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ABSTRACT. Predicting the activity of new chemical compounds over pathogenic microorganisms with 

different Metabolic Reaction Networks (MRNs) is an important goal due to the different susceptibility to 

antibiotics. ChEMBL database contains >160 000 outcomes of preclinical assays of antimicrobial activity for 

55931 compounds with >365 parameters of activity (MIC, IC50, etc.) and >90 bacteria strains of >25 bacterial 

species. In addition, Leong & Barabàsi data set includes >40 MRNs of microorganisms. However, there are no 

models able to predict antibacterial activity for multiple assays considering both drug and MRN structures at 

the same time. In this work, we combined Perturbation-Theory, Machine Learning, and Information Fusion 

techniques to develop the first PTMLIF model. The best linear model found presented values of Specificity = 

90.31/90.40 and Sensitivity = 88.14/88.07 in training/validation series. We carried out a comparison to non-

linear Artificial Neural Network (ANN) techniques and previous models from literature. Next, we illustrated 

the practical use of the model with an experimental case of study. We reported for the first time the isolation 

and characterization of terpenes from the plant Cissus incisa. The antibacterial activity of the terpenes was 

experimentally determined. The more active compounds were phytol and α-amyrin, with MIC = 100 μg/mL for 

Vancomycin-resistant Enterococcus faecium and Acinetobacter baumannii resistant to carbapenems. These 

compounds are already known from other sources. However, they have been isolated and evaluated for the first 

time here against several strains of multidrug-resistant bacteria included World Health Organization (WHO) 

priority pathogens. Last, we used the model to predict the activity of these compounds vs. other microorganisms 

with different MRNs in order to find other potential targets.
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1. INTRODUCTION

The current situation of bacterial resistance according to World Health Organization (WHO) is alarming.1 

Bacterial resistance to conventional antibiotics has risen dramatically over the past decade, depleting treatment 

options and fundamentally altering the approach to infection prevention and treatment.2 The unabated rise in 

antibiotic resistance, coupled to collateral damage to normal flora by overuse of broad-spectrum antibiotics, 

requires the development of new antibiotics that are specifically active against multidrug-resistant and 

extensively drug-resistant Gram-negative bacteria.3 The global threat of antibiotic resistant bacteria has led to 

development of different strategies to address this problem. In this sense, understanding the metabolism of 

pathogens plays an important role, although little known, in the development of antibiotic resistance. Several 

approaches that integrate experimental data at the level of systems with metabolic networks (for example, 

genomic scale)4 have recently been applied to elucidate the metabolic dependencies of resistance, as well as to 

identify pharmacological targets and possible antibacterials.5 In fact, Barabási´s group and other authors have 

demonstrated the influence of the changes in Metabolic Reaction Networks (MRNs) over the capacity of 

survival of different microorganisms.6 In this context, due to the increase in the incidence of antibiotic resistant 

infections, natural products from plants become interesting alternatives. Therefore, the search for new 

antibacterial agents derived from plants should be directed to the discovery of natural sources of structurally 

diverse compounds, whose mechanisms of action were different from those of commercial drugs.7 As part of 

the extensive exploration of the endemic flora of Mexico, studies on species that have not validated their 

medicinal uses are underway. Among these species, Cissus incisa is included, which has been traditionally used 

to treat respiratory and skin infections, as well as abscesses. However, to the best of our knowledge there are 

not previous reports on phytochemical studies of this plant.

On the other hand, the use of computational models may become a very useful tool in the discovery and 

development of drugs. First, these models can lead to savings in terms of resources and research time. 

Additionally, it is possible to analyze hundreds of data at the same time and to get valuable conclusions when 

establishing relationships between them. Many Cheminformatics models have been developed for the discovery 

of antimicrobial compounds against different microbes, but they are limited to the prediction of their biological 

activity in a given strain under certain conditions.8 In this sense, the Perturbation Theory model combined with 

ML methods (PT + ML = PTML models) can overcome these limitations. The PTML models developed by our 

group have been used in Medicinal Chemistry, Proteomics, Materials Chemistry, etc., to model large data sets 

with Big Data characteristics.9,10 Speck-Planche and Cordeiro et al. have also developed some PTML models 

for different biological activities.11To the best of our knowledge, there are no reports on PTML models for the 

prediction of antimicrobial compounds against several types of bacterial strains, analyzing at the same time, 

modifications in their MRNs involved in this biological activity.

In this work, we report for the first time a new PTML model for the prediction of antibacterial compounds 

taking into account the structure of the compound, the conditions of assay (different activity parameters or 

bacterial strains), and variations on the MRN of the bacteria. For that purpose, we downloaded a large database 

from ChEMBL with >83000 preclinical assays of compounds vs. different bacterial strains. We also compiled 
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the structural information for >40 MRNs of different microorganisms reported by Barabási´s group.6 Then, we 

applied an Information Fusion (IF) to merge both ChEMBL and MRNs datasets. The information of both 

datasets was pre-processed and all values transformed into a Shannon’s entropy scale previously to fusion.12 

Next, we applied a ML technique to find the best PTMLIF (PTML + IF) predictive model. On the other hand, 

we also carried out for the first time a phytochemical study of C. incisa, which allowed us to identify several 

compounds, among them: phytol, α-amyrin, β-amyrin, and β-sitosterol. Additionally, their antibacterial 

properties against multi-resistant strains were evaluated experimentally. At last, we used the PTMLIF model to 

predict the antibacterial activity of the more active compound to exemplify the use of the model in the practice. 

In Figure 1, we illustrate the general workflow for this research.

Figure 1. General workflow used in this paper

2. MATERIALS AND METHODS

2.1 Computational Section. 

ChEMBL-MRN Data Pre-processing and Information Fusion. The data analysis procedure used here 

implies three main steps: (1) data acquisition and pre-processing, (2) the IF procedure to fusion both ChEMBL 

and MRNs datasets, and (3) obtaining the PTMLIF model per se. In the data acquisition and pre-processing 

process, we started obtaining the outcomes of many preclinical assays from ChEMBL database. The result of 

each assay was expressed by one experimental parameter εij used to quantify the biological activity of the ith 

molecule (mi) over the jth target. The values of εij depend on the structure of the drug and also on a series of 
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boundary conditions that delimit the characteristics of the assay cj= (c0, c1, c2,  …cn). The conditions cj are c1 = 

the biological activity and c2 = bacteria strain used in the preclinical assay. In the data set we found many 

different biological parameters vij; for instance Minimal Inhibitory Concentration (MIC (g·mL-1)) or Minimal 

Bactericide Concentration (MBC (g·mL-1)), etc. The values vij compiled are not exact numbers in many cases; 

they report for instance MIC (g·mL-1) < 100. In addition, we considered that the properties may have a positive 

or negative desirability d(c1). Positive desirability was set d(c1) = 1 when we want to maximize the value vij of 

the biological activity parameter to obtain an optimal drug (this is the case of Selectivity ratio). Conversely, 

negative desirability d(c1) = -1 means that we want to minimize the value vijof the biological activity parameter 

(for instance MIC (g·mL-1). These facts difficult the development of a regression model and consequently we 

discretized the values to seek a classification model. Discretization was as follow:  f(vij)obs = 1 when vij> cutoff 

and d(c1) = 1. The value is also f(vij)obs = 1 when vij< cutoff and desirability d(c1) = -1, f(vij)obs = 0 otherwise. 

The value f(vij)obs = 1 points to and strong effect of the compound over the target.10

  In order to carry out the IF process ChEMBL and MRNs data fusion we decided to express all the information 

from ChEMBL and from MRNs (metabolic information) in the same scale. Consequently, the information of 

both datasets was transformed into a Shannon`s entropy scale previously to fusion. The information obtained 

from ChEMBL (chemical structure) have been scaled using the following formula to calculate the Shannon’s 

entropy value.12

𝑆ℎ𝑘 (𝐷𝑟𝑢𝑔𝑖) = −𝑝(𝐷𝑘𝑖 ) · log⁡(𝑝(𝐷𝑘𝑖 )) = − (𝐷𝑘𝑖 −𝐷𝑘𝑖𝑚𝑖𝑛 +0.001)
(𝐷𝑘𝑖𝑚𝑎𝑥 −𝐷𝑘𝑖𝑚𝑖𝑛 +0.001) · 𝑙𝑜𝑔 � (𝐷𝑘𝑖 −𝐷𝑘𝑖𝑚𝑖𝑛 +0.001)

(𝐷𝑘𝑖𝑚𝑎𝑥 −𝐷𝑘𝑖𝑚𝑖𝑛 +0.001)� (1)

   In this formula, Dki is the value of the molecular descriptor of the drug (LogP or PSA). The value p(Dki) is the 

result of scaling the molecular descriptors to a probability scale ranging from 0 to 1. The values Dkimin and Dkimax 

are the minimum and maximum value of the molecular descriptor Dki throughout the data set. The value 0.001 

was added as a scaling value to avoid p(Dki) = 0; forbidden for the logarithmic entropy function.12

  The previous Shk(Drugi) values were used to quantifying the structure of the chemical compounds. However, 

in this IF procedure we have to quantify also the structural information of the MRNs for the different species. 

Barabàsi’s group6 kindly released MRNs data upon author’s request. The files are in gzipped ASCII files, where 

each number represents a substrate in the metabolic network. The data format is from → to (directed link). This 

information was published originally by Jeong et al.6 We also quantified the structural information of the MRNs 

with Shannon’s entropy information scale. The formula used to calculate these values is the following; please 

see details on the literature (see details in SI00.pdf):12

𝑆ℎ𝑘 (𝑀𝑅𝑁𝑠) = − � 𝑝�𝑚𝑞 �· log 𝑝�𝑚𝑞 � (2)
𝑞=𝑞𝑚𝑎𝑥

𝑞=1

PTMLIF linear model. PTML Cheminformatics method ideas have been extended here to find the new 

PTMLIF model. The output of the PTMLIF model are the scoring function values f(vij)calc for biological activity 

of the ith compound assayed in the jth preclinical assay with conditions cj= (c0, c1) against the sth bacteria specie 

with MRNs. PTMLIF linear models have the following general equation:
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𝑓�vijs �
𝑐𝑎𝑙𝑐

= a0 + a1 · 𝑓�vij �𝑒𝑥𝑝𝑡
+ � a𝑘 · Shk(𝐷𝑟𝑢𝑔𝑖)

𝑘=2

𝑘=1

(3)

+ � a𝑘 ,𝑗 · ∆Shk�𝐴𝑠𝑠𝑎𝑦𝑗 �
cj

𝑘=2,𝑗 =2

𝑘=1,𝑗 =1

+ � a𝑘 ,𝑗 · ∆Shk(𝑀𝑅𝑁𝑠)cj

𝑘=2,𝑗 =2

𝑘=1,𝑗 =1

    The PTMLIF model starts with the expected value of biological activity f(vij)expt and sums the effect of the 

chemical information related to the structure of the drug and the accumulated effects due to changes or 

perturbations (PT operators) in the conditions of assay or the bacteria strain used. The PT operators used here 

are similar to Box-Jenkins Moving Average (MA) operators used in previous works.13 The other PT operators 

included in this model are Moving Averages (MA) calculated for one condition at time. In the PTMLIF model 

we have two types of PT operators due to the IF process. One type of PT operators is the terms ΔShk(Assayj)cj 

and the other type are the terms ΔShk(MRNs)cj. We calculated these variables as ΔShk(Assayj)cj = Shk(Drugi) - 

<Shk(Assayj)cj> or ΔShk(MRNs) = Shk(MRNs) - <Shk(MRNs)cj>, respectively. Consequently, ΔShk(Assayj)cj 

terms account for the deviation of the chemical information of the compound Shk(Drugi) from the expected 

value of <Shk(cj)> (average value) for all compounds assayed under the same conditions cj in ChEMBL12 

dataset. By analogy, ΔShk(MRNs)cj terms quantify  the deviation of the metabolic information of the bacteria 

Shk(MRNs) from the expected value of <Shk(MRNs)cj>for all bacteria strains used in assays with the same 

conditions cj in ChEMBL data.

2.2. Experimental section. 

Chemicals and equipment. Reagents and solvents were purchased from Sigma-Aldrich and used without 

further treatment. The following compounds: phytol (1), α-amyrin (2), β-amyrin (3), were purchased from 

Sigma-Aldrich. β-sitosterol acetate (5)14 was synthesized from β-sitosterol (4). Thin layer chromatography 

(TLC) was carried out on 0.2 mm thick silica gel plates (Merck 60 F254). Visualization was accomplished by 

UV light and/or ceric sulfate solution in sulfuric acid. NMR spectra were recorded on a Bruker NMR 400 

spectrometer at 20-25 ˚C, at 400 MHz for 1H and 100 MHz for 13C in CDCl3 solutions using tetramethylsilane 

(TMS) as internal reference.

    GC/MS analysis. The sample was processed on an Agilent 6890 Gas Chromatograph coupled to an Agilent 

model 5973 Selective Mass Detector. The column used was a HP-5MS column (30 m x 0.250 mm x 0.25 

microM). Helium was used as a carrier gas at a constant flow of 1 mL per min. Injector temperature of 250 0C, 

temperature of the ion source 230 0C. The temperature of the oven was programmed from 500C, with an increase 

of 20C / min to 2850C. The total execution time of the GC was 35 minutes. An MSD detector was used. Mass 

spectra were recorded under electron impact (EI) at 70 eV. The results that are reported are given with reference 

to the NIST library database version 1.7ª.
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    Vegetal material. Cissus incisa leaves were collected in Rayones, Nuevo Leon, Mexico, in October 2016. 

A reference sample was deposited in the herbarium of the Faculty of Biology of the Autonomous University of 

Nuevo Leon obtaining the voucher number: 027499. Leaves were dried in the shade for 2 weeks and then ground 

in a knife mill, obtaining 809 g of plant material.

    Preparation of the extract. Dry and ground material was macerated 24 h with 1000 mL of hexane. Then, 

the organic extract was filtered by gravity, then under vacuum and finally concentrated in a rotary evaporator, 

yielding 0.748 g of the dried extract.

    Synthesis. β-sitosterol acetate (5).14 To a solution of β-sitosterol (4) (25 mg, 0.060 mmol) in pyridine (0.5 

mL,6.2mmol), acetic anhydride (0.5 mL, 5.3 mmol) was added slowly. The reaction mixture was stirred 

overnight. Then ethyl acetate (10 mL) and the organic layer was washed with 10% HCl (4 × 10 mL), dried over 

sodium sulfate and the solvent concentrated under reduced pressure to give acetylated β-sitosterol as white 

needles (13,8 mg, 61%). 1H NMR (400 MHz, CDCl3) δ (ppm): 0.70 (3H, s, CH3), 0.84 (d, J = 7.6 Hz, 6H, 

(CH3)2CH), 0.87 (t, J = 7.8 Hz, 3H, CH3CH2), 0.94 (d, J = 6.2 Hz, 3H, CH3), 1.04 (s, 3H, CH3),1.08-2.05(m, 

27H), 2.06 (3H, s, CH3CO), 2.33-2.39 (2H, m), 4.57-4.68 (m, 1H, H-3), 5.40 (1H, bd, J=4.2Hz, H-6). 13C NMR 

(100 MHz, CDCl3) δ (ppm): 11.87 (CH3), 12.00 (CH3), 18.74 (CH3), 19.04 (CH3), 19.32 (CH3), 19.83 (CH3), 

21.04 (C11), 21.46 (CH3), 23.08 (C28), 24.3 (C16), 26.08 (C23), 27.79 (C15), 28.26 (C2), 29.16 (C25), 31.87 

(C8), 31.91 (C7), 33.95 (C22), 36.17 (C20), 36.61 (C10), 37.00 (C1), 38.13 (C4), 39.73 (C12), 42.33 (C13), 

45.85 (C24), 50.04 (C9), 56.04 (C17), 56.7 (C14), 74.00 (C3), 122.66 (C6), 139.67 (C5), 170.56 (CH3CO). 

2.3 Antibacterial activity assays. 

Bacteria and inoculum preparation. Strains of drug-resistant clinical isolates of Gram-negative and Gram-

positive bacteria were used, from the University Hospital Dr. Eleuterio González of the Autonomous University 

of Nuevo Leon, four of which are included in the list of priority pathogens issued by the WHO.1 The bacteria 

Gram positive tested were Methicillin-Resistant Staphylococcus aureus (MRSA) (14-2095), Linezolid- resistant 

Staphylococcus epidermidis (LRSE) (14-583), Vancomycin-resistant Enterococcus faecium (VREF) (10-984). 

Gram-negative: Acinetobacter baumannii resistant to carbapenems(ABRC),Escherichia coli producing 

Extended-spectrum beta lactamase (ECPE)(14-2081), Pseudomona aeruginosa resistant to carbapenems 

(PARC) (13-1391), Klebsiella pneumonia NDM-1+ resistant to carbapenems and broad-spectrum 

cephalosporins (KPNDM-1+)(14-3335), Klebsiella pneumonia producer of ESBL (KPPE)(14-2081) and 

Klebsiella pneumonia(OXA-48) resistant to oxacillins (KPRO). Strains were inoculated on plates prepared with 

5% blood agar and cultured for 24 h at 37°C. The inoculum was prepared by transferring three to five colonies 

of each culture to tubes with sterile saline, and the turbidity was adjusted to 0.5 of the McFarland standard (1.5 

X 108 CFU/ml). Then 10 μL in 11 ml of Mueller Hinton broth were transferred to reach 5 x 105CFU / ml.15

Determination of the Minimum Inhibitory Concentration (MIC).The antibacterial activity was developed 

by microdilution method previously reported by Zgoda et al.15 Levofloxacin was used as reference standard. 

Experiments were conducted in triplicate. The MIC was determined as the Minimum Concentration of the 

compound that inhibits the growth of the bacteria.

3. RESULTS AND DISCUSSION
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7

PTMLIF linear model. The projected PTMLIF model is the combination of PTML modeling and Information 

Fusion (IF) procedures. The model begins with the expected value of biological activity and incorporates the 

effect of different perturbations in the system. These perturbations are expressed in terms of PT operators. The 

selected operators are of different type f(vij)expt, Shk(Drugi), ΔShk(Assayj), ΔShk(MRNs). A detailed explanation 

about all the input variables analyzed is shown in Table 1. The equation of the best model found is the following:

𝑓�vij �𝑐𝑎𝑙𝑐
= −5.683 + 14.434 · 𝑓�vij �𝑒𝑥𝑝𝑡

− 16.426 · Sh1(Drug) (4)
+ 24.818 · DSh1(Assay)𝑐1 + 0.211 · DSh2(Assay)𝑐1
+ 1.882 · DSh1(Assay)𝑐0 − 107.050 · Sh1(MRN)𝑐2
+ 155.395 · Sh2(MRN)𝑐2

n = 126848 𝜒2 = 122496.8 p < 0.05

Table 1. Input variables

cj Condition Symbol Operator Formula Operator Information 

c0
Biological 

activity 
f(vij)expt  n(f(vij)obs=1)/nj

Expected value of probability 

p(f(vij)=1)expt for a given type of 

activity (vij)

-

Drugs

Chemical

structure

Shk(Drugi) -

Accounts for variability  on 

chemical structure information 

of the drugs in terms of 

lipophilicity expressed as LogP 

(k =1) or surface area expressed 

as PSA (k=2)

c0

Drug 

structure vs. 

Biological 

activity

ΔShk(Assayj)c0 Shk(Drugi) - <Shk(Assayj)c0>

Accounts for variability  on 

chemical structure information 

with respect to the structure of 

the drugs with the same 

biological parameter measured 

(c0) 

c1

Drug 

structure vs. 

Assay 

organism

ΔShk(Assayj)c1 Shk(Drugi) - <Shk(Assayj)c1>

Accounts for variability  on 

chemical structure information 

with respect to the structure of 

the drugs assayed against the 

same bacterial strain (c1) 

c2
MRNs 

structure 
Shk(MRNs) -

Accounts for the variability  on 

the information about MRNs 

structure 
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8

The first input variable f(vij)expt is the expected value of biological activity for one compound or a given type 

of activity cj = (c1, c2). The specific molecular descriptors were the min-max scaled Shannon entropies used to 

measure hydrophobicity and polar surface area features of the drug. In the materials and methods section, we 

show how these entropies can be obtained from the original values of LogP (n-Octanol/Water Partition 

Coefficient) and PSA (Polar Surface Area).These values were taken directly from ChEMBL data set. The output 

of the model f(vij)calc is a scoring function of the value vij of biological activity of the ith drug in the different 

combinations of conditions of assay cj. For an LDA model f(vij)calc is not in the range 0-1 and it is not a 

probability. Nevertheless, for a given value of f(vij)calc the LDA algorithm can calculate the respective values of 

posterior probabilities p(f(vij)= 1)pred. The LDA algorithm uses the Mahalanobis’s distance metric to calculate 

these probabilities.16 Calculating p(f(vij) = 1)pred, we can decide whether the compound is active with f(vij)pred= 

1 (when p(f(vij) = 1)pred > 0.5) or not. Counting the number of cases with f(vij)pred = f(vij)obs= 1 or -1 (correct 

classifications) vs. f(vij)pred ≠ f(vij)obs (incorrect classification), we can determine the Sn and Sp of the model.16 

This model is useful to discover the activity of any compound for different combinations of experimental 

conditions. First, we have to substitute the expected probability of activity p(f(vij)obs=1)expt on the equation, see 

Table 2. It should be noted that these values change for different activities, like Zone of inhibition (mM), MIC50 

(ug.mL-1), MBC (ug.mL-1), LD50 (uM), Activity (%), etc. As consequence, the model can predict several activity 

parameters for a given compound. Then, we have to substitute the values of ALOGP for a new compound (taken 

from ChEMBL and/or calculated with software).

Table 2.One-condition averages, cutoff, desirability d(c0),etc., for selected biological parameters

Activity <Shk(Drugi)> <Shk(MRNs)> Parameters used to specify c0
b

c0
a k = 1 k = 2 k = 1 k = 2 nj(c1) n p cutoff d(c0)

Zone of 

inhibition 

(mM)

0.160 2.950 0.014 0.0126 70 37 0.529 19.6 1

MIC50 

(ug.mL-1)
0.142 2.318 0.011 0.012 2930 2442 0.833 21.5 -1

MIC90 

(ug.mL-1)
0.144 2.483 0.012 0.012 4670 3607 0.772 34.9 -1

MIC 

(ug.mL-1)
0.153 1.935 0.011 0.012 92674 92064 0.993 3825.5 -1

MBC 0.153 2.648 0.013 0.013 117.2 -1
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(ug.mL-1) 1349 1004 0.744

LD50 

(uM)
0.150 2.556 0.012 0.014 24 19 0.792 28.3 -1

Activity

(%)
0.152 2.732 0.011 0.012 4880 2373 0.486 47.2 1

b n = nj(f(vij) =1)obs  and p = p(f(vij)=1)expt

Regarding the computation of these expected values of probability, we must evaluate the formula 

p(f(vij)obs=1)expt = n(f(vij)=1)obs/nj. This is the ratio between the number of drugs n(f(vij)=1)obs with a desired 

level of activity for the condition cj and the number of drugs nj assayed for the same condition cj. We assume 

that a compound has a desired level of activity f(vij)obs=1 when the value of activity vij> cutoff for those activities 

with desirability d(c0) = 1. A compound also has a desired level of activity f(vij)obs= 1 when the value of activity 

vij< cutoff for activities with desirability d(c0) = -1.On the other hand, when the compound is considered not to 

have a desired level of activity, f(vij)obs= 0. Otherwise, the desirability d(c0) = 1 for properties of the compound 

that we want to maximize and d(c0) = -1.The cutoff = 100 for properties with units in nM. If not, cutoff = <vij> 

expected value (average) of the value of activity vij.

In order to predict the activity of a new compound, we also have to substitute in the model the expected 

values of the molecular descriptors ΔDSh(cj) for different conditions. Table 3 shows selected values of the 

averages ΔDSh(cj).We can appreciate that these values change depending on the bacterial strain, so the model 

provides a different result for one compound if you change this condition. For example, <Sh0(MRN)>=0.0036 

for P. aeruginosa and <Sh0(MRN)> = 0.0047 for H. influenzae. This means that the model is able to predict a 

different activity in different microorganisms for the same drug. The full list of the values of entropy for MRNs 

of selected organisms is included in the supplementary material.

Table 3. Values of entropy for MRNs of selected organisms

Condition c2
a Parameters used to specify c2

MRNs <Sh0(MRN)> <Sh1(MRN)> nj(c2)

P. aeruginosa 0.0036 0.0191 15457

A. thaliana 0.0088 0.0116 177

B. subtilis 0.0032 0.0159 20547

C. acetobutylicum 0.0051 0.0066 15

C. elegans 0.0056 0.0079 441

C. jejuni 0.0068 0.0100 598

C. trachomatis 0.0129 0.0170 323

Page 9 of 25

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

E. coli 0.0031 0.0081 16799

E. faecalis 0.0064 0.0079 15449

E. nidulans 0.0070 0.0101 112

H. influenzae 0.0047 0.0159 7171

M. tuberculosis

H37Rv
0.0045 0.0155 23048

aThe full names of the species are: Pseudomona aeruginosa, Arabidopsis thaliana, Bacillus subtilis, Clostridium acetobutylicum, 

Caenorhabditis elegans, Campylobacter jejuni, Chlamydia trachomatis, Escherichia coli, Enterococcus faecalis, Emericella 

nidulans, Haemophilus influenzae, Mycobacterium tuberculosis H37Rv.

This model shows high values of Specificity Sp = 90.31, Sensitivity Sn = 88.14, and overall Accuracy Ac = 

88.65 in training series, taking into account the high number of experimental conditions (see Table 4).In 

addition, the model displays very similar values of Sn, Sp, and Ac in external validation series, see also Table 

4. As reported by Hill and Lewicki, 16 we used the forward-stepwise strategy of variable selection to detect the 

more important perturbations on different conditions. It is important to mention that the obtained values are in 

the range considered as useful for classification models with application in Medicinal Chemistry.17 The data 

points (Drug-Assay pair) used in validation series have not been used to train the model. In Supporting 

Information (SI) file SI00.pdf we give details about the model, in SI01.xls we give the average values, and in 

SI02.xls we depict details of the classification and probability for each case.

Table 4.Results of the model and input variables analyzed

Obs. Stat. Pred. Predicted sets

Setsa Param.b Stat. f(vij)pred =-1 f(vij)pred = 1

Training series

f(vij)obs= -1 Sp 90.3 27248 2933

f(vij)obs = 1 Sn 88.1 11464 85203

Total Ac 88.7

Validation series

f(vij)obs= -1 Sp 90.3 9062 968

f(vij)obs = 1 Sn 88.1 3842 28410

Total Ac 88.6

PTMLIF ANN models. We also trained other type of PTMLIF models using a different class of ML algorithms. 

Specifically, we used linear and non-linear Artificial Neural Network (ANN) algorithms to train alternative 

models. Almost all found PTMLIF-ANN models reached values of Sp and Sn ≈ 88% and AUROC> 0.9 in 

training and validation series. In Figure 2, the curves for all ANN models (almost overlapped in many cases) 
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are shown. In Table 5, the values of Sp and Sn are depicted. In any case, none of them outperformed the 

PMTLIF-LDA linear model reported in the previous section with Sp and Sn ≈ 88.1 - 90.3%. The Linear Neural 

Network (LNN) model, very similar to the LDA technique, gives almost the same results. The addition of one 

or two hidden layers of neurons in the Multilayer Perceptron (MLP) does not improve the Sp and Sn during 

training times above 1h. In addition, the Radial Basis Function (RBF) topology presented a decrease in these 

values with Sp and Sn ≈ 73 – 74%, see Table 5, which is in agreement with the previous hypothesis that there 

is a linear relationship between the classification of the compound and the used PT operators.

Figure 2. ROC curve analysis
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Table 5. PTMLIF-ANN models 

Profile Set -1 1 (%) Parm. (%) Lij -1 1

-1 26784 10818 88.74 Sp 88.66 8893 3634 26784
LNN 7:7-1:1

1 3397 85849 88.81 Sn 88.73 1137 28618 3397

-1 26742 10963 88.61 Sp 88.74 8901 3668 26742
MLP 7:7-11-1:1

1 3439 85704 88.66 Sn 88.63 1129 28584 3439

-1 26783 10798 88.74 Sp 88.70 8897 3631 26783
MLP 7:7-11-11-1:1

1 3398 85869 88.83 Sn 88.74 1133 28621 3398

-1 22245 25230 73.71 Sp 74.54 7476 8362 22245
RBF 7:7-1-1:1

1 7936 71437 73.90 Sn 74.07 2554 23890 7936

Comparison with other models. Various PTML models for the discovery of antibacterial compounds have 

been previously reported. In Table 6, a comparison between the present model and some of these models is 

shown. In this comparative study, we included 20 models 8,9,11,18-30 most of which (80%) are based on 

heterogeneous series of compounds (model 418, model 519, model 722, model 88, models 10-2023-30. However, 

two models were based on peptides11,20, one on nanoparticles21 and another one on antituberculosis drugs.9 

Regarding the number of cases, we can see twelve models that include hundreds of cases, which represent 60 

%, while the rest (40%) include much larger amounts. We should note that the model reported in this paper fits 

a very complex and notably larger data set of n> 83000 cases as compared to the other models. Regarding the 

complexity of the models, most of them are small models, including between 4 and 7 variables, except model 

13, which included 62 variables. The LDA predominates among the techniques used in the realization of the 

models. This technique was used in 15 out of 20 models, representing 75% (models: 1-4,6-7,9-11,14-15,17-20). 

It was followed by ANN in four models (5,8,13,16), which represents the 20% and BLR in only one (5%).24 

Regarding the accuracy, it should be noted that all compared models have precision values higher than 85%.The 

predominant validation technique was the external predicting series, which was used in 17 out of 20 models, 

including this one. This shows that we used a proven validation technique. As shown in Table 6 (entries 10-
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20), the models are not able of predicting multiple species, that is, they only predict a single type of 

microorganism.

Table 6. Comparison to other PTML models of antibacterial compounds

ma Cmpd.

Typea

nb Var.b Tech.c Acc

(%)

Val.d Multi

Speciese

Drug

Familyf

MOg Net.h Ref.

1 HSC 83605 6 LDA 88.6 i MBS >10 Yes Yes
This

work

2 Peptide 3592 4 LDA 96.0 i MBS >10 Yes No 11

3 Peptide 2488 6 LDA 90.0 i
Gram +

bacteria
>10 Yes No 20

4 HSC 30181 6 LDA 90.0 i
F.necrophorum

P. intermedia
>10 Yes No 18

5 HSC 54000 6 ANN 90.0 i
Pseudomonas 

spp
>10 Yes No 19

6 Nano. 300 7 LDA 77.7 i MBS >10 Yes No 21

7 HSC 37800 5 LDA 95.0 i No >10 Yes No 22

8 HSC 11576 4 ANN 97.0 i
Streptococcus 

spp
>10 Yes No 8

9 ATD 12000 4 LDA 90.0 i
Mycobacterium 

spp
>10 Yes No 9

10 HSC 667 7 LDA 92.9 i No >10 No No 23

11 HSC 661 6 LDA 92.6 ii No 8 No No 24

12 HSC 661 6 BLR 94.7 ii No 8 No No 24

13 HSC 661 62 ANN - iii No 8 No No 24

14 HSC 352 7 LDA 91.0 i No 9 No No 25

15 HSC 111 7 LDA 94.0 i No 3 No No 26

16 HSC 111 7 ANN 89.0 i No 3 No No 26

17 HSC - 8 LDA > 90 i No - No No 27

18 HSC 972 8 LDA 86.8 i No > 5 No No 28

19 HSC 458 2 LDA ~ 85 i No - No No 29

20 HSC 433 6 LDA ~ 85 i No > 8 No No 30

aCompound type: HSC = Heterogeneous Series of compounds, anti-TB drug = antituberculosis drugs. bTotal number of cases in 

training and/or validation series and Vars. = Variables in the model. cTechnique: LDA = Linear discriminant analysis, ANN= artificial 

neural network, BLR=binary logistic regression. dValidation methods: i) external predicting series, ii) leave-30%-out cross validation, 

and iii) 100-times-averaged re-substitution technique. Furthermore, note that methods ii and iii are cross-validation methods. eMulti 

Species: Multiple bacterial strain (MBS), Fusobacterium necrophorum, Prevotella intermedia. fDrug Family: Only largely 

represented families were considered. gMO = Multi Output: multi-output models are those able to predict more than one type of 
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biological activity (MIC, IC50, MBC, etc.). hNet. =MRNs: Models able to account for changes in the MRNs of different 

microorganisms. 

Multispecies models appeared recently, however, some of them predict biological activity only for the same 

genus or within a subgroup of bacteria (models 1 to 9). Similarly, models from 10 to 20 are not multi-output, 

while the rest are. Therefore, we have presented two generations of models. Those between one and nine 

correspond to the more contemporary models, representing the 45% of the analyzed total. The present PTML 

model is able to predict the antibacterial activity of any compound against different bacteria strains. However, 

the principal contribution is to include the MRNs. With the present model, a determined reaction on the interior 

of a bacterium can be varied, which consequently brings changes in its metabolic pathway. Thus, key points are 

identified, which can be targeted for the action of the drug. In addition, the search for drugs is addressed. The 

application of the model can reduce the number of candidates, with the subsequent saving in time and resources. 

These results are in consonance with the application of other ML techniques in drug discovery.31-36

Phytochemical study. To our knowledge, until now, there are no reports on chemical composition of extracts 

from C. incisa. Hence, the present study is focused on the analysis of terpenoid compounds and its antimicrobial 

activity. Using chromatographic and spectral analyses and reported data, four known compounds, which had 

not been previously isolated from the leaves of C. incisa, were identified. The hexane extract was analyzed by 

GC/MS. The chromatogram (Figure 3) showed the following compounds: phytol (1) (71.91 min; 4.09%), α-

amyrin (2) (116.18 min; 3.18%), β-amyrin (3) (114.91; 8.43%), and β-sitosterol (4) (114.53 min; 19.44%), the 

latter one being the most abundant. Mass spectra of compounds 1-4 are included in the supporting information 

section. These results are consistent with those reported by Pathomwichaiwat et al.,37 who identified triterpenes, 

phytols, steroids, and their derivatives from a hexane extract of Cissus quadrangularis. Besides, species within 

this genus, such as: C. quadrangularis, C. aralioides, C. polyantha, and C. cornifolia have also been previously 

studied.37-40 Different compounds, such as: fatty acids, phenolic compounds, pyrogallics, polysaccharides, 

flavonoids, sterols (β-sitosterol, stigmasterol), terpenes (α-amyrin, β-amyrin, oleanolic acid, and lupeol), 

stilbenes, and glycosides, among others, have been identified and/or isolated.
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Figure 3.CG chromatogram of hexane extract of C. incisa leaves

    In the plant world, it is common to find these compounds, because they fulfill important roles in plants. The 

phytol is a well-known diterpene. It is found in the wax layer of the leaf and is an essential component of 

chlorophyll. Sterols are very abundant and their function is to maintain the structure and functioning of cell 

membranes. On the other hand, amyrins are found in various plants and plant materials, such as leaves, bark, 

wood and resins. These compounds, which provide protection against herbivores, favor germination of seeds 

and inhibit root growth. It is promising for our study the presence of these metabolites. Specially, those whose 

biological properties have been previously reported (antibacterial, antifungal,  and anticancer activity).41-45 In 

addition, acetylation of β-sitosterol was performed obtaining the corresponding acetylated derivative, whose 

spectroscopic data are in agreement with those previously reported for β-sitosterol acetate (5),14 which allowed 

us to confirm its structure.

Antibacterial Activity. Results in Table 7 showed that compounds 1, 2, and 5 were active against different 

strains. Among them, phytol developed major antibacterial activity with MIC of 100μg / mL against two strains 

(Vancomycin-resistant E. faecium and A. baumannii resistant to carbapenems). This result is in agreement with 

the previous outcome reported for the antimicrobial activity of pentacyclic terpenes by Hernández-Vázquez et 

al.46 They obtained a MIC range of 64-1088 μg/mL against ATCC strains of S. aureus, E. faecium, P. 

aeruginosa, E. coli, and K. pneumoniae. It is important to point out that the acetylated derivative was more 

active than the natural product. In fact, β-sitosterol acetate achieved MIC of 100 μg/mL for A. baumannii 

resistant to carbapenems. To obtain semisynthetic derivatives is a strategy used to improve multiple 

characteristics of natural antibiotics, such as their power and antimicrobial spectrum, decreasing the toxicity 

and other unwanted effects.47
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Table 7. Antibacterial activity of isolated compounds from C. incisa leaves

Compounds MIC (µg/mL) for different strains a Ref

MRSA LRSE VREF ABRC EPEC PARC KPNMD-1 KPPE KPRO

>200 200 100 100 200 200 200 200 200 This work

ATCC 

(1) Phytol

OH

20 43

MRSA LRSE VREF ABRC EPEC PARC KPNMD-1 KPPE KPRO

>200 200 200 100 200 200 >200 200 200

This work

ATCC ATCC

(2)amyrin

HO >1024 200
48,49 

MRSA LRSE VREF ABRC EPEC PARC KPNMD-1 KPPE KPRO

>200 >200 >200 200 >200 200 >200 >200 >200 This work

STM ATCC ATCC ATCC  ATCC ATCC

(3)amyrin

HO

>800 500 250 120 1000 500 50

MRSA LRSE VREF ABRC EPEC PARC KPNMD-1 KPPE KPRO

>200 200 200 200 >200 200 200 >200 200
This work

ATCC ATCC ATCC STM

(4)sitosterol

HO >500 >500 200 >800

49,50,51

MRSA LRSE VREF ABRC EPEC PARC KPNMD-1 KPPE KPRO

>200 200 200 100 200 200 >200 200 200
(5)sitosterol acetate

O
O >200 >200 >200 >200 >200 100 >200 >200 >200

This work

Levofloxacin 12.5 6.25 12.5 12.5 25 0.78 >50 12.5 >50
a(MRSA)Methicillin-resistant Staphylococcus aureus,(LRSE)Linezolid- resistant Staphylococcus epidermidis, (VREF) Vancomycin–resistant Enterococcus faecium, 

(ABRC) Acinetobacter baumannii resistant to carbapenems, (EPEC) ESBL-producing Escherichia coli, (PARC) Pseudomona aeruginosa resistant to carbapenems, 

(KPNDM-1 +) Klebsiella pneumoniae NDM-1 +, (KPPE) Klebsiella pneumoniae producer of ESBL, (KPRO) Klebsiella pneumoniae resistant to oxacillins, 

(STM)Streptococcus mutants  ATCC.

    The tested compounds were more effective against Gram-negatives bacteria: A. baumannii resistant to 

carbapenems, and P. aeruginosa resistant to carbapenems (MIC=100 µg/mL). Although the antibacterial 

activity of our compounds was not comparable to that of standard Levofloxacin, the fact that they were active 

against Gram-negatives bacteria is valuable. Making them good candidates to be used in combination with 

established antimicrobials or became platforms for future antibiotics. In this sense, natural products and those 

optimized by synthesis will become the next generation of antibacterial agents.47,52 

Predictive study. In this section, we are going to illustrate the practical use of the model with one case of study. 

Based on earlier results, we selected phytol and α-amyrin, compounds with most interesting biological activity 

tested in the experimental part. Both compounds are widely distributed in nature: phytol is a diterpene, which 

is a component of chlorophyll and α-amyrin is related to plant protection. As we mentioned above, the 
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antibacterial properties have been previously determined for these compounds, but in sensitive strains.43 In 

ChEMBL, 149 assays for phytol, e.g. against Mycobacterium tuberculosis H37Rv, E. coli, S. aureus, Aspergillus 

flavus have been reported.53-56 However, we did not found reports of assays of phytol against other species of 

bacteria with different MRNs. In the case of α-amyrin, we found in ChEMBL 33 assays of biological activity 

as anti-cancer, anti-viral and anti-parasitic, but there are no antibacterial reports.

After applying the model, phytol was predicted to be active against all the tested bacteria obtaining values of 

p(f(vij) = 1)pred equal to 1 for all cases. These results are in agreement with those obtained experimentally (see 

Table 7). In our reported experimental results, phytol was active against another strain of Enterococcus 

(faecium). On the other hand, selected results for the predictive study of phytol and α-amyrin are shown in 

Table 8. Like phytol, α-amyrin would be active for all strains. However, its probability to reach this level of 

activity would be variable for different species of bacteria taking into account the values of p (f(vij) = 1)pred. The 

highest value was obtained for E. faecalis, which repeats as the most sensitive strain. The analysis of p (f (vij) 

= 1) min-max totally matches the predicted activity. Consequently, we can conclude that the model applied for the 

predictions for the antibacterial activity is correct, because of the concordance between computational and 

experimental assays.

Table 8. Selected results for the prediction of the antibacterial activity for selected compounds

Assay f(vij) MRNOrganism of

Assay

ChEMBL

nj <Sh1> <Sh2> calc

p(f(vij)=1)

pred N Lout <Sh1> <Sh2>

Phytol

Bacillus subtilis 20547 0.141 2.442 67.25 1.0000 785 2741 0.016 0.014

Escherichia coli 16259 0.148 2.606 66.99 1.0000 778 2859 0.008 0.008

Enterococcus 

faecalis
15006 0.146 2.543 67.52 1.0000 386 1218 0.008 0.011

Haemophilus 

influenzae
7164 0.150 2.774 66.86 1.0000 526 1746 0.016 0.013

Pseudomonas 

aeruginosa
14968 0.147 2.582 67.08 1.0000 587 1823 0.015 0.014

α-Amyrin

Bacillus subtilis 20547 0.141 2.442 2.79 0.8313 785 2741 0.016 0.014

Escherichia coli 16259 0.148 2.606 2.53 0.8064 778 2859 0.008 0.008

Enterococcus 

faecalis
15006 0.146 2.543 3.06 0.8632 386 1218 0.008 0.011

Haemophilus 

influenzae
7164 0.150 2.774 2.40 0.7899 526 1746 0.016 0.013

Pseudomonas 

aeruginosa
3283 0.141 2.360 2.90 0.8432 587 1823 0.015 0.014
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4. CONCLUSIONS

We have developed the first computational model able to predict the antibacterial activity taking into account 

the structure of MRNs. We demonstrated that entropies could be used to measure the structure of the drug, the 

different assays, and the metabolic network. The neural networks showed no improvement over the linear 

model. On the other hand, we report the first phytochemical study of the leaves of Cissus incisa. Regarding the 

antibacterial activity of the identified compounds, phytol was the compound with the best antibacterial activity 

(MIC = 100μg/mL) against Vancomycin-resistant E. faecium and A. baumannii resistant to carbapenems. 

Finally, the predictive study showed that predictions of other compounds against different bacterial strains can 

be made using the developed computational model. It was also shown that phytol is active for measured 

biological activity, just like amyrin, but with greater variability. Finally, our model is superior to others in 

relation with the number of cases and the incorporation of complex networks.

■ SUPPORTING INFORMATION

This section includes mass spectra of compounds 1-4 of the hexane extract. Also includes a more detailed 

explanation of the computational section. In addition, we released the dataset used: compound code, molecular 

descriptors, assay conditions, values of entropy for MRNs, and observed vs. predicted classification of each 

compounds. 
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