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ABSTRACT 

In this work we show that laser-spot step-heating thermography allows measuring the thermal 

diffusivity of solids accurately. It consists in illuminating the sample surface with a continuous-

wave focused laser spot and recording the time evolution of the surface temperature with an 

infrared camera. The inherent noise associated to time domain measurements is reduced by 

applying a very simple image processing procedure. The methodology has been tested on 

reference samples. Unlike laser spot lock-in (or pulsed) thermography, a step-heating 

thermography device can be easily put together combining a low-end laser and an entry level 

IR camera. 
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1. INTRODUCTION 
 
 Laser-spot infrared (IR) thermography, which consists in heating the sample under study 
with a focused laser beam and recording the surface temperature with an IR video camera, is a 
useful technique to measure the thermal diffusivity of solids. Regarding the temporal shape of 
the laser illumination two main configurations have been analyzed in the literature: (a) lock-in 
thermography, where the laser beam power is harmonically modulated at a given frequency and 
(b) pulsed thermography, where a brief laser pulse heats the sample. Both illumination schemes 
have been used to measure the thermal diffusivity of solids. 

Laser-spot lock-in thermography takes advantage of the lock-in process to filter the 
signal: the higher the number of images that are processed, the lower the noise in the final 
amplitude and phase images. By analyzing the radial dependence of the amplitude and phase 
of the surface temperature, the thermal diffusivity of the sample can be obtained with a high 
accuracy. It has been widely used to measure the thermal diffusivity of bulk samples [1-11] and 
of thin films and monofilaments [12-23]. On the other hand, laser-spot pulsed thermography 
has also been proposed to measure the thermal diffusivity of solids [6, 24-28]. However, its use 
is less extended than the lock-in modality since high energy pulsed lasers are more expensive 
and dangerous than CW lasers and they can damage the specimen when they are tightly focused 
onto the sample surface. Besides these two temporal schemes, there is a third configuration, 
which is called step-heating thermography, where a CW laser is switched on at a given instant 
and the IR camera records the time evolution of the surface temperature. It has been used with 
flat illumination of the whole sample surface to image subsurface defects [29]. However, laser-
spot step-heating has not been considered for measurements of the thermal diffusivity of solids. 
The reason why it has been underestimated for this purpose, although it may be easier to handle 
and less expensive than the other two ones, is probably due to the suspicion that it may produce 
too noisy signals for practical quantitative analysis.  

The aim of this work is to evaluate whether laser-spot step-heating thermography 
provides accurate enough thermal diffusivity values for reliable implementation in both 
industrial environments and R&D departments. The first step is to solve the heat diffusion 
equation to find an analytical expression of the time evolution of the surface temperature. We 
will look for a solution as general as possible, i.e. valid for bulk samples and thin plates, opaque 
and highly transparent samples and taking into account heat losses by convection and radiation. 
The accuracy of the method will be tested by measuring the thermal diffusivity of a set of 
reference materials covering the range from thermal insulators to good thermal conductors. 
Finally, we will discuss on the viability of a low-cost device consisting of a low-end laser and 
an entry level IR camera. 

           
2. THEORY 
  
 Let us consider a homogeneous and isotropic plate of thickness L, infinite in both OX 
and OY directions, illuminated by a continuous-wave (CW) laser beam of Gaussian profile 
whose power density has the following spatial distribution 
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where Po is the laser power and a is its radius at 1/e2 of peak intensity. The laser is switched on 
at t = 0 so the time dependence of the power satisfies a Heaviside function: 0 for t < 0 and Po 
for t > 0. The scheme of the illumination is shown in Fig. 1.  

To obtain the time evolution of the sample temperature rise above the ambient ( ), ,T r z t  
we have to solve the heat diffusion equation 
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Figure 1. Cross section of a sample illuminated by a focused laser beam of radius a. The inset 
shows the time profile of the step-heating.  
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where Q is the energy absorbed per unit volume, and K and D are the thermal conductivity and 
diffusivity of the sample, respectively. If the laser beam is absorbed by the sample following 
the Beer-Lambert law, then ( , , ) ( ) ( ) zQ r z t P r u t eαη α= , where u(t) is the Heaviside unit step 
function and η is the laser power fraction absorbed by the sample. To solve Eq. (2) we perform 
a double transformation. First, a Laplace transform leading to 
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where s is the conjugate variable of time and 1/s is the Laplace transform of u(t). Then, due to 
the cylindrical symmetry of the problem, we apply a Hankel transform [30] 
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where 2 2/s Dβ δ= + , δ is the conjugate variable of r and 
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P(r). The general solution of Eq. (4) is  
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. Depth-independent factors A and B will be obtained from 

the boundary conditions: the heat flux continuity at the sample surfaces, taking into account 
heat losses by convection and radiation 
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where h is the linearized coefficient of heat losses. The double Laplace and Hankel transform 
of Eqs. (6) gives 
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By substituting Eq. (5) into Eqs. (7), factors A and B are obtained, and therefore 
( ), ,T z sδ  writes 
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and hH
Kβ

= . The time evolution of the sample temperature is obtained by performing an 

inverse Hankel transform followed by an inverse Laplace transform. Unfortunately, there is no 
analytical solution for the inverse Laplace of Eq. (8). However, analytical expressions of the 
surface temperature can be obtained in three particular cases. 
 
2.1. Opaque and thermally thick samples 
 
 An opaque sample verifies ( ),  0Le αα −→ ∞ ≈ . This means that the laser beam is 
absorbed at the sample surface. On the other hand, the thermal diffusion length in step-heating 
transient heat conduction problems is defined as Dtµ =  [31]. A thermally thick sample 
verifies L >> µ ( )0Le β− ≈ , indicating that heat does not reach the rear surface. Under these 
restrictions Eq. (8) reduces to  
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 A double inverse Hankel and Laplace transform gives the temperature rise above the 
ambient of an opaque and thermally thick sample at the illuminated surface (z = 0), which can 
be measured by an IR camera 
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where Jo is the Bessel function of order zero and erf is the error function. Note that parameter 
h is always correlated to the thermal conductivity of the sample (h/K), indicating that the effect 
of heat losses increases for poor thermal conducting materials. In the case of adiabatic boundary 
conditions Eq. (10) reduces to 
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2.2. Opaque and thermally thin samples 
 
 A sample is thermally thin if it verifies L << µ, so 1Le Lβ β± ≈ ± . Under this assumption 
Eq. (8) reduces to  
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which is independent of depth. The inverse Hankel and Laplace transforms give the temperature 
rise above the ambient  
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Note that the thinner the sample the higher the effect of heat losses.  
 
2.3. Highly transparent samples 
 

In highly transparent samples ( 0,  1Le αα −→ ≈ ) Eq. (8) reduces to  
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whose double inverse Hankel and Laplace transform is 
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which is valid regardless of the sample thickness. Note that the last expression resembles the 
case of an opaque and thermally thin sample, Eq. (13), just replacing 1/L by α in the factor 
multiplying the integral.   
 

Finally, let us note that Eqs. (14) and (16) which describe the temperature distributions 
in opaque thermally thin materials and highly transparent samples, respectively, are 
independent of the z coordinate, indicating that the temperature distribution at any inner plane 
parallel to the surface is identical. As a result, Eqs. (14) and (16) are also valid (except for a 
factor) to describe the distribution of the radiation emitted by samples that are semi-transparent 
in the IR bandwidth detected by the camera. On the contrary, Eq. (11) only describes the 
temperature at the surface of opaque and thermally thick materials. Therefore, Eq. (11) is only 
valid if, in addition to being opaque to the laser beam radiation, the material is also opaque to 
the IR radiation detected by the camera. However, this is not a significant limitation as a large 
number of materials are opaque to both, the visible radiation and IR region where IR cameras 
are sensitive. 
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3. NUMERICAL CALCULATIONS 
 
3.1. Opaque and thermally thick samples 
 
 Following the theory developed in the section 2, next we use Eq. (11) to calculate 
temperature radial profiles of an opaque and thermally thick sample illuminated by a focused 
laser beam, which is switched on at t = 0. In Fig. 2a we show several temperature profiles for a 
polymeric sample (D = 0.2 mm2/s, K = 0.4 Wm-1K-1) illuminated by a laser spot of radius a = 
0.2 mm, from which it absorbs a power ηPo = 10 mW. Three instants are considered (1, 2 and 
5 s) and, for each, two heat losses coefficients are evaluated: h = 0 (black line) and h = 10 Wm-

2K-1 (red line). The former indicates adiabatic boundary conditions and the latter is a realistic h 
value at room temperature [18]. As can observed, as time goes by heat propagates at longer 
radial distances, while the temperature at the position of the laser spot remains almost 
unchanged. On the other hand, the influence of heat losses is negligible even though the 
calculations have been performed for a poor thermally conducting sample. Accordingly, we can 
conclude that for thermally thick samples the effect of heat losses can be neglected in room 
temperature experiments.  

In Fig. 2b we analyze how the thermal diffusivity of the sample modifies the shape of 
the temperature profile. Calculations have been performed with a = 0.2 mm under adiabatic 
boundary conditions, i.e. using Eq. (12) for a material whose thermal diffusivity (D = 0.1 
mm2/s) is of the same order of magnitude as in Fig. 2a and for materials with thermal 
diffusivities one, two and three orders of magnitude higher. In Eq (12), the thermal conductivity 
is a factor outside the integral, so it does not modify the shape of the temperature profile. 
Accordingly, for a better comparison of the temperature profiles for different thermal diffusivity 
values, we have performed the calculations keeping the ηPo/K factor fixed: ηPo/K = 0.025 Km. 
The calculations in Fig. 2b correspond to t = 5 s. As can be seen, as the thermal diffusivity rises 
the temperature profiles become wider, which reveals the high sensitivity of these radial profiles 
to D.  Note that we have plotted the profiles of ln(T) rather than the bare temperature profiles 
to enhance the temperature differences at long distances from the laser spot, which will be of 
interest to measure the thermal diffusivity accurately.  

In summary, to obtain the thermal diffusivity of an opaque and thermally thick sample, 
Eq. (12) must be fitted to the experimental ln(T) profile obtained at a given time instant with 
two free parameters: ηPo/K and D. In order to retrieve a more consistent diffusivity value, 
several radial profiles recorded at different time instants should be fitted simultaneously as will 
be shown in section 4.  
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Figure 2. (a) Calculations of the temperature profiles (in logarithmic scale) for an opaque and 
thermally thick polymeric sample (D = 0.2 mm2/s, K = 0.4 Wm-1K-1) with ηPo = 10 mW and a 
= 0.2 mm. Three times are analyzed and for each time, two heat losses coefficients are 
considered: h = 0 (black line) and h = 10 Wm-2K-1 (red line). (b) Calculations of the temperature 
profile for samples with different thermal diffusivities. Calculations have been performed for a 
= 0.2 mm, ηPo/K = 0.025 Km, h = 0 and t = 5 s.  

 
3.2. Opaque and thermally thin samples 
 
 In Fig. 3a we show the temperature profiles for the same opaque polymeric sample and 
experimental parameters as in Fig. 2a, but with a thickness L = 50 µm. Calculations have been 
performed using Eq. (14) for two instants (2 and 5 s) and for two heat losses coefficients: h = 0 
(black line) and h = 10 Wm-2K-1 (red line). Unlike for thermally thick samples, the effect of 
heat losses by convection and radiation cannot be neglected for thin plates. Accordingly, in 
order to measure the thermal diffusivity of thin samples Eq. (14) must be fitted to the 
experimental temperature profile, with three free parameters: ηPo/K, h/K and D. The first 
parameter controls the vertical position of the temperature profile while the shape of the curve 
is governed by the two last parameters. The question arises whether both parameters are 
independent or correlated. To assess this issue we calculate the sensitivity of ln(T) to each 
parameter, which is defined as 

ln( ) ,    ,x
TS x x D h

x
∂

= =
∂

.          (17) 

 In Fig. 3b we show both sensitivities, SD and Sh, for the same thermally thin material 
and experimental parameters as in Fig. 3a at t = 5 s. As can be observed, both sensitivities 
increase as we move away from the center of the laser spot. However, they are not correlated 
since both curves are not proportional. This means that for a given temperature profile only a 
couple (D,h) fits the experimental data. 

In the case of highly transparent samples, the procedure is equivalent to opaque and 
thermally thin samples but using Eq. (16) instead of Eq. (14). Accordingly, the three free 
parameters to be fitted are: ηPoα/K, h/K and D. 
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Figure 3. (a) The same as in Fig. 2a for a sample thickness L = 50 µm. Two times are analyzed 
and for each time, two heat losses coefficients are considered: h = 0 (black line) and h = 10 
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Wm-2K-1 (red line). (b) Calculation of the sensitivity of ln(T) to diffusivity, SD, and to h/K, Sh/K, 
for the same sample at t = 5 s.  
 
 
4. EXPERIMENTAL RESULTS AND DISCUSSION 
 
 In Fig. 4 we show the scheme of the laser-spot step-heating thermography setup. A CW 
laser (Coherent, Verdi V6, 532 nm, up to 6 W, beam diameter 2 mm) of Gaussian profile is 
focused onto the sample surface by a 10 cm focal length lens to a radius of about 200 µm. A 
Ge window, which is opaque to visible light but transparent to IR radiation, allows directing 
the laser beam perpendicularly to the sample. A mid-wave IR video camera (FLIR, SC 7500, 
3-5 µm, 256×320 px, 450 frames/s, noise equivalent temperature difference (NETD) = 20 mK) 
records the surface temperature. The average of 10 frames recorded before the onset of the 
excitation is subtracted from the image sequence in order to obtain the temperature elevation 
above the ambient due to the excitation. In this way, we reduce the effect of emissivity 
heterogeneities and the Narcissus effect, which is very disturbing in the case of highly reflective 
samples such as metals and alloys. A macro lens produces a magnification ratio 1:1, i.e. each 
pixel of the detector senses the average temperature over a 30 µm square of the sample.  
 

 
 
Figure 4. Scheme of the laser-spot step-heating thermography setup. 
 
 
 In Fig. 5 we show a sequence of thermograms (after background subtraction) 
corresponding to an opaque poly-ether-ether-ketone (PEEK) sample at four instants after the 
onset of the excitation: 1, 2, 5, 10 s. The laser power is Po = 10 mW. As in the theoretical 
calculations, the thermograms show the natural logarithm of the temperature, ln(T), rather than 
the temperature itself, to better appreciate the low temperature regions. As predicted by the 
theory, heat propagates radially with time, but the temperature at the laser spot remains almost 
unchanged after the first second.  

In Fig. 6 we plot by black dots the temperature profile along the vertical axis 
corresponding to the thermograms obtained at 1 and 5 s in Fig. 5. As it can be seen, the noise 
level is ln(T) ≈ -3, which corresponds to a temperature of 50 mK, not so far from the NETD of 
the camera. This noise level is higher than that obtained with laser spot lock-in thermography, 
which has been used to measure the thermal diffusivity of solids accurately. In lock-in 
thermography, the average noise level of the temperature amplitude image depends on the 
number of images that are processed in the lock-in analysis, Nimages, as [32] 
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This means that by collecting 103 images, the noise level is reduced down to 1 mK (Ln(T) ≈ -
7), far below the NETD of the camera. To reduce the high noise level in step-heating 
thermography, we take advantage of the cylindrical symmetry of the thermograms to perform 
an average of the temperature along concentric circumferences around the laser spot. In this 
way, the longer the distances from the laser spot, where the noise is more pronounced, the larger 
the number of pixels that are averaged, leading to cleaner temperature profiles. The red dots in 
Fig. 6 correspond to such average profiles, showing that the noise level is reduced down to ln(T) 
≈ -5, not far from that obtained in lock-in thermography. 
 
 

    
 
Figure 5. Sequence of thermograms of ln(T) obtained in a PEEK sample.  
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Figure 6. Comparison of single and averaged radial profiles of ln(T) obtained in a PEEK sample 
at two instants after the onset of the excitation.  
 
 
 To assess the validity of laser-spot step-heating thermography to measure the thermal 
diffusivity we have selected a series of calibrated materials covering a wide range of 
diffusivities from thermal insulators to good thermal conductors. A 4 mm thick PEEK sample, 
a 2 cm thick AISI-304 stainless steel, a 0.2 mm thick AISI-304 plate, a 6 mm thick vitreous 
carbon sample, a 9 mm thick graphite sample and a 2 mm thick light blue BK7 glass filter. As 
the PEEK sample is not completely opaque to visible light, a very thin graphite layer (about 3 
µm thick) has been sprayed onto the surface.  
 In order to obtain reliable thermal diffusivity values we have fitted T(r,t) to a set of 
temperature profiles obtained at several instants after the laser was switched on. In Fig. 7 we 
show the results for PEEK and graphite, which are opaque to the laser wavelength. On top, we 
plot by dots the average temperature profiles while the continuous lines are the best fits of Eq. 

5 s 2 s 20 s 

1 mm 

1 s 
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(12), which corresponds to opaque and thermally thick samples in the absence of heat losses. 
All the fittings in this work have been performed using a Levenberg-Marquardt algorithm. At 
the bottom, we plot the residuals, i.e. the difference between experimental and fitted values, to 
better assess the good quality of the fits. In the case of PEEK we have fitted temperature profiles 
from 1 s to 20 s. The fitted parameters are ηPo/K = 2.383×10-3±3×10-6 Km and D = 0.207±0.001 
mm2/s. For graphite we have fitted temperature profiles up to 0.4 s, since for longer times the 
sample is not thermally thick anymore. The fitted parameters are ηPo/K = 0.2627±0.0006 Km 
and D = 64.9±0.9 mm2/s. As can be observed, the uncertainties of a single measurement are 
very low. By repeating the same measurement five times and at three different sample positions 
we obtained uncertainties in the range 3-5%, which are indicated in Table 1.  
 

 

 

 

 
 
Figure 7. On top: simultaneous fittings of averaged profiles of ln(T) for two opaque and 
thermally thick samples. At the bottom: residuals are plotted to show the quality of the fittings. 
 
 

In Fig. 8 we show the results for the 0.2 mm thick AISI-304 plate and for the light blue 
BK7 filter. The former is opaque and thermally thin and the latter is highly transparent. The 
experimental profiles corresponding to the AISI-304 plate have been fitted using Eq. (14). The 
fitted parameters are ηPo/K = 0.0143±0.0001 Km, h/K = 1.1±0.2 m-1 and D = 3.85±0.06 mm2/s. 
The experimental profiles of the BK7 filter have fitted using Eq. (16). The fitted parameters are 
ηPoα/K = 1.686×10-3±2×10-6 Km, h/K = 5.8±0.5 m-1 and D = 0.433±0.001 mm2/s. As for the 
case of opaque and thermally thick samples, the uncertainties in the obtained parameters values 
are small. However, by repeating five for the each sample at three different surface locations 
we have obtained an uncertainty in D about 5%. The results for the six samples analyzed in this 
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work are summarized in Table 1, showing a good agreement with the literature values, together 
with an uncertainty about 5%.  

 

 

 

 
 
Figure 8. The same as Fig. 7 for an opaque and thermally thin sample (AISI-304, 0.2 mm thick) 
and for a very transparent sample (BK7 glass). 
 
 
Table 1. Thermal diffusivity of the materials measured in this work. 
 

Material D (mm2/s) 
This work 

D (mm2/s) 
Literature [34-38 

27, 33-37] 
PEEK 0.20 ± 0.01 0.20 
AISI-304 3.9 ± 0.1 4.0 
Glassy carbon 6.2 ± 0.2 6.0 
Graphite 65 ± 2 60  
AISI-304 (L = 0.2 mm) 3.9 ± 0.4 4.0 
BK7 glass 0.44 ± 0.01 0.4-0.6 
 

 
It has been demonstrated that, using a high-end CW laser and a scientific IR camera, 

laser-spot step-heating thermography is a valuable technique to measure the thermal diffusivity 
with high accuracy. This technique provides temperature profiles that are a bit noisier that those 
obtained with laser-spot lock-in thermography, but with the advantage of a simpler 
experimental setup.  

AISI-304 BK7 D = 3.85±0.06 mm2/s D = 0.433±0.001 mm2/s 
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In the remaining of this section, we will show that a high enough accuracy can be 
obtained using low-end lasers and entry-level IR cameras, thus proving that a low-cost 
equipment can be used to measure the thermal diffusivity accurately. On the one hand, we have 
used a laser delivering up to 6 W, but all measurements have been performed using powers in 
the range 10-500 mW that, according to nowadays technology, can be obtained with low-end 
lasers. On the other hand, inexpensive lasers do not feature Gaussian profile but a flat-top (top-
hat) one. The spatial distribution of the power density of a flat-top laser of power Po and radius 
a is given by 

2( )
2

oP rP r
a aπ

 =  
 

∏ ,          (19) 

where Π is the Heaviside pi function, whose value is 1 for 0 ≤ r ≤ a and 0 for r > a. Its Hankel 
transform is [30] 

( )1( ) o J aPP
a
δ

δ
π δ

= ,          (20) 

where J1 is the Bessel function of order 1. Accordingly, to obtain the surface temperature of a 

sample illuminated by a top-hat laser, we just need to replace 
( )2

80.5
a

e
δ

−
 by ( )1J a

a
δ

δ
 in Eqs. (11), 

(12), (14) and (16). In Fig. 9 we show the comparison of the temperature profiles for a Gaussian 
laser beam and a top-hat one. Except at the position of the laser spot, where very scarce 
information on the sample diffusivity is available, the two temperature profiles are 
indistinguishable. Accordingly, the quality of the laser profile does not affect the validity of the 
method, as long as the spot is circular. It should be noted that, if the spot was elliptical, the 
temperature distribution would differ from the one presented in Section 2, as the solution should 
be calculated in the Fourier, rather than the Hankel space. Anyway, this does not represent a 
serious limitation since inexpensive laser diodes feature circular output with symmetric energy 
distributions. Then, the only requirement is to direct the laser beam perpendicular to the sample 
surface to guarantee a circular spot, which can be easily achieved by using a Ge window or a 
dichroic mirror.  
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Figure 9. Calculations of the temperature profiles (in logarithmic scale) for an opaque and 
thermally thick polymeric sample (D = 0.2 mm2/s, K = 0.4 Wm-1K-1) with ηPo = 10 mW at t = 
5 s, illuminated by a flat-top (red) and a Gaussian profile laser spot, both with a radius of a = 
0.2 mm.  
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Regarding the IR camera we have used a medium level mid-wave IR camera with a 
NETD of 20 mK and a spatial resolution of 30 µm. Nowadays bolometer IR cameras feature 
NETD values of 50 mK, which does not represent a significant increase of the noise level. 
Regarding the spatial resolution, we have re-processed the temperature profiles, reducing the 
spatial resolution by performing the temperature average in squares of 5 px × 5 px to simulate 
a spatial resolution of 150 µm, which is the typical resolution of low-end IR cameras. In Fig. 
10a we show the same temperature profile as in Fig. 6a, corresponding to a PEEK sample at t 
= 5 s. The black dots correspond to the full spatial resolution given by our IR camera (30 µm) 
while the red dots correspond to the reduced spatial resolution (150 µm). As can be observed, 
although the number of experimental data is reduced by a factor of five, the shape of the 
temperature profile remains unchanged. In Fig. 10b we show the fittings of the same series of 
temperature profiles as in Fig. 7a, but with the reduced spatial resolution. The quality of the fit 
is very good and the obtained thermal diffusivity value is the same as that obtained at full spatial 
resolution, within the experimental uncertainty. Note that the choice of PEEK to check the 
viability of using inexpensive equipment to measure the thermal diffusivity represents a “worst 
case scenario” in terms of spatial resolution, as in low diffusivity materials the temperature 
decays faster than in good conductors. Another key factor is the acquisition rate of the camera. 
In our camera this rate is 450 frames/s. This means that the uncertainty in the starting time of 
the illumination is 2 ms, whose influence in temperature profiles taken at times longer than 0.1 
s is negligible. Low-end IR cameras have typical frame rates of 50 frames/s, introducing an 
uncertainty of 20 ms. To neglect this error, temperature profiles at times longer than 1 s must 
be used. This is not a great restriction, but introduces a lower limit to the lateral size of the 
sample, that must be greater than 2µ = 2 Dt , e.g. for a very good thermal conductor as Cu (D 
= 116 mm2/s) and t = 4 the lateral size of the sample (length and width) must be longer than 5 
cm.  

In summary, we can conclude that thermal diffusivity of solids can be obtained 
accurately using a low-cost laser-spot step-heating device.  
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Figure 10. (a) Comparison of the radial profiles of ln(T) obtained at full spatial resolution (black 
dots) and at reduced resolution (red dots). (b) Simultaneous fittings of averaged profiles of ln(T) 
with reduced resolution. 
 
 
5. SUMMARY AND CONCLUSIONS 
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We have shown that the thermal diffusivity of opaque and transparent isotropic 
materials can be measured using time domain IR thermography with laser-spot step-heating, 
with an accuracy similar to more sophisticated techniques such as laser-spot lock-in 
thermography. We have obtained semi-analytical expressions for the evolution of the surface 
temperature distribution when the material is illuminated by a CW laser spot, for a variety of 
material properties and sample configurations: opaque, transparent, thick and thin. We have 
analyzed the effect of heat losses by convection and radiation. The calculations show that the 
effect of heat losses is negligible in thick specimens, but needs to be considered if the sample 
is thin, especially in poor thermal conductors. The proposed methodology is based on fitting 
the theoretical temperature expression to radial temperature profiles. In order to gain 
consistency and accuracy, the noise in the radial profiles is reduced by averaging the 
temperature in circles concentric with the excitation and several averaged profiles obtained at 
different instants are fitted simultaneously. The averaging procedure is simpler than performing 
a lock-in analysis, both in terms of image processing and of the equipment needed, since no 
chopper or acousto-optic modulator is required in the set-up. The results show that the thermal 
diffusivity of materials ranging from good thermal conductors to thermal insulators, including 
thick and thin samples and semitransparent specimens can be measured with this technique with 
high accuracy and precision better than 5%. It has also been shown that inexpensive lasers and 
IR cameras can be used to build a low-cost laser-spot step-heating IR setup that enables accurate 
measurements of thermal diffusivity. If compared with a home-made classical flash system built 
with flash lamps, this system requires lower input energy and is easier to shield to prevent eye 
damage. In comparison with flash systems with laser excitation, pulsed lasers are significantly 
more expensive than laser diodes. Additionally, this methodology only needs one side access, 
which is interesting for assembled parts. As a summary, the proposed low-cost setup does not 
require sophisticated data processing and can be easily built and operated by non-specialized 
personnel in industrial environments. 
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