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Abstract: This note generalizes several existing results related to Hermite–Hadamard inequality
using h-Godunova–Levin and (h1, h2)-convex functions using a fractional integral operator associated
with the Caputo–Fabrizio fractional derivative. This study uses a non-singular kernel and constructs
some new theorems associated with fractional order integrals. Furthermore, we demonstrate that the
obtained results are a generalization of the existing ones. To demonstrate the correctness of these
results, we developed a few interesting non-trivial examples. Finally, we discuss some applications
of our findings associated with special means.
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1. Introduction

Fractional calculus has grown exponentially in popularity, which enables the definition
of fractional derivatives and fractional integrals in a variety of ways. It is worth noting
that Leibniz and L’Hospital proposed the first fractional calculus idea in 1695. The origins
and principles of fractional calculus have recently been the subject of intense research,
particularly in light of the shortcomings of conventional calculus. The study of fractional
order integrals and derivatives, as well as their applications in real and complex domains,
is the focus of fractional calculus. Classical analysis arithmetic is required to generate more
realistic results with fractional analysis. A variety of mathematical models can be solved
using fractional differential equations and integral equations. Because they are special
instances of fractional order mathematical models, mathematical models with fractional
order have more broad and accurate conclusions than conventional mathematical models.
In contrast to integer orders, fractional theory allows for the handling of any number of
orders, real or integer, making it a more suitable method. We can calculate the precise
stability and uniqueness of fractional differential equations using fractional integral inequal-
ities. In today’s world, almost no field of nonlinear disciplines or research is unaffected by
fractional methods and instruments. Various fields of engineering have numerous applica-
tions, such as electrical engineering, control theory, mechanical engineering, viscoelasticity,
rheology, optics, and physics; see Refs. [1–4].
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A variety of methods and creative concepts are employed by researchers to generalize
and extend the theory of convexity. There have been many developments, generalizations,
and extensions of convexity in recent years, enabling us to solve problems arising both with
concrete and applied sciences. In recent years, the study of convexity has been increasingly
broadened by its relation to inequalities. There are numerous such inequalities reported
in the literature as a result of applications of convexity in both pure and applied sciences.
As a result of its many applications in mathematics, convexity is often used as the basis for
estimating error bounds for a wide variety of problems; see Ref. [5]. An example of this is
when the trapezoidal formula for numerical integration is used to estimate errors due to
convexity; see Ref. [6]. Among others, nonlinear programming problems can be applied to
special means; see Ref. [7]. As a result of Jensen’s discovery of the first convex inequality,
a long history of research has been conducted on convex inequalities. Convex inequalities
have found applications in solving problems, optimizing, and theorizing probability. On the
other hand, generalized convexity mapping can address a wide range of issues in both pure
and nonlinear analysis. Consequently, it is possible to compare the Hermite–Hadamard
inequality to a convex function that satisfies generalised convexity. Various inequalities are
constructed by using related classes of convexity, such as Simpson, Ostrowski, Opial, Bullen,
and the famous Hermite–Hadamard, which has been extended to various classes. There
are a wide variety of convex classes and integral operators used in the construction of these
inequality, including the standard Riemann integral, Caputo–Fabrizio, Riemann–Liouville,
and k-fractional operators. Caputo fractional derivatives were first introduced by Michele
Caputo in 1967; see Ref. [8]. As the kernel in the Caputo operator is not singular, it can be
transformed into an integral using the Laplace transformation. The Caputo derivatives
and integrals are generally used when physical models are presented because the physical
interpretation is too clear and precise. The integral operator has recently been associated
with integral inequalities, and several authors have utilized this notion and developed
different inequalities using related classes of convexity. Butt et al. [9] have developed
various inequalities using the Caputo–Fabrizio operater via exponetially convex mappings.
As a result of the Caputo operator, Kemali et al. [10] proved some modified version of the
famous double inequality for s-convex functions. A generalized form of these inequalities
was provided by Abbasi and his colleagues for s-convex functions using a Caputo–Fabrizio
integral operator, as well as bounds for the inequalities; see Ref. [11]. Gurbuz et al. [12]
used convex mappings to create Hermite–Hadamard inequalities. Sahoo et al. [13,14]
developed Hermite–Hadamard and midpoint inequalities via Caputo–Fabrizio operator.
Nwaeze et al. [15] established these inequalities using strongly convex mappings. Utilizing
h-convexity, Cortez et al. [16] created Hermite–Hadamard Mercer-type inequalities using
the Caputo–Fabrizio operator. Tariq et al. [17] developed some new integral inequalities
of the Hermite–Hadamard and Pachpatte types that incorporate the concept of prein-
vexity and Caputo–Fabrizio fractional integral operators. Nosheen et al. [18] developed
several new integral inequalities involving the digamma function and special means for
(s, m)-convex functions using Caputo fractional derivatives. Zhang et al. [19] presents a
generalization of the Hermite–Hadamard-type inequalities for (p, h)-convex functions via
the Caputo–Fabrizio fractional integral operator. Nasir et al. [20] developed bounds and
novel connections for Hermite–Hadamard type inequalities for differentiable maps whose
derivatives at certain powers are s-convex via the Caputo–Fabrizio operator. For some
recent developments related to developed inequalities; see Refs. [21–37].

Using the Riemann integral operator, Afzal and his colleagues developed Jensen
and Hermite–Hadamard type inequalities using h-Godunova–Levin and (h1, h2)-convex
functions; see Refs. [38,39].
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Theorem 1 (see [38]). Let h : (0, 1) → R+ and h
(

1
2

)
6= 0. Let S : I = [u, v] → R+

I be an
CR interval-valued h-Godunova–Levin function defined on [u, v] and S ∈ L1[u, v]; then, one has

h
(

1
2

)
2

S

(
u + v

2

)
�CR

1
v− u

∫ v

u
S(i)di �CR (S(u) +S(v))

∫ 1

0

dc
h(c)

.

Theorem 2 (see [39]). Let h1, h2 : (0, 1) → R+ and H
(

1
2 , 1

2

)
6= 0. Let S : I = [u, v] → R+

I

be an CR interval-valued (h1, h2)-convex function defined on [u, v] and S ∈ L1[u, v]; then, one
has

1

2H
(

1
2 , 1

2

)S(u + v
2

)
�CR

1
v− u

∫ v

u
S(i)di �CR (S(u) +S(v))

∫ 1

0
H(c, 1− c)dc.

As a result of studying the Strong literature and specific articles [12,39,40], we refor-
mulated the above two results based on Caputo–Fabrizio fractional integral operators.

This work is significant and novel because it is the first time we have developed
these inequalities using Caputo–Fabrizio fractional integral operators for h-Godunova–
Levin and (h1, h2)-convex functions. These two classes of convexties are remarkable for
the fact that they generalize several other related classes of convexities by setting some
suitable parameters. In addition, we provide some remarks to show how our results
generalize several existing findings. Moreover, we know that Godunova–Levin functions
are extremely interesting; in that class, we have non-negative monotone and non-negative
convex functions that are rarely used compared with classical convexity, so we hope these
results will inspire readers to apply them to other approaches in the future. Furthermore,
here are some other interesting properties that relate to the Godunova–Levin functions; see
Refs. [41–44].

The paper structure consists of the following components: In Section 2, we begin with
some known definitions and results that assist in proving the main findings of the paper.
As discussed in Section 3, we developed some new variants of the Hermite–Hadamard type
of inequalities involving h-Godunova–Levin functions. In Section 4, we introduced a more
generalized type of convexity called (h1, h2)-convex functions. We used these functions
to develop some variants of Hermite–Hadamard inequality involving Caputo–Fabrizio
fractional operators. The purpose of Section 5 is to link our above results developed by the
h-Godunova–Levin class of convexity to some applications to special means. In Section 6,
we summarize our main findings and their applications. We also discuss future directions
based on these new results. This structured organization presents an in-depth analysis of
the introduced operators, establishes new inequalities, shows applications, and explores
interesting results.

2. Preliminaries

The purpose of this section is to present some known definitions and results that can
assist in proving the main findings of the article.

Definition 1 (see [38]). (Convex function) . Let S : υ→ R defined on convex set υ ⊂ Rn; then,
S is called to be convex if

S(cu + (1− c)v) ≤ cS(u) + (1− c)S(v), (1)

holds for all u, v ∈ υ and c ∈ (0, 1).

Definition 2 (see [38]). (h-convex function).Consider two non-negative functions h,S such that
h : υ ⊂ R→ R and S : I ⊂ R→ R; then, S is called to be h-convex if

S(cu + (1− c)v) ≤ h(c)S(u) + h(1− c)S(v), (2)
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holds for all u, v ∈ υ and c ∈ [0, 1].

Definition 3 (see [38]). (h-Godunova–Levin function).Consider two non-negative functions h,S
such that h : υ ⊂ R→ R and S : I ⊂ R→ R; then, S is known as h-Godunova–Levin if

S(cu + (1− c)v) ≤ S(u)
h(c)

+
S(v)

h(1− c)
, (3)

holds for all u, v ∈ υ and c ∈ (0, 1).

If inequality (3) is altered, then mapping is considered to be in concave sense. The fam-
ily of all convex (concave) h-Godunova–Levin functions are represented by SGX(h, υ),
SGV(h, υ), respectively.

Definition 4 (see [39]). ((h1, h2)-convex function). Consider non-negative functions h1, h2,S
such that h1, h2 : υ ⊂ R→ R and S : I ⊂ R→ R; then, S is called to be (h1, h2)-convex if

S(cu + (1− c)v) ≤ h1(c)h2(1− c)S(u) + h1(1− c)h2(c)S(v), (4)

holds for all u, v ∈ υ and c ∈ [0, 1].

Definition 5 (see [12]). (Caputo–Fabrizio fractional time derivative). The Caputo derivative
of order ε for any arbitrary function S can be defined as

Dε
tS(t) =

1
Γ(1− ε)

∫ t

u

S′(i)

(t− i)ε
di, (5)

and u ∈ [−∞, t),S ∈ H1(u, v), u < v. H1(u, v) is class of first order differentiable function
with ε ∈ (0, 1). By changing this factor 1

Γ(1−ε)
with B(ε)1−ε and kernel (t− i)−ε with the following

exponential function e
(
−ε(t−i)ε

1−ε

)
, where B(ε) > 0 is a normalization function that is equally spaced

with B(0) = B(1) = 1, we obtained modified version of fractional time derivative

(Dε
tS)(t) =

B(ε)
1− ε

∫ t

u
S′(i)e

−ε(t−i)ε
1−ε di, (6)

Definition 6 (see [12]). Let S ∈ H1(u, v), u < v, ε ∈ (0, 1); then, the left version of Caputo–
Fabrizio derivative is defined as follows:(

CFC
u DεS

)
(t) =

B(ε)
1− ε

∫ k

u
S′(i)e

−ε(t−i)ε
1−ε di, (7)

As a result, the integral associated with this fractional derivative is(
CF
u IεS

)
(t) =

1− ε

B(ε)S(t) +
ε

B(ε)

∫ t

u
S(i)di. (8)

We have now defined the right Caputo–Fabrizio fractional derivative as follows:(
CFCDε

vS
)
(t) =

−B(ε)
1− ε

∫ v

t
S′(i)e

−ε(i−t)ε
1−ε di, (9)

and the integral associated with this fractional derivative is(
CF Iε

vS
)
(t) =

1− ε

B(ε)S(t) +
ε

B(ε)

∫ v

k
S(i)di. (10)
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There have been recent attempts to generalize existing kernels using fractional deriva-
tive operators and integral operators. By extending a Caputo–Fabrizio fractional integral
operator, we will generalize the kernel that Dragomir and Agarwal proposed; see Ref. [45].

Lemma 1. Let S : υ̊ ⊆ R → R be a differentiable mapping on υ̊ and u, v ∈ υ with u < v. If
S′ ∈ L1[u, v] and c ∈ (0, 1); then, we have

S(u) +S(v)
2

− 1
v− u

∫ v

u
S(i)di =

v− u
2

∫ 1

0
(1− 2c)S′(cu− (1− c)v)dc. (11)

Lemma 2 (see [12]). Let S : υ̊ ⊆ R → R be a differentiable mapping on υ̊ and u, v ∈ υ with
u < v. If S′ ∈ L1[u, v] and ε ∈ (0, 1); then, we have

v− u
2

∫ 1

0
(1− 2c)S′(cu− (1− c)v)dc− 2(1− ε)

ε(v− u)
S(k)

=
S(u) +S(v)

2
− B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)
]
. (12)

where k ∈ [u, v] and B(ε) > 0 is a normalization function.

Theorem 3 (Hölder inequality see [46]). Let p > 1 and 1/p + 1/q = 1. If S and G are
real-valued mappings defined on [u, v] with |S|p, |G|q are integrable functions on [u, v], then

∫ v

u
|S(x)G(x)|dx ≤

(∫ v

u
|S(x)|pdx

)1/p(∫ v

u
|G(x)|qdx

)1/q
. (13)

3. Hermite–Hadamard Inequality via H-Godunova–Levin Functions Involving
Caputo–Fabrizio Fractional Operator

As part of this section, we used a concept of Godunova–Levin mappings and de-
veloped some new variants of Hermite–Hadamard inequalities using Caputo–Fabrizio
fractional operators.

Theorem 4. Let S : I = [u, v] → R be an h-Godunova–Levin function defined on [u, v] and
S ∈ L1[u, v]. If ε ∈ (0, 1), then we have

h
(

1
2

)
2

S

(
u + v

2

)
≤ B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)− 2(1− ε)

B(ε) S(k)
]

≤ (S(u) +S(v))
∫ 1

0

dc
h(c)

, (14)

where k ∈ [u, v] and B(ε) > 0 is a normalization function.

Proof. The Hermite–Hadamard inequality for h-Godunova–Levin function is as follows:

h
(

1
2

)
2

S

(
u + v

2

)
≤ 1

v− u

∫ v

u
S(i)di ≤ (S(u) +S(v))

∫ 1

0

dc
h(c)

.

Since S is h-Godunova–Levin function on [u, v], we have

2h
(

1
2

)
2

S

(
u + v

2

)
≤ 2

v− u

∫ v

u
S(i)di =

2
v− u

(∫ k

u
S(i)di+

∫ v

k
S(i)di

)
. (15)

Multiplying both sides of (15) by ε(v−u)
2B(ε) and adding 2(1−ε)

B(ε) S(k), we get
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2(1− ε)

B(ε) S(k) +
ε(v− u)
B(ε)

h
(

1
2

)
2

S

(
u + v

2

)
≤ 2(1− ε)

B(ε) S(k) +
ε

B(ε)

[∫ k

u
S(i)di+

∫ v

k
S(i)di

]
=

(
(1− ε)

B(ε) S(k) +
ε

B(ε)

∫ k

u
S(i)di

)
+

(
(1− ε)

B(ε) S(k) +
ε

B(ε)

∫ v

k
S(i)di

)
=
(

CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k). (16)

We obtain the first part after appropriately rearranging (16). Let us prove the right side of
required result. The Hermite–Hadamard inequality for h-Godunova–Levin function is

2
v− u

∫ v

u
S(i)di ≤ 2

[
(S(u) +S(v))

∫ 1

0

dc
h(c)

]
,

2
v− u

[∫ k

u
S(i)di+

∫ v

k
S(i)di

]
≤ 2

[
(S(u) +S(v))

∫ 1

0

dc
h(c)

]
. (17)

We have achieved this by employing the same operator as with (15) in (17); we have(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)

≤ 2(1− ε)

B(ε) S(k) +
ε(v− u)
B(ε)

(
(S(u) +S(v))

∫ 1

0

dc
h(c)

)
. (18)

As a result of rearranging (18), we obtain the required output that is

h
(

1
2

)
2

S

(
u + v

2

)
≤ B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)− 2(1− ε)

B(ε) S(k)
]

≤ (S(u) +S(v))
∫ 1

0

dc
h(c)

. (19)

Example 1. Consider [u, v] = [0, 1], h(c) = 1
c with B(ε) = 1 and for all c ∈ (0, 1). If S :

[u, v]→ R+ is defined as
S(c) = c2

then

h
(

1
2

)
2

S

(
u + v

2

)
=

1
4

,

B(ε)
ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)− 2(1− ε)

B(ε) S(k)
]
=

1
3

,

(S(u) +S(v))
∫ 1

0

dc
h(c)

=
1
2

.

Consequently,
1
4
≤ 1

3
≤ 1

2
.

This verifies above Theorem.

The following remark proves that our result is a generalization of an existing result.
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Remark 1. (i) Taking h(c) = 1
c in above result, we obtain [12] [Theorem 2].

(ii) Taking h(c) = cs in above result with ε = 1, we obtain [47] [Theorem 2.1].
(iii) Taking h(c) = 1 in above result with ε = 1, we obtain [48] [Theorem 1].

Theorem 5. Let S1,S2 : I ⊆ R → R be two h-Godunova–Levin functions on I. If
S1S2 ∈ L1([u, v]); then, we have the following inequality:

2B(ε)
ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)− 2(1− ε)

B(ε) S1(k)S2(k)
]

≤
(

2
∫ 1

0

dc
(h(c))2

)
M(u, v) +

(
2
∫ 1

0

dc
h(c)h(1− c)

)
N(u, v), (20)

where
M(u, v) = S1(u)S2(u) +S1(v)S2(v),

and
N(u, v) = S1(u)S2(v) +S1(v)S2(u).

Proof. By definition of h-Godunova–Levin, we have

S1(cu + (1− c)v) ≤ S1(u)
h(c)

+
S1(v)

h(1− c)
, ∀c ∈ (0, 1), u, v ∈ I, (21)

and

S2(cu + (1− c)v) ≤ S2(u)
h(c)

+
S2(v)

h(1− c)
, ∀c ∈ (0, 1), u, v ∈ I. (22)

Multiplying both sides of (21) and (22), we have

S1(cu + (1− c)v)S2(cu + (1− c)v)

≤ S1(u)S2(u)

(h(c))2 +
S1(v)S2(v)

(h(1− c))2 +
[S1(u)S2(v) +S1(v)S2(u)]

h(c)h(1− c)
. (23)

Integrating (23) and changing variables, we obtain

1
v− u

∫ v

u
S1(i)S2(i)di ≤ S1(u)S2(u)

∫ 1

0

dc

(h(c))2 +S1(v)S2(v)
∫ 1

0

dc

(h(1− c))2

+[S1(u)S2(v) +S1(v)S2(u)]
∫ 1

0

dc
h(c)h(1− c)

,

which implies

2
v− u

[∫ k

u
S1(i)S2(i)di+

∫ v

k
S1(i)S2(i)di

]
≤ 2

[∫ 1

0

dc

(h(c))2 [S1(u)S2(u) +S1(v)S2(v)]

]

+
∫ 1

0

dc
h(c)h(1− c)

[S1(u)S2(v) +S1(v)S2(u)]

≤ 2

[(∫ 1

0

dc

(h(c))2

)
M(u, v) +

(∫ 1

0

dc
h(c)h(1− c)

)
N(u, v)

]
. (24)
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Multiplying both sides of (24) by ε(v−u)
2B(ε) and adding 2(1−ε)

B(ε) S1(k)S2(k), we obtain

ε

B(ε)

[∫ k

u
S1(i)S2(i)di+

∫ v

k
S1(i)S2(i)di

]
+

2(1− ε)

B(ε) S1(k)S2(k)

≤ ε(v− u)
B(ε)

[
2

(∫ 1

0

dc

(h(c))2

)
M(u, v) + 2

(∫ 1

0

dc
h(c)h(1− c)

)
N(u, v)

]

+
2(1− ε)

B(ε) S1(k)S2(k). (25)

Thus, (
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)

≤ ε(v− u)
B(ε)

[
2

(∫ 1

0

dc

(h(c))2

)
M(u, v) + 2

(∫ 1

0

dc
h(c)h(1− c)

)
N(u, v)

]

+
2(1− ε)

B(ε) S1(k)S2(k). (26)

As a result of rearranging (26), we obtain the required output that is

2B(ε)
ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)− 2(1− ε)

B(ε) S1(k)S2(k)
]

≤
(

2
∫ 1

0

dc
(h(c))2

)
M(u, v) +

(
2
∫ 1

0

dc
h(c)h(1− c)

)
N(u, v). (27)

Example 2. Consider [u, v] = [0, 1], h(c) = 1
c with B(ε) = 1 and for all c ∈ (0, 1). If

S1,S2 : [u, v]→ R+ are defined as

S1(c) = c2 and S2(c) = 2c2 + 1,

then

2B(ε)
ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)− 2(1− ε)

B(ε) S1(k)S2(k)
]
=

22
15

,(
2
∫ 1

0

dc
(h(c))2

)
M(u, v) +

(
2
∫ 1

0

dc
h(c)h(1− c)

)
N(u, v) =

7
3

.

Consequently,
22
15
≤ 7

3
.

This verifies above Theorem.

Theorem 6. Let S1,S2 : J ⊆ R → R be two h-Godunova–Levin functions on J. If
S1S2 ∈ L1([u, v]), then we have the following inequality:

[
h( 1

2 )
]2

2
S1

(
u + v

2

)
S2

(
u + v

2

)
− B(ε)

ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)
]

+
2(1− ε)

ε(v− u)
S1(k)S2(k) ≤ M(u, v)

∫ 1

0

dc
h(c)h(1− c)

+
1
2

N(u, v)
∫ 1

0

dc

(h(c))2 + (h(1− c))2 , (28)
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Proof. By definition of h-Godunova–Levin, we have

S1

(
u + v

2

)
≤ S1((1− c)u + cv)

h
(

1
2

) +
S1(cu + (1− c)v)

h
(

1
2

) , (29)

and

S2

(
u + v

2

)
≤ S2((1− c)u + cv)

h
(

1
2

) +
S2(cu + (1− c)v)

h
(

1
2

) . (30)

Multiplying both sides of (29) and (30), we have

S1

(
u + v

2

)
S2

(
u + v

2

)
≤ 1[

h
(

1
2

)]2 [S1((1− c)u + cv)S2((1− c)u + cv) +S1(cu + (1− c)v)

S2(cu + (1− c)v) +S1((1− c)u + cv)S2(cu + (1− c)v)

+S1(cu + (1− c)v)S2((1− c)u + cv)]

≤ 1[
h
(

1
2

)]2 [S1((1− c)u + cv)S2((1− c)u + cv) +S1(cu + (1− c)v)

S2(cu + (1− c)v) +
2

h(c)h(1− c)
{S1(u)S2(u) +S1(v)S2(v)}

+
{S1(u)S2(v) +S1(v)S2(u)}
{(h(c))2 + (h(1− c))2}

]
. (31)

Integrating (31) and changing variables, we have

S1

(
u + v

2

)
S2

(
u + v

2

)
≤ 1[

h
(

1
2

)]2

[
2

v− u

∫ v

u
S1(i)S2(i)di+ 2M(u, v)

∫ 1

0

dc
h(c)h(1− c)

+N(u, v)
∫ 1

0

dc
(h(c))2 + (h(1− c))2

]
. (32)

Multiplying both sides of (32) by ε(v−u)
2B(ε) and subtracting 2(1−ε)

B(ε) S1(k)S2(k), we obtain

ε(v− u)

2B(ε)
[

h
(

1
2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)
− 2(1− ε)

B(ε) S1(k)S2(k)

≤ ε

B(ε)

∫ v

u
S1(i)S2(i)di+

ε(v− u)
2B(ε)

[
2M(u, v)

∫ 1

0

dc
h(c)h(1− c)

+N(u, v)
∫ 1

0

dc
(h(c))2 + (h(1− c))2

]
− 2(1− ε)

B(ε) S1(k)S2(k) . (33)
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Thus,

ε(v− u)

2B(ε)
[

h
(

1
2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)
− 2(1− ε)

B(ε) S1(k)S2(k)

− ε

B(ε)

[∫ k

u
S1(i)S2(i)di+

∫ v

k
S1(i)S2(i)di

]
≤ ε(v− u)

2B(ε)

[
2M(u, v)

∫ 1

0

dc
h(c)h(1− c)

+ N(u, v)
∫ 1

0

dc
(h(c))2 + (h(1− c))2

]
−2(1− ε)

B(ε) S1(k)S2(k) . (34)

This implies that

ε(v− u)

2B(ε)
[

h
(

1
2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)
−
(

CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)

≤ ε(v− u)
2B(ε)

[
2M(u, v)

∫ 1

0

dc
h(c)h(1− c)

+ N(u, v)
∫ 1

0

dc
(h(c))2 + (h(1− c))2

]
−2(1− ε)

B(ε) S1(k)S2(k) . (35)

Multiplying (35) by 2B(ε)
ε(v−u) , we obtained the required output that is

[
h( 1

2 )
]2

2
S1

(
u + v

2

)
S2

(
u + v

2

)
− B(ε)

ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)
]
+

2(1− ε)

ε(v− u)
S1(k)S2(k)

≤ M(u, v)
∫ 1

0

dc
h(c)h(1− c)

+
1
2

N(u, v)
∫ 1

0

dc

(h(c))2 + (h(1− c))2 . (36)

Example 3. Consider [u, v] = [0, 1], h(c) = c with B(ε) = 1 and for all c ∈ (0, 1). If S1,S2 :
[u, v]→ R+ are defined as

S1(c) = c2 and S2(c) = 2c2 + 1,

then [
h( 1

2 )
]2

2
S1

(
u + v

2

)
S2

(
u + v

2

)
− B(ε)

ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)
]
+

2(1− ε)

ε(v− u)
S1(k)S2(k) =

23
30

,

M(u, v)
∫ 1

0

dc
h(c)h(1− c)

+
1
2

N(u, v)
∫ 1

0

dc

(h(c))2 + (h(1− c))2 =
13
4

.

Consequently,
23
30
≤ 13

4
.

This verifies above Theorem.
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4. Hermite–Hadamard Inequality via (H1, H2)-Convex Functions Involving
Caputo–Fabrizio Fractional Operator

In this section, we used a concept of (h1, h2)-convex mappings and developed
some new variants of Hermite–Hadamard inequalities involving Caputo–Fabrizio
fractional operators.

Theorem 7. Let S : I = [u, v] → R be an (h1, h2)-convex function defined on [u, v] and
S ∈ L1[u, v]. If ε ∈ (0, 1), then we have

1

2
[

H
(

1
2 , 1

2

)]S(u + v
2

)
≤ B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)− 2(1− ε)

B(ε) S(k)
]

≤ (S(u) +S(v))
∫ 1

0
H(c, 1− c)dc, (37)

where k ∈ [u, v] and B(ε) > 0 is a normalization function.

Proof. The proof is based on the same technique as the Theorem 4 and the result by Saeed et al. [39]
[Theorem 4].

Example 4. Consider [u, v] = [1, 2], h1(c) = c, h2(c) = 1 with B(ε) = 1 and for all c ∈ (0, 1).
If S : [u, v]→ R+ is defined as

S(c) = c2 + 2,

then

1

2
[

H
(

1
2 , 1

2

)]S(u + v
2

)
=

17
4

,

B(ε)
ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)− 2(1− ε)

B(ε) S(k)
]
=

13
3

,

(S(u) +S(v))
∫ 1

0
H(c, 1− c)dc =

9
2

.

Consequently,
17
4
≤ 13

3
≤ 9

2
.

This verifies above Theorem.

Theorem 8. Let S1,S2 : I ⊆ R→ R be (h1, h2)-convex functions on I. If S1S2 ∈ L1([u, v]);
then, the following inequality holds:

2B(ε)
ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)− 2(1− ε)

B(ε) S1(k)S2(k)
]

≤
(

2
∫ 1

0
H2(c, 1− c)dc

)
M(u, v)

+

(
2
∫ 1

0
H(c, c)H(1− c, 1− c)dc

)
N(u, v), (38)

where
M(u, v) = S1(u)S2(u) +S1(v)S2(v),

and
N(u, v) = S1(u)S2(v) +S1(v)S2(u).

Proof. The proof is based on the same technique as the Theorem 5 and the result by Saeed et al. [39]
[Theorem 5].
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Example 5. Consider [u, v] = [0, 1], h1(c) = c, h2(c) = 1 with B(ε) = 1 and for all c ∈ (0, 1).
If S1,S2 : [u, v]→ R+ are defined as

S1(c) = c2 + 2 and S2(c) = 2c2 + 3,

then

2B(ε)
ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)− 2(1− ε)

B(ε) S1(k)S2(k)
]
=

262
15

,(
2
∫ 1

0
H2(c, 1− c)dc

)
M(u, v) +

(
2
∫ 1

0
H(c, c)H(1− c, 1− c)dc

)
N(u, v) =

109
3

.

Consequently,
262
15
≤ 109

3
.

This verifies above Theorem.

Remark 2. Taking h1(c) = c, h2(c) = 1 in above Theorem, we obtain [12] [Theorem 3].

Theorem 9. Let S1,S2 : J ⊆ R → R are two (h1, h2)-convex functions on J. If
S1S2 ∈ L1([u, v]), then we have the following inequality:

1

2
[

H
(

1
2 , 1

2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)

− B(ε)
ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)
]

+
2(1− ε)

ε(v− u)
S1(k)S2(k) ≤ M(u, v)

∫ 1

0
H(c, c)H(1− c, 1− c)dc

+
1
2

N(u, v)
∫ 1

0
H2(c, 1− c)dc, (39)

Proof. By definition of (h1, h2)-convex function, we have

S1

(
u + v

2

)
≤ H

(
1
2

,
1
2

)
S1((1− c)u + cv) + H

(
1
2

,
1
2

)
S1(cu + (1− c)v), (40)

and

S2

(
u + v

2

)
≤ H

(
1
2

,
1
2

)
S2((1− c)u + cv) + H

(
1
2

,
1
2

)
S2(cu + (1− c)v). (41)

Multiplying (40) and (41), we obtain

S1

(
u + v

2

)
S2

(
u + v

2

)
≤
[

H
(

1
2

,
1
2

)]2
[S1((1− c)u + cv)S2((1− c)u + cv) +S1(cu + (1− c)v)

S2(cu + (1− c)v) +S1((1− c)u + cv)S2(cu + (1− c)v)

+S1(cu + (1− c)v)S2((1− c)u + cv)]
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≤
[

H
(

1
2

,
1
2

)]2
[S1((1− c)u + cv)S2((1− c)u + cv) +S1(cu + (1− c)v)

S2(cu + (1− c)v) + 2H(c, c)H(1− c, 1− c){S1(u)S2(u) +S1(v)S2(v)}

+
(

H2(c, 1− c) + H2(1− c, c)
)
{S1(u)S2(v) +S1(v)S2(u)}] . (42)

Integrating (42) and changing variables, we have

S1

(
u + v

2

)
S2

(
u + v

2

)
≤
[

H
(

1
2

,
1
2

)]2[ 2
v− u

∫ v

u
S1(i)S2(i)di+ 2M(u, v)

∫ 1

0
H(c, c)H(1− c, 1− c)dc

+N(u, v)
∫ 1

0
H2(c, 1− c)dc

]
. (43)

Multiplying both sides of (43) with ε(v−u)
2B(ε) and subtracting 2(1−ε)

B(ε) S1(k)S2(k), we obtain

ε(v− u)

2B(ε)
[

H
(

1
2 , 1

2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)
− 2(1− ε)

B(ε) S1(k)S2(k)

≤ ε

B(ε)

∫ v

u
S1(i)S2(i)di+

ε(v− u)
2B(ε)

[
2M(u, v)

∫ 1

0
H(c, c)H(1− c, 1− c)dc

+N(u, v)
∫ 1

0
H2(c, 1− c)dc

]
− 2(1− ε)

B(ε) S1(k)S2(k) . (44)

Thus,

ε(v− u)

2B(ε)
[

H
(

1
2 , 1

2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)
− 2(1− ε)

B(ε) S1(k)S2(k)

− ε

B(ε)

[∫ k

u
S1(i)S2(i)di+

∫ v

k
S1(i)S2(i)di

]
≤ ε(v− u)

2B(ε) [2M(u, v)
∫ 1

0
H(c, c)H(1− c, 1− c)dc

+N(u, v)
∫ 1

0
H2(c, 1− c)dc]− 2(1− ε)

B(ε) S1(k)S2(k) . (45)

This implies that

ε(v− u)

2B(ε)
[

H
(

1
2 , 1

2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)

−
(

CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)

≤ ε(v− u)
2B(ε) [2M(u, v)

∫ 1

0
H(c, c)H(1− c, 1− c)dc

+N(u, v)
∫ 1

0
H2(c, 1− c)dc]− 2(1− ε)

B(ε) S1(k)S2(k) . (46)
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Multiplying (46) by 2B(ε)
ε(v−u) , we obtained the required output that is

1

2
[

H
(

1
2 , 1

2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)

− B(ε)
ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)
]
+

2(1− ε)

ε(v− u)
S1(k)S2(k)

≤ M(u, v)
∫ 1

0
H(c, c)H(1− c, 1− c)dc+

1
2

N(u, v)
∫ 1

0
H2(c, 1− c)dc. (47)

Example 6. Consider [u, v] = [0, 1], h1(c) = c, h2(c) = 1 with B(ε) = 1 and for all c ∈ (0, 1).
If S1,S2 : [u, v]→ R+ are defined as

S1(c) = c2 + 2 and S2(c) = 2c2 + 3,

then

1

2
[

H
(

1
2 , 1

2

)]2S1

(
u + v

2

)
S2

(
u + v

2

)

− B(ε)
ε(v− u)

[(
CF
u IεS1S2

)
(k) +

(
CF Iε

vS1S2

)
(k)
]
+

2(1− ε)

ε(v− u)
S1(k)S2(k) =

63
64

,

M(u, v)
∫ 1

0
H(c, c)H(1− c, 1− c)dc+

1
2

N(u, v)
∫ 1

0
H2(c, 1− c)dc =

70
6

.

Consequently,
63
64
≤ 70

6
.

This verifies above Theorem.

Remark 3. Taking h1(c) = c, h2(c) = 1 in above Theorem, we obtain [12] [Theorem 4].

5. Results Concerning Caputo–Fabrizio Fractional Operator

In the following theorem, we present an inequality concerning Caputo–Fabrizio frac-
tional operator in the setting of h-Godunova–Levin function.

Theorem 10. Let S : I ⊆ R → R be a differentiable positive mapping on Io and |S′| be
h-Godunova–Levin on [u, v] where u, v ∈ I with u < v. If S′ ∈ L1[u, v] and ε ∈ (0, 1), then
we have ∣∣∣∣S(u) +S(v)

2
+

2(1− ε)

ε(v− u)
S(k)− B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)
]∣∣∣∣

≤ v− u
2
[
E1
∣∣S′(u)∣∣+ E2

∣∣S′(v)∣∣], (48)

where

E1 =

(∫ 1
2

0

|1− 2c|dc
h(c)

+
∫ 1

1
2

|2c− 1|dc
h(c)

)
, (49)

E2 =

(∫ 1
2

0

|1− 2c|
h(1− c)

dc+
∫ 1

1
2

|2c− 1|dc
h(1− c)

)
, (50)
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where k ∈ [u, v] and B(ε) > 0 is a normalization function.

Proof. As a result of Lemma 2, and since |ψ′| is h-Godunova–Levin, we have∣∣∣∣S(u) +S(v)
2

+
2(1− ε)

ε(v− u)
S(k)− B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)
]∣∣∣∣

≤ v− u
2

∫ 1

0
|1− 2c|

∣∣S′(cu + (1− c)v)
∣∣dc

≤ v− u
2

∫ 1

0
|1− 2c|

[
|S′(u)|

h(c)
+
|S′(v)|
h(1− c)

]
dc

=
v− u

2

(∫ 1
2

0
|1− 2c|

[
|S′(u)|

h(c)
+
|S′(v)|
h(1− c)

]
dc +

∫ 1

1
2

|2c− 1|
[
|S′(u)|

h(c)
+
|S′(v)|
h(1− c)

]
dc
)

=
v− u

2

[∣∣S′(u)∣∣(∫ 1
2

0

|1− 2c|dc
h(c)

+
∫ 1

1
2

|2c− 1|dc
h(c)

)

+
∣∣S′(v)∣∣(∫ 1

2

0

|1− 2c|dc
h(1− c)

+
∫ 1

1
2

|2c− 1|dc
h(1− c)

)]
=

v− u
2
[
E1
∣∣S′(u)∣∣+ E2

∣∣S′(v)∣∣]. (51)

This concludes the proof.

Example 7. Consider [u, v] = [0, 1], h(c) = 1
c with B(ε) = 1 and for all c ∈ (0, 1). If S :

[u, v]→ R+ is defined as
S(c) = c2,

then ∣∣∣∣S(u) +S(v)
2

+
2(1− ε)

ε(v− u)
S(k)− B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)
]∣∣∣∣ = 1

6
,

E1 =

(∫ 1
2

0

|1− 2c|dc
h(c)

+
∫ 1

1
2

|2c− 1|dc
h(c)

)
=

1
4

,

E2 =

(∫ 1
2

0

|1− 2c|
h(1− c)

dc+
∫ 1

1
2

|2c− 1|dc
h(1− c)

)
=

1
4

,

v− u
2
[
E1
∣∣S′(u)∣∣+ E2

∣∣S′(v)∣∣] = 1
4

.

Consequently,
1
6
≤ 1

4
.

This verifies above Theorem.

Remark 4. Taking h(c) = 1
c in above Theorem, we obtain [12] [Theorem 5].

Theorem 11. Let S : I ⊆ R → R be a differentiable positive mapping on Io and |S′| be h-
Godunova–Levin on [u, v] where u, v ∈ I with u < v, q > 1, 1

p + 1
q = 1. If S′ ∈ L1[u, v],

and ε ∈ (0, 1), we have
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∣∣∣∣S(u) +S(v)
2

+
2(1− ε)

ε(v− u)
S(k)− B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)
]∣∣∣∣

≤ v− u
2

(
1

p + 1

) 1
p
[∣∣S′(u)∣∣q ∫ 1

0

dc
h(c)

+
∣∣S′(v)∣∣q ∫ 1

0

dc
h(1− c)

] 1
q
, (52)

where k ∈ [u, v] and B(ε) > 0 is a normalization function.

Proof. As a result of Hölder’s inequality, Lemma 2 and the fact that |S′|q is h-Godunova–
Levin function, we have∣∣∣∣S(u) +S(v)

2
+

2(1− ε)

ε(v− u)
S(k)− B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)
]∣∣∣∣

≤ v− u
2

∫ 1

0
|1− 2c|

∣∣S′(cu + (1− c)v)
∣∣dc (53)

≤ v− u
2

[(∫ 1

0
|1− 2c|pdc

) 1
p
(∫ 1

0

∣∣S′(cu + (1− c)v)
∣∣qdc

) 1
q
]

=
v− u

2

(
1

p + 1

) 1
p
(∣∣S′(u)∣∣q ∫ 1

0

dc
h(c)

+
∣∣S′(v)∣∣q ∫ 1

0

dc
h(1− c)

) 1
q

. (54)

which completes the proof.

Example 8. Consider [u, v] = [0, 1], h(c) = 1
c , p = q = 2 with B(ε) = 1 and for all c ∈ (0, 1).

If S : [u, v]→ R+ is defined as
S(c) = c2,

then ∣∣∣∣S(u) +S(v)
2

+
2(1− ε)

ε(v− u)
S(k)− B(ε)

ε(v− u)

[(
CF
u IεS

)
(k) +

(
CF Iε

vS
)
(k)
]∣∣∣∣ = 1

6
,

v− u
2

(
1

p + 1

) 1
p
(∣∣S′(u)∣∣q ∫ 1

0

dc
h(c)

+
∣∣S′(v)∣∣q ∫ 1

0

dc
h(1− c)

) 1
q
=

√
2

2
√

3

Consequently,
1
6
≤
√

2
2
√

3
.

This verifies above Theorem.

Remark 5. Taking h(c) = 1
c in above Theorem, we obtain [12] [Theorem 6].

Application to Means

Means play an important role in both pure and applied mathematics, especially when
it comes to verifying the accuracy of results using special means for real numbers u, v such
that u 6= v. They are in the following order:

H ≤ G ≤ L ≤ I ≤ A (55)

The arithmetic mean of any two arbitrary positive numbers, u > 0, v > 0 is defined as

A(u, v) =
u + v

2
, u, v ∈ R (56)
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The generalized form of logarithmic mean, is defined as follows:

L = Lp
p(u, v) =

vp+1 − up+1

(p + 1)(v− u)
,

where
p ∈ R \ [−1, 0], u, v ∈ R, u 6= v.

Proposition 1. Let u, v ∈ [0, ∞), (u < v); one has

|A(eu, ev)− L(eu, ev)| ≤ (v− u)
2

[E1eu + E2ev]. (57)

where

E1 =

(∫ 1
2

0

|1− 2c|dc
h(c)

+
∫ 1

1
2

|2c− 1|dc
h(c)

)
, (58)

E2 =

(∫ 1
2

0

|1− 2c|
h(1− c)

dc+
∫ 1

1
2

|2c− 1|dc
h(1− c)

)
, (59)

Proof. In Theorem 10, if we consider S(i) = ex with ε = 1 and B(ε) = B(1) = 1, we obtain
the required output.

Remark 6. Taking h(c) = 1
c in above result, we obtain [12] [Proposition 2].

Proposition 2. Let u, v ∈ [0, ∞) with u < v; one has∣∣∣A(u2, v2)− L2
2(u, v)

∣∣∣ ≤ (v− u)[E1|u|+ E2|v|]. (60)

Proof. In Theorem 10, if we consider S(i) = x2 with ε = 1 and B(ε) = B(1) = 1, we obtain
the required output.

Remark 7. Taking h(c) = 1
c in above result, we obtain [12] [Proposition 1].

Proposition 3. Let u, v ∈ R+, u < v; then, one has

|A(un, vn)− Ln
n(u, v)| ≤ n(v− u)

2

[
E1

∣∣∣un−1
∣∣∣+ E2

∣∣∣vn−1
∣∣∣]. (61)

Proof. In Theorem 10, if we consider S(i) = xn, where n is an even number, ε = 1 and
B(ε) = B(1) = 1, we obtain the required output.

Remark 8. Taking h(c) = 1
c in above result, we get [12] [Proposition 3].

6. Conclusions

This paper provides some novel inequalities of the Hermite–Hadamard types based
on h-Godunova–Levin and (h1, h2)-convex functions using Caputo–Fabrizio fractional
integral operators. As mentioned in the remarks, many existing results in the literature
become particular cases for these results. To demonstrate the reliability of our findings,
we use examples to demonstrate their accuracy. In addition, the results associated with
h-Godunova–Levin functions have some applications to special means. It would be in-
teresting if people constructed these results using the Mittag–Leffler function as a kernel
and generalized them as well as other similar results in the future.
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