE	9	Ribonucleases P/MRP protein subunit POP1
COPS5	Q92905	-3,41	0,01	0,06	FALSE	7	COP9 signalosome complex subunit 5
COPS4	Q9BT78	-3,72	0,01	0,05	FALSE	3	COP9 signalosome complex subunit 4
ALDH1A 2	094788	-3,96	0,02	0,08	FALSE	2	Retinal dehydrogenase 2
PFKM	P08237	-3,98	0,01	0,06	FALSE	4	ATP-dependent 6- phosphofructokinase, muscle type
GSTO1	P78417	-4,84	0,02	0,07	FALSE	5	Glutathione S-transferase omega-1
TTYH2	Q9BSA4	-4,85	0,01	0,06	FALSE	4	Protein tweety homolog 2

^a gene name: nombre del gen asociado a la proteína

^b protein IDs: identificador de la proteína

 $^{\rm c}$ metastatic_vs._melanocyte_log_ fold change: valor log_ del ratio de intensidad LFQ entre melanocitos y melanoma metastásico

^d metastatic_vs._melanocyte_p value: valor p bruto obtenido a partir de la comparación de las intensidades LFQ de los 2 grupos

^e metastatic_vs._melanocyte_p adjusted: valor p ajustado (corrección de Benjamini-Hochberg)

^f metastatic_vs._melanocyte_significant: indica si la proteína se encuentra (TRUE) o no (FALSE) enriquecida de manera diferencial en alguno de los 2 grupos, según lo definido por los límites elegidos

g num_NAs: número de valores perdidos (missing values) imputados

^h protein name: nombre de la proteína
ANEXO 5. Componentes celulares significativamente enriquecidos en fracciones de EV purificadas de líneas celulares

Tabla 32. Componentes celulares enriquecidos en fracciones de EV purificadas a partir de líneas celulares. Se muestran todos los términos GO enriquecidos de manera significativa (p valor tras corrección de Benjamini < 0,05) en base a las proteinas identificadas en el análisis proteómico por LC-MS/MS a partir de las muestras de EV purificadas de melanocitos y melanoma metastásico. Análisis de GO realizado con la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_CC_ALL), valores umbrales preestablecidos Count: 2 y EASE: 0.1. Los genes pertenecientes a cada término no se han incluido en la tabla debido a su gran extensión.

termª	count ^b	% ℃	fold enrichment ^d	p value ^e	Benjamini ^f	FDR ^g
GO:1903561~extracellular vesicle	837	44,54	4,01	0	0	0
GO:0070062~extracellular exosome	832	44,28	4,16	0	0	0
GO:0043230~extracellular organelle	837	44,54	4,01	0	0	0
GO:0031982~vesicle	1059	56 <i>,</i> 36	2,79	4,95E-295	1,68E-292	1,22E-292
GO:0044421~extracellular region part	944	50,24	2,65	3,63E-232	9,84E-230	7,13E-230
GO:0005576~extracellular region	992	52,79	2,30	4,39E-195	9,90E-193	7,18E-193
GO:0044444~cytoplasmic part	1506	80,15	1,60	2,56E-179	4,96E-177	3,60E-177
GO:0005829~cytosol	1038	55,24	2,07	6,17E-168	1,05E-165	7,58E-166
GO:0005737~cytoplasm	1605	85,42	1,43	5,42E-147	8,16E-145	5,91E-145
GO:0030055~cell-substrate junction	238	12,67	6,07	3,41E-133	4,62E-131	3,35E-131
GO:0005925~focal adhesion	235	12,51	6,14	7,62E-133	9,39E-131	6,81E-131
GO:0005924~cell-substrate adherens junction	236	12,56	6,11	9,42E-133	1,06E-130	7,71E-131
GO:0005912~adherens junction	258	13,73	5 <i>,</i> 03	3,76E-119	3,91E-117	2,84E-117
GO:0097708~intracellular vesicle	578	30,76	2,51	3,60E-113	3,48E-111	2,52E-111
GO:0031410~cytoplasmic vesicle	577	30,71	2,52	4,61E-113	4,16E-111	3,02E-111
GO:0044433~cytoplasmic vesicle part	429	22,83	2,96	3,30E-105	2,80E-103	2,03E-103
GO:0070161~anchoring junction	316	16,82	3,29	4,60E-88	3,67E-86	2,66E-86
GO:0030054~cell junction	367	19,53	2,82	2,59E-82	1,95E-80	1,41E-80
GO:0043227~membrane-bounded organelle	1598	85,05	1,27	6,04E-79	4,31E-77	3,12E-77
GO:0012505~endomembrane system	785	41,78	1,80	7,28E-79	4,93E-77	3,58E-77
GO:0030141~secretory granule	270	14,37	3,38	1,46E-77	9,43E-76	6,84E-76
GO:0099503~secretory vesicle	298	15,86	3,09	1,08E-75	6,66E-74	4,83E-74
GO:0098805~whole membrane	415	22,09	2,47	7,14E-75	4,21E-73	3,05E-73
GO:0043226~organelle	1665	88,61	1,22	3,48E-72	1,97E-70	1,43E-70
GO:0044446~intracellular organelle part	1313	69,88	1,33	3,31E-60	1,79E-58	1,30E-58
GO:0044422~organelle part	1336	71,10	1,32	1,08E-58	5,65E-57	4,10E-57
GO:0045202~synapse	321	17,08	2,47	2,02E-56	1,01E-54	7,32E-55
GO:0016020~membrane	1255	66,79	1,34	2,09E-56	1,01E-54	7,32E-55
GO:0032991~macromolecular complex	904	48,11	1,52	5,98E-56	2,80E-54	2,03E-54
GO:0042470~melanosome	79	4,20	7,83	1,66E-55	7,27E-54	5,27E-54
GO:0048770~pigment granule	79	4,20	7,83	1,66E-55	7,27E-54	5,27E-54

GO:0005773~vacuole	233	12,40	2,93	6,08E-54	2,58E-52	1,87E-52
GO:0043234~protein complex	552	29,38	1,84	1,35E-53	5,53E-52	4,01E-52
GO:0000323~lytic vacuole	215	11,44	3,05	9,22E-53	3,57E-51	2,59E-51
GO:0005764~lysosome	215	11,44	3,05	9,22E-53	3,57E-51	2,59E-51
GO:0012506~vesicle membrane	219	11,66	2,97	1,87E-51	7,04E-50	5,10E-50
GO:0044424~intracellular part	1705	90,74	1,15	2,00E-51	7,33E-50	5,31E-50
GO:0005622~intracellular	1705	90,74	1,15	3,34E-51	1,19E-49	8,64E-50
GO:0044437~vacuolar part	190	10,11	3,24	1,03E-50	3,57E-49	2,59E-49
GO:0030659~cytoplasmic vesicle membrane	212	11,28	2,95	2,35E-49	7,95E-48	5,76E-48
GO:0098588~bounding membrane of organelle	411	21,87	2,01	6,89E-48	2,28E-46	1,65E-46
GO:0060205~cytoplasmic vesicle lumen	128	6,81	4,17	4,37E-47	1,41E-45	1,02E-45
GO:0031983~vesicle lumen	128	6,81	4,16	6,35E-47	2,00E-45	1,45E-45
GO:0005768~endosome	247	13,15	2,57	3,45E-46	1,06E-44	7,69E-45
GO:0034774~secretory granule lumen	121	6,44	4,17	1,47E-44	4,42E-43	3,20E-43
GO:0042995~cell projection	426	22,67	1,91	5,55E-44	1,64E-42	1,19E-42
GO:0048471~perinuclear region of cytoplasm	197	10,48	2,78	9,72E-42	2,80E-40	2,03E-40
GO:0043229~intracellular organelle	1524	81,11	1,19	4,80E-41	1,35E-39	9,82E-40
GO:0031252~cell leading edge	136	7,24	3,50	3,89E-40	1,07E-38	7,79E-39
GO:0097458~neuron part	339	18,04	2,03	5,72E-40	1,55E-38	1,12E-38
GO:1904813~ficolin-1-rich granule lumen	69	3,67	6,18	1,31E-38	3,41E-37	2,47E-37
GO:0101002~ficolin-1-rich granule	69	3,67	6,18	1,31E-38	3,41E-37	2,47E-37
GO:0031090~organelle membrane	487	25,92	1,72	2,46E-38	6,30E-37	4,57E-37
GO:0010008~endosome membrane	155	8,25	3,08	2,67E-38	6,70E-37	4,86E-37
GO:0044440~endosomal part	161	8,57	2,92	1,19E-36	2,92E-35	2,12E-35
GO:0044456~synapse part	225	11,97	2,38	2,20E-36	5,31E-35	3,85E-35
GO:0005765~lysosomal membrane	130	6,92	3,28	3,47E-35	8,10E-34	5,87E-34
GO:0098852~lytic vacuole membrane	130	6,92	3,28	3,47E-35	8,10E-34	5,87E-34
GO:0044445~cytosolic part	96	5,11	4,05	3,46E-34	7,96E-33	5,77E-33
GO:0005774~vacuolar membrane	137	7,29	3,09	5,86E-34	1,32E-32	9,59E-33
GO:0071944~cell periphery	788	41,94	1,42	1,39E-33	3,08E-32	2,24E-32
GO:0022626~cytosolic ribosome	60	3,19	6,17	1,53E-33	3,34E-32	2,42E-32
GO:0043233~organelle lumen	798	42,47	1,41	3,88E-33	8,09E-32	5,86E-32
GO:0031974~membrane-enclosed lumen	798	42,47	1,41	3,88E-33	8,09E-32	5,86E-32
GO:0070013~intracellular organelle lumen	798	42,47	1,41	3,88E-33	8,09E-32	5,86E-32
GO:0043005~neuron projection	256	13,62	2,12	8,57E-33	1,76E-31	1,27E-31
GO:0098796~membrane protein complex	176	9,37	2,55	3,35E-32	6,77E-31	4,91E-31
GO:0030667~secretory granule membrane	101	5,38	3,57	1,02E-30	2,03E-29	1,47E-29
GO:0098589~membrane region	121	6,44	3,13	1,12E-30	2,20E-29	1,59E-29
GO:0030139~endocytic vesicle	107	5,69	3,41	1,22E-30	2,37E-29	1,72E-29
GO:0030027~lamellipodium	80	4,26	4,29	1,60E-30	3,06E-29	2,22E-29

GO:0005856~cytoskeleton	384	20,44	1,74	3,34E-30	6,29E-29	4,56E-29
GO:0005886~plasma membrane	761	40,50	1,40	1,17E-29	2,17E-28	1,57E-28
GO:0099568~cytoplasmic region	113	6,01	3,05	1,25E-27	2,28E-26	1,65E-26
GO:0030135~coated vesicle	97	5,16	3,34	4,60E-27	8,32E-26	6,03E-26
GO:0098794~postsynapse	151	8,04	2,49	1,66E-26	2,96E-25	2,15E-25
GO:0005794~Golgi apparatus	285	15,17	1,84	5,98E-26	1,05E-24	7,63E-25
GO:0015629~actin cytoskeleton	129	6,87	2,69	8,49E-26	1,48E-24	1,07E-24
GO:0005938~cell cortex	94	5,00	3,26	2,35E-25	4,03E-24	2,92E-24
GO:0005769~early endosome	112	5,96	2,89	3,66E-25	6,19E-24	4,49E-24
GO:0005623~cell	1807	96,17	1,06	3,79E-25	6,27E-24	4,54E-24
GO:0044464~cell part	1807	96,17	1,06	3,79E-25	6,27E-24	4,54E-24
GO:0043231~intracellular membrane- bounded organelle	1317	70,09	1,18	1,17E-24	1,91E-23	1,39E-23
GO:0098797~plasma membrane protein complex	89	4,74	3,30	1,76E-24	2,84E-23	2,06E-23
GO:0000502~proteasome complex	40	2,13	6,73	2,32E-24	3,69E-23	2,67E-23
GO:0001726~ruffle	67	3,57	4,06	4,24E-24	6,68E-23	4,84E-23
GO:0030662~coated vesicle membrane	69	3,67	3,87	2,18E-23	3,39E-22	2,46E-22
GO:0044430~cytoskeletal part	295	15,70	1,73	1,51E-22	2,33E-21	1,69E-21
GO:0005770~late endosome	86	4,58	3,17	2,24E-22	3,41E-21	2,47E-21
GO:0044463~cell projection part	234	12,45	1,88	2,47E-22	3,72E-21	2,70E-21
GO:0045121~membrane raft	94	5,00	2,97	3,26E-22	4,81E-21	3,48E-21
GO:0098857~membrane microdomain	94	5,00	2,97	3,26E-22	4,81E-21	3,48E-21
GO:0005775~vacuolar lumen	63	3,35	3,95	5,85E-22	8,52E-21	6,17E-21
GO:0098590~plasma membrane region	212	11,28	1,93	1,44E-21	2,08E-20	1,51E-20
GO:1905369~endopeptidase complex	41	2,18	5,62	4,86E-21	6,93E-20	5,02E-20
GO:0009986~cell surface	191	10,16	1,99	6,02E-21	8,49E-20	6,16E-20
GO:0070820~tertiary granule	59	3,14	3,99	7,20E-21	1,01E-19	7,29E-20
GO:0042582~azurophil granule	57	3,03	4,08	1,05E-20	1,44E-19	1,04E-19
GO:0005766~primary lysosome	57	3,03	4,08	1,05E-20	1,44E-19	1,04E-19
GO:0030136~clathrin-coated vesicle	68	3,62	3,50	2,54E-20	3,44E-19	2,50E-19
GO:0036477~somatodendritic compartment	171	9,10	2,05	3,02E-20	4,05E-19	2,94E-19
GO:0030133~transport vesicle	110	5,85	2,55	3,18E-20	4,23E-19	3,06E-19
GO:0098858~actin-based cell projection	70	3,73	3,36	7,00E-20	9,21E-19	6,68E-19
GO:0044297~cell body	133	7,08	2,28	9,21E-20	1,20E-18	8,70E-19
GO:0022625~cytosolic large ribosomal subunit	34	1,81	6,29	1,72E-19	2,22E-18	1,61E-18
GO:0098793~presynapse	121	6,44	2,37	2,25E-19	2,88E-18	2,09E-18
GO:0044459~plasma membrane part	423	22,51	1,48	9,01E-19	1,14E-17	8,27E-18
GO:0044448~cell cortex part	59	3,14	3,62	1,57E-18	1,97E-17	1,43E-17
GO:0030496~midbody	64	3,41	3,40	1,69E-18	2,10E-17	1,52E-17
GO:0099512~supramolecular fiber	182	9,69	1,92	1,91E-18	2,35E-17	1,71E-17
GO:0099081~supramolecular polymer	183	9,74	1,92	2,10E-18	2,56E-17	1,85E-17
GO:0099080~supramolecular complex	183	9,74	1,91	2,31E-18	2,80E-17	2,03E-17
GO:0005840~ribosome	72	3,83	3,09	3,74E-18	4,48E-17	3,25E-17

GO:0042581~specific granule	54	2,87	3,75	9,15E-18	1,09E-16	7,88E-17
GO:0098978~glutamatergic synapse	90	4,79	2,64	9,70E-18	1,14E-16	8,28E-17
GO:0005783~endoplasmic reticulum	299	15,91	1,60	1,28E-17	1,48E-16	1,08E-16
GO:0044391~ribosomal subunit	60	3,19	3,43	1,28E-17	1,48E-16	1,08E-16
GO:0045335~phagocytic vesicle	50	2,66	3,94	1,68E-17	1,93E-16	1,40E-16
GO:0044431~Golgi apparatus part	178	9,47	1,89	2,50E-17	2,85E-16	2,06E-16
GO:0030425~dendrite	128	6,81	2,15	6,07E-17	6,85E-16	4,97E-16
GO:0031253~cell projection membrane	88	4,68	2,58	9,82E-17	1,10E-15	7,97E-16
GO:0031902~late endosome membrane	53	2,82	3,61	1,12E-16	1,25E-15	9,05E-16
GO:0030175~filopodium	43	2,29	4,22	2,08E-16	2,29E-15	1,66E-15
GO:0030427~site of polarized growth	59	3,14	3,24	5,49E-16	5,99E-15	4,34E-15
GO:1902494~catalytic complex	235	12,51	1,68	5,97E-16	6,47E-15	4,69E-15
GO:0030665 [~] clathrin-coated vesicle membrane	46	2,45	3,87	9,98E-16	1,07E-14	7,78E-15
GO:1905368~peptidase complex	43	2,29	4,08	1,10E-15	1,17E-14	8,48E-15
GO:0030666~endocytic vesicle membrane	57	3,03	3,26	1,41E-15	1,49E-14	1,08E-14
GO:0030863~cortical cytoskeleton	42	2,24	4,13	1,47E-15	1,54E-14	1,12E-14
GO:0030426~growth cone	57	3,03	3,23	2,32E-15	2,41E-14	1,75E-14
GO:0098562~cytoplasmic side of membrane	60	3,19	3,11	2,41E-15	2,49E-14	1,80E-14
GO:0009898~cytoplasmic side of plasma membrane	54	2,87	3,35	2,49E-15	2,56E-14	1,86E-14
GO:0098552~side of membrane	133	7,08	2,03	2,62E-15	2,67E-14	1,94E-14
GO:0005788~endoplasmic reticulum lumen	76	4,04	2,68	2,66E-15	2,69E-14	1,95E-14
GO:0014069~postsynaptic density	81	4,31	2,58	3,11E-15	3,12E-14	2,26E-14
GO:0032279~asymmetric synapse	81	4,31	2,53	8,48E-15	8,45E-14	6,13E-14
GO:0098984~neuron to neuron synapse	82	4,36	2,51	8,76E-15	8,66E-14	6,28E-14
GO:1990904~ribonucleoprotein	215	11,44	1,68	9,30E-15	9,14E-14	6,62E-14
GO:0030424~axon	106	5,64	2,20	1,33E-14	1,30E-13	9,42E-14
GO:0005844~polysome	31	1,65	5,06	2,04E-14	1,98E-13	1,43E-13
GO:0099572~postsynaptic specialization	83	4,42	2,46	2,33E-14	2,24E-13	1,62E-13
GO:0005911~cell-cell junction	88	4,68	2,37	3,66E-14	3,49E-13	2,53E-13
GO:0098636~protein complex involved in cell adhesion	27	1,44	5,66	4,83E-14	4,57E-13	3,31E-13
GO:0005838~proteasome regulatory particle	17	0,90	9,44	5,97E-14	5,62E-13	4,07E-13
GO:0015630~microtubule cytoskeleton	209	11,12	1,67	6,36E-14	5,95E-13	4,31E-13
GO:0031012~extracellular matrix	78	4,15	2,49	7,55E-14	7,01E-13	5,08E-13
GO:0022627~cytosolic small ribosomal subunit	25	1,33	6,03	7,77E-14	7,16E-13	5,19E-13
GO:0044420~extracellular matrix component	44	2,34	3,59	8,43E-14	7,72E-13	5,60E-13
GO:0030658~transport vesicle membrane	61	3,25	2,86	9,35E-14	8,50E-13	6,16E-13
GO:0045177~apical part of cell	93	4,95	2,26	1,00E-13	9,07E-13	6,57E-13
GO:0031256~leading edge membrane	51	2,71	3,16	1,89E-13	1,70E-12	1,23E-12

GO:0016323~basolateral plasma	65	3,46	2,70	2,14E-13	1,91E-12	1,38E-12
GO:0022624~proteasome accessory						
complex	18	0,96	8,33	2,93E-13	2,59E-12	1,88E-12
GO:0005681~spliceosomal complex	54	2,87	3,00	3,66E-13	3,22E-12	2,33E-12
GO:0099513~polymeric cytoskeletal fiber	138	7,34	1,87	5,47E-13	4,75E-12	3,45E-12
GO:0043228~non-membrane-bounded	664	35,34	1,26	5,47E-13	4,75E-12	3,45E-12
GO:0036452~ESCRT complex	19	1,01	7,53	7,59E-13	6,55E-12	4,75E-12
GO:0043232~intracellular non-	662	35.23	1.26	7 98F-13	6 84F-12	4 96F-12
membrane-bounded organelle	100	55,25	2,20	0.115.12	0,040 12	F 01F 12
GO:0043025 neuronal cell body	106	5,64	2,06	8,11E-13	6,91E-12	5,01E-12
GO:0005654~nucleoplasm	511	27,20	1,32	9,53E-13	8,07E-12	5,85E-12
GO:0030529~intracellular ribonucleoprotein complex	197	10,48	1,65	1,12E-12	9,42E-12	6,82E-12
GO:0019898~extrinsic component of membrane	72	3,83	2,47	1,16E-12	9,71E-12	7,04E-12
GO:0030864~cortical actin	32	1,70	4,28	1,72E-12	1,43E-11	1,03E-11
GO:0019897~extrinsic component of						
plasma membrane	49	2,61	3,07	1,88E-12	1,56E-11	1,13E-11
GO:0005578~proteinaceous extracellular matrix	40	2,13	3,50	3,34E-12	2,74E-11	1,99E-11
GO:0043202~lysosomal lumen	34	1,81	3,81	1,27E-11	1,03E-10	7,50E-11
GO:0016324~apical plasma membrane	78	4,15	2,26	1,44E-11	1,17E-10	8,45E-11
GO:0070382~exocytic vesicle	58	3,09	2,60	2,67E-11	2,15E-10	1,56E-10
GO:0045334~clathrin-coated endocytic vesicle	32	1,70	3,90	2,78E-11	2,22E-10	1,61E-10
GO:0035578~azurophil granule lumen	32	1,70	3,90	2,78E-11	2,22E-10	1,61E-10
GO:0005902~microvillus	33	1,76	3,74	4,79E-11	3,79E-10	2,75E-10
GO:0000139~Golgi membrane	126	6,71	1,81	5,45E-11	4,29E-10	3,11E-10
GO:0042383~sarcolemma	41	2,18	3,16	5,80E-11	4,54E-10	3,29E-10
GO:0044428~nuclear part	623	33,16	1,24	6,04E-11	4,70E-10	3,41E-10
GO:0032587~ruffle membrane	33	1,76	3,70	6,47E-11	5,01E-10	3,63E-10
GO:0008021~synaptic vesicle	54	2,87	2,63	8,44E-11	6,50E-10	4,71E-10
GO:0048475~coated membrane	32	1,70	3,74	9,76E-11	7,43E-10	5,38E-10
GO:0030117~membrane coat	32	1,70	3,74	9,76E-11	7,43E-10	5,38E-10
GO:0005604~basement membrane	33	1,76	3,59	1,55E-10	1,17E-09	8,46E-10
GO:0055038~recycling endosome	33	1,76	3,59	1,55E-10	1,17E-09	8,46E-10
GO:0044432~endoplasmic reticulum	204	10,86	1,54	2,38E-10	1,78E-09	1,29E-09
GO:0005884~actin filament	36	1,92	3,28	3,45E-10	2,57E-09	1,86E-09
GQ:0042788~polysomal ribosome	18	0.96	6.06	, 4 48F-10	, 3 31F-09	2 40F-09
GO:0071013~catalytic step 2	10	0,00	0,00		1.007.05	2,701 03
spliceosome	30	1,60	3,70	5,47E-10	4,03E-09	2,92E-09
GO:0015934~large ribosomal subunit	35	1,86	3,27	6,93E-10	5,07E-09	3,68E-09
GO:0005874~microtubule	86	4,58	2,00	7,01E-10	5,11E-09	3,70E-09
GO:0031901~early endosome membrane	46	2,45	2,72	8,13E-10	5,89E-09	4,27E-09
GO:0031234~extrinsic component of cytoplasmic side of plasma membrane	32	1,70	3,45	9,48E-10	6,83E-09	4,95E-09

GO:0005905~clathrin-coated pit	26	1,38	4,07	1,03E-09	7,37E-09	5,34E-09
GO:0055037~recycling endosome	48	2,55	2,61	1,33E-09	9,50E-09	6,88E-09
GO:0030670~phagocytic vesicle	27	1,44	3,89	1,36E-09	9,62E-09	6,97E-09
GO:0043209~mvelin sheath	22	1.17	4.61	1.85F-09	1.30F-08	9.45F-09
GO:0031981~nuclear lumen	572	30.44	1 23	2 05F-09	1 44F-08	1 04F-08
GO:0008305~integrin complex	17	0 90	5 90	2,05E 05	1 81E-08	1 31E-08
GO:0035579~specific granule	17	0,90	5,50	2,391-09	1,011-00	1,511-08
membrane	29	1,54	3,54	3,50E-09	2,42E-08	1,76E-08
GO:0031091~platelet alpha granule	29	1,54	3,54	3,50E-09	2,42E-08	1,76E-08
GO:0005903~brush border	33	1,76	3,21	3,54E-09	2,43E-08	1,76E-08
GO:1904724~tertiary granule lumen	22	1,17	4,44	4,10E-09	2,81E-08	2,03E-08
GO:0031984~organelle subcompartment	77	4,10	2,02	4,24E-09	2,89E-08	2,09E-08
GO:0031258~lamellipodium	14	0,75	7,07	5,60E-09	3,79E-08	2,75E-08
GO:0101031~chaperone complex	19	1,01	5,02	5,97E-09	4,02E-08	2,92E-08
GO:0070993~translation preinitiation	13	0,69	7,60	7,56E-09	5,07E-08	3,68E-08
GO:0044309~neuron spine	44	2.34	2.60	8.34E-09	5.57E-08	4.04E-08
GO:0033290~eukaryotic 48S	12	-,	_,	0 705 00	5,51 - 55	4.405.00
preinitiation complex	12	0,64	8,33	8,72E-09	5,76E-08	4,18E-08
GO:0005852~eukaryotic translation initiation factor 3 complex	12	0,64	8,33	8,72E-09	5,76E-08	4,18E-08
GO:0005798~Golgi-associated vesicle	30	1,60	3,30	1,08E-08	7,10E-08	5,14E-08
GO:0005819~spindle	77	4,10	1,97	1,22E-08	8,00E-08	5,80E-08
GO:0030120~vesicle coat	22	1,17	4,21	1,25E-08	8,14E-08	5,90E-08
GO:0015935~small ribosomal subunit	26	1,38	3,65	1,27E-08	8,21E-08	5,95E-08
GO:0043197~dendritic spine	43	2,29	2,57	1,84E-08	1,19E-07	8,62E-08
GO:0034399~nuclear periphery	38	2,02	2,76	1,89E-08	1,21E-07	8,79E-08
GO:0005615~extracellular space	258	13,73	1,39	2,28E-08	1,46E-07	1,05E-07
GO:0005771~multivesicular body	23	1,22	3,93	2,36E-08	1,50E-07	1,09E-07
GO:0016363~nuclear matrix	34	1,81	2,93	2,53E-08	1,60E-07	1,16E-07
GO:0032585~multivesicular body	15	0,80	5,95	2,61E-08	1,64E-07	1,19E-07
GO:0098791~Golgi subcompartment	71	3,78	1,99	3,47E-08	2,18E-07	1,58E-07
GO:0005802~trans-Golgi network	54	2,87	2,24	3,49E-08	2,18E-07	1,58E-07
GO:0030669~clathrin-coated endocytic	24	1 20	2 70	2 045 09	2 455 07	1 775 07
vesicle membrane	24	1,20	5,70	5,942-06	2,452-07	1,772-07
GO:0016328~lateral plasma membrane	24	1,28	3,65	5,26E-08	3,26E-07	2,36E-07
GO:0016282~eukaryotic 43S preinitiation complex	12	0,64	7,40	5,36E-08	3,30E-07	2,39E-07
GO:0044853~plasma membrane raft	31	1,65	2,92	1,25E-07	7,66E-07	5,55E-07
GO:0001772~immunological synapse	18	0,96	4,44	1,48E-07	9,03E-07	6,55E-07
GO:0045009~chitosome	12	0,64	6,66	2,38E-07	1,44E-06	1,05E-06
GO:0033162~melanosome membrane	12	0,64	6,66	2,38E-07	1,44E-06	1,05E-06
GO:0030016~myofibril	48	2,55	2,23	2,43E-07	1,46E-06	1,06E-06
GO:0098862~cluster of actin-based cell	38	2.02	2.51	2,49E-07	1.49E-06	1.08E-06
projections		_,•=	_,.1	,	,	,
complex	13	0,69	6,01	2,64E-07	1,58E-06	1,14E-06

GO:0043292~contractile fiber	49	2,61	2,19	2,98E-07	1,77E-06	1,28E-06
GO:0012507~ER to Golgi transport vesicle membrane	21	1,12	3,70	3,36E-07	1,99E-06	1,44E-06
GO:0035577~azurophil granule membrane	20	1,06	3,83	3,80E-07	2,24E-06	1,62E-06
GO:0005815~microtubule organizing center	121	6,44	1,58	3,85E-07	2,26E-06	1,64E-06
GO:0005793~endoplasmic reticulum- Golgi intermediate compartment	33	1,76	2,65	4,69E-07	2,74E-06	1,98E-06
GO:0044291~cell-cell contact zone	23	1,22	3,36	5,35E-07	3,11E-06	2,26E-06
GO:0005834~heterotrimeric G-protein complex	15	0,80	4,76	8,23E-07	4,77E-06	3,45E-06
GO:0045178~basal part of cell	22	1,17	3,39	8,41E-07	4,85E-06	3,51E-06
GO:0033267~axon part	44	2,34	2,22	9,21E-07	5,29E-06	3,83E-06
GO:0099501~exocytic vesicle membrane	31	1,65	2,67	9,91E-07	5,64E-06	4,09E-06
GO:0030672~synaptic vesicle membrane	31	1,65	2,67	9,91E-07	5,64E-06	4,09E-06
GO:0005634~nucleus	865	46,04	1,13	1,03E-06	5,86E-06	4,24E-06
GO:0070821~tertiary granule membrane	22	1,17	3,35	1,08E-06	6,10E-06	4,42E-06
GO:0005901~caveola	24	1,28	3,13	1,11E-06	6,24E-06	4,52E-06
GO:0035580~specific granule lumen	20	1,06	3,58	1,21E-06	6,76E-06	4,90E-06
GO:0008540~proteasome regulatory particle, base subcomplex	8	0,43	9,87	1,45E-06	8,08E-06	5,86E-06
GO:0098687~chromosomal region	67	3,57	1,84	1,58E-06	8,80E-06	6,38E-06
GO:1905360~GTPase complex	15	0,80	4,50	1,82E-06	1,01E-05	7,31E-06
GO:0098563~intrinsic component of synaptic vesicle membrane	18	0,96	3,77	2,16E-06	1,19E-05	8,61E-06
GO:0036464~cytoplasmic ribonucleoprotein granule	48	2,55	2,07	2,35E-06	1,29E-05	9,36E-06
GO:0035770~ribonucleoprotein granule	50	2,66	2,01	3,09E-06	1,69E-05	1,23E-05
GO:0031528~microvillus membrane	13	0,69	4,98	3,31E-06	1,80E-05	1,30E-05
GO:0030134~ER to Golgi transport vesicle	25	1,33	2,86	3,71E-06	2,01E-05	1,45E-05
GO:0005790~smooth endoplasmic reticulum	14	0,75	4,57	3,72E-06	2,01E-05	1,45E-05
GO:0030140~trans-Golgi network transport vesicle	15	0,80	4,27	3,79E-06	2,04E-05	1,48E-05
GO:0005776~autophagosome	28	1,49	2,66	3,96E-06	2,12E-05	1,54E-05
GO:0101003~ficolin-1-rich granule membrane	19	1,01	3,46	4,20E-06	2,24E-05	1,62E-05
GO:0044449~contractile fiber part	44	2,34	2,10	4,42E-06	2,35E-05	1,70E-05
GO:0005813~centrosome	99	5,27	1,58	4,65E-06	2,46E-05	1,79E-05
GO:0009925~basal plasma membrane	17	0,90	3,70	5,92E-06	3,12E-05	2,26E-05
GO:0005635~nuclear envelope	76	4,04	1,70	6,03E-06	3,17E-05	2,29E-05
GO:0005876~spindle microtubule	23	1,22	2,94	6,36E-06	3,33E-05	2,41E-05
GO:0072562~blood microparticle	32	1,70	2,40	6,85E-06	3,57E-05	2,59E-05
GO:0002102~podosome	13	0,69	4,66	7,58E-06	3,94E-05	2,85E-05
GO:0098993~anchored component of synaptic vesicle membrane	9	0,48	7,14	7,77E-06	4,02E-05	2,91E-05
GO:0090543~Flemming body	14	0,75	4,32	7,80E-06	4,02E-05	2,91E-05

Anexos

GO:0005832~chaperonin-containing T-	8	0,43	8,07	1,13E-05	5,77E-05	4,18E-05
GO:0098637~protein complex involved	8	0,43	8,07	1,13E-05	5,77E-05	4,18E-05
in cell-matrix adhesion GO:0031597~cytosolic proteasome		0.27	0.71	1 205 05	C 405 05	4.645.05
complex	/	0,37	9,71	1,26E-05	6,40E-05	4,64E-05
GO:0008541~proteasome regulatory particle, lid subcomplex	7	0,37	9,71	1,26E-05	6,40E-05	4,64E-05
GO:0090723~growth cone part	10	0,53	5,84	1,52E-05	7,71E-05	5,59E-05
GO:0044306~neuron projection		,	,	,	,	,
terminus	32	1,70	2,28	2,07E-05	1,04E-04	7,57E-05
synapse	22	1,17	2,81	2,21E-05	1,11E-04	8,03E-05
GO:1904930~amphisome membrane	8	0,43	7,40	2,50E-05	1,25E-04	9,05E-05
GO:0005828~kinetochore microtubule	10	0,53	5,55	2,55E-05	1,27E-04	9,21E-05
GO:0045239~tricarboxylic acid cycle enzyme complex	9	0,48	6,25	2,82E-05	1,40E-04	1,02E-04
GO:0032155~cell division site part	18	0,96	3,17	2,83E-05	1,40E-04	1,02E-04
GO:0042641~actomyosin	21	1,12	2,81	3,53E-05	1,74E-04	1,26E-04
GO:0016471~vacuolar proton- transporting V-type ATPase complex	11	0,59	4,70	4,70E-05	2,31E-04	1,67E-04
GO:0099524~postsynaptic cytosol	9	0,48	5,88	4,91E-05	2,40E-04	1,74E-04
GO:0032838~cell projection cytoplasm	23	1,22	2,58	5,58E-05	2,72E-04	1,97E-04
GO:0031093~platelet alpha granule lumen	18	0,96	2,98	6,67E-05	3,24E-04	2,35E-04
GO:0005643~nuclear pore	23	1,22	2,53	7,67E-05	3,71E-04	2,69E-04
GO:0031527~filopodium membrane	9	0,48	5,55	8,15E-05	3,91E-04	2,84E-04
GO:0043034~costamere	9	0,48	5,55	8,15E-05	3,91E-04	2,84E-04
GO:0071682~endocytic vesicle lumen	10	0,53	4,83	9,67E-05	4,63E-04	3,35E-04
GO:0032432~actin filament bundle	20	1,06	2,71	9,70E-05	4,63E-04	3,35E-04
GO:0071541~eukaryotic translation	6	0.22	0.52	4.005.04	5 025 04	2 6 4 5 0 4
initiation factor 3 complex, eIF3m	6	0,32	9,52	1,06E-04	5,03E-04	3,64E-04
GO:0030118~clathrin coat	14	0,75	3,45	1,14E-04	5,39E-04	3,90E-04
GO:0099738~cell cortex region	14	0,75	3,45	1,14E-04	5,39E-04	3,90E-04
GO:0030017~sarcomere	38	2,02	1,94	1,26E-04	5,92E-04	4,29E-04
GO:0033176~proton-transporting V- type ATPase complex	11	0,59	4,21	1,38E-04	6,46E-04	4,68E-04
GO:0030132~clathrin coat of coated pit	8	0.43	5.92	1.59E-04	7.41E-04	5.37E-04
GO:0099092~postsynaptic density,	8	0.43	5.92	1.59E-04	7.41E-04	5.37E-04
intracellular component			-,	_,	.,	-,
GO:0000815~ESCRT III complex	7	0,37	7,07	1,64E-04	7,47E-04	5,42E-04
GO:0000813~ESCRT I complex	7	0,37	7,07	1,64E-04	7,47E-04	5,42E-04
GO:0002116~semaphorin receptor complex	7	0,37	7,07	1,64E-04	7,47E-04	5,42E-04
GO:0019773~proteasome core	7	0,37	7,07	1,64E-04	7,47E-04	5,42E-04
GO:0005885~Arp2/3 protein complex	7	0.37	7.07	1 64F-04	7 47F-04	5 / 2F-0/
GO:0000221~vacuolar proton-	-	0,57	7,07	1.045.04	7 475 04	5,721-04
transporting V-type ATPase, V1 domain	/	0,37	/,0/	1,64E-04	7,47E-04	5,42E-04
GO:0005581~collagen trimer	22	1,17	2,47	1,65E-04	7,48E-04	5,42E-04
GO:0032153~cell division site	18	0,96	2,74	2,08E-04	9,43E-04	6,83E-04
GO:0051233~spindle midzone	12	0,64	3,70	2,20E-04	9,94E-04	7,20E-04

GO:0005684~U2-type spliceosomal complex	21	1,12	2,48	2,23E-04	1,01E-03	7,29E-04
GO:0008290~F-actin capping protein complex	6	0,32	8,33	2,61E-04	1,17E-03	8,49E-04
GO:0000421~autophagosome membrane	15	0,80	3,03	2,77E-04	1,23E-03	8,92E-04
GO:0097610~cell surface furrow	15	0,80	3,03	2,77E-04	1,23E-03	8,92E-04
GO:0032154~cleavage furrow	15	0,80	3,03	2,77E-04	1,23E-03	8,92E-04
GO:0032839~dendrite cytoplasm	12	0,64	3,60	2,88E-04	1,27E-03	9,24E-04
GO:0099522~region of cytosol	9	0,48	4,76	2,96E-04	1,31E-03	9,47E-04
GO:0030904~retromer complex	7	0,37	6,48	3,03E-04	1,33E-03	9,65E-04
GO:0010494~cytoplasmic stress granule	20	1,06	2,47	3,53E-04	1,55E-03	1,12E-03
GO:0031201~SNARE complex	14	0,75	3,11	3,62E-04	1,58E-03	1,15E-03
GO:0044295~axonal growth cone	11	0,59	3,70	4,56E-04	1,99E-03	1,44E-03
GO:0043679~axon terminus	26	1,38	2,11	4,96E-04	2,15E-03	1,56E-03
GO:0033180~proton-transporting V- type ATPase, V1 domain	7	0,37	5,98	5,19E-04	2,25E-03	1,63E-03
GO:0016600~flotillin complex	6	0,32	7,40	5,44E-04	2,35E-03	1,70E-03
GO:0005739~mitochondrion	198	10,54	1,25	5,53E-04	2,38E-03	1,72E-03
GO:0072686~mitotic spindle	32	1,70	1,91	5,88E-04	2,52E-03	1,83E-03
GO:0031143~pseudopodium	8	0,43	4,93	6,18E-04	2,64E-03	1,91E-03
GO:0097517~contractile actin filament bundle	17	0,90	2,59	6,51E-04	2,77E-03	2,00E-03
GO:0001725~stress fiber	17	0,90	2,59	6,51E-04	2,77E-03	2,00E-03
GO:0097060~synaptic membrane	57	3,03	1,57	6,85E-04	2,89E-03	2,09E-03
GO:0032588~trans-Golgi network membrane	21	1,12	2,29	6,86E-04	2,89E-03	2,09E-03
GO:0042175~nuclear outer membrane- endoplasmic reticulum membrane network	143	7,61	1,31	6,86E-04	2,89E-03	2,09E-03
GO:0036019~endolysosome	10	0,53	3,83	7,21E-04	3,03E-03	2,19E-03
GO:0005811~lipid particle	21	1,12	2,26	7,80E-04	3,26E-03	2,36E-03
GO:0014704~intercalated disc	14	0,75	2,88	8,06E-04	3,36E-03	2,44E-03
GO:0090665~glycoprotein complex	9	0,48	4,16	8,38E-04	3,48E-03	2,52E-03
GO:0035748~myelin sheath abaxonal region	5	0,27	9,25	8,46E-04	3,50E-03	2,53E-03
GO:0070937~CRD-mediated mRNA stability complex	5	0,27	9,25	8,46E-04	3,50E-03	2,53E-03
GO:0005791~rough endoplasmic	19	1,01	2,37	8,53E-04	3,51E-03	2,55E-03
GO:0016010~dystrophin-associated glycoprotein complex	8	0,43	4,67	9,03E-04	3,71E-03	2,69E-03
GO:0030125~clathrin vesicle coat	10	0,53	3,70	9,49E-04	3,89E-03	2,82E-03
GO:0000776~kinetochore	29	1,54	1,93	9,60E-04	3,92E-03	2,84E-03
GO:0005916~fascia adherens	6	0,32	6,66	1,01E-03	4,08E-03	2,96E-03
GO:0032593~insulin-responsive compartment	6	0,32	6,66	1,01E-03	4,08E-03	2,96E-03
GO:0036020~endolysosome membrane	8	0,43	4,44	1,28E-03	5,17E-03	3,75E-03
GO:0005913~cell-cell adherens junction	8	0,43	4,44	1,28E-03	5,17E-03	3,75E-03
GO:0071005~U2-type precatalytic spliceosome	13	0,69	2,89	1,30E-03	5,24E-03	3,80E-03

GO:0031594~neuromuscular junction	17	0,90	2,42	1,38E-03	5,55E-03	4,02E-03
GO:0000775~chromosome,	39	2.08	1 70	1 40F-03	5 59F-03	4 05F-03
centromeric region	55	2,00	1,70	1,402 00	3,352 03	4,052.05
GO:0005789~endoplasmic reticulum membrane	138	7,34	1,29	1,46E-03	5,81E-03	4,21E-03
GO:0030057~desmosome	9	0,48	3,84	1,51E-03	6,01E-03	4,36E-03
GO:0031674~I band	26	1,38	1,95	1,57E-03	6,22E-03	4,51E-03
GO:0030660~Golgi-associated vesicle						
membrane	14	0,75	2,68	1,64E-03	6,46E-03	4,68E-03
GO:0034663~endoplasmic reticulum chaperone complex	6	0,32	6,06	1,71E-03	6,71E-03	4,86E-03
GO:0019774~proteasome core complex, beta-subunit complex	6	0,32	6,06	1,71E-03	6,71E-03	4,86E-03
GO:0032433~filopodium tip	8	0,43	4,23	1,77E-03	6,93E-03	5,02E-03
GO:0042827~platelet dense granule	8	0,43	4,23	1,77E-03	6,93E-03	5,02E-03
GO:0008180~COP9 signalosome	7	0,37	4,86	1,91E-03	7,45E-03	5,40E-03
GO:0033116~endoplasmic reticulum-					,	
Golgi intermediate compartment	17	0,90	2,33	2,09E-03	8,12E-03	5,88E-03
membrane						
GO:0016607~nuclear speck	58	3,09	1,49	2,22E-03	8,59E-03	6,23E-03
GO:0071011~precatalytic spliceosome	13	0,69	2,72	2,23E-03	8,59E-03	6,23E-03
GO:0016459~myosin complex	15	0,80	2,49	2,24E-03	8,63E-03	6,25E-03
GO:0097525~spliceosomal snRNP complex	19	1,01	2,15	2,67E-03	1,02E-02	7,42E-03
GO:0016281~eukaryotic translation	6	0,32	5,55	2,71E-03	1,03E-02	7,47E-03
GO:0030905~retromer, tubulation	4	0,21	11,10	2,72E-03	1,03E-02	7,47E-03
GO:0030478~actin cap	4	0.21	11.10	2.72E-03	1.03E-02	7.47E-03
GO:0071010~prespliceosome	7	0.37	4.57	2.73E-03	1.03E-02	7.47E-03
GO:0031092~platelet alpha granule			.,		_,	.,
membrane	7	0,37	4,57	2,73E-03	1,03E-02	7,47E-03
GO:0071004~U2-type prespliceosome	7	0,37	4,57	2,73E-03	1,03E-02	7,47E-03
GO:0005796~Golgi lumen	20	1,06	2,09	2,75E-03	1,04E-02	7,51E-03
GO:0005875~microtubule associated complex	28	1,49	1,82	2,86E-03	1,07E-02	7,77E-03
GO:0009897~external side of plasma	64	3,41	1,44	2,87E-03	1,07E-02	7,79E-03
GO:0071556~integral component of lumenal side of endoplasmic reticulum membrane	9	0,48	3,45	3,26E-03	1,21E-02	8,79E-03
GO:0098553~lumenal side of	9	0,48	3,45	3,26E-03	1,21E-02	8,79E-03
GO:0000781~chromosome, telomeric region	28	1,49	1,80	3,37E-03	1,25E-02	9,07E-03
GO:0002199~zona pellucida receptor complex	5	0,27	6,94	3,41E-03	1,26E-02	9,14E-03
GO:0097223~sperm part	40	2,13	1,60	3,43E-03	1,27E-02	9,18E-03
GO:0035861~site of double-strand	16	0.95	2 20	2 725 02	1 275 02	0.025.02
break	10	0,85	2,28	3,72E-03	1,375-02	J,JZE-U3
GO:0001931~uropod	6	0,32	5,12	4,09E-03	1,50E-02	1,08E-02
GO:0031254~cell trailing edge	6	0,32	5,12	4,09E-03	1,50E-02	1,08E-02
GO:0031941~filamentous actin	9	0,48	3,33	4,10E-03	1,50E-02	1,08E-02
GO:0005759~mitochondrial matrix	63	3,35	1,42	4,14E-03	1,51E-02	1,09E-02

GO:0031226~intrinsic component of plasma membrane	198	10,54	1,20	4,32E-03	1,57E-02	1,14E-02
GO:0044425~membrane part	744	39,60	1,08	4,71E-03	1,71E-02	1,24E-02
GO:0048786~presynaptic active zone	16	0,85	2,22	4,76E-03	, 1,72E-02	1,25E-02
GO:0043195~terminal bouton	13	0,69	2,49	4,90E-03	1,76E-02	1,28E-02
GO:1990204~oxidoreductase complex	22	1,17	1,91	5,06E-03	1,82E-02	1,32E-02
GO:0030130~clathrin coat of trans-	7	,	,	, F 12F 02	1.945.02	1 225 02
Golgi network vesicle	/	0,57	4,09	5,12E-05	1,04E-02	1,55E-02
GO:0030532~small nuclear ribonucleoprotein complex	19	1,01	2,01	5,70E-03	2,04E-02	1,48E-02
GO:0005850~eukaryotic translation initiation factor 2 complex	4	0,21	8,88	6,34E-03	2,26E-02	1,64E-02
GO:0005887~integral component of plasma membrane	188	10,01	1,19	6,63E-03	2,36E-02	1,71E-02
GO:0090734~site of DNA damage	19	1,01	1,97	6,96E-03	2,47E-02	1,79E-02
GO:0098845~postsynaptic endosome	6	0,32	4,44	8,19E-03	2,89E-02	2,09E-02
GO:0030127~COPII vesicle coat	6	0,32	4,44	8,19E-03	2,89E-02	2,09E-02
GO:0030018~Z disc	22	1,17	1,82	8,58E-03	3,02E-02	2,19E-02
GO:0012510~trans-Golgi network transport vesicle membrane	7	0,37	3,70	8,76E-03	3,08E-02	2,23E-02
GO:0005641~nuclear envelope lumen	5	0,27	5,55	8,82E-03	3,08E-02	2,23E-02
GO:0097197~tetraspanin-enriched microdomain	5	0,27	5,55	8,82E-03	3,08E-02	2,23E-02
GO:0016469~proton-transporting two- sector ATPase complex	12	0,64	2,38	1,03E-02	3,57E-02	2,59E-02
GO:0030315~T-tubule	12	0,64	2,38	1,03E-02	3,57E-02	2,59E-02
GO:0030137~COPI-coated vesicle	8	0,43	3,17	1,03E-02	3,59E-02	2,60E-02
GO:1904115~axon cytoplasm	13	0,69	2,26	1,09E-02	3,78E-02	2,74E-02
GO:0042588~zymogen granule	6	0,32	4,16	1,10E-02	3,81E-02	2,76E-02
GO:0033178~proton-transporting two- sector ATPase complex, catalytic domain	7	0,37	3,53	1,12E-02	3,83E-02	2,77E-02
GO:0097038~perinuclear endoplasmic reticulum	7	0,37	3,53	1,12E-02	3,83E-02	2,77E-02
GO:0000015~phosphopyruvate hydratase complex	4	0,21	7,40	1,18E-02	4,03E-02	2,92E-02
GO:0031088~platelet dense granule membrane	4	0,21	7,40	1,18E-02	4,03E-02	2,92E-02
GO:0051286~cell tip	4	0,21	7,40	1,18E-02	4,03E-02	2,92E-02
GO:0005686~U2 snRNP	8	0,43	3,06	1,26E-02	4,28E-02	3,10E-02
GO:0030062~mitochondrial tricarboxylic acid cycle enzyme complex	5	0,27	5,05	1,29E-02	4,37E-02	3,16E-02
GO:0031312~extrinsic component of organelle membrane	12	0,64	2,30	1,33E-02	4,51E-02	3,27E-02
GO:0030131~clathrin adaptor complex	7	0,37	3,38	1,40E-02	4,71E-02	3,41E-02
GO:0001650~fibrillar center	23	1,22	1,71	1,42E-02	4,79E-02	3,47E-02
GO:0097440~apical dendrite	6	0,32	3,92	1,45E-02	4,86E-02	3,52E-02

^b count: nº de genes/proteínas identificadas pertenecientes a cada término

° %: % de genes/proteínas identificadas pertenecientes a cada término respecto al total incluido en el término

^d fold enrichment: ratio de enriquecimiento de cada término

^e p value: valor p (o nivel de significación) obtenido para cada término

Anexos

^f Benjamini: valor p tras aplicar la corrección de Benjamini obtenido para cada término

ANEXO 6. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanocitos

Tabla 33. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanocitos. Se muestran todos los términos GO enriquecidos de manera significativa (p valor tras corrección de Benjamini < 0,05) en base a las proteinas identificadas en el análisis proteómico por LC-MS/MS a partir de las muestras de EV purificadas de melanocitos (HEMn-LP y HEMn-MP). Análisis de GO realizado con la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_BP_ALL), valores umbrales preestablecidos Count: 2 y EASE: 0.1. Los genes pertenecientes a cada término no se han incluido en la tabla debido a su gran extensión.

termª	count ^b	% ℃	fold enrichment ^d	p value ^e	Benjamini ^f	FDR ^g
GO:0019752~carboxylic acid metabolic process	60	20,69	4,13	8,00E-21	3,92E-17	3,75E-17
GO:0044281~small molecule metabolic process	87	30,00	2,84	7,86E-20	1,93E-16	1,84E-16
GO:0043436~oxoacid metabolic process	61	21,03	3,78	2,64E-19	4,32E-16	4,13E-16
GO:0006082~organic acid metabolic process	61	21,03	3,73	5,03E-19	6,17E-16	5,89E-16
GO:0009056~catabolic process	94	32,41	2,49	7,04E-18	6,91E-15	6,60E-15
GO:0044710~single-organism metabolic process	125	43,10	2,05	9,49E-18	7,76E-15	7,41E-15
GO:0044282~small molecule catabolic process	34	11,72	6,17	1,12E-16	7,88E-14	7,53E-14
GO:1901575~organic substance catabolic process	79	27,24	2,57	2,64E-15	1,62E-12	1,55E-12
GO:0016054~organic acid catabolic process	25	8,62	6,63	6,00E-13	2,78E-10	2,66E-10
GO:0046395~carboxylic acid catabolic process	25	8,62	6,63	6,00E-13	2,78E-10	2,66E-10
GO:0044763~single-organism cellular process	229	78,97	1,32	6,25E-13	2,78E-10	2,66E-10
GO:0044712~single-organism catabolic process	48	16,55	3,24	1,52E-12	6,21E-10	5,94E-10
GO:0006091~generation of precursor metabolites and energy	32	11,03	4,69	1,93E-12	7,26E-10	6,94E-10
GO:0044248~cellular catabolic process	75	25,86	2,33	2,61E-12	9,14E-10	8,74E-10
GO:0006732~coenzyme metabolic process	28	9,66	5,36	2,92E-12	9,53E-10	9,11E-10
GO:0055114~oxidation-reduction process	33	11,38	4,39	4,73E-12	1,45E-09	1,38E-09
GO:0009063~cellular amino acid catabolic process	17	5,86	9,30	4,04E-11	1,17E-08	1,11E-08
GO:0051186~cofactor metabolic process	30	10,34	4,41	4,97E-11	1,35E-08	1,29E-08
GO:0072350~tricarboxylic acid metabolic process	11	3,79	19,96	1,12E-10	2,88E-08	2,76E-08
GO:0032787~monocarboxylic acid metabolic process	35	12,07	3,66	1,31E-10	3,20E-08	3,06E-08
GO:0006733~oxidoreduction coenzyme metabolic process	19	6,55	7,16	1,80E-10	4,21E-08	4,02E-08
GO:0019362~pyridine nucleotide metabolic process	18	6,21	7,52	2,82E-10	6,00E-08	5,74E-08
GO:0046496~nicotinamide nucleotide metabolic process	18	6,21	7,52	2,82E-10	6,00E-08	5,74E-08

GO:0006520~cellular amino acid	24	8,28	5,08	4,30E-10	8,78E-08	8,39E-08
GO:0072524~pyriding containing						
compound metabolic process	18	6,21	7,26	4,94E-10	9,68E-08	9,26E-08
GO:0006099~tricarboxylic acid cycle	10	3,45	20,90	6,87E-10	1,30E-07	1,24E-07
GO:0045333~cellular respiration	19	6,55	6,52	8,36E-10	1,52E-07	1,45E-07
GO:0006101~citrate metabolic process	10	3,45	20,28	9,23E-10	1,62E-07	1,54E-07
GO:0055086~nucleobase-containing	35	12.07	3.32	1.64E-09	2.76E-07	2.64E-07
small molecule metabolic process		,	-,	_,= = ==		_,= = = =
metabolic process	14	4,83	9,65	2,10E-09	3,43E-07	3,28E-07
GO:1901564~organonitrogen	82	28,28	1,93	2,18E-09	3,45E-07	3,30E-07
compound metabolic process						
GO:0006090~pyruvate metabolic process	14	4,83	8,86	6,15E-09	9,42E-07	9,01E-07
GO:1901565~organonitrogen	24	0.00		7 765 00	4.455.00	4 4 95 96
compound catabolic process	24	8,28	4,37	7,76E-09	1,15E-06	1,10E-06
GO:0009117~nucleotide metabolic process	32	11,03	3,27	1,38E-08	2,00E-06	1,91E-06
GO:0006753~nucleoside phosphate	32	11.03	3.23	1.88E-08	2.63E-06	2.52E-06
metabolic process		,	-,	_,	_,	_,
process	31	10,69	3,28	2,32E-08	3,15E-06	3,01E-06
GO:0009060~aerobic respiration	13	4,48	8,88	2,49E-08	3,30E-06	3,15E-06
GO:0044711~single-organism	51	17,59	2,30	3,90E-08	5,03E-06	4,81E-06
biosynthetic process						
oxidation of organic compounds	20	6,90	4,71	5,77E-08	7,26E-06	6,94E-06
GO:0019637~organophosphate	42	14,48	2,48	1,23E-07	1,48E-05	1,41E-05
GO:0071705~nitrogen compound		22.07	4.07	4 9 4 5 9 7	1 105 05	4 445 05
transport	64	22,07	1,97	1,24E-07	1,48E-05	1,41E-05
GO:0046907~intracellular transport	54	18,62	2,08	3,22E-07	3,76E-05	3,59E-05
GO:0072521~purine-containing compound metabolic process	27	9,31	3,20	3,70E-07	4,22E-05	4,04E-05
GO:0009205~purine ribonucleoside	20	6,90	4,15	4,00E-07	4,46E-05	4,26E-05
triphosphate metabolic process	E 4	19 60	2.06	4 405 07	4 775 05	4 666 06
	54	10,02	2,00	4,401-07	4,772-03	4,302-03
GO:0044699~single-organism process	247	85,17	1,15	4,47E-07	4,77E-05	4,56E-05
GO:0046034~ATP metabolic process	19	6,55	4,32	4,75E-07	4,88E-05	4,66E-05
GO:1901605~alpha-amino acid metabolic process	17	5,86	4,86	4,78E-07	4,88E-05	4,66E-05
GO:0009144~purine nucleoside	20	6 90	1 09	5 02F-07	5 03E-05	4 80E-05
triphosphate metabolic process	20	0,90	4,05	5,021-07	5,052-05	4,002-05
GO:0009199~ribonucleoside triphosphate metabolic process	20	6,90	4,07	5,50E-07	5,39E-05	5,15E-05
GO:0009167~purine ribonucleoside	20	6 90	4.01	6 86F-07	6 / 8E-05	6 19F-05
monophosphate metabolic process	20	0,90	4,01	0,802-07	0,482-05	0,191-05
GO:0006810~transport	107	36,90	1,54	6,87E-07	6,48E-05	6,19E-05
monophosphate metabolic process	20	6,90	4,00	7,16E-07	6,60E-05	6,30E-05
GO:0071702~organic substance	70	24,14	1,81	7,27E-07	6,60E-05	6,30E-05
cransport	12	<u>4</u> 14	7 2 2	7 44F-07	6 63F-05	6 33F-05
GO:0065008~regulation of biological	12	- - , - -	7,52	,,++L 07	3,032.03	5,552 05
quality	97	33,45	1,59	8,27E-07	7,24E-05	6,92E-05
GO:0006734~NADH metabolic process	8	2,76	14,52	1,05E-06	9,03E-05	8,63E-05

GO.0009141*nucleoside triphosphate metabolic process 20 6,90 3,86 1,20E-06 9,94E-05 9,50E-05 GO.0015124**establishment of protein localization 109 37,59 1,51 1,25E-06 1,02E-04 9,74E-05 GO.000596**monosaccharide metabolic process 18 6,21 4,24 1,38E-06 1,08E-04 1,00E-04 1,02E-04 1,19E-04 1,00E-04 1,25E-04 1,19E-04 1,02E-04 1,25E-04 1,19E-04 1,25E-04 1,25E-0	GO:0015833~peptide transport	54	18,62	2,00	1,15E-06	9,68E-05	9,25E-05
GO:0012124**establishment of protein localization 109 37,59 1.51 1.25E-06 1.02E-04 9,74E-05 GO:0015184**establishment of protein localization 155 18,97 1.98 1,30E-06 1.00E-04 1.00E-04 GO:0001950**monosaccharide metabolic process 20 6.90 3,81 1,47E-06 1,14E-04 1,09E-04 GO:000151**monucleoide 20 6.90 3,81 1,47E-06 1,14E-04 1,99E-04 GO:000156**monucleoide 20 6.90 3,81 1,47E-06 1,12E-04 1,19E-04 GO:000160***proteone 115 5,17 5,05 1,80E-06 1,31E-04 1,73E-04 GO:000160**protein phosphate 25 8,62 3,06 2,48E-06 1,91E-04 1,83E-04 GO:000160**protein nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 GO:000165*protein nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,78E-04 2,78E-04 2,78E-04 2,78E-04 2,78E-	GO:0009141~nucleoside triphosphate metabolic process	20	6,90	3,86	1,20E-06	9,94E-05	9,50E-05
GO:0043184*establishment of protein localization 55 18,97 1,98 1,30E-06 1,09E-04 1,00E-04 GO:000596*monosaccharide metabolic process 20 6,90 3,81 1,47E-06 1,14E-04 1,09E-04 GO:000516*process 60 3,81 1,47E-06 1,14E-04 1,09E-04 GO:00066*glucose metabolic 15 5,17 5,05 1,80E-06 1,35E-04 1,29E-04 GO:00060*glucose metabolic 15 5,17 5,05 1,80E-06 1,35E-04 1,29E-04 GO:000150*prinbose process 6,62 3,06 2,48E-06 1,91E-04 1,83E-04 GO:000150*purine ribourcleotide 24 8,28 3,15 2,65E-06 1,91E-04 1,88E-04 GO:000132*nucleoside 20 6,90 3,65 2,77E-06 1,97E-04 1,88E-04 GO:0001312*nucleoside 20 6,90 3,65 2,78E-04 2,86E-04 2,78E-04 GO:0001318*hexose metabolic process 10 3,45 8,024 4,20E-06 </td <td>GO:0051234~establishment of localization</td> <td>109</td> <td>37,59</td> <td>1,51</td> <td>1,25E-06</td> <td>1,02E-04</td> <td>9,74E-05</td>	GO:0051234~establishment of localization	109	37,59	1,51	1,25E-06	1,02E-04	9,74E-05
G0:0005996*monosaccharide metabolic process 18 6,21 4,24 1,38E-06 1,09E-04 1,04E-04 G0:000916**** 20 6,90 3,81 1,47E-06 1,14E-04 1,09E-04 G0:000916**** 61 21,03 1,87 1,63E-06 1,25E-04 1,19E-04 G0:000506********************************	GO:0045184~establishment of protein localization	55	18,97	1,98	1,30E-06	1,05E-04	1,00E-04
G0:0009151*ribonucleoside monophosphate metabolic process 20 6,90 3,81 1,47E-06 1,14E-04 1,09E-04 G0:005164*restabilisment process 61 21,03 1,87 1,63E-06 1,25E-04 1,19E-04 G0:00060*glucose process metabolic process 13,862 1,96 2,14E-06 1,59E-04 1,25E-04 G0:000150*gruine metabolic process phosphate phosphate 25 8,62 3,06 2,48E-06 1,81E-04 1,73E-04 G0:000132*ruiceoside metabolic process 20 6,90 3,65 2,77E-06 1,97E-04 1,88E-04 G0:000132*ruiceoside metabolic process 16 5,52 4,40 4,03E-06 2,78E-04 2,66E-04 G0:000613*rpurine monophosphate metabolic process 16 5,52 4,40 4,03E-06 2,86E-04 2,73E-04 G0:0006148*rpigment biosynthetic process 10 3,45 8,02 4,26E-06 2,86E-04 2,73E-04 G0:000610*roxaloacetate metabolic process 11 3,79 6,90 4,45E-06 3,28E-04 3,32E-04 G0:0	GO:0005996~monosaccharide	18	6,21	4,24	1,38E-06	1,09E-04	1,04E-04
GO:0051649**establishment of 61 21,03 1,87 1,63E-06 1,25E-04 1,19E-04 GO:000606**glucose metabolic 15 5,17 5,05 1,80E-06 1,35E-04 1,29E-04 GO:002063**ibose phosphate 25 8,62 3,06 2,48E-06 1,81E-04 1,73E-04 GO:000912**nucleoside 24 8,28 3,15 2,65E-06 1,91E-04 1,88E-04 GO:000912**nucleoside 20 6,90 3,65 2,77E-06 1,97E-04 2,86E-04 GO:000163**purine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 GO:000163**purine nucleotide 24 8,28 3,07 3,98E-06 2,86E-04 2,73E-04 GO:0004614**pigment biosynthetic 9 3,10 9,55 4,25E-06 2,86E-04 2,81E-04 GO:0004614**pigment biosynthetic 9 3,10 9,55 4,52E-06 2,98E-04 2,81E-04 GO:0004614**pigment biosynthetic<	GO:0009161~ribonucleoside	20	6,90	3,81	1,47E-06	1,14E-04	1,09E-04
G0:0006006"glucose metabolic process 15 5,17 5,05 1,80E-06 1,35E-04 1,29E-04 G0:0019693"ribose phosphate metabolic process 25 8,62 3,06 2,48E-06 1,81E-04 1,73E-04 G0:000150"purine metabolic process 20 6,90 3,65 2,77E-06 1,91E-04 1,83E-04 G0:0005163"purine metabolic process 10 3,45 8,02 4,02E-06 2,86E-04 2,66E-04 G0:0005163"purine metabolic process 16 5,52 4,40 4,03E-06 2,78E-04 2,66E-04 G0:0005163"purine metabolic process 16 5,52 4,40 4,03E-06 2,78E-04 2,66E-04 G0:000562"cellular amino acid G0:00045148"pigment biosynthetic process 9 3,10 9,55 4,25E-06 2,86E-04 2,73E-04 G0:000107"coaloacetate metabolic process 1,172 38,31 5,08E-06 3,12E-04 2,98E-04 G0:00042402"ribonuclectide metabolic process 1,379 6,60 6,63E-06 4,11E-04 3,93E-04 G0:00042402"ribonuclectide metabolic process 1,375	GO:0051649~establishment of localization in cell	61	21,03	1,87	1,63E-06	1,25E-04	1,19E-04
GO:0042886*amide transport 54 18,62 1,96 2,14E-06 1,59E-04 1,52E-04 GO:0019693*ribose phosphate 25 8,62 3,06 2,48E-06 1,81E-04 1,73E-04 GO:000190*Durine riboucleotide 24 8,28 3,15 2,65E-06 1,91E-04 1,83E-04 GO:000510*Durine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 GO:000513*Durine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 GO:000513*Durine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 GO:000565*Cellular amino acid 10 3,45 8,02 4,20E-06 2,86E-04 2,73E-04 GO:00046148*rpigment biosynthetic 9 3,10 9,55 4,45E-06 2,95E-04 2,81E-04 GO:000510*rokacatetate metabolic 24 8,28 3,04 4,77E-06 3,12E-04 2,98E-04 G	GO:0006006~glucose metabolic process	15	5,17	5,05	1,80E-06	1,35E-04	1,29E-04
G0:0019693*ribose phosphate 25 8,62 3,06 2,48E-06 1,81E-04 1,73E-04 G0:000150*purine ribonucleotide 24 8,28 3,15 2,65E-06 1,91E-04 1,83E-04 G0:000150*purine nucleotide 20 6,90 3,65 2,77E-06 1,97E-04 1,88E-04 G0:0001513*purine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 G0:0006163*purine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 G0:0006163*pigment biosynthetic 9 3,10 9,55 4,25E-06 2,86E-04 2,73E-04 G0:0009259*ribonucleotide metabolic 24 8,28 3,04 4,77E-06 3,12E-04 2,98E-04 G0:0009259*ribonucleotide metabolic 24 8,28 3,04 4,77E-06 3,12E-04 3,32E-04 G0:000427*single-organism 23 7,93 3,312 5,30E-06 3,37E-04 3,22E-04 G0:001876*netabolic process <t< td=""><td>GO:0042886~amide transport</td><td>54</td><td>18,62</td><td>1,96</td><td>2,14E-06</td><td>1,59E-04</td><td>1,52E-04</td></t<>	GO:0042886~amide transport	54	18,62	1,96	2,14E-06	1,59E-04	1,52E-04
metabolic process 25 8,62 3,06 2,48±-06 1,81±-04 1,73±-04 GO:0009150*purine ribonucleotide 24 8,28 3,15 2,65±-06 1,91±-04 1,83±-04 GO:0009123*nucleoside 20 6,90 3,65 2,77±-06 1,97±-04 1,88±-04 GO:0009123*nucleoside 24 8,28 3,07 3,98±-06 2,78±-04 2,66±-04 GO:000513*purine nucleotide 24 8,28 3,07 3,98±-06 2,78±-04 2,66±-04 GO:000652*cellular amino acid 10 3,45 8,02 4,20±-06 2,86±-04 2,73±-04 GO:000652*cellular amino acid 11 3,79 6,90 4,45±-06 2,95±-04 2,81±-04 GO:000450*resonactate metabolic 5 1,72 38,31 5,08±-06 3,28±-04 3,13±-04 GO:0004273*single-organism 23 7,93 3,112 5,30±-06 3,31±-04 3,32±-04 GO:00042440*pigment metabolic process 11 3	GO:0019693~ribose phosphate		,	,	,	,	,
OBJOID 10 pume Instruction 24 8,28 3,15 2,65E-06 1,91E-04 1,83E-04 GO:0009123=rnucleoside 20 6,90 3,65 2,77E-06 1,97E-04 1,88E-04 GO:0006163=rpurine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 GO:0006163=rpurine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 GO:000613=rpurine nucleotide 10 3,45 8,02 4,20E-06 2,86E-04 2,73E-04 GO:000613=rpurine biosynthetic 9 3,10 9,55 4,25E-06 2,86E-04 2,73E-04 GO:000610=romanino acid 11 3,79 6,90 4,45E-06 2,95E-04 2,81E-04 GO:0004017=roxaloacetate metabolic 24 8,28 3,04 4,77E-06 3,12E-04 2,98E-04 GO:000417=roxaloacetate metabolic 24 8,28 3,04 4,77E-06 3,31E-04 3,31E-04 GO:00041723=rsingle-org	metabolic process	25	8,62	3,06	2,48E-06	1,81E-04	1,73E-04
G0:0009123*nucleoside monophosphate metabolic process 20 6,90 3,65 2,77E-06 1,97E-04 1,88E-04 G0:0006163*purine metabolic process 16 5,52 4,40 4,03E-06 2,78E-04 2,66E-04 G0:000652*cellular biosynthetic process 10 3,45 8,00 4,20E-06 2,86E-04 2,73E-04 G0:0046148*pigment biosynthetic process 9 3,10 9,55 4,25E-06 2,86E-04 2,73E-04 G0:0046148*pigment biosynthetic process 9 3,10 9,55 4,45E-06 2,95E-04 2,81E-04 G0:000450*ribonucleotide metabolic process 11 3,79 6,90 4,45E-06 3,28E-04 3,13E-04 G0:00047*roxaloacetate metabolic process 1,72 38,31 5,08E-06 3,28E-04 3,22E-04 G0:00195*gripenol-containing carbohydrate metabolic process 10 3,45 7,75 5,59E-06 3,31E-04 3,32E-04 G0:001395*gripenol-containing carbohydrate metabolic process 9 3,10 8,99 6,70E-06 4,11E-04 3,93E-04	metabolic process	24	8,28	3,15	2,65E-06	1,91E-04	1,83E-04
GO.0006163~purine nucleotide 24 8,28 3,07 3,98E-06 2,78E-04 2,66E-04 GO.001318~hexose metabolic process 16 5,52 4,40 4,03E-06 2,78E-04 2,66E-04 GO.0004638~represe 10 3,45 8,02 4,20E-06 2,86E-04 2,73E-04 GO.004148~rpigment biosynthetic 9 3,10 9,55 4,25E-06 2,86E-04 2,81E-04 GO.1004076~ralpha-amino acid 11 3,79 6,69 4,45E-06 2,95E-04 2,81E-04 GO.000259~ribonucleotide metabolic 24 8,28 3,04 4,77E-06 3,12E-04 2,98E-04 GO.000477~xaloacetate metabolic 5 1,72 38,31 5,08E-06 3,37E-04 3,22E-04 GO.0044723*single-organism 23 7,93 3,12 5,30E-06 3,51E-04 3,23E-04 GO.001957*phenol-containing 11 3,79 6,60 6,63E-06 4,11E-04 3,93E-04 GO.003064^rregulation of cellular pH 10 3,45	GO:0009123~nucleoside monophosphate metabolic process	20	6,90	3,65	2,77E-06	1,97E-04	1,88E-04
G0:0019318* hexose metabolic process 16 5,52 4,40 4,03E-06 2,78E-04 2,66E-04 G0:0008652*cellular amino acid biosynthetic process 10 3,45 8,02 4,20E-06 2,86E-04 2,73E-04 G0:0046148*pigment biosynthetic process 9 3,10 9,55 4,25E-06 2,86E-04 2,73E-04 G0:10901606*alpha-amino acid catabolic process 11 3,79 6,90 4,45E-06 2,95E-04 2,81E-04 G0:000259*ribonucleotide metabolic process 24 8,28 3,04 4,77E-06 3,12E-04 2,98E-04 G0:0004772*single-organism carbohydrate metabolic process 23 7,93 3,12 5,30E-06 3,37E-04 3,22E-04 G0:0018958*phenol-containing compound metabolic process 10 3,45 7,75 5,59E-06 3,51E-04 3,93E-04 G0:0018958*phenol-containing compound metabolic process 9 3,10 8,99 6,70E-06 4,11E-04 3,93E-04 G0:003061*regulation of cellular pH 10 3,45 7,150 7,3EE-06 4,48E-04 4,26E-04 <	GO:0006163~purine nucleotide metabolic process	24	8,28	3,07	3,98E-06	2,78E-04	2,66E-04
GO:0008652*cellular amino acid biosynthetic process 10 3,45 8,02 4,20E-06 2,86E-04 2,73E-04 GO:0046148*pigment biosynthetic process 9 3,10 9,55 4,25E-06 2,86E-04 2,73E-04 GO:002505*ribonucleotide metabolic process 11 3,79 6,90 4,45E-06 2,95E-04 2,81E-04 GO:0002505*ribonucleotide metabolic process 24 8,28 3,04 4,77E-06 3,12E-04 2,98E-04 GO:000477^oxaloacetate metabolic process 5 1,72 38,31 5,08E-06 3,28E-04 3,22E-04 GO:0044723*single-organism carbohydrate metabolic process 23 7,93 3,12 5,30E-06 3,37E-04 3,22E-04 GO:0018958*phenol-containing coreces 10 3,45 7,75 5,59E-06 3,51E-04 3,93E-04 GO:0018958*phenol-containing coreces 11 3,79 6,60 6,63E-06 4,11E-04 3,93E-04 GO:0006628*response to abiotic stimulus 39 13,45 2,19 7,50E-06 4,48E-04 4,28E-04 GO:1903532*positive regulatio	GO:0019318~hexose metabolic process	16	5,52	4,40	4,03E-06	2,78E-04	2,66E-04
Obsyminatic process O	GO:0008652~cellular amino acid	10	3,45	8,02	4,20E-06	2,86E-04	2,73E-04
process Image: Constraint of the second	GO:0046148~pigment biosynthetic	9	3,10	9,55	4,25E-06	2,86E-04	2,73E-04
11 3,79 6,90 4,45E-06 2,95E-04 2,81E-04 G0:0009259~ribonucleotide metabolic process 24 8,28 3,04 4,77E-06 3,12E-04 2,98E-04 G0:0006107~oxaloacetate metabolic process 5 1,72 38,31 5,08E-06 3,28E-04 3,13E-04 G0:0044723~single-organism carbohydrate metabolic process 23 7,93 3,12 5,30E-06 3,37E-04 3,22E-04 G0:0042440~pigment metabolic process 10 3,45 7,75 5,59E-06 3,37E-04 3,36E-04 G0:0012958~phenol-containing compound metabolic process 9 3,10 8,99 6,70E-06 4,11E-04 3,93E-04 G0:0030641~regulation of cellular pH 10 3,45 7,50 7,36E-06 4,41E-04 3,93E-04 G0:0030306~macromolecule localization 39 13,45 2,19 7,50E-06 4,48E-04 4,28E-04 G0:1903532~positive regulation of secretion by cell 74 25,52 1,65 8,04E-06 4,80E-04 4,50E-04 G0:1903530~regulation of secretion by cell 11	process GO:1901606~alpha-amino acid						
GO:0009259~ribonucleotide metabolic process 24 8,28 3,04 4,77E-06 3,12E-04 2,98E-04 GO:0006107~oxaloacetate metabolic process 5 1,72 38,31 5,08E-06 3,28E-04 3,13E-04 GO:0044723~single-organism carbohydrate metabolic process 23 7,93 3,12 5,30E-06 3,37E-04 3,22E-04 GO:0042440~pigment metabolic process 10 3,45 7,75 5,59E-06 3,51E-04 3,33E-04 GO:0018958~phenol-containing compound metabolic process 11 3,79 6,60 6,63E-06 4,11E-04 3,93E-04 GO:0019674~NAD metabolic process 9 3,10 8,99 6,70E-06 4,11E-04 3,93E-04 GO:0003024^~regulation of cellular pH 10 3,45 7,50 7,36E-06 4,48E-04 4,28E-04 GO:100303036~macromolecule 74 25,52 1,65 8,04E-06 4,59E-04 4,59E-04 GO:10030004~cellular monovalent inorganic cation homeostasis 11 3,79 6,43 8,35E-06 4,81E-04 4,60E-04 GO:1003530~regulation of	catabolic process	11	3,79	6,90	4,45E-06	2,95E-04	2,81E-04
G0:0006107~oxaloacetate metabolic process1,7238,315,08E-063,28E-043,13E-04G0:0044723~single-organism carbohydrate metabolic process237,933,125,30E-063,37E-043,22E-04G0:004440^rpigment metabolic process103,457,755,59E-063,51E-043,36E-04G0:0018958~phenol-containing compound metabolic process113,796,606,63E-064,11E-043,93E-04G0:0019674~NAD metabolic process93,108,996,70E-064,41E-043,93E-04G0:003061~regulation of cellular pH103,457,507,36E-064,45E-044,26E-04G0:0030306~macromolecule localization7425,521,658,04E-064,75E-044,59E-04G0:1903532~positive regulation of113,796,638,35E-064,80E-044,59E-04G0:030004~cellular monovalent iorganic cation homeostasis G0:1903530~regulation of secretion by cell258,622,839,60E-065,47E-045,23E-04G0:0051452~intracellular pH reduction cell82,7610,411,07E-056,00E-045,23E-04G0:0051452~intracellular pH reduction macroautophagy34,485,041,13E-056,26E-045,98E-04G0:001621~ADP metabolic process103,457,111,14E-056,26E-045,98E-04G0:000631~ADP metabolic process103,457,111,14E-056,26E-045,98E-04G0:0009083~branched-chain amino macroauto	GO:0009259~ribonucleotide metabolic process	24	8,28	3,04	4,77E-06	3,12E-04	2,98E-04
G0:0044723~single-organism carbohydrate metabolic process 23 7,93 3,12 5,30E-06 3,37E-04 3,22E-04 G0:0042440~pigment process metabolic process 10 3,45 7,75 5,59E-06 3,51E-04 3,36E-04 G0:0018958~phenol-containing compound metabolic process 11 3,79 6,60 6,63E-06 4,11E-04 3,93E-04 G0:0019674~NAD metabolic process 9 3,10 8,99 6,70E-06 4,11E-04 3,93E-04 G0:0030641~regulation of cellular pH 10 3,45 7,50 7,36E-06 4,45E-04 4,26E-04 G0:003036~macromolecule stimulus 74 25,52 1,65 8,04E-06 4,75E-04 4,54E-04 G0:1903532~positive regulation of secretion by cell 77 5,86 3,91 8,23E-06 4,80E-04 4,60E-04 G0:1903530~regulation of secretion by cell 25 8,62 2,83 9,60E-06 5,47E-04 5,23E-04 G0:00016247~regulation of secretion by cell 25 8,62 2,83 9,60E-06 5,47E-04 5,23E-04 G0:	GO:0006107~oxaloacetate metabolic process	5	1,72	38,31	5,08E-06	3,28E-04	3,13E-04
GO:0042440~pigment metabolic 10 3,45 7,75 5,59E-06 3,51E-04 3,36E-04 GO:0018958~phenol-containing compound metabolic process 11 3,79 6,60 6,63E-06 4,11E-04 3,93E-04 GO:0019674~NAD metabolic process 9 3,10 8,99 6,70E-06 4,11E-04 3,93E-04 GO:0030641~regulation of cellular pH 10 3,45 7,50 7,36E-06 4,45E-04 4,26E-04 GO:0030628~response to abiotic 39 13,45 2,19 7,50E-06 4,48E-04 4,28E-04 GO:0030306~macromolecule 74 25,52 1,65 8,04E-06 4,75E-04 4,54E-04 GO:0030004~cellular monovalent 11 3,79 6,43 8,35E-06 4,81E-04 4,60E-04 GO:0030004~cellular monovalent 11 3,79 6,43 8,35E-06 4,81E-04 4,60E-04 GO:0030004~cellular monovalent 11 3,79 6,43 8,35E-06 4,81E-04 4,50E-04 GO:0016241~regulation of secret	GO:0044723~single-organism carbohydrate metabolic process	23	7,93	3,12	5,30E-06	3,37E-04	3,22E-04
Bit State Bit State <t< td=""><td>GO:0042440~pigment metabolic</td><td>10</td><td>3,45</td><td>7,75</td><td>5,59E-06</td><td>3,51E-04</td><td>3,36E-04</td></t<>	GO:0042440~pigment metabolic	10	3,45	7,75	5,59E-06	3,51E-04	3,36E-04
GO:0019674~NAD metabolic process 9 3,10 8,99 6,70E-06 4,11E-04 3,93E-04 GO:0030641~regulation of cellular pH 10 3,45 7,50 7,36E-06 4,45E-04 4,26E-04 GO:0030642~response to abiotic stimulus 39 13,45 2,19 7,50E-06 4,48E-04 4,28E-04 GO:0033036~macromolecule localization 74 25,52 1,65 8,04E-06 4,75E-04 4,54E-04 GO:1903532~positive regulation of secretion by cell 11 5,86 3,91 8,23E-06 4,80E-04 4,59E-04 GO:0030004~cellular monovalent inorganic cation homeostasis 11 3,79 6,43 8,35E-06 4,81E-04 4,60E-04 GO:0051452~intracellular pH reduction 8 2,76 10,41 1,07E-05 6,00E-04 5,74E-04 5,98E-04 GO:0016241~regulation of secretion by cell 13 4,48 5,04 1,13E-05 6,26E-04 5,98E-04 GO:0016241~regulation of macroautophagy 13 4,48 5,04 1,13E-05 6,26E-04 5,98E-04 GO:00046031~A	GO:0018958~phenol-containing	11	3,79	6,60	6,63E-06	4,11E-04	3,93E-04
GO:0030641~regulation of cellular pH 10 3,45 7,50 7,36E-06 4,45E-04 4,26E-04 GO:009628~response to abiotic 39 13,45 2,19 7,50E-06 4,48E-04 4,28E-04 GO:0033036~macromolecule 74 25,52 1,65 8,04E-06 4,75E-04 4,54E-04 GO:1903532~positive regulation of secretion by cell 17 5,86 3,91 8,23E-06 4,81E-04 4,60E-04 GO:190353004~cellular monovalent inorganic cation homeostasis 11 3,79 6,43 8,35E-06 4,81E-04 4,60E-04 GO:1903530~regulation of secretion by cell 25 8,62 2,83 9,60E-06 5,47E-04 5,23E-04 GO:0051452~intracellular pH reduction 8 2,76 10,41 1,07E-05 6,00E-04 5,74E-04 GO:0046031~ADP metabolic process 10 3,45 7,11 1,14E-05 6,26E-04 5,98E-04 GO:0009083~branched-chain amino acid catabolic process 60 2,07 18,81 1,31E-05 7,13E-04 6,81E-04	GO:0019674~NAD metabolic process	9	3,10	8,99	6,70E-06	4,11E-04	3,93E-04
GO:0009628~response to abiotic 39 13,45 2,19 7,50E-06 4,48E-04 4,28E-04 GO:0033036~macromolecule localization 74 25,52 1,65 8,04E-06 4,75E-04 4,54E-04 GO:1903532~positive regulation of secretion by cell 71 5,86 3,91 8,23E-06 4,80E-04 4,59E-04 GO:19035004~cellular monovalent inorganic cation homeostasis 11 3,79 6,43 8,35E-06 4,81E-04 4,60E-04 GO:1903530~regulation of secretion by cell 25 8,62 2,83 9,60E-06 5,47E-04 5,23E-04 GO:0051452~intracellular pH reduction 8 2,76 10,41 1,07E-05 6,00E-04 5,74E-04 GO:0016241~regulation of secretion by cell 13 4,48 5,04 1,13E-05 6,26E-04 5,98E-04 GO:0046031~ADP metabolic process 10 3,45 7,11 1,14E-05 6,26E-04 5,98E-04 GO:0009083~branched-chain amino acid catabolic process 6 2,07 18,81 1,31E-05 7,13E-04 6,81E-04	GO:0030641~regulation of cellular pH	10	3.45	7.50	7.36E-06	4.45E-04	4.26E-04
Stimulus Constraint Constrain	GO:0009628~response to abiotic	39	13,45	2,19	7,50E-06	4,48E-04	4,28E-04
Iocalization Interface	GO:0033036~macromolecule	74	25,52	1,65	8,04E-06	4,75E-04	4,54E-04
secretion by cell Image: Constraint of the c	GO:1903532~positive regulation of	17	5,86	3,91	8,23E-06	4,80E-04	4,59E-04
inorganic cation homeostasis 11 3,79 0,43 8,351-00 4,611-04 4,001-04 GO:1903530~regulation of secretion by cell 25 8,62 2,83 9,60E-06 5,47E-04 5,23E-04 GO:0051452~intracellular pH reduction 8 2,76 10,41 1,07E-05 6,00E-04 5,74E-04 GO:0016241~regulation 01 13 4,48 5,04 1,13E-05 6,26E-04 5,98E-04 GO:0046031~ADP metabolic process 10 3,45 7,11 1,14E-05 6,26E-04 5,98E-04 GO:0009083~branched-chain amino acid catabolic process 6 2,07 18,81 1,31E-05 7,13E-04 6,81E-04	GO:0030004~cellular monovalent	11	2 70	6.42	8 25E 06	4 815 04	4 605 04
cell 25 8,62 2,83 9,60E-06 5,4/E-04 5,23E-04 GO:0051452~intracellular pH reduction 8 2,76 10,41 1,07E-05 6,00E-04 5,74E-04 GO:0016241~regulation of 13 4,48 5,04 1,13E-05 6,26E-04 5,98E-04 GO:0046031~ADP metabolic process 10 3,45 7,11 1,14E-05 6,26E-04 5,98E-04 GO:0009083~branched-chain amino 6 2,07 18,81 1,31E-05 7,13E-04 6,81E-04	inorganic cation homeostasis GO:1903530~regulation of secretion by		5,79	0,43	8,552-00	4,812-04	4,002-04
GO:0051452~intracellular pH reduction 8 2,76 10,41 1,07E-05 6,00E-04 5,74E-04 GO:0016241~regulation of 13 4,48 5,04 1,13E-05 6,26E-04 5,98E-04 GO:0046031~ADP metabolic process 10 3,45 7,11 1,14E-05 6,26E-04 5,98E-04 GO:0009083~branched-chain amino 6 2,07 18,81 1,31E-05 7,13E-04 6,81E-04	cell	25	8,62	2,83	9,60E-06	5,47E-04	5,23E-04
GO:0016241~regulation of 13 4,48 5,04 1,13E-05 6,26E-04 5,98E-04 GO:0046031~ADP metabolic process 10 3,45 7,11 1,14E-05 6,26E-04 5,98E-04 GO:0009083~branched-chain amino 6 2,07 18,81 1,31E-05 7,13E-04 6,81E-04	GO:0051452~intracellular pH reduction	8	2,76	10,41	1,07E-05	6,00E-04	5,74E-04
GO:0046031~ADP metabolic process 10 3,45 7,11 1,14E-05 6,26E-04 5,98E-04 GO:0009083~branched-chain amino acid catabolic process 6 2,07 18,81 1,31E-05 7,13E-04 6,81E-04	GO:0016241~regulation of macroautophagy	13	4,48	5,04	1,13E-05	6,26E-04	5,98E-04
GO:0009083~branched-chain amino 6 2,07 18,81 1,31E-05 7,13E-04 6,81E-04	GO:0046031~ADP metabolic process	10	3,45	7,11	1,14E-05	6,26E-04	5,98E-04
	GO:0009083~branched-chain amino acid catabolic process	6	2,07	18,81	1,31E-05	7,13E-04	6,81E-04

GO:0045851~pH reduction	8	2,76	10,03	1,37E-05	7,37E-04	7,05E-04
GO:0006885~regulation of pH	10	3,45	6,83	1,58E-05	8,42E-04	8,05E-04
GO:0042438~melanin biosynthetic process	6	2,07	17,99	1,65E-05	8,71E-04	8,32E-04
GO:0006165~nucleoside diphosphate phosphorylation	10	3,45	6,76	1,71E-05	8,92E-04	8,53E-04
GO:0044724~single-organism carbohydrate catabolic process	12	4,14	5,27	1,83E-05	9,43E-04	9,01E-04
GO:0051046~regulation of secretion	26	8,97	2,64	1,90E-05	9,71E-04	9,28E-04
GO:1901698~response to nitrogen compound	36	12,41	2,19	1,96E-05	9,90E-04	9,46E-04
GO:0006582~melanin metabolic process	6	2,07	17,24	2,06E-05	1,03E-03	9,86E-04
GO:0072329~monocarboxylic acid catabolic process	11	3,79	5,79	2,10E-05	1,04E-03	9,92E-04
GO:0046939~nucleotide phosphorylation	10	3,45	6,57	2,16E-05	1,06E-03	1,01E-03
GO:0008104~protein localization	65	22,41	1,68	2,19E-05	1,06E-03	1,02E-03
GO:0006793~phosphorus metabolic process	77	26,55	1,58	2,36E-05	1,13E-03	1,08E-03
GO:0071840~cellular component organization or biogenesis	138	47,59	1,33	2,41E-05	1,14E-03	1,09E-03
GO:0044283~small molecule biosynthetic process	23	7,93	2,81	2,60E-05	1,23E-03	1,17E-03
GO:0043474~pigment metabolic process involved in pigmentation	4	1,38	55,17	2,92E-05	1,36E-03	1,30E-03
GO:0006796~phosphate-containing compound metabolic process	75	25,86	1,59	3,01E-05	1,38E-03	1,32E-03
GO:0008152~metabolic process	218	75,17	1,17	3,02E-05	1,38E-03	1,32E-03
GO:0044550~secondary metabolite	6	2,07	15,91	3,12E-05	1,40E-03	1,33E-03
GO:0009135~purine nucleoside diphosphate metabolic process	10	3,45	6,27	3,14E-05	1,40E-03	1,33E-03
GO:0009179~purine ribonucleoside diphosphate metabolic process	10	3,45	6,27	3,14E-05	1,40E-03	1,33E-03
GO:0006096~glycolytic process	9	3,10	7,30	3,16E-05	1,40E-03	1,33E-03
GO:0044765~single-organism transport	71	24.48	1.61	3.19E-05	1.40E-03	1.34E-03
GO:0009306~protein secretion	18	6.21	3 32	3 39F-05	1 47F-03	1 40F-03
GO:0051453~regulation of intracellular	9	3,10	7,22	3,44E-05	1,47E-03	1,40E-03
μΠ	0	2 10	7 22	2 445 05	1 475 02	1 405 02
GO:1002578~cinglo organism	9	5,10	1,22	5,44E-05	1,472-05	1,402-05
localization	74	25,52	1,59	3,52E-05	1,49E-03	1,42E-03
GO:0022406~membrane docking	9	3,10	7,13	3,74E-05	1,56E-03	1,49E-03
GO:0033059~cellular pigmentation	8	2,76	8,62	3,75E-05	1,56E-03	1,49E-03
GO:0051047~positive regulation of secretion	17	5,86	3,45	3,82E-05	1,57E-03	1,50E-03
GO:0031329~regulation of cellular catabolic process	27	9,31	2,47	4,05E-05	1,65E-03	1,58E-03
GO:0009081~branched-chain amino acid metabolic process	6	2,07	14,78	4,55E-05	1,84E-03	1,76E-03
GO:1901700~response to oxygen- containing compound	48	16,55	1,84	4,89E-05	1,97E-03	1,88E-03
GO:0046189~phenol-containing compound biosynthetic process	7	2,41	10,27	5,63E-05	2,24E-03	2,15E-03
GO:0016052~carbohydrate catabolic process	12	4,14	4,65	5,81E-05	2,29E-03	2,19E-03

GO:0009185~ribonucleoside	10	3.45	5.79	5.84F-05	2.29F-03	2.19F-03
diphosphate metabolic process		5,15	5,75	3,812 03	2,232 00	2,132 00
GO:0016050~vesicle organization	17	5,86	3,32	5,97E-05	2,32E-03	2,22E-03
GO:0048066~developmental pigmentation	7	2,41	10,06	6,36E-05	2,45E-03	2,35E-03
GO:0051641~cellular localization	70	24,14	1,59	6,47E-05	2,48E-03	2,37E-03
GO:0016043~cellular component					0 = 1 = 00	
organization	133	45,86	1,32	6,69E-05	2,54E-03	2,43E-03
GO:0015992~proton transport	13	4,48	4,15	7,57E-05	2,83E-03	2,71E-03
GO:0006818~hydrogen transport	13	4,48	4,15	7,57E-05	2,83E-03	2,71E-03
GO:0006635~fatty acid beta-oxidation	8	2,76	7,66	8,06E-05	2,99E-03	2,86E-03
GO:0051179~localization	128	44.14	1.32	8.91E-05	3.28E-03	3.14E-03
GO:0010243~response to		,		-,	-)	-,
organonitrogen compound	31	10,69	2,17	9,67E-05	3,54E-03	3,38E-03
GO:0044237~cellular metabolic	205	70.69	1 17	9 80F-05	3 56E-03	3 40E-03
process	205	70,09	1,17	9,80L-03	3,302-03	3,40L-03
GO:0032880~regulation of protein localization	30	10,34	2,20	1,02E-04	3,68E-03	3,51E-03
GO:0007035~vacuolar acidification	6	2,07	12,54	1,04E-04	3,71E-03	3,54E-03
GO:0006103~2-oxoglutarate metabolic	-	1 70	10.15	1 115 04	2 055 02	2 705 02
process	5	1,72	19,15	1,112-04	3,95E-03	3,78E-03
GO:0051650~establishment of vesicle localization	16	5,52	3,30	1,12E-04	3,96E-03	3,79E-03
GO:1901607~alpha-amino acid biosynthetic process	8	2,76	7,26	1,14E-04	3,98E-03	3,81E-03
GO:0002181~cvtoplasmic translation	11	3.79	4.74	1.15E-04	3.98E-03	3.81E-03
GO:0051049~regulation of transport	49	16.90	, 1.76	1 17F-04	4 03F-03	3 85F-03
GO:0070887~cellular response to		10,50	1,70	1,172 04	4,002.00	3,032 03
chemical stimulus	71	24,48	1,55	1,20E-04	4,09E-03	3,91E-03
GO:1901615~organic hydroxy	21	7,24	2,69	1,20E-04	4,09E-03	3,91E-03
GO:0042592~homeostatic process	50	17,24	1,74	1,22E-04	4,13E-03	3,95E-03
GO:0051222~positive regulation of		,	,	,	,	,
protein transport	16	5,52	3,25	1,32E-04	4,43E-03	4,24E-03
GO:0032940~secretion by cell	28	9,66	2,25	1,35E-04	4,49E-03	4,29E-03
GO:0055067~monovalent inorganic cation homeostasis	11	3,79	4,60	1,47E-04	4,88E-03	4,67E-03
GO:0051648~vesicle localization	16	5.52	3.20	1.60E-04	5.26E-03	5.03E-03
GO:0009062~fatty acid catabolic		-,	-,	_,	-,	-,
process	9	3,10	5,80	1,63E-04	5,32E-03	5,09E-03
GO:0046903~secretion	31	10,69	2,10	1,77E-04	5,74E-03	5,49E-03
GO:0009894~regulation of catabolic	29	10,00	2,17	1,80E-04	5,80E-03	5,54E-03
GO:0009132~nucleoside diphosphate						
metabolic process	10	3,45	5,00	1,82E-04	5,84E-03	5,58E-03
GO:0006996~organelle organization	89	30,69	1,43	1,86E-04	5,92E-03	5,66E-03
GO:0002790~peptide secretion	18	6,21	2,88	1,91E-04	6,03E-03	5,76E-03
GO:0051050~positive regulation of	30	10,34	2,12	1,92E-04	6,03E-03	5,76E-03
GO:00/2221~response to chemical	06	22 10	1 /0	1 075 04	6 165 02	5 805 02
	90	53,10	1,40	1,976-04	0,10E-03	5,09E-U3
GU:0051640~organelle localization	23	7,93	2,44	2,06E-04	6,37E-03	ь,08E-03
GO:0032438~melanosome organization	6	2,07	10,89	2,06E-04	6,37E-03	6,08E-03
GO:0097435~supramolecular fiber organization	27	9,31	2,22	2,15E-04	6,59E-03	6,29E-03

GO:0051656~establishment of	21	7,24	2,56	2,23E-04	6,80E-03	6,50E-03
GO:0048753~pigment granule	6	2.07	10.61	2.34E-04	7.08E-03	6.77E-03
organization GO:1901699~cellular response to	25	, , ,	2.20	2 205 04	7 105 02	, , , , , , , , , , , , , , , , , , , ,
nitrogen compound	25	8,02	2,30	2,39E-04	7,19E-03	0,87E-03
GO:1904951~positive regulation of establishment of protein localization	16	5,52	3,07	2,46E-04	7,35E-03	7,02E-03
GO:0070201~regulation of establishment of protein localization	22	7,59	2,45	2,81E-04	8,34E-03	7,97E-03
GO:1901135~carbohydrate derivative	35	12,07	1,92	3,22E-04	9,50E-03	9,08E-03
GO:1902224~ketone body metabolic	4	1,38	27,58	3,32E-04	9,75E-03	9,32E-03
GO:0050714~positive regulation of	10	3,45	4,57	3,57E-04	1,04E-02	9,95E-03
GO:0051223~regulation of protein						
transport	21	7,24	2,45	3,99E-04	1,16E-02	1,11E-02
GO:0014070~response to organic cyclic compound	31	10,69	2,00	4,07E-04	1,17E-02	1,12E-02
GO:0019748~secondary metabolic process	7	2,41	7,10	4,46E-04	1,28E-02	1,22E-02
GO:0007015~actin filament organization	18	6,21	2,67	4,57E-04	1,30E-02	1,24E-02
GO:0009108~coenzyme biosynthetic	9	3,10	4,85	5,51E-04	1,56E-02	1,49E-02
GO:1902600~hydrogen ion	11	3,79	3,89	5,62E-04	1,58E-02	1,51E-02
GO:0032879~regulation of localization	66	22 76	1 50	5 65F-04	1 58F-02	1 51F-02
GO:0071704~organic substance		,; 0	2,00	0,002 0 .	2,002 02	
metabolic process	207	71,38	1,14	5,77E-04	1,61E-02	1,54E-02
GO:0006631~fatty acid metabolic process	17	5,86	2,71	5,83E-04	1,62E-02	1,54E-02
GO:0006726~eye pigment biosynthetic process	3	1,03	68,96	6,18E-04	1,68E-02	1,61E-02
GO:0043324~pigment metabolic process involved in developmental pigmentation	3	1,03	68,96	6,18E-04	1,68E-02	1,61E-02
GO:0042441~eye pigment metabolic process	3	1,03	68,96	6,18E-04	1,68E-02	1,61E-02
GO:0021762~substantia nigra development	6	2,07	8,62	6,26E-04	1,70E-02	1,62E-02
GO:0006790~sulfur compound metabolic process	16	5,52	2,81	6,34E-04	1,71E-02	1,63E-02
GO:0006508~proteolysis	45	15,52	1,68	6,47E-04	1,73E-02	1,66E-02
GO:0009065~glutamine family amino	5	1,72	12,31	6,65E-04	1,77E-02	1,69E-02
GO:1901617~organic hydroxy	12	4,14	3,49	6,95E-04	1,84E-02	1,76E-02
GQ:0009987~cellular process	271	93 45	1 05	7 26F-04	1 91F-02	1 83F-02
GO:0051128~regulation of cellular	63	21.72	1,50	8.06F-04	2.11F-02	2.02F-02
component organization GO:0090087~regulation of peptide	21	7.24	2 31	8 17E-04	2 13E-02	2 04E-02
transport GO:1902589~single-organism organelle	21	15.00	1.65	0,170-04	2,132-02	2,040-02
organization	40	12,00	1,05	0,47E-U4	2,20E-02	2,10E-02
GO:0030036~actin cytoskeleton organization	23	7,93	2,19	8,91E-04	2,30E-02	2,20E-02
GO:0006085~acetyl-CoA biosynthetic process	4	1,38	19,70	9,66E-04	2,48E-02	2,37E-02

GO:0010506~regulation of autophagy	15	5,17	2,81	9,85E-04	2,51E-02	2,40E-02
GO:0019395~fatty acid oxidation	8	2,76	5,06	1,04E-03	2,63E-02	2,51E-02
GO:0050708~regulation of protein secretion	13	4,48	3,11	1,04E-03	2,63E-02	2,51E-02
GO:0002793~positive regulation of peptide secretion	10	3,45	3,92	1,07E-03	2,70E-02	2,58E-02
GO:0046365~monosaccharide catabolic process	6	2,07	7,66	1,08E-03	2,70E-02	2,58E-02
GO:0006886~intracellular protein transport	30	10,34	1,90	1,12E-03	2,78E-02	2,66E-02
GO:0009408~response to heat	8	2,76	4,97	1,15E-03	2,86E-02	2,73E-02
GO:0006536~glutamate metabolic process	5	1,72	10,45	1,26E-03	3,09E-02	2,96E-02
GO:0019725~cellular homeostasis	28	9,66	1,94	1,30E-03	3,18E-02	3,04E-02
GO:0034440~lipid oxidation	8	2,76	4,80	1,42E-03	3,46E-02	3,30E-02
GO:1901701~cellular response to oxygen-containing compound	32	11,03	1,81	1,52E-03	3,69E-02	3,53E-02
GO:0009057~macromolecule catabolic process	34	11,72	1,76	1,65E-03	3,99E-02	3,81E-02
GO:0044767~single-organism developmental process	120	41,38	1,26	1,76E-03	4,23E-02	4,05E-02
GO:1902580~single-organism cellular localization	29	10,00	1,87	1,79E-03	4,26E-02	4,07E-02
GO:0006873~cellular ion homeostasis	22	7,59	2,12	1,79E-03	4,26E-02	4,07E-02
GO:0048856~anatomical structure development	113	38,97	1,27	1,92E-03	4,56E-02	4,35E-02
GO:0050931~pigment cell differentiation	5	1,72	9,32	1,94E-03	4,56E-02	4,36E-02
GO:0010035~response to inorganic substance	20	6,90	2,20	2,01E-03	4,72E-02	4,51E-02
GO:0043649~dicarboxylic acid catabolic process	4	1,38	15,32	2,07E-03	4,84E-02	4,63E-02
GO:0044707~single-multicellular organism process	121	41,72	1,25	2,12E-03	4,92E-02	4,70E-02
GO:0016192~vesicle-mediated transport	39	13,45	1,66	2,14E-03	4,95E-02	4,73E-02

^b count: nº de genes/proteínas identificadas pertenecientes a cada término

^c %: % de genes/proteínas identificadas pertenecientes a cada término respecto al total incluido en el término

^d fold enrichment: ratio de enriquecimiento de cada término

^e p value: valor p (o nivel de significación) obtenido para cada término

^f Benjamini: valor p tras aplicar la corrección de Benjamini obtenido para cada término

ANEXO 7. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanoma metastásico

Tabla 34. Procesos biológicos significativamente enriquecidos en fracciones de EV purificadas de melanoma metastásico. Se muestran todos los términos GO enriquecidos de manera significativa (p valor tras corrección de Benjamini < 0,05) en base a las proteínas identificadas en el análisis proteómico por LC-MS/MS a partir de las muestras de EV purificadas de melanoma metastásico (COLO-800 y A2058). Análisis de GO realizado con la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_BP_ALL), valores umbrales preestablecidos Count: 2 y EASE: 0.1. Los genes pertenecientes a cada término no se han incluido en la tabla debido a su gran extensión.

termª	count ^b	% c	fold enrichment ^d	p value ^e	Benjamini ^f	FDR ^g
GO:0030155~regulation of cell adhesion	18	22,50	5,14	4,15E-08	1,28E-04	1,21E-04
GO:0007155~cell adhesion	23	28,75	3,55	1,79E-07	1,98E-04	1,88E-04
GO:0022610~biological adhesion	23	28,75	3,53	1,93E-07	1,98E-04	1,88E-04
GO:0008283~cell proliferation	26	32,50	3,06	3,06E-07	2,35E-04	2,23E-04
GO:0009888~tissue development	25	31,25	2,96	1,13E-06	6,94E-04	6,58E-04
GO:0034109~homotypic cell-cell adhesion	7	8,75	17,64	2,64E-06	1,28E-03	1,22E-03
GO:0008284~positive regulation of cell proliferation	17	21,25	3,99	3,32E-06	1,28E-03	1,22E-03
GO:0009653~anatomical structure morphogenesis	29	36,25	2,47	3,40E-06	1,28E-03	1,22E-03
GO:0030334~regulation of cell migration	17	21,25	3,95	3,75E-06	1,28E-03	1,22E-03
GO:0030335~positive regulation of cell migration	13	16,25	5,34	4,46E-06	1,37E-03	1,30E-03
GO:2000147~positive regulation of cell motility	13	16,25	5,10	7,11E-06	1,71E-03	1,63E-03
GO:0070527~platelet aggregation	6	7,50	21,89	7,50E-06	1,71E-03	1,63E-03
GO:2000145~regulation of cell motility	17	21,25	3,73	7,95E-06	1,71E-03	1,63E-03
GO:0098602~single organism cell adhesion	14	17,50	4,57	8,72E-06	1,71E-03	1,63E-03
GO:0048468~cell development	25	31,25	2,63	9,01E-06	1,71E-03	1,63E-03
GO:0000904~cell morphogenesis involved in differentiation	14	17,50	4,54	9,37E-06	1,71E-03	1,63E-03
GO:0051272~positive regulation of cellular component movement	13	16,25	4,96	9,47E-06	1,71E-03	1,63E-03
GO:0040017~positive regulation of locomotion	13	16,25	4,87	1,14E-05	1,94E-03	1,84E-03
GO:0048869~cellular developmental process	37	46,25	1,97	1,20E-05	1,94E-03	1,84E-03
GO:0009611~response to wounding	13	16,25	4,80	1,31E-05	2,01E-03	1,91E-03
GO:0016337~single organismal cell-cell adhesion	13	16,25	4,76	1,41E-05	2,06E-03	1,96E-03
GO:0000902~cell morphogenesis	16	20,00	3,76	1,49E-05	2,08E-03	1,98E-03
GO:0040012~regulation of locomotion	17	21,25	3,48	1,85E-05	2,47E-03	2,34E-03
GO:0051270~regulation of cellular component movement	17	21,25	3,44	2,13E-05	2,73E-03	2,59E-03
GO:0044707~single-multicellular organism process	46	57,50	1,68	2,55E-05	3,11E-03	2,95E-03
GO:0051674~localization of cell	21	26,25	2,81	2,73E-05	3,11E-03	2,95E-03

GO:0048870~cell motility	21	26,25	2,81	2,73E-05	3,11E-03	2,95E-03
GO:0042127~regulation of cell proliferation	21	26,25	2,77	3,32E-05	3,65E-03	3,46E-03
GO:1901135~carbohydrate derivative metabolic process	17	21,25	3,30	3,53E-05	3,74E-03	3,55E-03
GO:0048856~anatomical structure	43	53,75	1,71	4,52E-05	4,38E-03	4,15E-03
GO:0042060~wound healing	11	13,75	5,16	4,56E-05	4,38E-03	4,15E-03
GO:0040011~locomotion	22	27.50	2.61	4.65E-05	4.38E-03	4.15E-03
GO:0032989~cellular component	16	20,00	3,41	4,75E-05	4,38E-03	4,15E-03
GO:0060560~developmental growth	8	10,00	8,25	4,84E-05	4,38E-03	4,15E-03
GO:0032502~developmental process	45	56,25	1,64	6,85E-05	6,02E-03	5,71E-03
GO:0001503~ossification	10	12.50	5.54	7.05E-05	6.02E-03	5.71E-03
GO:0016043~cellular component	46	57,50	1,61	7,86E-05	6,54E-03	6,20E-03
GO:0032879~regulation of localization	27	33.75	2.17	9.12E-05	7.38E-03	7.00E-03
GO:0030154~cell differentiation	34	42 50	, 1 89	9.60F-05	7 57F-03	7 18F-03
GO:0090066~regulation of anatomical		12,50	1,00	5,002.05	7,572.00	7,102 00
structure size	11	13,75	4,68	1,03E-04	7,95E-03	7,54E-03
developmental process	44	55,00	1,63	1,11E-04	8,33E-03	7,91E-03
GO:0031589~cell-substrate adhesion	9	11,25	5,79	1,48E-04	1,08E-02	1,02E-02
GO:0016477~cell migration	18	22,50	2,79	1,53E-04	1,09E-02	1,04E-02
GO:0071840~cellular component organization or biogenesis	46	57,50	1,57	1,68E-04	1,17E-02	1,11E-02
GO:0098609~cell-cell adhesion	14	17,50	3,40	1,82E-04	1,23E-02	1,17E-02
GO:0048666~neuron development	15	18,75	3,19	1,84E-04	1,23E-02	1,17E-02
GO:0030168~platelet activation	6	7,50	11,19	1,89E-04	1,24E-02	1,17E-02
GO:0061564~axon development	10	12,50	4,83	1,99E-04	1,27E-02	1,21E-02
GO:0006928~movement of cell or subcellular component	22	27,50	2,36	2,07E-04	1,30E-02	1,23E-02
GO:1901137~carbohydrate derivative biosynthetic process	12	15,00	3,86	2,30E-04	1,41E-02	1,34E-02
GO:0050878~regulation of body fluid levels	9	11,25	5,36	2,47E-04	1,49E-02	1,41E-02
GO:0006935~chemotaxis	11	13,75	4,19	2,53E-04	1,49E-02	1,42E-02
GO:0042330~taxis	11	13,75	4,16	2,66E-04	1,54E-02	1,46E-02
GO:0035295~tube development	11	13,75	4,13	2,82E-04	1,61E-02	1,53E-02
GO:0048729~tissue morphogenesis	11	13,75	4,12	2,89E-04	1,61E-02	1,53E-02
GO:0030198~extracellular matrix organization	8	10,00	6,17	2,93E-04	1,61E-02	1,53E-02
GO:0043062~extracellular structure organization	8	10,00	6,15	2,99E-04	1,61E-02	1,53E-02
GO:0002009~morphogenesis of an epithelium	10	12,50	4,53	3,22E-04	1,68E-02	1,60E-02
GO:0050896~response to stimulus	55	68,75	1,41	3,28E-04	1,68E-02	1,60E-02
GO:0007596~blood coagulation	7	8,75	7,47	3,29E-04	1,68E-02	1,60E-02
GO:0071310~cellular response to organic substance	23	28,75	2,20	3,64E-04	1,84E-02	1,74E-02
GO:0060429~epithelium development	15	18,75	2,97	3,86E-04	1,87E-02	1,77E-02
GO:0048522~positive regulation of cellular process	40	50,00	1,63	3,88E-04	1,87E-02	1,77E-02
			0	()		

GO:0007599~hemostasis	7	8,75	7,22	3,95E-04	1,87E-02	1,77E-02
GO:0009100~glycoprotein metabolic process	9	11,25	4,99	4,03E-04	1,87E-02	1,77E-02
GO:0050817~coagulation	7	8,75	7,19	4,03E-04	1,87E-02	1,77E-02
GO:0021675~nerve development	5	6,25	14,21	4,07E-04	1,87E-02	1,77E-02
GO:0070887~cellular response to chemical stimulus	26	32,50	2,01	4,74E-04	2,14E-02	2,03E-02
GO:0007409~axonogenesis	9	11,25	4,86	4,81E-04	2,14E-02	2,03E-02
GO:0031175~neuron projection	12	46.25	2.20	4 005 04	2 455 02	2.045.02
development	13	16,25	3,28	4,90E-04	2,15E-02	2,04E-02
GO:0030030~cell projection organization	17	21,25	2,60	5,57E-04	2,41E-02	2,29E-02
GO:0014033~neural crest cell differentiation	5	6,25	12,73	6,18E-04	2,64E-02	2,50E-02
GO:0009719~response to endogenous stimulus	18	22,50	2,45	6,96E-04	2,91E-02	2,76E-02
GO:0006486~protein glycosylation	7	8,75	6,46	7,10E-04	2,91E-02	2,76E-02
GO:0043413~macromolecule	7	8 75	6.46	7 10F-04	2 01 E-02	2 76E-02
glycosylation	,	6,75	0,40	7,101-04	2,911-02	2,701-02
GO:0006950~response to stress	31	38,75	1,77	7,94E-04	3,21E-02	3,05E-02
GO:0001667~ameboidal-type cell migration	9	11,25	4,49	8,04E-04	3,21E-02	3,05E-02
GO:0051128~regulation of cellular component organization	24	30,00	2,02	8,24E-04	3,24E-02	3,07E-02
GO:0048518~positive regulation of biological process	42	52,50	1,54	8,32E-04	3,24E-02	3,07E-02
GO:0048731~system development	35	43,75	1,66	8,72E-04	3,35E-02	3,17E-02
GO:0045785~positive regulation of cell adhesion	9	11,25	4,43	8,81E-04	3,35E-02	3,17E-02
GO:0034446~substrate adhesion- dependent cell spreading	5	6,25	11,42	9,28E-04	3,48E-02	3,30E-02
GO:0048513~animal organ	28	35,00	1,84	9,83E-04	3,64E-02	3,45E-02
GO:0070085~glycosylation	7	8,75	6,02	1,02E-03	3,65E-02	3,47E-02
GQ:0008038~neuron recognition	4	5.00	19.95	, 1 02F-03	, 3 65E-02	, 3 47F-02
GO:0044723~single-organism	9	11,25	4,32	1,03E-03	3,65E-02	3,47E-02
GO:0061138~morphogenesis of a	6	7,50	7,72	1,03E-03	3,65E-02	3,47E-02
GO:0070848~response to growth factor	11	13 75	3 46	1 10F-03	3 86F-02	3 66F-02
GO:0048858~cell projection	10	12,50	3,80	1,13E-03	3,91E-02	3,71E-02
GO:0008361~regulation of cell size	6	7 50	7 / 8	1 19F-03	4 06E-02	3 85E-02
GO:0071495~cellular response to	15	18,75	2,64	1,22E-03	4,12E-02	3,91E-02
GO:0061387~regulation of extent of	5	6,25	10,44	1,29E-03	4,32E-02	4,10E-02
GO:0071822~protein complex subunit	15	18,75	2,62	1,31E-03	4,34E-02	4,11E-02
GO:0032501~multicellular organismal	47	58,75	1,44	1,33E-03	4,34E-02	4,11E-02
CO:00220002coll part morphogonasia	10	10 50	2.60	1 275 02		A 31E 03
	10	12,50	3,09	1,576-03	4,44E-02	4,210-02
	11	13,75	3,34	1,44E-03	4,61E-02	4,37E-02
growth factor	5	6,25	9,94	1,56E-03	4,90E-02	4,65E-02
GO:0001763~morphogenesis of a branching structure	6	7,50	7,02	1,58E-03	4,90E-02	4,65E-02

GO:0032101~regulation of response to	12	15.00	2.06	1 595 02	4 00E 02	4 655 02
external stimulus	12	15,00	3,00	1,381-03	4,901-02	4,031-02

^b count: nº de genes/proteínas identificadas pertenecientes a cada término

^c %: % de genes/proteínas identificadas pertenecientes a cada término respecto al total incluido en el término

^d fold enrichment: ratio de enriquecimiento de cada término

^e p value: valor p (o nivel de significación) obtenido para cada término

^f Benjamini: valor p tras aplicar la corrección de Benjamini obtenido para cada término

ANEXO 8. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 y 500 μ l de suero mediante UC diferencial

Tabla 35. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 y 500 μl de suero mediante UC diferencial. Se muestran todos los términos GO enriquecidos de manera significativa (p valor tras corrección de Benjamini < 0,05) en las proteínas comunes identificadas mediante LC/MS-MS partiendo de diferentes volúmenes de suero iniciales. Análisis de GO realizado con la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_BP_ALL), valores umbrales preestablecidos Count: 2 y EASE: 0.1. Los genes pertenecientes a cada término no se han incluido en la tabla debido a su gran extensión.

termª	count ^b	% °	fold enrichment ^d	p value ^e	Benjamini ^f	FDR ^g
GO:0072376~protein activation cascade	59	35,12	39,45	5,27E-79	1,55E-75	1,43E-75
GO:0006956~complement activation	53	31,55	40,01	8,11E-71	1,20E-67	1,10E-67
GO:0002250~adaptive immune response	80	47,62	12,00	8,65E-66	8,51E-63	7,81E-63
GO:0006955~immune response	109	64,88	6,28	1,57E-65	1,16E-62	1,06E-62
GO:0006959~humoral immune response	64	38,10	19,61	7,42E-65	4,38E-62	4,02E-62
GO:0006958~complement activation, classical pathway	44	26,19	40,54	1,95E-58	9,58E-56	8,79E-56
GO:0002455~humoral immune response mediated by circulating immunoglobulin	45	26,79	37,61	3,87E-58	1,63E-55	1,50E-55
GO:0002376~immune system process	116	69,05	4,47	3,31E-55	1,22E-52	1,12E-52
GO:0016064~immunoglobulin mediated immune response	46	27,38	22,81	1,49E-48	4,88E-46	4,48E-46
GO:0019724~B cell mediated immunity	46	27,38	22,52	2,74E-48	8,09E-46	7,42E-46
GO:0006952~defense response	88	52,38	5,49	7,48E-45	2,01E-42	1,84E-42
GO:0050776~regulation of immune response	65	38,69	7,69	6,99E-40	1,68E-37	1,54E-37
GO:0002252~immune effector process	64	38,10	7,89	7,39E-40	1,68E-37	1,54E-37
GO:0002449~lymphocyte mediated immunity	47	27,98	14,10	1,12E-39	2,35E-37	2,16E-37
GO:0002460~adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains	47	27,98	13,85	2,55E-39	5,01E-37	4,60E-37
GO:0002253~activation of immune response	53	31,55	10,82	3,43E-39	6,33E-37	5,81E-37
GO:0002443~leukocyte mediated immunity	49	29,17	11,77	9,96E-38	1,73E-35	1,59E-35
GO:0050778~positive regulation of immune response	57	33,93	8,53	8,16E-37	1,34E-34	1,23E-34
GO:0002682~regulation of immune system process	73	43,45	5,22	2,67E-34	4,15E-32	3,81E-32
GO:0006910~phagocytosis, recognition	28	16,67	30,62	1,14E-32	1,69E-30	1,55E-30
GO:0006950~response to stress	108	64,29	2,96	1,61E-32	2,27E-30	2,08E-30
GO:0006909~phagocytosis	39	23,21	13,66	4,82E-32	6,47E-30	5,94E-30
GO:0045087~innate immune response	58	34,52	6,67	8,10E-32	1,04E-29	9,54E-30
GO:0002684~positive regulation of immune system process	61	36,31	6,13	1,29E-31	1,58E-29	1,45E-29

GO.009024-plasma membrane 28 16,67 21,14 5,88-28 6,67E-26 6,12E-26 GO.0006897-endocytosis 49 29,17 7,13 1,02E-27 1,12E-25 1,03E-25 GO.0005247-membrane invagination 128 16,67 2,010.6 2,38E-26 2,27E-25 2,37E-25 GO.000277-defense response to 37 22,02 10.05 2,38E-28 3,27E-23 GO.0002377-immunoglobulin 28 16,67 15.88 4,00E-24 3,7E-22 5,2EE-22 GO.00092377-immunoglobulin 428 16,67 13.88 6,59E-23 5,2EE-22 5,6EE-23 GO.00092377-immunoglobulin 428 16,67 13.88 6,59E-23 5,2EE-21 4,8EE-23 GO.0009237-response to bacterium 464 27,78 6,014.8 5,0EE-23 5,2EE-21 4,8EE-23 GO.0009237-regonse to bacterium 464 3,40 5,0EE-23 5,2EE-21 4,8EE-23 GO.0000507-response to other 50 2,7 1,4E 3,0EE-23 5,2EE-21 4,8EE-20 <th>GO:0006911~phagocytosis, engulfment</th> <th>28</th> <th>16,67</th> <th>22,44</th> <th>1,06E-28</th> <th>1,26E-26</th> <th>1,15E-26</th>	GO:0006911~phagocytosis, engulfment	28	16,67	22,44	1,06E-28	1,26E-26	1,15E-26
GO.0006897*endocytosis 49 29,17 7,13 1,02E-27 1,12E-25 1,03E-25 GO.000324*membrane invagination 28 16,67 20,10 2,45E-27 2,58E-25 2,37E-25 GO.000324*Tenembrane invagination 137 22,02 10,05 2,33E-26 2,29E-24 2,10E-24 GO.00057*Tpositive regulation of B 27 16,07 1,38E-25 3,37E-22 3,27E-23 GO.0000617*response to bacterium 46 27,38 6,637 7,05E-24 6,12E-22 5,62E-22 GO.0000917*response to bacterium 46 27,38 6,37 7,05E-24 6,12E-22 5,62E-22 GO.0000937*response to bacterium 42 25,00 6,639 4,84E-23 4,08E-24 3,77E-21 GO.0000937*cell recognition 28 16,67 13,38 6,59E-23 5,26E-21 4,88E-21 GO.0000937*cell recognition 28 16,67 1,416 3,02E-23 2,34E-20 2,15E-20 GO.000037*cell recognition 28 16,67 1,438 6,59E-23 3,26E-18 <td>GO:0099024~plasma membrane invagination</td> <td>28</td> <td>16,67</td> <td>21,14</td> <td>5,88E-28</td> <td>6,67E-26</td> <td>6,12E-26</td>	GO:0099024~plasma membrane invagination	28	16,67	21,14	5,88E-28	6,67E-26	6,12E-26
G0.0010324*membrane invagination 28 16,67 20,10 2,45E-27 2,58E-25 2,37E-25 G0.0003095*response to stimulus 147 87,50 1,80 3,70E-27 3,76E-25 3,45E-25 G0.000327742**defense response to 37 22,02 10,56 2,33E-25 2,29E-24 2,10E-23 G0.0005837**positive regulation of B 27 16,07 18,16 3,86E-25 3,56E-23 3,27E-22 G0.0005917*response to bacterium 46 27,38 6.37 7,05E-24 6,12E-22 5,62E-22 6,62E-22 2,37E-20 1,02E-24 2,15E-20 1,02E-14 3,87E-12 3,87E-12 G0.0008647*regulation of B 28 16,67 14,40 3,02E-22 2,34E-20 2,15E-20 1,02E-18 3,61E-20 G0.00036647*regulation of molecular 71 16,07 14,10 3,02E-20 1,02E-18 3,51E-19 <tr< td=""><td>GO:0006897~endocytosis</td><td>49</td><td>29,17</td><td>7,13</td><td>1,02E-27</td><td>1,12E-25</td><td>1,03E-25</td></tr<>	GO:0006897~endocytosis	49	29,17	7,13	1,02E-27	1,12E-25	1,03E-25
G0.0050896^response to stimulus 147 87,50 1,80 3,76E-25 3,45E-25 G0.0042742*defense response to 37 22,02 10,56 2,33E-26 2,29E-24 2,10E-24 G0.0050853*E cell receptor signaling pathway 26 15,48 20,56 1,39E-25 1,32E-23 1,21E-23 G0.0005071*positive regulation of B 27 16,07 18,16 3,86E-25 3,56E-23 3,27E-22 G0.0002971*response to bacterium 46 27,38 6,37 7,05E-24 6,12E-22 5,62E-22 G0.000951*response to bacterium 46 27,38 6,37 7,05E-24 6,12E-22 5,62E-21 3,77E-21 G0.000952*cell recognition 28 16,67 13,88 6,59E-23 5,26E-21 4,88E-21 3,77E-21 G0.0005084*regulation of B cell 27 16,07 14,10 3,02E-22 2,34E-20 2,15E-20 G0.0005085*response to external 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 G0.0002526*response to othererosponse 50 29,76	GO:0010324~membrane invagination	28	16,67	20,10	2,45E-27	2,58E-25	2,37E-25
GO.0042742*defense response to bacterium 37 22,02 10,56 2,33E-26 2,29E-24 2,10E-24 GO.00508578* Cell receptor signaling pathway 26 15,48 20,56 1,39E-25 1,32E-23 1,21E-23 GO.0050857* positive regulation of B 27 16,07 18,16 3,86E-25 3,56E-23 3,27E-23 GO.0009517* positive regulation of A 27,38 6,37 7,05E-24 6,12E-22 5,56E-23 GO.0009517* response to bacterium 46 27,38 6,37 7,05E-24 6,12E-22 5,56E-23 GO.0009517* response to bacterium 42 25,00 6,93 4,84E-23 4,08E-21 3,77E-21 GO.000937*cell recognition 28 16,67 13,88 6,59E-23 5,26E-21 4,88E-21 GO.0009307*cell recognition 28 16,67 14,10 3,02E-22 2,34E-20 8,61E-20 GO.0003037*cell recognition 28 16,67 14,81 3,78E-20 8,61E-20 GO.00030400*production of molecular 30 17,86 10,48 4,04E-21	GO:0050896~response to stimulus	147	87,50	1,80	3,70E-27	3,76E-25	3,45E-25
GO.0006863*B cell receptor signaling pathway 26 15,48 20,56 1,39E-25 1,2E-23 1,2E-23 GO.000687*positive regulation of B 27 16,07 18,16 3,86E-25 3,5EE-23 3,27E-23 GO.000617*response to bacterium 46 27,38 6,37 7,05E-24 6,12E-22 5,62E-22 GO.000837*cell receptor 42 25.00 6,93 4,84E-23 4,08E-21 3,77E-21 GO.000837*cell receptor 44 5 3,40 5,01E-23 4,11E-24 3,77E-21 GO.0008037*cell receptorin 28 16,67 13,88 6,59E-23 5,26E-22 6,0009605*response to external 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO.0009605*response to external 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO.0004240° production of molecular 30 17,86 10,48 4,04E-21 2,98E-19 2,74E-19 GO.0002440° production of molecular 50 29,76 4,73 1,57E-20 1,10E-18 1,0	GO:0042742~defense response to bacterium	37	22,02	10,56	2,33E-26	2,29E-24	2,10E-24
GO:0005871*positive regulation of B 27 16,07 18,16 3,86E-25 3,5EE-22 3,27E-23 GO:000237*rimmunoglobulin production 28 16,67 115,38 4,10E-24 3,67E-22 3,37E-22 GO:000237*rimmunoglobulin production 46 27,38 6,37 7,05E-24 6,12E-22 5,62E-22 GO:000834**Celfense response to other organism 42 25,00 6,33 4,84E-23 4,08E-21 3,77E-21 GO:000803**Cell recognition 28 16,67 113,88 6,59E-23 5,26E-20 2,15E-20 GO:0009605*response to external activation 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO:0002440*regulation of molecular mediator of immune response to external 50 29,76 4,75 1,42E-20 1,02E-18 9,35E-19 GO:000237*response to external 50 29,76 4,75 1,42E-20 1,02E-18 9,35E-19 GO:000237*response to external 50 29,76 4,73 1,57E-20 1,02E-18 9,35E-19 GO:00027*response to external	GO:0050853~B cell receptor signaling pathway	26	15,48	20,56	1,39E-25	1,32E-23	1,21E-23
G0::002377*immunoglobulin production 22 16,67 15,38 4,10E-24 3,67E-22 3,37E-22 G0::0009517*response to bacterium 446 27,38 6,577 7,05E-24 6,12E-22 5,62E-22 G0::0009542*response to bacterium 440 25,00 6,93 4,84E-23 4,08E-21 3,77E-21 G0::000837*cell recognition 28 16,67 13,38 6,59E-23 5,26E-21 4,33E-21 G0::0008037*cell recognition 28 16,67 13,38 6,59E-23 5,26E-21 4,33E-21 G0::0008037*cesponse to external 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 G0::0002407*production of molecular stimulus 75 44,64 3,17 1,24E-21 1,93E-19 1,01E-18 G0::0002407*production of molecular stimulus 75 29,76 4,73 1,57E-20 1,02E-18 9,35E-19 G0::0002420*production of molecular stimulus 75 29,76 4,73 1,57E-20 1,02E-18 1,01E-18 G0::0002768*immune response 29,76 4,73 <td>GO:0050871~positive regulation of B cell activation</td> <td>27</td> <td>16,07</td> <td>18,16</td> <td>3,86E-25</td> <td>3,56E-23</td> <td>3,27E-23</td>	GO:0050871~positive regulation of B cell activation	27	16,07	18,16	3,86E-25	3,56E-23	3,27E-23
GO:0009617"response to bacterium 46 27,38 6,37 7,05E-24 6,12E-22 5,62E-22 GO:0038542"defense response to 422 25,00 6,93 4,84E-23 4,08E-21 3,74E-21 GO:0008534"cefense response to 74 44,05 3,40 5,01E-23 4,11E-21 3,77E-21 GO:000803"cefereopation 28 16,67 13,88 6,59E-23 5,6EE-21 4,83E-21 GO:000805"response to external activation 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO:0002400"production of molecular memour exponse 75 44,64 3,17 1,24E-21 2,98E-19 2,74E-19 GO:0002400"production of molecular memour exponse 50 29,76 4,75 1,42E-20 1,02E-18 9,35E-19 GO:0002526"acute inflammatory 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO:0002276"memune response receptor signaling apthway 29 17,26 10,16 4,88E-20 3,20E-18 2,94E-18 GO:00020276"seponse to biotic	GO:0002377~immunoglobulin production	28	16,67	15,38	4,10E-24	3,67E-22	3,37E-22
GO:0098542"defense response to other organism 44 25,00 6,93 4,84E-23 4,08E-21 3,74E-21 GO:0048584"positive regulation of response to stimulus 74 44,05 3,40 5,01E-23 4,11E-21 3,77E-21 GO:0008037"cell recognition 28 16,67 13,88 6,59E-23 5,26E-21 4,83E-21 GO:0008067"regulation of B cell activation 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO:0002407"regulation of molecular mediator of immune response to other 75 44,64 3,17 1,24E-21 2,98E-19 2,74E-19 GO:0002407"response to other organism 75 29,76 4,73 1,57E-20 1,02E-18 9,35E-19 GO:0002526"acute inflammatory response 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO:0002768"immune response regulating cell surface receptor signaling pathway 23 17,86 9,62 4,36E-20 2,92E-18 2,68E-18 GO:0002768"immune response regulating cell surface receptor signaling aptimway 29,76 4,54 8,81E-20 5,56E-18 <	GO:0009617~response to bacterium	46	27,38	6,37	7,05E-24	6,12E-22	5,62E-22
GO:0048584*positive regulation of response to stimulus 74 44,05 3,40 5,01E-23 4,11E-21 3,77E-21 GO:0050864*regulation of B cell attivation 28 16.67 13,88 6,59E-23 2,34E-20 2,15E-20 GO:0002400*response to external 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO:0002400*production of molecular mediator of immune response 75 44,64 3,17 1,42E-20 1,02E-18 9,35E-19 GO:0002400*production of molecular of immune response 750 29,76 44,75 1,42E-20 1,02E-18 9,35E-19 GO:0002526*acute inflammatory response 20 1,310 18,00 2,65E-20 1,82E-18 1,67E-18 GO:0002526*acute inflammatory response receptor signaling pathway 20 1,7,6 9,62 4,36E-20 2,92E-18 2,68E-18 GO:0002526*acute inflammatory response receptor signaling pathway 20 1,7,26 1,016 4,88E-20 3,20E-18 2,94E-18 GO:0005210*response to biotic signaling pathway 50 29,76 1,454 <td>GO:0098542~defense response to other organism</td> <td>42</td> <td>25,00</td> <td>6,93</td> <td>4,84E-23</td> <td>4,08E-21</td> <td>3,74E-21</td>	GO:0098542~defense response to other organism	42	25,00	6,93	4,84E-23	4,08E-21	3,74E-21
GO.0008037~cell recognition 28 16,67 13,88 6,59E-23 5,26E-21 4,83E-21 GO.0050664~regulation of B cell activation T 16,07 14,10 3,02E-22 2,34E-20 2,15E-20 GO.0005065^rresponse to external stimulus T 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO.000240^rproduction of molecular mediator of immune response 30 17,86 10,48 4,04E-21 2,98E-19 2,74E-19 GO.0005207~response to other organism 50 29,76 4,75 1,42E-20 1,02E-18 9,35E-19 GO.0002526~acute inflammatory response-regulating cell surface receptor signaling pathway 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO.0002207*response to biotic signaling pathway S0 2,74E 10,16 4,88E-20 3,20E-18 2,68E-18 GO:0002429~immune response-regulation of hydrolase activity G20 2,97E 4,54 8,81E-20 5,65E-18 5,19E-18 GO:0005081^manue regulation of hydrolase activity G2 2,76 4,54 8,81E-20 5,65E-18	GO:0048584~positive regulation of response to stimulus	74	44,05	3,40	5,01E-23	4,11E-21	3,77E-21
GO.0050864~regulation of B cell 27 16,07 14,10 3,02E-22 2,34E-20 2,15E-20 GO.0005065~response to external stimulus 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO.0002440~production of molecular mediator of immune response 30 17,86 10,48 4,04E-21 2,98E-19 2,74E-19 GO.0002526~response to other organism 50 29,76 4,75 1,42E-20 1,02E-18 9,35E-19 GO.0002526~racute inflammatory response- regulating cell surface receptor signaling pathway 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO.0002429~immune response- regulating cell surface receptor signaling pathway 29 17,26 10,16 4,88E-20 3,20E-18 2,94E-18 GO.0002429~immune response- regulation of hydroles extivity 50 29,76 4,54 8,81E-20 5,65E-18 5,19E-18 GO.00050851~antigen receptor signaling pathway 29 17,26 10,16 4,88E-20 3,20E-18 2,94E-18 GO.00050851~antigen receptor 26 15,48 11,06 8,14E-19	GO:0008037~cell recognition	28	16,67	13,88	6,59E-23	5,26E-21	4,83E-21
GO.0009605"response to external stimulus 75 44,64 3,17 1,24E-21 9,38E-20 8,61E-20 GO.0002440"production of molecular mediator of immune response 30 17,86 10,48 4,04E-21 2,98E-19 2,74E-19 GO.00051707"response to other organism 50 29,76 4,75 1,42E-20 1,02E-18 9,35E-19 GO.0002526"acute inflammatory response 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO.0002526"acute inflammatory response 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO.0002768"immune response-regulating cell surface receptor signaling pathway 30 17,86 9,62 4,36E-20 2,92E-18 2,68E-18 GO.0002768"immune response-regulating cell surface receptor signaling pathway 30 17,86 9,65 8,01E-19 5,01E-17 4,59E-17 GO.00051346"negative regulation of phydrolase activity 60 29,76 4,54 8,81E-20 5,01E-17 4,59E-17 GO:00051346"negative regulation of proteolysis 50 29,76 4,54 8,31E-19 5	GO:0050864~regulation of B cell activation	27	16,07	14,10	3,02E-22	2,34E-20	2,15E-20
GO.0002440°-production of molecular mediator of immune response 30 17,86 10,48 4,04E-21 2,98E-19 2,74E-19 GO.0051707~response to other organism 50 29,76 4,75 1,42E-20 1,02E-18 9,35E-19 GO:005226~acute inflammatory response 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO:0002768~immune response- regulating cell surface receptor signaling pathway 30 17,86 9,62 4,36E-20 2,92E-18 2,68E-18 GO:0002429°-immune response- regulating cell surface receptor signaling pathway 29 17,26 10,16 4,88E-20 3,20E-18 2,94E-18 GO:0002429°-immune response- regulating cell surface receptor signaling pathway 29 17,26 10,16 4,88E-20 3,20E-18 2,94E-18 GO:000503146°-negative regulation of bydrolase activity 30 17,86 8,65 8,01E-19 5,01E-17 4,59E-17 GO:0050851°-antigen receptor- mediated signaling pathway 26 15,48 11,06 8,14E-19 5,01E-17 4,59E-17 GO:0010466°-negative regulation of porteolysis 25 14,88	GO:0009605~response to external stimulus	75	44,64	3,17	1,24E-21	9,38E-20	8,61E-20
GO:0051707*response to other 50 29,76 4,75 1,42E-20 1,02E-18 9,35E-19 GO:0043207*response to sternal 50 29,76 4,73 1,57E-20 1,10E-18 1,01E-18 GO:000526*acute inflammatory 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO:0002768** response 30 17,86 9,62 4,36E-20 2,92E-18 2,68E-18 GO:0002429** munue response ativating cell surface receptor signaling 29 17,26 10,16 4,88E-20 3,20E-18 2,94E-18 GO:00050851** munue response 50 29,76 4,54 8,81E-20 5,01E-17 4,59E-17 GO:00050851** receptor 30 17,86 8,65 8,01E-19 5,01E-17 4,59E-17 GO:00050851** receptor 30 17,86 8,65 8,01E-19 5,01E-17 4,59E-17 GO:0004266** regulation of 25 14,88 10,96 <td>GO:0002440~production of molecular mediator of immune response</td> <td>30</td> <td>17,86</td> <td>10,48</td> <td>4,04E-21</td> <td>2,98E-19</td> <td>2,74E-19</td>	GO:0002440~production of molecular mediator of immune response	30	17,86	10,48	4,04E-21	2,98E-19	2,74E-19
Operation Operation <t< td=""><td>GO:0051707~response to other</td><td>50</td><td>29,76</td><td>4,75</td><td>1,42E-20</td><td>1,02E-18</td><td>9,35E-19</td></t<>	GO:0051707~response to other	50	29,76	4,75	1,42E-20	1,02E-18	9,35E-19
GO:0002526*acute inflammatory 22 13,10 18,00 2,65E-20 1,82E-18 1,67E-18 GO:0002768*immune response- regulating cell surface receptor 30 17,86 9,62 4,36E-20 2,92E-18 2,68E-18 GO:0002429*immune response- activating cell surface receptor signaling pathway 29 17,26 10,16 4,88E-20 3,20E-18 2,94E-18 GO:0009607*response to 50 29,76 4,54 8,81E-20 5,65E-18 5,19E-17 GO:00051346*negative regulation of hydrolase activity 30 17,86 8,65 8,01E-19 5,01E-17 4,59E-17 GO:000466*negative regulation of peptidase activity 25 14,88 10,96 5,54E-18 3,06E-16 GO:0004561*negative regulation of proteolysis 27 16,07 8,86 8,32E-18 4,91E-16 4,51E-16 GO:0016192*vesicle-mediated transport 28 16,67 7,73 2,52E-16 1,41E-14 1,29E-14 GO:0016192*vesicle-mediated transport 23 13,69 10,60 3,20E-16	GO:0043207~response to external biotic stimulus	50	29,76	4,73	1,57E-20	1,10E-18	1,01E-18
Construct Construct <thconstruct< th=""> <thconstruct< th=""> <thc< td=""><td>GO:0002526~acute inflammatory</td><td>22</td><td>13,10</td><td>18,00</td><td>2,65E-20</td><td>1,82E-18</td><td>1,67E-18</td></thc<></thconstruct<></thconstruct<>	GO:0002526~acute inflammatory	22	13,10	18,00	2,65E-20	1,82E-18	1,67E-18
G0:0002429°immune activating cell surface receptor signaling pathway2917,2610,164,88E-203,20E-182,94E-18G0:0009607°response to biotic stimulus5029,764,548,81E-205,65E-185,19E-18G0:0051346°negative regulation of hydrolase activity3017,868,658,01E-195,01E-174,59E-17G0:0050851°antigen receptor- mediated signaling pathway2615,4811,068,14E-195,01E-174,59E-17G0:0010466°negative regulation of peptidase activity2514,8810,965,54E-183,34E-163,06E-16G0:0045861°negative regulation of proteolysis2716,678,868,32E-184,91E-164,51E-16G0:0016192°vesicle-mediated transport2716,078,491,01E-165,38E-155,39E-15G0:0010951°nogitive regulation of endopetidase activity2816,677,732,52E-161,22E-141,12E-14G0:0010951°nogitive regulation of endopetidase activity2313,6910,603,20E-161,7E-141,29E-14G0:0010951°negative regulation of endopetidase activity2313,6910,603,20E-161,7E-141,60E-14G0:0010951°negative regulation of response to stimulus8651,192,284,74E-162,55E-142,34E-14G0:0007596°blood coagulation213,1011,244,97E-162,62E-142,41E-14	GO:0002768~immune response- regulating cell surface receptor signaling pathway	30	17,86	9,62	4,36E-20	2,92E-18	2,68E-18
G0:0009607~response to biotic 50 29,76 4,54 8,81E-20 5,65E-18 5,19E-18 G0:0051346~negative regulation of 30 17,86 8,65 8,01E-19 5,01E-17 4,59E-17 G0:0050851~antigen receptor- mediated signaling pathway 26 15,48 11,06 8,14E-19 5,01E-17 4,59E-17 G0:0010466~negative regulation of peptidase activity 25 14,88 10,96 5,54E-18 3,34E-16 3,06E-16 G0:0045861~negative regulation of proteolysis 28 16,67 8,86 8,32E-18 4,91E-16 4,51E-16 G0:0042113~B cell activation 27 16,07 8,49 1,01E-16 5,87E-15 5,39E-15 G0:0016192~vesicle-mediated 51 30,36 3,67 2,15E-16 1,22E-14 1,12E-14 G0:0010951~negative regulation of lymphocyte activation 28 16,67 7,73 2,52E-16 1,41E-14 1,29E-14 G0:0010951~negative regulation of response to endopeptidase activity 28 13,69 10,60 3,20E-16	GO:0002429~immune response- activating cell surface receptor signaling pathway	29	17,26	10,16	4,88E-20	3,20E-18	2,94E-18
G0:0051346~negative regulation of hydrolase activity 30 17,86 8,65 8,01E-19 5,01E-17 4,59E-17 G0:0050851~antigen receptor-mediated signaling pathway 26 15,48 11,06 8,14E-19 5,01E-17 4,59E-17 G0:0010466~negative regulation of peptidase activity 725 14,88 10,96 5,54E-18 3,34E-16 3,06E-16 G0:0045861~negative regulation of proteolysis 28 16,67 8,86 8,32E-18 4,91E-16 4,51E-16 G0:0016192~vesicle-mediated transport 27 16,07 8,49 1,01E-16 5,87E-15 5,39E-15 G0:0016192~vesicle-mediated transport 27 16,07 8,49 1,01E-16 5,87E-15 5,39E-15 G0:0051251~positive regulation of lymphocyte activation 27 16,07 7,73 2,15E-16 1,22E-14 1,29E-14 G0:0010951~negative regulation of esponse to stimulus 23 13,69 10,60 3,20E-16 1,75E-14 1,60E-14 G0:0007596~blood coagulation 2 13,10 11,24 4,97E-16 2,52E-14 2,34E-14	GO:0009607~response to biotic stimulus	50	29,76	4,54	8,81E-20	5,65E-18	5,19E-18
GO:0050851~antigen receptor- mediated signaling pathway 26 15,48 11,06 8,14E-19 5,01E-17 4,59E-17 GO:0010466~negative regulation of peptidase activity CS 14,88 10,96 5,54E-18 3,34E-16 3,06E-16 GO:0045861~negative regulation of proteolysis 28 16,67 8,86 8,32E-18 4,91E-16 4,51E-16 GO:0042113~B cell activation 27 16,07 8,49 1,01E-16 5,87E-15 5,39E-15 GO:0016192~vesicle-mediated transport 27 16,07 8,49 1,01E-16 5,87E-15 5,39E-15 GO:0051251~positive regulation of lymphocyte activation 27 16,67 7,73 2,52E-16 1,41E-14 1,29E-14 GO:0010951~negative regulation of endopeptidase activity 23 13,69 10,60 3,20E-16 1,75E-14 1,60E-14 GO:0048583~regulation of response to stimulus 86 51,19 2,28 4,74E-16 2,55E-14 2,34E-14 GO:0007596~blood coagulation 22 13,10 11,24 4,97E-16 2,62E-14 2,41E-14	GO:0051346~negative regulation of hydrolase activity	30	17,86	8,65	8,01E-19	5,01E-17	4,59E-17
GO:0010466~negative regulation of peptidase activity 25 14,88 10,96 5,54E-18 3,34E-16 3,06E-16 GO:0045861~negative regulation of proteolysis 28 16,67 8,86 8,32E-18 4,91E-16 4,51E-16 GO:0042113~B cell activation 27 16,07 8,49 1,01E-16 5,87E-15 5,39E-15 GO:0016192~vesicle-mediated transport 51 30,36 3,67 2,15E-16 1,22E-14 1,12E-14 GO:0051251~positive regulation of lymphocyte activation 28 16,67 7,73 2,52E-16 1,41E-14 1,29E-14 GO:0010951~negative regulation of endopeptidase activity 62 13,69 10,60 3,20E-16 1,75E-14 1,60E-14 GO:0048583~regulation of response to stimulus 86 51,19 2,28 4,74E-16 2,55E-14 2,34E-14	GO:0050851~antigen receptor- mediated signaling pathway	26	15,48	11,06	8,14E-19	5,01E-17	4,59E-17
GO:0045861~negative regulation of proteolysis 28 16,67 8,86 8,32E-18 4,91E-16 4,51E-16 GO:0042113~B cell activation 27 16,07 8,49 1,01E-16 5,87E-15 5,39E-15 GO:0016192~vesicle-mediated transport 51 30,36 3,67 2,15E-16 1,22E-14 1,12E-14 GO:0051251~positive regulation of lymphocyte activation 28 16,67 7,73 2,52E-16 1,41E-14 1,29E-14 GO:0010951~negative regulation of endopeptidase activity 23 13,69 10,60 3,20E-16 1,75E-14 1,60E-14 GO:0048583~regulation of response to stimulus 86 51,19 2,28 4,74E-16 2,55E-14 2,34E-14	GO:0010466~negative regulation of peptidase activity	25	14,88	10,96	5,54E-18	3,34E-16	3,06E-16
GO:0042113~B cell activation 27 16,07 8,49 1,01E-16 5,87E-15 5,39E-15 GO:0016192~vesicle-mediated transport 51 30,36 3,67 2,15E-16 1,22E-14 1,12E-14 GO:0051251~positive regulation of lymphocyte activation 28 16,67 7,73 2,52E-16 1,41E-14 1,29E-14 GO:0010951~negative regulation of endopeptidase activity 23 13,69 10,60 3,20E-16 1,75E-14 1,60E-14 GO:0048583~regulation of response to stimulus 86 51,19 2,28 4,74E-16 2,55E-14 2,34E-14	GO:0045861~negative regulation of proteolysis	28	16,67	8,86	8,32E-18	4,91E-16	4,51E-16
GO:0016192~vesicle-mediated transport 51 30,36 3,67 2,15E-16 1,22E-14 1,12E-14 GO:0051251~positive regulation of lymphocyte activation 28 16,67 7,73 2,52E-16 1,41E-14 1,29E-14 GO:0010951~negative regulation of endopeptidase activity 23 13,69 10,60 3,20E-16 1,75E-14 1,60E-14 GO:0048583~regulation of response to stimulus 86 51,19 2,28 4,74E-16 2,55E-14 2,34E-14 GO:0007596~blood coagulation 22 13,10 11,24 4,97E-16 2,62E-14 2,41E-14	GO:0042113~B cell activation	27	16,07	8,49	1,01E-16	5,87E-15	5,39E-15
GO:0051251~positive regulation of lymphocyte activation 28 16,67 7,73 2,52E-16 1,41E-14 1,29E-14 GO:0010951~negative regulation of endopeptidase activity 23 13,69 10,60 3,20E-16 1,75E-14 1,60E-14 GO:0048583~regulation of response to stimulus 86 51,19 2,28 4,74E-16 2,55E-14 2,34E-14	GO:0016192~vesicle-mediated	51	30,36	3,67	2,15E-16	1,22E-14	1,12E-14
GO:0010951~negative regulation of endopeptidase activity 23 13,69 10,60 3,20E-16 1,75E-14 1,60E-14 GO:0048583~regulation of response to stimulus 86 51,19 2,28 4,74E-16 2,55E-14 2,34E-14 GO:0007596~blood coagulation 22 13,10 11,24 4,97E-16 2,62E-14 2,41E-14	GO:0051251~positive regulation of lymphocyte activation	28	16,67	7,73	2,52E-16	1,41E-14	1,29E-14
GO:0048583~regulation of response to stimulus 86 51,19 2,28 4,74E-16 2,55E-14 2,34E-14 GO:0007596~blood coagulation 22 13,10 11,24 4,97E-16 2,62E-14 2,41E-14	GO:0010951~negative regulation of endopeptidase activity	23	13,69	10,60	3,20E-16	1,75E-14	1,60E-14
GO:0007596~blood coagulation 22 13,10 11,24 4,97E-16 2,62E-14 2,41E-14	GO:0048583~regulation of response to stimulus	86	51,19	2,28	4,74E-16	2,55E-14	2,34E-14
	GO:0007596~blood coagulation	22	13,10	11,24	4,97E-16	2,62E-14	2,41E-14

GO:0002696~positive regulation of						
leukocyte activation	29	17,26	7,13	6,18E-16	3,20E-14	2,94E-14
GO:0002764~immune response-						
regulating signaling nathway	30	17,86	6,69	8,56E-16	4,36E-14	4,00E-14
GO:0007599~hemostasis	22	13 10	10.86	1 11E-15	5 54E-14	5 08F-1/
	22	15,10	10,80	1,111-15	5,541-14	5,081-14
GO:0050817~coagulation	22	13,10	10,82	1,19E-15	5,88E-14	5,39E-14
GO:0002757~immune response-	29	17,26	6,87	1,52E-15	7,35E-14	6,74E-14
activating signal transduction						
activation	29	17,26	6,75	2,26E-15	1,08E-13	9,89E-14
GO:0006954~inflammatory response	35	20.83	5 16	3 87F-15	1 82F-13	1 67F-13
	55	20,05	5,10	5,072 15	1,022 15	1,071 15
GO:0001775~cell activation	42	25,00	4,10	7,87E-15	3,63E-13	3,33E-13
GO:0044765~single-organism transport	68	40,48	2,62	8,43E-15	3,83E-13	3,51E-13
GO:0006953~acute-phase response	13	7,74	29,83	1,11E-14	4,99E-13	4,58E-13
GO:0006957~complement activation,	10	5 05	59 51	2 96E 1/	1 265 12	1 155 13
alternative pathway	10	5,95	56,51	2,000-14	1,202-12	1,156-12
GO:0050865~regulation of cell	33	19.64	5.11	3.93E-14	1.71E-12	1.57E-12
activation			-,	-,	_,:	_,
GO:1902578~single-organism	69	41,07	2,51	4,13E-14	1,77E-12	1,62E-12
Incalization						
process	102	60,71	1,85	1,06E-13	4,48E-12	4,11E-12
GO:0051704~multi-organism process	61	36 31	2.60	1 63E-13	6 79F-12	6 23E-12
60:0051249~regulation of lymphocyte	01	50,51	2,05	1,051 15	0,751 12	0,251 12
activation	29	17,26	5,66	1,86E-13	7,63E-12	7,00E-12
GO:0042730~fibrinolysis	10	5,95	46,81	3,35E-13	1,36E-11	1,24E-11
GO:0030162~regulation of proteolysis	32	19.05	4 81	5 53F-13	2 21F-11	2 02F-11
	11	 6 EE	22.01	7 625 12	2 OOE 11	2 755 11
	11	0,00	33,01	7,022-13	3,00E-11	2,/3E-11
GO:0043086 negative regulation of	33	19,64	4,58	8,10E-13	3,14E-11	2,89E-11
GO:0002694~regulation of leukocyte						
activation	30	17,86	5,04	1,15E-12	4,42E-11	4,06E-11
GO:0052547~regulation of peptidase	25	11 00	6.21	1 055 13	7.015.11	6 AAE 11
activity	25	14,00	0,21	1,035-12	7,012-11	0,440-11
GO:0030195~negative regulation of	11	6.55	26.82	7.35E-12	2.74E-10	2.52E-10
blood coagulation		0,00		,,001 11	_,/ != _0	2,022 20
GO:1900047~negative regulation of	11	6,55	26,27	9,16E-12	3,38E-10	3,10E-10
CO:0006E08~protoolycic	47	27.09	2.09	1 20E 11	4 2EE 10	2 00E 10
	47	27,90	2,98	1,200-11	4,55E-10	5,996-10
GO:0009611~response to wounding	28	16,67	4,95	1,21E-11	4,35E-10	3,99E-10
GO:0042060~wound healing	25	14,88	5,62	1,55E-11	5,51E-10	5,06E-10
GO:0052548~regulation of	23	13.69	6.23	1.70E-11	5.99E-10	5.49E-10
endopeptidase activity		20,00	0)20	2)/ 02 22	0,001 10	0, 00 10
GO:0050819~negative regulation of	11	6,55	24,29	2,11E-11	7,33E-10	6,73E-10
GO:0048518~positive regulation of						
biological process	99	58,93	1,73	3,72E-11	1,28E-09	1,17E-09
GO:0050878~regulation of body fluid						
levels	22	13,10	6,28	4,58E-11	1,56E-09	1,43E-09
GO:0061045~negative regulation of	12	7 1 4	16.02	1 125 10	2 705 00	2 475 00
wound healing	12	7,14	10,92	1,131-10	3,731-03	5,472-03
GO:0061024~membrane organization	34	20,24	3,59	2,08E-10	6,91E-09	6,34E-09
GO:1903035~negative regulation of	12	7 1/	1/ 62	5 61F-10	1 84F-09	1 69F-02
response to wounding	12	,,14	14,03	3,011-10	1,07L-00	1,0JL-00
GO:0044092~negative regulation of	35	20,83	3,32	8,31E-10	2,69E-08	2,47E-08
molecular function						

GO:0030193~regulation of blood coagulation	12	7,14	14,04	8,75E-10	2,81E-08	2,58E-08
GO:0045321~leukocyte activation	32	19,05	3,57	1,02E-09	3,25E-08	2,99E-08
GO:1900046~regulation of hemostasis	12	7,14	13,77	1,08E-09	3,40E-08	3,12E-08
GO:0046649~lymphocyte activation	29	17,26	3,85	1,52E-09	4,73E-08	4,34E-08
GO:0050818~regulation of coagulation	12	7,14	13,25	1,64E-09	5,05E-08	4,63E-08
GO:0001895~retina homeostasis	11	6,55	15,89	1,66E-09	5,05E-08	4,63E-08
GO:0050764~regulation of	12	7,14	12,77	2,45E-09	7,37E-08	6,77E-08
phagocytosis GO:0006810~transport	76	45.24	1.85	4.50F-09	, 1.33E-07	, 1.22F-07
GO:0033344~cholesterol efflux	10	5 95	17 73	4 52F-09	1 33F-07	1 22F-07
GO:0034368~protein-lipid complex	10	5,55	17,75	4,522 05	1,332 07	1,222 07
remodeling	8	4,76	31,20	4,85E-09	1,40E-07	1,29E-07
GO:0034369~plasma lipoprotein particle remodeling	8	4,76	31,20	4,85E-09	1,40E-07	1,29E-07
GO:0010873~positive regulation of cholesterol esterification	6	3,57	78,01	5,10E-09	1,46E-07	1,34E-07
GO:0051917~regulation of fibrinolysis	7	4,17	45,51	5,85E-09	1,66E-07	1,52E-07
GO:0030100~regulation of endocytosis	17	10,12	6,63	6,03E-09	1,69E-07	1,56E-07
GO:0034367~macromolecular complex remodeling	8	4,76	29,25	7,90E-09	2,20E-07	2,02E-07
GO:0051336~regulation of hydrolase	32	19,05	3,27	8,01E-09	2,21E-07	2,03E-07
GO:0050766~positive regulation of	10	5,95	15,20	1,82E-08	4,97E-07	4,56E-07
GO:0045807~positive regulation of	13	7,74	8,95	2,42E-08	6,55E-07	6,01E-07
GO:0051234~establishment of		-				
localization	76	45,24	1,79	2,44E-08	6,55E-07	6,01E-07
GO:0001867~complement activation,	6	3,57	58,51	3,14E-08	8,27E-07	7,59E-07
GO:0010872~regulation of cholesterol	6	3,57	58,51	3,14E-08	8,27E-07	7,59E-07
GO:0032700~phospholipid efflux	6	2 57	54.01	5 07E-08	1 28E-06	1 17E-06
GO:0051918~negative regulation of	6	3,57	54,01	5,07E-08	1,28E-06	1,17E-06
fibrinolysis	6	3.57	54.01	5.07F-08	1.28F-06	1.17F-06
GO:0034434~sterol esterification	6	3 57	54.01	5,07E-08	1 28F-06	1 17E-06
GO:0034433~steroid esterification	6	3 57	54.01	5,07E-08	1 28F-06	1 17E-06
GO:0034377~plasma lipoprotein		5,57	54,01	5,072.00	1,202 00	1,172 00
particle assembly	7	4,17	32,77	5,31E-08	1,33E-06	1,22E-06
GO:1903034~regulation of response to wounding	14	8,33	7,31	6,38E-08	1,58E-06	1,45E-06
GO:0031638~zymogen activation	9	5,36	16,20	7,64E-08	1,88E-06	1,72E-06
GO:2000257~regulation of protein activation cascade	7	4,17	30,34	8,75E-08	2,13E-06	1,96E-06
GO:0071827~plasma lipoprotein	8	4,76	20,80	9,70E-08	2,35E-06	2,15E-06
GO:0061041~regulation of wound	13	7,74	7,88	9,84E-08	2,36E-06	2,17E-06
GO:0010876~lipid localization	19	11,31	4,74	1,05E-07	2,49E-06	2,29E-06
GO:1905952~regulation of lipid	13	7,74	7,76	1,16E-07	2,74E-06	2,52E-06
GO:0006869~lipid transport	18	10.71	5.00	1.18E-07	2.76E-06	2.53E-06
	10	10,71	5,00	1,102 07	2,702.00	2,332.00

GO:0005005"protein-lipid complex 7 4,17 28,25 1,38E-07 3,22E-06 2,95E-06 GO:0012101"regulation of response to external stimulus 27 16,07 3,29 1,49E-07 3,45E-06 3,16E-06 GO:00123475"-high-density lipoprotein 6 3,57 443,88 1,68E-07 3,85E-06 3,72E-06 GO:0012474"high-density lipoprotein 6 3,57 443,88 1,68E-07 3,85E-06 3,72E-06 GO:0012474"high-density lipoprotein 8 4,76 19,11 1,79E-07 5,38E-06 5,93E-06 5,93E-06 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	GO:0065005~protein-lipid complex	7	4,17	28,25	1,38E-07	3,22E-06	2,95E-06
external stimulus 27 16,07 3,99 1,49E-07 3,45E-06 3,16E-06 GO.0034375*/negl-density lipoprotein particle remodeling 6 3,57 43,88 1,68E-07 3,85E-06 3,54E-06 GO.001425*protein-lipid complex 8 4,76 19,11 1,79E-07 4,05E-06 5,37E-06 GO.001584*tissue homeostasis 14 8,33 6,53 2,39E-07 5,34E-06 5,32E-06 GO.0001584*tissue homeostasis 14 8,33 6,53 2,39E-07 5,74E-06 5,27E-06 GO.0002164*tissue homeostasis 7 4,17 25,60 2,59E-07 5,74E-06 6,92E-06 GO.0002237*regulation of cholesterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 GO.0002237*regulation of sterol 9 5,36 13,00 4,34E-07 9,78E-06 8,98E-06 GO.0002237*regulation of lipid 11 6,55 8,20 9,52E-07 1,21E-05 1,13E-05 GO.0002326*regulation of lipid 11 6,55 8,05	GO:0032101~regulation of response to						
G0:0024375*high-density lipoprotein 6 3,57 43,88 1,68E-07 3,58E-06 3,54E-06 G0:0071325*protein-lipid complex 8 4,76 19,11 1,79E-07 4,05E-06 3,72E-06 G0:0012425*protein-processing 15 8,93 5,93 2,45E-07 5,48E-06 5,03E-06 G0:0016485*protein processing 15 2,98 73,14 3,42E-07 5,74E-06 6,92E-06 G0:0023274*regulation of colesterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 G0:0023274*regulation of sterol 9 5,36 13,00 4,34E-07 9,74E-06 8,64E-06 G0:0027166*cell surface receptor 51 30,36 2,04 4,54E-07 9,78E-06 8,98E-06 G0:0023268*regulation of lipid 11 6,55 8,20 9,52E-07 1,38E-05 1,38E-05 G0:0023236*regulation of lipid 11 6,55 8,20 9,52E-07 2,01E-05 1,48E-05 G0:0023268*regulation of lipid 11 6,55 8,0	external stimulus	27	16,07	3,29	1,49E-07	3,45E-06	3,16E-06
particle remole minipage a <td>GO:0034375~high-density lipoprotein</td> <td>6</td> <td>3,57</td> <td>43,88</td> <td>1,68E-07</td> <td>3,85E-06</td> <td>3,54E-06</td>	GO:0034375~high-density lipoprotein	6	3,57	43,88	1,68E-07	3,85E-06	3,54E-06
Schonlargerization B 4,76 19,11 1,79E-07 4,05E-06 3,72E-06 GO:0001984*Tissue homeostasis 14 8,33 6,53 2,39E-07 5,38E-06 5,03E-06 GO:0001984*Tissue homeostasis 15 8,93 5,93 2,45E-07 5,74E-06 5,27E-06 GO:0002744*hydrogen peroxide 7 4,17 25,60 2,59E-07 5,74E-06 6,92E-06 GO:0023271*regulation of cholesterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 GO:0023271*regulation of sterol 9 5,36 12,54 5,75E-07 1,23E-05 1,13E-05 GO:0023266*regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,46E-05 GO:003001*cholesterol transport 10 5,95 9,92 7,49E-07 1,59E-05 1,46E-05 GO:00023266*regulation of lipid 11 6,55 8,20 9,5EE-07 2,01E-05 1,95E-05 GO:0002366*regulation of CoA+ 5 2,98 58,51 <td>GO:0071825~protein-lipid complex</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	GO:0071825~protein-lipid complex						
G0:0001894*tissue homeostasis 14 8,33 6,53 2,39E-07 5,38E-06 4,93E-06 G0:0016485*protein processing 15 8,93 5,93 2,45E-07 5,48E-06 5,03E-06 G0:0016485*protein processing 15 8,93 5,93 2,45E-07 5,74E-06 5,27E-06 G0:005920*positive regulation of 5 2,98 73,14 3,42E-07 7,54E-06 6,92E-06 G0:0032371*regulation of sterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 G0:0007166*cell surface receptor 51 30,36 2,044 4,54E-07 9,78E-06 8,98E-06 G0:000301*cholesterol transport 10 5,95 9,92 7,49E-07 1,13E-05 1,13E-05 G0:000301*cholesterol transport 10 5,95 8,920 9,52E-07 2,01E-05 1,48E-05 G0:0002597*regulation of lipid 11 6,55 8,05 1,13E-06 2,32E-05 2,16E-05 G0:000301*regulation of immunal 11 6,55 8,05 1,3E-06 <	subunit organization	8	4,76	19,11	1,79E-07	4,05E-06	3,72E-06
G0:0016485"protein processing 15 8,93 5,93 2,45E-07 5,48E-06 5,03E-06 G0:002774"hydrogen peroxide 7 4,17 25,60 2,59E-07 5,74E-06 5,27E-06 G0:002374"regulation of cholesterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 G0:002374"regulation of cholesterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 G0:000371"regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,13E-05 G0:0003236"regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,46E-05 G0:000301"cholesterol transport 10 5,95 9,92 7,49E-07 1,59E-05 1,46E-05 G0:000301"cholesterol transport 10 5,95 8,20 9,52E-07 2,01E-05 1,84E-05 G0:000301"cholesterol transport 10 5,95 8,20 9,52E-07 2,01E-05 1,84E-05 G0:000301"cholesterol transport 10 5,95 2,925 1	GO:0001894~tissue homeostasis	14	8,33	6,53	2,39E-07	5,38E-06	4,93E-06
GC 0042744*hydrogen peroxide 7 4,17 25,60 2,59E-07 5,74E-06 5,27E-06 GO 1095920*positive regulation of 5 2,98 73,14 3,42E-07 7,54E-06 6,92E-06 GO 0023371*regulation of cholesterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 GO 0002371*regulation of sterol 9 5,36 13,00 4,34E-07 9,78E-06 8,98E-06 GO 00023706*regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,13E-05 GO 0003236*regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,46E-05 GO 0003236*regulation of lipid 11 6,55 8,20 9,52E-07 2,01E-05 1,84E-05 GO:0002306*regulation of immune 17 10,12 4,42 1,52E-06 3,14E-05 2,98E-05 GO:000267*regulation of immune 17 10,12 4,42 1,52E-06 3,14E-05 2,92E-05 3,14E-05 2,92E-05 3,14E-05 2,92E-05 3,14E-05	GO:0016485~protein processing	15	8,93	5,93	2,45E-07	5,48E-06	5,03E-06
Catabolic process Catabolic process <thcatabolic proces<="" th=""> Catabolic proces</thcatabolic>	GO:0042744~hydrogen peroxide	7	4,17	25,60	2,59E-07	5,74E-06	5,27E-06
CoA-transferase activity 5 2,38 7,3,44 3,42:00 7,34:00 6,32:00 G0:0032371-regulation of cholesterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 G0:0032371-regulation of sterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 G0:000706-regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,46E-05 G0:000706-regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,46E-05 G0:003236*regulation of lipid 11 6,55 8,20 9,52E-07 2,01E-05 1,46E-05 G0:003236*regulation of coA- 5 2,98 58,51 1,01E-06 2,12E-05 1,95E-05 G0:002697*regulation of immune 17 10,12 4,42 1,52E-06 3,14E-05 2,88E-05 G0:00302697*regulation of 6 3,57 29,25 1,55E-06 3,18E-05 2,94E-05 G0:00302697*regulation of 5 2,98 53,19 1,58E-06 3,77E-05	GO:1905920~positive regulation of		2.00	72 14	2 425 07	7 5 4 5 0 6	6 025 06
S0:003237 regulation of Libesterion 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 G0:0032371rregulation of sterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 G0:009706-regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,13E-05 G0:003010-regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,46E-05 G0:003010-regulation of lipid 11 6,55 8,20 9,52E-07 2,01E-05 1,46E-05 G0:000301-regulation of lipid 11 6,55 8,05 1,13E-06 2,12E-05 1,95E-05 G0:000301-regulation of mmune 17 10,12 4,42 1,52E-06 3,14E-05 2,98E-05 2,01E-05 2,98E-05 2,02E-05 2,01E-05	CoA-transferase activity	5	2,50	/3,14	3,421-07	7,341-00	0,921-00
GO:0032371rregulation of sterol 9 5,36 13,00 4,34E-07 9,42E-06 8,64E-06 GO:0007166*cell surface receptor 51 30,36 2,04 4,54E-07 9,78E-06 8,98E-06 GO:0007106*regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,13E-05 GO:0030301*cholesterol transport 10 5,95 9,92 7,49E-07 1,59E-05 1,46E-05 GO:003031*cholesterol transport 10 5,95 9,92 7,49E-07 1,3E-05 1,3E-05 GO:003031*regulation of lipid 11 6,55 8,20 9,5E-07 2,01E-05 1,95E-05 GO:0002697*regulation of 6,35 2,98 5,31 1,01E-06 2,12E-05 2,98E-05 GO:0002697*regulation of 3,57 29,25 1,55E-06 3,14E-05 2,98E-05 GO:0003697*regulation of 5,36 10,75 1,88E-06 3,71E-05 2,94E-05 GO:00	transport	9	5 <i>,</i> 36	13,00	4,34E-07	9,42E-06	8,64E-06
GO:0007166*cell surface receptor 51 30,36 2,04 4,54E-07 9,78E-06 8,98E-06 GO:0097006*regulation of plasma 9 5,36 12,54 5,75E-07 1,23E-05 1,13E-05 GO:0030301*cholesterol transport 10 5,95 9,92 7,49E-07 1,59E-05 1,46E-05 GO:003236*regulation of lipid 11 6,55 8,20 9,52E-07 2,01E-05 1,84E-05 GO:00267*regulation of code 5 2,98 58,51 1,01E-06 2,12E-05 1,95E-05 GO:0002697*regulation of immune 17 10,12 4,42 1,52E-06 3,14E-05 2,88E-05 GO:0002697*regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 GO:003049*regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 GO:0030120*rnegulation of 5 2,98 48,76 2,36E-06 4,62E-	GO:0032371~regulation of sterol transport	9	5 <i>,</i> 36	13,00	4,34E-07	9,42E-06	8,64E-06
S0:009706~regulation plasma p 5,36 12,54 5,75E-07 1,23E-05 1,13E-05 G0:0030301~cholesterol transport 10 5,95 9,92 7,49E-07 1,59E-05 1,46E-05 G0:0030301~cholesterol transport 10 5,95 9,92 7,49E-07 1,59E-05 1,46E-05 G0:0032687~regulation of lipid 11 6,55 8,20 9,52E-07 2,01E-05 1,95E-05 G0:0109730°antimicrobial humoral 11 6,55 8,05 1,13E-06 2,35E-05 2,16E-05 G0:0002697~regulation of mmune 17 10,12 4,42 1,52E-06 3,14E-05 2,88E-05 G0:00030497~regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 G0:0030127~regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 G0:0030127~regulation of 5 2,98 43,76 2,36E-06 4,62E-05 4,24E-05 G0	GO:0007166~cell surface receptor signaling pathway	51	30,36	2,04	4,54E-07	9,78E-06	8,98E-06
Inpuppionent particle revers Index G0:0030301^*cholesterol transport 10 5,95 9,92 7,49E-07 1,59E-05 1,46E-05 G0:0032368*regulation of lipid 11 6,55 8,20 9,52E-07 2,01E-05 1,84E-05 G0:0032368*regulation of CoA 5 2,98 58,51 1,01E-06 2,12E-05 1,95E-05 G0:0019730*antimicrobial humoral 11 6,55 8,05 1,13E-06 2,35E-05 2,16E-05 G0:002697*regulation of immune 17 10,12 4,42 1,52E-06 3,14E-05 2,98E-05 G0:003049*regulation of 6 3,57 29,25 1,55E-06 3,21E-05 2,94E-05 G0:003102*regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 G0:0032102*regulation of 5,36 10,75 1,88E-06 3,77E-05 3,46E-05 G0:0032102*regulation of 16 9,52 4,59 2,18E-06	GO:0097006~regulation of plasma	9	5,36	12,54	5,75E-07	1,23E-05	1,13E-05
S0:00000000000000000000000000000000000	GO:0030301~cholesterol transport	10	5 95	9.92	7 /19F-07	1 59E-05	1.46E-05
OBSISTICT OF NPA 11 6,55 8,20 9,52E-07 2,01E-05 1,84E-05 GO:1905918"regulation of CoA- transperase 5 2,98 58,51 1,01E-06 2,12E-05 1,95E-05 GO:0002697"regulation of immune 17 10,12 4,42 1,52E-06 3,14E-05 2,88E-05 GO:0002697"regulation of 6 3,57 29,25 1,55E-06 3,18E-05 2,92E-05 GO:1003027"regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 GO:00051604"protein maturation 15 8,93 5,07 1,58E-06 3,21E-05 2,94E-05 GO:00051004"protein maturation 16 9,52 4,59 2,18E-06 3,77E-05 3,46E-05 GO:0032102"negative regulation of response to external stimulus 16 9,52 4,59 2,18E-06 4,62E-05 4,24E-05 GO:0034372"tery-low-density 19 5,36 10,43 2,36E-06 4,62E-05 4,24E-05	$GO:0032368^{2}$ regulation of linid	10	5,55	5,52	7,492-07	1,592-05	1,402-05
GO:1905918"regulation of CoA- transferase activity 5 2,98 58,51 1,01E-06 2,12E-05 1,95E-05 GO:001973O"antimicrobial humoral 11 6,55 8,05 1,13E-06 2,35E-05 2,16E-05 GO:0002697"regulation of immune 17 10,12 4,42 1,52E-06 3,14E-05 2,98E-05 GO:00030449"regulation of 6 3,57 29,25 1,55E-06 3,14E-05 2,94E-05 GO:1003027"regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 GO:00051604"protein maturation 15 8,93 5,07 1,58E-06 3,77E-05 3,46E-05 GO:0032102"negative regulation of 16 9,52 4,59 2,18E-06 4,62E-05 4,24E-05 GO:0034372"very-low-density 16 9,52 4,59 2,36E-06 4,62E-05 4,24E-05 GO:0034370"triglyceride redbeling 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05	transport	11	6,55	8,20	9,52E-07	2,01E-05	1,84E-05
G0:0019730~antimicrobial humoral response 11 6,55 8,05 1,13E-06 2,35E-05 2,16E-05 G0:0002697~regulation of immune effector process 17 10,12 4,42 1,52E-06 3,14E-05 2,88E-05 G0:0030449~regulation of complement activation 6 3,57 29,25 1,55E-06 3,18E-05 2,92E-05 G0:1093027~regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 G0:0051604~protein maturation 15 8,93 5,07 1,59E-06 3,21E-05 2,94E-05 G0:0098869~cellular oxidant 9 5,36 10,75 1,88E-06 3,77E-05 3,46E-05 G0:0032102~negative regulation of response to external stimulus 16 9,52 4,59 2,18E-06 4,62E-05 4,24E-05 G0:0034372~very-low-density 10 5,95 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 G0:0006641~triglyceride metabolic process 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 G0:00026	GO:1905918~regulation of CoA- transferase activity	5	2,98	58,51	1,01E-06	2,12E-05	1,95E-05
GO:0002697~regulation of immune 17 10,12 4,42 1,52E-06 3,14E-05 2,88E-05 GO:0030449~regulation of 6 3,57 29,25 1,55E-06 3,18E-05 2,92E-05 GO:1903027~regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 GO:0051604~protein maturation 15 8,93 5,07 1,59E-06 3,21E-05 2,94E-05 GO:0028869~cellular oxidant 9 5,36 10,75 1,88E-06 3,77E-05 3,46E-05 GO:0034370~regulation of 16 9,52 4,59 2,18E-06 4,32E-05 3,99E-05 GO:0034370~regulation of 16 9,52 4,59 2,18E-06 4,62E-05 4,24E-05 GO:0034370~regulation of 15 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0054372~regulation of 17 10,12 4,24 2,59E-06 5,00E-05 4,39E-05 GO:000577~regulation of 17 <t< td=""><td>GO:0019730~antimicrobial humoral response</td><td>11</td><td>6,55</td><td>8,05</td><td>1,13E-06</td><td>2,35E-05</td><td>2,16E-05</td></t<>	GO:0019730~antimicrobial humoral response	11	6,55	8,05	1,13E-06	2,35E-05	2,16E-05
effector process A	GO:0002697~regulation of immune	17	10.12	4.42	1.52E-06	3.14E-05	2.88E-05
G0:000049 Tegnatori 6 3,57 29,25 1,55E-06 3,18E-05 2,92E-05 G0:1903027~regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 G0:0051604~protein maturation 15 8,93 5,07 1,59E-06 3,21E-05 2,94E-05 G0:0098869~cellular oxidant 9 5,36 10,75 1,88E-06 3,77E-05 3,46E-05 G0:0032102~negative regulation of 16 9,52 4,59 2,18E-06 4,35E-05 3,99E-05 G0:0034372~very-low-density 16 9,52 4,59 2,36E-06 4,62E-05 4,24E-05 G0:0034372~very-low-density 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 G0:0006641~triglyceride metabolic 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 G0:00050727~regulation of acute 17 10,12 4,24 2,59E-06 5,00E-05 4,59E-05 G0:0002920~regulation of humoral 7 4,17 17,07 3,13E-06	effector process			.,	_,= ==		_,
GO:1903027~regulation of 5 2,98 53,19 1,58E-06 3,21E-05 2,94E-05 GO:0051604~protein maturation 15 8,93 5,07 1,59E-06 3,21E-05 2,94E-05 GO:0098869~cellular oxidant 9 5,36 10,75 1,88E-06 3,77E-05 3,46E-05 GO:0032102~negative regulation of 16 9,52 4,59 2,18E-06 4,35E-05 3,99E-05 GO:0034372~very-low-density 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0034372~very-low-density 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0034372~very-low-density 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0004641~triglyceride metabolic 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 GO:00050727~regulation of 17 10,12 4,24 2,59E-06 5,00E-05 5,02E-05 GO:0002673~regulation of humoral 7 4,17 17,07 3,13E-06 <td>complement activation</td> <td>6</td> <td>3,57</td> <td>29,25</td> <td>1,55E-06</td> <td>3,18E-05</td> <td>2,92E-05</td>	complement activation	6	3,57	29,25	1,55E-06	3,18E-05	2,92E-05
opsonization Column and the second and th	GO:1903027~regulation of	5	2.98	53,19	1.58F-06	3.21F-05	2.94F-05
G0:0051604~protein maturation 15 8,93 5,07 1,59E-06 3,21E-05 2,94E-05 G0:0098869~cellular oxidant 9 5,36 10,75 1,88E-06 3,77E-05 3,46E-05 G0:0032102~negative regulation of 16 9,52 4,59 2,18E-06 4,35E-05 3,99E-05 G0:0034372~very-low-density 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 G0:0034370~triglyceride-rich 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 G0:0015918~sterol transport 10 5,95 8,60 2,46E-06 4,62E-05 4,39E-05 G0:0015918~sterol transport 10 5,95 8,60 2,46E-06 4,78E-05 4,39E-05 G0:0015918~sterol transport 10 10,12 4,24 2,59E-06 5,00E-05 4,59E-05 G0:0002673~regulation of acute 8 4,76 12,82 2,86E-06 5,47E-05 5,02E-05 G0:0002920~regulation of humoral 7 4,17 17,07 3,13E-06 <td< td=""><td>opsonization</td><td></td><td>2,50</td><td></td><td>1,562.00</td><td>3,212 03</td><td>2,512.05</td></td<>	opsonization		2,50		1,562.00	3,212 03	2,512.05
GO:0098869°cellular oxidant 9 5,36 10,75 1,88E-06 3,77E-05 3,46E-05 GO:0032102~negative regulation of response to external stimulus 16 9,52 4,59 2,18E-06 4,35E-05 3,99E-05 GO:0034372~very-low-density 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0034370~triglyceride-rich 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0006641~triglyceride metabolic process 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 GO:0015918~sterol transport 10 5,95 8,60 2,46E-06 4,62E-05 4,59E-05 GO:002673~regulation of acute 8 4,76 12,82 2,86E-06 5,47E-05 5,02E-05 GO:0002673~regulation of humoral inflammatory response 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:000220°regulation of humoral immune response 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0042157~lipoprotein metabolic process	GO:0051604~protein maturation	15	8,93	5,07	1,59E-06	3,21E-05	2,94E-05
GO:0032102~negative regulation of 16 9,52 4,59 2,18E-06 4,35E-05 3,99E-05 GO:0034372~very-low-density 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0034370~triglyceride-rich 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0006641~triglyceride metabolic 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 GO:0015918~sterol transport 10 5,95 8,60 2,46E-06 4,78E-05 4,39E-05 GO:0002677~regulation of 17 10,12 4,24 2,59E-06 5,00E-05 4,59E-05 GO:0002673~regulation of acute 8 4,76 12,82 2,86E-06 5,47E-05 5,02E-05 GO:0002920~regulation of humoral 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:00042157~lipoprotein metabolic 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0042157~lipoprotein <td>GO:0098869~cellular oxidant detoxification</td> <td>9</td> <td>5<i>,</i>36</td> <td>10,75</td> <td>1,88E-06</td> <td>3,77E-05</td> <td>3,46E-05</td>	GO:0098869~cellular oxidant detoxification	9	5 <i>,</i> 36	10,75	1,88E-06	3,77E-05	3,46E-05
response to external stimulus 16 9,32 4,39 2,18E-06 4,35E-05 3,99E-05 GO:0034372~very-low-density lipoprotein particle remodeling 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0034370~triglyceride-rich lipoprotein particle remodeling 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0006641~triglyceride metabolic process 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 GO:0015918~sterol transport 10 5,95 8,60 2,46E-06 4,78E-05 4,39E-05 GO:0002673~regulation of 17 10,12 4,24 2,59E-06 5,00E-05 4,59E-05 GO:0002673~regulation of autor 7 4,17 17,07 3,13E-06 5,96E-05 5,02E-05 GO:0002920~regulation of humoral immune response 7 4,17 17,07 3,13E-06 5,96E-05 5,50E-05 GO:0042157~lipoprotein metabolic process 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05	GO:0032102~negative regulation of	16	0.52	4.50	2 195 06		2 005 05
GO:00343/2~very-low-density 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0034370~triglyceride-rich 5 2,98 48,76 2,36E-06 4,62E-05 4,24E-05 GO:0006641~triglyceride metabolic 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 GO:0015918~sterol transport 10 5,95 8,60 2,46E-06 4,78E-05 4,39E-05 GO:0002673~regulation of 17 10,12 4,24 2,59E-06 5,00E-05 4,59E-05 GO:0002673~regulation of 17 10,12 4,24 2,86E-06 5,47E-05 5,02E-05 GO:0002673~regulation of humoral 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:0002920~regulation of humoral 7 4,17 17,07 3,13E-06 5,96E-05 5,50E-05 GO:0042157~lipoprotein metabolic 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0051179~localization 86 51,19	response to external stimulus	10	9,52	4,59	2,18E-00	4,35E-05	3,99E-05
GO:0034370~triglyceride-rich lipoprotein particle remodeling52,9848,762,36E-064,62E-054,24E-05GO:0006641~triglyceride metabolic process95,3610,432,36E-064,62E-054,24E-05GO:0015918~sterol transport105,958,602,46E-064,78E-054,39E-05GO:0050727~regulation of inflammatory response1710,124,242,59E-065,00E-054,59E-05GO:002673~regulation of acute inflammatory response84,7612,822,86E-065,47E-055,02E-05GO:002920~regulation of humoral immune response74,1717,073,13E-065,96E-055,47E-05GO:0042157~lipoprotein metabolic process95,3610,033,17E-065,99E-055,50E-05GO:0051179~localization8651,191,513,83E-067,15E-056,43E-05GO:0034381~plasma particle clearance74,1715,755,05E-069,37E-058,60E-05	GO:0034372~very-low-density lipoprotein particle remodeling	5	2,98	48,76	2,36E-06	4,62E-05	4,24E-05
Inportering article remodeling 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 GO:0006641~triglyceride metabolic 9 5,36 10,43 2,36E-06 4,62E-05 4,24E-05 GO:0015918~sterol transport 10 5,95 8,60 2,46E-06 4,78E-05 4,39E-05 GO:0050727~regulation of 17 10,12 4,24 2,59E-06 5,00E-05 4,59E-05 GO:0002673~regulation of acute 8 4,76 12,82 2,86E-06 5,47E-05 5,02E-05 GO:0002920~regulation of humoral immune response 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:0042157~lipoprotein metabolic 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0051179~localization 86 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05 8,60E-05	GO:0034370~triglyceride-rich	5	2,98	48,76	2,36E-06	4,62E-05	4,24E-05
process95,3610,432,36E-064,62E-054,24E-05GO:0015918~sterol transport105,958,602,46E-064,78E-054,39E-05GO:0050727~regulationof1710,124,242,59E-065,00E-054,59E-05GO:0002673~regulationof acute84,7612,822,86E-065,47E-055,02E-05GO:0002920~regulationof humoral74,1717,073,13E-065,96E-055,47E-05GO:1990748~cellular detoxification95,3610,033,17E-065,99E-055,50E-05GO:0051179~localization8651,191,513,83E-067,15E-056,56E-05GO:0034381~plasmalipoprotein74,1715,755,05E-069,37E-058,60E-05	GO:0006641~triglyceride metabolic						
GO:0015918~sterol transport 10 5,95 8,60 2,46E-06 4,78E-05 4,39E-05 GO:0050727~regulation of 17 10,12 4,24 2,59E-06 5,00E-05 4,59E-05 GO:0002673~regulation of acute 8 4,76 12,82 2,86E-06 5,47E-05 5,02E-05 GO:0002920~regulation of humoral 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:1990748~cellular detoxification 9 5,36 10,03 3,17E-06 5,99E-05 5,50E-05 GO:0051179~localization 86 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05	process	9	5,36	10,43	2,36E-06	4,62E-05	4,24E-05
GO:0050727~regulation of inflammatory response 17 10,12 4,24 2,59E-06 5,00E-05 4,59E-05 GO:0002673~regulation of acute inflammatory response 8 4,76 12,82 2,86E-06 5,47E-05 5,02E-05 GO:0002920~regulation of humoral immune response 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:1990748~cellular detoxification 9 5,36 10,03 3,17E-06 5,99E-05 5,50E-05 GO:0042157~lipoprotein metabolic process 10 5,955 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0051179~localization 86 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05 8,60E-05	GO:0015918~sterol transport	10	5,95	8,60	2,46E-06	4,78E-05	4,39E-05
GO:0002673~regulation of acute 8 4,76 12,82 2,86E-06 5,47E-05 5,02E-05 GO:0002920~regulation of humoral 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:1990748~cellular detoxification 9 5,36 10,03 3,17E-06 5,99E-05 5,50E-05 GO:0042157~lipoprotein metabolic 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0051179~localization 86 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05	GO:0050727~regulation of	17	10,12	4,24	2,59E-06	5,00E-05	4,59E-05
inflammatory response 0 4,70 12,02 2,001 00 3,471 03 5,021 03 GO:0002920~regulation of humoral immune response 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:1990748~cellular detoxification 9 5,36 10,03 3,17E-06 5,99E-05 5,50E-05 GO:0042157~lipoprotein metabolic process 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0051179~localization 86 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05 8,60E-05	GO:0002673~regulation of acute	8	4 76	12.82	2 86E-06	5 47E-05	5.02E-05
GO:0002920*regulation of numoral immune response 7 4,17 17,07 3,13E-06 5,96E-05 5,47E-05 GO:1990748~cellular detoxification 9 5,36 10,03 3,17E-06 5,99E-05 5,50E-05 GO:0042157~lipoprotein metabolic process 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0051179~localization 86 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05 8,60E-05	inflammatory response	0	4,70	12,02	2,801-00	J,47L-0J	J,02L-0J
GO:1990748~cellular detoxification 9 5,36 10,03 3,17E-06 5,99E-05 5,50E-05 GO:0042157~lipoprotein metabolic 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0051179~localization 86 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05 8,60E-05	immune response	7	4,17	17,07	3,13E-06	5,96E-05	5,47E-05
GO:0042157~lipoprotein metabolic 10 5,95 8,18 3,73E-06 7,01E-05 6,43E-05 GO:0051179~localization 86 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05 8,60E-05	GO:1990748~cellular detoxification	9	5,36	10,03	3,17E-06	5,99E-05	5,50E-05
process 3,82 4,12 4,12 6,12 1,12 <th1,12< th=""> 1,12 1,12 <</th1,12<>	GO:0042157~lipoprotein metabolic	10	5,95	8,18	3,73E-06	7,01E-05	6,43E-05
GO:003179 localization 80 51,19 1,51 3,83E-06 7,15E-05 6,56E-05 GO:0034381~plasma lipoprotein 7 4,17 15,75 5,05E-06 9,37E-05 8,60E-05	process	00	E1 10	4 5 4	2 025 00	7 155 05	
particle clearance 7 4,17 15,75 5,05E-06 9,37E-05 8,60E-05	GO:0034381~plasma lineprotein	80	51,19	1,51	3,83E-Ub	7,15E-05	0,50E-U5
	particle clearance	7	4,17	15,75	5,05E-06	9,37E-05	8,60E-05

GO:0001906~cell killing	12	7,14	6,03	5,08E-06	9,37E-05	8,60E-05
GO:0042743~hydrogen peroxide	7	4.17	15.17	6.32F-06	1.16F-04	1.06F-04
metabolic process		,	-,	.,	,	,
GO:0008228~opsonization	5	2,98	39,01	6,37E-06	1,16E-04	1,06E-04
GO:0048871~multicellular organismal homeostasis	15	8,93	4,43	7,54E-06	1,36E-04	1,25E-04
GO:0051852~disruption by host of	6	3,57	21,28	8,14E-06	1,46E-04	1,34E-04
symbiont cells		•	,	,	,	,
cells	6	3,57	21,28	8,14E-06	1,46E-04	1,34E-04
GO:0098754~detoxification	9	5 <i>,</i> 36	8,70	9,11E-06	1,62E-04	1,49E-04
GO:0060627~regulation of vesicle- mediated transport	18	10,71	3,61	1,00E-05	1,77E-04	1,63E-04
GO:0015850~organic hydroxy	12	7 74	5.04	1 005 05	1 015 04	4 755 04
compound transport	13	7,74	5,04	1,09E-05	1,91E-04	1,75E-04
GO:0051818~disruption of cells of		0.57				
other organism involved in symbiotic	6	3,57	20,06	1,10E-05	1,91E-04	1,75E-04
GO:0051883~killing of cells in other						
organism involved in symbiotic interaction	6	3,57	20,06	1,10E-05	1,91E-04	1,75E-04
GO:0060191~regulation of lipase activity	8	4,76	10,29	1,25E-05	2,15E-04	1,98E-04
GO:0006639~acylglycerol metabolic	9	5,36	8,23	1,38E-05	2,36E-04	2,17E-04
GO:0045940~positive regulation of	6	3,57	18,98	1,46E-05	2,47E-04	2,27E-04
GO:0006638~neutral lipid metabolic	9	5,36	8,16	1,46E-05	2,47E-04	2,27E-04
CO:0020168~platalat activation	0	5 26	9.04	1 625 05	2 755 04	2 525 04
GO:0030188 platelet activation	9	5,30	8,04	1,03E-05	2,75E-04	2,52E-04
processing	8	4,76	9,85	1,66E-05	2,78E-04	2,55E-04
GO:0031347~regulation of defense response	21	12,50	3,04	1,81E-05	3,02E-04	2,77E-04
GO:1903317~regulation of protein maturation	8	4,76	9,65	1,90E-05	3,15E-04	2,89E-04
GO:0051702~interaction with symbiont	9	5,36	7,86	1,92E-05	3,17E-04	2,91E-04
GO:0051248~negative regulation of protein metabolic process	33	19,64	2,23	2,02E-05	3,32E-04	3,04E-04
GO:0051004~regulation of lipoprotein	5	2,98	29,25	2,19E-05	3,57E-04	3,27E-04
GO:0043691~reverse cholesterol	5	2,98	27,86	2,68E-05	4,35E-04	3,99E-04
GO:0080134~regulation of response to	22	10.0E	2 2 2	2 805 05	4 675 04	4 205 04
stress	52	19,05	2,23	2,09E-05	4,072-04	4,295-04
GO:0060249~anatomical structure homeostasis	15	8,93	3,84	3,70E-05	5,94E-04	5,45E-04
GO:1900048~positive regulation of hemostasis	6	3,57	14,94	4,78E-05	7,59E-04	6,96E-04
GO:0030194~positive regulation of	6	3,57	14,94	4,78E-05	7,59E-04	6,96E-04
GO:1903028~positive regulation of	4	2,38	52,01	4,87E-05	7,64E-04	7,01E-04
GO:0070508~cholesteral import	Л	2 28	52 በ1	4 87F-05	7 64F-04	7 01F-04
	+	2,50	14.22		0 115 04	0.010.04
GO:0043277 apoptotic cell clearance	б	3,57	14,33	5,80E-U5	9,11E-04	8,36E-U4
coagulation	6	3,57	14,33	5,86E-05	9,11E-04	8,36E-04
GO:0035376~sterol import	4	2,38	46,81	6,91E-05	1,07E-03	9,80E-04

GO:0010875~positive regulation of cholesterol efflux	5	2,98	21,67	7,56E-05	1,16E-03	1,07E-03
GO:0051851~modification by host of	8	4,76	7,26	1,18E-04	1,80E-03	1,65E-03
GO:0051801~cvtolvsis in other	,					
organism involved in symbiotic	4	2,38	39,01	1,25E-04	1,89E-03	1,74E-03
GO:0051838~cytolysis by host of	:					
symbiont cells	4	2,38	39,01	1,25E-04	1,89E-03	1,74E-03
GO:0019216~regulation of lipid metabolic process	13	7,74	3,91	1,26E-04	1,90E-03	1,75E-03
GO:0032269~negative regulation of cellular protein metabolic process	30	17,86	2,12	1,41E-04	2,11E-03	1,93E-03
GO:0051241~negative regulation of multicellular organismal process	27	16,07	2,24	1,50E-04	2,24E-03	2,05E-03
GO:0051715~cytolysis in other	4	2,38	36,01	1,62E-04	2,39E-03	2,19E-03
GO:0034380~high-density lipoprotein						
particle assembly	4	2,38	36,01	1,62E-04	2,39E-03	2,19E-03
GO:0008203~cholesterol metabolic	8	4,76	6,88	1,64E-04	2,40E-03	2,21E-03
GO:1902652~secondary alcohol						
metabolic process	8	4,76	6,69	1,96E-04	2,86E-03	2,63E-03
GO:0009636~response to toxic substance	10	5,95	4,90	2,10E-04	3,06E-03	2,81E-03
GO:0031640~killing of cells of other organism	7	4,17	8,11	2,23E-04	3,21E-03	2,95E-03
GO:0044364~disruption of cells of other organism	7	4,17	8,11	2,23E-04	3,21E-03	2,95E-03
GO:0046503~glycerolipid catabolic	6	3,57	10,64	2,45E-04	3,51E-03	3,22E-03
60:0015670°carbon dioxide transport	1	2 38	31.20	2 54E-04	3 60F-03	3 31F-03
CO:0024284~bigh density lineprotein		2,50	51,20	2,342.04	5,002.05	3,312 03
particle clearance	4	2,38	31,20	2,54E-04	3,60E-03	3,31E-03
GO:0018149~peptide cross-linking	5	2,98	15,81	2,66E-04	3,76E-03	3,45E-03
GO:0015671~oxygen transport	4	2,38	29,25	3,11E-04	4,33E-03	3,97E-03
GO:0034374~low-density_lipoprotein		,		-, -	,	-,
particle remodeling	4	2,38	29,25	3,11E-04	4,33E-03	3,97E-03
morphology or physiology of other organism involved in symbiotic interaction	8	4,76	6,20	3,11E-04	4,33E-03	3,97E-03
GO:0016125~sterol metabolic process	8	4,76	6,16	3,24E-04	4,49E-03	4,12E-03
GO:0032376~positive regulation of	5	2,98	15,00	3,27E-04	4,49E-03	4,12E-03
GO:0032373~positive regulation of	5	2,98	15,00	3,27E-04	4,49E-03	4,12E-03
GO:1903036~positive regulation of	7	4,17	7,51	3,37E-04	4,61E-03	4,23E-03
response to wounding		,				
metabolic process	7	4,17	7,45	3,54E-04	4,81E-03	4,41E-03
GO:0065008~regulation of biological quality	56	33,33	1,55	3,55E-04	4,81E-03	4,41E-03
GO:0019731~antibacterial humoral response	6	3,57	9,75	3,68E-04	4,96E-03	4,55E-03
GO:0046461~neutral lipid catabolic	5	2 98	14 27	3.98F-04	5.31F-03	4.88F-03
process		2,50	17,27	5,552 04	5,512 05	.,00E 03
process	5	2,98	14,27	3,98E-04	5,31E-03	4,88E-03

GO:0060620~regulation of cholesterol	3	1,79	87,76	4,25E-04	5,61E-03	5,15E-03
Import						
GO:0010903 hegative regulation of	2	1 70	97.76	4 255 04	F 61F 02	
remodeling	3	1,79	87,70	4,255-04	5,01E-U3	5,15E-03
GO:2000909~regulation of sterol						
import	3	1,79	87,76	4,25E-04	5,61E-03	5,15E-03
GO:0060192~negative regulation of						
lipase activity	4	2,38	26,00	4,47E-04	5,86E-03	5,38E-03
GO:1905954~positive regulation of lipid	_					
localization	/	4,17	7,12	4,50E-04	5,87E-03	5,39E-03
GO:0090207~regulation of triglyceride		2.00	10.01	4 705 04	6 225 22	
metabolic process	5	2,98	13,61	4,78E-04	6,22E-03	5,71E-03
GO:0045834~positive regulation of lipid	0	176	E 71	E 12E 04		
metabolic process	0	4,70	5,71	5,122-04	0,03E-03	0,082-03
GO:0006066~alcohol metabolic process	11	6,55	3,85	5,87E-04	7,56E-03	6,94E-03
GO:001591/~phospholipid transport	6	3 57	8 78	5 98F-04	7 68F-03	7.05E-03
CO.0013914 phospholipid transport	0	3,57	0,70	J,98L-04	7,082-03	7,052-05
GO:0051050*positive regulation of	20	11,90	2,40	6,35E-04	8,11E-03	7,44E-03
GO:0008202~steroid metabolic process	11	6,55	3,81	6,43E-04	8,18E-03	7,51E-03
GO:0050790~regulation of catalytic	38	22.62	1.74	6.69E-04	8.47E-03	7.78E-03
activity		, -	,	-,	-,	,
GO:0035821~modification of			4.70	6 7 4 5 0 4	0 505 00	7 005 00
morphology or physiology of other	9	5,36	4,70	6,74E-04	8,50E-03	7,80E-03
organism						
GO:0030185~nitric oxide transport	3	1,79	70,21	7,05E-04	8,86E-03	8,13E-03
GO:0032369~negative regulation of	5	2 98	11 70	8 52F-04	1 07F-02	9 79F-03
lipid transport		2,50	11,70	0,022 01	1,072 02	3,732 00
GO:0015669~gas transport	4	2,38	20,35	9,40E-04	1,17E-02	1,07E-02
GO:0002683~negative regulation of	1.4	0 22	2.02	1 055 02	1 295 02	1 195 02
immune system process	14	8,33	2,92	1,05E-03	1,285-02	1,185-02
GO:0034382~chylomicron remnant	3	1 79	58 51	1 05E-03	1 28F-02	1 18F-02
clearance	5	1,75	50,51	1,052 05	1,201 02	1,102 02
GO:0010901~regulation of very-low-	3	1.79	58.51	1.05E-03	1.28E-02	1.18E-02
density lipoprotein particle remodeling	-	_,		_,	_,	_,
GO:0071830~triglyceride-rich	3	1,79	58,51	1,05E-03	1,28E-02	1,18E-02
lipoprotein particle clearance			,		-	
GO:0034447 Very-Iow-density	3	1,79	58,51	1,05E-03	1,28E-02	1,18E-02
CO:0010874~regulation of chalosterel						
offlux	5	2,98	11,04	1,06E-03	1,29E-02	1,18E-02
GO:0072593~reactive oxygen species						
metabolic process	10	5,95	3,89	1,11E-03	1,34E-02	1,23E-02
GO:0031639~plasminogen activation	4	2 38	18 72	1 21F-03	1 45E-02	1 33E-02
CO:00107EE~ono carbon compound		2,50	10,72	1,212 05	1,452 02	1,332 02
transport	4	2,38	18,00	1,36E-03	1,62E-02	1,49E-02
GO:0006898~recentor-mediated						
endocytosis	10	5,95	3,77	1,36E-03	1,62E-02	1,49E-02
GO:0090303~positive regulation of						
wound healing	6	3,57	7,31	1,36E-03	1,62E-02	1,49E-02
GO:0002752~cell surface pattern						
recognition receptor signaling pathway	3	1,79	50,15	1,46E-03	1,74E-02	1,59E-02
GO:0032489~regulation of Cdc42	~	4 70	42.00	1 0 4 5 0 2	2 205 02	2 405 02
protein signal transduction	3	1,79	43,88	1,94E-03	2,29E-02	2,10E-02
GO:0042632~cholesterol homeostasis	6	3,57	6,75	1,94E-03	2,29E-02	2,10E-02
GO:0055092~sterol homoostasis	c	2 57	6 60	2 U3E U3) 28⊑ ∩ว	2 18E 02
	0	/د,د	0,09	2,031-03	2,301-02	2,101-02
immune effector process	9	5,36	3,90	2,21E-03	2,57E-02	2,36E-02
minune effector process						

GO:0032372~negative regulation of	4	2,38	15,10	2,27E-03	2,62E-02	2,40E-02
sterol transport		,	-, -	,	,	,
GO:0019433~triglyceride catabolic	4	2,38	15,10	2,27E-03	2,62E-02	2,40E-02
GO:0032375~negative regulation of						
cholesterol transport	4	2,38	15,10	2,27E-03	2,62E-02	2,40E-02
GO:0098883~synapse disassembly	3	1,79	39,01	2,48E-03	2,85E-02	2,62E-02
GO:0010743~regulation of macrophage derived foam cell differentiation	4	2,38	14,63	2,49E-03	2,85E-02	2,62E-02
GO:1905953~negative regulation of lipid localization	5	2,98	8,48	2,82E-03	3,22E-02	2,95E-02
GO:0006979~response to oxidative stress	12	7,14	2,91	2,85E-03	3,24E-02	2,97E-02
GO:0050994~regulation of lipid catabolic process	5	2,98	8,36	2,98E-03	3,37E-02	3,09E-02
GO:0051006~positive regulation of lipoprotein lipase activity	3	1,79	35,11	3,09E-03	3,46E-02	3,18E-02
GO:0030300 [~] regulation of intestinal cholesterol absorption	3	1,79	35,11	3,09E-03	3,46E-02	3,18E-02
GO:0048522~positive regulation of cellular process	69	41,07	1,34	3,25E-03	3,63E-02	3,34E-02
GO:0015748~organophosphate ester transport	6	3,57	5,80	3,75E-03	4,12E-02	3,78E-02
GO:0014012~peripheral nervous system axon regeneration	3	1,79	31,91	3,75E-03	4,12E-02	3,78E-02
GO:1904729~regulation of intestinal lipid absorption	3	1,79	31,91	3,75E-03	4,12E-02	3,78E-02
GO:0061365~positive regulation of triglyceride lipase activity	3	1,79	31,91	3,75E-03	4,12E-02	3,78E-02
GO:0034379~very-low-density lipoprotein particle assembly	3	1,79	31,91	3,75E-03	4,12E-02	3,78E-02
GO:0044242~cellular lipid catabolic process	8	4,76	4,02	3,83E-03	4,17E-02	3,82E-02
GO:0010810~regulation of cell- substrate adhesion	8	4,76	4,02	3,83E-03	4,17E-02	3,82E-02
GO:0046470~phosphatidylcholine metabolic process	5	2,98	7,70	4,00E-03	4,35E-02	3,99E-02
GO:0010742~macrophage derived foam cell differentiation	4	2,38	12,32	4,08E-03	4,41E-02	4,05E-02
GO:0090077~foam cell differentiation	4	2,38	12,00	4,39E-03	4,73E-02	4,34E-02

^b count: nº de genes/proteínas identificadas pertenecientes a cada término

^c %: % de genes/proteínas identificadas pertenecientes a cada término respecto al total incluido en el término

^d fold enrichment: ratio de enriquecimiento de cada término

^e p value: valor p (o nivel de significación) obtenido para cada término

^f Benjamini: valor p tras aplicar la corrección de Benjamini obtenido para cada término

ANEXO 9. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 μ l de suero mediante cromatografía de exclusión por tamaño y distintos métodos de procesamiento de muestra

Tabla 36. Procesos biológicos significativamente enriquecidos en EV purificadas a partir de 250 μl de suero mediante cromatografía de exclusión por tamaño y distintos métodos de procesamiento de muestra. Se muestran todos los términos GO enriquecidos de manera significativa (p valor tras corrección de Benjamini < 0,05) considerando las 103 proteínas identificadas en común por LC-MS/MS tras aplicar a las muestras diferentes protocolos de digestión partiendo en todos los casos de 250 μl de suero y purificando las EV mediante cromatografía de exclusión por tamaño. Análisis de GO realizado con la herramienta de anotación funcional DAVID Bioinformatics Resources 2021 (GOTERM_BP_ALL), valores umbrales preestablecidos Count: 2 y EASE: 0.1. Los genes pertenecientes a cada término no se han incluido en la tabla debido a su gran extensión.

termª	count ^b	% ^c	fold enrichment ^d	p value ^e	Benjamini ^f	FDR ^g
GO:0072376~protein activation cascade	34	40,00	44,66	1,65E-46	4,20E-43	3,86E-43
GO:0006956~complement activation	29	34,12	43,01	1,15E-38	1,46E-35	1,34E-35
GO:0006959~humoral immune response	35	41,18	21,06	2,42E-36	2,06E-33	1,89E-33
GO:0006958~complement activation, classical pathway	23	27,06	41,63	7,23E-30	4,61E-27	4,24E-27
GO:0002455~humoral immune response mediated by circulating immunoglobulin	23	27,06	37,76	7,15E-29	3,65E-26	3,36E-26
GO:0002376~immune system process	59	69,41	4,47	2,47E-28	1,05E-25	9,66E-26
GO:0006955~immune response	51	60,00	5,77	2,95E-28	1,07E-25	9,88E-26
GO:0006952~defense response	47	55,29	5,76	2,08E-25	6,63E-23	6,09E-23
GO:0016064~immunoglobulin mediated immune response	23	27,06	22,40	1,07E-23	3,02E-21	2,78E-21
GO:0019724~B cell mediated immunity	23	27,06	22,12	1,41E-23	3,61E-21	3,32E-21
GO:0002250~adaptive immune response	33	38,82	9,72	1,75E-23	4,05E-21	3,72E-21
GO:0006950~response to stress	62	72,94	3,34	2,36E-23	5,01E-21	4,61E-21
GO:0002253~activation of immune response	29	34,12	11,63	1,85E-22	3,63E-20	3,34E-20
GO:0006909~phagocytosis	23	27,06	15,83	2,20E-20	3,80E-18	3,50E-18
GO:0050776~regulation of immune response	33	38,82	7,67	2,24E-20	3,80E-18	3,50E-18
GO:0045087~innate immune response	33	38,82	7,46	5,13E-20	8,17E-18	7,52E-18
GO:0002252~immune effector process	32	37,65	7,75	8,01E-20	1,20E-17	1,11E-17
GO:0006897~endocytosis	30	35,29	8,58	1,19E-19	1,69E-17	1,55E-17
GO:0006910~phagocytosis, recognition	16	18,82	34,37	4,51E-19	6,05E-17	5,57E-17
GO:0002449~lymphocyte mediated immunity	23	27,06	13,56	6,15E-19	7,85E-17	7,22E-17
GO:0050778~positive regulation of immune response	29	34,12	8,52	7,23E-19	8,78E-17	8,08E-17
GO:0002460 [~] adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains	23	27,06	13,32	8,99E-19	1,04E-16	9,59E-17

GO:0002682~regulation of immune	38	44,71	5,34	1,44E-18	1,60E-16	1,47E-16
GO:0042742~defense response to	22	27.06	12.90	1 70E 19	1 005 16	1 755 16
bacterium	25	27,00	12,09	1,795-10	1,902-10	1,752-10
GO:0002443~leukocyte mediated	24	28,24	11,33	4,42E-18	4,51E-16	4,15E-16
GO:0009605~response to external	46	54,12	3,82	1,48E-17	1,45E-15	1,33E-15
GO:0002684~positive regulation of	30	37.65	6 31	2 7/F-17	2 50F-15	2 28F-15
immune system process	52	57,05	0,31	2,740 17	2,551 15	2,501 15
other organism	26	30,59	8,43	1,17E-16	1,06E-14	9,77E-15
GO:0050896~response to stimulus	77	90,59	1,85	2,00E-16	1,76E-14	1,62E-14
GO:0010324~membrane invagination	16	18,82	22,56	2,94E-16	2,50E-14	2,30E-14
GO:0006911~phagocytosis, engulfment	15	17,65	23,62	1,85E-15	1,52E-13	1,40E-13
GO:0048584~positive regulation of	42	49,41	3,79	1,94E-15	1,55E-13	1,43E-13
GQ:0008037~cell recognition	17	20.00	16.56	3.78F-15	2.92F-13	2.69F-13
GO:0099024~plasma membrane		20,00	10,50	3,702 13	2,522 15	2,052 15
invagination	15	17,65	22,24	4,15E-15	3,11E-13	2,86E-13
GO:0009617~response to bacterium	26	30,59	7,07	7,23E-15	5,27E-13	4,85E-13
GO:0051707~response to other organism	30	35,29	5,59	1,11E-14	7,84E-13	7,21E-13
GO:0043207~response to external biotic stimulus	30	35,29	5,58	1,18E-14	8,14E-13	7,48E-13
GO:0009607~response to biotic	30	35,29	5,35	3,39E-14	2,28E-12	2,09E-12
GO:0002526~acute inflammatory		46.47	22.50	2 0 2 5 4 4	2 575 42	0.075.40
response	14	16,47	22,50	3,93E-14	2,57E-12	2,37E-12
GO:0016192~vesicle-mediated transport	33	38,82	4,67	4,08E-14	2,60E-12	2,40E-12
GO:0048583~regulation of response to stimulus	52	61,18	2,71	4,93E-14	3,07E-12	2,82E-12
GO:0050853~B cell receptor signaling	14	16,47	21,74	6,17E-14	3,75E-12	3,45E-12
GO:0002768~immune response-						
regulating cell surface receptor	18	21,18	11,34	2,27E-13	1,35E-11	1,24E-11
GO:0050871~positive regulation of B						
cell activation	14	16,47	18,49	5,03E-13	2,92E-11	2,68E-11
GO:0002429~immune response-	17	20.00	11 70	0 455 40	4 625 11	4 255 44
pathway	17	20,00	11,70	8,15E-13	4,626-11	4,255-11
GO:0007596~blood coagulation	15	17,65	15,06	9,39E-13	5,20E-11	4,79E-11
GO:0030162~regulation of proteolysis	23	27,06	6,79	1,07E-12	5,81E-11	5,35E-11
GO:0006508~proteolysis	33	38,82	4,11	1,40E-12	7,42E-11	6,82E-11
GO:0007599~hemostasis	15	17,65	14,55	1,50E-12	7,80E-11	7,17E-11
GO:0050817~coagulation	15	17.65	14.49	1.59E-12	8.09E-11	7.44E-11
GO:0019538~protein metabolic	60	70.50	2.14	2 105 12	1 105 10	1 015 10
process	00	70,59	2,14	2,195-12	1,102-10	1,012-10
GO:0045861~negative regulation of proteolysis	17	20,00	10,56	3,86E-12	1,89E-10	1,74E-10
GO:0050864~regulation of B cell activation	14	16,47	14,37	1,26E-11	6,05E-10	5,57E-10
GO:0001775~cell activation	26	30,59	4,99	1,71E-11	8,09E-10	7,44E-10
GO:0051704~multi-organism process	37	43,53	3,20	4,16E-11	1,93E-09	1,77E-09

GO:0002764~immune response-	18	21,18	7,88	7,29E-11	3,32E-09	3,05E-09
GO:0044765~single-organism transport	39	45 88	2 95	9 50F-11	4 25F-09	3 91F-09
GO:0010466~negative regulation of		43,00	2,55	5,502 11	4,252.05	5,512 05
peptidase activity	14	16,47	12,05	1,13E-10	4,97E-09	4,57E-09
GO:1902578~single-organism localization	40	47,06	2,86	1,22E-10	5,27E-09	4,85E-09
GO:0050851~antigen receptor- mediated signaling pathway	14	16,47	11,70	1,63E-10	6,92E-09	6,36E-09
GO:0002757~immune response- activating signal transduction	17	20,00	7,91	2,83E-10	1,18E-08	1,09E-08
GO:0050867~positive regulation of cell activation	17	20,00	7,77	3,68E-10	1,52E-08	1,39E-08
GO:0042060~wound healing	17	20,00	7,50	6,14E-10	2,49E-08	2,29E-08
GO:0010951~negative regulation of	13	15.29	11.76	8.78F-10	3.50F-08	3.22F-08
endopeptidase activity	10	13,23	11,70	0,702 10	3,302 00	3,222 00
lectin pathway	6	7,06	114,93	1,00E-09	3,92E-08	3,61E-08
GO:0048518~positive regulation of biological process	57	67,06	1,96	1,01E-09	3,92E-08	3,61E-08
GO:2000257~regulation of protein activation cascade	7	8,24	59,59	1,45E-09	5,51E-08	5,06E-08
GO:0050878~regulation of body fluid levels	15	17,65	8,41	2,12E-09	7,96E-08	7,32E-08
GO:0051234~establishment of localization	48	56 <i>,</i> 47	2,22	2,36E-09	8,74E-08	8,04E-08
GO:0009611~response to wounding	18	21,18	6,25	2,52E-09	9,09E-08	8,36E-08
GO:0006810~transport	47	55,29	2,25	2,54E-09	9,09E-08	8,36E-08
GO:0050865~regulation of cell activation	19	22,35	5,78	2,57E-09	9,09E-08	8,36E-08
GO:0051251~positive regulation of lymphocyte activation	15	17,65	8,13	3,26E-09	1,14E-07	1,05E-07
GO:0030168~platelet activation	10	11,76	17,55	4,97E-09	1,71E-07	1,57E-07
GO:0042113~B cell activation	14	16,47	8,65	6,41E-09	2,18E-07	2,00E-07
GO:0052547~regulation of peptidase activity	15	17,65	7,32	1,24E-08	4,16E-07	3,83E-07
GO:0002696~positive regulation of leukocyte activation	15	17,65	7,24	1,42E-08	4,69E-07	4,31E-07
GO:0051346~negative regulation of hydrolase activity	14	16,47	7,93	1,81E-08	5,92E-07	5,45E-07
GO:0006954~inflammatory response	18	21,18	5,22	3,63E-08	1,17E-06	1,08E-06
GO:0045807~positive regulation of endocytosis	10	11,76	13,52	4,84E-08	1,54E-06	1,42E-06
GO:0030449~regulation of	6	7,06	57,46	5,18E-08	1,63E-06	1,50E-06
GO:0016485~protein processing	12	14,12	9,32	5,54E-08	1,72E-06	1,58E-06
GO:0030100~regulation of endocytosis	12	14.12	9.19	6.35E-08	1.95E-06	1.79E-06
GO:1903027~regulation of	5	5,88	104,48	1,02E-07	3,11E-06	2,86E-06
GQ:0051179~localization	53	62 35	1 83	1 58F-07	4 75F-06	4 36F-06
GO:0070613~regulation of protein	Q	Q /1	10 26	1 71F_07	5 075-06	4 66F-06
processing GO:1903317~regulation of protein	0	9,41	13,30	1,710-07	5,072-00	-,00L-00
maturation	8	9,41	18,96	1,97E-07	5,78E-06	5,32E-06
GO:0030193~regulation of blood coagulation	8	9,41	18,39	2,43E-07	7,05E-06	6,48E-06
GO:0051249~regulation of lymphocyte activation	15	17,65	5,75	2,47E-07	7,08E-06	6,51E-06

GO:0051604~protein maturation	12	14,12	7,97	2,67E-07	7,56E-06	6,95E-06
GO:1900046~regulation of hemostasis	8	9,41	18,03	2,79E-07	7,81E-06	7,18E-06
GO:0052548~regulation of	13	15 29	6 92	3 12F-07	8 64F-06	7 95F-06
endopeptidase activity	15	13,23	0,52	5,122 07	0,042 00	7,552.00
GO:0050818~regulation of coagulation	8	9,41	17,35	3,63E-07	9,95E-06	9,15E-06
GO:0050764~regulation of	8	9,41	16,72	4,67E-07	1,27E-05	1,17E-05
GO:0007166~cell surface receptor			0.50			
signaling pathway	32	37,65	2,52	5,75E-07	1,54E-05	1,42E-05
GO:0002673~regulation of acute	7	8,24	22,04	7,11E-07	1,89E-05	1,74E-05
$GO:0061024^{\text{membrane organization}}$	19	22.35	3,95	8.37F-07	2.20F-05	2.02F-05
GO:0050766~positive regulation of	15	22,00	3,55	0,072 07	2,202 03	2,022 03
phagocytosis	7	8,24	20,90	9,76E-07	2,54E-05	2,34E-05
GO:0001895~retina homeostasis	7	8,24	19,86	1,32E-06	3,40E-05	3,12E-05
GO:0002694~regulation of leukocyte	15	17,65	4,95	1,48E-06	3,77E-05	3,47E-05
GO:0080134~regulation of response to					0.005.05	
stress	23	27,06	3,15	1,53E-06	3,86E-05	3,55E-05
GO:0002920~regulation of humoral immune response	6	7,06	28,73	1,92E-06	4,81E-05	4,43E-05
GO:0043277~apoptotic cell clearance	6	7,06	28,15	2,14E-06	5,29E-05	4,86E-05
GO:0006953~acute-phase response	6	7,06	27,04	2,61E-06	6,41E-05	5,90E-05
GO:0043086~negative regulation of	16	18.82	1 36	2 71E-06	6 55E-05	6.02E-05
catalytic activity	10	10,02	4,50	2,712.00	0,552 05	0,022 05
GO:0032101~regulation of response to external stimulus	17	20,00	4,07	2,72E-06	6,55E-05	6,02E-05
GO:0002377~immunoglobulin	9	10 59	9 71	3 73F-06	8 90F-05	8 18F-05
production		10,55	5,7 1	3,732 00	0,502 05	0,102 00
wounding	9	10,59	9,24	5,41E-06	1,28E-04	1,18E-04
GO:1903028~positive regulation of	4	4.71	102.16	6.32F-06	1.48F-04	1.36F-04
opsonization		.,, =		0,022 00	2) :02 0 :	1,002 01
GO:0031638~zymogen activation	6	7,06	21,22	8,77E-06	2,03E-04	1,87E-04
GO:0051248~negative regulation of protein metabolic process	22	25,88	2,92	9,33E-06	2,15E-04	1,97E-04
GO:0070527~platelet aggregation	6	7,06	20,58	1,02E-05	2,32E-04	2,13E-04
GO:0050789~regulation of biological	70	05.00	1.22	4 245 05	2.015.04	2 775 04
process	/3	85,88	1,32	1,34E-05	3,01E-04	2,77E-04
GO:0044092~negative regulation of molecular function	18	21,18	3,35	1,62E-05	3,62E-04	3,33E-04
GO:0061041~regulation of wound	0	0.41	0.52	1 065 05	1 245 04	2 005 04
healing	٥	9,41	9,55	1,902-05	4,342-04	5,99E-04
GO:0046649~lymphocyte activation	15	17,65	3,91	2,18E-05	4,79E-04	4,40E-04
GO:0051336~regulation of hydrolase	17	20,00	3,41	2,52E-05	5,48E-04	5,04E-04
GO:0065007~biological regulation	75	88.24	1.28	2.54E-05	5.48E-04	5.04E-04
GO:0010876~lipid localization	11	12.94	5.39	3.24E-05	6.88E-04	6.33E-04
GO:0050727~regulation of	11	12 9/	5 39	3 2/IE-05	6 88F-04	6 33E-0/
inflammatory response		12,54	5,55	5,242 05	0,002 04	0,552 04
GO:0008228~opsonization	4	4,71	61,30	3,36E-05	7,08E-04	6,51E-04
GO:0042157~Ipoprotein metabolic process	7	8,24	11,25	3,51E-05	7,34E-04	6,75E-04
GO:0031589~cell-substrate adhesion	10	11,76	6,05	3,67E-05	7,61E-04	7,00E-04
GO:0060627~regulation of vesicle-	10	1/110	1 73		7 075 04	7 225 04
mediated transport	12	14,12	4,/3	5,90E-05	7,97E-04	7,53E-04
GO:0031347~regulation of defense	14	16.47	3 98	3 91F-05	7 97F-04	7 33F-04
---	----------	-------	-------	----------	----------	----------
response	14	10,47	5,50	5,911-05	7,372-04	7,331-04
GO:0051817~modification of						
morphology or physiology of other	7	8,24	10,66	4,76E-05	9,64E-04	8,86E-04
organism involved in symbiotic				-		
CO:0020195~pogative_regulation_of						
blood coagulation	5	5,88	23,94	5,35E-05	1,07E-03	9,88E-04
GO:1900047~negative regulation of						
hemostasis	5	5,88	23,45	5,80E-05	1,16E-03	1,06E-03
GO:0034109~homotypic cell-cell						
adhesion	6	7,06	14,22	6,14E-05	1,21E-03	1,12E-03
GO:0051050~positive regulation of	10	17.65	2 5 4		1 295 02	1 175 02
transport	15	17,05	5,54	0,50E-05	1,282-05	1,172-03
GO:0019730~antimicrobial humoral	7	8.24	10.06	6.57E-05	1.28F-03	1.18F-03
response	· · ·	0,21	10,00	0,072.00	1,202 00	1,102 00
GO:0007044~cell-substrate junction	6	7,06	13,93	6,77E-05	1,31E-03	1,20E-03
assembly		,	,		,	,
GO:0007160~cell-matrix adhesion	8	9,41	7,66	7,82E-05	1,50E-03	1,38E-03
GO:0050819~negative regulation of	5	5 88	21.68	7 92F-05	1 51F-03	1 39F-03
coagulation	5	5,00	21,00	7,522 05	1,512 05	1,352 03
GO:0006869~lipid transport	10	11,76	5,46	8,08E-05	1,53E-03	1,40E-03
GO:0002440~production of molecular	0	10 E0	C 10		1 905 02	1 665 02
mediator of immune response	9	10,59	0,18	9,022-05	1,80E-03	1,00E-03
GO:0001894~tissue homeostasis	8	9,41	7,33	1,03E-04	1,93E-03	1,77E-03
GO:0034329~cell junction assembly	8	9 41	7 27	1 09F-04	2 01E-03	1 85E-03
CO:0003607~regulation of immuno	0	5,41	,,2,	1,052 04	2,012 05	1,052 05
effector process	10	11,76	5,11	1,34E-04	2,46E-03	2,26E-03
GO:0045321~leukocyte activation	15	17.65	2.78	1 /3E-0/	2 60F-03	2 30F-03
	15	17,05	5,20	1,431-04	2,001-03	2,391-03
GO:0042730~fibrinolysis	4	4,71	36,78	1,65E-04	2,98E-03	2,74E-03
GO:0048522~positive regulation of	43	50.59	1.64	1.68E-04	3.02E-03	2.78E-03
cellular process		,	, -	,	-,	,
GO:0031324~negative regulation of	29	34,12	2,02	1,75E-04	3,13E-03	2,88E-03
GO:0033344~cholesterol efflux	5	5,88	17,41	1,87E-04	3,31E-03	3,04E-03
GO:0032269~negative regulation of	19	22,35	2,64	1,94E-04	3,42E-03	3,14E-03
cellular protein metabolic process				-	-	-
GO:1905952 ⁻ regulation of lipid	7	8,24	8,21	2,00E-04	3,49E-03	3,21E-03
60:0051851~modification by bost of						
symbiont morphology or physiology	6	7,06	10,69	2,36E-04	4,09E-03	3,76E-03
GO:0019731~antibacterial humoral						
response	5	5,88	15,96	2,61E-04	4,51E-03	4,14E-03
GO:0034332~adherens junction	<i>.</i>	7.00	40.00	2 245 24	4 705 00	4 405 00
organization	6	7,06	10,29	2,81E-04	4,78E-03	4,40E-03
GO:0051702~interaction with symbiont	6	7,06	10,29	2,81E-04	4,78E-03	4,40E-03
GO:0034369~plasma lipoprotein		,				
particle remodeling	4	4,71	30,65	2,86E-04	4,80E-03	4,41E-03
GO:0034368~protein-lipid complex	,		20.65	2.005.04	4 005 00	
remodeling	4	4,/1	30,65	2,80E-U4	4,80E-03	4,41E-03
GO:0034330~cell junction organization	8	9,41	6,15	3,02E-04	5,04E-03	4,64E-03
GO:0034367~macromolecular complex				0.475.03		F 205 25
remodeling	4	4,/1	28,73	3,4/E-04	5,/5E-03	5,29E-03
GO:0002752~cell surface pattern	2	2 5 2	00 E1	2 705 04	6 155 02	
recognition receptor signaling pathway	3	3,53	96,51	5,78E-04	0,135-03	5,05E-03
GO:0050748~negative regulation of	2	2 52	98 51	3 78F-01	6 15F-02	5 65F-02
lipoprotein metabolic process	3	3,33	30,51	5,702-04	0,102-03	5,052-03

Anexos

GO:0051852~disruption by host of symbiont cells	4	4,71	27,86	3,81E-04	6,15E-03	5,65E-03
GO:0051873~killing by host of symbiont	4	4,71	27,86	3,81E-04	6,15E-03	5,65E-03
GO:0065008~regulation of biological	33	38.87	1.80	4 04E-04	6.48E-03	5 96F-03
quality	55	30,02	1,00	4,042 04	0,482 03	J,JUL 0J
GO:0035821~modification of						
morphology or physiology of other	7	8,24	7,18	4,09E-04	6,52E-03	6,00E-03
organism						
GO:0034333~adherens junction	-	F 00	11.02	4 205 04	6 035 03	6 275 02
assembly	5	5,88	14,02	4,30E-04	6,82E-03	6,27E-03
GO:0061045~negative regulation of						
wound healing	5	5 <i>,</i> 88	13,85	4,51E-04	7,06E-03	6,49E-03
CO:00E1882~killing of colls in other						
GO.0051885 Killing Of Cells III Other		4 74	26.27	4 5 4 5 0 4	7 005 00	6 405 00
organism involved in symplotic	4	4,71	26,27	4,54E-04	7,06E-03	6,49E-03
interaction						
GO:0051818~disruption of cells of						
other organism involved in symbiotic	4	4,71	26,27	4,54E-04	7,06E-03	6,49E-03
interaction						
GO:0010810~regulation of cell-	_					
substrate adhesion	/	8,24	6,91	5,04E-04	7,74E-03	7,12E-03
	7	0.24	6.01		7 745 02	7 1 2 5 0 2
GO:0001906 cell killing	/	8,24	6,91	5,04E-04	7,74E-03	7,12E-03
GO:0016043~cellular component	16	5/12	1 5 7	5 40E 04	9 25E 02	7 505 02
organization	40	54,12	1,52	5,40L-04	8,23L-03	7,392-03
GO:0043170~macromolecule						
metabolic process	62	72,94	1,32	6,34E-04	9,62E-03	8,85E-03
GO:0009892~pegative regulation of						
GO.0003832 fiegative regulation of	29	34,12	1,86	6,83E-04	1,03E-02	9,49E-03
GO:1903035~negative regulation of	5	5.88	11.97	7.81E-04	1.17E-02	1.08E-02
response to wounding		- ,	,-	,	, -	,
GO:0044403~symbiosis, encompassing	12	1/112	2 2 2	9 12E 04	1 215 02	1 125 02
mutualism through parasitism	12	14,12	5,55	0,131-04	1,211-02	1,122-02
GO:0044419~interspecies interaction	40	4440	2.22	0.445.04	1 265 02	4 355 03
between organisms	12	14,12	3,28	9,14E-04	1,36E-02	1,25E-02
GO:0071827~plasma lipoprotein						
narticle organization	4	4,71	20,43	9,54E-04	1,41E-02	1,29E-02
GO:0071840 cellular component	46	54,12	1,48	1,07E-03	1,57E-02	1,44E-02
organization or biogenesis						
GO:0030194~positive regulation of	4	4 71	19 56	1 08F-03	1 57F-02	1 44F-02
blood coagulation		1,7 ±	19,50	1,002 00	1,57 2 02	1,112 02
GO:1900048~positive regulation of	4	1 71	10 56	1 095 03	1 575 02	1 445 02
hemostasis	4	4,71	19,50	1,08E-03	1,57E-02	1,44E-02
GO:1901888~regulation of cell junction	_					
assembly	5	5,88	10,84	1,13E-03	1,63E-02	1,50E-02
GO:0045216~coll coll iunction						
GO.0043210 Cell-Cell Juliction	7	8,24	5,85	1,19E-03	1,71E-02	1,57E-02
GO:0050820~positive regulation of	4	4.71	18.76	1.22E-03	1.73E-02	1.59E-02
coagulation		,	-, -	,	,	,
GO:0071825~protein-lipid complex	4	1 71	19.76	1 225 02	1 725 02	1 505 02
subunit organization	4	4,71	10,70	1,221-03	1,751-02	1,391-02
GO:0051246~regulation of protein						
metabolic process	28	32,94	1,83	1,23E-03	1,73E-02	1,59E-02
CO:1002026~positivo rogulation of						
response to wounding	5	5 <i>,</i> 88	10,54	1,25E-03	1,76E-02	1,62E-02
GU:1905954~positive regulation of lipid	5	5.88	9.99	1,53E-03	2,13E-02	1,96E-02
localization		- /25	-,	,	,	,
GO:0010543~regulation of platelet	Л	₫ 71	17 25	1 54F-02	2 13F-02	1 96F-02
activation		-,/1		1,346-03	2,131-02	1,301-02
GO:0048871~multicellular organismal		0.44		1 505 03	2 175 02	2.005.02
homeostasis	ŏ	9,41	4,04	1,58E-03	2,1/E-U2	2,00E-02

GO:0014911~positive regulation of	4	4,71	17,03	1,62E-03	2,22E-02	2,05E-02
GQ:0030301~cholesterol transport	5	5.88	9.74	1.68F-03	2.29F-02	2.11F-02
$GO:0045916^{negative}$ regulation of	5	5,00	5,74	1,002 05	2,252 02	2,112 02
complement activation	3	3,53	45,97	1,85E-03	2,51E-02	2,31E-02
GO:0015850~organic hydroxy		0.24	F 22	1 025 02	2 505 02	2 205 02
compound transport	/	8,24	5,33	1,92E-03	2,59E-02	2,38E-02
GO:0007229~integrin-mediated	5	5,88	9,19	2,07E-03	2,78E-02	2,56E-02
GO:2000258~negative regulation of						
protein activation cascade	3	3,53	43,10	2,11E-03	2,80E-02	2,57E-02
GO:0034374~low-density lipoprotein	3	2 5 2	43.10	2 11E-03	2 80F-02	2 57E-02
particle remodeling	5	3,33	45,10	2,111-03	2,801-02	2,371-02
GO:0050790~regulation of catalytic	22	25,88	1,98	2,15E-03	2,84E-02	2,61E-02
activity		,	,		,	,
GO:0006898° receptor-mediated	7	8,24	5,19	2,19E-03	2,88E-02	2,64E-02
CO:0044764~multi organism collular						
process	11	12,94	3,16	2,25E-03	2,94E-02	2,70E-02
GO:0003014~renal system process	5	5,88	8,91	2,33E-03	3,03E-02	2,78E-02
GO:0001952~regulation of cell-matrix			0.77			
adhesion	5	5,88	8,77	2,46E-03	3,18E-02	2,93E-02
GO:0051917~regulation of fibrinolysis	3	3,53	38,31	2,67E-03	3,44E-02	3,17E-02
GO:0015918~sterol transport	5	5 <i>,</i> 88	8,45	2,82E-03	3,61E-02	3,32E-02
GO:0010605~negative regulation of macromolecule metabolic process	26	30,59	1,79	2,85E-03	3,64E-02	3,35E-02
GO:0007155~cell adhesion	16	18,82	2,32	2,87E-03	3,64E-02	3,35E-02
GO:0051049~regulation of transport	18	21,18	2,15	2,97E-03	3,73E-02	3,43E-02
GO:0002921~negative regulation of	з	3 53	36.29	2 98F-03	3 73F-02	3 43F-02
humoral immune response		5,55	50,25	2,502 05	3,732 02	0,102 02
GO:0022610~biological adhesion	16	18,82	2,31	3,00E-03	3,73E-02	3,43E-02
adhesion assembly	4	4,71	13,72	3,01E-03	3,73E-02	3,43E-02
GO:0090109~regulation of cell-		4 74	42.72	2 04 5 02	2 725 02	2 425 02
substrate junction assembly	4	4,71	13,72	3,01E-03	3,73E-02	3,43E-02
GO:0007165~signal transduction	40	47,06	1,49	3,11E-03	3,83E-02	3,52E-02
GO:0048041~focal adhesion assembly	4	4,71	13,52	3,14E-03	3,83E-02	3,52E-02
GO:0007045~cell-substrate adherens	4	4,71	13,52	3,14E-03	3,83E-02	3,52E-02
Junction assembly		0.24	4.92	2 165 02	2.945.02	2 5 4 5 0 2
GO:0070371 ERK1 and ERK2 cascade	/	8,24	4,82	3,10E-U3	3,84E-02	3,54E-02
alternative pathway	3	3,53	34,48	3,30E-03	3,99E-02	3,67E-02
GO:0051235~maintenance of location	7	8,24	4,76	3,36E-03	4,04E-02	3,71E-02
GO:0060249~anatomical structure	8	9.41	4.02	3,51E-03	4,21E-02	3,87E-02
homeostasis		-,-=	.,	,	,	,
GU:1903391~regulation of adherens	4	4,71	12,95	3,55E-03	4,23E-02	3,89E-02
GO:0050746~regulation of linoprotein						
metabolic process	3	3,53	32,84	3,64E-03	4,31E-02	3,97E-02
GO:0019915~lipid storage	4	4,71	12,59	3,84E-03	4,53E-02	4,17E-02

^a term: términos GO

^b count: nº de genes/proteínas identificadas pertenecientes a cada término

° %: % de genes/proteínas identificadas pertenecientes a cada término respecto al total incluido en el término

^d fold enrichment: ratio de enriquecimiento de cada término

^e p value: valor p (o nivel de significación) obtenido para cada término

Anexos

^f Benjamini: valor p tras aplicar la corrección de Benjamini obtenido para cada término

^g FDR: predicción estadística de tasa de falsos descubrimientos o falsos positivos obtenida para cada término