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Abstract

We introduce and characterize a new solution concept for TU games.

The new solution is called SD-prenucleolus and is a lexicographic value

although is not a weighted prenucleolus. The SD-prenucleolus satis�es sev-

eral desirable properties and is the only known solution that satis�es core

stability, strong aggregate monotonicity and null player out property in the

class of balanced games. The SD-prenucleolus is the only known solution

that satis�es core stability, continuity and is monotonic in the class of veto

balanced games.

Keywords: TU games, prenucleolus, per capita prenucleolus

1. Introduction

This paper introduces and characterizes a new solution concept for coalitional

games with transferable utility (TU games). The new solution is a lexicographic

value, so its name (SD-prenucleolus) re�ects its strong connection with the classic,

widely-analyzed prenucleolus. The solution also has a strong relationship with the
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family of weighted prenucleoli although it is not a member of this family. In par-

ticular, the new solution shares some similarities with the per capita prenucleolus.

Given a TU game the prenucleolus, de�ned as a lexicographic value, selects the

vector of excesses of coalitions that lexicographically dominates any other vector

of excesses of coalitions. When this vector is selected its associated allocation is

automatically selected and this proves to be the prenucleolus of the game. When

the excesses of coalitions are weighted by using a system of weights for the size of

the coalitions this procedure will generate the di¤erent weighted prenucleoli. In

the per capita prenucleolus excesses are divided by the size (cardinality) of the

coalition.

In this paper we propose a di¤erent way of computing the excesses of coalitions

given an allocation. This is the main contribution of the paper1 since whenever

the vector of excesses is computed for any allocation the SD-prenucleolus arises

as the lexicographic optimal value in the set of vectors of excesses of coalitions.

With the new de�nition we proceed as follows. We prove several interest-

ing properties of the new solution. In particular, we show that in the class of

balanced games the SD-prenucleolus satis�es core stability, the Null Player Out

property and strong aggregate monotonicity. To our knowledge there is no other

solution that satis�es these properties. We characterize the solution in terms of

balanced collections of coalitions, the equivalent of Kohlberg�s classic theorem

of the prenucleolus (Kohlberg, 1971). This characterization is the main tool for

checking whether an allocation is the SD-prenucleolus of the game. After in-

troducing the SD-reduced game property we provide the characterizations of the

SD-prenucleolus (the equivalent of Sobolev�s characterization for the prenucleolus)

and the SD-prekernel (the equivalent of Peleg�s characterization for the preker-

nel). In Section 6 we provide a simple formula for computing the SD-prenucleolus

of monotonic games with veto players. As a corollary of this result we show

that in the class of veto monotonic games the SD-prenucleolus satis�es coalitional

monotonicity. Among the solutions de�ned in the class of all balanced games the

SD-prenucleolus is the only known solution satisfying core stability, continuity

1In Section 3 we argue broadly why we consider the new vector of excesses to be necessary.
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and coalitional monotonicity in the class of veto balanced games.

2. Preliminaries

2.1. TU Games

A cooperative n-person game in characteristic function form is a pair (N; v), where

N is a �nite set of n elements and v : 2N ! R is a real-valued function in the
family 2N of all subsets of N with v(;) = 0: Elements of N are called players and

the real valued function v the characteristic function of the game. Any subset S

of N is called a coalition. Singletons are coalitions that contain only one player. A

game is monotonic if whenever T � S then v(T ) � v(S): The number of players
in S is denoted by jSj. Given S � N we denote by NnS the set of players of
N that are not in S. A distribution of v(N) among the players, an allocation, is

a real-valued vector x 2 RN where xi is the payo¤ assigned by x to player i. A
distribution satisfying

P
i2N
xi = v(N) is called an e¢ cient allocation and the set

of e¢ cient allocations is denoted by X(v): We denote
P
i2S
xi by x(S). The core of

a game is the set of imputations that cannot be blocked by any coalition, i.e.

C(N; v) = fx 2 X(N; v) : x(S) � v(S) for all S � Ng :

It has been shown that a game with a non-empty core is balanced2 and therefore

games with non-empty core are called balanced games. Player i is a veto player

if v(S) = 0 for all S where player i is not present. A balanced game with at least

one veto player is called a veto balanced game. We denote by �V B the class of

balanced games and by �V B the class of veto balanced games.

A solution ' on a class of games �0 is a correspondence that associates a

set '(N; v) in RNwith each game (N; v) in �0 such that x(N) � v(N) for all

x 2 '(N; v). This solution is e¢ cient if this inequality holds with equality. The
solution is single-valued if the set contains a single element for each game in the

class.
2See Peleg and Südholter (2007).
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Given x 2 RN the excess of a coalition S with respect to x in a game v is

de�ned as e(S; x) := v(S) � x(S): Let �(x) be the vector of all excesses at x
arranged in non-increasing order. The weak lexicographic order �L between two
vectors x and y is de�ned by x �L y if there exists an index k such that xl = yl
for all l < k and xk < yk or x = y:

Schmeidler (1969) introduced the prenucleolus of a game v; denoted by PN(v); as

the unique allocation that lexicographically minimizes the vector of non increas-

ingly ordered excesses over the set of allocations. In formula:

fPN(N; v)g = fx 2 X(N; v) j�(x) �L �(y) for all y 2 X(N; v)g :

For any game v the prenucleolus is a single-valued solution, is contained in the

prekernel and lies in the core provided that the core is non-empty.

The per capita prenucleolus (Groote, 1970) is de�ned analogously by using

the concept of per capita excess instead of excess. Given S and x the per capita

excess of S at x is

epc(S; x) :=
v(S)� x(S)

jSj
Other weighted prenucleoli can be de�ned in a similar way whenever a weighted

excess function is de�ned. The same solution concepts can be analogously de�ned

using the notion of satisfaction instead of excess. Given x 2 RN the excess of a
coalition S with respect to x in a game (N; v) is de�ned as f(S; x) := x(S)�v(S):
In this paper we use the notion of satisfaction in de�ning the new solution.

2.2. Properties

Some convenient and well-known properties of a solution concept ' on �0 are the

following.

� ' satis�es anonymity if for each (N; v) in �0 and each bijective mapping
� : N �! N such that (N; �v) in ��0 it holds that '(N; �v) = �('(N; v))

(where �v(�T ) = v(T ); �x�(j) = xj (x 2 RN ; j 2 N; T � N)): In this case v
and �v are equivalent games.
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� ' satis�es equal treatment property (ETP) if for each (N; v) in �0 and
for every x 2 '(N; v) interchangeable players i; j are treated equally, i.e.
xi = xj: Here, i and j are interchangeable if v(S [ i) = v(S [ j) for all
S � Nn fi; jg :

� ' satis�es desirability if for each (N; v) in �0 and for every x 2 '(N; v);
xi � xj if i is more desirable than j in v:We say that in a game v a player i
is more desirable than a player j if v(S [ i) � v(S [ j) for all S � Nn fi; jg :

� ' satis�es covariance if (N; v); (N;�v + �) 2 �0 for any � > 0 and any

� 2 RN implies that '(N;�v + �) = �'(N; v) + � holds.

� ' satis�es null player property if for each (N; v) in �0 and for every
x 2 '(N; v) null players receive 0: Here, a player is a null player if v(S [
fig) = v(S) for all S � Nn fig :

� ' satis�es null player out property (NPO) if for each (N; v) in �0 and
for every x 2 '(N; v) it holds that (xi)i2NnT 2 '(NnT; v): Here T is the set
of null players in game (N; v):

The NPO property implies the Null Player property. Both properties try to

capture the idea that null players should not in�uence the allocations selected

by a solution. However, only the NPO property captures entirely this idea. If

the payo¤ of some players (di¤erent than the null player) can be a¤ected for the

presence of null players is di¢ cult to conclude that null players are irrelevant

players.

� ' satis�es core stability if it selects core allocations whenever the game is
balanced.

Note that desirability implies ETP. The following two properties are de�ned

for single-valued solutions.

� ' satis�es coalitional monotonicity: if for all v; w 2 �0, if for all S 6= T;
v(S) = w(S) and v(T ) < w(T ); then for all i 2 T; 'i(v) � 'i(w):
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� ' satis�es aggregate monotonicity: if for all v; w 2 �0, if for all S 6= N;
v(S) = w(S) and v(N) < w(N); then for all i; j 2 N; 'i(w)� 'i(v) � 0:

� ' satis�es strong aggregate monotonicity: if for all v; w 2 �0, if for all
S 6= N; v(S) = w(S) and v(N) < w(N); then for all i; j 2 N; 'i(w)�'i(v) =
'j(w)� 'j(v) � 0:

Young (1985) proves that no solution satis�es coalitional monotonicity and

core stability. However, there are solutions satisfying core stability and the strong

aggregate monotonicity. Meggido (1974) proves that the nucleolus does not satisfy

aggregate monotonicity. Clearly, strong aggregate monotonicity implies aggregate

monotonicity.

3. A new vector of satisfactions

3.1. Introduction

The prenucleolus is a lexicographic value that selects a maximal element in the

set of vectors of excesses of coalitions. The solution does not change if the vector

of satisfaction is taken instead of vectors of excesses. In the de�nition of the new

lexicographic value we use the notion of satisfaction instead of excess. The main

change with respect to the classic prenucleolus, the per capita prenucleolus and

any other weighted prenucleolus lies in how the vector of satisfactions is de�ned.

The main idea of the new vector of satisfactions is to identify how a coalition

divides its surplus (the di¤erence between the payo¤ received by the coalition and

the worth of the coalition) among its members. We also require this distribution

to keep some consistency. We argue that the classic prenucleolus has no answer to

this question while the per capita prenucleolus provides an unsatisfactory answer.

Before introducing the new vector of satisfactions we illustrate by means of an

example the two ideas that support the new solution.
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Consider the following 4-player game3 (N; v):

v(S) =

8>>><>>>:
1 if S 2 ff1; 3; 4g ; f1; 2; 4gg
4 if S = f1; 2; 3g
8 if S = N

0 otherwise.

Consider the prenucleolus of the game, the allocation x = (2; 2; 2; 2). The

satisfaction of coalition f1; 2; 3g is 2 and players 1; 2 and 3 share this surplus.
That is, if the surplus obtained by player 1 in coalition f1; 2; 3g at x is 2 then
the surplus obtained by players 2 and 3 in coalition f1; 2; 3g at x is 0. However,
player 4 owns the entire satisfaction obtained by coalition f4g at x. From the

point of view of the coalitions it can be asserted that coalitions f1; 2; 3g and f4g
have been treated equally at x but this assertion is not so evident from the point

of view of the players.

The per capita prenucleolus apparently solves this question. Consider the per

capita prenucleolus of the game, the allocation y = (2:6; 2:2; 2:2; 1).

The per capita satisfaction of coalition f1; 2; 3g is 1 and players 1, 2 and 3
share a total surplus of 3. That is, the per capita satisfaction can be seen as

how much each player receives from the total surplus. Now the assertion that

players in coalition f1; 2; 3g and player 4 have been equally treated at y can be
justi�ed. But consider now the situation of coalition f2; 4g. According to the per
capita satisfaction it must be concluded that each player in the coalition receives

a surplus of 1:6, i.e. more than the total payo¤ received by player 4. It seems

incorrect to allocate a surplus of 1.6 to player 4 in coalition f2; 4g at y. It seems
more correct to consider that the total surplus of coalition f2; 4g at y has been
distributed as follows: player 2 gets 2:2 and player 4 gets 1.

These ideas motivate the de�nition of a new vector of satisfactions (and there-

fore a new lexicographic value) and the name of the new solution concept: Surplus

Distributor Prenucleolus.
3In Section 5 we compute the SD-prenucleolus of this game, i.e. (3; 2; 2; 1):
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3.2. The Algorithm

Consider a game (N; v) and an allocation x. Our goal is to calculate a satisfaction

vector fF (S; x)gS(N . We de�ne the components of this vector recursively by

de�ning an algorithm.

The algorithm has several steps (at most 2n � 2) and at each step we identify
the collection of coalitions that has obtained the satisfaction. We denote byH this
collection of coalitions. In the �rst step this collection H is empty. The algorithm

ends when H = 2N .

For a collection H and a function F : H ! R the function FH : 2N ! R is
de�ned. To this end, we introduce some notation.

For H � 2N we denote
�H(S) =

[
T2H;T�S

T

and also for a collection H � 2N and a function F : H ! R we denote by

fH;F (i; S) the satisfaction of player i with respect to a coalition S and a collection

H (i 2 �H(S)):
fH;F (i; S) = min

T :T2H;i2T�S
F (T )

Note that this de�nition can only be used in a situation when the function

F (S) is de�ned for all S 2 H.
Now we de�ne a function FH : 2N ! R. We consider two cases (since it is

evident that �H(S) � S):
1. Relevant coalitions. �H(S) 6= S. In this case the satisfaction of S is

FH(S) =

x(S)� v(S)�
P

i2�H(S)
fH;F (i; S)

jSj � j�H(S)j

Note that if the collection H is empty then the current satisfaction of the

coalition S coincides with its per capita satisfaction:

F;(S) =
x(S)� v(S)

jSj
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2. Non relevant coalitions. �H(S) = S. In this case the current satisfaction of

S is

FH(S) = x(S)� v(S)�
X
i2S
fH;F (i; S) + max

i2S
fH;F (i; S)

Therefore for any function F : H ! R the value fH;F (i; S) can be calculated
for every coalition S and player i 2 �H(S). Also if a function fH;F (�; �) is de�ned
for each S ( N and i 2 �H(S) then the function FH can be de�ned.
The algorithm for the satisfaction vector is de�ned as follows:.

Consider a game (N; v) and an allocation x 2 X(N; v).
Step 1: Set k = 0, H0 = ;. Go to Step 2.
Step 2: Set

Hk+1 = Hk [ fS 62 Hk : FHk
(S) = min

T 62Hk

FHk
(T )g

Step 3: De�ne for each S 2 Hk+1 n Hk:

F (S) = FHk
(S)

Step 4: If Hk+1 6= 2N n fNg then let k = k + 1 and go to Step 2, else go to
Step 5.

Step 5: Stop. Return the vector

fF (S); S ( Ng

For simplicity we use the notation F (S) instead of F (S; x):

Note that according to this algorithm if the game introduced in this section

and the allocation y (the per capita prenucleolus of the game) are considered it

holds that F (f2; 4g ; y) = 2:2 > 1:6:
The outcome provided by the algorithm satis�es several interesting properties,

which are pointed out in the following lemmas.

Lemma 3.1. Let (N; v) be a TU game and x be an allocation. Let function F
be the result of Algorithm 3.2 and let fHigi=1::k be the associated collections of
sets. Then
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1. the function F is de�ned for every S ( N
2. the function F is continuos.

Proof. 1. It holds that H0 = ;, Hk = 2N n fNg. In the i-th stage of the
algorithm the function F is de�ned for all coalitions from Hi nHi�1: Therefore at

the end this function is de�ned for all coalitions in[
i=1::k

(Hi n Hi�1) = Hk n H0 = 2
N n fNg:

2. This is immediately apparent.

Lemma 3.2. Let (N; v) be a TU game and x be an allocation. Let function F
be the result of Algorithm 3.2 and let fHigi=1::k be the associated collections of
sets. If S 2 Hi, T 62 Hi then F (T ) > F (S):

Proof. Assume that the lemma is not true. Consider the minimal number k such

that there exist coalitions S; T with S 2 Hk, T 2 Hk+1 n Hk, and F (T ) � F (S).
Consider the k-th stage of the algorithm where the collection Hk�1 was �xed. It

holds that S 2 Hk and therefore

FHk�1(S) = min
U 62Hk�1

FHk�1(U)

It is also known that T 2 Hk+1 n Hk, so F (T ) = FHk
(T ).

Note that because of the assumption of the minimality of k

1. for every i 2 �Hk�1(T ) it holds that fHk;F (i; T ) = fHk�1;F (i; T ) < F (S)

2. for every i 2 �Hk
(T ) n �Hk�1(T ) it holds that fHk;F (i; T ) = F (S)

Consider three cases:

A. �Hk
(T ) 6= T . Then

FHk
(T ) =

x(T )� v(T )�
P

i2�Hk (T )
fHk;F (i; T )

jT j � j�Hk
(T )j =

=

x(T )� v(T )�
P

i2�Hk�1 (T )
fHk�1;F (i; T )� F (S)(j�Hk

(T )j � j�Hk�1(T )j)

jT j � j�Hk
(T )j
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From the assumption that FHk
(T ) = F (T ) � F (S)

x(T )� v(T )�
P

i2�Hk�1 (T )
fHk�1;F (i; T )� F (S)(j�Hk

(T )j � j�Hk�1(T )j)

jT j � j�Hk
(T )j � F (S),

, x(T )� v(T )�
X

i2�Hk�1 (T )

fHk�1;F (i; T ) � F (S)(jT j � j�Hk�1(T )j),

,
x(T )� v(T )�

P
i2�Hk�1 (T )

fHk�1;F (i; T )

jT j � j�Hk�1(T )j
� F (S), FHk�1(T ) � F (S)

But F (S) = FHk�1(S) = min
U 62Hk�1

FHk�1(U)� Therefore FHk�1(T ) = min
U 62Hk�1

FHk�1(U)

and from the Algorithm 3.2 it holds that T 2 Hk. This is in contradiction with

the assumption that T 2 Hk+1 n Hk.

B. �Hk�1(T ) 6= T , �Hk
(T ) = T . Then

FHk
(T ) = x(T )� v(T )�

X
i2T

fHk;F (i; T ) + max
i2T

fH;F (i; T )

By using the fact that �Hk�1(T ) 6= T it can be concluded that

FHk
(T ) = x(T )� v(T )�

X
i2T

fH;F (i; T ) + F (S) =

= x(T )� v(T )�
X

i2�Hk�1 (T )

fHk�1;F (i; T )� F (S)(jT j � j�Hk�1(T )j) + F (S)

From the assumption that FHk
(T ) = F (T ) � F (S) it can be obtained that

x(T )� v(T )�
X

i2�Hk�1 (T )

fHk�1;F (i; T ) � F (S)(jT j � j�Hk�1(T )j),

,
x(T )� v(T )�

P
i2�Hk�1 (T )

fHk�1;F (i; T )

jT j � j�Hk�1(T )j
� F (S), FHk�1(T ) � F (S)

and as in the previous case the contradiction is obtained.
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C. �Hk�1(T ) = �Hk
(T ) = T . Then

FHk�1(T ) = FHk
(T )

Because of the fact that T 62 Hk it can be concluded that

FHk
(T ) = FHk�1(T ) > min

U 62Hk�1
FHk�1(U) = FHk�1(S):

This lemma implies that for a relevant coalition (�H(S) 6= S) it holds that

x(S)� v(S) = (jSj � j�H(S)j)FH(S) +
X

i2�H(S)

fH;F (i; S) =
X
i2S
fH;F (i; S)

which can be interpreted as a distribution of the total surplus of coalition S among

its members. The following 3-person game is used to illustrate how this algorithm

works. Let (N; v) be a game where N = f1; 2; 3g and

v(S) =

8>>><>>>:
0 if jSj = 1
4 if S 2 ff1; 3g ; f1; 2gg
�10 if S = f2; 3g
6 if S = N:

Consider the allocation x = (5; 1; 0): Applying the algorithm the following is

obtained:
Coalition Satisfaction

f3g 0

f2g f1; 2g f1; 3g 1

f1g 5

f2; 3g 11:

Coalition f2; 3g is a non relevant coalition. The rest of the coalitions are relevant
coalitions. Consider the satisfaction of coalition f1; 3g : This coalition has a subset
(coalition f3g) that has already obtained its satisfaction. This fact is incorporated

12



into the computation of the satisfaction of coalition f1; 3g since �H(f1; 3g) = f3g.
Therefore

FH(f1; 3g ; x) =
x(f1; 3g)� v(f1; 3g)�

P
i2�H(f1;3g)

fH;F (i; f1; 3g)

j f1; 3g j � j�H(f1; 3g)j
=
5� 4� 0
2� 1 :

The total surplus of the coalition is divided as follows: player 1 gets 1 and

player 3 gets 0.

The case of non relevant coalitions is di¤erent. If a coalition is non relevant

for any player in the coalition there exists a subset of the coalition with a lower

satisfaction and that subset determines the individual satisfaction of the player in

the non relevant coalition. Note that

x(f2; 3g)� v(f2; 3g) = 11 >
X

i2�H(f2;3g)

fH;F (i; f2; 3g) = 1 + 0:

4. The SD-prenucleolus

4.1. De�nition

We de�ne the new solution concept (the SD-prenucleolus) as a lexicographic value

in the set of vectors of the new satisfactions. We denote the SD-prenucleolus of

game (N; v) by SD(N; v):

The de�nition of the SD-prenucleolus coincides with the de�nition of the classic

prenucleolus, except that we use the vector of negative satisfactions f�F (S; x)g
instead of the vector of excesses. Therefore the SD-prenucleolus is a lexicographic

value that selects from a set a vector that lexicographically dominates the other

vectors of the set.

We now formulate it in detail.

We say that the satisfaction vector F x = fF (S; x)gS�N dominates the satis-

faction vector F y = fF (S; y)gS�N if there is k � 1 such that
1. ~F xi = ~F yi for all i < k

2. ~F xk > ~F yk ,

13



where ~F x and ~F y are the vectors with the same components as the vectors F x,

F y, but rearranged in a non decreasing order (i > j ) ~F xi � ~F xj ).

We say that the vector x belongs to the SD-prenucleolus if its satisfaction

vector dominates (or weakly dominates) every other satisfaction vector.

De�nition 4.1. Let (N; v) be a TU game. Then x 2 SD(N; v) if and only if for
any y 2 X(N; v) it holds that F x �L F y:

Similarly to the prenucleolus, the SD-prenucleolus satis�es nonemptiness and

single-valuedness on the class of all TU games.

Proposition 4.2. Let (N; v) be a TU game. Then jSD(N; v)j = 1.

Proof. The standard proof of the nonemptiness of the prenucleolus can be

repeated in this case with no changes. The proof of single-valuedness is also very

close to the standard one but has some di¤erences. Assume that there is a pair

of vectors x; y 2 X(N; v) such that both vectors f�F (S; x)gS(N ,f�F (S; x)gS(N
dominates a vector f�F (S; z)gS(N for every z 2 X(N; v).
Consider the allocation t = x+y

2
and the vector f�F (S; t)gS(N . Because x 6= y

the number k can be chosen such that for every i < k it holds that Hi(x) = Hi(y)

and that Hk(x) 6= Hk(y).

Assume that because of the linearity of functions f and F it can be concluded

that for i < k it is also true that Hi(x) = Hi(t).

Consider the k-th stage of the algorithm for all three vectors (x; y; t). We can

note that functions f and F are the same for these vectors. Denote F xHk(S)
for

S 2 Hx
k nHk�1 by Gk. Because of the coincidence of the satisfaction vectors for x

and y it also holds that Gk = F
y
Hk(T )

for T 2 Hy
k n Hk�1.

With no loss of generality it can be assumed that there exists T 2 Hfkg(x) n
Hfkg(y). By the linearity of the function F it can be concluded that

F tHk�1
(T ) =

F xHk�1
(T ) + F yHk�1

(T )

2
=
Gk + F

y
Hk�1

(T )

2

14



Because of T 62 Hk(y) we get F
y
Hk�1

(T ) > Gk: Therefore

F tHk�1
(T ) =

Gk + F
y
Hk�1

(T )

2
> Gk

The same conclusions can be used for an arbitrary coalition U which belongs to

Hk(y) but not toHk(x). Therefore the collection of coalitions with satisfaction less

than or equal to Gk for the vector t is equal to the intersection of such collections

for vectors x and y. It means that the satisfaction vector for t dominates the

satisfaction vectors for x and y and this contradicts the assumption.

4.2. Properties

The new solution shares other interesting properties with the classic prenucleolus

and the per capita prenucleolus. For example, it is not di¢ cult to prove that

the SD-prenucleolus also satis�es desirability (and therefore the equal treatment

property), anonymity, covariance and e¢ ciency.

Also the SD-prenucleolus is a core selector, i.e. if a game is balanced its SD-

prenucleolus is a core allocation. This is so because any core allocation has a non

negative vector of satisfactions.

Unlike the prenucleolus, the SD-prenucleolus satis�es strong aggregate monotonic-

ity. This property is also satis�ed by the per capita prenucleolus.

Proposition 4.3. The SD-prenucleolus satis�es the strong aggregate monotonic-
ity property.

Proof. Consider games (N; v) and (N; vA) where vA(N) = v(N) + AjN j and
vA(S) = v(S) for S 6= N . Let x 2 X(v) and y 2 X(vA) such that for each i 2 N
yi = xi + A.

It is su¢ cient to show that if the following holds for any k � 0
1. F(N;vA)(S; y) = F(N;v)(S; x) + A for each S 2 Hk

2. The collections Hk for (N; vA; y) and (N; v; x) coincide

15



then the two facts hold also for k + 1 (for k = 0 it is evident). This is shown

below. Note that for every T ( N , i 2 �Hk
(T ) it holds that

f vAHk;F(N;vA)
(i; T ) = min

U :U2Hk;i2U�T
(F(N;v)(U) + A) = f

v
Hk;F(N;v)

(i; T ) + A:

Consider a coalition T ( N and two possible variants:

1. �Hk
(T ) 6= T

F
(N;vA)
Hk

(T; y) =

y(T )� vA(T )�
P

i2�Hk (T )
f vAHk;F

(i; T )

jT j � j�Hk
(T )j =

=

x(T ) + AjT j � v(T )�
P

i2�Hk (T )
f vHk;F

(i; T )� Aj�Hk
(T )j

jT j � j�Hk
(T )j =

=

x(T )� v(T )�
P

i2�Hk (T )
f vHk;F

(i; T )

jT j � j�Hk
(T )j + A = F

(N;v)
Hk

(T; x) + A

2. �Hk
(T ) = T

F
(N;vA)
Hk

(T; y) = y(T )� vA(T )�
X
i2T

f vAHk;F
(i; T ) + max

i2T
f vAH;F (i; T )

= x(T ) + AjT j � v(T )�
X
i2T

f vAHk;F
(i; T )� AjT j+max

i2T
fH;F (i; T ) + A =

= x(T )� v(T )�
X
i2T

f vAHk;F
(i; T ) + max

i2T
fH;F (i; T ) + A = F

(N;v)
Hk

(T; x)� A

In this way, for every coalition T ( N it holds that

F
(N;vA)
Hk

(T; y) = F
(N;v)
Hk

(T; x) + A

and therefore collections Hk+1 in both games (N; vA) and (N; v) coincide.

We show that the SD-prenucleolus does not satisfy the null player property by

showing that there is incompatibility between strong aggregate monotonicity, the

null player property and core stability.

16



Proposition 4.4. If a solution ' de�ned in the class of all TU games satis�es core
stability and the null player property then ' does not satisfy the strong aggregate

monotonicity property.

Proof. Consider the following two games (N; v1) and (N; v2) where N =

f1; 2; 3; 4g and

v1(S) =

8><>:
0 if jSj = 1
0 if jSj = 2 and 4 2 S
4 otherwise,

v2(S) =

(
6 if S = N

v1(S) if S 6= N:
In game (N; v1) player 4 is a null player and therefore '4(N; v1) = 0. In game

(N; v2) the core is f(2; 2; 2; 0)g and therefore '4(N; v2) = 0. It must be concluded
that ' violates strong aggregate monotonicity.

Therefore, the SD-prenucleolus and the per capita prenucleolus do not satisfy

the null player property on the class of all TU games.

Obviously, on the class of balanced games a solution that satis�es core stability

must satisfy the null player property. But this is not necessarily true for the NPO

property. For example, the per capita prenucleolus does not satisfy the NPO

property. The result below reinforces the interest in the new solution.

Proposition 4.5. The SD-prenucleolus satis�es the NPO property on the class

of balanced games.

Proof. Consider a balanced game (N; v) where i 2 N is a null player. Let x 2
C(N; v) be a core allocation. To prove the NPO property of the SD-prenucleolus

it is su¢ cient to show that for every S � N n fig

F (S; x) = F (S [ fig; x):

It is immediately apparent that xi = 0 and coalition fig has the minimal
satisfaction, which is 0. Therefore for coalition P = argmin

S�Nnfig

x(S)�v(S)
jSj it holds that

F (P; x) = F (P [ fig; x):

17



Consider that for coalitions that obtain their satisfaction before step k it holds

that F (S; x) = F (S [ fig; x): We will prove that for the step k of the algorithm
and any coalition S 2 Hk, S � Nnfig it also holds that

FHk
(S; x) = FHk

(S [ fig; x): (4.1)

Note that

�Hk
(S [ fig) = S [ fig , �Hk

(S) = S

Consider two cases (relevant and non relevant coalitions):

1. �Hk
(S [ fig) 6= S [ fig. Then

FHk
(S [ fig) =

x(S [ fig)� v(S [ fig)�
P

j2�Hk (S[fig)
fHk;F (j; S)

jSj+ 1� j�Hk
(S [ fig)j =

=

x(S)� v(S)�
P

j2�Hk (S)
fHk;F (j; S)

jSj+ 1� j�Hk
(S)j � 1 = FHk

(S)

2. �Hk
(S [ fig) = S [ fig. Then

FHk
(S [ fig) =

= x(S [ fig)� v(S [ fig)�
X

j2S[fig

fHk;F (j; S) + max
j2S[fig

fHk;F (j; S [ fig) =

= x(S)� v(S)�
X
j2S

fHk;F (j; S) + max
j2S

fHk;F (j; S [ fig)

To show that FHk
(S [ fig) = FHk

(S) it su¢ ces to check that

max
j2S

fHk;F (j; S [ fig) = max
j2S

fHk;F (j; S):

But

fHk;F (j; S [ fig) = min
T2Hk;j2T�S[fig

FHk
(T )

From the fact (4.1) for k0 < k it can be concluded that for every T 2 Hk it holds

that FHk
(T ) = FHk

(T [ fig). Therefore

min
T2Hk;j2T�S[fig

FHk
(T ) = min

T2Hk;j2T�S
FHk

(T ))

18



) fHk;F (j; S [ fig) = fHk;F (j; S)

and the proposition has been proved.

In the class of balanced games the SD-prenucleolus is the only known single-

valued core selector that satis�es the NPO property and strong aggregate monotonic-

ity. The per capita prenucleolus violates the NPO property as the following ex-

ample shows.

Consider the games (N; v1) and (Nn f4g ; v2) where N = f1; 2; 3; 4g and

v1(S) =

8><>:
7 if S 2 ff1; 2; 3g ; Ng
4 if S 2 ff1; 2g ; f1; 2; 4gg
0 otherwise,

v2(S) =

8><>:
7 if S = Nn f4g = f1; 2; 3g
4 if S = f1; 2g
0 otherwise.

In game (N; v1) player 4 is a null player and game (Nn f4g ; v2) results af-
ter eliminating player 4 from game (N; v1): The per capita prenucleolus of game

(N; v1) is (2:25; 2:25; 1:5; 0) and the per capita prenucleolus of game (Nn f4g ; v2)
is (3; 3; 1):

4.3. Kohlberg�s characterization

We provide the equivalent of Kohlberg�s theorem for the SD-prenucleolus. For

this purpose we introduce the following notation. Given an allocation x and a

real number � we de�ne the following set of coalitions

B� = fS ( N : F (S; x) � �g:

The theorem is useful for checking whether an allocation is the SD-prenucleolus

of a game or not. In fact, it is used to prove the main result of Section 6.

Theorem 4.6. Let (N; v) be a TU game and x be an allocation. Then x =

SD(N; v) if and only if the collection of sets B� is empty or balanced4 for every
�.

4See Peleg and Sudholter (2007) for the de�nition of a balanced collection of sets.
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Proof. Assume that x = SD(N; v) and that the theorem is not true. Let us

choose the minimal � for which the collection of sets B� is nonempty and not
balanced. It is immediate that the collection B� coincides with the collection Hk

for some k.

The assumption of the minimality of the value � implies that for every m < k

the collection of sets Hm is balanced. The non-balancedness of the collection Hk

implies that there exists a vector y such that

1.
P
i2N

yi = 0

2.
P
i2S
yi � 0 for each S 2 Hk

3. There is S 2 Hk such that
P
i2S
yi > 0

Moreover, by using the fact that the collection Hk�1 is balanced we can con-

clude that
P
i2T
yi = 0 for every T 2 Hk�1.

Let us consider the vector x+ "y for "�small"�positive value ". It holds that

1. for every T 2 Hk�1 the satisfaction with respect to vector x + "y is equal

to the satisfaction with respect to vector x

2. for every T 2 Hk n Hk�1 the satisfaction with respect to vector x + "y is

higher than or equal to the satisfaction with respect to vector x and there exists

the coalition U such that this inequality is strong.

It is also immediately apparent that a value " be chosen that is so small that

the following collections Hm for m > k will be not important. Therefore the

vector x+ "y dominates the vector x.

Therefore if a collection Hk is not balanced then the allocation x is not the

SD-prenucleolus of the game. And if the allocation x is not the SD-prenucleolus

of the game then there exists some collection Hk that is not balanced.

Using this theorem it can be asserted that the allocation (5; 1; 0) is not the

SD-prenucleolus of the second TU game in Section 3.

In general, the computation of the new solution is not an easy task. Like

the prenucleolus, the calculation of the SD-prenucleolus of a game is an open

challenge. In this sense, the characterization above is a �rst step that allows it to

be checked whether an allocation is the SD-prenucleolus of the game. In Section
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6 we introduce a formula for computing the SD-prenucleolus of veto balanced

games.

5. Axiomatizations

5.1. The SD-Reduced Game Property (SD-RGP)

Similarly to the axiomatization of the prenucleolus by Sobolev (1975), we axiom-

atize the SD-prenucleolus with an almost identical set of axioms where the Davis-

Maschler reduced game property is replaced by another reduced game property:

the SD-reduced game property.

We introduce a lemma that is used to prove that the SD-RGP is well-de�ned.

Lemma 5.1. Let N be a �nite set of players, vector x 2 RN , number V and a

vector f 2 R2NnfNg. Then there is a unique TU game (N; v) such that
1. v(N) = V

2. for every S ( N it holds that F (S; x) = fS:

Proof. Consider subsets of N starting from subsets with minimal satisfaction.

The calculation of v(S) for current coalition S requires only coalitions with lower

satisfactions and these coalitions have been considered before.

De�nition 5.2. Let (N; v) be a TU game, S � N and x 2 X(N). A game (S; vxS)
is the SD-reduced game with respect to D and x if

1. vxS(S) = v(N)� x(N n S)
2. for every T ( S

F (S;v
x
S)(T; xS) = min

U2NnS
F (N;v)(U [ T; x):

From Lemma 5.1 we conclude that for any game (N; v) and any allocation x

the SD-reduced game exists and is unique.

In the characterization of the SD-prenucleolus,this new reduced game property

plays the role played by the DM-reduced game property in the characterization

of the prenucleolus (Sobolev, 1975.)
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5.2. The SD-prenucleolus

We provide the equivalent of Sobolev�s theorem for the SD-prenucleolus (by using

SD-RGP instead of the Davis-Maschler reduced game property). Kleppe (2010)

axiomatizes the per capita prenucleolus by replacing the DM-RGP with another

reduced game property.

Let G be the class of all TU games for players from some universal in�nite

player set N . Let X(N; v) be a set of e¢ cient allocations for a game (N; v).
Given a game (N; v) and an allocation x 2 X(N; v) we de�ne game (N; �x(v)) as
follows:

1. �x(v)(N) = v(N)

2. for every T ( N

F (N;v)(T; x) = x(T )� �x(v)(T ):

With this transformation we obtain that a satisfaction of coalition S in game

(N; v) with respect to vector x is equal to the negative excess of S in game

(N; �x(v)). Therefore if the vector x coincides with the SD-prenucleolus in the

game (N; v) then it coincides with the prenucleolus in the game (N; �x(v)).

This transformation is well-de�ned for an arbitrary game (N; v). Also it is

simple to see that the reverse transformation ��1x is also well-de�ned.

The TU game (N; v) is said to be transitive if the group of symmetries of this

game (SYM(N; v)) is transitive. We now prove several auxiliary facts.

Lemma 5.3. 1. If a TU game (N; v) is transitive and x = SD(N; v) then the

game (N; �x(v)) is also transitive.

2. If a TU game (N; v) is transitive and x = PN(N; v) then the game

(N; ��1x (v)) is also transitive.

Proof. It is su¢ cient to note that by anonymity of the SD-prenucleolus (or the

prenucleolus) it holds that xi = xj for every i; j 2 N .

Proposition 5.4. If a TU game (N; v) is transitive then there is a game (N;w)
such that (N; v) = (N; �x(w)) where x = SD(N;w).
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Proof. De�ne vector y as follows: yi =
v(N)
jN j for every i 2 N . It is true that

y = PN(N; v). Consider the game (N; ��1y (v)). From the previous Lemma this

game is transitive and therefore y = SD(N; v).

Therefore we �nd the transitive game (N;w) (it is (N; ��1y (v))) such that

(N; v) = (N; �y(w)) where y = SD(N;w).

Proposition 5.5. Let N be a �nite set and S � N . Let (N; v) and (S;w) be two
TU games and x 2 X(N; v). Consider games (N; �x(v)) and (S; �xjS(w)). Then
the following two conditions are equivalent:

1. (S;w) is the SD-reduced game of (N; v) with respect to S and x

2. (S; �xjS(w)) is the Davis-Maschler reduced game of (N; �x(v)) with respect

to S and x:

Proof. The proof is evident because the satisfactions are transformed to usual

negative excesses under function �.

Proposition 5.6. Let (N; v) be a TU game such that PNi(N; v) = 0 for each

i 2 N . Then there is a �nite set M � N and a transitive game (M;w) with

w(M) = 0 such that the game (N; v) is the Davis-Maschler reduced game of

(M;w) with respect to the prenucleolus (because of transitivity PNi(M;w) = 0

for all i 2M).

Proof. This fact was proved by Sobolev in his characterization of the prenucle-

olus. See Sobolev (1975).

The main theorem of this section can now be proven:

Theorem 5.7. On the class of all TU games for universal in�nite set of players
the SD-prenucleolus is the unique single-valued solution that satis�es covariance,

anonymity and SD-RGP.

Proof. It has been shown that the SD-prenucleolus satis�es all these properties.

Assume that A is other solution satisfying the properties. Consider an arbitrary

game (N; v). We will show that Ai(N; v) = SDi(N; v) for all i 2 N .
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Consider game (N; v0), de�ned as follows:

v0(S) = v(S)�
X
i2S
SDi(N; v) for all S � N

Consider game (N; �x(v0)) for x = SD(N; v0). In this game (by Kohlberg´s

theorem) the vector x coincides with the prenucleolus and Proposition 5.6 can

therefore be used..

Construct a transitive game (M;w) such that PNi(M;w) = 0 for each i 2 M
and that (N; �x(v0)) is the Davis-Maschler reduced game of (M;w) with respect

to the prenucleolus.

Now consider the game (M;��1y (w)) where yi = 0 for all i (therefore y coincides

with the prenucleolus of the game (M;w)). By Lemma 5.3 this game is also

transitive and therefore (by anonymity and single-valuedness of A) it holds that

Ai(M;�
�1
y (w)) = 0 for each i 2M .

From Proposition 5.5 it holds that the game (N; v0) is the SD-reduced game of

(M;��1y (w)) with respect to vector y. By SD-RGP of A it can be concluded that

for each i 2 N it holds that Ai(N; v0) = 0. Therefore in the initial game (N; v)

for every i 2 N , Ai(N; v) = SDi(N; v) is obtained:

5.3. The SD-prekernel

The SD-RGP is also one of the main axioms in the characterization of the SD-

prekernel. This solution arises naturally whenever the satisfaction vector is de-

�ned. With this tool we can de�ne the complaint of a player i against a player j

as the minimal satisfaction obtained with coalitions that contain player i but not

player j. The similarities with the classic prekernel are immediately apparent and

the axiomatization of the new SD-prekernel is almost identical to the axiomati-

zation of the classic prekernel (see Peleg, 1986). Obviously, the only change is to

replace the DM-reduced game property by the SD-reduced game property. Given

a TU game (N; v) and an allocation x 2 X(N; v) the complaint of player i against
player j is de�ned as follows:

sij(x) = min
S:i2S;j 62S

F (S; x):
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The SD-prekernel of a TU game (N; v) is:

SDPK(N; v) = fx 2 X(N; v) : sij(x) = sji(x) for all i 6= jg

It is immediately apparent that the SD-prekernel satis�es ETP, covariance and

SD-RGP. We now show that it is the maximal solution with all these properties.

Theorem 5.8. In the class of all TU games the SD-prekernel is the maximal

solution that satis�es ETP, covariance and the SD-reduced game property.

The proof is similar to that for the characterization of the prekernel provided

by Peleg.

An immediate corollary of the theorem is that the SD-prenucleolus of a game

is an element of the SD-prekernel of the game. In some cases, such as glove games,

this inclusion is strict.

Consider a 4-person glove game (N; v) de�ned as follows:

v(S) =

8><>:
4 if S = N

0 if jSj = 1 or S 2 ff1; 2g ; f3; 4gg
2 otherwise.

It is immediately apparent that (2; 2; 0; 0) is an element of the SD-prekernel of

the game and that the SD-prenucleolus of (N; v) is (1; 1; 1; 1):

Alternatively, in this characterization the maximality can be replaced by con-

verse SD-RGP5.

6. Games with Veto Players

The class of games with veto players has been widely used to model economic

situations where the presence of special players is needed in order to achieve some

positive outcome. The list of papers that consider TU games with veto players is

5We omit the formal de�nition of this property. We only want to emphasize axiomatic

similarities between the classic prekernel and the SD-prekernel.

25



long. Our main purpose is to provide an easy way to compute the SD-prenucleolus

of games with veto players.

Arin and Feltkamp introduce the Serial Rule for the class of veto balanced

games. Let (N; v) be a game with veto players and let player 1 be a veto player.

De�ne for each player i a value di as follows:

di = max
S�Nnfig

v(S):

Then d1 = 0: Let dn+1 = v(N) and rename players according to the nonde-

creasing order of those values. That is, player 2 is the player with the lowest value

besides player 1 and so on. The solution SR associates to each game with veto

players, (N; v), the following payo¤ vector:

SRl(N; v) =
nX
i=l

di+1 � di
i

for all l 2 f1; :::; ng :

Note that since d1 = 0 the solution is e¢ cient. If there is no veto player the

solution is not e¢ cient.

The example in Section 3 illustrates how the solution behaves. The 4-person

game has a veto player, player 1. Recall the characteristic function of the game:

v(S) =

8>>><>>>:
1 if S 2 ff1; 3; 4g ; f1; 2; 4gg
4 if S = f1; 2; 3g
8 if S = N

0 otherwise.

Computing the vector of d-values we get:

(d1; d2; d3; d4; d5) = (0; 1; 1; 4; 8):

Applying the formula

SR1 =
d2�d1
1
+ d3�d2

2
+ d4�d3

3
+ d5�d4

4
= 3

SR2 =
d3�d2
2
+ d4�d3

3
+ d5�d4

4
= 2

SR3 =
d4�d3
3
+ d5�d4

4
= 2

SR4 =
d5�d4
4

= 1:
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We prove that for monotonic6 games with veto players the Serial Rule and the

SD-prenucleolus coincide.

We present several lemmas that are used in the proof of the main theorem.

Lemma 6.1. Let (N; v) be a monotonic veto game and let x = SR(N; v): Let l
be a non veto player and let S be a coalition such that l 2 S and F (S; x) > xl:
Then fH;F (l; S) = xl:

Proof. It is immediately apparent that the lemma is true for player n (the

player with highest d-value) since xn = min
S�N

x(S)�v(S)
jSj = x(Nnfng)_dn

n�1 . The lemma

also must be true for player n-1 since

xn�1 = min
S�N;S =2fNnfng;fngg

F (S; x) = F (Nn fn� 1g ; x) =

n�2P
l=1

xl � dn�2

n� 2 :

Following similar arguments, it is not di¢ cult to check that if the lemma holds

for player k it must hold for player k-1:

Lemma 6.2. Let (N; v) be a monotonic veto game. Let x = SR(N; v) and let i
be a non veto player: Then F (Nn fig ; x) = xi:

Proof. Let T = fl 2 Nn fig : xi < xlg and let P = fl 2 Nn fig : xi � xlg : Note
that since the game is monotonic v(Nn fig) = di: Then by lemma 6.1

F (Nn fig ; x) =

P
l2P
SRl � di

jP j = SRi(N; v):

This last equality is a consequence of the fact that for any k

k�1X
l=1

(SRl � SRk) = dk:

6If a game with veto players is monotonic then is balanced since the allocation where a veto

player receives v(N) and the rest receive 0 is a core allocation.
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Lemma 6.3. Let (N; v) be a monotonic veto game and let x = SR(N; v): Let S
be a coalition without the veto player. Then F (S; x) = max

i2S
xi:

Proof. Let p = max
i2S

xi: Let T = fi 2 S : xi = pg and let P = fi 2 S : xi < pg :
Then for l 2 P and applying lemma 6.1 it holds that

xl = F (l; x) < F (S; x) =
x(T )

jT j = p:

Lemma 6.4. Let (N; v) be a monotonic veto game. Let x = SR(N; v) and let

l a non veto player. Let S be a coalition containing the veto players such that

l =2 S and xl = max
i=2S

xi: Then F (flg ; x) = xl � F (S; x):

Proof. Assume on the contrary that xl > F (S; x):

Let l be a non veto player such that l =2 S and xl = max
i=2S

xi: Let T =

fi 2 S : xi � xlg and let P = fi 2 S : xi < xlg : It is immediate that for i 2 P
it holds that F (fig ; x) < F (S;x): Therefore

F (S; x) =
x(T )� v(S)

jT j � x(T )� v(Nn flg)
jT j = xl:

The �rst equality results from applying lemma 6.1. The last inequality holds

because of the monotonicity of (N; v) and the last equality is a consequence of

lemma 6.2:

The main theorem of this section establishes the coincidence of the Serial Rule

and the SD-prenucleolus on the class of veto monotonic games.

Theorem 6.5. Let (N; v) be a monotonic veto game. Then SR(N; v) = SD(N; v).

Proof. The proof is based in the above lemmas. Consider the collection of coali-

tions S for which F (S; SR(N; v) � k: From lemma 6.3 if this collection contains

a coalition without a veto player all players of this coalition appear also in the

collection as singletons. By lemma 6.4 and 6.2 if there is a coalition S containing
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veto players and without non veto player l then coalitions Nn flg and flg are also
present. Therefore for a non veto player i one of the two statements is true: either

coalition flg is in the collection or all coalitions containing the veto players also
contain player i. It is clear that such collection is always balanced.

Similarly to the case of the prenucleolus (see Arin and Feltkamp (1997)) for

the SD-prenucleolus it holds that the complaint of non veto players against the

veto player uses the singletons as a coalition7. This can be used to prove that

the SD-prenucleolus is the only element of the SD-prekernel of a monotonic veto

game.

It is clear that the solution denoted by SR satis�es monotonicity. That is,

on the class of monotonic veto games the SD-prenucleolus satis�es coalitional

monotonicity. (See Arin and Feltkamp (2011) to check that this result is not true

for the prenucleolus and the per capita prenucleolus.)

The result of Theorem 6.5 is not necessarily true if the game is not monotonic.

Consider the following 3-person balanced game. Let N = f1; 2; 3g and v(f1g) =
v(f1; 3g) = v(f1; 2g) = �3 and v(S) = 0 otherwise. Then SR(N; v) = (0; 0; 0) 6=
SD(N; v) = (�2; 1; 1):

7. Conclusions

We introduce a new solution concept for TU games: a solution that is a lexi-

cographic value and can therefore be seen as a member of a family of solutions

that includes the prenucleolus and the per capita prenucleolus. The new solution

is not a weighted prenucleolus and incorporates into its de�nition the idea that

the surplus obtained by a coalition is divided among its members in a coherent

way. This interpretation links the solution with the per capita prenucleolus and

both solutions can be seen as members of a family of solutions that provides this

distribution of the surplus8. Apart from the di¤erent way of interpreting the clas-

7This is not the case for the per capita prenucleolus, so a di¤erent argument is needed to

�nd an algorithm for computing the per capita prenucleolus of a veto monotonic game.
8The de�nition of the prenucleolus does not allow such interpretation.
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sic concept of excess/satisfaction, the attractiveness of the new solution relies on

two interesting facts: The SD-prenucleolus is the only known solution that satis-

�es core stability, strong aggregate monotonicity and NPO property in the class

of balanced games. The SD-prenucleolus is the only known solution de�ned in

the class of all TU games that satis�es core stability, continuity and coalitional

monotonicity in the class of veto balanced games.

References

[1] Arin J and Feltkamp V (1997) The nucleolus and kernel of veto-rich trans-

ferable utility games. Int J of Game Theory 26:61-73

[2] Arin J and Feltkamp V (2005) Monotonicity properties of the nucleolus on

the domain of veto balanced games. TOP 13, 2:331-342

[3] Arin J and Feltkamp V (2011) Coalitional games: Monotonicity and Core.

European J Op Research (forthcoming)

[4] Kleppe J (2010) Modeling Interactive Behavior, and Solution Concepts. Ph.

D. thesis, Tilburg University

[5] Kolhberg E (1971) On the nucleolus of a characteristic function game. SIAM

J. Appl. Math. 20, 62-66

[6] Grotte J (1970) Computation of and observations on the nucleolus, the nor-

malised nucleolus and the central games. Ph. D. thesis, Cornell University,

Ithaca

[7] Meggido N (1974) On the monotonicity of the bargaining set, the kernel and

the nucleolus of a game. SIAM J of Applied Mathematics 27:355-358

[8] Peleg B (1986) On the reduced game property and its converse. Int J of Game

Theory 15:187-200

30



[9] Peleg B and Sudholter P (2007) Introduction to the theory of cooperative

games. Berlin, Springer Verlag

[10] Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM

J on Applied Mathematics 17:1163-1170

[11] Sobolev A (1975) The characterization of optimality principles in cooperative

games by functional equations. In: N Vorobiev (ed.) Mathematical Meth-

ods in the Social Sciences, pp: 95-151. Vilnius. Academy of Science of the

Lithuanian SSR

[12] Young HP (1985) Monotonic solutions of cooperative games. Int J of Game

Theory 14:65-72

31


	IL5611.pdf
	5611.pdf

