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This paper presents a simple continuous-time linear vaccination-based control strategy for a
SEIR (susceptible plus infected plus infectious plus removed populations) propagation disease
model. The model takes into account the total population amounts as a refrain for the illness
transmission since its increase makes more difficult contacts among the susceptible and infected.
The control objective is the asymptotically tracking of the removed-by-immunity population to the
total population while achieving simultaneously the remaining population (i.e., susceptible plus
infected plus infectious) to asymptotically converge to zero. A state observer is used to estimate
the true various partial populations of the susceptible, infected, infectious, and immune which are
assumed to be unknown. The model parameters are also assumed to be, in general, unknown. In
this case, the parameters are replaced by available estimates to implement the vaccination action.

1. Introduction

Important control problems nowadays related to life sciences are the control of ecological
models like, for instance, those of population evolution (Beverton-Holt model, Hassell model,
Ricker model, etc.) via the online adjustment of the species environment carrying capacity,
that of the population growth, or that of the regulated harvesting quota as well as the disease
propagation via vaccination control. In a set of papers, several variants and generalizations of
the Beverton-Holt model (standard time-invariant, time-varying parameterized, generalized
model or modified generalized model) have been investigated at the levels of stability, cycle-
oscillatory behavior, permanence, and control through the manipulation of the carrying
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capacity (see, e.g., [1–5]). The design of related control actions has been proved to be impor-
tant in those papers at the levels, for instance, of aquaculture exploitation or plague fighting.
On the other hand, the literature about epidemic mathematical models is exhaustive in many
books and papers. A nonexhaustive list of references is given in this paper; compare [6–14]
(see also the references listed therein). The sets of models include the most basic ones, [6, 7].

(i) SI-models where not removed-by-immunity population is assumed. In other
words, only susceptible and infected populations are assumed.

(ii) SIR models, which include susceptible plus infected plus removed-by—immunity
populations.

(iii) SEIR models where the infected populations is split into two ones (namely, the “in-
fected” which incubate the disease but do not still have any disease symptoms and
the “infectious” or “infective” which do have the external disease symptoms).

Thosemodels have also twomajor variants, namely, the so-called “pseudo-mass action
models,” where the total population is not taken into account as a relevant disease contagious
factor and the so-called “true-mass action models,” where the total population is more real-
istically considered as an inverse factor of the disease transmission rates. There are many
variants of the above models, for instance, including vaccination of different kinds as follows:
constant [8, 9], impulsive [9, 12], discrete-time, and so forth, incorporating point or distrib-
uted delays [12, 13], oscillatory behaviours [14], and so forth. On the other hand, variants
of such models become considerably simpler for the illness transmission among plants [6,
7]. Recent work on the influence of latent and infective periods and studiers of persistence
of infection has been performed in [15, 16]. Other mathematical models involving coupled
partial populations of the whole ones require very close analysis of equilibrium points, sta-
bility, and positivity to that required in epidemic models (see, e.g., [17, 18]).

In this paper, a continuous-time vaccination observer-based control strategy is given
for a SEIR epidemicmodel which takes directly the estimated susceptible, infected, infectious,
and immune populations to design the vaccination strategy. It is not required either the
knowledge through time of the true partial populations of the susceptible, infected, infec-
tious, and immune, since this task is performed by the observer, nor the knowledge of the true
parameters. The incorporation of the observer to the vaccination control rule is the main con-
tribution of this paper. On the other hand, it is assumed that the total population is known
and equal to the total estimated population and also that it remains constant through time, so
that the illness transmission is not critical, and the SEIRmodel is of the above-mentioned true-
mass action type. Some important issues of positivity, stability, and model reference tracking
of a suitable population evolution of the combined SEIRmodel and its observer are discussed.

1.1. Notation

Rn
+ is the first open n-real orthant, and Rn

0+ is the first closed n-real orthant.
x ∈ Rn

0+ is a positive real n-vector in the usual sense that all its components are non-
negative. This can be also denoted by x > 0 if x /= 0. If all the components are strictly positive,
this is denoted by x � 0 or x ∈ Rn

+. In the same way,A ∈ Rn×n
0+ is a positive real n-matrix in the

usual sense that all its entries are nonnegative and we can use the notationsA > 0 andA � 0
(if A ∈ Rn×n

+ ). A square real matrix A is a Metzler matrix if and only if all its off-diagonal
entries are nonnegative and then its associate exponential matrix function is positive; that is,
none of its entries takes a negative value at any time.
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C(q)(Do; Im) is the set of real functions of class q of domain Do and image Im.
PC(q)(Do; Im) is the set of real functions of class (q-1) of domain Do and image Im whose qth
derivative exits but it is not necessarily everywhere continuous on its definition domain.

2. SEIR Epidemic Model

Let S(t) be the “susceptible” population of infection at time t, E(t) the “infected” (i.e., those
which incubate the illness but do not still have any symptoms) at time t, I(t) is the “infec-
tious” (or “infective”) population at time t, and R(t) is the “removed-by-immunity” (or
“immune”) population at time t. Consider the true-mass action SEIR-type epidemic model:

Ṡ(t) = −μS(t) +ωR(t) − β
S(t)I(t)

N
+ μN(1 − V (t)) (2.1)

Ė(t) = β
S(t)I(t)

N
− (μ + σ

)
E(t) (2.2)

İ(t) = −(μ + γ
)
I(t) + σE(t) (2.3)

Ṙ(t) = −(μ +ω
)
R(t) + γI(t) + μNV (t) (2.4)

subject to initial conditions S0 = S(0) ≥ 0, E0 = E(0) ≥ 0, I0 = I(0) ≥ 0, and R0 = R(0) ≥ 0
under the constraint N = N(0) = S(t) + E(t) + I(t) + R(t) = S(0) + E(0) + I(0) + R(0); for all
t ∈ R0+ and the vaccination function V : R0+ → R0+. In the above SEIR model, N is the total
population, μ is the rate of deaths from causes unrelated to the infection, ω is the rate of los-
ing immunity, β is the transmission constant (with the total number of infections per unity
of time at time t being β(S(t)I(t)/N)), and σ−1 and γ−1 are finite and, respectively, the
average durations of the latent and infective periods. All the above parameters are assumed
to be nonnegative. Note that S, E, I, R ∈ C(1)(R0+;R) if V ∈ C(0)(R0+;R). However, if
V ∈ PC(0)(R0+;R) then S, E, I, R ∈ C(0)(R0+;R), their time-derivatives exist but they are not
everywhere continuous on R0+, in general. This model has been studied in [19] from the
point of view of equilibrium points in the free-vaccination case and control. Two vaccination
auxiliary controls (grouping the last three terms of the right-hand side of (2.1)) being, respec-
tively, proportional to the susceptible or to the whole population so that the whole population
is asymptotically immune have been proposed. Note that controllability is a very suitable
property of practical control problems since each state variable is allowed to track a pre-
scribed value, in a finite time (see, e.g., [20]). However, we have to point out that epidemic
models are not, in general, controllable since all the partial populations cannot be separately
controlled through vaccination since there is always an inherent interchange among the
various populations [19]. The SEIRmodel (2.1)–(2.4) is uncontrollable according to the above
principle so that there are potential final values of some of the partial populations which are
not within the set of reachable states [21]. The epidemic models proposed in previous works
assume that the parameters of the SEIRmodel are known. However, the research in this paper
does not require such a perfect parametrical knowledge since an observer with parametrical
estimation is incorporated. It has to be pointed out that the model following and tracking of
desired references as well as the optimization of certain well-posed criteria are very important
objectives in control theory problems including robotics and adaptive control [22–24]. They
are also relevant in predator-prey processes or in epidemics as, for instance, the removal
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or asymptotic removal of diseases through vaccination strategies [25–28]. In this paper, the
vaccination rules are based on the estimation of the partial populations provided by an “ad
hoc” synthesized observer which is potentially useful in the common real case that not all par-
tial populations which are integrated in the whole dynamic epidemic model are precisely
known or measurable for all time.

3. Observer-Based Vaccination Control Strategy for the SEIR Model

It turns out that, while the assumption of the knowledge of the total populationN is not quite
restrictive in practice, the knowledge of the individual various partial populations of the sus-
ceptible, infected, infectious, and immune may be considered severely restrictive. It is seen
that if the partial initial populations are unknown then their evolution through time cannot
be computed in a closed form from the differential system (2.1)–(2.4). A practical solution to
circumvent the problem might be to estimate them based on percentages of the total popula-
tion through time from experimental knowledge of the disease propagation. Another solution
may be to estimate them online by using an online observer. The current paper focuses on this
solution by using a SEIR-estimation algorithm (observer) of the SEIRmodel (2.1)–(2.4)which
estimates through time the individual populations being involved. The vaccination strategy
is obtained as a control strategy from the data supplied by the observer through time. Such a
strategy does not require the knowledge of the partial populations to organize and perform
the vaccination strategy. The estimates of the various individual populations are denoted by
the same notations as the real populations with hat superscripts, namely, Ŝ(t), Ê(t), Î(t), R̂(t),
Thus, consider the SEIR-type observer for the SEIR-epidemic model (2.1)–(2.4) as follows:

˙̂S(t) = −μ̂Ŝ(t) + ω̂R̂(t) − β̂
Ŝ(t)Î(t)

N
+ μ̂N(1 − V (t))

˙̂E(t) = β̂
Ŝ(t)Î(t)

N
− (μ̂ + σ̂

)
Ê(t)

˙̂I(t) = −(μ̂ + γ̂
)
Î(t) + σ̂Ê(t)

˙̂R(t) = −(μ̂ + ω̂
)
R̂(t) + γ̂ Î(t) + μ̂NV (t)

(3.1)

subject to initial conditions Ŝ0 = Ŝ(0) ≥ 0, Ê0 = Ê(0) ≥ 0, Î0 = Î(0) ≥ 0, and R̂0 = R̂(0) ≥ 0
under the constant population constraint

N = N(0) = Ŝ(t) + Ê(t) + Î(t) + R̂(t) = Ŝ(0) + Ê(0) + Î(0) + R̂(0) (3.2)

equalizing its total estimated value for all time, for all t ∈ R0+ and the vaccination law
V : R0+ → R0+ generated by

V (t) =
1

μ̂N

(
k1Ŝ(t) + k2Ê(t) + k3Î(t) + k4R̂(t) + k5Ŝ(t)Î(t) + gN

)
, (3.3)

where ki, i = 1, 2, . . . , 5, are constant real gains to be determined in order to achieve the control
objective. In the above estimated SEIR model, μ̂ is the estimate of μ, that is, the estimated rate
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of deaths from causes unrelated to the infection and also the estimated rate of births, ω̂ is the
estimate of ω, that is, the estimated rate of losing immunity, β̂ is the estimate of β, that is, the
estimated transmission constant (with the total number of infections per unity of time at time
t being β̂(Ŝ(t)Î(t)/N)), and σ̂−1 and γ̂−1 are finite and, respectively, the estimates of σ−1 and
γ−1, that is, the estimated average durations of the latent and infective periods, respectively.
The estimations of the above parameters can be done, through the use of available “a priori”
knowledge, to be identical to the true values if those ones are known or estimated online
from data measurements. Through this paper, we assume that those estimated parameters
are fixed but not necessarily identical to the true parameters and all of them are nonnegative.
The substitution of (3.3) in (3.1) yields the following combined observer-controller for the
SEIR model:

˙̂x(t) = Â(t)x̂(t) + b̂, (3.4)

where

x̂(t) :=
(
Ŝ(t), Ê(t), Î(t), R̂(t)

)T
, b̂ :=

((
μ̂ − g

)
N, 0, 0, gN

)T (3.5)

Â(t) :=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−
(
μ̂ + k1 +

(
β̂1 + k5

)
Î(t)
)

−k2 −k3 ω̂ − k4

β̂1Î(t) −(μ̂ + σ̂
)

0 0

0 σ̂ −(μ̂ + γ̂
)

0

k1 + k5Î(t) k2 γ̂ + k3 −(μ̂ + ω̂ − k4
)

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, β̂1 :=
β̂

N
.

(3.6)

The substitution of (3.3) into (2.1)–(2.4) yields the following SEIR observer-based vaccination
controlled SEIR model:

ẋ(t) = A(t)x(t) + B(t)x̂(t) + b, (3.7)

where

x(t) := (S(t), E(t), I(t), R(t))T ; b :=
((

1 − g

μ̂

)
μN, 0, 0,

gμN

μ̂

)T

(3.8)

A(t) :=

⎡

⎢⎢⎢⎢⎢
⎣

−(μ + β1I(t)
)

0 0 ω

β1I(t) −(μ + σ
)

0 0

0 σ −(μ + γ
)

0

0 0 γ −(μ +ω
)

⎤

⎥⎥⎥⎥⎥
⎦
, β1 :=

β

N
(3.9)
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B(t) :=
(
μ

μ̂

)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(
k1 + k5Î(t)

)
−k2 −k3 −k4

0 0 0 0

0 0 0 0

k1 + k5Î(t) k2 k3 k4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.10)

The systems (3.4)–(3) and (3.7)–(3.10) may be compacted as an extended system as follows:

ẋ(t) := A(t)x(t) + b (3.11)

with

A(t) :=

⎡

⎣
Â(t) 0

A(t) − Â(t) + B(t) A(t)

⎤

⎦; b :=
(
b̂T , b̃T

)T
, (3.12)

x(t) := (x̂T (t), x̃T (t))T with x̃(t) = x(t)−x̂(t) being the observation error and b̃ is a parametrical
error defined by

b̃ := b − b̂ =
(
μ

μ̂
− 1
)
N
(
μ̂ − g, 0, 0, g

)T
. (3.13)

It is direct to see that ‖b̃‖ ≤ ε for any given real ε > 0, with ‖b̃‖ := |(μ/μ̂) − 1|N
√
(μ̂ − g)2 + g2

being the Euclidean norm of b̃, if |μ − μ̂| ≤ μ̂ε/N
√
(μ̂ − g)2 + g2. Decompose

A (t) := A0 + ΔA(t); Â(t) := Â0 + ΔÂ(t); A(t) − Â(t) + B(t) = B0 + ΔB(t), (3.14)

where A0, Â0, and B0 are constant matrices being the nonunique decompositions (3.14) as
follows:

A0 :=

⎡

⎢⎢⎢⎢⎢
⎣

−(μ + β1Ir
)

0 0 ω

0 −(μ + σ
)

0 0

0 σ −(μ + γ
)

0

0 0 γ −(μ +ω
)

⎤

⎥⎥⎥⎥⎥
⎦
;

ΔA(t) :=

⎡

⎢⎢⎢⎢⎢
⎣

β1(Ir − I(t)) 0 0 0

β1I(t) 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦
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Â0 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(
μ̂ + k1 +

(
β̂1 + k5

)
Îr
)

−k2 −k3 ω̂ − k4

0 −(μ̂ + σ̂
)

0 0

0 σ̂ −(μ̂ + γ̂
)

0

k1 + k5Îr k2 γ̂ + k3 − (μ̂ + ω̂ − k4
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

ΔÂ(t) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
β̂1 + k5

)(
Îr − Î(t)

)
0 0 0

β̂1Î(t) 0 0 0

0 0 0 0

k5
(
Î(t) − Îr

)
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

ΔB(t) = A(t) − Â(t) + B(t) − B0

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

M
(
1 − μ

μ̂

)
k2

(
1 − μ

μ̂

)
k3 ω − ω̂ +

(
1 − μ

μ̂

)
k4

β1I(t) − β̂1Î(t) − b021 μ̂ − μ + σ̂ − σ 0 0

0 σ − σ̂ μ̂ + γ̂ − μ − γ 0

−
(
1 − μ

μ̂

)(
k1 + k5Î(t)

)
−
(
1 − μ

μ̂

)
k2 γ − γ̂ −

(
1 − μ

μ̂

)
k3 μ̂ + ω̂ − μ −ω −

(
1 − μ

μ̂

)
k4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(3.15)

where M denotes the term “μ̂ − μ + β̂1Î(t) − β1I(t) + (1 − (μ/μ̂))(k1 + k5Î(t)) − b011” for any

given prefixed constant values Ir ≥ 0, Îr ≥ 0 and B0 :=

[
b011 0 0 0
b021 0 0 0
0 0 0 0
0 0 0 0

]

so that A(t) is decomposed

as follows:

A(t) = A0 + Ã0(t); A0 :=

[
Â0 0

B0 A0

]

; Ã0(t) :=

[
ΔÂ(t) 0

ΔB(t) ΔA(t)

]

. (3.16)

IfA0 and Â0 are stability (or Hurwitz)matrices then the block triangular matrixA0 is a stabil-
ity matrix with stability abscissa (−ρ)which is subject to max(Reλi(A0), Reλi(Â0)) ≤ −ρ < 0,
where the first inequality is nonstrict if there is some multiple eigenvalue of A0.

4. About the Stability of the SEIR Extended Epidemic
Model (3.11)–(3.16)

The SEIR epidemic model (2.1)–(2.4) and its observer (3.4)–(3) are both always globally sta-
ble if N < ∞ if the initial real and observed populations are bounded and equalize N pro-
vided that both systems are positive as, on the other hand, the real problem at hand requires.
This would imply that all the particular populations (susceptible, infected, infectious, and
immune) are nonnegative and less than N so that they are uniformly bounded for all time.
Note that if any of the populations of the SEIR model is negative then boundedness of all
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the components of the associated system is not guaranteed. The boundedness of all the partial
populations upperbounded by a bounded total population N guarantees that the extended
SEIR system (3.11)–(3.16), constructed with the estimated and observer error states, is stable
with

∑4
i=1 x̂i(t) = N and Euclidean norm ‖x̃(t)‖ ≤ ‖x(t)‖ + ‖x̂(t)‖ ≤ 2

√
2N. This fact does not

guarantee by itself thatA(t) is a stability matrix function, that the observation error converges
asymptotically to zero, or that, at least, it converges to a small residual set around zero. This
feature merits further discussion. Note that simple inspection shows thatA0 is a stability ma-
trix if d(s) = (s + μ + β1Ir)(s + μ + σ)(s + μ + γ)(s + μ + ω) is Hurwitz. Also, Â0 is a stability
matrix if det(sI − Â0) = d̂(s) + (k1 + k5Îr)n̂(s) has all its zeros in Re s < 0, where

n̂(s) = (k4 − ω̂)
(
s + μ̂ + σ̂

)(
s + μ̂ + γ̂

)
(4.1)

d̂(s) =
(
s + μ̂ + k1 +

(
β̂1 + k5

)
Îr
)(

s + μ̂ + σ̂
)(
s + μ̂ + γ̂

)(
s + μ̂ + ω̂ − k4

)
. (4.2)

Assume that d̂(s) is a Hurwitz polynomial, that is,

k4 < μ̂ + ω̂, μ̂ + k1 +
(
β̂1 + k5

)
Îr > 0, μ̂ + σ̂ > 0, μ̂ + γ̂ > 0 (4.3)

and define ĥ(s) := (k1 + k5Îr)n̂(s)/d̂(s). Note that

det
(
sI − Â0

)
= d̂(s) +

(
k1 + k5Îr

)
n̂(s) = d̂(s)

(
1 + ĥ(s)

)
= 0 ⇐⇒ 1 + ĥ(s) = 0 (4.4)

has all its solutions in Re s < 0 for all n̂(s) of the form (4.1) from the small gain theorem if and
only if ‖ĥ‖∞ := supω∈R0+

|n̂(iω)/d̂(iω)| < 1 (i =
√−1 being the imaginary complex unit) since

d̂(s) is a Hurwitz polynomial and where ‖ĥ‖∞ is the H∞-norm of the transfer function ĥ(s).
Since A0 is blocktriangular and constant then the following result is direct.

Assertion 4.1. A0 is a stability matrix if and only if μ + β1Ir > 0, μ + σ > 0, μ + γ > 0, μ +ω > 0
and ĥ ∈ RH∞ (i.e., k4 < μ̂ + ω̂; μ̂ + k1 + (β̂1 + k5)Îr > 0; μ̂ + σ̂ > 0; μ̂ + γ̂ > 0) with ‖ĥ‖∞ < 1.

From Assertion 4.1 and Gronwall’s Lemma [29] the following follows.

Assertion 4.2. The matrix functionA(t) is stable ifA0 is a stability matrix, that is, if (4.3) holds

and, furthermore, ρ > supt∈R0+
‖Ã0(t)‖, where (−ρ) < 0 is the stability abscissa of the (stability)

matrix A0.

Another alternative sufficiency type stability condition of A(t), which replaces the

constraint ρ > supt∈R0+
‖Ã0(t)‖ in Assertion 4.2 (see [30] for close related problems), is as

follows.

Assertion 4.3. The matrix function A(t) is stable, so that the unforced extended system (3.11)–
(3.16) is then globally exponentially stable, if A0 is a stability matrix (see Assertion 4.1) and,
furthermore, there exist norm-dependent real constants α0 ∈ R0+ (being sufficiently small)

and α1 ∈ R0+ such that
∫ t+T
t ‖ ˙̃

A0(τ)‖dτ ≤ α0T + α1 for any given fixed T ∈ R+; for all t ∈ R0+.
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Note that the Euclidean norm of b may be directly calculated from those of b̂ and b̃
using (3) and (3.13) leading to

∥
∥
∥b
∥
∥
∥ ≤

(
μ̂ +
∣
∣μ − μ̂

∣
∣)N

μ̂

√(
μ̂ − 2g

)
μ̂ + 2g2 ≤

(
2μ̂ + μ

)
N

μ̂

√(
μ̂ − 2g

)
μ̂ + 2g2 (4.5)

since ‖b̂‖ = N
√
(μ̂ − 2g)μ̂ + 2g2 and ‖b̃‖ = (|μ − μ̂|N/μ̂)

√
(μ̂ − 2g)μ̂ + 2g2. Note that ρ0 :=

ρ − supt∈R0+
‖Ã0(t)‖ > 0 so that (−ρ0) < 0 is larger than the maximum of the stability abscissas

of A(t) for t ∈ R0+ if Assertion 4.3 holds.

Assertion 4.4. If Assertion 4.3 holds then any solution of the forced system (3.11) to (3.16)
satisfies the following inequality for some real constant k0 ≥ 1:

‖x(t)‖ ≤ M(t) := k0e
−ρ0t
(

‖x(0)‖ +
∥∥∥b
∥∥∥

∫ t

0
eρ0τdτ

)

−→ k0
ρ0

(
μ̂ +
∣∣μ − μ̂

∣∣)N

μ̂

√(
μ̂ − 2g

)
μ̂ + 2g2 as t −→ ∞,

(4.6)

and the corresponding substates of x(t) satisfy

‖x̂(t)‖ ≤ M̂(t) := k0e
−ρ0t
(

‖x̂(0)‖ +
∥∥∥b̂
∥∥∥

∫ t

0
eρ0τdτ

)

−→ k0
ρ0

N
√(

μ̂ − 2g
)
μ̂ + 2g2 as t −→ ∞

‖x̃(t)‖ ≤ M̃(t) := k0e
−ρ0t
(

‖x̃(0)‖ +
∥∥∥b̃
∥∥∥

∫ t

0
eρ0τdτ

)

−→ k0
ρ0

∣∣μ − μ̂
∣∣N

μ̂

√(
μ̂ − 2g

)
μ̂ + 2g2 as t −→ ∞.

(4.7)

Note that ‖x̃(t)‖ → 0 as t → ∞ if μ̂ = μ (and then ‖x̂(t)‖ → (k0N/ρ0)
√
(μ − 2g)μ + 2g2

as t → ∞) and, if in addition, g = 0 then ‖x̂(t)‖ → k0μN/ρ0 as t → ∞) or if μ̂ = g = 0
(and then ‖x̂(t)‖ → 0 as t → ∞). Since b := ((1 − g/μ̂)μN, 0, 0, gμN/μ̂)T then ‖x(t)‖ ≤
‖M(t)‖ → (k0/ρ0)(μ̂ + |μ − μ̂|N/μ̂)

√
(μ̂ − 2g)μ̂ + 2g2 as t → ∞. However, this upperbound

can be improved if a version of Assertion 4.3 applied to the matrix function A(t) leads to
a smaller ratio of its corresponding constants than the ratio k0/ρ0 of the whole extended
system.
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5. About the Positivity of the SEIR Extended Epidemic
Model (3.11)–(3.16)

Positive systems are those having nonnegative solutions in the sense that all the state com-
ponents are nonnegative for all time [31, 32]. Because of the nature of the SEIR epidemic mod-
el (2.1)–(2.4), it is required that it be a positive system for the implemented vaccination law.
The extended SEIR system has a unique solution for each initial state given by:

x(t) = eA0t

(

x(0) +
∫ t

0
e−A0τ

(
Ã0(τ)x(τ) + b

)
dτ

)

. (5.1)

From (3.4) and (3.7) the SEIR solution and its estimate through the observer are uniquely
given by

x̂(t) = eÂ0t

(

x̂(0) +
∫ t

0
e−Â0τ

(
ΔÂ(τ)x̂(τ) + b̂

)
dτ

)

(5.2)

x(t) = eA0t

(

x(0) +
∫ t

0
e−A0τ[(ΔA(τ)x(τ) + B(τ)x̂(τ) + b)]dτ

)

. (5.3)

In principle, it is apparently nonnecessary to require in addition that the estimation algorithm
or the extended system be positive. However, note the following features by direct inspection
of (5.2)-(5.3).

(1) If Â0 is a Metzler matrix, ΔÂ(t) > 0, for all t ∈ R0+ and b̂ > 0, then x̂(0) > 0 ⇔
x̂(t) > 0, for all t ∈ R0+.

(2) If x̂(t) > 0, for all t ∈ R0+ (i.e., if Â0 is a Metzler matrix, ΔA(t) > 0; for all t ∈ R0+,
b̂ > 0 and x̂(0) > 0), b > 0, ΔA(t) > 0, B(t) > 0, for all t ∈ R0+ and A0 is a Metzler
matrix then (xT (0), x̂T (0))T > 0 ⇒ x(t) > 0, for all t ∈ R0+.

(3) Â0 depends on the vaccination gain k1,ΔÂ(t) does not depend on k1, but it depends
on k5 (see (3.15)), and B(t) in (3.10) depends on ki (i = 1, . . . , 5). Thus, if k1 is chosen
so that Â0 is not a Metzler matrix (because its (4.1) entry is negative), x̂(t) may be
nonpositive at some time for some nonnegative initial condition x̂(0). At the same
time, the vector function B(t)x̂(t) may have some sufficiently negative component
at some time “t” so that some corresponding component of x(t) may be negative
at that time. A close reasoning may be used for the case that k5 is such that B(t) is
nonpositive (even if Â0 is a Metzler matrix).

The following result follows from the above observations.

Assertion 5.1. The following properties hold.

(i) Assume thatA0 and Â0 areMetzler matrices, ΔA(t) > 0, b+B(t)x̂(t) ≥ 0,ΔÂ(t) > 0,
for all t ∈ R0+, b > 0 and b̂ > 0 then (xT (0), x̂T (0))T > 0 ⇒ x(t) > 0, x̂(t) > 0,
for all t ∈ R0+. In other words, the extended system of state (xT (t), x̂T (t))T is
positive.
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(ii) Assume that in Property (i) Â0 fails to be a Metzler matrix because of the value k1
in its (4,1) entry of ΔÂ(t) is not positive due to the parameter k5. Then, for initial
conditions x̂(0) > 0 which make x̂(t) be nonpositive (i.e., with some negative com-
ponent on a time interval), x(t) can fail to be positive for all time for some x(0) > 0
and some such k1 or k5 with sufficiently large absolute values.

Remark 5.2. It is required for modeling coherency that both the epidemic SEIR model and its
observer be positive dynamic systems. The condition of nonnegativeness of (b +B(t)x̂(t)) for
all time in Assertion 5.1 requires g ≥ 0, and

(
μ̂ − g

)
N ≥

(
k1 + k5Î(t)

)
Ŝ(t) + k2Ê(t) + k3Î(t) + k4R̂(t) ≥ −gN; ∀t ∈ R0+ (5.4)

which may be guaranteed by choosing the controller gains under the knowledge N =
∑4

i=1 x̂i(t), for all t ∈ R0+ Also, Â0 has to be a Metzler matrix, mint∈R0+ΔÂ(t) > 0 and b̂ > 0
(Assertion 5.1(i)) so that 0 ≤ g ≤ μ̂, k2 ≤ 0, −γ̂ ≤ k3 ≤ 0, 0 ≤ k4 ≤ ω̂, k1 + k5Îr ≥ 0 in order that
the observer be a positive system

(
β̂1 + k5

)(
Îr −max

t∈R0+

Î(t)
)

≥ 0; k5

(
min
t∈R0+

Î(t) − Îr

)
≥ 0. (5.5)

This restricts the generality of the choice of the gains in the vaccination control law (3.3) since
it would be needed to accomplish with the control gain constraint 0 ≥ k5 ≥ −β1. However,
if the requirement for the observer to be positive is removed then it is only needed that the
SEIR model (2.1)–(2.4) be positive under a modified vaccination law (3.3)

V (t) =
1

μ̂N

(
k1Ŝ(t) + k2Ê(t) + k3Î(t) + k4R̂(t) + k5Ŝ(t)Î(t) + gN

)
(5.6)

by requiring the weaker condition that 0 ≤ g ≤ μ̂ and

min
(
σ,ω, γ

) ≥ 0; Ir ≥ max
t∈R0+

I(t). (5.7)

Note that while Assertion 5.1(i) is of sufficiency type to guarantee positivity, the lack of all the
joint above conditions in Assertion 5.1(ii) refers to a necessary condition for positivity in such
cases. Note also that positive and total population equal to N for all time implies necessary
global stability so that we have directly the following.

Assertion 5.3. If Assertion 5.1(i) holds then the extended SEIR model (i.e., the combined SEIR
model plus its observer) is globally stable if all the initial populations and their estimates are
nonnegative. Furthermore all the susceptible, infected, infectious, and immune populations
and their estimates are upperbounded by N and the sum of all the populations and that
of their estimates is equal to N at any time. The converse is not true, in general, so that if
the extended SEIR model is stable under Assertion 4.3 then such a model is not necessarily
positive.
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The positivity of the observer-based vaccination control is a nonnegative function if the
conditions (5.5) hold, guaranteeing that the observer is a positive system and furthermore the
gain 0 ≥ k5 ≥ max(−β1,−Ir/k1) ≥ −I(t)/k1. Thus, one has the following result.

Assertion 5.4. The vaccination control below is nonnegative for all time if k5 ≥ 0 and (5.5)
hold:

V (t) =
1

μ̂N

(
k1Ŝ(t) + k3Î(t) + k4R̂(t) + k5Ŝ(t)Î(t) + gN

)
(5.8)

with −γ̂ ≤ k3 ≤ 0. Furthermore, the observer is a positive system under the vaccination control
(5.8). If, in addition, (5.7) holds then the SEIR model (2.1)–(2.4) is also a positive system
under the vaccination control (5.8).

The more general vaccination control (3.3), namely,

V (t) =
1

μ̂N

(
k1Ŝ(t) + k2Ê(t) + k3Î(t) + k4R̂(t) + k5Ŝ(t)Î(t) + gN

)
(5.9)

with ki ≥ 0, i = 2, 3, 4, but not jointly zero, k5 ≥ 0, and subject to (5.5)–(5.7) is not guaranteed
to be nonnegative for all time (since the observer is not guaranteed to be a positive system).

The following vaccination nonnegative control combined of (3.3) and (5.8) may be
used when the positivity of the observer is not imposed:

V (t) =

⎧
⎪⎨

⎪⎩

V (t), if 1 ≥ V (t) ≥ 0,

1
μ̂N

(
k1Ŝ(t) + k4R̂(t) + k5Ŝ(t)Î(t) + gN

)
, otherwise,

V (t) :=
1

μ̂N

(
k1Ŝ(t) + k2Ê(t) + k3Î(t) + k4R̂(t) + k5Ŝ(t)Î(t) + gN

)

(5.10)

with ki ≥ 0, i = 1, 2, 3, 4, 5, subject to (5.5)-(5.7). This nonnegative vaccination control keeps
simultaneously as positive systems to both the SEIR model and its observer.

6. Combined Positivity, Stability, and Tracking Objective

The problem at hand requires as tracking objective simultaneously stability, positivity and
tracking in the sense that the immune population converges to the total population which
means that the total population including susceptible, infected, and infectious populations is
zero. Positivity implies global stability (while the converse is not always true) for all given
combination of nonnegative initial populations but the suitable tracking objective is that the
vaccination strategy leads asymptotically to a total immune population while the other pop-
ulations converge to zero while keeping positivity and then global stability. This issue is now
discussed through the design of the controller parameter g whose appropriate design is the
basis for achievement of asymptotic tracking. Note that in order that the SEIR model and its
observer be both positive, it is needed that 0 ≤ g ≤ μ̂ under Assertion 5.1(i)—see Remark 5.2.
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The suitable tracking observer-based objective is R̂(t) → N as t → ∞what implies Ŝ(t), Ê(t),
Î(t) → 0 as t → ∞with ‖x̃(t)‖ being as small as possible as t → ∞. Define

b̂1 :=
b̂

N
= (1, 0, 0, 0)T μ̂ + (−1, 0, 0, 1)Tg = e1μ̂ + (e4 − e1)g, (6.1)

where ei is the ith unity vector in R4 with its ith component being one. The above tracking
objective may be achieved in some prescribed finite T or infinite time (i.e., asymptotically
as T → ∞). The asymptotic tracking objective is stated according to the relations of taking
limits in (5.2) as t → ∞ by designing a time-varying parameter g ∈ PC(0)(R0+;R) as follows:

g(t) =

⎧
⎨

⎩

g(t) if gM ≥ g(t) ≥ 0, 0 ≤ t ≤ T, or if μ̂ ≥ g(t) ≥ 0, t > T

g
(
f(t)
)
, otherwise

g(t) :=
1 − ∫ t

0 eT4 e
Â0(t−τ)

(
e1μ̂ +N−1ΔÂ(τ)x̂(τ)

)
dτ

∫ t

0 eT4 e
Â0(t−τ)(e4 − e1)dτ

f(t) := max
(
t1 < t : g(t1) ≥ 0, g

(
t1 + t̃

)
< 0; ∀t̃ ∈ (0, t − t1]

)
if 0 ≤ t ≤ T

f(t) := max
(
t1 < t : μ̂ ≥ g(t1) ≥ 0, g

(
t1 + t̃

)
< 0; ∀t̃ ∈ (0, t − t1]

)
if t > T

(6.2)

with μ̂ ≤ gM < ∞ being a prefixed real constant which can be potentially large. It turns out the
following main result.

Theorem 6.1. If Â0 is a stability matrix then g(t) → g∞ ∈ [0, μ̂]. If the constant g is replaced with
the piecewise continuous function defined by (6.2) in the SEIR observer, (5.5) holds and the vaccina-
tion control (5.10) is used under nonnegative initial conditions of the observer then the SEIR observer
is a positive system with all the populations being nonnegative and of total sum equal toN for all time
while the vaccination control is also nonnegative for all time. Furthermore, R̂(t) → N, Ŝ(t), Ê(t),
Î(t) → 0 as t → ∞.

If, in addition, (5.7) holds then the SEIR model is also a positive system with populations non-
negative and equalizing N for all time. The estimation error fulfills the uniform upperbound through
time of Assertion 4.4.

7. Simulation Examples

This section illustrates through simulation examples the theoretical results stated in the previ-
ous sections for the combined SEIR control-observer model. The first example is concerned
with the estimation properties of the observer given by (3.1) in the absence of vaccination.
Then, the vaccination strategy given by (3.3) is introduced and its effects analyzed. The
SEIR model is described by the following parameters taken from an influenza outbreak in
an English college, also used in [19]:

1
μ
= 255days,

1
σ

= 2.2days,
1
ω

= 15days, β = 1.66days−1 (7.1)
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Figure 1: Observation error in the vaccination-free case and all the parameters known.

while it is taken γ = σ. The initial conditions are given by S(0) = 400, E(0) = 150, I(0) = 250,
and R(0) = 200 individuals so that the total population is N = N(0) = N(t) = 1000 individu-
als.

7.1. Observer Vaccination-Free Dynamics

Firstly, we consider the case when no vaccination is applied. The initial estimates of each pop-
ulation are Ŝ(0) = 250, Ê(0) = 150, Î(0) = 150, R̂(0) = 450 individuals. Note that there is a great
difference between the actual initial values and the estimated ones. Figure 1 shows the error
between the actual and the estimated variables through time in the case when all the param-
eters of the model are known.

As it can be seen in Figure 1, all the observation errors asymptotically vanish and the
observer is capable of identifying the steady state values of the populations. Figure 2 shows,
as a matter of example, the time evolution of the susceptible and immune while Figure 3
shows the evolution of each population.

However, when the parameters of the system are not known and an estimation of its
value is used, the observer does not track the real populations as shown in Figure 4 with
estimated parameters

1
μ̂
= 235days,

1
σ̂

= 2days,
1
ω̂

= 14days, β̂ = 1.46days−1 (7.2)

and γ̂ = σ̂.
Nevertheless, the observer-based control law (3.3) still works in the presence of this es-

timation error.
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Figure 2: Evolution of the real and observed states for the susceptible and immune.
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Figure 3: Evolution of the current populations through time.

7.2. Combined Observer-SEIR Model Dynamics in the
Presence of Vaccination

In this section, a vaccination strategy given by (3.3) is introduced in the system. As comment-
ed in Section 5, Remark 5.2, it is desirable for modeling coherency that both, the SEIR model
and its observer, be positive. Hence, this is the case considered in this simulation example. In
order to guarantee the positiveness of both systems, the control gains have to be chosen ac-
cording Assertions 4.4 and 5.1 from Section 5 with k1 = 1, k2 = −0.1 < 0, k3 = −γ̂ , k4 = 0.95ω̂,
k5 = −β̂1, g = μ̂ satisfying both assertions. Figures 5 and 6 show the time evolution of the
populations and the observation error, respectively.

Figure 5 shows that not only the SEIR model is globally stable regardless the obser-
vation error depicted in Figure 6 but also that the observer-based control law erradicates
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Figure 4: Observation error in the vaccination-free case and unknown model parameters.
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Figure 5: Evolution of the populations with vaccination and unknown parameters.

the infective and infectious while the immune almost reaches to be the total populationN. A
small number of the susceptible still appear in the steady state. This behavior is much better
than the vaccination-free one depicted in Figure 3 where a number of the infective and infec-
tious appear. Furthermore, the observed SEIR model is also positive as shown in Figure 7.

It is remarkable to notice the good results obtained by the proposed vaccination strat-
egy making almost all the population become immune. Thus, it may not be necessary in
practice to implement the complex time-varying gain given by (6.2) to make immune the total
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Figure 6: Observation error with vaccination and unknown parameters.
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Figure 7: Time evolution of the positive observed states.

population. It suffices with taking g = μ̂ which is the largest value within its admissible
interval g ∈ [0, μ̂] according to Theorem 6.1 in Section 6.
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