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Abstract 

NMR based metabolomics in precision medicine.  

Application to metabolic syndrome and COVID-19. 
 

Precision medicine is considered as an innovative approach to traditional medicine, for 

a tailored treatment of patient’s pathologies according to individual characteristics. 

Metabolomics, using different technologies like nuclear magnetic resonance (NMR), 

offers the possibility to observe the metabolic changes, to identify biomarkers and to 

study the molecular mechanism involved in a specific disease, which are considered 

important factors for a better diagnosis and treatment. Here we decided to apply NMR-

metabolomics to the study of two unrelated disease case studies: metabolic syndrome 

and COVID-19, the recent worldwide infection caused by SARS-CoV-2 virus.  

A large cohort of urine (11,127 individuals) and serum (8470 individuals) samples was 

used to investigate the molecular signature of the metabolic syndrome. NMR 

metabolomics showed to be sensitive to this disorder, with all the contributing risk 

factors involved in the development of MetS represented by at least one of the 

identified metabolites from the conduced analysis. Disease progression was 

accompanied by a continuous variation (up- or down-regulation) of the pertinent 

metabolites, allowing the obtention of a metabolic model that can discriminate between 

individuals with and without MetS with statistical significance, adding an 

unprecedented diagnostic molecular dimension to the set of risk factors that currently 

describe it.  

To understand the characteristic aspects of SARS-CoV-2 infection, a cohort of 263 

COVID-19 patients in the acute phase of the disease and 280 pre COVID-19 control 

subjects was analysed. The observed metabolic and lipidomic changes that characterize 

the infected subjects were consistent with a model in which SARS-CoV-2 infection, in 

addition to respiratory system impairment, was producing a systemic infection 

involving different organs dysfunction, dyslipidemia and oxidative stress.  
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Resumen 

La medicina de precisión debe considerarse como un enfoque innovador de la medicina 

tradicional ya que se centra en un tratamiento más personalizado de las patologías de 

los pacientes en función de sus características individuales. El estudio del mecanismo 

molecular asociado a una enfermedad y la identificación de los biomarcadores 

implicados en el desarrollo y la progresión de dicha patología se consideran factores 

esenciales para obtener un mejor diagnóstico y una optimización de la terapia. La 

metabolómica proporciona una imagen completa del organismo y permite observar los 

cambios metabólicos específicos que caracterizan a un individuo debido a su condición 

de salud o a factores externos (dieta, medioambiente, ejercicio, etc). En concreto, la 

metabolómica por resonancia magnética nuclear (RMN) es especialmente adecuada 

para este tipo de análisis, ya que las mediciones se realizan de forma rápida y sencilla, 

es una técnica que ofrece la posibilidad de identificar y cuantificar numerosos 

metabolitos, las muestras no necesitan derivatización y por tanto se acelera la 

obtención de resultados. En este trabajo decidimos aplicar las ventajas que ofrece esta 

técnica al estudio de dos enfermedades no relacionadas entre sí: el síndrome 

metabólico y a la reciente pandemia mundial causada por el virus SARS-CoV-2.  

El síndrome metabólico (SM) es una patología compleja que se origina por una 

combinación de distintos factores de riesgo, como alteraciones del metabolismo de la 

glucosa, obesidad, niveles elevados de triglicéridos, valores bajos de colesterol HDL 

así como la presencia de hipertensión. Se ha demostrado que padecer este trastorno 

puede conllevar un mayor riesgo de desarrollo de enfermedades cardiovasculares y, 

por lo tanto, un incremento de la mortalidad. Por este motivo y debido al creciente 

número de personas afectadas por el SM, actualmente esta enfermedad representa un 

importante problema sanitario a nivel mundial. Sin embargo, y a pesar de todos los 

estudios realizados en este campo, el SM todavía no se conoce bien. Basta decir que 

no existe un consenso para su definición médica y el diagnóstico se basa únicamente 

en la sintomatología compatible.  

En este estudio se ha utilizado la metabolómica por RMN para investigar 

detalladamente las características moleculares del SM. Para ello se ha empleado una 
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gran cohorte de muestras de orina (11.127 individuos) y suero (8.470 individuos), 

pertenecientes principalmente a trabajadores de diferentes sectores de las empresas del 

País Vasco y a otras sub-cohortes de muestras de menor tamaño de otras regiones 

españolas o de Europa. La cohorte se diseñó para contemplar todas las posibles 

condiciones intermedias que pueden llevar al desarrollo de SM., desde sujetos sin 

ningún factor de riesgo (FR) hasta individuos con SM. Por esta razón, para poder 

describir todas las combinaciones posibles fue necesario clasificar las muestras, 

creando un código binario que indicara la presencia (1) o la ausencia (0) de cada uno 

de los cuatro FR (FR1 = diabetes, FR2 = obesidad, FR3 = dislipidemia, FR4 = 

hipertensión) generando finalmente16 condiciones diferentes (24).  

En primer lugar, se analizaron los perfiles medios obtenidos por RMN a partir de la 

orina, para cada una de las condiciones examinadas y que representan su huella 

molecular característica. Mediante un análisis PCA no supervisado se obtuvo una 

separación de los diferentes perfiles según el FR presentado, evidenciando 

especialmente el gran impacto que la diabetes y la hipertensión tenían en este proceso.  

Todas las condiciones generadas se compararon mediante un análisis univariante con 

los individuos aparentemente sanos (0000), utilizando como variables para las 

comparaciones la intensidad de los bins de los espectros de orina adquiridos. Los bins 

que resultaron estadísticamente significativos en al menos una de las comparaciones 

de los perfiles con la ausente de factores de riesgo bajo consideración (0000), se 

representaron en un heatmap, y se asignaron los metabolitos asociados a ellos 

observando los espectros de RMN en el área correspondiente a cada uno de los bins. 

Se pudo observar que, una vez más, los perfiles se agrupaban en cuatro grupos 

diferentes, de la misma forma que en el PCA. Utilizando como herramienta un análisis 

de cluster no supervisado, se ordenaron los distintos perfiles con una tendencia que se 

asemejaba a la definición de síndrome metabólico según la OMS, el EGIR y la AACE, 

con la diabetes como factor más relevante (y obligatorio) para el diagnóstico. De 

hecho, también fue posible observar una clara separación entre los perfiles diabético 

(1XXX) y no diabético (0XXX). Además, la variación en la concentración de los 

metabolitos estaba en consonancia con la progresión hacia estadios más avanzados de 

SM.  
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Posteriormente, se describieron las correlaciones encontradas en los metabolitos 

relacionados con los FR estudiados y el SM, o se investigó una posible explicación de 

su presencia en la orina. Además, este estudio ha sido capaz de identificar por primera 

vez la asociación entre el SM y algunos metabolitos. La glucosa fue uno de los 

metabolitos más destacados en el heatmap y su mayor concentración se relacionó, 

como era de esperar, con la diabetes y la resistencia a la insulina. Entre todos los 

metabolitos identificados, la mayoría estaban asociados a la diabetes y la obesidad. Por 

ejemplo, el p-cresol sulfato, el ácido 4-hidroxifenilpirúvico (4-HPPA) y el maltitol se 

vincularon con problemas en el metabolismo de la glucosa, mientras que el ácido 

salicilúrico, el ácido nicotinúrico, el N-óxido de la trimetilamina (TMAO), la 

trigonelina y el triptófano se asociaron con la obesidad. Se buscó una explicación 

lógica para la asociación de estos metabolitos con los FR asociados al SM o con el 

propio síndrome, y se observó que determinados metabolitos estaban claramente 

conectados al menos a uno de los factores de riesgo del SM, aunque en el caso de la 

dislipidemia y la hipertensión esta asociación se produjo en menor medida. Por tanto, 

el análisis de orina mediante RMN ha demostrado ser sensible a la detección del SM. 

Para profundizar el análisis del deterioro del metabolismo en función del número de 

FR presentados, se realizó un análisis multivariante considerando otra vez el perfil 

medio por cada una de las condiciones, pero utilizando solo los bins más relevantes 

según el análisis anterior. Para comparar los perfiles, se calcularon las distancias de 

correlación de Spearman (escaladas entre 0 y 1) entre cada perfil y el 0000. De esta 

manera se pudo observar su similitud con esta condición y cuanto de lejos estaba de 

desarrollar SM. Así, fue posible confirmar la variación del metabolismo de la orina en 

función del número creciente de factores de riesgo presentados, aunque no todos ellos 

evidenciaron la misma influencia en la progresión hacia el SM. De hecho, la 

manifestación concomitante de algunos FR en determinadas condiciones mostró un 

metabotipo más cambiante y patogénico que otras combinaciones. Éste fue el caso de 

los perfiles 1111, 1101, 1011 y 1001, que presentaron una firma molecular similar. 

Esta firma molecular característica nos llevó a sugerir una nueva definición de 

síndrome metabólico, parcialmente diferente de las existentes, basada no en la mera 

presencia o ausencia de FR específicos, sino en función de la contribución que cada 
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uno de ellos posee en los cambios metabólicos producidos. Este análisis refleja el rol 

principal que desempeña la diabetes en el SM.  

Estos resultados permitieron generar unos modelos con el fin de distinguir mejor las 

condiciones SM y no SM desde un punto de vista metabólico. Los tres modelos 

construidos, basados meramente en el análisis metabolómico de las muestras de orina 

medidas, demostraron ser capaces de distinguir a los sujetos con SM obteniendo 

AUROC con valores entre 0.83 y 0.86. Al observar los modelos, el primero, que incluía 

los problemas del metabolismo de la glucosa como factor obligatorio, mostró un mejor 

rendimiento (valor AUROC: 0.863), lo que reflejaba la importancia de la glucosa en 

orina para este modelo metabólico, también evidenciada previamente. De esta manera 

este estudio constató que esta novedosa definición de SM añadía una dimensión 

metabólica a las ya existentes. Algunas de las definiciones utilizadas actualmente 

(OMS, EGIR y AACE) podrían considerarse más apropiadas para el diagnóstico por 

la importancia atribuida a los factores de riesgo que son realmente los responsables de 

la aparición de alteraciones metabólicas. De hecho, la diabetes demostró sin duda ser 

un factor muy relevante en este síndrome, como evidencian todos los resultados 

propuestos, pero este estudio en orina desveló que la hipertensión es un factor de riesgo 

clave en el agravamiento de este trastorno. Además, el proceso de envejecimiento y la 

enfermedad del hígado graso no alcohólico también se consideraron factores de riesgo 

que pueden aumentar la probabilidad de presentar SM, pero en nuestro estudio se 

demostró que no interferían directamente en la discriminación metabólica de este 

síndrome.  

De manera parecida se realizó el análisis en muestras de suero con el objetivo de 

incrementar el conocimiento de los aspectos metabólicos característicos del SM, y de 

algunos de los FR implicados en su desarrollo. Al igual que en orina, en primer lugar, 

se realizó un análisis PCA no supervisado del perfil medio de RMN, obtenido para 

cada una de las condiciones estudiadas. En este PCA se representó la huella molecular 

característica que tiene en cuenta la expresión de metabolitos y lipoproteínas, y de esta 

manera observar la distribución de los diferentes perfiles según el RF presentado. Esto 

evidenció una clara separación entre los sujetos dislipidémicos y no dislipidémicos 
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debido a que, en las muestras de suero, los pacientes con dislipidemia mostraban un 

desequilibrio del perfil de lipoproteínas.  

Para investigar más a fondo el perfil metabólico característico de las muestras de suero, 

se realizó un análisis univariante con el fin de comparar todas las condiciones de SM 

con respecto a la asintomática (0000). En este caso, se utilizaron como variables las 

concentraciones de metabolitos, a partir del informe de Bruker obtenido tras cada 

medición de suero. El análisis univariante del suero, además de la diabetes, que mostró 

su influencia principalmente a través de la elevada concentración de glucosa detectada 

en el torrente sanguíneo (y en la orina excretada), evidenció la relevancia de otros dos 

factores de riesgo, la obesidad y la dislipemia (con una alteración metabólica observada 

en relación con la presencia de estos dos FR). Así, algunas de las variaciones más 

relevantes en las concentraciones de metabolitos aparecieron en perfiles caracterizados 

por la presencia de dislipidemia, obesidad o ambos factores de riesgo presentes al 

mismo tiempo. Además, como se evidenció anteriormente también en el resultado del 

análisis univariante de orina, la variación de la concentración de metabolitos se 

correlacionaba con una progresión hacia la aparición del SM. Muchos de los 

metabolitos alterados se encontraron asociados con algunos de los factores de riesgo o 

directamente con el SM, demostrando la sensibilidad de los espectros de protón de 

RMN tanto en suero como en orina para el estudio de este desorden.  

De particular interés fue el estudio de la expresión de las lipoproteínas, en un intento 

de comprender más profundamente los aspectos de la dislipidemia, ya que resultó ser 

la mejor discriminante entre los diferentes perfiles de suero. Por eso se realizó un 

análisis univariante comparando todas las condiciones creadas con respecto a la 

asintomática (0000) cuantificando las diferentes lipoproteínas. Se observaron cambios 

importantes a nivel lipoproteico en los pacientes afectados por dislipidemia y SM, con 

un aumento de los niveles de triglicéridos y especialmente de lipoproteínas VLDL y 

small dense LDL, y una disminución en los niveles de colesterol HDL. Debido a los 

cambios metabólicos y lipidómicos observados, se estudió, tanto en los metabolitos 

como en las lipoproteínas, y mediante análisis multivariante, la correlación entre los 

perfiles intermedios generados para cada una de las condiciones en estudio en 

comparación con la sana. Se pudo observar una desregulación metabólica más evidente 
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en el perfil del espectro de suero en función del número creciente de factores de riesgo 

incluidos, pero en este caso, el FR que causaba el mayor grado de variación fue la 

dislipidemia. De hecho, la condición 0010, con un solo FR, ya mostraba un cambio 

significativo con respecto al perfil 0000. A pesar de ello, se pudo observar que la 

presencia concomitante de determinados FR, junto con la dislipidemia, aumentaba el 

estadio patogénico de SM. Las condiciones con diabetes y/u obesidad, junto con la 

dislipidemia, como resulta especialmente evidente para los perfiles 0110 y 1010, 

fueron más patógenas, mientras que, al contrario de lo observado anteriormente en el 

análisis de orina, la hipertensión en suero no mostró un impacto tan grave (perfil 0011). 

El análisis de muestras de suero mediante RMN sigue desarrollándose con la intención 

de construir un modelo de discriminación de los sujetos afectados por el SM, teniendo 

en cuenta estas últimas conclusiones. La combinación de los resultados obtenidos del 

análisis de orina y suero sería óptima para garantizar una mayor precisión en el diseño 

de un modelo molecular para la discriminación de los subjetos con SM respeto a los 

no SM, y para saber la probabilidad de que un individuo analizado pueda llegar a 

desarrollar el SM en función de su perfil metabólico.  

La infección por SARS-CoV-2, que comenzó en diciembre de 2019, ha afectado e a la 

población mundial de una manera nunca antes conocida en la sociedad moderna. Desde 

el momento del contacto con el virus, los individuos infectados desarrollan sus 

primeros síntomas después de 2 a 14 días, con un mecanismo de replicación dentro del 

cuerpo y posterior infección de otros organismos tremendamente eficiente. Muchas 

personas infectadas no presentan consecuencias graves debido a la enfermedad, pero 

el 20% de los casos muestran síntomas graves que pueden llevar a la hospitalización, 

a un tratamiento en cuidados intensivos e incluso causar la muerte.  

Para profundizar las causas y características de la enfermedad se estudiaron los 

cambios metabólicos asociados a ella analizando muestras de suero provenientes de 

una gran cohorte de muestras de pacientes que incluía 263 pacientes hospitalizados con 

COVID-19 en la fase aguda y 280 sujetos control cuyas muestras fueron recolectadas 

previamente a la aparición del COVID-19. Se realizaron diferentes experimentos de 

RMN para investigar cada aspecto de la huella metabólica característica de esta clase 

de muestras. A partir de la comparación de los espectros 1H NOESY de las muestras 
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COVID con las preCOVID, se identificaron claras diferencias (incluso mediante un 

simple análisis visual), que fueron confirmadas posteriormente por el análisis PCA 

utilizando como variables las cuantificaciones primero de los metabolitos y después de 

las lipoproteínas.  

El posterior análisis univariante realizado también con los metabolitos y las 

lipoproteínas, evidenció cambios significativos entre las muestras COVID y 

preCOVID. Los cuerpos cetónicos, producidos predominantemente en el hígado a 

partir de acetil-CoA (derivado de la oxidación de ácidos grasos), se encontraban 

notablemente elevados en los pacientes con COVID-19. Asimismo, el aumento de los 

ácidos succínico, cítrico, glutámico y pirúvico puede estar relacionado con una 

desregulación del metabolismo hepático central en los pacientes con COVID-19.  

Una de las diferencias más llamativas surge de la distribución de las lipoproteínas: las 

partículas lipoproteicas muestran un fenotipo alterado en los pacientes COVID-19, con 

una reducción del tamaño medio de las HDL, un aumento del tamaño medio de las 

LDL y un mayor nivel de subclases de VLDL de tamaño intermedio. Además, la 

proporción de Apo-B a Apo-A1, un equilibrio entre partículas aterogénicas y 

antiaterogénicas, aumentó notablemente en los pacientes con COVID-19. Además. los 

perfiles de suero de los pacientes examinados mostraron niveles anormalmente 

elevados de GlycA, que es un biomarcador asociado a los episodios de inflamación de 

fase aguda. 

Nuestros resultados evidencian cambios masivos en los perfiles lipoproteicos y 

metabolómicos, consistentes con el fenotipo severo encontrado en pacientes COVID-

19 que resaltan el carácter sistémico de la enfermedad. Por último, el perfil lipídico 

sugiere un aumento del riesgo aterogénico y un deterioro del estrés oxidativo. 
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1.1 Precision Medicine    

The US National Research Council in 2011 defined Precision Medicine (PM) as the 

optimization of the current approach to medical treatment taking into account the 

susceptibility of certain groups of individuals for a specific pathology and its therapy 

in order to improve these aspects1. Sometimes the term “personalized medicine” has 

been used as a synonymous of “precision medicine”, but this could lead to 

misinterpretation by referring to the development of a treatment specifically 

appropriate just for one patient2. The first term turns out to be older than the second, 

but, nowadays, they are often used interchangeably even if the preferred and newest 

one is precision medicine, which also reflects an evolution in the approach to patient’s 

study3,4.   

Precision medicine is considered a modern medicine strategy with the aim of 

improving the diagnosis, prognosis, and cure of different pathological condition thanks 

to the combination of the extra information obtained from different omics techniques 

like genomics, proteomics, or metabolomics, together with clinical information of the 

patients, lifestyle habits, diet or social condition5,6.  

Multi-omics data are collected from huge cohort of samples to ensure a better 

understanding of a given disease and the best therapeutic approach to treat it with the 

greatest effectiveness7. Genomics, transcriptomics, proteomics, and metabolomics are 

interconnected and each one of these omics technologies allows the study of different 

aspects of a living system8–11. Thanks to genomics it is possible to study the function 

of genes, their expression and regulation, the whole genome sequence and the 

identification of the possible risk of insurgence of some type of diseases like cancer or 

degenerative disorders5. In turn, transcriptomics gives information about all the RNA 

transcripts produced at a specific time in an organism while proteomics allows the 

investigation of the produced protein in a specific biological context because of the 

influence of internal or external stimulations12. Finally, metabolomics emerges as one 

of the most powerful techniques to monitor the metabolic changes caused by the 
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influence of multiple factors allowing the study of the disease progression at a 

biochemical level13. 

1.2 Metabolomics and precision medicine 

Metabolomics consist in the identification and quantification of the small molecules, 

produced at the cellular level, because of metabolism, and thus present in a biological 

system and detectable in the blood stream, in urine or other biofluids14. The success of 

metabolomics is related to the advantage offered by this technique complementing the 

obtained data from the previously mentioned omics approaches15.  

Metabolomics is the most suitable technique for the detection of all the phenotypical 

changes that can affect an individual due to the exposure to the environment and can 

easily detect the metabolic products, called metabolites, produced by the organism 

(Figure 1.1)16.  This offers an advantage over proteomics, transcriptomics and 

genomics, since different causes can influence the manifestation of a disorder, 

including external factors, which are not correctly addressed by these omics 

Figure 1.1: Schematic pyramid order existing between the different “omics” approaches. 

Metabolomics is the technique that best represents the result of the influence of different factors 

leading to the phenotypic characterization of the individual. Inspired on Carneiro et al. 

review176.  (Figure created with Biorender.com). 
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techniques17,18. Specifically, the advantage offered by this approach is the monitoring 

of the changes that can affect an individual due to the influence of external factors, 

different health conditions, of a drug treatment or simply the impact of diet and lifestyle 

habits19. In this context, metabolomics allows the in vivo detection of a huge number 

of metabolites that can be quantified with only one measurement in a fast and easy way 

according to the used technique for the analysis20. 

The greatest advantage of metabolomics comes from its ability to provide a complete 

picture of the organism under study (metabotype) at the time of analysis and to identify 

biomarkers essentials for a better diagnosis and treatment of the patients21. On the other 

hand, the identification and validation of biomarkers is one of the final goals in 

precision medicine, key for the diagnosis of a disease, the identification of the most 

suitable therapy, the understanding of the associated molecular mechanism and the 

involved pathways6,15,22. For all these reasons, metabolomics is considered as a 

valuable tool in precision medicine, along with other advantages such as providing 

rapid and reproducible diagnostic tools and presenting predetermined rules for sample 

handling and management that are some of the main recommendations for precision 

medicine initiatives23. 

1.2.1 Targeted versus untargeted metabolomics 

Metabolomics can be divided into targeted and untargeted analysis. The first one 

consists in the identification (and quantification whenever possible) of a specific set of 

compounds (the target) while, in untargeted metabolomics the complete experimental 

dataset is examined collectively in order to determine the most relevant metabolites 

and identify them24.  

Targeted metabolomics is usually used to investigate the different expression of a pre-

determined set of metabolites given a specific condition. Thanks to statistical analysis, 

it is possible to compare the concentrations of the compounds of interest for a better 

understanding of the pathology under study25. In turn, untargeted metabolomics is 

mainly used to compare health versus pathogenic conditions, to identify differences 

between distinct states trying to find potential biomarkers for the diagnosis of a specific 

disease26. Data analysis enables examining large groups of samples and to identify the 
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most relevant statical differences27. In this way the metabolites highlighted in the 

comparisons should be assigned so the involved biological pathway could be 

identified28. Metabolites can be assigned either using specific programs like Chenomx, 

with the help of previous bibliography or by consulting databases like the Human 

Metabolome Databases (HMDB), which includes information about most of the small 

molecules present in the human body29,30. These databases often contain spectroscopic 

information of the metabolites, including the mass spectrometry (MS) or nuclear 

magnetic resonance (NMR) spectra, and they will be better described in Chapter 3.   

1.2.2 Analytical methods in metabolomics 

The main techniques most often used in the metabolomics field are chromatography 

coupled to MS and NMR31. Indeed, NMR spectroscopy and MS are two powerful 

techniques in the field of metabolomics due to their ability to detect a huge number of 

metabolites32. Through their application it is possible to identify and quantify (either 

in an absolute or relative form) a very large number of metabolites in biological 

samples like urine, serum and plasma, among other biofluids33. Compound 

identification can often be difficult due to the complexity of the spectra generated by 

the biological matrix34. Fortunately, thanks to the resolution of these methods, it is still 

possible to recognize a great number of molecules. In addition to resolution, these 

techniques present various advantages and disadvantages but both have excellent 

properties and can even be complementary to obtain more information and reliable 

results35.  

As mentioned, MS is generally characterised by the presence of a previous chemical 

separation techniques like liquid (LC-MS) or gas chromatography (GC-MS), generally 

chosen according to the matrix to be analysed36. Gas chromatography is especially 

suited for the detection of volatile compounds while liquid chromatography is mainly 

used for the analysis of polar and non-polar ones37. Moreover, to improve the 

specificity of the analysis it is possible to couple these separation techniques with two 

consecutives steps of mass spectrometry so called tandem mass spectrometry (GC-

MS/MS and LC-MS/MS) which offers advantages for the determination of certain 

organic compounds and could also provide structural information38.  
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NMR spectroscopy doesn’t require any previous preparative step before sample 

analysis, which is directly inserted inside the instrument never coming into contact 

with it39. NMR has many other applications such as in the organic chemistry field for 

the elucidation of compound structures, or in protein structural elucidation and to 

understand ligand-binding interactions40.  

Figure 1.2 summarize the main characteristics differences between MS and NMR. 

NMR has a lower sensitivity than MS: with NMR it is possible to identify hundreds of 

metabolites in a biological fluid, while with MS it is possible to reach the identification 

of thousands of compounds. That said, NMR spectroscopy is much more reproducible 

with respect to MS. Moreover, sample preparation is usually faster and easier in NMR 

than MS, the latter usually requiring derivatization of the samples and a separation 

process to ensure a proper detection of the metabolites. In addition, NMR is a non-

destructive technique that allows samples recovery (if necessary) of the sample for 

further experiments, while MS is destructive and doesn’t permit to reuse the prepared 

sample, while requiring much less substance with respect to NMR35,36,41,42.  

Due to the advantages and the continuous improvements of NMR spectroscopy, this 

technique has been employed more and more in recent years for metabolomics 

purposes43.  In this thesis, the mainly used technique for the performed metabolic 

analyses was NMR. Associated theory and some of the most relevant features will be 

briefly explained in the following sections. 
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1.3 NMR-based metabolomics 

The use of NMR in the metabolic field dates back to the employment of this technique 

for phosphoromics (i. e. biological phosphorous determination) applications, including 

the monitoring of compounds containing this element, characteristic of some class of 

molecules in cells and tissues39,44–46.  In addition to the abovementioned application, 

NMR is also particularly suitable for the study of metabolism at the cellular level 

thanks to the use of labelled isotopes, not only using phosphorous (31P), but also, with 

proton (1H), carbon (13C) and nitrogen (15N), which allows a better understanding of 

the fate of small molecules and of the involved pathways47–49.  

As mentioned, NMR-metabolomics enables the analysis of small molecules existing 

within different human biofluids such as blood, urine, saliva, faeces, cerebral fluid and 

many others, particularly useful in clinical metabolomics due the non-invasiveness of 

this approach50.  

Figure 1.2: Comparison between MS and NMR, when applied to metabolomics. The figure 

summarizes the most relevant differences between the two techniques highlighting their 

strengths and weaknesses. (Figure created with BioRender.com). 
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Not only small molecules can be identified but also macromolecules like lipids with 

the so-called “lipodomics”, which can offer several advantages in the investigation of 

certain diseases51. Moreover, it also offers others application like the examination of 

food components (“foodomics”) for quality test analysis, to verify authenticity, safety 

and aliment origin52–54. In addition, NMR-metabolomics can be applied to the study 

and characterisation of plants extracts for the identification of natural products55,56. 

Moreover, NMR in the analysis of complex biomolecular mixtures, offers the 

advantage of being a quantitative technique which allows to determine the absolute 

concentration of the identified metabolites57,58. 

Figure 1.3 highlights some of the possible applications of NMR spectroscopy for a 

better understanding of the different aspect that characterize the metabolism in 

complex biological systems. As mentioned, this goes from compounds identification 

and related structure elucidation, to interaction study of certain metabolites with 

macromolecules for regulatory purposes and many other aspects39. 

Figure 1.3: NMR spectroscopy application in the study of metabolism. NMR can be used as a 

useful tool for A) Structure elucidation; B) Isotope-tracing; C) Protein and protein ligand 

interaction study and finally, D) For metabolomics purposes.  (Figure created with 

BioRender.com). 
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Proton NMR (1H NMR), and especially mono-dimensional experiments (1D NMR), is 

widely used for metabolomic investigations due to the speed of analysis, the 

reproducibility of the obtained results that make this technique suitable for inter-

laboratory comparisons, thanks to the application of strict standard operating 

procedures (SOPs), and due to several other advantages that will be explained in more 

detail in the following sections and chapters59. Two-dimensional experiments (2D 

NMR) can also offer important information for complex matrix investigation and 

especially for metabolites identification, but they are not frequently used for the 

subsequent metabolomics analysis. Moreover, depending on the acquired experiment, 

due to the longer measurement time required, they can generally be acquired only for 

a subset of samples60. All these aspects will be discussed in more detail further on. 

1.3.1 Nuclear magnetic resonance principles  

NMR is an analytical technique whose principles are based on the presence of intrinsic 

magnetic properties in certain atomic nuclei. All nuclei, except the ones that have an 

even number of both protons and neutrons, can give rise to an NMR signal. Nuclei that 

possess a spin of magnetic quantum number I different from zero, like the nuclei with 

I = ½ (like 1H, 15N, 13C, 19F, 31P), are sensitive to the external magnetic fields (B0) and 

originate an NMR signal. Indeed, in the presence of B0 these active NMR nuclei 

present a precessional motion at a characteristic frequency known as the Larmor 

Frequency. This frequency arises from the different spin orientation (I = ±½) 

associated to two different energy levels (Figure 1.4). One level corresponds to the 

lowest one in term of energy, aligned with the applied magnetic field (I = +½), and the 

other is the highest one (I = -½), since the spins are antiparallel to B0
61. The energy 

difference between these two states is quite small and Boltzmann’s distribution can 

explain the difference on the number of nuclei associated to each of these spin states. 

The transition between the two energy levels is possible thanks to the stimuli of a 

radiofrequency electromagnetic radiation. After the excitation by the application of a 

radiofrequency, the return to the basal state is responsible of an energy emission that 

can be detected as free induction decay (FID) and elaborated with the Fourier 

transformation (FT) to generate an NMR spectrum.  
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The NMR signal produced by nuclei relaxation to equilibrium is influenced by 

different factors. First of all, it is important to point out that not all of them are 

surrounded by the same electronic environment62. Electrons that surround the nuclei of 

an atom are able to shield it from the applied external magnetic field, generating a little 

magnetic field (Bi) usually opposed to B0. The shielding strength depends on the 

position of the considered proton in the molecule and especially on the 

electronegativity of the surrounding atoms. The shift, in terms of frequency, caused by 

the shielding of the electrons with respect to the Larmor Frequency of the specific 

nucleus, is the so-called “chemical shift” (CS).  

Secondly, the position of a proton in a molecule is important not only for the chemical 

shift but also for the influence that the surrounding ones can have on it. The presence 

of two or more adjacent protons in a molecule produces a spin-spin coupling (J-

coupling) responsible for the “splitting” of the NMR signal into multiplets that obey 

the Tartaglia ruling.  

These two factors, the CS and the J-coupling, are important concepts that must be taken 

into account in the analysis of the spectra especially in the case of complex matrices 

like biofluids, which is typical in NMR-metabolomics. Due to these factors the 

resulting spectra are complex, and the presence of hundreds of metabolites overlap the 

many different independent molecular profiles in the NMR spectrum63.  

 

Figure 1.4: Nuclei in the absence of an applied external magnetic field, and in the presence of 

it (B0). The nuclei with spin + ½ are aligned with the magnetic field and present lower energy, 

while the spin - ½ are not aligned and have lower energy. ΔE represents the energy difference 

between the two spin states. (Figure created with BioRender.com). 
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1.3.2 1H-NMR spectroscopy for metabolomics purposes  

1H-NMR spectroscopy is largely used for metabolomics studies. The great use of this 

technique is related to pervasive distribution of 1H atoms in the biomolecules, sensitive 

to the NMR phenomenon, which ultimately allows characterizing a plethora of 

metabolites64. 

Both 1D and 2D NMR approaches can be used in the field of NMR metabolomics, as 

previously mentioned, but 1D 1H-NMR spectroscopy is more often used due to the 

short acquisition time needed to obtain a spectrum from each sample and for the huge 

amount of information that it contains. In fact, from a 1D 1H spectrum is it possible to 

identify and quantify hundreds of metabolites36. This is particularly beneficial for large 

scale studies that requires the measurement of a huge number of samples in a fast, easy, 

and cost-efficient way65.  

Different pulse program can be used to acquire mono dimensional spectra, but one of 

the most used in the metabolomics field is the 1D Nuclear Overhauser Effect 

Spectroscopy (1H NOESY) experiment with water suppression that allows molecules 

identification and quantification in a reproducible way66. Another experiment, that is 

largely used for metabolomics purposes, is the Carr-Purcell-Meiboom-Gill (CPMG) 

pulse program that is especially useful to eliminate the signal of macromolecules like 

proteins and lipids to identify the signals from small metabolites67.  

One of the limitations of mono-dimensional NMR spectroscopy is signal overlapping 

due to the huge number of metabolites present in each biofluid that contribute to the 

spectrum and to the relatively small difference in chemical shift between them. To 

resolve this issue, sometimes, it is necessary to relay to signal deconvolution for 

quantification purposes or to acquire spectra at higher magnetic fields36.  

Moreover, due to this weak point of 1D measurements, 2D NMR methods have also 

been used to overcome the metabolites identifications problems. In particular, 1H J-

resolved (JRES) spectroscopy, spreading the overlapping signals in a second 

dimension, could represent a solution. This experiment is also characterized by a 

relatively short acquisition time, compared with other 2D experiments like COSY 
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(COrrelation SpectroscopY), TOCSY (TOtal Correlation Spectroscopy)  or HSQC 

(Heteronuclear Single Quantum Coherence), which is a key point in high-throughput 

studies68. Numerous approaches to the use of 2D spectroscopy have been recently 

evaluated to improve metabolites quantification in biological samples for 

metabolomics purposes. Despite this, NMR research is still constrained in its 

application to metabolomics investigations. This is probably related to the persistent 

worries (sometimes unjustified) about data size, to the longer acquisition time required 

for 2D NMR and to quantification issues associated with the multi-pulse nature of 2D 

NMR experiments, which results in a peak-dependent analytical response of the 

nuclei36,69,70.  

Anyway, in order to take advantage of the benefits offered by the use of 1H 

spectroscopy for metabolomics analysis, both the used instruments in the conduced 

studies and the analytical and pre-analytical procedures for samples preparation, must 

be subject of strict controls and protocols, as explained below.  

1.3.3 Urine metabolomics 

Urine is considered an excellent biofluid for metabolomics studies. This is related to 

the huge amount of small molecules contained in it like organic acids, sugars, amino 

acids and some lipids. Different studies have demonstrated that more than 4000 

metabolites are present in urine but not all of them can be identified by NMR71.This 

allows to study the metabolic changes of an individual often related, for example, to 

diseases, lifestyle habits, diet or drugs consumption. Moreover, the ease and quantity 

with which urine can be obtained made it even more suitable for metabolomics 

purposes.  

The huge variability of metabolites concentration that characterise urine is 

unfortunately also considered a disadvantage in the study of this biofluid. Many 

confounding factors can have an influence in the metabolite’s identification and 

quantification for metabolomics purposes. For this reason, it is extremely important to 

follow rigorous SOPs to obtain urine in a specific moment, avoiding diary variation 

related to different factors, from each subject for the entire duration of the study. Early 
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morning urine (ideally 12 hours fasting), as previously mentioned, is usually preferred 

because it is less influenced by food consumption or other factors72. 

Urine metabolic fingerprinting is easily obtained by NMR. This can be used in order 

to identify changes between different health conditions and for biomarkers 

identification comparing healthy subjects with an investigated population. Lots of 

diseases are not detected until advanced stages and generally present invasive medical 

test for diagnosis. Urine metabolomics offers the possibility to identify early-stage 

biomarkers for a prompt intervention trying to avoid further complications. Previous 

studies have been able to identify metabolic changes and biomarkers for different 

diseases like prostate cancer73, inborn error of metabolism74 and many others75,76.  

1.3.4 Serum and plasma metabolomics 

Blood contains lot of compounds whose change can be associated to different 

metabolic states. Serum and plasma analysis in metabolomics studies present great 

advantages due to the higher stability of these biofluids with respect to urine in terms 

of metabolites variability in response, for example, to diet or environmental factors. 

The inter-individual variation are present with minor extent, nevertheless, is still 

preferable to obtain samples under fasting conditions for a better understanding of the 

metabolic changes that affect each subject avoiding possible confounding factors. 

Once again, the use of strict standard operating procedures is of the outmost importance 

especially because, in blood extraction, as previously said, the coagulation factors (like 

EDTA or heparin) that may be present in the extraction tubes can produce huge noise 

signals in the NMR spectra that can overlap with important metabolites peaks77.  

Different studies have been done to understand if serum or plasma are better for 

metabolomics investigation but both fluids are considered appropriate for this kind of 

studies72. Serum presents a higher concentration of metabolites with respect to plasma, 

but as regard lipoprotein quantification no differences have been detected78. 

Lipoprotein analysis is an important advantage offered by blood investigation using 

NMR, that allows the identification and quantification of different lipoproteins 

subclasses that cannot be analysed with normal biochemistry.  
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Human lipoproteins contained in blood consists in high-density lipoprotein (HDL), 

low-density lipoproteins (LDL), intermediate-density lipoprotein (IDL) and very-low 

density lipoproteins (VLDL). Changes in the levels of these macromolecules are 

involved in different pathologies like metabolic syndrome, cardiovascular diseases and 

many others76.  

1.3.5 Standard Operation Procedures (SOPs)  

NMR metabolomics studies rely on strict SOPs that must be respected to ensure the 

reliability of the obtained results79. SOPs include specific indications for each step 

within the metabolomics workflow, from the recollection and storage, sample 

preparation, instrument calibration, NMR acquisition and, finally, data processing80. 

This is extremely important also for comparisons in collaboration projects with 

different laboratories and to guarantee reproducibility and reliability of the obtained 

results81,82.  

1.3.5.1 Sample recollection and storage 

Sample recollection is the first step in the metabolomics studies workflow (Figure 

1.5). Different studies have been done to determine which is the best way to maintain 

urine or serum samples in order to study the small molecules contained in it avoiding 

degradation and guaranteeing the reliability of the obtained results79,83,84. Conditions 

include fasting for blood extraction, to give the first morning urine and homogenous 

material for samples recollection and storage during the whole process to avoid the 

presence of contaminants85,86. Biobanks are in charge of preserving samples according 

to the associated SOPs up to the measurement time87,88. The organization of huge 

cohort of samples into the biobanks is essential: specific IDs are usually assigned to 

extraction tubes of blood or urine that has to be linked to the corresponding patient's 

ID and its associated medical history89.   
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1.3.5.2 SOPs for samples preparation 

Blood requires control of contaminants to avoid the presence of strong NMR signals 

coming, from example, from EDTA, heparin or sodium citrate, which are commonly 

contained in the extraction tubes and will result in spureous signals in the NMR 

spectrum58. Specific centrifugation protocols are followed to obtain plasma or serum79. 

Moreover, biofluids contain lot of metabolites and lipids that are sensitive to 

temperature changes and samples are typically maintained at 4°C while managing them 

until measurement in the NMR spectrometer90,91. Actually, sample manipulation is 

maintained to a minimum to ensure reproducibility: serum and plasma samples are 

only mixed in a 1:1 ratio with a specific buffer. 

Regarding urine, the early morning one is usually used for the majority of 

metabolomics studies. After recollection, urine is stored at 4 °C to avoid degradation 

and the aliquots frozen at -80°C until measurement. Urine generally undergoes a 

Figure 1.5: Scheme of the main steps that characterize the metabolomic workflow. (Figure 

created with BioRender.com). 
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centrifugation process to remove possible contaminants and cellular residues that could 

alter metabolites quantification71. Urine is usually more stable than plasma or serum, 

therefore this gives the possibility of repeating NMR experiments, if needed, as long 

as it is kept at 4°C for a limited time period (generally not more than 48 hours).  

1.3.5.3 Magnet calibration 

NMR spectrometer performance is checked daily to ensure reproducibility. Checks 

include temperature stability (i.e. by measuring the signal splitting in a methanol 

sample), quantification (by means of an internal electronic signal, QuantRef) and 

magnet homogeneity (by shimming a sucrose reference sample)59,77.  

For temperature calibration a deuterated methanol sample is analysed to verify 

temperature in the range of 175 and 310 K. Hydrogen bonding is affected by 

temperature that causes a different shift of the protons according to it. The measured 

value is the OH/CH3 chemical shift difference, that gives information about the real 

temperature inside the magnet with the measured methanol sample61.  

Shimming performance of the spectrometers is key in the metabolomic spectra due to 

the need to compare different spectra in large scale studies but also because of the great 

amount of metabolites and related peaks that comes out after the measurement of a 

biological sample92. Resolution, sensitivity and water presaturation performances are 

evaluated by means of different parameters in a sealed glass 2mM sucrose sample in 

90% H2O, 10% D2O, 2mM NaN3, and 0.5 mM DSS (2,2-Dimethyl-2-silapentane-5-

sulfonate). DSS and water residual signals are necessary to evaluate the suppression 

performance while sucrose is necessary to evaluate the resolution and sensitivity. 

Quantification is calibrated by means of a specific sample called QuantRef 

(Quantification Reference solution) containing a known amount of specific 

metabolites. Concentration of the compounds is estimated according to the resulting 

peaks integrals and using a synthetic signal called ERETIC (Electronic Reference To 

access In-vivo Concentrations) as calibration compound to avoid possible overlapping 

with some metabolite peaks43.  

A more in-depth description of these calibration procedures is provided in Chapter 3.  
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1.3.5.4 NMR measurement  

According to the analytical in vitro diagnostic research (IVDr) SOPs, after magnet 

calibration, samples are measured using specific validated NMR pulse sequences for 

metabolomics studies. These includes specific measurements for urine and serum 

samples79. As regards urine, two experiments are acquired for each sample: a mono 

dimensional 1H NMR spectrum (noesypr1d) for metabolites quantification and a 

bidimensional one J-resolved 1H spectrum (jresgpprqf). For serum samples three 

experiments are acquired: a one-dimensional NOESY, a JRES (jresgpprqf), as for 

urine, and then an additional 1H NMR Carr-Purcell-Meiboom-Gill experiment 

(cpmgpr) that filters out all the signals arising from high-molecular weight particles, 

including the lipoproteins. Further information will be given in the materials and 

methods section (Chapter 3). 

1.3.6 Data processing and analysis 

Data organization obtained from the analysis of thousands of samples is a complex 

task but it is essential in order to process the spectra, proceed with an adequate 

statistical analysis and, finally, for the interpretation of the results. Statistical analysis 

plays a crucial role, giving the essential tools needed for the understanding of the 

metabolic changes observables in large population under studies.  

Data must be organized in a univocal way so that patient’s information can be linked 

to the corresponding NMR spectra to proceed with the following steps of the analysis. 

This can be done by assigning a specific code to each one of the patients and 

associating this code to the corresponding samples ID of urine and serum and naming 

the acquired NMR spectra in a way that can be linked to the corresponding donor. 

Under these circumstances, patient information can be related to the produced data so 

that this can be used for further steps of the analysis (Figure 1.6).   
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After NMR data acquisition, spectral processing has to be performed. This includes all 

the corrections such as baseline optimization, phase correction and chemical shift 

referencing. Subsequently, spectra must be filtered, aligned, scaled, and, according to 

the selected analysis procedure, spectra can also be divided into spectral areas of equal 

size that are called bins. Next, the obtained data are usually scaled and normalized93. 

Additional information about all these procedures will be discussed further in Chapter 

3.  

Two main statistical methods are used to analyse data according to what is needed to 

be investigated: multivariate or univariate analysis. In the first case, different variables 

are analysed at the same time to find differences into, for example, two or more groups 

in order to identify the putative changes between these populations. Alternatively, 

univariate analysis takes into account just a variable independently. Another distinction 

can be made between unsupervised and supervised analysis. These two conditions 

differ in the way data are organised. An example of a commonly applied unsupervised 

method is the principal component analysis (PCA), which allows to identify, if present, 

differences into the groups under study. On the other hand, another example of 

supervised analysis is the employment of the partial least squares analysis (PLS) or 

PLS Discriminant Analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA). Further 

details of the applied statistical methods for the conduced analysis in this thesis are 

described in Chapter 3.  

Figure 1.6: Schematic representation of the organization codes (ID) to relate the information 

coming from each of the steps that compose the samples analysis. (Figure created with 

BioRender.com). 
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The obtained results from statistical analysis are usually interpreted within a biological 

framework. This contextualization often also includes the metabolites identification. 

To that aim, different tools can be used: the Chenomx software or specific databases 

like the Human Metabolome Database (HMDB) that contains information from the 

majority of small molecules present in the human body (in serum, urine, faeces, 

cerebral biofluid or saliva) or NMR spectra biobanks like the Biological Magnetic 

Resonance Bank (BMRB).  

1.3.7 Large scale studies 

The analysis of large cohorts that can include individuals from the general population 

or groups of patients with a specific pathology, is essential for the validation of new 

biomarkers or for a better understanding of the disease under study. The cohort size 

analysed in metabolomic studies is an important factor under consideration because on 

it largely depends the reliability of the study and the trustworthy of the obtained results.  

To carry out studies that include lot of samples is essential to count on high-throughput 

techniques enabling a fast and cost efficient analysis. Additionally, all the previously 

explained SOPs must be strictly applied because the accuracy of the results depends 

both on NMR performance and samples extraction, organization and storage.  

Two main studies have been conducted and included into this thesis project as a case 

study to show how large scale high-throughput studies can be conducted to obtain 

models or biomarkers for the discrimination and identification of a disease at an early 

stage and/or to characterize the metabolic changes that can affect a population under 

study. Specifically, NMR based metabolomic methodologies are here applied to the 

investigation of metabolic syndrome and to the viral infection caused by SARS-CoV-

2. The characteristics and the mechanisms regulating these two pathologies are 

discussed in detail of the following sections.   
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1.4 The Metabolic Syndrome 

Metabolic syndrome (MetS) is a multifactorial disorder whose insurgence is related to 

a variety of risk factors. MetS contributes to a higher probability of development of 

secondary problems like cardiovascular dysfunction, heart attack, stroke, type 2 

diabetes and increased risk of mortality due to all these related pathologies94.  

1.4.1 The definition of metabolic syndrome 

Many health organizations have attempted to give a definition of this disorder 

including the World Health Organization (WHO), the European Group for the Study 

of Insulin Resistance (EGIR), the National Cholesterol Education Program’s Adult 

Treatment Panel III (NCEP ATP III), the International Diabetes Federation (IDF), and 

the American Association of Clinical Endocrinology (AACE) (Table 1.1)95–100. All of 

them provide slightly different definitions, but they all agree with the presence of four 

main contributing risk factors: altered glucose metabolism, obesity, dyslipidemia and 

hypertension (Figure 1.7)101.  According to the WHO, the first one trying to give a 

definition of this disorder in 1998, MetS should be defined mainly as the presence of 

problems with the metabolism of the glucose, like impaired glucose tolerance (IGT) or 

impaired fasting glucose (IFG) as mandatory factors plus other two risk factors 

including obesity, dyslipidemia, hypertension or microalbuminuria102. Later, EGIR 

agreed with WHO’s definition but included insulin resistance as a compulsory 

requirement for the diagnosis plus two of the previously mentioned additional factors 

apart from microalbuminuria103. NCEP ATP III decided to eliminate the compulsory 

requirement of a factor for diagnosis and to consider an individual as affected by 

metabolic syndrome with the presence of three or more factors out of the five usually 

taken into account (in this case dyslipidemia is not considered as the sum of higher 

triglycerides and low HDL cholesterol, but they are considered separately)104. Finally, 

IDF used the same criteria for the definition of MetS as the previous organisations like 

WHO and AACE, but with the difference of not considering problems with glucose 

metabolism as a compulsory factor but obesity105.  
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One of the apparent problems when perusing the described definitions is the lack of a 

clear notion on what is the best way to define MetS. In addition, these organisations 

take into account different cut-off values for each of the risk factors that are considered 

for diagnosis. For example, WHO considers IFG , consisting of a higher fasting glucose 

value of 100 mg/dL, as problem for the metabolism of the glucose or IGT that is 

determined thanks to a specific test that consist in the monitoring of glucose levels for 

120 minutes after ingesting it (if the levels are higher than 140 mg/dL IGT is 

diagnosed). On the other hand, EGIR also includes insulin resistance in the mandatory 

factors for the diagnosis of MetS102–105.  

Even more complicated is the diagnosis of obesity that, in some cases, refers to the 

body mass index (BMI) calculated from weight and high of each individual for the 

diagnosis, while in other the waist circumference or the waist to hip ratio are 

prefered106. Moreover, different values are taken into account between males and 

females, or ethnicity is considered also to play a crucial role according to some 

organization like IDF. In addition to it, the dyslipidemia is another factor whose cut-

off values are different in each one of the organization’s definitions, making difficult 

to understand which values should be the best one and why107.  

Figure 1.7: Risk factors contributing to the development of MetS. (Figure created with 

BioRender.com). 
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Finally, some organization like WHO or AACE decided to take into consideration 

additional factors with respect to the usual ones for the diagnosis: the WHO considered 

microalbuminuria as an additional risk factor in the insurgence of MetS, while the 

AACE decided to consider as risky the presence of other syndromes like the polycystic 

ovary, a family history of type 2 diabetes mellitus (T2DM), a sedentary lifestyle or 

increased age108.  

Table 1.1: Definition criteria for the diagnosis of MetS according to different organizations.  

 

Organizations: WHO, World Health Organization; EGIR, European Group for the Study of Insulin; 

AACE, American Association of Clinical Endocrinology; NCEP:ATPIII, National Cholesterol 

Education Program-Third Adult Treatment Panel; IDF, International Diabetes Federation. 

†Bold highlighted factors are compulsory for the given definition. Obtained from refs98,109,110. 

‡IR, Insulin resistance, defined as hyperinsulinemia: top 25% of fasting insulin values among the 

nondiabetics. 

§Family history of T2DM, sedentary lifestyle, advanced age, ethnic groups susceptible to T2DM, 

polycystic ovary syndrome.  

Other abbreviations: IFG, impaired fasting glucose; IGT, impaired glucose tolerance; FG, fasting plasma 

glucose; T2DM, type 2 diabetes; WC, waist circumference; WHR, waist-hip ratio; BMI, body mass 

index; TG, triglycerides; HDL-C, HDL cholesterol; BP, blood pressure; m, male; f, female. 

 WHO EGIR AACE NCEP:ATPIII IDF HARMONIZED 

GLUCOSE 

METABOLISM 

(FG mg/dL) 

IGT, IFG, 

T2DM or 

lowered 

insulin 

sensitivity† 

IR‡ 

FG ≥ 110 

IGT or IFG 

(but not 

diabetes) † 

FG ≥ 100 
FG ≥ 100 or 

T2DM 

FG ≥ 100 or 

treatment 

OBESITY  

(BMI kg/m2, WC 

cm) 

WHR(m) > 

0.90  

WHR(f) ˃ 

0.85 or BMI 

˃ 30 

WC(m) ≥ 

94 WC(f) 

≥ 80  
BMI ˃ 25 

WC(m) ≥ 102 

WC(f) ≥ 88 

Elevated WC, 

ethnicity, and 

gender specific† 

Elevated WC, 

population, and 

country specific 

DYSLIPIDEMIA 

(TG, HDL-C 

mg/dL) 

TG ˃ 150 or 

HDL-C(m) ˂ 
35 HDL-C(f) 

˂ 39 

TG ˃ 177 
or HDL-C 

˂ 39 

TG ≥ 150 or 

HDL-C(m) 
˂ 40, HDL-

C(f) ˂ 50 

TG ≥ 150 or 

HDL-C(m) ˂ 
40, HDL-C(f) 

˂ 50 

TG ≥ 150 or 

treatment or 
HDL-C(m) ˂ 40, 

HDL-C(f) ˂ 50 

or treatment 

TG ≥ 150 or 

treatment or 
HDL-C(m) ˂ 40, 

HDL-C(f) ˂ 50 

or treatment 

HYPERTENSION 

(BP mmHg) 
≥ 140/90 ≥ 140/90 ≥ 130/85 ≥ 130/85 

≥ 130/85 or 

treatment 

≥ 130/85 or 

treatment 

OTHER 

FACTORS 

Microalbomi

nuria ˃ 30 

mg/g 

Not 

relevant 

Other risk 

factors§ 
Not relevant Not relevant Not relevant 
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In 2009 different organizations tried to give a harmonized definition of the metabolic 

syndrome, eliminating the compulsory requirement on the presence of a specific factor 

for diagnosis and considering only the presence of three conditions out of five. That 

said, many studies still don’t take into proper consideration this solution due to its 

arbitrary character98. For this reason, it is timely to understand the associated metabolic 

changes produced by each of the risk factors involved in the development of MetS, in 

order to be able to give a better definition based on real observable differences and not 

only in pre decided cut-off values.  

1.4.2 The spreading of MetS 

The study of this syndrome is raising interest due to the exponential increase in the 

number of individuals suffering from it, starting even in the people of young age111. Its 

prevalence is between the 10 and 40% according to the population under study112. This 

is particularly linked to an increased incidence of obese people that is one of the risk 

factors related with the insurgence of MetS and with the elevated spreading of T2DM. 

Regarding obesity, it has been observed a growing number of children and adolescent 

affected by it, which is reflected in the adult population, leading to a higher number of 

people presenting this syndrome96. In relation to T2DM, it has been evidenced that, for 

example, due to the speeding of this condition, up to one third of the population in the 

United States can be considered as affected by MetS113. Indeed, many causes contribute 

to the insurgence of this syndrome, like lifestyle habits, diet, physical activity, genetic 

susceptibility or an altered circadian rhythm95. Unfortunately, it has been noted that 

MetS increases in lower socio-economic populations, probably due to a 

misinformation about the importance of good lifestyle habits and healthy diet114.    

1.4.3 The risk factors associated with MetS  

As mentioned, the main risk factors that lead to the insurgence of this disease, as 

previously mentioned, are: problems with the metabolism of the glucose, obesity, an 

altered concentration of cholesterol and triglycerides and a higher blood pressure 

(Figure 1.7).  



Introduction 

 

23 

1.4.3.1 Glucose metabolism 

The higher concentration of fasting glucose (≥ 100 mg/dL) is usually associated with 

problems in its metabolism. This can be related to insulin resistance or other recognised 

problems as impaired glucose tolerance or impaired fasting glucose and T2DM. IGT 

and IFG share common characteristics, being both considered as pre-diabetic states, 

which start to increase the risk for cardiovascular diseases (CVD) events. The 

difference between these two conditions is based on the fasting glucose concentration, 

which is normal in IGT (˂ 110 mg/dL) and abnormal in IFG, and the postprandial 

glucose concentration (two hours), which, on the contrary, is abnormal in IGT (from 

140 to 199 mg/dL) and normal in IFG115,116. Insulin is considered responsible for 

systemic glucose disposal by controlling whether it is used in muscle, liver or adipose 

tissue102. In case an individual has problem of insulin sensitivity this led to a higher 

concentration of glucose in the bloodstream, avoiding being conserved into glycogen 

or any other storage molecules.  

1.4.3.2 Obesity  

Obesity represents one of the major problems in the insurgence of MetS, in fact some 

of the definitions include it as one of the mandatory factors for the diagnosis110. 

Subjects characterized by upper body obesity are more prone to develop MetS with 

respect to those presenting lower body obesity117,118. The first one, more frequent in 

men, is characterized by an excess of subcutaneous and especially visceral fat, while 

the second one, represented by gluteofemoral fat, is most commonly presented by 

women but these can be presented by both genders. Abdominal visceral fat is 

considered as more dangerous because different studies have associated it with a higher 

risk of incidence for T2D, dyslipidemia and insulin resistance which could contribute 

to the insurgence of MetS119. Moreover, visceral obesity is also considered dangerous 

due to its association with unfavourable clinical outcomes120.  

Different cut-off values and methods have been suggested for the diagnosis of obesity, 

sometimes trying to differentiate between sex or ethnic factors. Moreover, it is not clear 

whether is better to consider the BMI (obtained by dividing the weight in kilograms of 

the subject by the square of the height in metres), the waist to hip ratio or the waist 
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circumference to assess if an individual is considered as obese121. All of them are 

obesity descriptors, but, for example, BMI is the most widely used in several studies 

even if it does not take into account that the abdominal obesity has been more often 

associated with MetS. On the other hand, this factor is highlighted when considering 

waist circumference as method.  

1.4.3.3 Dyslipidemia 

Dyslipidemia is usually associated with an increased blood concentration of 

triglycerides a lower amount of HDL-cholesterol and higher levels of small density 

lipoprotein122. The latter are considered as particularly dangerous as responsible for the 

transport of lipids to peripheral cells and because of their low dimension, can reach 

areas that other lipoproteins cannot123. Moreover, they are accumulated into the blood 

vessels causing the generation of atherosclerotic plaques which significantly increases 

the possibility of cardiovascular events124. In fact, dyslipidaemia is considered to be 

one of the factors most involved in the onset of secondary problems, such as 

atherosclerotic cardiovascular disease (ASCVD), related with an increased mortality.  

Dyslipidemia is also often associated with insulin resistance and can be a predictor of 

T2DM. In both these conditions an increased level of VLDL, produced by liver, has 

been observed. This leads to and increment of LDL which are produced from the 

metabolism of VLDL: free fatty acids are released to IDL formation and further to 

LDL125. Despite this, alternation of VLDL is not obligatorily related to 

hyperinsulinemia but it can also be present in individuals that are affected by problems 

with the metabolism of lipoproteins rich in triglycerides concentration121.   

1.4.3.4 Hypertension  

Hypertension is usually diagnosed when the systolic pressure is greater or equal to 130-

140 mmHg and the diastolic less than or equal to 85-90 mmHg, according on the 

considered definition. This risk factor, as the previously described one, play a crucial 

role in the development of MetS. In fact, it has been observed that up to one third of 

the individuals that present high blood pressure is affected by MetS126.  This condition 

is often associated with the previously described ones, like obesity or insulin resistance 
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and yet it is not clear whether these may also be some of the causes of increased blood 

pressure, along with many others. The importance of the diagnosis of this health 

condition is related to its implication in the development of secondary problems 

especially at the cardiac level127.  

1.4.4 Associated comorbidities  

The importance for the diagnosis of MetS is also related to the comorbidities that are 

associated with this disorder. Indeed, MetS is responsible for the increased risk of 

development of CVD and may also herald the onset of diabetes because the correlated 

risk factors. Despite this, it is difficult to understand up to which extent MetS is also 

associated to an increase in CVD, the latter also affected by other factors like the 

alcohol consumption, smoking, the age or more in general, unhealthy lifestyle habits.  

MetS is related to an increased risk of mortality. It has been demonstrated that the risk 

of the manifestation of a cardiac event is much higher in patients affected by MetS 

rather than in patients that present just one of the risk factors involved in the 

manifestation of the syndrome128.  

Grouping individuals with similar health conditions is helpful at the clinical level, in 

order to encourage patients to take measures to improve their lifestyle habits and 

possibly treating them for their diagnosed disorders avoiding further complications.   

MetS has been associated to other diseases, like cancer, chronic kidney diseases or 

even psychiatric disorders, of particular interest is the Non-Alcoholic Fatty Liver 

Disease (NAFLD)129–133. In fact, this disorder and MetS shares the common risk factors 

of obesity, insulin resistance, dyslipidemia and hyperglycemia. It is still an open 

question whether or not NAFLD is the hepatic manifestation of the metabolic 

syndrome especially due to the shared pathologic conditions. Further studies need to 

be conducted to resolve this doubt and for a better understanding of this chronic liver 

disease134.  
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1.5 Sars-CoV-2 Infection 

In December 2019 some novel cases of pneumonia were detected in Wuhan, China. 

The isolated virus responsible for it was the Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2) so called for its genetic similarity to the previous SARS-

CoV135. The origin of the virus has been debated but it is believed that it originated in 

the Huanan Seafood Wholesale Market136. The World Health Organization in March 

2020 declared a state of pandemic due to the rapid spreading of this virus all over the 

world137,138. In fact, SARS-CoV-2 is very easily transmitted from person to person 

through droplets inhalation together with aerosol emission and consequent contact of 

the virus with nose, mouth or eyes mucous139,140. Currently, the number of people 

worldwide who have been infected since the beginning of the pandemic, is 

approximately of 623 million and the number of victims amounts to 6.5 million141.  

1.5.1 COVID-19 associated epidemiology  

COVID-19, the disease caused by the infection of SARS-CoV-2 virus, is characterized 

especially by problems in the respiratory track. The presented symptoms include 

cough, fever, shortness of breath, cold, headache, muscle aches, general fatigue but 

also gastrointestinal symptoms as vomit, diarrhoea or many others (Figure 1.8)140. As 

the study of this disease and its variants has progressed, many symptoms and health 

problems related to this infection have been detected142.  

The complexity of this virus has originated many scientific studies, in order to 

understand its mechanism of infection, the problems it causes and the best clinical 

approach to treat patients143. The main factor for the infection of SARS-CoV-2 consist 

in the binding of the Spike protein of the virus with the angiotensin-converting-enzyme 

2 (ACE2) receptor on the host cells surface. ACE2 is principally expressed into the 

nasal epithelium cells and in the bronchial epithelia144. The SARS-CoV-2 principal 

target is the respiratory track but it is also present in other organs explaining the onset 

of secondary issues like renal insufficiency, heart or nervous system problems.  Hence, 

COVID-19 has to be considered as a systemic infection140,145.  

Not all the subjects develop the same kind of symptoms, presenting a mild or severe 

COVID-19146. On the other hand, some patients are completely asymptomatic. This 
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evidence that the factors related to the onset of specific symptoms depend also on 

personal characteristics that vary from one individual to another, making some 

individuals more susceptible to the development of a specific symptomatology, even 

if affected from the same virus. Moreover, different pre-existing risk factors, like 

specific health conditions, are considered as involved in the regulation of disease 

progression 147. 

One of the causes linked to the severe aggravation of patients is what has been called 

the “cytokine storm” involving the excessive immune response that can be triggered 

by this disease148,149. When a patient is infected with the SARS-CoV-2 virus, the 

individual's first response is the one from the innate immune system. Unfortunately, an 

over-response can cause serious damage to several organs, occurring in some COVID-

19 patients. Indeed, the main cytokines involved are the interleukin 2,7 and 8 (IL-2, 

IL-7, IL-8), the granulocyte macrophage stimulating factor, some chemokines like the 

Figure 1.8: Main symptoms that characterize COVID-19 patients. (Figure created with 

BioRender.com). 

 



Introduction 

 

28 

interferon-γ inducible protein-10 (IP-10) and monocyte chemoattractants like CCL2, 

CCL5 and CCL3 and the tumor necrosis factor-α (TNF-α)150,151.  

The related acute respiratory distress syndrome (ARDS) consisting in an increased 

release of immune system cells had been associated with organ failure. Therefore, the 

combination of the “cytokine storm” and ARDS are considered the main causes of 

death among patients152.  

1.5.2 A precision medicine approach in infectious diseases 

As regard infectious diseases, it has been observed that individual's reaction to 

infection is not always the same but depends on both the pathogen and the specific 

characteristic of each subject153. Metabolism seems to play a crucial role in disease 

development leading to milder or more severe symptoms depending on the person154. 

For this reason, a metabolomics approach can be used to identify metabolites that could 

be considered as biomarkers, especially if presented in the early stages of the disease155.  

These general considerations can also be applied in the context of COVID-19. In 

symptomatic COVID-19 patients, it is possible to identify pre-existing factors in each 

individual that can correlate with severity. As regard COVID-19, type 2 diabetes 

(T2DM) for example, has been associated with more severe SARS-CoV-2 infections 

representing a risk factor for this disease together with others like obesity, hypertension 

or metabolic syndrome as previously mentioned154.  

1.5.3 Use of NMR-metabolomics in the study of COVID-19 

Due to the systemic character of this disease, a better comprehension of COVID-19 is 

necessary, and the use of NMR-metabolomics could be helpful for this purpose. 

Thanks to the NMR analysis of samples like plasma or serum from infected individuals 

it could be possible to understand the causes that leads patients to be affected by 

COVID-19, the metabolic changes that characterize individuals with this pathology, 

including the possible differential expression of specific molecules and 

macromolecules and the identification of the principal causes that leads to severe 

outcomes. Moreover, NMR metabolomics proved to be useful also for the 

discrimination of the patients according to the disease severity, the investigation of the 
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possible effect of drugs treatment or even vaccination and, finally, the characterization 

of the long-term sequelae that can affect some SARS-CoV-2 infected individuals156–

159. In the conduced analysis we focused our attention to the description of the 

characteristic metabolic changes during the acute phase of the disease, further 

described in Chapter 5160.  

In the context of the use of NMR spectroscopy for COVID-19 investigation, due to 

some of the previously explained limitation, principally related with signal overlap and 

low sensitivity, new methodologies have also been developed to overcome these 

issues161–164.  

Some specific signals in the NMR spectra have been previously associated with the 

description of inflammation states: the N-acetyl signal of glycoproteins (GlycA and 

GlycB) and the supramolecular phospholipid composite peak (SPC) of phospholipids. 

To investigate these aspects more thoroughly, NMR pulse sequences have been 

specifically designed which, allow a better isolation and examination of these specific 

NMR signals. Thanks to the use of the optimized technologies, it is possible to monitor 

the inflammation state of a patient and check their clinical course, thus also being able 

to have an idea of the patient's recovery time. 

1.5.4 MetS and COVID-19 

Due to the spread of COVID-19, the infectious disease caused by the SARS-CoV-2 

virus that has recently affected the worldwide population at a pandemic level, several 

studies have been recently conducted trying to understand the possible relationship 

between this infection and the metabolic syndrome165–167. Indeed, subjects with 

diabetes, hypertension or obesity had more probability to present severe outcomes from 

SARS-CoV-2 infection168–171. Patients with COVID-19 that are affected by MetS, had 

increased probability to be admitted to the intensive care unit (ICU) due to severe 

complication and even higher risk of death172.  

Moreover, it has been observed that there is also a correlation between the probability 

of testing positive for SARS-CoV-2 and subjects with higher BMI. Obesity seems to 
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be a risk factor for COVID-19 disease, making individuals even more susceptible to 

be infected173–175. 

For this reason, a more in-depth study of the mechanisms that regulate these two 

diseases can help to improve the health of patients by avoiding negative outcomes. In 

the context of this thesis, due to the concomitance of this pathology and due to the 

availability of samples for investigating this new disease, the metabolic mechanisms 

related to the onset of COVID-19 and the characteristics of patients in the acute phase 

of this pathology have been studied using NMR-metabolomics.  
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2.1 Hypothesis  

Metabolic syndrome and SARS-CoV-2 infection can be considered as two complex 

disorders. Our hypothesis was that, both these pathologies produce important 

metabolic alterations which can be analysed by NMR-based metabolomics. The study 

of the latter is fundamental for a better understanding of the involved mechanism in 

these disorders which could lead to a personalized treatment of the affected subjects.  

2.2 Objectives 

2.2.1 A molecular discrimination of the metabolic syndrome by urine and 

serum metabolomics    

The main goals of this project were: 

• The identification of new biomarkers and the validation of the existing ones 

through the study of the relative contributing risk factors involved in the 

development of MetS. 

• To determine, at the molecular level, differences between peoples with and 

without MetS.  

• To design a tool for the determination of a “MetS score” able to define how 

likely a subject is to develop MetS based on the metabolomic analysis of serum 

and/or urine samples.  

• To evaluate the putative metabolic relationship with MetS of some other risk 

factors, like aging and NAFLD, that may enhance MetS probability.  

2.2.2 Metabolomic and Lipidomic dysregulation caused by SARS-CoV-2 

infection 

The main goals of this project were: 

• To investigate the characteristic metabolic and lipidomic serum profile in 

hospitalized patients diagnosed with COVID-19 and showing clear 

manifestations of the disease.  

• The identification of new biomarkers specifically associated with this disease.  
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• To evaluate the possibility of the development of secondary problems, such as 

an increased atherosclerotic risk or liver damage, due to the produced 

metabolic and lipidomic changes by SARS-CoV-2 infection.  
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3.1 Samples cohorts  

Different cohorts of samples were included into the conducted studies. All samples 

were obtained following the principles of the Declaration of Helsinki, which protects 

patients by establishing a set of ethical standards for medical research involving the 

use of human samples. All the patients that participated into the studies gave their 

informed consent and their data were anonymized to protect their privacy. Moreover, 

the projects were approved by the corresponding ethics committee.  

For each of the samples included into the studies a number of metadata were obtained, 

according to the cohort, to help with patients’ classification and to direct the analyses. 

Biochemical data were obtained from aliquots of serum and urine samples collected in 

the same sample extraction day. 

3.1.1 Metabolic syndrome study cohorts 

The cohorts of samples included in this study are listed below: 

• OSARTEN: including urine and serum samples from the working population 

of the Basque Country, man and women from 19 to 66 years old. These 

samples were recollected by the Osarten Kooperatiba Elkartea (Mondragon 

Cooperative) as additional aliquots during the routine medical check-ups of 

their employees. No particular exclusion criteria were applied with the 

exception of having suffered from a serious illness like cancer or ictus in the 3 

months preceding the sample collection. Detailed information about the urine 

and serum samples included into the study is listed in Table A1 and Table A2 

respectively in the Appendix.  

• OBENUTIC: the acronym of this cohort comes from “Obesidad, Nutrición y 

Tecnologías de la Información y Comunicación”, a study on obesity conducted 

by the Preventive and Public Health department of the Faculty of Medicine of 

Valencia. This cohort include urine samples from men and women with a 

range of age between 18 and 60 of the Community of Valencia and with a BMI 

between 20-35 kg/m². Exclusion criteria were applied, like suffering from any 
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infectious-contagious disease, physical or mental incapacitating illness, being 

in pregnancy or lactation, having a diagnosis of cancer, thyroid disorders 

and/or type I diabetes and Cushing’s disease or using medication altering 

blood concentration of lipids. More detailed information is listed in Table A3 

of the Appendix.   

• PREDIMED: consists in urine samples from a bigger prevention study based 

on the effect of the consumption of Mediterranean diet. For our study the 

included subjects presented an age between 55 and 80 years old for men and 

from 60 to 80 years old for women. Moreover, individuals must present type 

2 diabetes or a diagnosed higher cardiovascular risk. Detailed information is 

listed in Table A4 in the Appendix.  

• KIROLGETXO: represented by urine samples from senior individuals, older 

than 65 years old, practicing sport routinely at the Sport Centre of Getxo. 

Information of these subjects is listed in Table A5 in the Appendix.  

• NAFLD: includes urine samples from men and women between 18-75 years 

old from different part of Europe who underwent a liver biopsy. More 

information of these subjects is included in Table A6 in the Appendix.  

• MetS long: consists in serum samples from the biobanks of the University of 

Navarra and from the University Hospital Ramón y Cajal. Individuals 

presenting one or more risk factors for the development of the metabolic 

syndrome like diabetes, obesity, dyslipidemia or hypertension were recruited 

to form this cohort. The included subjects did not suffered from a serious 

illness like cancer or ictus in the 3 months preceding the sample collection. 

More information of these individuals is included in Table A7 in the 

Appendix.  

• PORTUGAL: including serum samples form senior subjects recovered in 

retirement homes from a specific region of Portugal (Beira Interior region). 

More information of these subjects is included in Table A8 in the Appendix.  

For the majority of these cohorts, the biochemical data were available in order to 

classify patients according to their risk factors involved in the development of the 

metabolic syndrome.  
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3.1.2 COVID-19 study cohorts 

The cohorts of samples included in this study are listed above: 

• preCOVID: includes serum samples recruited in 2018/2019, before the onset 

of the pandemic, from some patients of the OSARTEN cohort, previously 

described in the metabolic syndrome project cohorts. These samples were used 

as controls in order to compare the unhealthy patients with healthy ones, 

recollected long before COVID-19 spread. Information regarding the selected 

samples is listed in Table A9 in the Appendix.  

• COVID: includes serum samples from hospitalized COVID positive subjects 

in the acute phase of the infection recruited in the Basurto and Cruces 

University Hospitals during the first wave of the pandemic. Patients were 

presenting symptoms compatible with COVID-19 and were testing positive to 

RT-PCR (Real-Time reverse-transcription Polymerase Chain Reaction) 

targeting the viral RNA of SARS-CoV-2 virus on nasal swab. Information 

regarding the selected samples is listed in Table A9 in the Appendix. 

3.2 NMR measurements  

NMR was the selected technology to conduce the performed samples measurements in 

the metabolic studies carried out in this thesis. Some of the basic theoretical principles 

on which this technique was based were explained in Chapter 1. Here we described the 

used spectrometers and the experimental procedures that characterize this 

measurement process.  

3.2.1 The Equipment 

For the analysis of the serum and urine samples two Bruker Biospin NMR 

spectrometers were used: 

• A 600 MHz AVANCE III HD (IVDr), called 601, coupled with an automatic 

sample changer (SampleJet). This spectrometer is equipped with a Double 
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Resonance Broadband Probe (BBI) with a z gradient coil and with 3 channels: 

1H, 2H, X (BB-F). 

• A 600 MHz AVANCE NEO (IVDr), called 602, coupled with an automatic 

sample changer (SampleJet). This spectrometer is equipped with a Double 

Resonance Broadband Probe (BBI) with a z gradient coil and with 4 channels: 

1H, 2H, X (BB-F), 13C or 31P. 

Both magnets were used for urine and serum acquisition according to need. 

Furthermore, it was proven that, by following strict SOPs, it was possible to use both 

NMR magnets without any variability in the measurements1. The 600 MHz 

spectrometers are considered as a good compromise for the obtained spectra sensitivity 

and resolution in relation to the related cost. For this reason, 600 MHz spectrometers 

are among the most used ones in the metabolomic field.  

The SampleJet consist in a robotic unit coupled to the spectrometers with five 

refrigerated rack positions (each with a capacity of 96 NMR tubes, for a total of 480 

tubes) that allows to maintain samples at the desired temperature before and after 

measurement. Additionally, the SampleJet could host up to 96 tubes without spinner 

in a not refrigerated carousel. Non-temperature-sensitive samples that must be 

measured daily (the calibration tube described further) were stored in this area.  

Bruker TopSpin software is used in order to control the NMR spectrometers and to 

proceed with data analysis, acquisition, processing and a wide range of additional 

functions. Moreover, IconNMR software allows the fully automated NMR spectra 

acquisition thanks also to its connection with the SampleJet robotic unit. The use of 

these programs is essential especially for high throughput studies with a large number 

of samples.  

3.2.2 Magnet calibration 

As briefly explained in the introduction (Chapter 1), before samples NMR 

measurements it was necessary to check the performance of the spectrometer that was 

going to be used. In order to do that, three different samples were measured daily: 

methanol, QuantRef and sucrose.  
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3.2.2.1 Temperature calibration 

Temperature calibration was realized measuring a methanol sample. According to 

which biofluid was measured a specific temperature was set and the NMR 

spectrometers was left to stabilize at least all night long before starting with the 

temperature calibration, to avoid fluctuations and ensure that the magnet reached the 

correct temperature. For urine measurements the magnet was set at 300K while for 

serum/plasma at 310K. The exact calibration is important because small molecules and 

lipoproteins are sensible to temperature changes that can provoke chemical shifts. It’s 

important to ensure that all the samples from the same project were measured always 

at the optimal temperature in order to avoid these shifts.    

A 5 mm sealed NMR tube containing 99.8% deuterated methanol (MeOD) was 

preheated for 300 seconds before proceeding with measurement. To verify if the 

temperature inside the magnet was exactly the set one, deuterated methanol was used 

due to the known temperature dependence of its NMR signals. In fact, the OH-CH2 

chemical shift difference is inversely proportional to the increase in temperature, 

Figure 3.1: Representative NMR spectra of deuterated methanol automatically measured to 

determine the real temperature of the magnet (300K for urine measurements; 310K for serum 

measurements). If the calculated distance is in line with the selected temperature, the message 

“temperature within acceptable range” appears in the display. 
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(decrease as the temperature rise) due to its association with the reduced hydrogen 

bounding2. A quick pre-set experiment from Bruker was acquired in the IconNMR 

automatic routine. After that, the spectrum was automatically processed (line 

broadening of 0.3 Hz) and, to check the real temperature inside the magnet, the distance 

in ppm between the CH3 and OH methanol signals was automatically calculated (Δδ) 

in TopSpin. Thanks to that, it was possible to know if temperature was within the 

acceptable range and to continue with the following step of the magnet calibration 

(Figure 3.1)2,3. 

3.2.2.2 QuantRef calibration 

To guarantee the optimal absolute quantification of the metabolites present in the 

samples, QuantRef (quantification reference solution) was calibrated daily. Moreover, 

this is also important for comparisons between NMR platforms and to assess the 

reliability of the results over time to compare samples concentrations.  

Quantification is possible thanks to the presence of an external synthetic radio 

frequency signal called ERETIC (Electronic Reference To access In-vivo 

Concentrations). In this way an additional peak appears in the NMR spectra, far away 

from the NMR peaks of the metabolites in the solution, avoiding overlapping problems. 

QuantRef sample consists in a mixture of metabolites commonly present in biofluids 

at a known concentration and stable over time inside a 5 mm sealed NMR tube. To 

allow quantification in complex matrix, like the ones of biofluids, was necessary to 

calibrate the QuantRef before each samples set. A NOESY experiment was acquired 

in IconNMR automation mode after sample preheating for 300 seconds at the selected 

temperature, according to the biofluid that was going to be measured. NMR acquisition 

was done with the same parameters further used for the acquisition of the urine or 

serum samples. The resulting spectra was checked in order to determine if the quality 

of the measurement was within the acceptable range (Figure 3.2). In order to determine 

it, the half height of the DSS signal has to be lower than 1 Hz and the NMR signals of 

the known metabolites present in solution are integrated in order to assess the in vivo 

concentration of the ERETIC factor applying the following formula:  
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𝐸𝑅𝐸𝑇𝐼𝐶 =
𝐼𝑅𝑒𝑓  ∙  𝑆𝑊𝑅𝑒𝑓 ∙ 𝑀𝑅𝑒𝑓 

𝑆𝐼𝑅𝑒𝑓 ∙  𝐶𝑅𝑒𝑓  ∙  𝑁𝐻𝑅𝑒𝑓
 

Where Ref are the reference metabolites of known concentration, I represents the 

absolute integral, SW the spectral with, M the reference substance’s molecular weight, 

SI the size of the real spectrum, which shows the number of data points after Fourier 

transformation, C the known concentration of the reference substances and NH the 

number of protons giving rise to the considered NMR signal4,5.  

From the present metabolites and the considered NMR signals, an average ERETIC 

factor is obtained. To determine if the measured QuantRef results is within the 

acceptable range, the maximum internal deviation of the calculated ERETIC factor 

after the daily measurement must be smaller than the 4%, otherwise the experiment 

must be repeated and all the parameters checked. If the calibration results as 

acceptable, the ERETIC factor can be used for all the following quantifications of urine 

or serum samples. In our case, the described procedure is performed automatically by 

the TopSpin software. 

Figure 3.2: Representative NMR spectra of QuantRef sample. If the half height of the 

DSS signal is lower than 1 Hz and the calculated internal deviation of the coefficient 

of the ERETIC factor is smaller than the 4%, the message “QuantRef within acceptable 

range” appears in the display. 
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3.2.2.3 Shim Performance and Water Suppression Test 

To check the integrity, the stability and the performance of the NMR system different 

NMR measurements were performed on a sucrose sample (0.5 mM DSS, 2 mM NaN3 

in 90% H2O and 10% D2O) in the automation mode of IconNMR.  

The first measured experiment was necessary for the O1 offset optimization measuring 

a 1D NMR experiment with water presaturation, by a long relaxation delay and only 1 

scan. The magnetic field homogeneity is checked looking at the half height of the DSS 

signal that has to be lower than 1 Hz. After that, it was necessary to evaluate the water 

suppression performance without which water signal would be the only one visible in 

the spectrum. An experiment processed with 8 scans cycles and the previously set 

saturation frequency, power and acquisition parameters was automatically performed. 

From this experiment different important parameters were checked (Figure 3.3): the 

signal-to-noise looking at the anomeric peak of sucrose, that has to present a value 

higher of 300. The resolution, measuring the splitting of the signal, that has to be better 

of the 15% and finally the water hump, measured at 50% and 10% of the DSS signal 

intensity, that must not be bigger than 30 and 50 Hz respectively. Finally, a last gradient 

experiment was acquired in order to check the probe integrity. 

Figure 3.3: Representative 1H NMR spectra of sucrose measurement during daily calibration. 

All the checked parameters are listed on the left and an amplified section of DSS signal is 

showed. If all the parameters are in the correct range, the message “water suppression test within 

acceptable range” appears in the display.  
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3.2.3 NMR samples preparation 

Samples were prepared following strict standard operating procedure to obtain reliable 

results as previously mentioned in Chapter 1.  

3.2.3.1 Urine samples preparation 

Urine was preserved in the freezer at -80°C. After thawing at room temperature for 30 

minutes, samples were centrifuged at 6000 RPM for 5 minutes at 4°C. 630 μL of the 

urine supernatant was transferred to a 1.5 ml Eppendorf with 70 μL of urine buffer (1.5 

M KH2PO4/K2HPO4, 2 mM NaN3, 1% TSP (trimethylsilylpropionic acid-d4 sodium 

salt) in 70% D2O, pH 7.4 ± 0.1). After mixing the buffered urine with the vortex for a 

couple of seconds, 600 μL of well mixed sample was transferred into a 5 mm NMR-

tube. NMR tubes containing the prepared samples were further manually shaken for 

several seconds and stored inside the rack at 5°C in the SampleJet until acquisition 

(Figure 3.4). 

3.2.3.2 Serum samples preparation  

Blood samples were collected into EDTA free extraction tubes to avoid contamination 

for the following NMR measurements. Serum aliquots obtained after blood 

centrifugation were stored in the -80°C freezer and then used to prepare NMR samples 

both manually and using the SamplePro Tube robotic system (Bruker Biospin).  

For manual preparation, samples were defrosted at room temperature for 30 minutes. 

NMR samples were prepared mixing the serum buffer (75 mM Na2HPO4, 2mM NaN3, 

Figure 3.4: Schematic representation of the urine samples preparation. (Figure created with 

BioRender.com). 
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4.6 mM TSP in H2O and 10% D2O, pH 7.4 ±0.1) with the serum sample at a 1:1 (v/v) 

ratio in a 5 mm NMR tube for a final volume of 600 µL. NMR samples were gently 

shaken for several seconds and kept at 5°C in the SampleJet until measurement (Figure 

3.5). 

Serum samples preparation with the SamplePro Tube (SPT) was done automatically 

mixing the serum buffer with the samples in a 1:1 ratio (v/v), as for manual samples, 

for a final volume of 600 µL into a 5 mm NMR tube. Prepared samples were removed 

from the cooling area of the SPT, tube’s cups were sealed with POM balls and samples 

were manually gently shaken for several seconds. After that, samples were kept at 5°C 

in the SampleJet until measurement.  

SamplePro Tube operation required procedures for the setting of the instrument 

functionality for the preparation of samples at the correct ratio, and a daily calibration. 

“SPT Calibration Day”, the procedure for the correct setting of instrument 

functionality, must be done every three months or each time changes were made to the 

NMR magnet or the QuantRef was recalibrated. This consisted in the preparation of 

some control samples form a serum pool both manually and with the SPT. Samples 

prepared manually were done mixing the serum buffer with the serum pool at the 

perfect 1:1 ratio calculated using a precision balance and taking into account the serum 

density. A specific amount of serum buffer was added into a glass vial and weighted 

using the precision balance. The obtained value of was divided by 1,025 to know the 

Figure 3.5: Schematic representation of serum sample preparation. (Figure created with 

BioRender.com). 
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exact serum pool amount in weight that must be added to the glass vial already 

containing the serum buffer. The obtained mix of serum buffer and serum pool was 

gently mixed to homogenise the pool sample, dived into 5 mm NMR tubes for a final 

volume of 600 µL in each one of them and a NOESY experiment was measured for 

the obtained samples.  

Meanwhile, other control samples with the same serum pool were prepared using the 

SPT with three different set up for the additive amount of 290, 300 and 310 µL (usually 

3 samples with each set up) to build up a calibration curve. The prepared samples were 

gently manually mixed and a NOESY experiment was acquired for each one of them. 

After the acquisition of all the samples, the one prepared with the balance and the one 

prepared with the SPT, a MatLab script was run to build up the mentioned calibration 

curve and to extrapolate the value of additive amount that must be set in the SamplePro 

Tube to prepare samples at the exact 1:1 ratio. To verify that the established additive 

volume was the correct one, three samples were prepared with this amount of additive 

with the SPT and measured by NMR. Their validity was checked with the “SPT daily 

calibration” test, explained below.  

Regarding the SamplePro Tube daily calibration, this consisted in two steps: the 

preparation of four NMR samples with a blank solution (1.1% NaCl water solution 

with 0,02% w/v [ca. 3mM] NaN3) with the same method used for real samples 

preparation, mixing the blank solution with buffer in a 1:1 ratio for a final volume of 

600 µL inside the 5 mm NMR tube, needed just to check visually if the amount of 

sample was equal in all the four NMR tube prepared. Secondly, a set of three control 

samples from a serum pool (the same one previously used for the “SPT Calibration 

Day”) were prepared with the method later used for real samples preparation to check 

the SPT performance. A NOESY experiment was acquired for each serum control 

sample and, after measurement, a MatLab scrip was run in order to compare the 

prepared samples with the previously prepared one using the precision balance on the 

“SPT Calibration Day”. If the variability of the acquired samples was within an 

acceptable range, real samples could be prepared using the SPT.  
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3.2.4 NMR acquisition  

After preparation, samples were acquired according to the defined standard operating 

procedures to ensure the comparison between different laboratories and the reliability 

of results in long-term studies.  

3.2.4.1 Urine samples NMR measurements  

All the urine samples were acquired at 300K. For each sample two experiment were 

measured: a 1D 1H spectrum with water presaturation using the NOESY pulse 

sequence (noesygppr1d) and a 2D JRES (jresgpprqf). For a subset of samples, to help 

with metabolites identification, a 2D 1H TOCSY experiment was acquired.  

1D-NOESY experiment is the most used one for metabolomics measurements of 

biofluid, as previously mentioned in Chapter 16. This is related especially to the 

characteristics of this pulse sequence for the optimal water suppression, an important 

factor for this kind of samples, with the implication of little optimization processes7. 

In fact, water signal must be well suppressed to guarantee the optimal metabolites 

identification and quantification due to the impact that the presence of water signal 

could have on the baseline of the spectra8. Moreover, water peak could overlap with 

metabolite’s ones making impossible their identification.  

3.2.4.2 Serum samples NMR measurements 

All the serum samples were acquired at 310 K. Three different experiments were 

recorded for each sample: a 1D 1H spectrum with water presaturation using the NOESY 

pulse sequence (noesygppr1d), a 2D JRES spectrum (jresgpprqf) and a 1D 1H Carr-

Pulcell-Maiboom_Gill (CPMG) spin-echo experiment (cpmgpr1d). The latter allowed 

the selective removing of the macromolecules NMR signals in the resulting spectra 

enabling a better observation of the small molecules. Indeed, this experiment was 

designed according to the characteristic very short relaxation time of macromolecules. 

This permits to observe only the small molecules NMR signals, which indeed have 

larger relaxation time, by properly choosing the T2 filter.  
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3.2.5 Bruker Reports 

After the measurement of each sample, Bruker reports were obtained. Both for urine 

and serum measurement a Quality Control (QC) report was given to check that the 

experiments performed meet the agreed standards and could be included in the study. 

Moreover, specific reports were given, according to the measured biofluid, for the 

quantification of the metabolites in solution and, in the case of serum, also for 

lipoproteins quantification.  

3.2.5.1 Urine report 

As regard Urine, the Bruker IVDr BioBank QC (B.I.BioBankQCTM) report verified the 

quality of the measured experiment with a number of specific tests: NMR experiment 

parameter test, NMR experiment quality test, NMR preparation quality test, matrix 

identity, integrity and contamination test, medication test, protein background test and 

finally the further indicative parameter test. The NMR experiment parameter test was 

used to check that the correct values were used for the acquisition. The NMR spectral 

quality parameters test checked the shimming performance looking at TSP linewidth 

and symmetry together with the absolute residual water signal intensity value. 

Moreover, sample preparation was verified by means of TSP concentration. The matrix 

identity and integrity were examined to discard bacterial growth or degradation. In 

addition, the presence of contaminants or medication related metabolites was 

controlled because, during the pre-analytic procedures, some undesired compounds 

could be introduced impairing spectra fingerprinting.  The presence of disturbing 

background proteins in urine causing baseline alteration was also checked.  Finally, 

further indicative parameters were examined including other common contaminants 

like acetone, acetoacetic acid, 3-hydroxybutiric acid or glucose that should be not 

present in fasting conditions.  

In addition to the B.I.BioBankQCTM report, after urine measurement two kind of 

reports (B.I.Quant-UR bTM  or B.I.Quant-UR eTM) with different number (50 or 150) of 

quantified metabolites could be obtained. Both reports, although useful in verifying the 

presence of certain metabolites, were not, however, used in our urine analysis. For the 
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purpose of our work, we preferred instead to use the binning strategy, explained 

further. 

3.2.5.2 Serum reports 

As for urine, the B.I.BioBankQCTM report for serum samples was obtained after each 

acquisition to verify the quality of the measured experiments. The obtained report, in 

this case, was achieved performing a slightly different number of tests with respect to 

the ones previously mentioned for urine: the NMR experiment parameter and quality 

test, the NMR preparation quality test and the matrix identity, integrity and 

contamination test. The NMR experiment parameters test was used to check again that 

the optimal values were used for the acquisition. The NMR spectral quality parameters 

test was used to check the shimming performance but, in this case, instead of the TSP, 

alanine doublet was controlled. Moreover, the absolute value of the intensity of water 

residual signal was used to check water suppression. The NMR sample preparation 

quality parameters test was performed to check that samples were prepared with the 

correct buffer-sample ratio (1:1 v/v). To that aim, TSP concentration was calculated 

together with the intensity of the background protein in the spectral range from 6 to 12 

ppm and the alanine shift. The matrix identity test was then used to recognize different 

matrices commonly implied in blood recollection tubes: EDTA-plasma, citrate plasma 

and heparin plasma and serum. Moreover, the matrix integrity parameters test was used 

to check if samples were not degraded or prone to bacterial growth. Finally, the matrix 

contamination parameter test ensured the absence of metabolites like isopropanol 

coming from pre-analytical procedures or other contaminants (0.8-1.25 ppm) related 

to low quality cryovials used for storage.  

In addition to the previous one, another report was also obtained in order to quantify 

41 metabolites that could be present in the serum samples: the Bruker IVDr 

Quantification in Plasma/Serum B.I.Quant-PSTM. This included small molecules 

grouped according to their chemical class: alcohol, amines, amino acids and related 

derivatives, carboxylic acids, essential nutrient, keto acids and sugars and related 

derivatives, sulfones and technical additives (listed in Table A11 in the Appendix). 

The concentration of each metabolite, if present and detectable according to their limit 

of detection (LOD), was reported in mmol/L.  
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Finally, in the serum analysis an additional report was obtained: the Bruker IVDr 

Lipoprotein Subclass Analysis B.I.LISATM. Thanks to this additional report the 

quantification of 112 lipoproteins parameters was possible (listed in Table A12 in the 

Appendix). Specifically, it was possible to assess information about the main VLDL, 

IDL, LDL and HDL classes, six VLDL subclasses (VLDL-1 to VLDL-6), six LDL 

sub-classes (LDL-1 to LDL-6) and four HDL-subclasses (HDL-1 to HDL-4). 

Lipoproteins were sorted according to the increasing density and consequent 

decreasing size (look at Table 3.1). 

Table 3.1: Lipoproteins density is expressed in kg/L and they are sorted according to the 

increasing density and decreasing size. VLDL (Very Low Density Lipoprotein); IDL 

(Intermediate Desnity Lipoprotein); LDL (Low Density Lipoprotein); HDL (High Density 

Lipoprotein).   

Lipoprotein Main Fractions 

VLDL IDL IDL HDL 

0.950 - 1.006 1.006 - 1.019 1.019 - 1.063 1.063 - 1.210 
Very Low Density Lipoprotein subfractions 

LDL-1 LDL-2 LDL-3 LDL-4 LDL-5 LDL-6 

1.019 - 1.031 1.031 - 1.034 1.034 - 1.037 1.037 - 1.040 1.040 - 1.044 1.044 - 1.063 

High Density Lipoprotein subfractions 

HDL-1 HDL-2 HDL-3 HDL-4 

1.063 - 1.100 1.100 - 1.112 1.112 - 1.125 1.125 - 1.210 

  

3.2.6 Metabolites and lipoprotein quantification 

Quantification by NMR considered the number of protons which could give rise to an 

NMR signal, and the intensity of the peak, which depends not only on the number of 

protons, but also on the concentration of the metabolite under investigation9. Moreover, 

metabolite peak intensity had to be related to a reference signal with known 

concentration. This signal could be internal or external. In our study, metabolites were 

quantified by means of the ERETIC calibration signal, previously explained.  

Quantification is not always an easy process due to the overlapping signals typical of 

biofluids. For this reason, the use of automated systems that consider the possible 

overlap of certain signals, and use signal deconvolution tools to optimise 

quantification, could be helpful. In our study, the quantification was automatically 
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carried out using Bruker's software, which took this information into account, and 

obtained within the previously described reports. 

As regard the lipoprotein quantification, this was realized following the same 

principles explained so far. However, the quantification of lipoproteins, proved to be 

more complex. It was necessary to study the signal profile coming from methyl and 

methylene groups in greater detail to proceed with the correct deconvolution of the 

signal. Indeed, the B.I.LISATM report quantification used a regression model 

established on the combination of a training data set based on NMR measurements and 

ultracentrifugation data. 

3.2.7 Metabolites identification  

Metabolites identification was realised consulting databases like the Biological 

Magnetic Resonance Databank and the Human Metabolome Database, both free and 

available online10. The BMRB includes NMR spectra of a great number of small 

molecules and allows to search for metabolites starting from specific chemical shift 

and giving as result a list of compounds in the searched area. This option is also 

available in HMDB. Moreover, the HMDB contains information about most of the 

small molecules that could be find in human body. For each metabolite it is possible to 

know the biofluid in which was detected, a description, the biological properties, its 

normal concentration range, the references of the studies that detected the metabolite 

and, if available, the NMR spectra with the related chemical shift and multiplicity of 

the signals.  

Metabolites identification was also possible thanks to the use of the Chenomx software 

for the NMR mixture analysis. The latter allows the metabolites identification by the 

fitting of libraries of compounds with the desired spectra.  

3.3 Samples processing and analysis 

NMR metabolomics must often dial with important challenges managing huge amount 

of data. For this reason, to obtain reliable results, specific steps must be followed 

according with pre-established standard operating procedures. As previously explained 
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in the introduction, metabolomics workflow after samples acquisition, consisted in 

spectral processing and data analysis. 

3.3.1 Spectral processing  

The spectral processing included different steps for the optimization of the acquired 

NMR spectra eliminating small errors coming from the acquisition. NMR spectra 

processing must be done exactly in the same way in all the samples included into a 

study. This consisted in chemical shift referencing and phase and baseline correction11.  

Chemical shift referencing must be performed looking at the internal reference 

compound signal, like TSP, which must be referenced to zero. Alternatively, the NMR 

peak of a compound, known to be in solution and not sensitive to pH changes, can be 

referenced to the correct chemical shift.  This process was particularly important for 

the correct alignment of the spectra and for the identification of metabolites12. As 

regard phase correction, this was necessary in order to correct possible distortion, 

ensuring the perfect symmetry of all the NMR peaks in the spectra for the following 

correct integration for quantification purposes13. Finally, baseline correction must be 

executed to eliminate possible alterations that may have an effect, once again, on 

metabolite quantification due to incorrect signal integration11. 

In the routine acquisition performed, spectra processing was automatically done using 

Topspin, thus ensuring the reduction of errors due to erroneous sample-dependent 

processing, which would lead to further mistakes in the subsequent analysis process.  

3.3.1.1 Spectral binning  

One of the following post-processing steps to proceed with the statistical analysis was 

the spectral binning. This step consisted in the segmentation of the NMR spectra into 

spectral areas of the desired width (generally from 0.02 to 0.05 ppm) called bins.  For 

urine samples, segmentation of the 1H NMR spectra (NOESY), already processed by 

TopSpin, was done between 0.5 and 9.5 ppm, apart from the area of water signal from 

4.7 to 5.0 ppm to avoid strong signals.  Each spectrum was divided in 290 buckets of 

equal size of 0.03 ppm. Each bin was summarized as the average of its points and 

divided by the total spectrum intensity (sum of all points removing water region). This 
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normalization minimized the effect of possible concentration differences. The process 

of binning was applied to proceed with some of the following statistical analysis using 

the generated bins as variables.  

3.3.2 Statistical analysis 

Statistical analysis was performed to obtain information regarding the examined cohort 

of samples. Univariate and multivariate analysis were applied, and different methods 

were used to conduct these studies including supervised and unsupervised 

techniques14. Here follows an explanation of the main statistical tools used in the 

context of this thesis. 

3.3.2.1 Elimination of outlier samples 

Outlier elimination was executed to avoid distortion of statistical analysis. To that aim, 

a multivariate clustering algorithm was applied after Pareto Scaling, which must be 

used to normalise the distribution of NMR signals, especially in complex spectra such 

as those of biofluids where some metabolites with high concentrations may prevail 

those of less intense small molecules, affecting subsequent analyses. 

The used multivariate clustering algorithm was the DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise) with scaled bins as input variables for metabolic 

syndrome cohorts or metabolites and lipoproteins for COVID-19 study cohorts15.  This 

algorithm tried to identify groups with high density, characterized by a large number 

of neighbours, taking into account the multivariate space composed by the variables. 

The groups with low density or isolated samples were marked as extreme and 

considered as outlier.  

This process was executed on the samples of the metabolic syndrome cohorts (Chapter 

4) and on the COVID-19 project cohorts (Chapter 5). A total of 9,367 (94%) samples 

in the OSARTEN cohort, 960 (98%) for PREDIMED, 465 (96%) for OBENUTIC, 234 

(100%) in NAFLD and 101 (100%) for KIROLGETXO in each of the examined 

cohorts, were considered as valid for the following statistical analysis after outliers 

exclusion. As regard the COVID project only 6 outliers were detected in the COVID 

cohort and none in the preCOVID one.  
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3.3.2.2 Univariate analysis  

Various methods could be used to analyse the obtained data, the following were the 

most used in this thesis:  

• Box plots: were used for the representation of the distribution of an examined 

variable, as an alternative to histograms. These were particularly useful 

because of their graphical representation which was giving information about 

the median and interquartile range16.  

• Violin plots: were used as an alternative to box plot for a better visualization 

of the distribution because they allowed to also evidence the density of the 

examined data. The included characteristics curves (kernel density plot), 

surrounding the distribution of the values, gave an estimation of the probability 

that another variable in the examined population exhibits a value in this area. 

Wider areas indicated a higher probability while skinner sections a lower 

one17.  

• Scatter plots: were used to indicate the correlation between two variables. They 

could include a regression line indicating their tendency.  

• Heatmaps: were used to visualize the result of the conduced univariate analysis 

when several variables were compared. They included several information and 

the application of different test, in the statistical analysis process, was 

necessary. These were generally performed to confirm a hypothesis under 

investigation. The Wilcoxon test (nonparametric) and the t-test (parametric) 

were frequently applied in order to identify bins (or other variables) with 

statistically significant differences between two groups. Both reached very 

similar values with the studied metabolic data and were therefore used 

interchangeably. A p-value below 0.05 (less than 5% of probability that the 

null hypothesis [no difference] was true) was used as threshold to determine if 

the observed differences were statistically significat. In the context of our 

analysis, asterisks within the cells in the described heatmap, represented the 

calculated p-value (*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001; 

****: p-value < 0.0001). This process was executed after the application of 

another method: the false discovery rate (FDR) correction used to minimize 
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type I errors due to multiple comparisons18. Moreover, the binary logarithm of 

the fold-changes (log2FC) was used to detect in which direction was going the 

magnitude of the observed differences allowing to the detect the up or down 

regulated variables, represented with a colour code in the heatmap. Finally, 

variables were grouped according to hierarchical clustering algorithm based 

on distances between different profiles (Euclidean distances or Pearson 

correlation distances) with a multivariate approach14. Hierarchical clustering 

was applied in order to group similar profiles following the complete 

(calculating distances between the two most distant points in each cluster, 

finding similar ones) or Ward’s method (minimum variance method, aimed to 

generate compact clusters). The result of the clustering process generated 

dendrograms which were coupled to heatmaps in order to detect patterns.  

• Forest plot: were used to display the results of univariate analysis. They 

included a summarized overview of the result of the study of different 

independent variables, all addressing the same question (the difference against 

a control condition). Each of the obtained result from an individual variable 

analysis was displayed in the horizontal orientation reporting the name and the 

result of the studied data. The vertical reference line represented no change 

against the reference group. The result of each individual difference was 

represented by a circular point incorporating also a horizontal line indicating 

the associated standard error. If the represented point was black filled, the 

observed difference was considered as statistically significant.  

3.3.3.3 Multivariate analysis  

The main multivariate analysis used in this thesis are described below: 

• Principal Component Analysis (PCA): was generally used in order to detect 

possible intrinsic patterns within the dataset. Thanks to this unsupervised 

approach it was possible to observe in an easy way the distribution of the data 

in the Principal Component (PC) spaces. PC1 and PC2 were generated to 

represent the direction of maximum variance of the data being PC2 orthogonal 

with respect to the first PC. Thanks to this statistical tool it was possible to 
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visualize groups of samples or spectra sharing similar characteristics that led 

them to cluster together in the PC space14,19.  

• Orthogonal partial least-squares discriminate analysis (OPLS-DA): was 

applied to observe differences between groups of samples or spectra in a 

supervised way. In this case, with respect to the previously explained PCA, the 

observed separation is forced, giving previous information of the samples 

under analysis20. However, this approach could overfits the data, necessitating 

careful validation21. To select the number of orthogonal components and 

validate the predictive capacity a repeated double cross validation process 

(rdCV) was performed.  

• Spearman correlation graph: was used as graphical representation from the 

calculated multivariate Spearman distances between average profiles of 

conditions. The difference from the apparently healthy condition was 

calculated for each profile. The resulting distances were scaled (range 0-1) and 

represented by a colour code in the graph (created with igraph of R package 

version 1.2.6) connecting adjacent conditions by the increasing number of 

presented RF.  

• Random forest algorithm: was used to build up a binary classification model. 

This kind of supervised machine learning algorithm are commonly used in 

order to generate predictive models. In the context of the conduced analysis,  

first the data were randomly divided into training (75%) and testing (25%) 

sets. The final model was built from the selected parameters using the entire 

training set and evaluated on the testing set to estimate its performance on 

unseen data. This final performance was summarized in receiver operating 

characteristic (ROC) curves, including their AUCs (Area Under the Curve) 

with pertaining 95% confidence intervals and cut-off points to maximize the 

associated specificity and sensitivity parameters22.  This was necessary in order 

to understand how much the built model was able to discriminate between the 

conditions under examination, or in our case, the ability to discriminate the 

target condition (metabolic syndrome). The higher the AUC value, the more 

correctly the model was generated for the desired purpose. 
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3.4 Microalbuminuria analysis 

A semi-quantitative analysis using a test strip was performed by the collaborating 

laboratory of OSARTEN Kooperativa Elkartea to each urine sample for the detection 

of proteinuria. The obtained results were considered as negative/positive if the value 

of proteinuria, identified as microalbuminuria as further explained in Chapter 4, was 

lower/higher than 10 mg/dL.  

Moreover, to estimate the glomerular filtration rate (E-GFR) from the available serum 

creatinine concentrations, the Chronic Kidney Disease Epidemiology Collaboration 

(CKD-EPI) equation was applied, here reported23: 

𝐺𝐹𝑅 = 141 × min(𝑆𝑒𝑟/𝜅, 1)𝛼  × max(𝑆𝑒𝑟/𝜅, 1)−1.209  × 0.993𝐴𝑔𝑒  × 1.018 [𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒]_1.159 [𝑖𝑓 𝑏𝑙𝑎𝑐𝑘] 

Where: Scr is serum creatinine, κ is 0.7 for females and 0.9 for males, α is -0.329 for 

females and -0.411 for males, min indicates the minimum of Scr/κ or 1, and max 

indicates the maximum of Scr/κ or 1.   
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4.1 Metabolic syndrome investigation by urine metabolomics  

As explained in Chapter 1, metabolic syndrome, is considered as a multimorbid disease 

with different risk factors (RF) involved in its onset. Different organizations have tried 

to give a definition for its diagnostic (Table 1.1) but, to date, no consensus has yet 

been reached on a specific one. Within this context, NMR-based metabolomics of urine 

samples was used to investigate the characteristic metabolic fingerprint of the 

metabolic syndrome. 

The presented results are partially based on our publication “A molecular signature for 

the metabolic syndrome by urine metabolomics”1.   

4.1.1 Urine samples cohort description and classification  

A large cohort of more than 11,000 urine samples was examined to understand the 

characteristics aspects of MetS. Individuals that took part in this study were mainly 

volunteers of the general population and subjects with some of the relevant RFs 

involved in the development of MetS.  

 

Figure 4.1: PCA of the different cohorts involved in the study. Urine samples from each subject 

were measured by NMR and spectra were compared.  



Results and Discussion 

 

76 

As a result, urine samples came from various subcohorts (OSARTEN, OBENUTIC, 

PREDIMED KIROLGETXO and NAFLD) previously described in Chapter 3, from 

different regions of Spain and from other areas of Europe (NAFLD cohort). Samples 

were recollected in different areas, always adhering to the strict standard extraction 

procedures previously described (Chapter 1 and 3), and an unsupervised PCA analysis 

was performed on the entire urine NMR dataset to confirm that they were comparable 

(Figure 4.1). Figure 4.1 evidences that the included subcohorts do not present 

significant differences, making them all comparable into the present study.  

In order to investigate the factors contributing to the development of MetS, it was first 

necessary to classify the obtained samples according to the general characteristics 

associated with each of the donors. In fact, the various organisations that attempted to 

give a definition of the metabolic syndrome (Chapter 1, Table 1.1) agreed on the 

importance of four main RFs: alterations of the metabolism of the glucose (which was 

often summarised in the text only as “diabetes”), obesity, dyslipidemia and 

hypertension. For this reason, to study the metabolic changes produced by each of each 

of the RF separately, or the effect caused by the presence of more than one of them in 

an individual, it was necessary to classify the samples into groups that describe all the 

possible combinations.  

Table 4.1: Risk factors and created conditions for the study of MetS. Abbrevations: IFG, 

impaired fasting glucose; IGT, impaired glucose tolerance; T2DM, type 2 diabetes; IR, insulin 

resistance. 

Conditions (RF1, RF2, RF3, RF4)* 

RF1 Diabetes RF2 Obesity RF3 Dyslipidemia RF4 Hypertension 

• fasting plasma glucose > 

110 mg/dL 

• previously diagnosed 
T2DM, IFG, IGT, IR, or 

taking medication for 

hyperglycemia 

• BMI ˃ 30 kg/m2 • triglycerides > 150 mg/dL 

• HDL cholesterol < 34.75 

mg/dL in men or < 38.61 
in women 

• previously diagnosed 

hypercholesterolemia, 
hyperlipidemia, 

hypertriglyceridemia or 

taking medication for 
dyslipidemia 

• blood pressure ≥ 

140/90 mmHg 

• previously diagnosed 
hypertension or taking 

medication for 

hypertension 

0/1 = absence/presence of the risk factor 

0000 apparently healthy 1001 diabetes + hypertension 

0001 hypertension 1010 diabetes + dyslipidemia 

0010 dyslipidemia 1100 diabetes + obesity 

0100 obesity 0111 obesity + dyslipidemia + hypertension 

1000 diabetes 1011 diabetes + dyslipidemia + hypertension 

0011 dyslipidemia + hypertension 1101 diabetes + obesity + hypertension 

0101 obesity + hypertension 1110 diabetes + obesity + dyslipidemia 

0110 obesity + dyslipidemia 1111 diabetes + obesity + dyslipidemia + hypertension 
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A binary code was used to indicate the presence (1) or absence (0) of each of the four 

RFs (RF1, RF2, RF3, RF4) generating 16 different conditions (24), as shown in Table 

4.1.   

Following the explained criteria, the 0000 condition represented the apparently healthy 

subjects, without any associated RF while, for example, the 0100 represented the 

condition in which subject were presenting only obesity, the 1001 the diabetic and 

hypertensive individuals with two RFs and the 1101 the diabetic, obese and 

hypertensive condition with three RFs, and so on. This simple notation clearly 

describes how each individual participating into the study was classified according to 

the considered RFs.  

Table 4.2 shows the number of samples for each of the 16 conditions from the different 

subcohorts of urine samples included into the study (OSARTEN, PREDIMED and 

OBENUTIC) also stratifying them by gender. A statical significant number of samples 

was reached for each of the condition under consideration, with the lowest number of 

62 subjects for the 1110 condition.  

Table 4.2: Number of urine samples for each of the conditions under study.  

     [ALL valid]      female         male        N   

    N=10792       N=4351        N=6441           

MetS condition:                                           10792 

    0000 6925 (64.17%) 2935 (67.46%) 3990 (61.95%)       

    0001  692 (6.41%)   276 (6.34%)   416 (6.46%)        

    0010  733 (6.79%)   120 (2.76%)   613 (9.52%)        

    0011  170 (1.58%)   53 (1.22%)    117 (1.82%)        

    0100  504 (4.67%)   232 (5.33%)   272 (4.22%)        

    0101  310 (2.87%)   169 (3.88%)   141 (2.19%)        

    0110  170 (1.58%)   37 (0.85%)    133 (2.06%)        

    0111  148 (1.37%)   62 (1.42%)    86 (1.34%)         

    1000  282 (2.61%)   89 (2.05%)    193 (3.00%)        

    1001  188 (1.74%)   83 (1.91%)    105 (1.63%)        

    1010  84 (0.78%)    18 (0.41%)    66 (1.02%)         

    1011  90 (0.83%)    32 (0.74%)    58 (0.90%)         

    1100  92 (0.85%)    44 (1.01%)    48 (0.75%)         

    1101  202 (1.87%)   111 (2.55%)   91 (1.41%)         

    1110  62 (0.57%)    17 (0.39%)    45 (0.70%)         

    1111  140 (1.30%)   73 (1.68%)    67 (1.04%)         

 

4.1.2 Urine 1H NMR spectrum for the study of MetS 

Urine metabolites, excreted by the kidney, include the monitorization of waste 

substances from bloodstream as products of metabolism like amino acids, sugars, 
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xenobiotics, foods processing derivates and many others, with all of them identifiable 

and quantifiable by NMR metabolomics2. This makes this technique particularly 

suitable for the metabolic investigation of MetS.  

An unsupervised PCA analysis of the mean NMR profiles, obtained for each of the 

examined conditions and representing their characteristic fingerprinting, shows a 

separation of the different profiles according to the presented RFs (Figure 4.2).  

Figure 4.2 illustrates four different groups in the PCA plot highlighting especially the 

impact of diabetes and hypertension in this clustering of conditions. Indeed, the green 

ellipse groups four profiles characterised by the presence of diabetes, the pink one 

surrounded four conditions affected by hypertension and the yellow highlighted other 

four profiles presenting both these RFs, while the blue one is characterized by the 

presence of four conditions without any of the mentioned RFs. This separation 

highlights the impact of diabetes and hypertension and the sensitivity of the NMR 

spectra to their presence, in line with previous observations, while, on the other hand, 

Figure 4.2: Univariate PCA analysis of the mean profile of each of the 16 conditions under 

study from urine. Coloured ellipses evidenced clustering of subjects with diabetes (green), 

diabetes and hypertension (yellow), hypertension (pink) and none of the previous conditions 

(blue). 
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obesity and dyslipidemia showed a lower degree of modification of the urine spectra3–

5.  

4.1.3 Univariate analysis of the urine metabolome  

For a better understanding of the observed separations, univariate analysis was 

conducted to study the differences between each of the profiles with respect to the 

apparently healthy condition (0000). The heatmap in Figure 4.3 represents the result 

of this analysis, using as variables for the comparisons the spectral intensity of the bins 

from the acquired proton urine spectra. The abscise axis shows the examined 

conditions while the ordinate one indicates the relevant bins, both sorted according to 

unsupervised cluster analysis. The represented bins in the heatmap are the ones that 

came out as statistically significant in at least one of the comparisons of the profiles 

with the apparently healthy one, and the metabolites associated to them were assigned, 

looking at the NMR spectra in the corresponding area for each one of the bins.  

Table 4.3 shows the contribution of the identified metabolites in the discrimination of 

the studied condition and its association with some of the examined RFs. As some of 

them are represented by different bins in the heatmap, their relative abundance was 

calculated taking into account only the most significant one. Moreover, asterisks inside 

the squares are used to indicate the attributed p-value obtained from the comparison of 

each of the variables from the different profiles with respect to the ones of the 

apparently healthy condition, reflecting the statistical significance of the variation. On 

the other hand, the colour of the squares is used to indicate the fold change, referring 

to the bar legend: red squares represent the upregulated bins, while the blue ones are 

downregulated. Generally, all the bins belonging to the same metabolite show similar 

fold changes. That said, small magnitude differences in the fold change that can be 

observed, depending on the heterogeneity of metabolites profile that can be attributed 

to a given bin. Finally, regarding citric acid, it was observed a contrasting result with 

its upregulation in the bin at 2.66 ppm and downregulation at 2.57 ppm. This could be 

explained by the sensitive nature of this metabolite to pH and osmolarity, which were 

generally associated with changes in the chemical shift of the NMR signals of the 

metabolites, leading to the involvement of different bins and their relative intensity6.  
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The heatmap of Figure 4.3 enables extracting several important results. First, it is 

possible to observe that, once again, as seen in the PCA, the profiles cluster in four 

different groups. Going from right to left, the first four profiles are characterized by 

the presence of diabetes and hypertension (1111,1101, 1011, 1001), followed by other 

four profiles with diabetes (1110,1100, 1000, 1010), and by other four all presenting 

hypertension (0111, 0101, 0011, 0001), concluding with three profiles characterized 

by the absence of the so far mentioned RFs (0110, 0010, 0100). The described order is 

Figure 4.3: Heatmap of the comparison of the different urine conditions with the apparently 

healthy one (0000). Conditions are represented in the abscise axis while in the ordinate are listed 

the relevant bins (and the associated assigned metabolites), both sorted according to cluster 

analysis. Asterisks in the cells indicates the significance of the variation by the p-value (*: p-

value < 0.05; **: p-value < 0.01; ***: p-value < 0.001; ****: p-value < 0.0001) while the fold-

change is shown by the used colour-code indicated in the bar legend. Dendodrams on the top 

and on the left evidenced the clustering of the different profiles and bins (metabolites) 

respectively.  
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a result of unsupervised cluster analysis, that sort the different profiles with a tendency 

that resembles the MetS definition according to WHO, EGIR and AACE, with diabetes 

as the most relevant (and mandatory) factor for the diagnosis. In fact, it is also possible 

to observe a clear separation between the diabetic (1XXX) and non-diabetic (0XXX) 

profiles. Moreover, the variation in the metabolite’s concentration is in line with the 

progression through MetS, with an increased impaired imbalance according to the 

order of the conditions with greater upregulation/downregulation trending to right, for 

the profiles with more risk factors.  

Table 4.3: Summary of the assigned metabolites and their found association with some of the 

RFs or MetS.  

Metabolite* 

Variable 

importance 

in the model 

log2FC† P-value† 
Associated 

RF‡, MetS 

Glucose 1056.86 1.66 (1.37, 1.94) 5.88e-97 MetS, RF1  

Formic acid 436.74 -0.79 (-0.87, -0.71) 3.53e-77 n. a. 

Steroid lipids 364.47 0.57 (0.3, 0.86) 3.68e-31 RF3 

TMAO/1-Methyluric acid 218.32 -0.54 (-0.7, -0.38) 1.58e-30 RF2 
7 

Trigonelline 201.66 -0.4 (-0.5, -0.3) 1.38e-06 RF2 
8 

Tryptophan 198.95 -0.38 (-0.44, -0.31) 1.38e-38 MetS, RF1 
9 

Quinolinic acid 192.41 0.41 (0.24, 0.59) 1.99e-17 RF2 
10 

Imidazole 184.05 -0.57 (-0.7, -0.43) 1.20e-26 RF4 
11 

Histidine 181.71 -0.56 (-0.75, -0.37) 8.42e-16 MetS, RF1,4 11,12 

4-HPPA/p-cresol sulfate 171.38 0.53 (0.4, 0.67) 1.56e-19 RF1 
13,14 

Salicyluric acid 164.22 0.42 (0.29, 0.56) 8.77e-14 RF2 
15 

Maltitol 155.43 0.65 (0.45, 0.85) 2.22e-05 RF1 
13 

Methylhippuric acid 153.23 -0.45 (-0.54, -0.36) 3.79e-21 n. a.  

Nicotinuric acid 146.41 -0.38 (-0.5, -0.27) 1.18e-09 MetS, RF2 
16 

n.a: not applicable. 
*For metabolites with more than one associated bin, results with the higher abs(log2FC) were showed. 
†Binary logarithms of fold-changes (log2FC), their 95% confidence intervals and p-values were calculated 

between MetS and non-MetS conditions. 
‡ The indicated RFs correspond to most frequently associated with the metabolite, and the reported 

numbers represent at least one of the bibliographic references reporting the metabolite’s association with 

the pertaining RFs or to MetS. More information is provided further.  

 

In Table 4.3 the found correlations of the evidenced metabolites with the studied RFs 

and MetS are shown. Most of the identified metabolites are related with the molecular 

pathophysiology of the studied RFs (Table 4.3), while some of them result associated 

with MetS for the first time in the present study. Figure 4.4 represents a graphical 

abstract of the main identified relationships between the RFs and the metabolites.  

Glucose was one of the most remarkable metabolites in the heatmap and its increased 

concentration was unsurprisingly associated with diabetes and insulin resistance17.  
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As regard the identified amino acids, previous results revealed the association of 

branched-chain amino acids (BCAA) and aromatic amino acids (AAA) with MetS18–

20. These have been related also with obesity, T2DM and insulin resistance (especially 

obesity-related), which could be responsible of an increase in protein degradation at 

the muscular level18,21. In fact, tryptophan was also inversely associated with plasma 

adiponectin levels, which in turn is related with an activation of the proteolysis 

pathways21–23. Moreover, several studies have associated tryptophan with MetS and its 

associated features like problems in glucose metabolism and alteration of the blood 

pressure9,10,24–26.   

Also, histidine was associated with MetS, insulin resistance, T2DM, and an adverse 

cardiometabolic risk, so that it was even considered for treatment of T2DM18,19,27,28.  

This metabolite was also related with hypertension, together with altered levels of other 

amino acids (BCAA and AAA) but unfortunately it was still difficult to understand the 

underlying mechanism11,12,29.   

Moreover, different studies have been conducted on the trimethylamine N-oxide 

(TMAO) and its correlation with MetS or the RFs associated with it7,30,31.  This 

metabolite, together with trimethylamine (TMA), from which it is synthesised in the 

liver by gut microbial metabolism starting from choline and L-carnitine, is related with 

the insurgence of metabolic diseases32–34. These results in a dysregulation of glucose 

metabolism, most often leading to obesity35,36. This was further confirmed by its 

association with BMI and liver fat content37. Moreover, the presence of TMAO at 

urinary and plasma levels, was evidenced as a biomarker for NAFLD, insulin 

resistance and cardiovascular diseases38,39.  

Trigonelline has also been considered as an obesity-regulator probably by the lipid 

catabolism control8. This metabolite also showed an effect on gut microbiota, 

especially in the regulation of choline metabolism to produce TMA and TMAO40.  

Among the identified metabolites, salicyluric acid was also already linked with obesity, 

diet, or other metabolic processes15,41. Salicylic and salicyluric acid were frequently 

found in human urine from salicylates excretion41,42. Glycine conjugation pathway, the 

detoxification mechanism used to eliminate waste substances by facilitating their 
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solubilisation, was considered as one of the main metabolic routes of salicylic acid, 

leading to the formation of salicyluric acid30,43. In fact, aspirin, hydrolysed to salicylic 

acid, can be considered the major source for the presence of salicyluric acid in urine, 

giving rise to this metabolite and others to a lesser extent44. Moreover, salicylic acid 

was found in lower concentration in the serum of obese children, influencing glucose 

metabolism, in a 1-year nutritional intervention study to improve the cardiometabolic 

risk of these young patients15.  

p-cresol sulfate, a uremic toxin produced by the intestinal microbes from tyrosine 

metabolism, has been related with insulin resistance and increased cardiovascular 

mortality, due to its possible involvement with lipotoxicity phenomena13,45–47.  

The 4-hydroxyphenylpyruvic acid (4-HPPA) was associated with insulin resistance, 

together with p-cresol sulphate, due to its relationship with tyrosine metabolism from 

which is synthetized14.  

As regard nicotinuric acid, a previous study proposed this metabolite as potential 

biomarker for MetS due to its altered levels in the urine of the investigated subjects, 

correlating this metabolite also with BMI, blood pressure and some lipoproteins 

(triglycerides, HDL and LDL)16.  

The increase in steroid lipids observed in urine was instead associated with 

dyslipidaemia and obesity, even if these RFs could be more thoroughly analysed 

especially by the following serum analysis, which better reflected lipoproteins 

expression30,48–50.    

When considering quinolinic acid, an increased level of this metabolite was found as 

positively correlated with higher BMI10. Additionally, quinolinic acid was related with 

tryptophan metabolism, especially with kynurenic acid from which it is produced. 

Kynurenic acid was in turn associated with high BMI, but also with inflammatory 

processes, principally in the lungs, liver and kidneys, being even considered a marker 

for renal insufficiency51–53. Due to the known proinflammatory state associated with 

MetS, and to obesity, this could justify the presence of quinolinic acid in urine, as 

metabolism product of kynurenic acid54.  
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Imidazole has been associated with hypertension for different implied mechanisms. 

The reduction in the levels of this metabolite can be related with a dysregulation in the 

concentration of endogenous ligands of the imidazoline and α2-adrenogenic receptor, 

which were connected with hypertension episodes11,55. In addition, the imidazole 

moiety was identified as one of the possible competitors for angiotensin binding to its 

receptor, which was known to be produced by the renin-angiotensin system for the 

regulation of blood pressure, causing its increase due to the provoked 

vasoconstriction56,57. Finally, the imidazole moiety was evidenced as one of the 

components of a metabolite, the imidazole propionate, which was associated with 

overweight problems and especially with T2DM58. Indeed, this metabolite, produced 

from histidine by the gut microbiota, was involved in the impairment of glucose 

metabolism59,60.   

Figure 4.4: Graphical abstract of the association of the investigated risk factors with the 

identified metabolites. Each RF has at least one metabolite in urine that is altered contributing 

to MetS metabotype. Metabolites that are associated with more than one RF are represented in 

the graphic as linked with the one that present the most evident association. Red and blue 

arrows correspond to up- and down-regulated metabolites in urine respectively. (Created with 

BioRender.com) 
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Maltitol is commonly used as a low-caloric sweetener, often used as substitute in food 

industry in order to try to avoid the increasing obesity leading to a higher number of 

people affected by MetS. For this reason, its consumption may be preferable for 

persons at risk of T2DM and this could justify its presence in the examined urine61,62. 

Despite this, sweeteners interaction with metabolism must be considered by evaluating 

the entity of its benefits and considering also the role of microbiota in their 

processing62,63.  

Finally, in the case of methyl hippuric and formic acids, no previous association with 

MetS had been found. Both of them were described as products of gut microbial 

metabolism, but their role still needs to be investigated64. However, a possible 

association between formic acid and obesity was found, evidencing a downregulation 

of this metabolite in obese subjects65,66.  

The proposed explanations for the presence of the altered metabolites are merely 

hypothetical, but the goal was to attempt to justify the possible reason for their 

alteration. Nevertheless, urine analysis by NMR proved to be a suitable criterion for 

the investigation of the metabolic syndrome.  

4.1.4 A molecular signature of MetS by urine analysis 

To deeply analyse the observed metabolism deterioration in relation with the studied 

RFs, multivariate analysis was conducted scrutinizing the median spectra profile for 

each condition calculated by considering the values of the most important bins obtained 

in the described univariate analysis. A correlation map was built by progressively 

sorting the 16 studied profiles according to the increasing number of risk factors 

presented in the various existing combinations, subdividing all conditions in 5 

columns, differing by the presence of just one RF (Figure 4.5). Conditions were 

connected by lines and were coloured considering their Superman’s correlation 

distance from the apparently healthy condition (0000). The associated colour legend 

described the more distant (red shapes) or similar (green shapes) each metabolic 

condition was to that of the 0000 profile.  
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Looking at the graph it is possible to confirm the variation of urine metabolome 

according to the increasing number of presented RFs, but not all of them exert the same 

influence on MetS progression. In fact, the concomitant manifestation of some RFs in 

certain conditions reveal a more different and pathogenic metabotype than other 

combinations. This is the case of the 1111, 1101, 1011 and 1001 profiles, evidenced 

by the orange ellipse in Figure 4.5, that presented a similar molecular signature.  

The triangular, rhombus or squares profiles are the ones considered as affected by MetS 

according to the described existing definitions (Chapter 1, Table 1.1). For instance, 

conditions like 0111 or 1110 do not present a great difference to the apparently healthy 

profiles, looking more like intermediate profiles even with fewer RFs. On the other 

hand, the 1001 condition, presenting just diabetes and hypertension show a significant 

MetS status, more closely resembling MetS manifestation in its worst scenario.  

Figure 4.5: Spearman correlation map for urine profiles evidencing the distance of each 

condition from the apparently healthy one (0000), colour coded according to it, as indicated by 

the bar legend. MetS conditions according to the WHO, EGIR and AACE are represented by 

squares and triangles; these last two with the addition of the rhombus represent MetS according 

to the NCEP:ATPIII and harmonized definitions, while squares and rhombus are the profiles 

presenting MetS according to the IDF. The orange ellipse grouped the conditions that most 

resembled the metabolic syndrome according to our metabolic definition.  
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This characteristic molecular signature led us to suggest a new definition of metabolic 

syndrome, partially differing from the existing ones, no longer based on the mere 

presence or absence of given RFs but calculated according to the contribution of each 

of them in the produced metabolic changes.  

4.1.5 A metabolic model for the determination of MetS 

Using the large spectra database obtained from the measurement of the urine samples 

from the subjects included into the study (OSARTEN, PREDIMED and OBENUTIC 

subcohorts), we tried to build a metabolic model for the determination of MetS, based 

on the statistically significant bins/metabolites that came out as relevant from the 

univariate analysis.  

First, we determined the number of subjects affected by MetS according to the existing 

definitions considering a pool of 10,792 individuals. In our analysis, due to the 

accessible metadata, we were just able to classify patients for MetS according to three 

groups of organization’s definitions with respect to the 5 different ones explained in 

Chapter 1, Table 1.1.  

The first criteria for MetS definition grouped the WHO, EGIR and AACE definitions 

of MetS and included the 1111, 1011, 1101 and 1110 profiles, which were represented 

as squares and triangles in Figure 4.5. Using these definitions, 494 subjects were 

determined as affected by MetS.  

The second criteria included the NCEP:ATPIII and harmonized definitions, 

represented by the 1111, 1011, 1101, 1110 profiles as before, plus the 0111 condition. 

This criterion corresponds to the inclusion of the squares, triangles and rhombus 

profiles in Figure 4.5 and was populated by 642 cases.   

Finally, the third and last criteria was represented by the IDF definition with the 1111, 

1101, 1110 and 0111 conditions, with squares and rhombus in Figure 4.5 and 552 

identified subjects with MetS according to this diagnostic.  

Three metabolic models were created, considering the existing criteria for the 

definition of MetS, in order to better distinguish the MetS and non-MetS conditions on 

a metabolic point of view. The 75% of the cohort, including 8,094 individuals, was 
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used to train each of the generated models, while the 25% of the cohort, with 2,698 

subjects, was used to test it. Figure 4.6 A-C showed the generated ROC curves from 

of each of the created models.  

To calculate the ability of the three models to distinguish MetS, the three models were 

used to screen the cohort of individuals under study. (Figure 4.6 D-F). A “MetS 

probability” value from 0 to 1 was given for each of the subjects, and the obtained 

scores were represented in a smoothed histogram.  

 

Looking at Figure 4.6 D-F, it is possible to observe that subjects without MetS, with 

low scores values, cluster together for each of the tested models, whereas the ones with 

MetS have a wider distribution, probably justified by the heterogeneous nature of this 

syndrome, but with a clear tendency towards higher values of the score. 

Figure 4.6: Metabolic syndrome models generated thanks to the measured spectra database. A-

C) ROC curves for the three groups of definitions under consideration: A) WHO, EGIR and 

AACE; B) NCEP:ATPIII and Harmonized; C) IDF. D-F) Smoothed histograms (Kernel density 

based) evidencing the probability distribution for the application of the built MetS models to 

the full cohort, for the three groups of definitions: D) WHO, EGIR and AACE; E) 

NCEP:ATPIII and Harmonized; F) IDF. Subjects affected by MetS are represented in red, while 

the ones without MetS are blue. 
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Remarkably, the three built-in models, merely based on the metabolomic analysis of 

the measured urine samples, proved to be able to distinguish subjects with metabolic 

syndrome with AUROC values between 0.83 and 0.86. The observed divergency may 

be related to the existing differences between the created definition for MetS, which 

considers the molecular dimension of this disorder, with respect to the existing 

standard ones. In fact, by looking at the models, the first one, including the problems 

with glucose metabolism as a mandatory factor, shows a better performance (AUROC 

value: 0.863), reflecting the importance of glucose in urine for this metabolic model, 

also previously evidenced. Indeed, rising the values of hyperglycemia to 110 mg/dL, 

preferred by some existing definition, instead of the 100 mg/dL, considered for the 

conduced analysis, the AUROC values increased to 0.86-0.92 (Figure A1 in the 

Appendix), with better performance results with respect to previous study67.  

Our definition of metabolic syndrome adds a metabolic dimension to the existing ones. 

Some of the currently used definitions (WHO, EGIR and AACE) could be considered 

as more appropriate for diagnosis because of the relevance attributed to the RFs that 

are actually responsible of the most important metabolic changes. In fact, diabetes 

undoubtedly shows to be a very relevant factor in this syndrome, as evidenced by all 

the results proposed, but a risk factor that in urine also proved to be key in the 

aggravation of this disorder was hypertension.  

4.1.6 Potential caveats and limitations  

4.1.6.1 Effect of gender in MetS determination 

Gender differences emerge as a possible limitation in our study. In fact, previous 

studies observed differences in the manifestation of MetS according to gender, mainly 

due to the different probability of presenting some of the RF involved in the onset of 

this disorder, such as visceral obesity68,69.  

To investigate this aspect, we repeated the univariate analysis of the comparison of all 

the different conditions against the apparently healthy one, but this time segregating 

samples by gender. Figure 4.7 shows the resulting heatmaps obtained from this 

analysis. The heatmaps dived for gender render the same results as the one obtained 
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for the analysis of the full cohort, proving that gender differences do not present any 

effect on the results for the metabolomic discrimination of MetS.  

4.1.6.2 Effect of age in MetS determination 

Aging could also emerge as another possible limitation for the conduced study, due to 

its known influence in many diseases, including MetS70. In fact, while the OSARTEN 

and OBENUTIC cohorts were balanced in terms of age, the PREDIMED cohort 

included older subjects on average. This could cause errors in the carried-out study, 

leading to a bias in the results, partially reporting on the ageing process. In order to 

investigate this aspect, an independent cohort called KIRLOGETXO, not previously 

used for the design of the created models, was analysed. This cohort, previously 

described in Chapter 3, includes older individuals between 60 and 85 years of age with 

a healthy lifestyle and regular physical activity (more information in Table A5 in the 

Appendix). Precisely because of this, these subjects had no risk factors (n = 34) or only 

one (n = 40).  

Figure 4.7: Heatmaps divided by gender: as indicated, women heatmap on the left and men 

heatmap on the right. Conditions (in the abscise axis) and bins/metabolites (in the ordinate axis) 

are sorted according to cluster analysis. Fold change is colour-coded according to the bar 

legend. The statistical significance of the variation from the apparently healthy profile was 

calculated for each condition and determined by the p-value, shown inside the squares. 



Results and Discussion 

 

91 

 

Figure 4.8 shows the result of the application of the created MetS model with the best 

performance to the screening of the KIROLGETXO cohort. It was possible to observe 

that only a very limited number of individuals could be considered as affected by MetS, 

debunking the possibility of the hypothesised influence of age on the generated 

metabolic model.  

4.1.7 Investigation of the microalbuminuria and impaired renal function 

association with MetS 

According to the WHO definition of metabolic syndrome (described in Chapter 1, 

Table 1.1), microalbuminuria has to be considered as an additional RF, that must be 

evaluated for diagnosis. This is related to the association of microalbuminuria with 

kidney dysfunction, chronic kidney disease (CKD), cardiovascular disorders and 

Figure 4.8: KIROLGETXO cohort screening with the MetS model. The probability 

distributions for suffering for MetS were calculated for: the general population (0000 

individuals represented in green), senior population with no risk factors (yellow), senior 

population with 1 RF (blue) and population with MetS (red). 
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especially due to its frequent association with T2DM or, more in general, with 

metabolic disorders71.  

To investigate the role of this factor, proteinuria values (> 10 mg/dL) were obtained 

for the OSARTEN cohort, by the collaborating laboratory of OSARTEN Kooperativa 

Elkartea, by a semi-quantitative analysis using test strips. This cohort represented one 

of the largest in terms of sample size, although particularly characterised by healthy 

individuals, but still with enough subjects to populate all the conditions under 

investigation. 

Urine proteins composition is quite heterogenous, but albumin was considered as the 

predominant one and dip-stick tests evidenced to be sensitive for it72,73. Because of this, 

microalbuminuria and proteinuria were assimilated as equal.  

 

Figure 4.9 shows an increase in the microalbuminuria percentage for the condition 

with the most altered number of risk factors (1111), representing the full MetS profile. 

Microalbuminuria may therefore be associated with metabolic syndrome, as suggested 

by the WHO, but its presence shall be mainly considered as a side effect for its 

association with other involved RFs in the onset of MetS, like, for example, with 

Figure 4.9: Percentage of samples with albuminuria are represented by bar plot for each of the 

conditions in the OSARTEN II cohort. Conditions are sorted according to heatmap order of 

Figure 4.3. Blue line evidence the linear regression of the values assuming equidistance in the 

conditions towards MetS. 
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hypertension74. That said, the highest percentage of samples presenting 

microalbuminuria was equivalent to 10% for the 1111 condition, highlighting the 

secondary importance of this factor. As the excessive elimination of albumin in urine 

reflected kidney damage with reduced glomerular filtration, to estimate the glomerular 

filtration rate, the Chronic Kidney Disease Epidemiology Collaboration equation was 

used (reported in Chapter 3)75. This was calculated for the OSARTEN and OBENUTIC 

cohorts, for which serum creatinine concentration value was accessible.  

Figure 4.10 shows the distribution of the E-GFR values for the two analysed cohorts. 

A scale of five range values was created, from G1 to G5 to indicate the rate of 

glomerular filtration of each sample according to its MetS condition, where G1 

represented the normal or high GFR and G5 the worst scenario with kidney failure. 

Most of the subjects analysed (75%) were included in G1 area, the 24.8% was in G2 

category with a mildly decreased GFR and, the remaining small percentage of subjects, 

fell in G3 area. Almost no subjects presented a severe decreased GFR in G4 scale and 

no one evidenced kidney failure (G5).  

Figure 4.10: E-GFR distribution values for the OSARTEN II and OBENUTIC cohorts, as a 

function of the MetS conditions. E-GFR values were colour coded according to the categories 

(G1 to G5): G1, in dark green, represents normal or high E-GFR; G2, in light green, shows the 

mildly decreased E-GFR; G3, in yellow, evidences moderate to severely decreased E-GFR; G4, 

in orange, the severely decreased E-GFR and finally G5, in red, the kidney failure. 
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The presented results thus show that the reported metabolic changes are uncoupled to 

a putative renal function impairment from the investigated subjects.  

4.1.8 The relationship between NAFLD and MetS 

Previous studies already wondered whether NAFDL is the hepatic manifestation of 

metabolic syndrome or not76,77. This could be explained by the co-involvement of MetS 

risk factors in the contribution to NAFLD progression.  

In order to better understand this aspect, a cohort of patients with NAFLD, including 

234 urine samples, was analysed (more information in Table A5 in the Appendix). The 

studied subjects were diagnosed by means of a previous biopsy and classified 

according to reference methods for their charachterization78.  

Thanks to the MetS criteria including the WHO, EGIR and AACE definitions, the 

examined samples were divided in two main subcohorts: NAFLD subjects with MetS 

(NAFLD with MetS) or without MetS (NAFLD without MetS). These subcohorts were 

then screened with the created metabolic model with the best performance for de 

detection of MetS, to determine the percentage of subjects affected by it according to 

our criteria.  

Figure 4.11 shows the MetS probability distribution for the investigated subcohorts, 

for the general population, mainly characterized by healthy subjects (0000), and MetS 

population, whose NAFLD status is unknown. By looking at the probability 

distribution of subjects with NAFLD but without MetS, it is possible to see that, on 

average, these have a low probability for MetS according to our model, resembling 

more the general population distribution profile and suggesting that the metabotype 

associated with NAFLD is different from that for MetS. On the other hand, NAFLD 

with MetS subjects have a more disperse and complex probability distribution, 

reinforcing our previous hypothesis that RFs involved in metabolic syndrome and 

those for the progression of NAFLD lead to a similar metabotype.  
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Based on the obtained results, it could be suggested that MetS and NAFLD share some 

similar features and symptomatology but are characterised by a different metabolic 

profile. Despite this, due to the overlap between these two conditions, further 

investigations should be performed for a better understanding of this relationship.  

4.2 Metabolic syndrome investigation by serum metabolomics  

Urine analysis may be biased by its sensitivity to certain RFs (i. e. diabetes) as 

compared to other ones (i. e. dyslipidaemia). To that end, a better understanding of the 

characteristic metabolic aspects of MetS may benefit from serum metabolomics as 

well.  

Figure 4.11: NAFLD cohort screening with the built MetS model. Probability distributions for 

suffering for MetS were calculated for: the general population (0000 individuals represented in 

green); NAFLD without MetS, according to WHO definition, in red; NAFLD with MetS, 

according to WHO definition, in blue and MetS population in purple.  
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4.2.1 Serum samples cohort description and classification  

A cohort of almost 8,500 serum samples was examined to further investigate the 

molecular aspects of MetS. The subjects included into this analysis came from three 

different subchorts: OSARTEN, MetS-long and PORTUGAL (described in Chapter 

3). OSARTEN cohort included the serum samples from the same individuals involved 

in urine analysis. These were volunteers of the general working population, including 

mainly healthy subjects and individuals with some of the relevant RFs associated to 

the development of MetS. For the OBENUTIC and PREDIMED subcohorts, serum 

samples were not available and it was necessary to expand the dataset with more serum 

samples from individuals that were presenting some of the relevant RFs involved in 

the onset and progression of MetS. The MetS-long subcohort fulfilled these criteria, 

including serum samples from individuals selected precisely for this purpose. On the 

other hand, the PORTUGAL cohort includes older subjects from Portugal, and adds a 

more homogeneous age distribution in the sample’s cohort for the performed study.  

 

Figure 4.12: PCA of the different cohorts involved in the study. Serum samples from each 

subject were measured by NMR and spectra were compared. 
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Considering that the mentioned samples subcohorts are from different areas of Europe, 

an unsupervised PCA analysis was conducted to the acquired serum NMR spectra 

dataset, to ascertain that the cohorts are comparable (Figure 4.12).   

Figure 4.12 shows that the measured serum samples from the subcohorts included into 

the analysis do not show significant differences, but only a slight shift possibly 

explained by the very nature of the included cohorts, as the MetS long one was enriched 

by subjects with the highest number of risk factors and the Portuguese cohort includes 

older subjects, but still making them all comparable for the present study. 

In order to proceed with serum analysis, first it was necessary to classify the samples 

into 16 different profiles according to the criterion previously used for urine 

examination. Table 4.4 shows the allocation of samples into the created conditions, 

also separated by gender, according to the established criteria previously explained in 

Table 4.1. Similar to urine, the condition with the lowest number of samples is the 

1110 with 48 subjects, yet still adequate for the analysis.  

Table 4.4: Number of serum samples for each of the conditions under study.  

     [ALL]      female         male       N   

    N=8470        N=3116        N=5354          

MetS conditions:                                           8470 

    0000 5564 (65.69%) 2313 (74.23%) 3251 (60.72%)      

    0001  443 (5.23%)   135 (4.33%)   308 (5.75%)       

    0010  663 (7.83%)   111 (3.56%)  552 (10.31%)       

    0011  156 (1.84%)   40 (1.28%)    116 (2.17%)       

    0100  396 (4.68%)   163 (5.23%)   233 (4.35%)       

    0101  130 (1.53%)   42 (1.35%)    88 (1.64%)        

    0110  168 (1.98%)   27 (0.87%)    141 (2.63%)       

    0111  74 (0.87%)    21 (0.67%)    53 (0.99%)        

    1000  272 (3.21%)   79 (2.54%)    193 (3.60%)       

    1001  128 (1.51%)   37 (1.19%)    91 (1.70%)        

    1010  83 (0.98%)     9 (0.29%)    74 (1.38%)        

    1011  81 (0.96%)    38 (1.22%)    43 (0.80%)        

    1100  85 (1.00%)    32 (1.03%)    53 (0.99%)        

    1101  75 (0.89%)    24 (0.77%)    51 (0.95%)        

    1110  48 (0.57%)    10 (0.32%)    38 (0.71%)        

    1111  104 (1.23%)   35 (1.12%)    69 (1.29%)        

 

4.2.2 Serum 1H NMR spectrum for the study of MetS  

Serum samples analysis was conducted in a similar way to the urine study, to 

investigate the metabolites and lipoproteins that characterize the subjects affected by 

MetS or that presented some of the RFs involved in its onset. In this case, two different 
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types of one-dimensional experiments were measured for each sample, the NOESY, as 

for urine samples, and a CPMG, filtering out macromolecules that characterize serum 

samples, generally used for a better analysis of the metabolites present in this biofluid 

(for more experimental details see Chapter 3).  

Unsupervised PCA analysis of the mean NMR profile, obtained for each of the studied 

conditions and representing the characteristic fingerprinting of metabolites and 

lipoproteins expression, was conducted to observe the distribution of the different 

profiles according to the presented RFs. Figure 4.13 shows a clear separation in the 

PCA space between the dyslipidemic (pink and blue ellipse) and not dyslipidemic 

subjects (green and yellow ellipse): patients with dyslipidaemia, present a lipoprotein 

imbalance in blood as compared to those without lipoprotein alterations, that results in 

a strong impact on the NMR profile of the measured samples.  

In addition to dyslipidaemia, some RFs, or the combination of some of them, still seem 

to have some effect on the separation of the profiles. In fact, pink ellipse groups two 

profiles (1011 and 1111), both considered as affected by MetS and characterized by 

Figure 4.13: Univariate PCA analysis of the mean profile of each of the 16 conditions under 

study from serum. Dyslipidemia caused a clear separation of the profiles in the PCA space: pink 

and blue ellipse are grouping dyslipidemic subjects while green and yellow ellipse are 

evidencing individuals without this RF.  
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the presence of diabetes and hypertension, previously evidenced as relevant aspects in 

the manifestation of this disorder according to our urine analysis. This is also observed 

in green ellipse, that evidences two profiles again characterized by the presence of 

these two RFs (1001, 1101) but not exhibiting dyslipidaemia and, therefore, they show 

up far apart in the PCA space. On the other hand, the blue ellipse shows a group of 

profiles all characterized by the presence of dyslipidemia. While, on the other side the 

yellow ellipse highlights subjects without this RF, as suggested before.  

4.2.2 Serum metabolome univariate analysis  

To investigate further the characteristic metabolic profile of the serum samples, 

univariate analysis was conducted in order to compare all the MetS conditions with 

respect to the asymptomatic one (0000). In this case, metabolites concentrations 

obtained after every serum measurement, were used as variables.  

Figure 4.14 shows the heatmap obtained as result of this analysis. Abscise axis shows 

the examined serum conditions while in the ordinate axis were listed all the quantified 

metabolites, both sorted according to unsupervised cluster analysis. 

Coloured squares indicate the fold change calculated form the comparison of each of 

the variables with the apparently healthy condition, referencing to the associated bar 

legend: red squares represent the upregulated metabolites while the blue ones 

correspond to the downregulated.   

As for urine univariate analysis (Figure 4.3), it is possible to observe a clear separation 

between the diabetic conditions (1XXX, on the right) and the non-diabetic ones 

(0XXX), evidencing the impact of this RF in the profile’s discrimination and the 

importance of this health condition in the produced metabolic changes.  

Univariate serum analysis (Figure 4.14) showed its influence mainly through the 

elevated detected glucose concentration in the bloodstream (diabetes, also in the 

excreted urine), highlighting also the relevance of other two RFs, obesity and 

dyslipidaemia, due to the important metabolic alteration observed in relation to the 

presence of these two RFs in the analysed MetS conditions.  
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Moreover, as previously shown in the result of urine univariate analysis, the variation 

in metabolite’s concentration was in line with the progression through MetS. In fact, 

Figure 4.14: Heatmap of the comparison of the different serum conditions with the apparently 

healthy one (0000). Conditions are represented in the abscise axis while in the ordinate are 

listed the metabolites, both sorted according to cluster analysis. Fold-change for each of the 

comparison is evidenced by the colour-code indicated in the bar legend. Dendodrams on the 

top and on the left evidence the clustering of the different profiles and metabolites respectively.  



Results and Discussion 

 

101 

the 1111, 1110, 1101 and 1011 conditions, the only ones considered as affected by 

MetS according to most of the already existing definitions and by our urine analysis, 

were all clustered together and in an ordered sequence according to the unsupervised 

cluster analysis and all presented important variations at the metabolic level.  Condition 

0111, still considered as MetS by some of the existing definitions (NCEP:ATPIII, IDF 

and harmonized), felt in a slightly more distant area of the heatmap, with condition 

0110, not MetS, but still presented significant alterations in some metabolites 

concentration, probably due to the concomitant presence of obesity and especially 

dyslipidaemia.  

Many of the altered metabolites were previously found as associated with MetS. 

BCAA, including leucine, isoleucine and valine, and AAA, consisting in tyrosine and 

phenylalanine, are upregulated, especially in the serum of the subjects affected by 

MetS, like the 1111,1110, 1101 and 1011 profiles. Moreover, important changes in 

these metabolite’s concentrations are also observed in the 0110 and 0111 profiles or, 

in general, more prominently in profiles characterised by the presence of diabetes and 

especially in those with obesity and dyslipidaemia. In fact, as mentioned in the 

discussion of urine analysis, BCAA and AAA were reported to be upregulated in the 

serum of the subjects affected by MetS and in the ones presenting diabetes and 

obesity79,80. Their higher circulating levels are associated with a dysfunction in 

carbohydrates metabolism. Moreover, they are related with an increased stimulation of 

gluconeogenesis28,30.  

Another metabolite significantly upregulated in serum analysis is alanine, also 

considered as highly gluconeogenic and lending to glucose intolerance in obesity81. In 

fact, alanine, together with pyruvic acid, also partially raised, was previously found as 

increased in obese individuals28. It has been hypothesised that this metabolite could be 

produced by pyruvate transamination into alanine through glutamate stimulation and 

this process could be influenced by the described increase in BCAA catabolic 

flux28,30,81. Moreover, pyruvic acid, traditionally produced by glycolysis, in addition to 

alanine production, could follow different paths, including the entry in the Krebs cycle, 

whose intermediate metabolites were also dysregulated in the conduced serum 
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univariate analysis, like citric and succinic acid, evidencing a possible disfunction in 

this pathway.  

Glutamate (or glutamic acid) and glutamine concentration were altered according to 

serum analysis. Both these metabolites and the glutamine/glutamate ratio have been 

previously suggested as potential biomarker for T2DM. Moreover, increased glutamate 

concentration is related with visceral obesity and in the development of MetS, being 

obesity particularly involved in glutamate metabolism82,83. In general, both these amino 

acids are considered as crucial in human metabolism and its regulation due to their 

involvement in multiple functions. In relation to the observed metabolic changes in the 

context of our analysis, it is important to also consider the role of glutamine, which 

appears to be downregulated in the synthesis of alanine through the pathway involving 

glutamic and pyruvic acid production, potentially explaining the increase of these 

metabolites84. Moreover, the elevated levels of glutamate could be a product of BCAA 

catabolism, which is involved in glucagon release by the pancreatic α cells and 

promoting the described transamination of pyruvate to alanine81.  

Altered concentration of several other metabolites suggest an alteration of the one-

carbon metabolism pathway, already observed in other metabolic diseases and in 

obesity85. Glycine and methionine downregulation, especially in the 1111 MetS 

profile, underline a dysregulation in the methyl-donors’ metabolites. Glycine 

deficiency could lead to important health problems and it has been associated with 

IR86. Moreover, this metabolite is involved in different pathways for the biosynthesis 

of other small molecules like glutathione or creatine. Alternatively, methionine 

concentration is involved in the conversion of SAM (S-adenosylmethionine) to SAH 

(S-adenosylhomocysteine), which is in turn related with GNMT (glycine-N-

methyltransferase) metabolic mechanism86,87. The latter has been shown as responsible 

of the sarcosine production, highly increased especially in MetS profiles, particularly 

the ones characterized by the presence of obesity and/or dyslipidemia88. Finally, other 

metabolites like formic acid, histidine or ornithine have been previously associated 

with the regulation of folate metabolism pathway or with glycine catabolism86,89.  
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An alteration in the ketone bodies like, 3-hydroxybutiric acid, acetone and acetoacetic 

acid has also been observed, especially in the case of 3-hydroxyburic acid, whose 

highest levels were observed in the 1111 condition (and to a lesser extent in the 1101, 

1001 and 0101 profiles). The increase of this metabolite was previously found as 

associated with hyperinsulinemia and T2DM90,91. Moreover, ketone bodies, produced 

from fatty acids in the liver, were generally considered as important regulators of the 

metabolism as associated with β-oxidation of fatty acids, tricarboxylic acid cycle 

(TCA), lipogenesis and glucose metabolism92.  

Finally, the dysregulation in some metabolite’s concentration like ethanol, lactic acid, 

acetate and TMAO could be associated with an alteration in the gut microbiota. Ethanol 

increased levels, especially in the 1111 and 1110 MetS profiles could derive from 

microbiome activity, as evidenced in some cases of liver diseases (NAFLD), that 

previously reported an increase in ethanol concentration because of Lactobacillus or 

Klebsiella pneumoniae, leading to a degenerative progression of the disease93,94.  

As regard lactic acid, this metabolite could be produced from glucose metabolism from 

pyruvic acid, or it could originate form bacteria like Lactobacillus95. Its altered 

concentration was previously associated with carbohydrate metabolism dysfunction, 

MetS, IR, obesity and diabetes96,97. Moreover, acetate production was also associated 

with microbial fermentation and is considered as involved in human energy regulation 

through cholesterol synthesis, lipogenesis and adipocyte’s accumulation98. Altered 

levels of this metabolites were also found as associated with increased in ethanol 

levels99.  Lastly, as further evidence of microbial influence, TMAO highest levels are 

seen in the 1111 condition. In fact, its production, as mentioned before, was based on 

the conversion of choline into TMA, which was in turn converted into TMAO in the 

liver by gut microbiome.  

The described mechanisms could be considered as responsible of the observed 

metabolic changes in the studied serum conditions. As in the case of urine analysis, 

many of the significantly altered metabolites were previously associated at least to one 

of the investigated risk factors or with MetS, highlighting the sensitivity of 1H NMR 

spectra for the study of this disorder.  
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4.2.3 Serum lipidome univariate analysis  

Of particular interest was the study of lipoproteins, particularly for a better 

characterization of dyslipidaemia, which emerged as a discriminating RF in serum 

profiles distribution in the PCA analysis (Figure 4.13). So far, it was not possible to 

investigate thoroughly this RF because of the lower concentration of lipoproteins in 

urine, generally found in the bloodstream.  

Univariate analysis was conducted to compare the created MetS conditions (according 

to the established criteria explained in Table 4.1) with the apparently healthy one 

(0000) but, in this case, the employed variables were the quantified lipoproteins 

obtained from the Bruker IVDr B.I.LISATM report (more information in Chapter 3).  

Figure 4.15 shows the result of this analysis, including an extensive number of 

lipoproteins, lipoproteins subfractions and parameters (up to 112) determined thanks 

to the regression model applied by Bruker as method for the quantification of the 

mentioned variables. In addition to the quantification of the main lipoprotein classes, 

including the VLDL, IDL, LDL and the HDL, and their related subfractions VLDL 

from 1 to 5, LDL form 1 to 6 and HDL from 1 to 4, whose numbers correspond to the 

increased density and decreased size (Figure 4.16). Interestingly, the obtained reports, 

allow the quantification of the amount of each of the lipoprotein components, 

triglycerides, cholesterol, free cholesterol, phospholipids, apolipoprotein B (Apo-B), 

apolipoprotein A1 (Apo-A) and apolipoprotein A2 (Apo-A2),  whose percentage differ 

depending on the considered lipoprotein but also on the presence of metabolic 

dysregulations caused by different health conditions, providing important information 

largely inaccessible through the use of other techniques (i.e. enzymatic and 

colorimetric assays, ultracentrifugation, electrophoresis).  

As the previous heatmaps, coloured squares, according to the bar legend, represent the 

obtained fold changes from the comparisons of the variables (in the abscise axis) for 

each condition (in the ordinate axis) with the apparently healthy one (0000). In this 

case, unsupervised cluster analysis separates according to dyslipidaemia (XX1X or 

XX0X) instead of diabetes, as expected also from the previous result of the PCA 

analysis (Figure 4.13).  
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Figure 4.15: Heatmap of the comparison of the different serum conditions with the apparently 

healthy one (0000). Conditions are represented in the abscise axis while in the ordinate are 

listed the lipoproteins and related paramethers, both sorted according to cluster analysis. Fold-

change for each of the comparison is evidenced by the colour-code indicated in the bar legend. 

Dendodrams on the top and on the left evidence the clustering of the different profiles and 

lipoproteins respectively. 
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The obtained results report on a significant increase in VLDL particles (especially 

VLDL-1 and VLDL-2, followed by VLDL-3), IDL, and to a lesser extent of LDL, 

predominantly LDL-5 and LDL-6 which could be considered as the smaller dense 

LDL. On the other hand, it is possible to observe a lower level of LDL-2 and LDL-3 

particles and of the HDL lipoproteins (HDL-1 and HDL-2).  

The described dysregulation is particularly evident in the profiles of the individuals 

affected by MetS, according to our criteria, including the 1111, 1110 and 1011 profiles, 

but also in the 0111 condition and in all those affected by dyslipidaemia.  

The observed changes are in line with previous studies reporting a characteristic 

fingerprint in the lipoproteins expression for the subjects affected by MetS that was 

generally associated to the increased levels of triglycerides, typical of this syndrome, 

Figure 4.16: Size and density of the quantified lipoproteins according to the Bruker B.I.LISATM 

report (figure modified from Feingold K. R., 2021117). LDL, IDL and VLDL are considered as 

pro-atherogenic lipoproteins due to their transport of lipid to the peripheral tissues, while HDL 

are the only anti-atherogenic lipoproteins thanks to their reverse cholesterol transport from 

peripheral tissues to the liver. VLDL, Very low density lipoproteins; IDL intermediate density 

lipoproteins; LDL, low density lipoproteins; HDL, high density lipoproteins.   
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and that is also particularly evident in our results, as shown in heatmap from the 

conduced univariate analysis100–102.  

The observed lipoproteins variations may result from insulin resistance, possibly 

generated by the co-presence of other factors such as obesity or diabetes, which could 

cause an increased synthesis of triglycerides in the liver from free fatty acids, but the 

causes that could lead to this increase in MetS subjects could be several and still need 

to be thoroughly investigated101.  

Figure 4.17: Lipoprotein metabolism in MetS subjects. Red arrow represents the increase in 

VLDL lipoproteins due the increased triglycerides. IDL, generated from VLDL by the action 

of LPL, can be further hydrolysed by HL creating LDL. Blue arrows evidence a decreased 

hepatic uptake of the produced lipoproteins in MetS subjects (VLDL, IDL, LDL). Moreover, 

by the action of CETP, cholesteryl esters can be replaced by TG in LDL and HDL. The created 

TG-rich-LDL are considered as good substrate for the HL that generates small dense LDL, 

which are associated with an increased cardiovascular risk. On the other hand, the TG-rich-

HDL are more prone to be catabolised either in the liver or in the kidney. VLDL, Very low 

density lipoproteins; IDL, intermediate density lipoproteins; LDL, low density lipoproteins; 

HDL, high density lipoproteins; LPL, lipoprotein lipase; HL, hepatic lipase; CETP, cholesteryl 

ester transfer protein; TG, triglycerides; CE, cholesteryl esters. 
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This increase in triglycerides is widely considered as responsible for the 

overproduction of large VLDL (VLDL-1) in the liver, with a high triglycerides content, 

as observed also by our analysis. Their synthesis has been elucidated by several studies 

and involves a multistep process, starting with the lipidation of the Apo-B (more 

specifically Apo-B100), in the endoplasmic reticulum (ER), which is generally 

considered as the key structural protein for VLDL lipoprotein assembly. The generated 

pre-VLDL particles, through their transition to the Golgi complex, turns into 

triglycerides-poor VLDL (VLDL-2), which can be released from the cells or 

transformed into triglycerides-rich VLDL (VLDL-1) by further lipidation100,101. In the 

presence of MetS or, in general of dyslipidaemia, a reduced clearance of the VLDL-1 

and VLDL-2 is observed, due to the increased level of triglycerides and an altered 

function of the lipoprotein lipase (LPL), leading to an accumulation of this lipoproteins 

in the bloodstream101. The described process can be responsible of the observed 

increase in VLDL-1, VLDL-2, VLDL Apo-B and especially of the triglycerides 

content.   

Cholesterol percentage also showed to be increased in the upregulated VLDLs in the 

MetS and dyslipidemic subjects. This can be related to the intrinsic composition of 

these lipoproteins, as well as phospholipids, which also seem to be upregulated. 

Moreover, previous studies reported an increase in the production of VLDL 

lipoproteins, not only in relation to the presence of triglycerides, but also due to higher 

levels of cholesterol101,103.   

The observed IDL increase, in addition to the so far described alterations, can be related 

to the VLDL overproduction. In fact, IDL could be generated from triglyceride rich 

VLDL hydrolyzation through the action of LPL and this can be followed by the 

generation of cholesterol rich LDL by the hepatic lipase (HL), always preserving the 

structural protein Apo-B in both IDL and LDL100,104. The hepatic uptake of the 

produced lipoproteins (VLDL, IDL and LDL) was decreased in the MetS patients, 

explaining their upregulation in the conducted analysis105–107. Moreover, previous 

studies suggested that the production of a population of LDL particles with an altered 

conformation of the Apo-B results in a decreased affinity for the binding to LDL 

receptors, also justifying their higher levels in the bloodstream. It was observed that 
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their permanence in the circulation, could make them more easily accessible to the 

cholesteryl ester transfer protein, substituting cholesteryl esters with triglycerides. The 

generated triglycerides rich LDL have a greater affinity for the HL, generating small 

dense LDL (like LDL-5 and LDL-6), which also showed to be upregulated in our 

serum analysis and associated with the highest atherosclerotic risk101,108,109. The 

described process could be responsible of the observed downregulation in the 

cholesterol rich LDL-3 and LDL-2 lipoproteins, which presumably are converted into 

the small dense triglyceride rich LDL-5 and LDL-6 lipoproteins by the HL (Figure 

4.17). 

Finally, a decreased level of HDL was observed and could be justified by an increased 

clearance of these lipoproteins. As explained, for the generation of the triglycerides 

rich LDL lipoproteins through the action of cholesteryl ester transfer protein (CETP), 

it was observed the same mechanism for the HDL particles, where cholesteryl esters 

were replaced by triglycerides. The generated lipoproteins particles were evidenced as 

more prone to catabolisation, producing their decreased level in the bloadstream101.  

We hypothesize that the increase in the risk of cardiovascular problems that 

characterise the patients affected by MetS is related to the observed lipoprotein 

dysregulation, especially to the increased amount of small dense atherogenic LDL 

(LDL-5 and LDL-6). Previous studies related their adverse effect to different properties 

of these particles like their decreased size, responsible of an increased accumulation 

and retention in the walls of the blood vessels, a reduction in recognition by the LDL-

receptor responsible for their clearance and their increased predisposition to 

oxidation110.   

4.2.4 A molecular signature of MetS by serum analysis  

Due to the observed metabolic and lipidomic changes, it was interesting to observe, by 

means of multivariant analysis, the correlation between the average profiles generated 

by each of the conditions under study compared to the healthy one, considering both 

metabolites and lipoproteins as variables. 
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A correlation map was built, following the previous explained criteria (in Figure 4.5), 

by sorting the profiles according to the increased number of RFs that characterize each 

condition, generating 5 columns, each differing by the presence of one RF (Figure 

4.18). In the map, conditions are connected by lines and coloured coded according to 

their Superman’s correlation distance from the apparently healthy condition (0000) 

following the bar legend.  

The represented graph shows a more evident metabolic dysregulation in the serum 

spectra profile in relation with the increasing number of RFs, but in this case, 

dyslipidaemia is the main discriminating RF, causing the greatest degree of variation. 

Indeed, 0010 condition, with only one RF, already shows a significant change with 

respect to the 0000 profile. Despite this, it is possible to observe that the concomitant 

presence of certain risk factors, together with dyslipidaemia, is more pathogenic than 

others.  

Figure 4.18: Spearman correlation map for serum profiles evidencing the distance of each 

condition from the apparently healthy one (0000), colour coded according to it, as indicated by 

the bar legend. MetS conditions according to the WHO, EGIR and AACE are represented by 

squares and triangles; these last two with the addition of the rhombus represent MetS according 

to the NCEP:ATPIII and harmonized definitions, while squares and rhombus are the profiles 

presenting MetS according to the IDF. 
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Conditions with diabetes and/or obesity, together with dyslipidaemia, as especially 

evident for the 0110 and 1010 profiles were more pathogenic whereas, unlike previous 

urine analysis, hypertension in serum did not exhibit such a severe impact (0011 

profile).  

Since in this case dyslipidaemia (and no longer diabetes) was the main cause of the 

differentiation of the profiles from the apparently healthy cohort, squares, triangle and 

rhombus (representing the profiles affected by metabolic syndrome according to 

previously described existing definitions, Table 1.1) do not all show the same degree 

of severity, and 1110 and 1111 conditions show the most different metabolic and 

lipidomic fingerprinting with respect to the 0000 condition. Despite this, both these 

profiles are considered as affected by MetS according to all the described criteria.  

The previous urine analysis showed how diabetes, whose presence was considered as 

mandatory for diagnosis according to many of the existing definitions (Table 1.1), 

confirmed its relevance through the produced metabolic variation, and hypertension 

also seemed to play an important role in this aspect. In serum analysis, diabetes still 

results in important metabolic changes, but the importance of dyslipidaemia is also 

emphasised, with obesity as a secondary factor.  

The obtained results reflect how the observed metabolic changes, in relation to the 

presence of certain RFs, are important to understand which factors should be 

considered as most relevant for the diagnosis of MetS and should therefore be taken 

more seriously, especially for prevention and treatment of this syndrome.  

4.3 Final considerations   

Up to date, there is a lack of (molecular) instruments for the efficient evaluation of the 

stage of metabolic syndrome that may characterise a subject111. Indeed, nowadays, 

there is a growing interest for the identification of molecular biomarkers and diagnostic 

tools for an early detection of the factors that could lead to the development of MetS 

and try to avoid this to happen. This is even more complex when dealing with 

multifactorial diseases that may depend on environmental, physical, metabolic but also 

genetic or cellular factors as metabolic syndrome30,112,113. Yet, the existing definitions 
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often only consider a number of factors that are “generically” applied for diagnosis, 

but for such complex syndromes more integrative approaches may be necessary.  

The conducted study aimed to describe all the MetS-related phenotypes from a 

metabolic point of view in order to attempt to design a tool that would be able to define 

in a more personalised way how the metabolic changes that characterise an individual, 

based on the presence of certain RFs, may made a person more likely to develop this 

disorder. This could be achieved by integrating the results obtained from NMR 

metabolomics analysis of urine and serum samples.  

The metabolic phenotyping of MetS also allowed the identification of new biomarkers 

for the characterization of this disorder and the corroboration of others previously 

found. Different studies have been carried out to study MetS, including by means of 

NMR spectroscopy, but our study included an unprecedented number of analysed 

samples that gave greater statistical power and reliability to the obtained results, thanks 

also to the constant application of established SOPs (extensively explained in Chapter 

1 and 3) in each of the steps of our analysis process.  

Moreover, the conducted analysis may be useful for understanding more deeply the 

molecular mechanisms involved in this syndrome and the different factors that 

contribute to the development of this disorder. Although further experiments are still 

needed to fully elucidate certain molecular processes and pathways dysregulations. 

According to the obtained results, diabetes and dyslipidaemia shall be considered as 

key components for the development of MetS, and the presence of these RFs can lead 

to a rapid progression of this disorder, especially causing a significant increase in the 

risk of insurgence of secondary problems associated with this syndrome, such as 

T2DM or CVD.   

MetS insurgence have often been related to erroneous lifestyle habits that, if persisted, 

may influence a genetic and phenotypic susceptibility30,112,114,115. Diet, according to 

nutrigenomics, could even produce specific genetically programmed responses in 

relation to certain food30. Indeed, prevention by means of healthier nutritional habits, 

or even by personalized nutrition to target specific metabolism deviations, together 
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with a regular physical activity appeared to be one of the most effective30,116. On the 

contrary, when the disease is developed, the intervention by medication is also needed.  
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5.1 SARS-CoV-2 infection  

As previously explained in the introduction, SARS-CoV-2 infection has recently 

affected the worldwide population, with an official disease start in December 20191. 

Individuals develop their first symptoms after 2 to 14 days from infection and, from 

this very moment they constitute transmission vector of the disease thanks to a very 

efficient virus propagation mechanism, ultimately leading to the infection of several 

other subjects2,3. Most infected people do not present serious consequences induced by 

the disease, but about 20% of the cases will develop severe symptoms that may lead to 

hospitalisation, intensive care treatment and may even cause death4.  

In order to investigate deeper the disease causes and characteristics, the metabolic 

associated changes were studied analysing serum samples coming from hospitalized 

patients in the acute phase of the disease. The presented results are partially based on 

our publication “SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic 

Profiles of Serum”5. 

5.1.1 COVID and preCOVID cohorts description  

A cohort of 263 COVID-19 (named here COVID cohort) patients, previously described 

in Chapter 3, was studied, using NMR spectroscopy, in order to identify the possible 

metabolic and lipidomic changes in the serum induced by this disease. Serum samples 

were recollected at their hospital arrival and all the subjects included into the study 

were presenting COVID-19 related symptoms (listed in Table A9 in the Appendix) 

and tested positive after RT-PCR test for the detection of the RNA particles of SARS-

CoV-2 virus on nasal swab samples.  

As a collaboration with the laboratory of Cancer Immunology and Immunotherapy at 

CIC bioGUNE, a subset of the COVID-19 patient cohort (n = 43) was also tested for 

the presence of specific antibodies against the virus. Serum antibodies like the 

immunoglobulin M (IgM) or IgG against the spike and nucleocapsid (N) structural 

proteins of the virus, start to be produced from 1 to 3 weeks after the infection as a part 

of the natural immune response 6. IgM are the first ones to be synthesized, with a shorter 

average life, while IgG, generally produced just 2-3 days after, evidenced a longer 
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duration, ensuring long-term immunity7. From the 43 individuals analysed for the 

presence of antibodies from the COVID cohort, 21 samples (48%) evidenced the 

presence of IgG and just 11 samples (26%) were showing both IgG and IgM. In total, 

almost the 75% of the tested individuals were already presenting antibodies. This is 

not totally surprising since it is well-known that during the first week many individuals 

do not yet produce sufficient antibodies, whereas these gradually increase from the 

second week, raising the sensitivity of their detection in the conduced tests8. Indeed, 

all patients included into this study well represented the most acute phase of the 

disease, between approximately 14 and 21 days from the infection. 

280 healthy subjects were included into the study in order to compare the COVID 

patients with a control cohort. These serum samples (named here as preCOVID cohort) 

were recollected during 2018-2019, before the start of the pandemic, from the working 

population of the Basque Country, during the yearly medical check-up. The preCOVID 

cohort was built selecting subjects of the OSARTEN cohort, balancing the number of 

serum samples with the COVID cohort. As previously described in Chapter 3, no 

particular exclusion criteria were used to include samples into the OSARTEN cohort, 

a part from being affected by a serious disease (like cancer) or having suffered a stroke 

in the 3 months preceding the sample donation. 

5.1.2 SARS-CoV-2 infection alters the metabolic profile of patients 

Different NMR experiment were recorded in order to investigate the serum metabolism 

of the donors. First, a 1H NOESY was collected under quantitative conditions for all 

the samples under consideration. Visual inspection of the 1H NOESY spectra already 

evidence the existence of differences between COVID and preCOVID samples, as 

shown in Figure 5.1.  
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Figure 5.1: A) Metabolites and lipoproteins identification of two representing 1H NOESY 

serum spectra from a COVID and preCOVID individual. B) NOESY experiment overlap of a 

selected subset of serum samples for the comparison between COVID and preCOVID cohorts.  

 

Several metabolites and lipoproteins could be identified in the examined spectra, as 

evidenced in Figure 5.1A. Thanks to the Bruker B.I.Quant-PSTM report, the 

quantification of up to 41 metabolites was done on each measured sample and, the PCA 

of these quantified metabolites (Figure 5.2A), showed a substantial separation 

between the COVID and preCOVID subjects confirming the existing differential 

metabolites expression between the two cohorts. Figure 5.2B evidenced the 10 most 

relevant metabolites which had the greatest impact to the first two components 

separation in the PCA. The direction of the arrows represented the distribution of their 

weight in the two components, while the colour highlighted the percentage of their 

contribution. 
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The 41 metabolites quantified by the Bruker report were examined by univariate 

analysis to confirm the different concentration of small molecules within the two 

cohorts of samples (Figure 5.3). In fact, several metabolites showed an altered 

concentration with respect to the control cohort, evidencing the dysregulated 

metabolism caused by SARS-CoV-2 in the serum after infection, possibly induced by 

the progression in viral generation and replication9. In particular, an increase in the 

production of ketone bodies was observed in the COVID cohort as compared to the 

preCOVID one. Acetoacetic acid (from 1.14 x 10-2 to 5.54 x 10-2 mmol/L; p < 0.0001; 

385%), acetone (from 2.75 x 10-2 to 6.45 x 10-2 mmol/L; p < 0.0001; 134%) and 3-

hydroxybutiric acid (from 6.6 x 10-2 to 2.7 x10-1 mmol/L; p < 0.0001; 302%) were 

considerably elevated. Fasting conditions increase the production of ketone bodies, 

which are principally sensitized by mitochondria in liver cells from Acetyl-CoA, 

derived from fatty acids oxidation10. The examined samples were recollected under 

uncontrolled fasting condition, as the blood extraction was carried out on patients upon 

their arrival at the hospital due to their serious health state. That said, preCOVID 

samples were taken at fasting. Taking this into account, the difference in the expression 

of the ketone bodies shall be strictly related to the presence of this disease. In fact, it 

was observed that, the condition of anorexia and fasting are normal responses of the 

Figure 5.2 A) Score plot of the principal components from the PCA analysis of serum samples. 

Blue triangles represents the COVID cohort while the red dots the preCOVID one.  B) Loading 

plots of the top 10 variables with the highest contribution in the PCA of serum metabolites. 

Arrows direction indicate the weight of the metabolite in the two components while the colour 

evidence the percentage of their contribution. 
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individual due to the presence of acute infections, which lead to the production of 

ketone bodies that have also evidenced an impact on the immune response, 

inflammation and oxidative stress11–13. The accumulation of these metabolites was 

evidenced in other studies that associate their production to COVID patients’ severity, 

showing their increase in mild and severe cases, with a negative correlation with the 

hospitalization time and the mortality rate11,14. 

 

Figure 5.3: Effect of COVID-19 on metabolites expression. The horizontal axis indicates the 

number of standard deviations increase or decrease on average for each variable in COVID 

individuals. Circles indicate the specific mean increase or decrease value, and the horizontal 

lines represented the 95% confidence interval. The filled circles (totally black) represent the 

variables with a statistically significant difference (p-value ˂ 0.05). 
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A significant increase in glucose levels was also present in COVID-19 patients (of 8.19 

versus 4.89 mmol/L, p ˂ 0.0001, 68%). This was consistent with what was observed 

also by other studies 15–17 and suggest that this increase in glucose concentration in the 

serum of the patients can be associated with a diabetic or pre-diabetic state and could 

also contribute to several other comorbidities. Moreover, glucose evidenced to be a 

predictor of severity, increasing the risk of fatal outcomes18. Finally, different studies 

suggested its association with the acute respiratory distress syndrome (ARDS) 

consisting in an increased release of immune system cells that leads to organ failure19–

22. In fact, increased glucose levels are related to a higher viral replication rate and 

cytokine release23. Despite this, the mechanisms related to the higher serum 

concentration of this metabolite in COVID-19 patients is still unclear, but it was 

hypothesised that the presence of the ACE2 receptor in the pancreatic islets cells could 

lead to their infection giving rise to hyperglycaemia17,24.   

Other metabolites like succinic acid (156%), citric acid (12%), glutamic (33%) and 

pyruvic acid (67%) showed to be increased in COVID-19 patients. The high 

concentration of these metabolites in infected individuals evidenced a dysregulation of 

the central carbon metabolism. In fact, this is involved in purine biosynthesis which is 

necessary to fulfil the viral demand for high RNA replication25. On the other hand, 

glutamine evidenced to be decreased (by 4%). This metabolite plays an equally 

important role from a metabolic point of view and, in fact, the glutamine/glutamate 

ratio was associated with several comorbidities like hypertension, obesity and 

cardiovascular diseases and it has also been considered as a biomarker for liver damage 

due to the possible influence of alpha-glutathione S-transferase, generally present in 

liver failure, on this ratio16,26. In fact, glutamine is involved in different metabolic 

processes like purine synthesis for DNA and RNA components, glutathione production 

and energy generation via TCA cycle through the production of glutamate, further 

converted into alpha-chetoglutarate27–29. Finally, glutamine availability is also 

controlled by skeletal muscles in catabolic processes30.  

Essential amino acids like leucine, isoleucine, lysine, histidine and methionine were 

decreased in the COVID cohort. The reason related to this is still unclear, but this could 

be associated to the weight loss typical of these hospitalized patients, that made 
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essential amino acids one of the main energy sources for muscles, reducing their serum 

levels31.  

On the other hand, other metabolites like phenylalanine and 2-hydroxyturic acid were 

significantly increased. In the first case, it has been hypothesized that the higher 

concentration of phenylalanine (by the 81%) can be related to the activation of the 

immune system and, more generally, to inflammation, as evidenced in previous 

studies32,33. As regard the increase in 2-hydroxybutiric acid, this was associated to 

ketoacidosis conditions, previously described also as characteristic of this disease, to 

glutathione synthesis or, more in general to oxidative stress conditions32.  A previous 

work also used the so called “Fisher’s ratio”, calculated from the sum of valine, leucine 

and isoleucine divided by the sum of phenylalanine and tyrosine, as a tool for the 

determination of liver dysfunction16,34. In fact, the increase on aromatic amino acids, 

like phenylalanine, was associated to catabolic processes observed in hepatic fibrosis35.  

Altogether, the last described changes evidence a general metabolic stress induced by 

the SARS-CoV-2 infection.  

5.1.3 Alterations in the lipoprotein composition found in SARS-CoV-2 

infected patients 

The lipoprotein composition of the serum samples of COVID-19 patients was also 

analysed in order to understand if SARS-CoV-2 infection was miss-regulating their 

expression. Employing the Bruker IVDr Lipoprotein Subclass Analysis B.I.LISATM 

report, as previously explained in Chapter 3, the analysis of up to 112 lipoprotein 

parameters was possible by means of spectra deconvolution. This included the 

quantification of different lipoproteins and the related lipoprotein subfraction like the 

phospholipids, cholesterol, triglycerides and apolipoproteins like Apo-A1, Apo-A2 

and Apo-B.  

A PCA comparing the COVID and preCOVID cohorts for the investigated lipoprotein 

parameters showed a reasonable separation between the two groups of samples 

evidencing the differential expression of these macromolecules in the serum of the 
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infected individuals and, the lipoproteins that mainly contribute to this separation are 

highlighted in Figure 5.4.  

 

To investigate lipoprotein composition in more detail, univariate analysis was 

conducted for this dataset, as previously done for the metabolites. As shown in Figure 

5.5, COVID-19 patients evidenced a marked increase in triglycerides, especially in the 

mean concentration of TG-HDL, TG-IDL, TG-LDL (the latter increasing by a factor 

of 2) and TG-VLDL. On the other hand, a decrease in the total cholesterol (TC, 

including the cholesterol and cholesteryl esters) was also observed, mainly in its major 

carriers TC-LDL and TC-HDL, for the latter especially in its subfractions 3 and 4, 

while TC-VLDL and TC-IDL were slightly increased.  

The phospholipid profile, when examined in the main lipoprotein classes, showed a 

behaviour similar to the total cholesterol one with a decrease in the HDL and LDL 

components and an increase in IDL and VLDL ones.  

In summary, the described results evidence an altered lipoprotein expression and a 

severe dyslipidemic profile induced upon SARS-CoV-2 infection, with an increase in 

triglycerides and especially in VLDL particles, particularly in the VLDL mean size 

subclasses, and a reduction in the HDL mean size subfractions.  

Figure 5.4: A) Score plot of the principal components from the PCA analysis of serum samples. 

Blue triangles represent the COVID cohort while the red dots the preCOVID one.  B) Loading 

plots of the top 10 variables with the highest contribution in the PCA of serum lipoproteins. 

Arrows direction indicate the weight of the lipoproteins in the two components while the colour 

evidence the percentage of their contribution. 
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These characteristic changes, observed only in COVID-19 patients, again point 

towards the presence of liver damage, as previously suggested from the differences in 

the expression of some metabolites like the essential amino acid or the glutamine to 

glutamate ratio. In fact, higher levels of VLDL lipoproteins are consistent with an 

increase in their production and reduced clearance, probably related to insulin 

resistance problems which could cause the increase in glucose concentrations 

previously mentioned and observed also in other studies16. It has been reported that all 

these alterations may be associated with the ongoing infection that caused a significant 

increase in the immune response which, in turn, influenced lipid expression reducing 

Figure 5.5: Effect of SARS-CoV-2 infection on lipoproteins and lipoprotein subclasses 

expression. The horizontal axis indicates the number of standard deviations increase or decrease 

on average for each variable in COVID individuals. Circles indicate the specific mean increase 

or decrease value, and the horizontal lines represented the 95% confidence interval. The filled 

circles (totally black) represented the variables with a statistically significant difference (p-

value ˂ 0.05). 
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cholesterol production and the clearance in triglycerides-rich lipoproteins36,37. 

Moreover, the observed triglycerides accumulation can be associated with a reduced 

hepatic ability in the mitochondria for the oxidation of acetyl-CoA, which was in turn 

used for the ketone bodies synthesis, previously described. The altered levels of 

succinic and pyruvic acid, observed before, are also consistent with the proposed 

mitochondrial dysfunction and/or the impaired central metabolism observed.  

Additionally, our group observed an increase expression of porphyrins levels in 

COVID-19 patients, specifically in Uroporphyrin I (URO I), Coproporphyrin I and III 

(COP I and III). This is evidenced also in thrombocytopenia and in porphyria disease, 

which was associated with mitochondrial impairment, liver damage and oxidative 

stress38–40.   

 

Finally, apolipoproteins were also analysed and differences in their expression were 

observed. Apo-A1 and Apo-A2 are decreased in the COVID cohort, showing a similar 

profile. Both these lipoproteins can be found in high density lipoproteins, especially 

Apo-A1, which oversees the elimination of the excess of peripheral cholesterol leading 

it to the liver with the so-called “reverse cholesterol transport”41. On the contrary, Apo-

B does the opposite work, and its generally associated to VLDL particles42. The Apo-

Figure 5.6: Graphical summary of the observed metabolites and lipoproteins differential 

expression in COVID-19 patients. Phe, phenylalanine; Glu, glutamate; Met, methionine; Ile, 

isoleucine; His, histidine; Lys, lysine; Gln, glutamine; Tyr, tyrosine; Chol, cholesterol; FChol, 

free cholesterol; TGs triglycerides; PLs, phospholipids.  
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B100 to Apo-A1 ratio, which indicated the ratio between the atherogenic and anti-

atherogenic particles respectively, was highly increased (by 2-fold) in COVID-19 

patients, evidencing a significant risk for cardiovascular events.  

Altogether, the observed changes (summarised in Figure 5.6) evidenced a severe 

pathogenic state with an increased atherogenic risk which could lead patients to severe 

outcomes37.   

5.1.4 A metabolic discrimination model for COVID-19 patients. 

The observed changes between the COVID and preCOVID cohorts described until now 

based on the unsupervised and univariate analysis, were further corroborated by OPLS-

DA analysis with one predictive and one orthogonal component, performed using the 

complete set of quantified metabolites and lipoproteins subclasses (Figure 5.7). As 

expected, the comparison between the COVID and preCOVID cohorts presented a high 

separation degree, statistically significant (p-value ˂  0.01) and with good predictability 

(AUROCvalidation = 0.9777, look Table A13 in the Appendix). Figure 5.7B showed the 

loading plot obtained from the OPLS-DA analysis in Figure 5.7A, evidencing the set 

of variables clusters (lipoproteins and metabolites) that most contributed to the 

separation of the two cohorts of analysed samples.  

Figure 5.7: (A) OPLS-DA score plot of the comparison between COVID (green) and 

preCOVID (red) cohorts for the full set of metabolites and lipoprotein subclasses. The main 

component versus the first orthogonal component are shown. (B) Loading plot of the OPLS-

DA. Each variable (metabolites or the lipoprotein subclasses) is represented with different 

colours. 95% of the members of each type are surrounded by ellipses and the four variables 

that most contribute to the component were labelled for each direction. 
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Once again, the variables previously identified with the univariate analysis were the 

ones used in the discrimination model to analyse the two cohort of samples. As regard 

metabolites, formic acid and phenylalanine were the most increased ones in COVID 

cohort. As previously mentioned, formic acid is one of the most important metabolites 

in the one carbon metabolism which appeared to be miss regulated, while 

phenylalanine was associated with inflammation and COVID-19 severity43,44.  

As regard lipoproteins, some characteristics component among triglycerides, 

cholesterol, phospholipids and VLDL particles were the main responsible for the 

differences between the analysed cohorts, as shown before by univariate analysis, 

confirming once again a characteristic dyslipidemia associated to COVID-19 patients.  

5.1.5 Inflammation markers 

We then attempted to obtain information about inflammation markers from the 1H-

NMR spectra. Indeed, looking at the NMR spectra of the analyzed samples, it was 

possible to observe a great intensity difference between the COVID and preCOVID 

cohorts in the α-1-acid glycoprotein A (Glyc A) signal which was significantly 

increased in the SARS-CoV-2 positive patients, as shown in Figure 5.8.  

This characteristic signal, firstly identified in 1987 by Sadler at al.45, originates from 

the acetylation of different glycoproteins, specifically from the acetyl group of N-

acetylglucosamine, N-acetylgalactosamine and N-acetylneuraminic acid46. Its higher 

intensity in the COVID cohort postulates it as a biomarker for the acute phase of 

COVID-19, in line with what was observed also by other studies16,45. In fact, altered 

glycosylation patterns have been observed during inflammation processes associated 

not only with COVID-19, but also with other severe diseases like cancer, 

cardiovascular or metabolic disorders47–49.  
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5.1.6 Study limitations and potential caveats analysis  

5.1.6.1 Age limitation  

Different studies evidenced that COVID-19 severity is directly correlated with age50–

52. This is mainly due to the onset of comorbidities in elderly subjects, that aggravate 

the prognosis of infected patients 53–55. To investigate if the observed changes in the 

expression of metabolites and lipoproteins were corelated with age, two sub-cohort of 

112 samples were analysed (additional information in Table A10 in the Appendix).  

These two “new” sub-cohorts were created to be perfectly balanced for age and gender 

distribution. Figure 5.9 shows an equivalent qualitative separation between the two 

cohorts for both metabolites (Figure 5.9A) and lipoproteins (Figure 5.9B) in the PCA 

and in the OPLS-DA (Figure 5.9C and D) as compared to the full cohorts, confirming 

that age is not a compromising factor for the obtained results. 

Figure 5.8: Glyc-A expression in COVID and preCOVID samples. Signal was integrated for 

the measured serum samples in order to compare its level in the two cohorts. On the right, 

representative 1H NMR spectral region evidencing the studied signal in a serum sample.  
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5.1.6.2 Sample recollection conditions  

Another potential concern about the conduced study was the heterogeneous conditions 

in which samples were recollected during the drastic situation that hospitals had to face 

during the first wave of the COVID-19 pandemic.  

The importance of a proper adherence to specific standard operating procedures 

throughout the sample handling process was explained extensively in the introduction. 

Unfortunately, we could not ensure that samples taken in hospitals followed all the 

necessary standards to guarantee secondary contamination-free results. For this reason, 

we wanted to confirm that the reported observations were not partially related to 

sample mishandling.  To that end, a second cohort of samples of almost 400 patients, 

coming from a different hospital, was analysed and the results for the expression of 

lipoproteins and metabolites were compared with the ones of the comparison between 

COVID and preCOVID.  

Figure 5.9: Sub-cohorts analysis for age caveat. A) PCA analysis for the serum metabolites and 

B) lipoproteins, representing the first two components. C) Score plot of the OPLS-DA for the 

full set of metabolites and lipoproteins. D) Effect of COVID-19 over the metabolites and 

lipoprotein subclasses in the new sub-cohorts and the full cohorts. Blu line is the linear model 

of both analyses and the red one is the identity. Samples with absolute difference higher than 

0.5 between both analyses are labelled.   
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The comparison between the validation cohort with the preCOVID one reported 

equivalent results, as shown in Figure 5.10. This result suggests that the differences in 

the samples metabolomic and lipidomic profile of the infected patients arise from the 

SARS-CoV-2 infection and not from handling issues.  

Moreover, thanks to the analysis of this large quantity of samples, the integration of all 

cohorts (COVID, preCOVID and validation) converted our study into one of the largest 

metabolic analyses carried out for the study of this disease.  

 

 

Figure 5.10: Validation cohort analysis coming from a different hospital. The validation cohort 

was compared against the preCOVID one and the average effect of COVID-19 for the 

lipoprotein and metabolites expression was evidenced comparing it to the results of the COVID 

cohort. The horizonal axis shows the standard deviation of the increase or decrease of each 

variable in COVID-19 patients and the circles are positioned in the mean increase/decrease. 

Filled circles represent the statistically significant variables (p-value ˂ 0.05). Black bars 

represent the 95% confidence interval. 
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5.1.6.3 Storage stability over time  

Samples included in the preCOVID cohort were recollected long before the onset of 

COVID-19 pandemic (2 years before). As already mentioned for the recollection 

conditions of the samples, storage time could also have an effect on the serum 

metabolome56. To investigate such effect on the sample's stability, a PCA was 

performed to compare the first samples recollected in 2016 with the last ones obtained 

in 2018 (Figure 5.11).   

As shown in Figure 5.11, it was not possible to separate the first recollected samples 

(2016) from the last ones (2018), indicating that the freezing time at -80°C does not 

significantly alter the nature of the samples. The same results were observed also in 

previous works conducted analysing quality control samples (QC) over time, also 

present in our routine analysis in order to carefully monitor the conducted studies57,58.  

 

Figure 5.11: PCA of the full set of A) metabolites B) lipoproteins of the two subset of control 

samples recollected in 2016 and 2018, at 400 days of difference for the freezing period. 

B 

A 
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5.1.7 Final considerations  

The spread out of SARS-CoV-2 infection and the evidenced differential phenotypic 

response induced by this disease, highlighted the need to investigate it more profoundly 

using the “omics” techniques, particularly used in the field of precision medicine, as 

previously explained also in Chapter 1.   

Metabolomics emerged as a powerful tool for the investigation o the characteristics 

metabolic changes that affect subjects infected by SARS-CoV-2, leading to the 

identification of biomarkers for the diagnosis and the prognosis of the disease.  

Our results demonstrated to be in line with the ones obtained by others research groups, 

employing NMR and/or MS, highlighting the damage caused by this disease not only 

in the respiratory tract, but also involving several other organs such as kidneys, liver 

and the cardiovascular system16,59–62. These studies evidenced a similar metabolic and 

lipidomic signature characterized by an increase in glucose, glutamate, phenylalanine, 

formic acid and ketone bodies, as regard metabolites, and in VLDL and IDL when 

considering lipoproteins. On the other hand, they agreed in the observation of a reduced 

level of glutamine, lactic acid, histidine and in LDL and HDL components59. 

Moreover, some of these changes, were also observed in previous studies on SARS-

CoV-1 and MERS-CoV, which evidenced liver damage and changes in the lipid’s 

levels 63,64. Finally, the extreme inflammatory response that characterize COVID-19 

patients was investigated in order to find the association between inflammatory 

markers like interleukin-18 (IL-18), IL-6, interferon gamma (IFN-γ), interferon 

gamma inducible protein-10 (IP-10) and RANTES (Regulated on Activation, Normal 

T Expressed and Secreted, also known as CCL5) with the observed metabolic changes. 

A positive and negative correlation was observed with some LDL and HDL 

subfractions respectively65.  

Further investigations have been trying to find an association between the identified 

biomarkers and COVID-19 severity. A differential expression in some metabolites 

levels was observed between mild and severe patients, especially in kynurenine 

pathway and lipids such as carnitines and phosphatidylcholine66–71. These important 

changes, associated with the worsening of the disease symptoms, were also correlated 
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with specific markers of the immune response (i.e. chemokines, IL-6)65,72. This could 

have a predictive power for the prognosis of the infected subjects, improving medical 

interventions72. 

Metabolomics has also been employed to investigate patient’s recovery. Infected 

subjects were followed for several months after hospital discharge (in some cases, even 

more than 1 year), with multiples check-ups to study their metabolic normalization, the 

so-called “phenoreversion”73,74. It was observed that this may take also several months, 

depending above all on the severity of the disease suffered and the associated 

respiratory problems39,73,75,76.  

Finally, there is a growing interest in those cases where patients have not been able to 

fully recover a normal metabolism after the disease or have even developed a post-

acute COVID-19 syndrome77. The long COVID effects are being investigated and, 

among the most important prognostic biomarkers, emerges lipoprotein’s role78.   
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6.1 A molecular discrimination of the metabolic syndrome by urine and 

serum metabolomics    

• Urine and serum NMR metabolomics are sensitive to MetS, due to the 

observed differential manifestation of the risk factors (RFs) in the urine and 

serum derived metabotype.  

• New biomarkers associated with MetS were found and some of the previously 

related with MetS or with the associated risk factors have been validated.   

• All the contributing RFs were represented by at least one metabolite that varied 

significantly, according to the metabolomic analysis of urine and serum 

samples.  

• Disease progression was accompanied by a continuous variation (up- or down-

regulation) of the identified and quantified metabolites as a function of the 

conditions, reflecting a more pronounced alteration in the subjects affected by 

MetS.  

• Not all the RFs equally contribute to the progression to MetS. Urine analysis 

underlines the impact of the glucose metabolism alterations and of 

hypertension, while serum analysis highlights the impact of dyslipidaemia.  

• Based on the analysis of the urine samples, a metabolic model was created for 

the discrimination between individuals with and without MetS and the 

assignment of a “MetS score” for the determination of how likely an individual 

is to develop MetS. The integration of the results obtained from serum analysis 

shall contribute to the creation to a more reliable model in order to improve 

the discrimination of the subjects affected by MetS and the assigned of the 

“MetS score”.  

• Aging and non-alcoholic fatty liver disease (NAFLD) were also considered as 

RFs that enhance MetS but they do not directly interfere with the metabolic 

discrimination of the syndrome. However, in the case of NAFLD, the 

simultaneous presence of this disorder and MetS could confound the metabolic 

definition of MetS due to a partial overlap between the risk factors that 

contribute to the development of MetS with NAFLD associated comorbidities.  
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• The obtained results generate an unprecedent molecular dimension to the 

definition of MetS. 

• The present investigation may improve medical decision for an early 

intervention and treatment of MetS.  

6.2 Metabolomic and Lipidomic dysregulation caused by SARS-CoV-2 

infection 

• Patients in the acute phase of the disease show marked changes in the 

metabolomic and lipidomic profiles of the analysed serum samples. 

• GlycA signal, a biomarker for acute systemic inflammation and previously 

associated with cardiovascular diseases, is significantly increased in the 

COVID-19 patients, at least during acute phase.  

• The observed metabolic changes, in addition to the known impairment of the 

respiratory system, are related with multiple-organ specific dysfunctions, 

highlighting the systemic character of the disease. 

• Lipoprotein profile alteration and redistribution, characterized by a higher 

level of TG leading to an increase in VLDL subclasses with intermediate size, 

suggest a possible increase in the atherogenic risk and an impaired oxidative 

stress.  

• The observed metabolic changes may improve medical treatment of the 

infected subjects, in a more personalized way.  

• Further work is needed for the identification of specific severity-related 

biomarkers. This could improve the treatment of the patients affected by 

COVID-19 avoiding their aggravation and consequent long term health 

problems or pathologies such as “long COVID”.  
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Table A1: General characteristics of the OSARTEN cohort for urine samples included into the 

study. Biochemical data were extracted from a blood test performed at the same time of urine 

samples collection. Additional information was achieved from questionnaires 

complementation.  

 [ALL valid] female male N 
 N=9367 N=3432 N=5935  

Age (years) 43.04±9.16 44.06±8.73 42.45±9.35 9367 

Weight (cm) 74.85±14.04 64.39±11.29 80.89±11.74 9367 

Height (cm) 171.91±8.99 163.59±6.25 176.72±6.48 9367 

BMI (kg/m²) 25.22±3.76 24.06±4.04 25.89±3.42 9367 

Smoker 1877 (20.06%) 652 (19.03%) 1225 (20.66%) 9355 

Alcohol consumption:    9345 

    Never 1325 (14.18%) 730 (21.33%) 595 (10.05%)  

    Social drinker 6966 (74.54%) 2500 (73.04%) 4466 (75.41%)  

    Only during meals 829 (8.87%) 171 (5.00%) 658 (11.11%)  

    Daily intake of alcohol 225 (2.41%) 22 (0.64%) 203 (3.43%)  

Hypertension 985 (10.54%) 257 (7.50%) 728 (12.30%) 9343 

Medicated for hypertension 86 (3.30%) 32 (3.04%) 54 (3.47%) 2610 

Medicated for diabetes 70 (2.68%) 7 (0.66%) 63 (4.05%) 2609 

Proteins detected in urine 126 (1.35%) 44 (1.29%) 82 (1.38%) 9359 

ALT (U/L) 22.56±13.65 16.58±9.33 26.02±14.53 9367 

Basophils (10⁹/L) 0.04±0.02 0.04±0.02 0.04±0.02 9367 

Cholesterol (mg/dL) 193.49±34.48 191.87±34.34 194.42±34.52 9367 

HDL Cholesterol (mg/dL) 61.19±15.98 68.97±15.41 56.68±14.51 9367 

LDL Cholesterol (mg/dL) 112.48±30.82 106.85±30.32 115.94±30.63 8878 

Non-HDL Cholesterol (mg/dL) 132.30±35.97 122.90±34.05 137.74±35.93 9367 

Mean corpuscular hemoglobin 

concentration (g/dL) 
33.91±0.87 33.50±0.82 34.14±0.81 9367 

Mean corpuscular volume (fL) 90.15±4.25 90.82±4.42 89.76±4.10 9367 

Creatinine (mg/dL) 0.87±0.15 0.73±0.10 0.94±0.12 9367 

Eosinophils (10⁹/L) 0.23±0.16 0.21±0.16 0.24±0.17 9367 

Erythrocytes (10⁹/L) 4.83±0.41 4.50±0.31 5.03±0.34 9367 

ESR (mm/h) 7.98±5.46 10.94±6.63 6.27±3.69 9367 

GGT (U/L) 22.20±20.33 15.85±14.70 25.88±22.14 9366 

Glucose (mg/dL) 85.68±12.00 84.19±10.08 86.54±12.90 9367 

Hematocrit (%) 43.48±3.14 40.76±2.42 45.06±2.31 9367 

Hemoglobin (g/dL) 14.75±1.21 13.65±0.91 15.38±0.86 9367 

Leukocytes (10⁹/L) 6.69±1.70 6.59±1.66 6.75±1.72 9367 

Lymphocytes (10⁹/L) 2.33±0.66 2.24±0.63 2.38±0.67 9367 

Monocytes (10⁹/L) 0.62±0.19 0.57±0.17 0.65±0.19 9367 

Neutrophils (10⁹/L) 3.48±1.26 3.54±1.29 3.45±1.25 9367 

Platelets (10⁹/L) 237.40±51.90 248.79±54.72 230.81±49.00 9367 

Mean platelet volume (fL) 8.41±0.69 8.47±0.70 8.37±0.68 9366 

Red cell distribution (U) 13.32±0.78 13.38±0.88 13.29±0.71 9367 

Triglycerides (mg/dL) 96.72±63.06 78.63±37.34 107.18±71.92 9367 

Urate (mg/dL) 5.10±1.26 4.13±0.92 5.66±1.07 9367 
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Table A2: General characteristics of the OSARTEN cohort for serum samples included into 

the study. Biochemical data were extracted from a blood test performed at the same time of 

serum samples collection. Additional information was achieved from questionnaires 

complementation. 

 [ALL] female male N 

 N=8157 N=2964 N=5193  

Age (years) 43.22±9.19 44.22±8.79 42.65±9.36 8157 

Weight (kg) 75.60±14.22 65.10±11.37 81.59±12.04 8157 

Height (kg) 172.01±9.02 163.68±6.34 176.77±6.52 8157 

BMI (kg/m²) 25.44±3.81 24.30±4.05 26.10±3.49 8157 

Smoker 1645 (20.19%) 556 (18.79%) 1089 (20.99%) 8148 

Alcohol consumption:    8139 

    Never 1139 (13.99%) 628 (21.23%) 511 (9.86%)  

    Social drinker 6074 (74.63%) 2166 (73.23%) 3908 (75.43%)  

    Only during meals 729 (8.96%) 144 (4.87%) 585 (11.29%)  

    Daily intake of alcohol 197 (2.42%) 20 (0.68%) 177 (3.42%)  

Hypertension 931 (11.41%) 243 (8.20%) 688 (13.25%) 8157 

Medicated for hypertension 83 (3.62%) 34 (3.67%) 49 (3.59%) 2291 

Medicated for diabetes 71 (3.10%) 9 (0.97%) 62 (4.55%) 2290 

Medicated for hypercholesterolemia 68 (2.97%) 26 (2.81%) 42 (3.07%) 2292 

Proteins detected in urine 115 (1.42%) 42 (1.46%) 73 (1.41%) 8078 

ALT (U/L) 22.79±13.88 16.62±9.46 26.32±14.74 8156 

Basophils (10⁹/L) 0.04±0.02 0.04±0.02 0.04±0.02 8157 

Cholesterol (mg/dL) 193.60±34.35 191.98±34.00 194.53±34.51 8157 

HDL Cholesterol (mg/dL) 60.60±15.83 68.40±15.29 56.14±14.35 8157 

LDL Cholesterol (mg/dL) 112.74±30.67 107.37±30.07 116.01±30.56 7689 

Non-HDL Cholesterol (mg/dL) 133.01±35.95 123.58±33.93 138.38±35.96 8157 

Mean corpuscular hemoglobin 

concentration (g/dL) 
33.90±0.87 33.49±0.82 34.14±0.81 8157 

Mean corpuscular volume (fL) 90.15±4.27 90.83±4.42 89.76±4.13 8157 

Creatinine (mg/dL) 0.87±0.16 0.73±0.10 0.94±0.12 8157 

Eosinophils (10⁹/L) 0.23±0.17 0.21±0.16 0.24±0.17 8157 

Erythrocytes (10⁹/L) 4.84±0.42 4.50±0.31 5.03±0.34 8157 

ESR (mm/h) 7.98±5.49 10.95±6.75 6.29±3.68 8156 

GGT (U/L) 22.60±20.91 15.92±14.94 26.41±22.79 8155 

Glucose (mg/dL) 86.11±12.55 84.60±10.74 86.97±13.40 8157 

Hematocrit (%) 43.54±3.13 40.81±2.44 45.09±2.31 8157 

Hemoglobin (g/dL) 14.77±1.21 13.67±0.92 15.39±0.86 8157 

Leukocytes (10⁹/L) 6.73±1.70 6.60±1.67 6.80±1.71 8157 

Lymphocytes (10⁹/L) 2.34±0.67 2.25±0.64 2.40±0.68 8157 

Monocytes (10⁹/L) 0.62±0.19 0.57±0.17 0.65±0.20 8157 

Neutrophils (10⁹/L) 3.50±1.26 3.53±1.28 3.48±1.24 8157 

Platelets (10⁹/L) 238.41±51.92 249.95±55.08 231.83±48.83 8157 

Mean platelet volume (fL) 8.40±0.68 8.46±0.70 8.36±0.67 8156 

Red cell distribution (U) 13.33±0.79 13.40±0.89 13.29±0.71 8157 

Triglycerides (mg/dL) 98.80±65.07 79.24±38.06 109.97±74.04 8157 

Urate (mg/dL) 5.14±1.27 4.15±0.94 5.70±1.08 8157 
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Table A3: General characteristics of the OBENUTIC cohort. Biochemical data were extracted 

from a blood test performed at the same time of urine samples collection. Additional 

information was achieved from questionnaires complementation. 

 [ALL valid] female male N 
 N=465 N=307 N=158  

Age (years) 46.14±13.67 46.42±12.94 45.61±15.01 465 

BMI (kg/m²) 27.87±5.40 27.32±5.58 28.94±4.89 465 

Waist (cm) 92.31±15.18 88.16±13.48 100.49±15.06 458 

Smoker 93 (20.62%) 72 (23.92%) 21 (14.00%) 451 

Systolic blood pressure (mmHg) 124.91±17.37 121.00±16.83 132.46±15.91 461 

Diastolic blood pressure (mmHg) 78.62±10.69 76.94±9.71 81.89±11.74 461 

Hypertension 76 (17.31%) 37 (12.76%) 39 (26.17%) 439 

Medicated for hypertension 78 (17.33%) 35 (11.71%) 43 (28.48%) 450 

Diabetes 21 (4.79%) 13 (4.48%) 8 (5.41%) 438 

Medicated for diabetes 14 (3.12%) 8 (2.69%) 6 (3.97%) 448 

Diagnosed cholesterol 132 (30.28%) 84 (29.17%) 48 (32.43%) 436 

Medicated for cholesterol 67 (14.99%) 40 (13.47%) 27 (18.00%) 447 

Any cardiovascular disease 15 (3.42%) 7 (2.41%) 8 (5.41%) 438 

ALT (U/L) 25.29±18.61 20.85±11.96 33.86±25.11 463 

AST (U/L) 25.85±11.04 23.33±7.15 30.73±14.95 461 

Cholesterol (mg/dL) 212.93±40.11 216.62±40.51 205.77±38.45 465 

HDL Cholesterol (mg/dL) 59.85±14.13 64.21±13.53 51.37±11.12 465 

LDL Cholesterol (mg/dL) 138.50±32.52 138.86±33.00 137.79±31.67 464 

Creatinine (mg/dL) 0.76±0.18 0.67±0.10 0.93±0.19 465 

GGT (U/L) 30.74±32.46 27.65±33.59 36.73±29.32 461 

Glucose (mg/dL) 94.66±19.07 92.68±16.35 98.50±23.05 465 

Leukocytes (10⁹/L) 6.43±2.51 6.47±2.89 6.33±1.49 443 

Triglycerides (mg/dL) 109.42±58.70 102.63±52.88 122.64±66.87 463 

Uric acid (mg/dL) 5.33±1.41 4.79±1.16 6.39±1.25 465 

 

Table A4: General characteristics of the PREDIMED cohort. Biochemical data were extracted 

from a blood test performed at the same time of urine samples collection. 

 [ALL valid] female male N 

 N=960 N=612 N=348  

Age group (years):    960 

    55-63 330 (34.38%) 213 (34.80%) 117 (33.62%)  

    64-69 306 (31.87%) 191 (31.21%) 115 (33.05%)  

    70-80 324 (33.75%) 208 (33.99%) 116 (33.33%)  

Diabetes 490 (51.04%) 279 (45.59%) 211 (60.63%) 960 

Obesity 492 (51.25%) 338 (55.23%) 154 (44.25%) 960 

Dyslipidemia 303 (31.56%) 177 (28.92%) 126 (36.21%) 960 

Hypertension 798 (83.12%) 524 (85.62%) 274 (78.74%) 960 
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Table A5. General characteristics of the KIROLGETXO cohort. Data have been collected from 

questionaries. 

 [ALL valid] female male N 

 N=101 N=83 N=18  

Age (years) 71.14±5.46 70.87±5.49 72.39±5.29 101 

Weight (cm) 66.81±12.22 65.08±11.73 74.78±11.51 101 

Height (cm) 161.12±7.35 159.65±6.66 167.89±6.68 101 

BMI (kg/m²) 25.67±3.95 25.50±4.04 26.48±3.47 101 

Ethnic group:    101 

    caucasian 100 (99.01%) 82 (98.80%) 18 (100.00%)  

    hispanic 1 (0.99%) 1 (1.20%) 0 (0.00%)  

Smoker 4 (3.96%) 3 (3.61%) 1 (5.56%) 101 

Alcohol consumption:    101 

    Never 26 (25.74%) 23 (27.71%) 3 (16.67%)  

    Social drinker 50 (49.50%) 46 (55.42%) 4 (22.22%)  

    Only during meals 16 (15.84%) 10 (12.05%) 6 (33.33%)  

    Daily intake of alcohol 9 (8.91%) 4 (4.82%) 5 (27.78%)  

Physical exercise several days per 

week 
101 (100.00%) 83 (100.00%) 18 (100.00%) 101 

Diabetes 5 (4.95%) 2 (2.41%) 3 (16.67%) 101 

Medicated for diabetes 7 (7.00%) 4 (4.82%) 3 (17.65%) 100 

Hypercholesterolemia 38 (37.62%) 29 (34.94%) 9 (50.00%) 101 

Medicated for hypercholesterolemia 25 (25.00%) 19 (22.89%) 6 (35.29%) 100 

Hypertension 32 (32.00%) 25 (30.12%) 7 (41.18%) 100 

Medicated for hypertension 29 (29.29%) 24 (28.92%) 5 (31.25%) 99 

Any cardiovascular disease 13 (13.00%) 9 (10.98%) 4 (22.22%) 100 

Medicated for cardiovascular disease 9 (9.57%) 5 (6.49%) 4 (23.53%) 94 

 

Table A6: General characteristics of the NAFLD cohort. Biochemical data were extracted from 

a blood test performed at the same time of urine samples collection. Information on liver state 

were obtained from the conduced liver biopsies. Additional information was achieved from 

questionnaires complementation. 

 [ALL valid] female male N 

 N=234 N=89 N=145  

Age (years) 54.49±11.92 58.04±11.38 52.30±11.75 234 

BMI (kg/m²) 32.26±7.63 32.17±7.45 32.32±7.76 233 

Waist (cm) 110.36±14.03 108.65±14.76 111.30±13.58 175 

Ethnic group:    231 

    African 1 (0.43%) 1 (1.14%) 0 (0.00%)  

    Arab 3 (1.30%) 1 (1.14%) 2 (1.40%)  

    Bangladeshi 1 (0.43%) 0 (0.00%) 1 (0.70%)  

    Caribbean 1 (0.43%) 1 (1.14%) 0 (0.00%)  

    Indian 4 (1.73%) 1 (1.14%) 3 (2.10%)  

    Other Asian background 2 (0.87%) 1 (1.14%) 1 (0.70%)  

    Other Black/African/Caribbean 

background 
3 (1.30%) 0 (0.00%) 3 (2.10%)  

    Pakistani 2 (0.87%) 0 (0.00%) 2 (1.40%)  

    White 214 (92.64%) 83 (94.32%) 131 (91.61%)  

Diabetes 124 (52.99%) 59 (66.29%) 65 (44.83%) 234 

Medicated for diabetes 96 (41.20%) 41 (46.07%) 55 (38.19%) 233 

Medicated for 

hypercholesterolemia 
108 (46.15%) 47 (52.81%) 61 (42.07%) 234 

Medicated for hypertension 123 (52.56%) 54 (60.67%) 69 (47.59%) 234 
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 [ALL valid] female male N 

 N=234 N=89 N=145  

NAFLD Activity Score (NAS) 4.18±1.53 4.38±1.58 4.06±1.49 233 

NAS - Steatosis:    234 

    1 89 (38.03%) 31 (34.83%) 58 (40.00%)  

    2 83 (35.47%) 31 (34.83%) 52 (35.86%)  

    3 62 (26.50%) 27 (30.34%) 35 (24.14%)  

NAS - Lobular inflammation:    234 

    0 28 (11.97%) 12 (13.48%) 16 (11.03%)  

    1 139 (59.40%) 51 (57.30%) 88 (60.69%)  

    2 64 (27.35%) 24 (26.97%) 40 (27.59%)  

    3 3 (1.28%) 2 (2.25%) 1 (0.69%)  

NAS - Hepatocellular ballooning:    233 

    0 42 (18.03%) 13 (14.77%) 29 (20.00%)  

    1 125 (53.65%) 43 (48.86%) 82 (56.55%)  

    2 66 (28.33%) 32 (36.36%) 34 (23.45%)  

Fibrosis stage:    234 

    0 40 (17.09%) 14 (15.73%) 26 (17.93%)  

    1 23 (9.83%) 6 (6.74%) 17 (11.72%)  

    1a 18 (7.69%) 10 (11.24%) 8 (5.52%)  

    1b 17 (7.26%) 5 (5.62%) 12 (8.28%)  

    1c 16 (6.84%) 4 (4.49%) 12 (8.28%)  

    2 31 (13.25%) 7 (7.87%) 24 (16.55%)  

    3 60 (25.64%) 26 (29.21%) 34 (23.45%)  

    4 29 (12.39%) 17 (19.10%) 12 (8.28%)  

NAFLD diagnosis:    234 

    Steatosis 86 (36.75%) 31 (34.83%) 55 (37.93%)  

    NASH 148 (63.25%) 58 (65.17%) 90 (62.07%)  

Albumin (g/L) 44.01±3.65 42.78±3.44 44.77±3.58 204 

ALT (U/L) 57.02±37.22 51.69±35.03 60.28±38.26 229 

AST (U/L) 40.62±24.72 41.86±28.31 39.87±22.32 229 

Glucose (mg/dL) 120.66±44.00 132.41±50.87 114.04±38.29 172 

Triglycerides (mg/dL) 190.88±293.61 243.42±455.02 158.37±98.11 225 
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Table A7: General characteristics of the MetS long cohort. Biochemical data were extracted 

from a blood test performed at the same time of serum samples collection.  

 [ALL]    female        male       N  

 N=154     N=51         N=103         

Age (years)  67.21±12.90  71.53±10.72   65.08±13.39  154 

Weight (kg)  89.61±23.00  81.52±17.04   93.62±24.53  154 

Height (kg)  165.76±9.87  156.27±7.23   170.45±7.29  154 

BMI (kg/m²)  32.55±7.28    33.40±6.44   32.13±7.66   154 

Diabetes: yes 154 (100.00%) 51 (100.00%) 103 (100.00%) 154 

Dyslipidemia  41 (69.49%)  13 (65.00%)   28 (71.79%)  59  

Hypertension 115 (74.68%)  38 (74.51%)   77 (74.76%)  154 

Waist (cm) 109.76±14.14  107.88±14.04 110.74±14.17  135 

Glucose (mg/dL) 141.24±53.05  145.59±61.06 139.07±48.74  153 

Cholesterol (mg/dL) 133.99±67.35  128.37±74.33 136.77±63.82  154 

HDL Cholesterol (mg/dL)  73.74±36.38  83.84±38.80   68.85±34.40  95  

LDL Cholesterol (mg/dL) 120.78±60.67  140.06±62.45 111.44±57.99  95  

Triglycerides (mg/dL) 142.43±72.31  160.26±81.77 133.60±65.79  154 

Systolic blood pressure (mmHg) 142.62±16.14  140.92±17.05 143.30±16.02  42  

Diastolic blood pressure (mmHg)  79.60±10.27  74.92±11.64   81.47±9.22   42  

 

Table A8: General characteristics of the PORTUGAL cohort. Biochemical data were extracted 

from a blood test performed at the same time of serum samples collection. Additional 

information was achieved from questionnaires complementation. 

 [ALL]    female        male      N  

 N=159    N=101         N=58         

Age (years)  82.33±7.73   83.17±7.23   80.88±8.39  159 

Weight (kg) 65.31±12.98  63.42±11.33  68.62±14.97  159 

Height (kg) 155.79±8.59  151.69±6.74  162.91±6.59  159 

BMI (kg/m²)  26.87±4.65   27.53±4.53   25.72±4.66  159 

Diabetes 47 (32.87%)  36 (39.13%)  11 (21.57%)  143 

Dyslipidemia 72 (48.98%)  53 (56.38%)  19 (35.85%)  147 

Hypertension 116 (76.32%) 73 (76.04%)  43 (76.79%)  152 

Medicated for hypertension 125 (81.70%) 82 (83.67%)  43 (78.18%)  153 

Medicated for diabetes 37 (24.18%)  30 (30.61%)   7 (12.73%)  153 

Medicated for hypercholesterolemia 65 (42.48%)  48 (48.98%)  17 (30.91%)  153 

Glucose (mg/dL) 101.10±28.19 102.35±29.96 98.97±25.01  154 

Cholesterol (mg/dL) 164.09±47.91 170.84±45.54 152.60±50.03 154 

HDL Cholesterol (mg/dL) 56.19±13.20  57.40±14.56  54.14±10.27  154 

LDL Cholesterol (mg/dL) 85.23±41.00  88.57±39.14  79.54±43.76  154 

Triglycerides (mg/dL) 113.32±53.04 124.34±56.54 94.58±40.50  154 

Smoker  7 (4.43%)    1 (1.00%)    6 (10.34%)  158 

Systolic blood pressure (mmHg) 126.34±20.95 125.70±21.34 127.35±20.46 148 

Diastolic blood pressure (mmHg) 70.18±11.13  69.40±11.20  71.42±10.99  148 
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Table A9: Metadata from the analyzed individuals of the preCOVID and COVID cohorts. 

Biochemical data were extracted from a blood test performed at the same time of serum samples 

collection. Symptoms were registered at hospital admission.  

 preCOVID 

N=280 

COVID 

N=263 
p-value N 

Main info 

     Gender (female) 146 (52.14%)  116 (45.14%)    0.124  537 

     Age (years) 48.89±11.00    64.81±16.64   <0.001  537 

     Total hospitalization days -   13.72±19.60   - 257 

     Days in ICU -   5.12±16.52    - 257 

     Smoker 45 (16.07%)    17 (6.61%)    0.001  537 

     Pneumonia:                              - 248 

         unilateral -      33 (13.31%)   -     

         bilateral -     173 (69.76%)   -     

     Death -      24 (9.34%)   - 257 

Signs at admission 

     Temperature (ºC) -        36.47±0.91    -    249 

     Breathing freq. (n x min.) -        22.29±7.98    -    65 

     Heart rate (n x min.) -        90.82±17.36   -    250 

     Systolic blood pressure (mm Hg) -       135.72±23.08   -    250 

     Diastolic blood pressure (mm Hg) -        78.24±12.73   -    251 

Comorbidities 

     Cardiovascular -      68 (26.46%)   -    257 

     Cerebrovascular -      18 (7.00%)   -    257 

     Diabetes  18 (6.43%)    64 (24.90%)   <0.001  537 

     EPOC -      29 (11.28%)   -    257 

     Hypertension 50 (18.12%)   116 (45.14%)   <0.001  533 

     Immunodeficiency -      11 (4.28%)   -    257 

     Liver failure -       4 (1.56%)   -    257 

     Neoplasm -      31 (12.06%)   -    257 

     Renal insufficiency -      21 (8.17%)   -    257 

Symptoms 

     Clouding of consciousness -      20 (7.78%)   -    257 

     Conjunctival congestion -       2 (0.78%)   -    257 

     Diarrhea -      75 (29.18%)   -    257 

     Disorientation -      11 (4.28%)   -    257 

     Dry cough -     135 (52.53%)   -    257 

     Fatigue -     148 (57.59%)   -    257 

     Fever -     177 (68.87%)   -    257 

     Headache -      49 (19.07%)   -    257 

     Hemoptysis -       1 (0.39%)   -    257 

     Lymphadenopathy -       3 (1.17%)   -    257 

     Myalgia -      75 (29.18%)   -    257 

     Nasal congestion -      11 (4.28%)   -    257 

     Nausea Vomiting -      38 (14.84%)   -    256 

     Odynophagia -      31 (12.06%)   -    257 

     Oropharyngeal congestion -       1 (0.39%)   -    257 

     Productive cough -      58 (22.57%)   -    257 

     Shaking chills -      55 (21.40%)   -    257 

     Skin rash -       3 (1.17%)   -    257 

Blood test 

     Albumin (g/dL) -         3.69±0.42       .    136 
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 preCOVID 

N=280 

COVID 

N=263 
p-value N 

     ALT (U/L) 22.26±11.90    34.09±26.08   <0.001  528 

     APTT (s) -        24.27±4.83       .    252 

     Bilirubin (mg/dL)  0.50±0.23      0.74±0.46     0.002  164 

     C-reactive protein (mg/L) -        77.32±71.33      .    255 

     Creatinine (mg/dL)  0.82±0.16      1.06±0.81    <0.001  535 

     Creatine phosphokinase (U/L) -       158.26±331.91     .    233 

     D-dimer (ng/mL) -      
2508.72±9149.

53 
   .    248 

     Ferritin (ng/mL) 47.29±49.13   670.80±772.35  <0.001  254 

     Glucose (mg/dL) 88.26±16.07   136.09±87.94   <0.001  535 

     Interleukin 6 (pg/mL) -        19.50±24.78   -    12 

     Lactate dehydrogenase (U/L) -       318.70±205.66  -    247 

     Leukocytes (10^9/L)  6.91±1.81      7.58±5.15     0.050  534 

     Lymphocytes (10^9/L)  2.41±0.77      1.20±1.30    <0.001  534 

     Monocytes (10^9/L)  0.63±0.19      0.42±0.24    <0.001  535 

     Neutrophils (10^9/L)  3.59±1.37      6.02±6.02    <0.001  534 

     Platelets (10^9/L) 237.43±45.86  218.03±109.86   0.009  534 

     Procalcitonin (ng/mL) -         0.37±0.78    -    130 

     Protein (g/dL) -         6.35±0.57    -    145 

     Prothrombin activity (%) -        87.85±21.82   -    234 

     Urea (mg/dL) -        44.20±29.86   -    255 

 

 

Table A10: Metadata from the analyzed individuals of the preCOVID and COVID balanced 

subcohorts. Biochemical data were extracted from a blood test performed at the same time of 

serum samples collection. Symptoms were registered at hospital admission. 

 

        preCOVID        COVID      p-value  N  

         N=112          N=112                  

Main info 

     Gender (female) 59 (52.68%)    59 (52.68%)    1.000  224 

     Age (years) 49.86±10.66    49.86±10.66    1.000  224 

     Total hospitalization days -   8.77±13.41       .    112 

     Days in ICU -    2.63±9.13       .    112 

     Smoker 20 (17.86%)   13 (11.61%)    0.258  224 

     Pneumonia:                     .    109 

         unilateral -   19 (17.43%)               

         bilateral -   69 (63.30%)               

     Death -    2 (1.79%)      .    112 

Signs at admission 

     Temperature (ºC) -   36.42±0.74       .    109 

     Breathing freq. (n x min.) -   21.26±6.14       .    23  

     Heart rate (n x min.) -   94.53±15.43      .    108 

     Systolic blood pressure (mm Hg) -  136.31±22.68      .    109 

     Diastolic blood pressure (mm Hg) -   82.37±11.87      .    109 

Comorbidities 

     Cardiovascular -     10 (8.93%)    .    112 
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        preCOVID        COVID      p-value  N  

         N=112          N=112                  

     Cerebrovascular -      3 (2.68%)     .    112 

     Diabetes  7 (6.25%)     12 (10.71%)    0.337  224 

     EPOC -      8 (7.14%)    .    112 

     Hypertension 20 (18.02%)    25 (22.32%)    0.526  223 

     Immunodeficiency -      6 (5.36%)     .    112 

     Liver failure: No -    112 (100.00%)     .    112 

     Neoplasm -      6 (5.36%)      .    112 

     Renal insufficiency -      5 (4.46%)      .    112 

Symptoms 

     Clouding of conciousness -      2 (1.79%)      .    112 

     Conjunctival congestion -      1 (0.89%)      .    112 

     Diarrhea -     44 (39.29%)      .    112 

     Disorientation: No -    112 (100.00%)     .    112 

     Dry cough -     74 (66.07%)      .    112 

     Fatigue -     63 (56.25%)      .    112 

     Fever -     85 (75.89%)      .    112 

     Headache -     36 (32.14%)      .    112 

     Hemoptysis: No -    112 (100.00%)     .    112 

     Lymphadenopathy -      1 (0.89%)       .    112 

     Myalgia -     45 (40.18%)      .    112 

     Nasal congestion -      7 (6.25%)       .    112 

     Nausea Vomiting -     20 (18.02%)      .    111 

     Odynophagia -     19 (16.96%)      .    112 

     Oropharyngeal congestion -      1 (0.89%)       .    112 

     Productive cough -     17 (15.18%)      .    112 

     Shaking chills -     25 (22.32%)      .    112 

     Skin rash -      3 (2.68%)       .    112 

Blood test 

     Albumin (g/dL)     -          3.89±0.36       .    64  

     ALT (U/L) 21.67±11.32    37.82±26.75   <0.001  220 

     APTT (s) -     23.23±2.68       .    111 

     Bilirubin (mg/dL)  0.55±0.27      0.74±0.41     0.160  72  

     C-reactive protein (mg/L) -       52.48±58.37      .    112 

     Creatinine (mg/dL)  0.82±0.17      0.89±0.47     0.144  224 

     Creatine phosphokinase (U/L) -    162.12±407.84     .    108 

     D-dimer (ng/mL) -   1319.18±6822.22    .    110 

     Ferritin (ng/mL) 47.29±49.13   579.11±710.03  <0.001  117 

     Glucose (mg/dL) 89.25±15.33   126.21±105.66  <0.001  224 

     Interleukin 6 (pg/mL) -     21.50±26.85      .    10  

     Lactate dehydrogenase (U/L) -    298.60±253.94     .    110 

     Leukocytes (10^9/L)  6.87±1.63      6.53±2.70     0.264  223 

     Lymphocytes (10^9/L)  2.45±0.75      1.25±0.70    <0.001  224 

     Monocytes (10^9/L)  0.61±0.17      0.39±0.18    <0.001  224 

     Neutrophils (10^9/L)  3.56±1.20      5.38±7.80     0.016  223 
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        preCOVID        COVID      p-value  N  

         N=112          N=112                  

     Platelets (10^9/L) 239.20±51.42  220.15±114.36   0.110  224 

     Procalcitonin (ng/mL) -      0.14±0.15       .    45  

     Protein (g/dL) -      6.48±0.48       .    65  

     Prothrombin activity (%) -     96.79±11.65      .    103 

     Urea (mg/dL) -     31.79±19.04      .    112 

 

 

Table A11: List of quantified metabolites by the Bruker IVDr Quantification in Plasma/Serum 

B.I.Quant-PSTM report.  

Metabolite Concentration unit 

2-Aminobutyric acid mmol/L 

2-Hydroxybutyric acid mmol/L 

2-Oxoglutaric acid mmol/L 

3-Hydroxybutyric acid mmol/L 

Acetic acid mmol/L 

Acetoacetic acid mmol/L 

Acetone mmol/L 

Alanine mmol/L 

Asparagine mmol/L 

Ca-EDTA mmol/L 

Choline mmol/L 

Citric acid mmol/L 

Creatine mmol/L 

Creatinine mmol/L 

D-Galactose mmol/L 

Dimethylsulfone mmol/L 

Ethanol mmol/L 

Formic acid mmol/L 

Glucose mmol/L 

Glutamic acid mmol/L 

Glutamine mmol/L 

Glycerol mmol/L 

Glycine mmol/L 

Histidine mmol/L 

Isoleucine mmol/L 

K-EDTA mmol/L 

Lactic acid mmol/L 

Leucine mmol/L 

Lysine mmol/L 

Methionine mmol/L 

N,N-Dimethylglycine mmol/L 

Ornithine mmol/L 

Phenylalanine mmol/L 

Proline mmol/L 

Pyruvic acid mmol/L 

Sarcosine mmol/L 

Succinic acid mmol/L 

Threonine mmol/L 

Trimethylamine-N-oxide mmol/L 

Tyrosine mmol/L 

Valine mmol/L 
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Table A12: List of quantified lipoproteins and lipoproteins subfractions in the Bruker IVDr 

Lipoprotein Subclass Analysis (B.I.-LISATM) report. Abbreviations: LDL: low-density 

lipoprotein; HDL: high-density lipoprotein; VLDL: very low-density lipoprotein; IDL: 

intermediate-density lipoprotein. 

Key Class/subclass Compound 
Concentration 

unit 

TPTG Total Plasma Triglycerides mg/dL 

TPCH Total Plasma Cholesterol mg/dL 

LDCH LDL Cholesterol mg/dL 

HDCH HDL Cholesterol mg/dL 

TPA1 Total Plasma Apolipoprotein-A1 mg/dL 

TPA2 Total Plasma Apolipoprotein-A2 mg/dL 

TPAB Total Plasma Apolipoprotein-B100 mg/dL 

LDHD 
Ratio LDL and HDL 

Cholesterol 
LDL Cholesterol / HDL Cholesterol -/- 

ABA1 
Ratio of Apolipoproteins A1 

and B100 

Apolipoprotein-A1 / Apolipoprotein-

B100 
-/- 

TBPN 
Apolipoprotein-B100 

carrying particles 
Particle Number nmol/L 

VLPN VLDL Particle Number nmol/L 

IDPN IDL Particle Number nmol/L 

LDPN LDL Particle Number nmol/L 

L1PN LDL-1 Particle Number nmol/L 

L2PN LDL-2 Particle Number nmol/L 

L3PN LDL-3 Particle Number nmol/L 

L4PN LDL-4 Particle Number nmol/L 

L5PN LDL-5 Particle Number nmol/L 

L6PN LDL-6 Particle Number nmol/L 

VLTG VLDL Class Triglycerides mg/dL 

IDTG IDL Class Triglycerides mg/dL 

LDTG LDL Class Triglycerides mg/dL 

HDTG HDL Class Triglycerides mg/dL 

VLCH VLDL Class Cholesterol mg/dL 

IDCH IDL Class Cholesterol mg/dL 

LDCH LDL Class Cholesterol mg/dL 

HDCH HDL Class Cholesterol mg/dL 

VLFC VLDL Class Free Cholesterol mg/dL 

IDFC IDL Class Free Cholesterol mg/dL 

LDFC LDL Class Free Cholesterol mg/dL 

HDFC HDL Class Free Cholesterol mg/dL 

VLPL VLDL Class Phospholipids mg/dL 

IDPL IDL Class Phospholipids mg/dL 

LDPL LDL Class Phospholipids mg/dL 

HDPL HDL Class Phospholipids mg/dL 

HDA1 HDL Class Apolipoprotein-A1 mg/dL 

HDA2 HDL Class Apolipoprotein-A2 mg/dL 

VLAB VLDL Class Apolipoprotein-B100 mg/dL 

IDAB IDL Class Apolipoprotein-B100 mg/dL 

LDAB LDL Class Apolipoprotein-B100 mg/dL 

V1TG VLDL-1 Subclass Triglycerides mg/dL 

V2TG VLDL-2 Subclass Triglycerides mg/dL 

V3TG VLDL-3 Subclass Triglycerides mg/dL 

V4TG VLDL-4 Subclass Triglycerides mg/dL 

V5TG VLDL-5 Subclass Triglycerides mg/dL 

V1CH VLDL-1 Subclass Cholesterol mg/dL 

V2CH VLDL-2 Subclass Cholesterol mg/dL 
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Key Class/subclass Compound 
Concentration 

unit 

V3CH VLDL-3 Subclass Cholesterol mg/dL 

V4CH VLDL-4 Subclass Cholesterol mg/dL 

V5CH VLDL-5 Subclass Cholesterol mg/dL 

V1FC VLDL-1 Subclass Free Cholesterol mg/dL 

V2FC VLDL-2 Subclass Free Cholesterol mg/dL 

V3FC VLDL-3 Subclass Free Cholesterol mg/dL 

V4FC VLDL-4 Subclass Free Cholesterol mg/dL 

V5FC VLDL-5 Subclass Free Cholesterol mg/dL 

V1PL VLDL-1 Subclass Phospholipids mg/dL 

V2PL VLDL-2 Subclass Phospholipids mg/dL 

V3PL VLDL-3 Subclass Phospholipids mg/dL 

V4PL VLDL-4 Subclass Phospholipids mg/dL 

V5PL VLDL-5 Subclass Phospholipids mg/dL 

L1TG LDL-1 Subclass Triglycerides mg/dL 

L2TG LDL-2 Subclass Triglycerides mg/dL 

L3TG LDL-3 Subclass Triglycerides mg/dL 

L4TG LDL-4 Subclass Triglycerides mg/dL 

L5TG LDL-5 Subclass Triglycerides mg/dL 

L6TG LDL-6 Subclass Triglycerides mg/dL 

L1CH LDL-1 Subclass Cholesterol mg/dL 

L2CH LDL-2 Subclass Cholesterol mg/dL 

L3CH LDL-3 Subclass Cholesterol mg/dL 

L4CH LDL-4 Subclass Cholesterol mg/dL 

L5CH LDL-5 Subclass Cholesterol mg/dL 

L6CH LDL-6 Subclass Cholesterol mg/dL 

L1FC LDL-1 Subclass Free Cholesterol mg/dL 

L2FC LDL-2 Subclass Free Cholesterol mg/dL 

L3FC LDL-3 Subclass Free Cholesterol mg/dL 

L4FC LDL-4 Subclass Free Cholesterol mg/dL 

L5FC LDL-5 Subclass Free Cholesterol mg/dL 

L6FC LDL-6 Subclass Free Cholesterol mg/dL 

L1PL LDL-1 Subclass Phospholipids mg/dL 

L2PL LDL-2 Subclass Phospholipids mg/dL 

L3PL LDL-3 Subclass Phospholipids mg/dL 

L4PL LDL-4 Subclass Phospholipids mg/dL 

L5PL LDL-5 Subclass Phospholipids mg/dL 

L6PL LDL-6 Subclass Phospholipids mg/dL 

L1AB LDL-1 Subclass Apolipoprotein-B100 mg/dL 

L2AB LDL-2 Subclass Apolipoprotein-B100 mg/dL 

L3AB LDL-3 Subclass Apolipoprotein-B100 mg/dL 

L4AB LDL-4 Subclass Apolipoprotein-B100 mg/dL 

L5AB LDL-5 Subclass Apolipoprotein-B100 mg/dL 

L6AB LDL-6 Subclass Apolipoprotein-B100 mg/dL 

H1TG HDL-1 Subclass Triglycerides mg/dL 

H2TG HDL-2 Subclass Triglycerides mg/dL 

H3TG HDL-3 Subclass Triglycerides mg/dL 

H4TG HDL-4 Subclass Triglycerides mg/dL 

H1CH HDL-1 Subclass Cholesterol mg/dL 

H2CH HDL-2 Subclass Cholesterol mg/dL 

H3CH HDL-3 Subclass Cholesterol mg/dL 

H4CH HDL-4 Subclass Cholesterol mg/dL 

H1FC HDL-1 Subclass Free Cholesterol mg/dL 

H2FC HDL-2 Subclass Free Cholesterol mg/dL 

H3FC HDL-3 Subclass Free Cholesterol mg/dL 

H4FC HDL-4 Subclass Free Cholesterol mg/dL 

H1PL HDL-1 Subclass Phospholipids mg/dL 
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Key Class/subclass Compound 
Concentration 

unit 

H2PL HDL-2 Subclass Phospholipids mg/dL 

H3PL HDL-3 Subclass Phospholipids mg/dL 

H4PL HDL-4 Subclass Phospholipids mg/dL 

H1A1 HDL-1 Subclass Apolipoprotein-A1 mg/dL 

H2A1 HDL-2 Subclass Apolipoprotein-A1 mg/dL 

H3A1 HDL-3 Subclass Apolipoprotein-A1 mg/dL 

H4A1 HDL-4 Subclass Apolipoprotein-A1 mg/dL 

H1A2 HDL-1 Subclass Apolipoprotein-A2 mg/dL 

H2A2 HDL-2 Subclass Apolipoprotein-A2 mg/dL 

H3A2 HDL-3 Subclass Apolipoprotein-A2 mg/dL 

H4A2 HDL-4 Subclass Apolipoprotein-A2 mg/dL 

 

 

 

 

 

 

 

Figure A1: Probability distribution test with a glucose cut-off value of 110 mg/dL for the three 

built MetS models. A-C) (ROC) curves for the three definitions under consideration: A) WHO, 

EGIR and AACE; B) NCEP:ATPIII and Harmonized; C)  IDF. D-F) Smoothed histograms 

evidencing the probability distributions of the MetS model applied to the full cohort for the 

three definitions under consideration: D) WHO, EGIR, and AACE; E) NCEP:ATPIII and 

Harmonized; F) IDF. Red and blue colours indicated samples with/without MetS according to 

the given definition.  



Appendix 

 

168 

Table A13: Performance Metrics from OPLS-DA through a Repeated Double Cross-Validation 

Process. Value columns are the mean value; p value columns were obtained from permutation 

tests. 

 

Metric 
Training Validation 

Value p-value Value p-value 

AUROC 0.98 <0.01 0.977 <0.01 

Accuracy 0.928 <0.01 0.923 <0.01 

Sensitivity 0.874 <0.01 0.867 <0.01 

Specificity 0.978 <0.01 0.975 <0.01 
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List of abbreviations: 

    

1D NMR Mono-dimensional NMR experiment 

1H NMR Proton NMR    

2D NMR Two-dimensional NMR experiment 

4-HPPA 4-hydroxyphenylpyruvic acid   
AAA Aromatic Amino Acids   
AACE American Association of Clinical Endocrinology  

ACE2 Angiotensin-Converting-Enzyme 2  

Apo-A1/A2 Apolipoprotein A1/A2  
Apo-B (Apo-B100) Apolipoprotein B   

ARDS Acute Respiratory Distress Syndrome  

ASCVD Atherosclerotic Cardiovascular Disease  

AUC Area Under the Curve  

B0 External magnetic field  

BCAA branched-chain amino acids   

Bi Little internal magnetic field  

BMI Body Mass Index   

BMRB Biological Magnetic Resonance Bank 

BP Blood Pressure   

CCL 2, 5 or 3 Chemokine (C-C motif) ligand 2, 5 or 3 

CE Cholesteryl Esters   

CETP Cholesteryl Ester Transfer Protein 

CKD Chronic Kidney Disease   

CKD-EPI Chronic Kidney Disease Epidemiology Collaboration 

COSY Correlation SpectroscopY  

CPMG Carr-Purcell-Meiboom-Gill   

CS Chemical Shift   

CVD Cardiovascular Diseases   

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

DSS Sodium 2,2-dimethyl-2-silapentane-5-sulphonate 

E-GFR Estimated Glomerular Filtration Rate  

EGIR European Group for the Study of Insulin Resistance 

ERETIC Electronic Reference To access In-vivo Concentrations 

f female   

FG Fasting plasma Glucose  

FID Free induction decay   

FT Fourier transformation  
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GC-MS Gas Chromatography copled to Mass Spectrometry  

GC-MS/MS  Gas Chromatography copled to tandem Mass Spectrometry  

Glyc-A α-1-acid Glycoprotein A   

HDL High-Density Lipoprotein   

HDL-C HDL cholesterol   

HL Hepatic Lipase   

HMDB Human Metabolome Databases  

HSQC Heteronuclear Single Quantum Coherence 

 I  Magnetic quantum number   

ICU Intensive Care Unit    

IDF International Diabetes Federation  

IDL Intermediate-Density Lipoprotein  

IFG Impaired Fasting Glucose   

IFN-γ Interferon gamma    

IgM/G Immunoglobulin M/G  

IGT Impaired Glucose Tolerance  

IL Interleukin   

IP-10 Interferon gamma Inducible Protein-10  

J-coupling Spin-spin coupling    

JRES J-resolved spectroscopy  

LC-MS Liquid Chromatography copled to Mass Spectrometry  

LC-MS/MS  Liquid Chromatography copled to tandem Mass Spectrometry  

LDL Low-Density Lipoprotein   

LOD Limit Of Detection    

LPL Lipoprotein Lipase    

m male   

MetS Metabolic syndrome   

MS Mass Spectrometry    

NAFLD Non-Alcoholic Fatty Liver Disease  

NCEP ATP III National Cholesterol Education Program’s Adult Treatment Panel III 

NMR Nuclear Magnetic Resonance   

NOESY Nuclear Overhauser Effect Spectroscopy 

OPLS-DA Orthogonal PLS-DA   

PCA Principal Component Analysis   

PLS Partial Least Squares analysis   

PM Precision Medicine   

PLS-DA PLS Discriminant Analysis   

QuantRef  Quantification Reference solution 

RANTES  Regulated on Activation, Normal T Expressed and Secreted 

RF Risk factor   



 

171 

ROC Receiver Operating Characteristic Curves 

RT-PCR  Real-Time reverse-transcription Polymerase Chain Reaction 

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2  

SOPs Standard Operating Procedures  

SPT SamplePro Tube    

T2DM Type 2 Diabetes Mellitus   

TC Total cholesterol   

TG Triglycerides   

TMA Trimethylamine   

TMAO Trimethylamine N-oxide   

TNF-α Tumor Necrosis Factor-α   

TOCSY TOtal Correlation Spectroscopy  

TSP Trimethylsilylpropionic acid-d4 sodium salt 

TSP  Trimethylsilylpropanoic acid  
VLDL Very-Low Density Lipoproteins 

WC Waist Circumference  
WHO World Health Organization   
WHR Waist-Hip Ratio   

ΔE Energy difference    
 

 

 

 

 

 

 

 

 




