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Abstract: Background: Immunotherapy has recently been incorporated into the spectrum of biliary
tract cancer (BTC) treatment. The identification of predictive response biomarkers is essential in order
to identify those patients who may benefit most from this novel treatment option. Here, we propose a
systematic literature review and a meta-analysis of PD-1, PD-L1, and other immune-related biomarker
expression levels in patients with BTC. Methods: Prisma guidelines were followed for this systematic
review and meta-analysis. Eligible studies were searched on PubMed. Studies published between
2017 and 2022, reporting data on PD-1/PD-L1 expression and other immune-related biomarkers in
patients with BTC, were considered eligible. Results: A total of 61 eligible studies were identified.
Despite the great heterogeneity between 39 studies reporting data on PD-L1 expression, we found
a mean PD-L1 expression percentage (by choosing the lowest cut-off per study) of 25.6% (95% CI
21.0 to 30.3) in BTCs. The mean expression percentages of PD-L1 were 27.3%, 21.3%, and 27.4% in
intrahepatic cholangiocarcinomas (iCCAs—15 studies), perihilar–distal CCAs (p/dCCAs—7 studies),
and gallbladder cancer (GBC—5 studies), respectively. Furthermore, 4.6% (95% CI 2.38 to 6.97) and
2.5% (95% CI 1.75 to 3.34) of BTCs could be classified as TMB-H and MSI/MMRd tumors, respectively.
Conclusion: From our analysis, PD-L1 expression was found to occur approximately in 26% of
BTC patients, with minimal differences based on anatomical location. TMB-H and MSI molecular
phenotypes occurred less frequently. We still lack a reliable biomarker, especially in patients with
mismatch-proficient tumors, and we must need to make an effort to conceive new prospective
biomarker discovery studies.
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1. Introduction

Biliary tract cancers (BTCs) refer to a variety of rare and aggressive cancers that arise
from the biliary epithelial tree both within the liver (iCCA) and outside the liver, with the
latter comprising perihilar (pCCA) and distal (dCCA) cholangiocarcinoma. Gallbladder
cancer (GBC) and the ampulla of Vater cancer (AVC) are also encompassed under BTC.
Among primary liver cancers, iCCA is the second most common type, after hepatocellular
carcinoma [1]. There are significant geographical discrepancies in the incidence of iCCA
and p/dCCA which reflect relevant differences in host genetics and local risk factors [2].
In Western nations, the incidence of iCCA is on the rise [3]. Overall, BTCs lack effective
treatments due to predominant diagnoses at advanced stages. The only potential curative
option is surgery when feasible. Locally advanced and metastatic patients face a poor
prognosis. Personalized treatments, e.g., target therapies, are only available for limited
subgroups and their impact is far more limited than in other neoplasms.

In 2022, the FDA and EMA approved immunotherapy using an anti-programmed
death ligand 1 (PD-L1) antibody based on the results of the TOPAZ-1 trial [4]. This trial
demonstrated an improvement in overall survival (OS), with a hazard ratio (HR) of 0.80
(95% CI, 0.66–0.97; p = 0.021) when durvalumab was added to the first-line standard of
care (gemcitabine plus cisplatin). Notably, an estimated 24.9% of patients were still alive at
24 months, compared to 10.4% in the control group [5]. In addition, results from the phase
III KEYNOTE-966 were recently published, also showing an advantage in terms of OS in
favor of adding pembrolizumab to cisplatin and gemcitabine over the placebo (HR: 0.83;
95% CI, 0.72–0.95; one-sided p = 0.0034) [6].

The identification of reliable predictive biomarkers is crucial for selecting patients
who will benefit most from both currently approved and investigational immune-based ap-
proaches [7]. Even in cancers classified as responsive to immunotherapy, only a proportion
of patients experience a substantial and long-lasting benefit [8].

To date, several molecular and genetic tumor features have been proposed in order
to predict therapeutic responses, sometimes with discordant results. Moreover, even the
composition of the patient’s microbiota may have an impact on cancer immunotherapy [9].
PD-L1 expression can partially predict the magnitude of benefits that derive from im-
munotherapy, but a negative expression is not always indicative of a lack of a response [10].
Furthermore, there is significant heterogeneity regarding the cut-off scores and PD-L1
immunostaining data. Four different PD-L1 antibodies (22C3, 28–8, SP263, and SP142) were
approved by the FDA [11], and notably the concordance between different assays is moder-
ate [12]. Some studies and metanalyses in patients with BTC showed that programmed
cell death protein 1 (PD-1) and PD-L1 expression is associated with poor prognosis and
advanced disease [12–15]. Other reports found no statistical correlation or even a favorable
prognostic role for PD-L1 expression in immune cells [16]. In addition, none of the stud-
ies supporting the use of immune checkpoint inhibitors (ICIs) in BTC mentioned above
(TOPAZ-1 and KEYNOTE-966) have been able to identify any link between the PD-L1 sta-
tus and the treatment-derived benefit. Thus, biomarkers for patient selection are urgently
required.

Tumor mutation burden (TMB) represents the total number of somatic mutations per
megabase, including nonsynonymous mutations, insertions, and deletions. A high TMB
(TMB-H) correlates with the response to ICIs in several types of cancer [17]. This is probably
due to the formation of a large amount of immune neoantigens, and ultimately in increased
tumor immunogenicity [18,19]. The optimal cut-off for TMB-H definition has been a matter
of debate. The most commonly used cut-off value is ≥10 Mut/Mb based on the FDA
agnostic approval of anti-PD-1 therapy. Moreover, there is significant heterogeneity in
the cut-off values used in different retrospective series. Despite the fact that its predictive
value may vary across different cancer types [20,21], its predictive role at a cut-off value
of ≥10 Mut/Mb has been recently validated in real-world data in a wide number of solid
tumors [22].
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Deficiency in mismatch repair (MMR) is typically identified through immunohisto-
chemical staining. A lack of expression in one of the MMR proteins (MLH1, MSH2, MSH6,
and PMS2) has been reported to occur in less than 10% of samples and often correlates
with high microsatellite instability (MSI) status after DNA testing (with approximately
70% concordance) [23]. The MSI phenotype has been reported in <5% of BTCs [24] with
a slightly higher incidence in iCCA than in p/dCCA and GBC [25]. Both of these alter-
ations have been correlated with a cancer immunotherapy response in basket trials in
non-colorectal cancers, including BTC. The most representative example is the KEYNOTE-
158 clinical trial, which included a total of 22 BTC patients with MMR deficiency or MSI
high tumors and achieved a complete and partial radiological response rate of 13.6% and
27.3%, respectively [26].

Here, we present a systematic review of the existing literature on immunotherapy
biomarkers in BTCs, particularly to define their prevalence in BTC and in each anatomical
subtype (iCCA, p/dCCA, and GBC).

2. Methods
2.1. Objectives

The primary objective of our analysis was to identify the prevalence of immune-related
biomarkers in BTCs. The following biomarkers were included: PD-L1 expression; tumor
mutation burden; DNA MMR; MSI; tumor-infiltrating lymphocytes (TILs); IFN-γ signaling
pathways; and neoantigen load.

2.2. Search Strategies

We performed a search on PubMed. We employed the following search strings: (“PD-1”
OR “PD-L1” OR “PD1” OR “PDL1” OR “Programmed Cell Death 1 Receptor”[Mesh]) AND
(“cholangiocarcinom*” OR “Klatskin Tumor” OR “Gallbladder cancer” OR “Cholangiocarci-
noma”[Mesh] OR “Gallbladder Neoplasms”[Mesh] OR “Klatskin Tumor”[Mesh]); (“Tumor
mutation burden” OR “mismatch repair” OR “MMR” OR “microsatellite instability” OR
“MSI” OR “neoantigen load” OR “DNA Mismatch Repair”[Mesh] OR “Microsatellite Insta-
bility”[Mesh]) AND (“cholangiocarcinom*” OR “Klatskin Tumor” OR “Gallbladder cancer”
OR “Cholangiocarcinoma”[Mesh] OR “Gallbladder Neoplasms”[Mesh] OR “Klatskin Tu-
mor”[Mesh]); (“Tumor infiltrating lymphocytes” OR “TIL” OR “IFN-γ” OR “Lymphocytes,
Tumor-Infiltrating”[Mesh] OR “Interferon-gamma”[Mesh]) AND (“cholangiocarcinom*”
OR “Klatskin Tumor” OR “Gallbladder cancer” OR “Cholangiocarcinoma”[Mesh] OR
“Gallbladder Neoplasms”[Mesh] OR “Klatskin Tumor”[Mesh]).

2.3. Study Eligibility

Inclusion criteria were as follow: studies that included patients with iCCA, p/dCCA,
GBC, or AVC; retrospective/prospective design; studies reporting data on immune-related
biomarkers of interest identified for this review, including prevalence and/or predic-
tive/prognostic impacts (e.g., tumor response or progression-free survival (PFS) and OS);
studies published on PubMed from January 2017 to January 2022. Exclusion criteria were
as follows: reviews and opinion articles; studies with fewer than 10 patients; studies pub-
lished in a language other than English; studies that not reported data on at least one of
the following immune biomarkers: PD-L1 expression, TMB, DNA MMR, MSI, TILs, IFN-γ
signaling pathways, and neoantigen load; and studies on others tumor types without any
distinction for BTC.

If there were duplicates (studies including the same population), the publication
that included the largest number of patients was selected, and the other was excluded.
If a multicenter study included a single-center series that was published separately, the
multicenter study was selected and the single-center series was discarded. If a study
reported data on specific subgroups of patients (e.g., EBV-positive patients, combined
hepatocellular cholangiocarcinoma, etc.), those data were excluded when possible. If a
study investigated the biomarkers of interest only in a subgroup of included patients, the
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percentage was calculated on that numerosity. For each biomarker, we included data for the
lowest cut-offs available. To be more specific, for PD-L1, we considered positive cases with
the lowest cut-off considered by the single study. Furthermore, if reported, we extracted
the data on the expression on tumor cells. For TMB, we considered TMB-H tumors as
established by the cut-off defined in each study (if the cut-off was not reported, the data
were extrapolated when possible, using a cut-off of 20 mut/Mb). Finally, for dMMR/MSI-H
analysis, we considered both cases that were reported as dMMR by immunohistochemistry
(IHC) and/or MSI-H by PCR or gene sequencing to be positive. This scoping review was
conducted following PRISMA guidelines.

2.4. Quality Assessment and Evaluation of the Risk of Bias

The reliability of the studies for our objective was determined by assessing the risk of
bias. The study was considered to be of good (G) reliability if no more than two high-risk-
of-bias features were detected; of medium (M) reliability if two to four high risk-of-bias
features were detected; and of poor (P) reliability if more than four high risk-of-bias features
were detected. The indicators for the assessment of risk of bias are presented in Table 1.

Table 1. Risk-of-bias indicators.

Low-Risk-of-Bias Indicators High-Risk-of-Bias Indicators

– prospective design
– the consecutive selection of patients
– multicentric study
– central review of the biomarker
– samples assessed by at least 2 blinded designated

researchers
– biomarker assessment based on non-standardized

methodology
– biomarker assessment based on a high-quality

procedure
– data available

– retrospective design (or not specified)
– no-consecutive or possible bias in the selection of patients
– monocentric study
– samples assessed by only one non-blinded designated

researcher
– an assessment and review of the samples not described
– no central review of the biomarker
– biomarker assessment based on non-standardized or specified

methodology
– biomarker assessment based on poor-quality or non-specified

procedures
– no data available
– discrepancy between patients included/evaluated

2.5. Statistical Analysis

Descriptive statistical analysis was performed using Excel. Graphs and statistical
analyses of biomarkers (e.g., calculation of the weighted mean value, taking into account
the number of patients per study) were performed using Excel and R studio (Version 1.2.504;
ggplot2, dplyr, hrbrthemes, viridis, and gapminder packages).

3. Results
Selection of the Studies

After combining the results of each search string, 308 items were retrieved. We excluded
68 duplicates, resulting in 240 results. After assessing the titles or abstracts, 107 items were
considered for full text evaluation. Twenty-eight manuscripts were excluded after full-text
evaluation. Then, 18 of the remaining 79 were excluded mainly because they focused on
different biomarkers. Eventually, 61 studies were analyzed. Figure 1 shows a flowchart of
the study.

This study included a total of 61 eligible studies, most of which were retrospective
(90%) and unicentric. The reliability of the studies for our objective was limited, with most
being of medium reliability (65.6%), mainly due to the retrospective aspect of design (90%
of eligible studies), the monocentric aspect of the study (82% of eligible studies), possible
bias in the selection of patients (11% of eligible studies), and no central or blinded review of
the biomarkers (46% of eligible studies). In terms of the primary tumor type, most included
either iCCA (34.4%) or a mixture of primary BTC tumors (39.3%). p/dCCA and GBC were
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less represented (11.5% and 14.8% of studies, respectively). In our review, we included 39,
13, and 27 studies reporting data on PD-L1 expression, TMB, and MSI/dMMR, respectively.
No relevant studies to allow pooled analysis for TILs, IFN-γ signalling pathways, and
neoantigen load pathways were identified. The details studied for each subgroup are
summarized in the Supplementary Tables.
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The characteristics of the included studies are outlined in Table 2.
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Table 2. Characteristics of the included studies.

All Studies
(n = 61)

PD-L1
(n = 39)

TMB
(n = 13)

MSI
(n = 27)

Study design
Prospective trial 6 (9.8%) 2 (5.1%) 2 (15.4%) 3 (11.1%)

Retrospective study 55 (90.2%) 37 (94.9%) 11 (84.6%) 24 (88.9%)

Centers
Multicenter 11 (18.0%) 6 (15.4%) 7 (53.8%) 9 (33.3%)

Unicenter 50 (82.0%) 33 (84.6%) 6 (46.2%) 18 (66.6%)

Reliability

Good reliability 14 (23.0%) 7 (17.9%) 8 (61.5%) 9 (33.3%)

Medium reliability 40 (65.6%) 27 (69.2%) 4 (30.8%) 15 (55.6%)

Poor reliability 7 (11.5%) 5 (12.8%) 1 (7.7%) 3 (11.1%)

Primary tumor

iCCA only 21 (34.4%) 15 (38.4%) 5 (38.5%) 7 (25.9%)

p/dCCA only 7 (11.5%) 7 (17.9%) 1 (7.7%) 1 (3.7%)

GBC only 9 (14.8%) 5 (12.8%) 1 (7.7%) 3 (11.1%)

Mixed subtypes 24 (39.3%) 12 (30.7%) 6 (46.2%) 16 (59.3%)

A total of 13,490 patients were included in the 61 considered studies, whereby 6714 pa-
tients had iCCA, 2083 had p/dCCA (including 448 Klatskin tumors and 779 distal p/dCCA),
2506 had GBC, 37 had AVC carcinoma, and 923 had other or unspecified histology. Data
from 12,870 patients were considered (some patients were excluded mainly due to
mixed histology such as hepatobiliary carcinoma or restricted molecular subgroups). The
mean number of patients per study was 221 (95% CI 151 to 292). Furthermore, 5972
out of 12,638 patients were female (47.2%). The mean age (51 studies) was 62.7 years
(95% CI 61.4 to 64.1). The disease stage was specified for 2568 patients, 1289 of whom had
stage I-II disease, while 1279 had stage III-IV disease. In total, 4131 patients were resected.
The patient characteristics are summarized in Table 3.

Table 3. Description of patients of the studies included.

All Cohorts
(61 Studies)

PD-L1
(39 Studies)

TMB
(13 Studies)

MSI
(27 Studies)

Total number of patients 13,490 7778 6288 9127

Total number of patients included for
the analysis 12,807 7682 6212 8470

Mean number of total patients per
study (95% CI) 221 (151–292) 199 (117–282) 484 (217–751) 338 (194–482)

Mean age (95% CI) 62.7 (61.4–64.1) 62.5 (60.8–64.2) 61.1(60–62.1) 63.0 (61.4–64.6)

Gender
(mean)

Data available 58/61 studies 31/39 studies All studies 25/27 studies

Male 115 105 229 169

Female 103 96 254 167

Stages

Data available 2568 (19%) 1162 (14.9%) 947 (15.2%) 1152 (12.6%)

I–II 1289 (50.2%) 769 (66.2) 358 (37.8%) 362 (31.4%)

III–IV 1279 (49.8%) 393 (33.8) 589 (62.2%) 790 (68.6%)

Disease status

Data available 5697 (42.2%) 3831 (49.2%) 1157 (18.4%) 2877 (31.5%)

Resected 4131 (72.5%) 2682 8 (70%) 190 (16.4%) 1639 (57%)

Advanced 1566 (27.5%) 1149 (30%) 967 (83.6%) 1238 (43%)
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4. PD-L1

Thirty-nine studies with PD-L1 expression data were included. We acknowledge that
a great heterogeneity of PD-L1 expression data emerged due to the cut-off points chosen by
each study, the dilution and type of antibody used, and the reported data on expression
(PD-L1 expression on tumor cells, CPS—“combined positive score”, and TPS—“tumor
proportion score”). We decided to exploit the lowest level of expression per study, as well as
to privilege data on PD-L1 expressions on tumor cells when provided, instead of combined
expression scores. To be more specific, 11/39 studies used 1% of tumor cells as the cut-off;
10/39 used ≥5% of tumor cells; 1/39 used ≥2% of tumor cells; 1/39 used ≥25% of tumor
cells; 2/39 used CPS ≥ 1%; 2/39 used TPS ≥ 1%; 5/39 used combined scores; and 7/39
used unspecified scores.

The mean percentage of PD-L1-positive tumors among the studies was 25.6% (95% CI
21.0 to 30.3). The median percentage of PD-L1-positive tumors among the studies was 23%.
The weighted mean percentage of PD-L1-positive tumors was 21.7%.

The mean percentages of PD-L1 expression were 27.3%, 21.3%, and 27.4% in iCCAs
(15 studies), p/dCCAs (7 studies), and GBC (5 studies), respectively.

The percentage of PD-L1-positive tumors in each study is shown in Supplementary
Table S1 and Figure 2.
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Figure 2. Percentage of PD-L1 expression in BTCs. iCCA, intrahepatic cholangiocarcinoma; p/dCCA,
perihilar–distal cholangiocarcinoma; GBC, gallbladder cancer. “All studies” refers to all BTC studies
combined in the same column. “Mixed subtypes” refers to studies that included more than one BTC
subtype.

5. TMB

Thirteen studies with data on TMB were included. The mean number of patients per
study was 484. We acknowledge that great heterogeneity in TMB data due to the different
cut-off points used in the studies. To be more specific, six, three, and four studies used
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19.5–20 mut/Mb, 17 mut/Mb, and 9.3–12.5 mut/Mb as cut-off points, respectively. The
mean mut/Mb was reported by 10 studies.

The mean and median TMB values were 4.9 mut/Mb and 4.7 mut/Mb, respectively.
The mean TMB-H percentage per patient in all 13 studies was 4.6% (95% CI 2.38 to 6.97).

The median percentage of TMB-H patient was 3.8%. The weighted mean percentage of
TMB-H patients in the 13 studies was 3.6%. The percentage of TMB-H tumors in each study
is shown in Supplementary Table S2 and Figure 3.
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Figure 3. Percentage of TMB-H tumors in BTCs. iCCA, intrahepatic cholangiocarcinoma; p/dCCA,
perihilar–distal cholangiocarcinoma; GBC, gallbladder cancer. “All studies” refers to all BTC studies
combined in the same column. “Mixed subtypes” refers to studies that included more than one BTC
subtype.

6. MSI/dMMR

We identified 27 studies that investigated MSI/dMMR status. The mean number
of patients per study was 338. We recognize that there was significant heterogeneity in
MSI/dMMR due to the specific methodologies (IHC/NGS/PCR) proposed by various
authors.

The mean percentage of patients defined as dMMR/MSI among the studies was 2.5%
(95% CI 1.75 to 3.34). The median percentage of dMMR/MSI patients was 2.1%. The
weighted median was 2.07%. The percentage of dMMR/MSI tumors in each study is
presented in Supplementary Table S3 and Figure 4.
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7. Discussion

Data on immunotherapy biomarkers are yet to be conclusive for BTC. Our systematic
review and pooled analysis confirm that MMR deficiency/MSI and high TMB in BTC,
which likely represent the most reliable predictive biomarkers for immunotherapy, are rare
(4.6% TMB-H; 2.5% MSI/MMRd). Despite the expression of PD-L1 being more frequent
(25.6%), this does not seem to be a reliable biomarker in BTC for either durvalumab or
pembrolizumab [5,6]. Thus, based on the TOPAZ-1 and KEYNOTE-966 clinical trials, there
are now data that can be used to incorporate checkpoint inhibitors to first-line chemotherapy
for all patients with BTC without a prior biomarker selection [5,6]. It is, however, a hugely
unmet need to further explore potential biomarkers, since it is clear from the clinical trials
performed up to now that not all patients benefit the same from these novel therapeutic
approaches.

Our review highlights some of the main issues we are facing with the development of
biomarkers for immunotherapy in BTC.

The clinical relevance of PD-L1 expression, MSI/MMRd, and TMB-H has been more
widely investigated in other cancers [27].

In advanced non-small cell lung cancer (NSCLC) patients harboring a PD-L1 tumor
proportion score (TPS) of ≥50%, immunotherapy alone has shown a clear benefit over
chemotherapy doublets in first-line settings [28]. In BTC, a TPS > 50% is infrequent
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and sporadic data are precisely focused on this subgroup of patients [29]. TMB and
MSI/MMRd are probably the most reliable biomarkers of immunotherapy efficacy, as
testified by its consistency across different histologies [30,31]. Pembrolizumab has recently
received the FDA’s full approval as agnostic treatment in patients with MSI-H/dMMR
tumors based on results from the Phase 2 KEYNOTE-158, KEYNOTE-164, and KEYNOTE-
051 trials. Few data are available on the efficacy of immunotherapy in BTC patients
with TMB-H or MSI. Lemery et al. reported a 27% (3/11) response rate in MSI-H BTC
patients treated with pembrolizumab [32]. Marabelle et al. reported a 40.9% ORR for MSI-
H/dMMR cholangiocarcinoma patients included in the KEYNOTE-158 trial [33]. Moving
to TMB, we removed 4.6% of TMB-H patients from our analysis. A new more recent pan-
tumor analysis reported a 8.2% rate of TMB-H tumors (cut-off mut/Mb > 10) among the
21 cholangiocarcinomas included [34]. However, it should be noted that different cut-offs
were used in the studies included in the present meta-analysis. Data on the efficacy of
immunotherapy, specifically in TMB-H BTC patients, are limited, and no BTC patients with
TMB-H were included in the KEYNOTE-158 trial [35,36]. Given the encouraging pan-tumor
data, even in terms of tumor shrinkage, specific analysis on this subgroup of BTC patients
is strongly required.

Immunotherapy administration alone (in the absence of MMR deficiency, high MSI, or
high TMB) showed limited efficacy in patients with advanced BTC; however, we show in
this study that these biomarkers are rarely present in BTC. The combination of durvalumab
and pembrolizumab with standard first-line cisplatin and gemcitabine chemotherapy led
to benefits in OS, and the combination of checkpoint inhibitor and chemotherapy is now
considered a new standard of care in BTC. Despite PD-L1 being present in around one in
four BTC patients, this is not a reliable predictive biomarker in BTC, and we have no way
of identifying patients who may derive the most benefit.

On top of this, studies reporting novel biomarkers in BTC are lacking and the available
studies are of poor quality. Moving ahead, learning what has already been developed in
other diseases could be of much help. Available data from other malignancies in which
immunotherapy has already gained a pivotal role in the treatment landscape, such as
lung cancer, could serve as a guide. Moreover, new data on other biomarkers, such
as INF-γ signature, tumor microenvironment, immune profile and spatial organization,
and intratumoral microbiota, should be considered and prospectively evaluated in BTC
patients who will receive immunoreactive therapies. Along these lines, the relevance of
an immunoscore has already been recognized in other histologies [37], and an exhausted
immune profile and low CD3/CD4 T cells in the tumor center are likely related to shorter
survival in iCCA patients [38]. Despite searching for studies that explore these novel
biomarkers in our systematic literature search, we failed to find significant studies. This
highlights how much delayed we are in exploring these in BTC, while the field is much
more advanced in other malignancies where immunotherapy has been the standard of care
for much longer.

The challenge of combining multiple reports obtained with different technical pro-
cedures represents the key limitation of our investigation. We also acknowledge that we
performed our analysis by only searching on Pubmed with the above-mentioned research
strings, and some reports may not be screened. Overall, the quality of studies up to now
is poor. Sample sizes are small, and most studies are retrospective. We need to make
an effort to conceive and bring ahead prospective biomarker discovery studies together
with drug development trials. These will permit a more accurate distinction between
predictive/prognostic markers and impact assessment, which are otherwise challenging to
obtain without randomization. Although our findings were similar across BTC subtypes,
we probably need to explore further potential variabilities between different BTC groups,
since it is now clear that they represent distinct entities with unique clinical and molecular
characteristics.

Technical methods and standardizations for the assessment of immunotherapy-related
biomarkers are pivotal points. For example, on PD-L1 expression, there is a highly inhomo-
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geneous variety of retrospective literature studies on different antibodies, procedures, IHC
platforms, positivity cut-off expression profiles on distinctive cells of the tumor microen-
vironment, kinds of expression (membranous versus cytoplasmic), and scoring systems.
Although it has been suggested that a high PD-L1 expression is associated with response to
immunotherapy in BTC, an optimal cut-off value has not been defined to date [39]. With
regards to dMMR/MSI, the key is the concordance between IHC and PCR methods and
the optimal detection flowchart. A recent ESMO recommendation document suggested
that IHC can be used against four MMR proteins (MLH1, MSH2, MSH6, and PMS2) as part
of the first assessment and PCR test in the case of indeterminate IHC results or a loss of
only one heterodimeric subunit [40]. Furthermore, the relationship between this phenotype
and other biomarkers, such as TMB or PD-L1, also deserves attention [40]. Turning to TMB,
determining an optimal cut-off level for the definition of the TMB-H phenotype, with the
best possible predictive value for immunotherapy efficacy, is the main point of debate.
Based on the latest data, it seems like the cut-off of 10% is a useful tool in real life [22].

Finally, further exploring correlations between known and novel biomarkers could be
something to explore further. As an example, for both TMB and MSI, correlation analysis
with neoantigens’ tumor levels could be fascinating when considering the rationale for
their value as biomarkers [19].

In conclusion, our study highlights the multiple unmet needs in the field of biomarkers
for immunotherapy in BTC. Moving forward, we must plan and develop parallel transla-
tional studies that take place alongside drug development with adequate tissue and blood
acquisition to develop novel biomarkers that move the field forward. This will require
close collaboration between, clinical, translational, and basic researchers.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells12162098/s1. Table S1. Summary of studies on PD-L1 expression
in BTCs. iCCA, intrahepatic cholangiocarcinoma; p/dCCA, perihilar–distal cholangiocarcinoma;
GBC, gallbladder cancer; AVC, ampulla of Vater cancer. * data extracted, not reported in the text.
Table S2. Summary of studies on TMB in BTCs. iCCA, intrahepatic cholangiocarcinoma; p/dCCA,
perihilar–distal cholangiocarcinoma; GBC, gallbladder cancer AVC, ampulla of Vater cancer. * data
extracted, not reported in the text; $ data refers to the entire cohort of 357 pts. Table S3. Summary of
studies on dMMR/MSI in BTCs. iCCA, intrahepatic cholangiocarcinoma; p/dCCA, perihilar–distal
cholangiocarcinoma; GBC, gallbladder cancer AVC, ampulla of Vater cancer. [12,13,23,24,29,41–96].
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AVC ampulla of Vater cancer
BTC biliary tract cancer
CCA cholangiocarcinoma
dCCA distal cholangiocarcinoma
GBC gallbladder cancer
IHC immunohistochemistry
iCCA intrahepatic cholangiocarcinoma
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pCCA perihilar cholangiocarcinoma
p/dCCA perihilar–distal cholangiocarcinoma
PFS progression-free survival
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