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Abstract

The objective of this work was to develop an artificial intelligence (AI) approach
for playing the game Cuphead using deep reinforcement learning (DRL) and object
detection algorithms. Both DRL and object detection have been widely studied in
recent years, and different algorithms and models have been developed. The two
main tasks that were covered in this project were the object recognition within the
game using convolutional neural networks (CNN) and making decisions and taking
actions in the game based on those detections. Three different types of CNNs were
tested with images extracted from the game before starting to work on the DRL
part: FasterRCNN+InceptionResNet and SSD+MobileNet built in TensorFlow and
YOLOv5 built in PyTorch. After analyzing the performance obtained with those
images and a gameplay video of the game, YOLO was chosen as the final model to
be trained for the object detection job.

After choosing YOLO as the network to be used to carry out the detections in
the game, a method was defined for getting labeled data from the game without
having to manually annotate images using the pre-trained YOLO network. Images
were collected simultaneously while playing the game and then, those images were
processed for getting annotated data for finally using them for training the model
in order to have more precise detections. Finally, a set of human-based rules have
been defined for playing the game based on the detections.

The object detection module, the human-based rules module, and a module
responsible to execute the commands as part of the game, were integrated and
tested by playing 10 different games. The results showed that the AI-based agent
was able to win in 2 out of the 10 games that were played.
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CHAPTER 1
Introduction

1.1 The video game industry and applications of
AI in video games

The video game and gaming industries have grown since the first video games were
introduced in the 1970s, Pong (1972) and Space Invaders(1978) are a few examples of
these games. From the first games to the release of home and portable consoles like
the Nintendo Entertainment System (NES) released in 1983 or the Game Boy (1989)
developed by Nintendo to the release of modern games such as Minecraft (2011) or
The Last of Us (2013), videogames have grown considerably and have gained more
and more popularity over the years. Classic games like the well-known The Legend
of Zelda: Ocarina of Time (1998) and the first shooter game ever made, Doom (1993),
have endured over the years along with video games produced and distributed by
the most powerful video game companies, which typically have higher development
andmarketing budgets than other smaller games, these are known as triple-A games.
The Call of Duty saga, first released in 2003 and whose latest release can be found
in 2022 developed by the Activision company, is an example of a triple-A video
game saga. Also, one of the most important fields in the video game industry are
the electronic sports, the so-called e-sports. Many competitive-oriented games such
as League of Legends (2009), Dota 2 (2013), Overwatch (2016) or Valorant (2020)
have competitive leagues where professional teams from around the world compete
with each other.

With the exponential growth of the applications of AI and virtual reality (VR),
the release of more complex and revolutionary games has increased from the
2010s to this day and so has done the application of AI in this field. Some of the
key applications of AI in terms of gameplay and game design are none playable
characters (NPC), which create in-game characters that perform similar to how a
human player would. A few examples of games that implement complex NPCs in
game are Bioshock Infinite (2013) or Red Dead Redemption 2 (2018) [1]. Besides,
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1. Introduction

AI can be also used for map generation and loading [2] where it can predict the
location of a certain block in future frames. Finally, level testing [3] is also a practice
that benefits from AI techniques and can be automated.

AI algorithms and machine learning (ML) models can benefit from being tested
and developed using video games and even compared or overcome results with the
ones achieved by human players. AI approaches for playing games can be found
for titles like Dota 2 [4], the above mentioned Pong, Starcraft II, and more.

1.2 The Cuphead game
Cuphead is a 2D side-scrolling action game published in 2017 and developed by
StudioMDHR. Inspired by the 1930s animation style, the game is divided into levels
and the goal is to defeat all enemies called bosses in all levels until we reach a
final enemy to finally complete the game. The game has a very unique and special
aesthetic, featuring hand-drawn visuals and using animation techniques popular in
the 1930s. In addition to this, the game has a jazzy soundtrack that completes the
environment in where the player is involved while playing.

Cuphead was chosen among other games for being a 2D game, which could
help developing all the project modules rather than if a 3D game was chosen. Other
games considered for this project where The Binding of Isaac Rebirth (2014) and
Minecraft but due to the complexity of The Binding of Isaac Rebirth where each
time we play the environment changes and all possible scenarios are randomized
and Minecraft being a 3D game, Cuphead was selected.

1.3 Goals and organization of the project
As stated before, the goal of the project has been to develop an AI approach for
defeating one of the bosses in the game using object detection and DRL techniques.
For this purpose, we will be exploring some of the state-of-the-art algorithms in
computer vision to compare them and use them in order to make the in-game
detections that will serve as input for the decision making.

The following chapters are organized as follows: the management for this
project done will be presented in the next chapter, then some background about the
game is presented in Chapter 3. After this, all the state-of-the-art work related to
the topics covered in the project will be discussed in Chapter 4, e.g., the use of AI in
games and the use of CNNs for object recognition tasks. The game analysis that has
been done is described in Chapter 5 before going through the object recognition
and the decision making parts which are discussed in chapters 6 and 7, respectively.
Finally, the analysis of the experiments and the results obtained are presented in
Chapter 8 before diving into Chapter 9 where the conclusions are explained.
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CHAPTER 2
Project Management

This chapter covers the planning and management processes during the develop-
ment of the project. The following planning is the initial planning that had some
changes during the development process as discussed later in the document.

2.1 Planning
Before starting to develop the project, some tasks were defined to structure the
project. These tasks were divided into two groups: the ones related to the project
implementation and those regarding the documentation.

The documentation tasks are fully related to the thesis writing and project
management and the implementation group includes the following tasks and sub-
tasks:

1. Analysis of the state-of-the-art

• Identify and read papers on the use of CNNs
• Study previous work on the use of ML for games

2. Game analysis

• Understanding full game mechanics
• Define the game setup (e.g. game window resolution)
• Finding a frame processing library
• Develop the annotated frame processing method

3. Object detection task

• Analysis and testing of CNNs with images and videos
• Re-training the model with the labeled data that was collected

3



2. Project Management

4. Decisions based on detections

• Find the best representation for the extracted data from the prediction
frames

• Determine a way to link each taken action with its frame
• Decide on the best metric for the action scoring (e.g., life bar)

5. Keyboard interaction

• Finding a library for the automatic keyboard interaction
• Testing the library on the game without the ML part

To plan and organize the expected work for the two main task groups, a work
breakdown structure (WBS) diagram and a Gantt diagram are shown in figures
2.1 and 2.2. These two diagrams include all the subtasks to be done in order to
complete the initial objectives with enough time to add corrections if needed.

2.2 Risk prevention
To prevent future problems in the development of the project, a risk management
task has been done in order to avoid facing these issues. The main risk in this
project is losing data. Losing anything related to the repository that stores all the
files of the project could cause a delay and finishing the project could be difficult
in the time planned. Since all the work has been done in two PCs (a laptop and a
desktop PC), three backup copies of the project repository have been done: the first
one stored in the laptop, a second one stored in the desktop PC and the third one
in an external hard drive. After every working session, all copies are updated.

Another risk to take into consideration is not having enough computational
power to train and execute the models. Since the goal is to have simultaneously
a game and other computationally expensive tasks running, two powerful GPU
and CPU will be used to ensure that there are as less bottlenecks as possible. For
the training phase, Google Colab will be employed as it provides powerful GPU
and CPU support for running programs. After training any network using Google
Colab, the file containing the final weights can be easily obtained for executing a
network with custom weights for detecting the desired objects.

Finally, the module that is expected to take the longest to complete is the
decision making related one. As explained before, the goal is to use DRL techniques
for making decisions that will take actions for playing the game. In case of not
having enough time for implementing this module using DRL techniques, simple
human-based rules will be employed for playing the game. This would cause a less
accurate system when it comes to defeating the enemy, but it would make possible
finishing the project in time and focus the analysis and refinements in the object
detection component.
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2.2. Risk prevention

Figure 2.1 Work Breakdown Structure diagram showing all tasks.

5



2. Project Management

Fi
gu

re
2.
2:

Ga
nt
td

ia
gr
am

sh
ow

in
g
th
e
ap
pr
ox
im

at
e
co
m
pl
et
io
n
da
te
sf
or

ea
ch

ta
sk
.

6



CHAPTER 3
Background

3.1 The YOLO algorithm
YOLO (You Only Look Once) is a popular real-time object detection algorithm that
has changed the computer vision field and was firstly introduced in 2016 [5]. While
other object detection methods require multiple passes in the image to give the
final detections’ bounding boxes coordinates, class labels and probabilities, YOLO
differs from all the these models by only passing through the image once, which
makes it considerably better for real-time detection tasks. Algorithms like YOLO
that only go through the image once are called single-shot detectors or one-shot
detectors, while the methods that require two passes are called two-shot detectors.

The fact that one-shot detectors such as YOLO or SSD (Single Shot multibox
Detector) [6] traverse the image only once to make predictions about the presence
of objects in the image, makes them computationally more efficient than other
methods that require more than one pass, which also makes them the perfect choice
for real-time detection tasks. However, these one-shot detectors are, in general,
less accurate than the two-shot detectors and are less effective in detecting small
objects.

Two-shot detectors make one pass to generate a set of proposals or potential
object locations in the image, and with the second pass these proposals are refined to
make the final detections. This approach is more accurate than the one proposed in
the one-shot detectors but also more computationally expensive. Algorithms such
as R-CNN [7] or Faster R-CNN [7][8] are a few examples among all the two-shot
detectors known.

Methods like R-CNN or Deformable Parts Models (DPM) [9] treat object detec-
tion as a classification problem. They take a classifier for an object in the image
and evaluate it at different locations and scales in a test image. The R-CNN algo-
rithm uses region proposal methods to first propose potential bounding boxes in
the image and then run the classifier in those proposed bounding boxes. After

7



3. Background

this, the bounding box proposals are refined by removing overlapping or duplicate
detections.

Unlike thesemethods, YOLO treats object detection tasks as regression problems,
it uses a single CNN in its backbone consisting of 24 convolutional layers for
extracting features from the image and two fully-connected layers for predicting
the object positions in the image by running it once. Figure 3.1 shows an overview
of the architecture of YOLO.

Figure 3.1 Architecture of YOLO consisting of 24 convolutional layers and the final
two fully-connected layers. Figure taken from [5]

There are different versions of YOLO as they will be covered later in this chapter.
The first version resizes the image to 224x224 for training and then to 448x448
for making detections. It divides an image into a grid of cells and passes through
all the cells only once for giving the final object location proposals along with a
probability for each of them. It divides the image into a S x S grid and all the cells
containing the center point of a certain object will be responsible for detecting
that object. Each cell predicts B bounding boxes and the confidence scores for
each one of them, this score being how confident the model is of an object being
in that cell. Given the probability of that class object and the metric Intersection
Over Union (IOU) between the ground-truth bounding box of the object and the
bounding box predicted by the model, the confidence score is formally defined as
described in Equation 3.1. If there is no object in the cell, the IOU will be zero,
hence the confidence score will also be zero. In the equation, truth stands for the
ground-truth bounding box area that contains the object and pred represents the
bounding box area of the detection made by the model. An example of both is
shown in Figure 3.2. An example of the YOLO detection process is shown in Figure
3.3.

P (Object) ∗ IOU truth
pred (3.1)

Given an image as input for training, YOLO’s input labeling format consists of
the bounding box center coordinates and the bounding box width and height. On

8



3.1. The YOLO algorithm

Figure 3.2 Example of the ground-truth and predicted bounding boxes in an image
containing a stop sign.

Figure 3.3 Detection process example of YOLO in an image. Figure taken from [5]
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3. Background

the other hand, YOLO returns the following as the prediction results for a given
image. If any detections have been made in the image, the bounding box top-right
and bottom-left coordinates will be returned along with the confidence score on
how confident YOLO is of that object being of a certain class, and the class label
and class number.

This first version of YOLO runs at a base 45 frames per second (fps) and a faster
version achieves 150fps detections on a Titan X GPU. YOLO reaches a high mean
Average Precision (mAP) and along with a good generalization capability makes
it a great candidate for real-time labors. More advanced and complete versions of
YOLO have been published since the release of the first version in 2016 achieving a
higher speed along with higher fps. From YOLOv2 [10] (called YOLO9000) to the
latest YOLOv8 1, the YOLO algorithm has grown through the years and some of the
in-between versions have been developed by the community such as YOLOv6 [11]
and YOLOv7 [12]. After considering all the different YOLO versions, the YOLOv5
2. version has been chosen for this project for the real-time detection task as it is
the latest, most stable, and fully finished version of YOLO by the original YOLO
creators.

3.2 Cuphead

Cuphead is a 2D game where the player can choose between two main characters to
play: Cuphead and Mugman (see Figure 3.4). In june, 2022 a new playable character
called Ms. Chalice was added to the game, however, only the two base characters
were considered. After taking the role of one of the characters (Cuphead in the
case of this project), the player fights against different enemies in order to complete
the game and take back Cuphead and Mugman’s souls that have been taken from
them by The Devil which is the final boss of the game. The game was originally
released with four different levels called islands, each containing between five and
eleven bosses to defeat. When fighting a boss, it goes through three different phases
depending on the difficulty that has been selected (easy, medium and difficult). The
game was originally released with 28 different bosses but in 2022 a new island and 7
new bosses where added making a total of 35 bosses to defeat. For this project, the
boss Goopy le Grande has been chosen for its simplicity, and only the first phase in
easy mode has been considered (see Figure 3.5).

The player starts the fight with three health points, also called hit points, and
inflicts damage to the boss by taking actions such as moving left, right, jumping
or shooting. If the enemy takes the three health points of the player by inflicting
damage to them, the player loses the fight being forced to start the fight from the
beginning.

1By the date this thesis is written, there is no paper that officially introduces YOLOv8. Instead,
a link to the documentation will be provided: https://github.com/ultralytics/ultralytics

2Similarly to the v8 version, there is no paper that officially introduces YOLOv5 to this date.
Instead, a link to the documentation will be provided:https://github.com/ultralytics/yolov5
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3.2. Cuphead

All bosses have a certain amount of hit points that act as life points. The player
has to take all these points off to win the fight and the player doesn’t know these
points when the fight is happening. Websites such as the fan-made Cuphead wiki 3
provide more details about the game rules, characteristics and contents about the
game.

Figure 3.4 Image showing the two playable characters in the game, where Cuphead
is shown on the left side of the image and Mugman on the right side.

Figure 3.5 An image of Cuphead in the fight against Goopy le Grande at the
beginning of the fight.

3https://cuphead.fandom.com/wiki/Cuphead_Wiki:Main_page

11

https://cuphead.fandom.com/wiki/Cuphead_Wiki:Main_page


3. Background

3.3 Relevant libraries used
Some of themost relevant libraries used are PyTorch for the training and inference of
YOLO, Pandas for processing the results as a data frame and OpenCV and Pillow for
manipulating images. But there were some libraries such as win32gui4, keyboard5
and uuid6 that were also analyzed as part of the work.

The win23gui library was used for capturing the game window in both the
frame saving task where data was collected in the training phase and the decision
making phase. The keyboard library has been the one allowing the automated
keyboard interaction, being useful in the training and the decision making phases.
Finally, the uuid library allowed the generation of universal unique identifiers in
the training phase where frames were collected to train the network. As frames
were generated along with annotations, each frame had to be named with the same
name as the labels file.

4https://github.com/wuxc/pywin32doc/blob/master/md/win32gui.md
5https://github.com/boppreh/keyboard
6https://docs.python.org/3/library/uuid.html
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CHAPTER 4
State of the art

The use of many ML techniques and CNNs for games have been widely studied
in the last couple of years. Among these techniques we can find DRL and object
detection that focus on tasks such as automated playing, classification or object
recognition. In [13], authors introduce a method using CNNs for detecting glitches
in video game images. In their work, they use a supervised approach for training a
ShuffleNetV2 network [14] in order to classify a given input image as one of five
classes: normal image, stretched, low resolution, missing or placeholder textures.
Each of the last four classes stand for four different kinds of image glitches. Their
results, showed an accuracy of 88.6% where 88% of the glitches were detected with
a false positive rate of 8.7% and with a good generalization ability to detect glitches
in unseen data.

Other works such as [15] focus on explaining different AI based approaches
for increasing video game resolution while maintaining a good performance. In
some cases, players are forced to lower the in-game video resolution for increasing
the game’s performance and frame rate. Big companies such as NVIDIA with
their named "Deep Learning Super Sampling (DLSS)" 1 or AMD with their open
source technology called "FidelityFX" 2 have addressed this problem. Both DLSS
and FidelityFX are technologies that use AI for boosting in-game performance by
creating new frames through image reconstruction.

Focusing on papers that target DRL for playing video games, in [4] OpenAI
developed "OpenAI Five", an AI system able to play and even defeat world cham-
pions at the Multiplayer Online Battle Arena (MOBA) game Dota 2. The system
runs simultaneously with the game, making decisions every 4 frames based on the
current game’s state such as enemies’ health points, positions and more. As the
game and the code changes through the time, OpenAI researchers developed a way
for training for over 10 months without having to re-start the training process from

1https://developer.nvidia.com/dlss/research
2https://gpuopen.com/fidelityfx-superresolution-2/
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scratch while being able to make changes into the code and allowing the game to
evolve through updates over these months. After over ten months of training and
a human evaluation where the system played games against some amateur players,
professional players and full professional teams to evaluate the performance in that
state of the training phase, the system achieved extraordinary results 3 in a game
that was live-streamed all over the world by beating the five world champions at
the game. OpenAI Five was also opened to the Dota 2 players’ community for
competitive games and won 99.4% of the games over 7000 games.

In [16], DeepMind’s "AlphaGo" was introduced, an AI system that uses a RL and
tree search approach for playing the game Go by using different deep neural net-
works called "value networks" for evaluating board positions and "policy networks"
for selecting moves. To achieve this, they introduced a new algorithm combining
these deep neural networks and a Monte Carlo tree search [17] simulation. In
the first training stage, a supervised learning (SL) policy network is trained to
predict different movement options given a certain board state as input combining
convolutional layers with the Rectified Linear Unit (ReLU) activation function. In
the second training stage, policy gradient RL is used to improve the policy network
and maximize the value of the action to take. This network is finally evaluated in
the game against the SL policy network where the RL policy network won over 80%
of the games against the SL policy network. Finally, the third stage of the training
pipeline focuses on board position evaluation. Using this three-stage training and
the mentioned search algorithm the system won 99.8% of the games and defeated
the world Go champion.

Other works such as [18] describe how DRL based systems compare to human
performance in playing video games and how fast could these systems surpass
human performance. The authors implemented and integrated a Deep Q-learning
[19] network with the General Video Game AI (GVGAI) software framework called
OpenAI Gym [20] [21] environment along with the Arcade Learning Environment
[22] and the Petting Zoo environment [23] to simulate an Atari 2600 console em-
ulator. It runs the game Pong and takes a 160x210 pixel size image as an input
for returning an integer as output representing the action to be taken. Although
the environment supported all the 18 different actions that the original Atari 2600
supported, only four of them were taken into account: 0 (no action is taken), 1
(shooting), 2 (moving up) and 3 (moving down). The system was trained for over 3
million steps, which accounted for 797 games played and lasted over 49 hours in a
desktop computer without GPU support, whilst the original game runs natively
at 20 steps per second, which takes 41.67 hours to reach the 3 millions steps that
were taken to train the network. Evaluation was made every 100.000 steps, and the
results showed that after 300.000 steps, the system surpassed human performance,
which took only 4 hours of playing.

3https://openai.com/research/openai-five-defeats-dota-2-world-champions
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Lastly, in [24] authors created a Proximal Policy Optimization (PPO) based DRL
agent and made use of the OpenAI Gym [20] [21] library for testing it’s behaviour
in three different randomly selected games. The agent was trained separately for
each of the three games for 1 million steps for two of the games and up to 300.000
steps for the remaining game. Authors saw how the two games that trained for 1
million steps effectively kept increasing the mean rewards as time steps increased.
However, in the game that trained for 300.000 steps, the agent only lasted about
10.000 steps before getting trapped in a certain point and not being able to go
further with exploring the environment.
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CHAPTER 5
Game analysis

5.1 Module decomposition
In this section, all the modules that compose the initial idea of the object detec-
tion+decision making are introduced. Each of these modules was implemented
ass part of this thesis, although the AI application is constrained to the object
detection module. The whole approach consists of four different but interconnected
modules that use each other’s outputs for their inputs. A general overview of the
four modules is shown in figure 5.1.

Figure 5.1 Overview of the four modules that compose the solution.

5.1.1 Object detection module
The object detection module is responsible for detecting Cuphead and Goopy in the
game, providing their x and y coordinates of the top right and left bottom bounding
box corners, along with the confidence, class number and class name. In each state
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of the game, a frame is processed as explained in the next chapter for making the
detections that will serve as input in the next module. After processing the frame,
YOLO will make detections providing the information of the locations of Cuphead
and Goopy which will be converted to the YOLO input format: x and y coordinates
of the bounding box center point, bounding box width and height. Information
has been converted from the YOLO output format into the YOLO input format for
being more comfortable to work with.

5.1.2 Decision making module

After converting the results to the YOLO input format, they are given as input to
the module responsible for taking actions. Based on the position of both characters
in a certain state of the game, this module will decide what action to take giving a
key or set of keys as the output. In each state of the game, Cuphead and Goopy’s
position may change significantly, therefore, a set of human-based rules has been
defined taking into account all the possible actions that can be taken in the game.
This will change the output of the module depending on the state of the game and
the detections that YOLO made. Only a few actions were considered for defining
the rules out of all that can be taken in the game, and both the actions considered
and the defined rules will be covered later in Chapter 7.

5.1.3 Keyboard interaction module

Next, the output of the previous module serves as the input to the keyboard interac-
tion module, which will be responsible for pressing the needed keys for executing
actions that will change the state of the game. As mentioned in Chapter 3, the
keyboard library has been used for this purpose. This library provides methods
such as keyboard.press(key) which will press and hold the given key until it
has been released or keyboard.release(key) which will release the given key.
These two methods along with keyboard.press_and_release(key) which is a
combination of the two previously mentioned methods and keyboard.wait(key)
which blocks the execution of the program until the given key is pressed have been
considered.

5.1.4 The game

Finally, these actions will be executed and observed in the game, which will change
its state and a new frame will be processed by the object detection module for
further making decisions as the game goes on. As decisions are made through time,
each frame is displayed in a second with all the detections that YOLO made in
it. Figure 5.2 shows how will the final setup be which will be covered in the last
section of this chapter.
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5.2 Game setup
At the moment that all modules have been integrated in the game, a certain setup
will be needed for ensuring that all the results are displayed correctly and that the
whole application runs as fast as possible without frame drops.

First, as two windows will be displayed in the screen, the one running the game
and the one showing the frames with the detections, the game is set to windowed
mode, the aspect ratio remains 16:9 and the resolution is lowered to 1176x664. This
resolution turned out to be the best for fitting both windows and allowing them
to be displayed properly. The final window distribution on the screen is shown in
Figure 5.2.

Lastly, the model testing and the training processes have been be carried out
using Google Colab, as it provides quality hardware and reduces significantly the
inference and training times. For running the final trained model along with the
game and all the modules, a desktop PC will be used with an Intel Core i5-9600KF
CPU, 16GB of RAM memory and an NVIDIA GeForce GTX 1660ti GPU. As GPU
support is provided by PyTorch, detections within the game will be carried out by
the GPU, for a higher inference speed allowing the whole process to run as fast as
possible.

Figure 5.2 Screen distribution with all the modules integrated. The image shows
both screens, the one running the game and the one showing the detections for a
frame in a certain state of the game.

19





CHAPTER 6
Object detection using CNNs

6.1 Proposed object detection approach

The goal when developing the object detection module was to get labeled data
without having to manually annotate hundreds of images. To achieve this, a pre-
trained network was used and some of the output detections were processed and
used as labels for training the same network for finally making more accurate
detections onto the game frames.

Firstly, a selection process was carried out were three different models were
tested. These models include the FasterRCNN+InceptionResNet built in TensorFlow,
SSD+MobileNet also built in TensorFlow, and finally YOLOv5 which was built in
PyTorch. While FasterRCNN+InceptionResNet is a two-shot detector with a high
accuracy but slower inference time, the SSD+MobileNet and YOLOv5 networks are
one-shot detectors with a lower accuracy but faster inference time.

For evaluating all three models under similar conditions, 10 images from the
game were extracted and detections were made with each one of them in order to
compare their results. After analyzing the results and how each model behaved
when detecting objects in the 10 testing images, two models were discarded and the
most appropriate model was selected for training and carrying out the detection
tasks in the game.

6.2 Model selection

The model selection process started with the three pre-trained models. The first
model combines Faster R-CNN [8] (Faster Region based Convolutional Network)
for region proposals and InceptionResNet [25] as a classifier for those proposed
regions in the second image traversal. This network was originally trained on the
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Open Images V41 data set, a data set with over 9 million images containing more
than 78 million machine-generated labels, over 27 million human-verified labels
and 14.6 million bounding boxes for 600 object classes. The experiments performed
with this network showed a high accuracy as expected, however, inference time
turned out to be the highest amongst all three models with an average time of
1.414s which is too large for real-time detections tasks such as the one presented in
this work. Table 6.1 shows the time taken by the network for running inference in
all 10 images.

Table 6.1: Inference time of the FasterRCNN+InceptionResNet network for detecting the
10 images from the game.

Inference time(s)
Image 1 1.399s
Image 2 1.394s
Image 3 1.399s
Image 4 1.379s
Image 5 1.379s
Image 6 1.409s
Image 7 1.391s
Image 8 1.401s
Image 9 1.586s
Image 10 1.402s

Next, the SSD+MobileNet network was tested. This network combines the
SSD [6] single-shot detector with the MobileNet [26] detector which acts as a
feature extractor and runs much faster than the network previously evaluated.
This network was also trained on the Open Images V4 data set and by combining
a single-shot detector with a network built for running on mobile applications,
makes the model a better candidate for running simultaneously with the game.
Predictably, the inference time dropped compared to the previous network but also
the accuracy decreased which was expected for being a single-shot detector. In this
case, an average time of 0.256s was computed. Table 6.2 shows the time taken by
this second network for detecting objects in all the 10 images from the game.

Finally, the YOLOv5 model was tested. Trained on the COCO data set 2 con-
taining over 300.000 images and annotated with 80 classes, and as explained in
previous chapters, YOLO is a one-shot detector similarly to the SSD+MobileNet

1https://storage.googleapis.com/openimages/web/index.html
2https://cocodataset.org
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Table 6.2: Inference time of the SSD+MobileNet network for detecting the 10 images from
the game.

Inference time(s)
Image 1 0.274s
Image 2 0.266s
Image 3 0.256s
Image 4 0.241s
Image 5 0.269s
Image 6 0.242s
Image 7 0.258s
Image 8 0.269s
Image 9 0.244s
Image 10 0.245s

model. To the date, various versions of YOLO have been released, being YOLOv5
and YOLOv8 the two latest releases by the original YOLO creators. YOLOv5 was
selected over the YOLOv8 version for being the most stable version. YOLOv5 has
also five different sizes, each of which is suited for different tasks.

YOLOv5n which stands for nano, is the smallest in the YOLOv5 family and is
meant for mobile and IOT solutions. It runs faster than the larger versions but
has also the lowest accuracy. The next version is YOLOv5s which stands for small,
this is the second smallest model and has a small increase in the GPU inference
time compared to the nano version but also a higher accuracy as expected. This
model is ideal for running inference on the CPU. YOLOv5m is the medium-sized
model of the family, and is well-suited for many data sets and applications for
providing a good balance between accuracy and speed. Next, YOLOv5l that stands
for large, is the second biggest model of all and provides a good ability for detecting
smaller objects along with a higher accuracy but also much more time is needed
for inference. Lastly the YOLOv5x that stands for extra large, is the biggest among
the five sizes and has the highest accuracy but is also the slowest. The number
of parameters, accuracy, CPU time and GPU time for all five sizes of YOLOv5 are
shown in Table 6.3 where the parameters are represented in millions, accuracy
is computed using the mAP for an IOU threshold of 0.5 and both CPU and GPU
times are measured in milliseconds (ms). This information has been taken from the
YOLOv5 section 3 that can be found in the PyTorch webpage.

In this case, accuracy is computed using the mAP and for each class precision
3https://pytorch.org/hub/ultralytics_yolov5/
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and recall are calculated for achieving the PR curve. With the PR curve, the Area
Under the PR Curve (AUC) is computed which will represent the Average Precision
(AP) for a given class. The Mean Average Precision is the mean AP of each class in
the data set.

Table 6.3: Different characteristics from all YOLOv5 models for the different sizes.

Model Name Parameters Accuracy CPU time GPU time.
YOLOv5n 1.9 M 45.7 45 ms 6.3 ms
YOLOv5s 7.2 M 56.8 98 ms 6.4 ms
YOLOv5m 21.2 M 64.1 224 ms 8.2 ms
YOLOv5l 46.5 M 67.3 430 ms 10.1 ms
YOLOv5x 86.7 M 68.9 766 ms 12.1 ms

As we were looking for quality annotated images, the extra-large version was
preferred over the other versions for being the version with the highest accuracy.
It turned out to be slower than the SSD+MobileNet model but faster than the
FasterRCNN+InceptionResNet network as expected with an average running time
of 0.436s. Table 6.4 shows the speed of the YOLOv5x model when running with the
10 selected images from the game.

Table 6.4: Inference time of the YOLOv5x network for detecting the 10 images from the
game.

Inference time(s)
Image 1 0.542s
Image 2 0.466s
Image 3 0.466s
Image 4 0.465s
Image 5 0.407s
Image 6 0.407s
Image 7 0.402s
Image 8 0.402s
Image 9 0.402s
Image 10 0.403s
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Looking only at the computational time needed by the networks, the best
candidate for the task seems to be the SSD+MobileNet network but other aspects
such as how well the models detect the relevant objects in the game or how do these
models associate different classes from the dataset they were trained on with the
objects from the game need to be analyzed. Detections were made in 10 different
images by the three different networks which are shown in figures 6.1 to 6.10 and
will be later on discused in this section.

If we analyze the detections that the FasterRCNN+InceptionResNet and the
SSD+MobileNet models made, it can be seen how irrelevant objects in the back-
ground are detected such as trees or plants while YOLO’s detections mostly focus
on detecting objects in the front such as both characters or some particles on the
screen. Although this may seem a good result, it is indeed a poor outcome as we
don’t want the background objects to be detected for not being relevant when
playing the game. All figures show the overall difference between the detections
made by all networks in this context.

Observing the relevant objects that need to be detected precisely, it is expected
that the Faster R-CNN network is more accurate than the other two networks.
However, for being much slower than the other two, it was discarded and only the
SSD and YOLO networks were considered. Overall, YOLO does a better job than
SSD.

If we look at images such as Figure 6.1 and Figure 6.2, we find that Goopy is
being detected and that the bounding box placement is, in fact, precise. On the
contrary, the SSD network detects most of the background objects that don’t provide
any meaningful information and also neither Cuphead nor Goopy are detected.
Furthermore, we can appreciate that Cuphead is also being detected along with
Goopy in other cases such as those in figures 6.3, 6.8 and 6.10. This reveals that
YOLO can detect both Cuphead and Goopy although in most cases only Goopy is
detected. Again, the SSD network detects all the irrelevant noise in the background
as well as only Cuphead or only Goopy with many overlapping bounding boxes in
all cases. Figure 6.8 shows a case where Goopy and Cuphead are close enough that
their detections could not be as precise as needed, but YOLO does an exceptional
work distinguishing between the two of them and even if one of the bounding
boxes that the SSD detector places on Goopy is genuinely precise, Cuphead is not
detected here.

Moreover, to address the issue where Cuphead need to go down in certain states
of the game, figures 6.4 and 6.5 exhibit two of those cases. In Figure 6.4, Goopy is
starting the animation of the special attack of the first phase of the fight and YOLO
perfectly fits Goopy in its bounding box, while the SSD detector doesn’t.

Finally, in figures 6.6, 6.7 and 6.9 YOLO does a poor work in comparison to
the other cases. Here we address two issues which could be a problem at the time
of processing the detections: the undesired particle detection and the overlapped
bounding boxes. If we look at figures 6.6 and 6.7, we observe that some background
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noise is detected and even in the first one the clock label is given to Goopy and
a particle of minor importance. In this case, the SSD network does a better work
as bounding boxes are placed on both Cuphead and Goopy. On the other hand,
while SSD is not doing a good job in Figure 6.9 as only background objects are
detected, Goopy is not being detected by YOLO at all and we notice that two
different bounding boxes are placed on Cuphead, which means that one of them
would need to be removed.

While both FasterRCNN+InceptionResNet and SSD+MobileNet networks were
trained on the same data set containing 600 classes, YOLO was trained using a data
set with only 80 classes which would facilitate assigning classes from the original
data set to the characters to be detected. Finally, taken into consideration these
arguments and the ones previously discussed, YOLO was selected among the three
models.

6.3 Dataset description
Once a model was selected, the next step has been to get a data set with the highest
label quality possible without having to manually annotate hundreds of images.

Using Python and the libraries previously introduced such as win32gui or uuid,
a method was developed for saving frames from the game while simultaneously
playing. This would allow us to get hundreds or thousands of images in a few
minutes only by playing. After collecting over 600 images, YOLO made detections
in all of them and the output was processed and converted into the input format
that YOLO uses for making predictions. Tables 6.5 and 6.6 describe the output and
input format of YOLO, respectively.

Table 6.5: Output format of YOLO.

xmin x coordinate of the bottom left corner of the bounding box
ymin y coordinate of the bottom left corner of the bounding box
xmax x coordinate of the top right corner of the bounding box
ymax y coordinate of the top right corner of the bounding box

confidence
confidence of how certain YOLO is that the object

belongs to the assigned class
class class number, an integer between 0 and 79
name class name, e.g. kite, motorcycle or teddy bear

The results given by YOLO went through some filters before being converted
into the input format. Some detections showed that in a number of cases, more than
one class was assigned to the same object, e.g. motorcycle and bike to Cuphead.

26



6.3. Dataset description

Fi
gu

re
6.
1:

De
te
ct
io
ns

m
ad
eb

y
ea
ch

m
od

el
in

th
e1

st
im

ag
ef

ro
m

th
eg

am
e.
Fr
om

le
ft
to

rig
ht
,F
as
te
rR
CN

N+
In
ce
pt
io
nR

es
Ne

t,
SS
D+

M
ob
ile
Ne

ta
nd

YO
LO

v5
x
de
te
ct
io
ns

ar
e
sh
ow

n.

Fi
gu

re
6.
2:

D
et
ec
tio

ns
m
ad
e
by

ea
ch

m
od

el
in

th
e
2n

d
im

ag
e
fro

m
th
e
ga
m
e.
Fr
om

le
ft
to

rig
ht
,F
as
te
rR
CN

N
+I
nc
ep
tio

nR
es
N
et
,S
SD

+M
ob
ile
N
et

an
d
YO

LO
v5
x
de
te
ct
io
ns

ar
e
sh
ow

n.

27



6. Object detection using CNNs

Fi
gu

re
6.
3:

De
te
ct
io
ns

m
ad
eb

y
ea
ch

m
od

el
in

th
e3

rd
im

ag
ef

ro
m

th
eg

am
e.
Fr
om

le
ft
to

rig
ht
,F
as
te
rR
CN

N+
In
ce
pt
io
nR

es
Ne

t,
SS
D+

M
ob
ile
Ne

ta
nd

YO
LO

v5
x
de
te
ct
io
ns

ar
e
sh
ow

n.

Fi
gu

re
6.
4:

De
te
ct
io
ns

m
ad
eb

y
ea
ch

m
od

el
in

th
e4

th
im

ag
ef

ro
m

th
eg

am
e.
Fr
om

le
ft
to

rig
ht
,F
as
te
rR
CN

N+
In
ce
pt
io
nR

es
Ne

t,
SS
D+

M
ob
ile
Ne

ta
nd

YO
LO

v5
x
de
te
ct
io
ns

ar
e
sh
ow

n.

28



6.3. Dataset description

Fi
gu

re
6.
5:

De
te
ct
io
ns

m
ad
eb

y
ea
ch

m
od

el
in

th
e5

th
im

ag
ef

ro
m

th
eg

am
e.
Fr
om

le
ft
to

rig
ht
,F
as
te
rR
CN

N+
In
ce
pt
io
nR

es
Ne

t,
SS
D+

M
ob
ile
Ne

ta
nd

YO
LO

v5
x
de
te
ct
io
ns

ar
e
sh
ow

n.

Fi
gu

re
6.
6:

De
te
ct
io
ns

m
ad
eb

y
ea
ch

m
od

el
in

th
e6

th
im

ag
ef

ro
m

th
eg

am
e.
Fr
om

le
ft
to

rig
ht
,F
as
te
rR
CN

N+
In
ce
pt
io
nR

es
Ne

t,
SS
D+

M
ob
ile
Ne

ta
nd

YO
LO

v5
x
de
te
ct
io
ns

ar
e
sh
ow

n.

29



6. Object detection using CNNs

Fi
gu

re
6.
7:

De
te
ct
io
ns

m
ad
eb

y
ea
ch

m
od

el
in

th
e7

th
im

ag
ef

ro
m

th
eg

am
e.
Fr
om

le
ft
to

rig
ht
,F
as
te
rR
CN

N+
In
ce
pt
io
nR

es
Ne

t,
SS
D+

M
ob
ile
Ne

ta
nd

YO
LO

v5
x
de
te
ct
io
ns

ar
e
sh
ow

n.

Fi
gu

re
6.
8:

De
te
ct
io
ns

m
ad
eb

y
ea
ch

m
od

el
in

th
e8

th
im

ag
ef

ro
m

th
eg

am
e.
Fr
om

le
ft
to

rig
ht
,F
as
te
rR
CN

N+
In
ce
pt
io
nR

es
Ne

t,
SS
D+

M
ob
ile
Ne

ta
nd

YO
LO

v5
x
de
te
ct
io
ns

ar
e
sh
ow

n.

30



6.3. Dataset description
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6. Object detection using CNNs

Table 6.6: Input format of YOLO.

x x coordinate of the bounding box center
y y coordinate of the bounding box center

width width of the bounding box
height height of the bounding box
class class number of the object

An example of this problem is shown in Figure 6.11, where two bounding boxes
are placed on Cuphead.

Figure 6.11 Example of an overlap in the detections made by YOLO. In this case the
overlaping happens between the motorcycle class and another one onto cuphead.

To overcome this issue, detections with a confidence below 0.39 will be discarded
and in the case that the overlapped bounding boxes have a confidence over 0.39,
the one with the highest confidence out of all the overlapped boxes will be selected,
thus eliminating the rest. In addition, some classes were assigned to each character
by manually looking at the detections made by YOLO in a small set of images.
It was observed that classes such as person, motorcycle or kite were more ofter
assigned by YOLO to Cuphead and classes such as surfboard, frisbee or sports ball
were associated to Goopy. Following this approach, the human effort is minimum
as only few images needed to be checked to identify the most associated classes for
the objects of interest. All the classes that were mostly associated to each character
are shown in tables 6.7 and 6.8 for Cuphead and Goopy, respectively.
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6.4. Training process

Table 6.7: Classes associated to Cuphead by YOLO. Class names are shown along with
their class number of the original COCO dataset.

Class name Person Bicycle Motorcycle Bench
Class number 0 1 3 13

Table 6.8: Classes associated to Goopy by YOLO. Class names are shown along with their
class number of the original COCO data set.

Class
name

Bird Frisbee
Sports
ball

Surf-
board

Bowl Cake Toaster Clock Vase

Class
number

14 29 32 37 45 55 70 74 75

After removing all the irrelevant classes, they were renamed to the new classes
depending on the original class. Classes associated to Cuphead were renamed to
"cuphead" with the class number 0 and classes associated to Goopy were renamed
to "goopy" with the class number 1.

Once the filtering was done, two subsets were extracted with properly labeled
data. The training subset consists of 606 images and labels while the validation
set contains 151 images and labels. In each of the images, one label is provided for
each of the classes, while in some images two labels are provided for Goopy. These
happens in a certain state where Goopy makes a special attack against Cuphead
and two Goopys are detected. An example of this situation is shown in Figure 6.12.
Finally, the class distribution is shown in Figure 6.13, and for the above mentioned,
there are a few more Goopy annotations than Cuphead’s.

6.4 Training process
The aim of the whole training process was to obtain a model capable of detecting
Cuphead and Goopy within the game using data that has been labeled automati-
cally, as manually annotating hundreds or even thousands of images would take
considerable time.

Starting from the YOLOv5s weights, YOLOwas fine-tuned twice before reaching
the final results. The initial idea was to carry out a single training stage. However,
as YOLO didn’t made a satisfactory job at the time of detecting Cuphead in different
poses and positions in the screen, later on it was decided to perform a second
training stage with whose detections a higher quality data set was achieved. A first
training phase of 60 epochs and a batch size of 8 was carried out with a first data
set containing about 400 images for training and validation where classes were
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6. Object detection using CNNs

Figure 6.12 Example of a frame where goopy is detected twice but still serves as
an appropriate labeled image.

Figure 6.13 Class distribution of the data set used in the second training stage for
the two classes defined.
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6.4. Training process

unbalanced as shown in Figure 6.14. In this case, classes are unbalanced as the
pre-trained YOLOv5x model struggled to detect Cuphead in different positions but
did a decent job detecting Goopy in different positions, for this reason, this first
data set contained more instances of Goopy than Cuphead. Despite the fact that this
training phase showed better results than the expected as Goopy was detected in
most cases, it wasn’t enough for running the model in real time while running the
game since Cuphead was being detected only in a few poses. As the objective was
to develop a fully functional AI approach, high quality detections were needed and
it was decided to carry out a second training stage with a new data set annotated
using the weights after the first training stage instead of the pre-trained YOLOv5x
model as it will be explained later on this chapter.

Let us introduce Algorithm 1 , which shows the pseudocode of the method for
filtering images for molding the data set used in the first training phase. The filter
is made for filtering the detections of the pre-trained YOLOv5x model, which labels
objects according to the classes of the original COCO data set and the association
explained in the previous section.

Algorithm 1Method for filtering and labeling images in the first training stage.
Both Cuphead and Goopy are associated with different class labels from the original
COCO data set and two new classes are defined: cuphead and goopy.
1: for each detection do
2: remove detections with a confidence below 0.39
3: remove detections with an associated class different from the ones in tables

6.7 and 6.8
4: remove detections that have overlapped bounding boxes as shown in Figure

6.11
5: convert the remaining results into the YOLO input format
6: change class number to 0 or 1 depending on the original class label
7: end for

The results obtained after the first training phase showed that detecting Goopy
was relatively easy. On the other hand, the model struggled detecting Cuphead in
all the possible positions that it could appear. Cuphead could be facing right, left,
up or down while standing and facing left or right while being crouched down and
the model generally only worked well when Cuphead was down.

After the first training stage, Cuphead is detected standing still and facing all
sides only in a few frames and after observing some of the detections made by
the model achieved after the first training phase, it was decided to do a second
training stage using a new data set fully annotated using this model instead of
the pre-trained YOLOv5x model used in the first filtering process. Consequently
another ∼1500 images from the game were extracted again for labeling them with
the model achieved after the first training phase. For ensuring that each image had
at least one annotation for each class, only the images where both Cuphead and
Goopy were simultaneosly detected were taken into account and the ones where
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6. Object detection using CNNs

Figure 6.14 Class distribution of the data set used in the first training stage for the
two classes defined.

only one of them was detected were discarded. After setting the new filter, the
model acquired after the first training stage was executed on the new∼1500 images
that were collected. From this process, 757 images were extracted where 606 were
assigned to the test set and the remaining 151 to the validation set. This data set
was going to be used to re-train for the second time as all the images contained
quality Cuphead and Goopy labels. The second training stage performed for 150
epochs with a 16 batch size and after less than 15 minutes the trained model was
able to successfully detect Goopy and Cuphead within the game.

We will discuss nowAlgorithm 2, which shows us the pseudocode of the method
for filtering images in the second training phase. After labeling images according
to the first filtering criteria and training YOLO with these images, this second filter
takes the detections made by YOLO after the first training phase for re-training
YOLO once again and thus getting more accurate results.
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6.4. Training process

Algorithm 2 Method for filtering and labeling images in the second training stage.
After training YOLO with the first data set obtained with the first filter, new data is
extracted with this second method for the second training stage.
1: for each detection do
2: remove detections with a confidence below 0.29
3: if Cuphead and Goopy are detected then
4: remove detections that have overlapped bounding boxes as shown in

Figure 6.11
5: convert the remaining results into the YOLO input format
6: remove the detections with a bounding box area below 0.007
7: end if
8: end for
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CHAPTER 7
Human rules for the game based on

object detection

7.1 Actions taken
As explained in the risk prevention section in Chapter 2, it has not been possible to
implement this module using DRL techniques. Instead, a group of actions has been
defined in order to achieve success on defeating Goopy based on simple human
rules. The purpose of defining these rules was to complete the framework where
we could evaluate the models for object detection introduced in previous chapters.

Out of all the possible moves that Cuphead can make in the game some of
them were discarded and not taken into account for not being useful, e.g, jumping
or walking. In the other hand, actions such as shooting, dashing or going down
were considered for being necessary to avoid as much damage as possible, which is
fundamental for beating the enemy. Table 7.1 shows all actions that were considered
along with the key associated to each of them.

Table 7.1: Considered actions and associated key or key set to each of them.

Action Associated key
Shoot X
Right Right-arrow
Left Left-arrow
Down Down-arrow

Dash (towards a direction) Left-Shift + arrow key

Between the selected actions shooting is the most important among all. By
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7. Human rules for the game based on object detection

keeping the shooting key pressed through the entire fight, the enemy receives as
much damage as possible in each state of the fight. Without looking if Cuphead is
standing still, moving or crouched down, the shooting key is always pressed.

Furthermore, the left and right arrow keys are needed for making Cuphead
face Goopy. When the left arrow key is pressed, Cuphead will look left and by
pressing the right arrow key Cupheadwill face right. This actionwill allowCuphead
shooting directly Goopy when their bounding box center points are at almost the
same level.

Going down is also a crucial action in the fight. Goopy makes two special
attacks in both of his phases that require Cuphead to go down for avoiding the
damage. Figure 7.1 shows two frames in the first and second phase, respectively
where Goopy makes the mentioned attacks that force Cuphead to go down. In both
cases, going down makes Cuphead avoid damage.

Figure 7.1 The left frame shows the attack where Cuphead needs to go down for
avoiding damage in Goopy’s first phase and the right frame shows another attack
that requires Cuphead to go down but in Goopy’s second phase.

Finally, dashing makes Cuphead to move from point a to point b in the x axis by
disappearing for a very short period of time while avoiding all damage in the way.
Dashing is a way of moving Cuphead without having to walk all the distance as it
makes him teleport from one point to another. This action was selected over the
simple movement action as walking from one point to another would potentially
make Cuphead suffer damage. In the game, Cuphead can dash left by pressing the
left-shift+left-arrow key sequence or right by pressing the left-shift+right-arrow
key sequence. An example of the dashing action can be seen in Figure 7.2, where
Cuphead dashes from right to left to avoid Goopy’s damage.

As mentioned above, the jumping and walking actions were discarded between
all the possible actions that can be taken in the game. Jumping serves no purpose
when fighting against Goopy as all the possible attacks that Cuphead can face in
the fight can be avoided by dashing or going down. And considering this action for
the fight would require more effort at extracting labeled data for detecting Cuphead
while jumping. In addition to this, it makes no sense considering the walking action
over the dashing action since the dashing makes Cuphead avoid damage while
walking exposes him through the entire time that the action is being taken.
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7.2. Processing of the detections for taking actions

Figure 7.2 Frame showing the final state of a dashing action of Cuphead. Cuphead
can be seen on the left behind the clouds as some very little clouds appear at the
initial and final point where Cuphead dashes. The clouds on the right indicate
where does Cuphead come from.

7.2 Processing of the detections for taking actions

Each frame is processed and given to the trained network for detecting objects in
the image. The results that YOLO returns can be stored in an object containing
all the detections within the image. These results will be processed for converting
them into the YOLO input format as it is easier working in this format. Every frame
that had exactly two detections has been processed and the very few frames that
may have more or less than two detections were discarded.

For each frame where two detections were made by YOLO, a class number,
bounding box center coordinates, bounding box width and bounding box height are
given after processing the results. In each frame, all the values mentioned above
are normalized and set to a range between 0 and 1, while the class number takes
either the 0 or 1 value.

The first goal was to make Cuphead face Goopy so the shot bullets would
hit him. No matter the frame, the shooting key is always pressed, that way we
ensure that Goopy takes as much damage as possible. Looking at both Cuphead and
Goopy’s detections, when Cuphead’s x coordinate’s value is smaller than Goopy’s x
coordinate value means that Cuphead is standing closer to the left side of the image
than Goopy. On the other hand, if Cuphead’s x coordinate value is greater than
Goopy’s value means that now Cuphead is standing closer to the right side instead
of the left side of the frame. Figure 7.3 shows two frames were Cuphead faces both
sides depending on Goopy’s position. In the left frame Cuphead’s bounding box
center (x, y) coordinates are (0.18, 0.76) and Goopy’s coordinates are (0.58, 0.75).
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7. Human rules for the game based on object detection

As Cuphead’s x coordinate is smaller than Goopy’s, the right key is pressed for
Cuphead to face Goopy. Additionally, the second frame shows a case were Cuphead
stands closer to the right side than Goopy where his coordinates are (0.81, 0.75)
and Goopy’s coordinates are (0.26, 0.75). While Cuphead’s x coordinate is greater
than Goopy’s x coordinate, the left key is pressed in this case.

Figure 7.3 Two frames showing cases were Cuphead faces both sides for shooting
Goopy. The left figure shows a case were Cuphead’s x coordinate is smaller than
Goopy’s and in the right figure Cuphead is shown closer to the right side than
Goopy as his x coordinate is greater than Goopy’s.

When it comes to the dashing action, as explained before, it allows Cuphead to
move from point a to point b in the x axis avoiding any damage that would take
by walking. As Goopy jumps towards both sides during the entire fight, when
Cuphead and Goopy are close enough that Cuphead would take damage, dashing
makes Cuphead avoid the damage. When both are at a distance less than 0.15 and
depending on the location of both, the left-shift+left-arrow or left-shift+right-arrow
key sequences will be pressed. If Cuphead’s x value is smaller than Goopy’s and the
absolute value of the subtraction of both x values is less than the defined threshold,
Cuphead will dash rightwards and in the similar case were Cuphead stands closer
to the right side and Goopy closer to the left side, Cuphead will dash leftwards.
Figure 7.2 shows an example were Cuphead dashes leftwards as Goopy gets closer
to him.

In addition to this, as showed in Figure 7.1, Goopy can make two special attacks
in both of his phases that require Cuphead to go down. The first attack shown in
the left frame makes Goopy prepare himself after charging left or right. In this
case, Goopy’s bounding box area grows approximately to 0.05 (see Figure 7.4),
therefore in a frame where Goopy’s detection bounding box area is greater or equal
to the defined threshold of 0.05, the down arrow key will be pressed and only
when Goopy’s area goes back to a value less than 0.05, the down arrow key will be
released. This makes Cuphead to stay down through the entire time that Goopy
makes the attack, allowing him to avoid all damage. An issue was detected when
Goopy stood beyond the left or right limits. When Goopy charges backwards for
making the special attack while being positioned close to the left or right limits of
the screen, the are of the bounding box containing the visible part of Goopy was
less than the defined threshold value of 0.05. Therefore, when Goopy stands close
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7.2. Processing of the detections for taking actions

to those limits Cuphead will automatically go down in order to be able to avoid the
special attack as showed in Figure 7.5 shows an state where the issue mentioned
occurs.

Figure 7.4 A frame where Goopy charges backwards before making the special
attack that requires Cuphead to go down.

Figure 7.5 A frame where Goopy lies close to the left limit of the screen and its
bounding box area is less than the defined threshold of 0.05.

In the second phase, Goopy gets bigger and so does the area of the bounding box
of the detection in each frame. This means that the bounding box area will always
be bigger than the 0.05 threshold defined for the attack of the first phase. However,
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7. Human rules for the game based on object detection

being down allows Cuphead to shoot and dash if needed so even if Cuphead will
stay down during the entire second phase, it won’t stop him from executing other
actions when needed, allowing him to avoid all the possible damage.

Finally, an issue was spotted that made Cuphead non detectable and therefore,
stuck in a place of the screen were if couldn’t be detected. As the environment
doesn’t change through the entire fight, we can see in both left and right sides
of the frame two groups of rocks. These rocks appear in front of any character
standing behind them and in some cases, making them non detectable. Figure 7.6
shows the case where Cuphead is behind this group of rocks on the right side and
if he goes down YOLO won’t detect him. If Cuphead is not detected, only Goopy
will be detected in every frame and as frames with more or less than two detections
are discarded, no action will be taken and a loop will be entered until Cuphead
leaves this state. Cuphead will only be able to leave this state when Goopy hits him
and YOLO detects him again. Leaving this situation forces Cuphead to take at least
one hit point and makes that game less likely to be won. To avoid this issue, each
time that Cuphead is detected beyond the left and right limits that are defined, he
will dash to the opposite side. With this action we lower considerably the chance
of Cuphead entering this state and therefore, increasing the chances of winning
the fight. The defined left and right limits are 0.15 and 0.85, and if at any frame
Cuphead’s bounding box center’s x coordinate is less than 0.15 or greater than 0.85,
the dashing action will be executed.

Figure 7.6 A frame where Cuphead can’t be detected for being behind a group of
rocks.
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CHAPTER 8
Experiments and analysis of the

results

The goal of the experiments is to evaluate the capability of YOLO to detect both
characters in the game after the two training stages and the ability of the whole
AI-based approach at the time of playing the game.

For each training session a file called results.txt is created in the same folder
where YOLO is stored, which contains information related to that training session
such as the mAP, precision, recall or the change in the box, object and class losses on
both training and validation sets. In order to evaluate the object detection module,
the information provided in this file will be analyzed for both training stages, from
the mAP to the precision and the recall achieved on the validation set. In the first
training stage, these metrics are computed using the same data used for training.
On the other hand, in the second training stage a set containing 151 annotated
images have been used for validation, as described in previous chapters.

Then, for the purpose of testing the final trained model and to compare its
performance on unseen data with the pre-trained YOLOv5x version and the model
obtained after the first training stage, 10 images from the game have been extracted
which contain the most relevant parts of the fight and the detections made by all
the three models have been analyzed.

Finally, to test the performance of the AI-based solution at the time of playing
the game and after putting all the modules together, 10 fights have been carried
out and the statistics of those fights are discussed later on the chapter.
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8.1 Experiments of the object detection module

8.1.1 Metrics analysis

First, YOLO was able to make some minor detections on the images but still not
enough for running simultaneously with the game. After the first training stage,
the model reached a mAP of 92.6% for an IOU threshold of 0.5 and 83.77% for an
IOU threshold between 0.5 and 0.95 on the validation set. Although it may seem
a good performance, when testing the model on unseen data from the game and
running it in real time, Cuphead was only detected in few states of the fight and in
the rest of the cases YOLO couldn’t detect Cuphead at all. This was due to the lack
of different Cuphead instances in the data set.

After extracting the second data set, the second training stage was carried out.
It showed very good results compared to the previous results obtained after the
first training phase and to the pre-trained model itself. A mAP of 99.5% for an IOU
threshold of 0.5 and 95.82% for an IOU threshold between 0.5 and 0.95 was achieved
on the validation set along with a 99.39% precision and a 99.5% recall. These metrics
through the epochs are shown in figures 8.1 and 8.2.

Figure 8.1Mean Average Precision reached by the model through the epochs on
the validation set. From left to right: mAP for an IOU threshold of 0.5 and mAP for
an IOU threshold between 0.5 and 0.95.

In Figure 8.3, it can be observed that the box, object and class losses kept
decreasing through the epochs. This means that bounding box placements and
class assignment qualities in detections were improving through time. In all cases,
the validation curve stays under the training curve in most epochs, which means
that the model was performing well in unseen data.

8.1.2 Model comparison

Finally, the pre-trained YOLOv5x model, the model achieved after the first training
phase and the final model were evaluated on a new set of 10 images, different from
the ones used in the model selection process to see the real impact of the training
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8.1. Experiments of the object detection module

Figure 8.2 From left to right: precision and recall reached by the model through
the epochs on the validation set.

process and to evaluate the performance on detecting the desired objects in-game.
Figures 8.4 to 8.13 show a comparison of each of the detections made by the three
models on these testing images.

We can clearly see the improvement in the detections after each training stage
in comparisson to the detections made by the pre-trained YOLOv5x model. Overall,
the pre-trained version made a good job detecting Goopy but struggled detecting
Cuphead. When it comes to the pre-trained YOLOv5xmodel, in almost all cases such
as those in figures 8.4, 8.5, 8.8, 8.10 and 8.11, Goopy was detected but not Cuphead.
In frames such as those in figures 8.6 and 8.9 Goopy was not being detected at all and
after both training phases we can remarkably see the improvement. When it comes
to the bounding box placement, we discussed in Chapter 6 that the pre-trained
version of YOLOv5x did a good job by placing them very precisely in the cases
where either Cuphead or Goopy was being detected and this performance was also
observed after both training phases.

In relation to the accuracy in detecting Cuphead in the images, as stated in
Chapter 6, YOLO faced difficulties trying to fulfill this task. Only in a few cases such
as those in figures 8.6, 8.12 and 8.13, YOLO could detect Cuphead and in the rest of
the cases, YOLO missed it. After the second training stage, Cuphead is detected in
all frames. In cases where Cuphead is down and situated close to Goopy similarly
to the case in Figure 8.7, YOLO could not detect Cuphead since both bounding
boxes are overlapped. In addition, if we observe the 3rd frame in the figure, YOLO
perfectly places two different bounding boxes on both characters.
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8.1. Experiments of the object detection module
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8. Experiments and analysis of the results

8.2 Experiments with the integrated modules
Finally and with the object detection module finished and the defined and imple-
mented rules, all the modules were put together in order to test the ability of the
AI-based strategy to defeat Goopy.

As Figure 5.2 shows, in the final setup both the game window and the window
where the frames with the detections are shown at the same time. For every frame
in the game, the whole window is captured containing the frame of the current
state of the game, along with the top bar and some other few pixels on the sides.
After measuring the size of the top bar and the pixels on the sides, the image is
processed to remove those pixels leaving only the frame with the content of the
game. This frame is given as input to the trained YOLO network which is going to
be in charge of making detections in the image. Next, the detections are converted
into the YOLO input format and only the detections of frames where exactly two
detections are made are taken into account for making a decision of which key or
key sequence needs to be pressed. Regardless of the number of detections, every
frame with its bounding boxes is shown in the window of the lower right corner,
while the top left window shows the game window without any detections.

Algorithm 3 shows the steps of the whole process at each state of the game. If
the detection that has been made in a certain state of the game has two detections
a decision will be made for pressing the needed key or set of keys. On the other
hand, if the number of detections is less or greater than two that frame wont be
processed and we will move to the next state without taking any action.

Algorithm 3 Pseudocode of the algorithm for making decisions and taking actions
1: while True do
2: press the shooting key
3: capture the whole window of the current state of the game
4: process the capture for leaving only the in-game content
5: make detections with YOLO
6: convert detection results into the YOLO input format
7: if there are exactly two detections then
8: make the decision of which action to take based on detections
9: press the corresponding key or set of keys
10: end if
11: show the frame of the current state with the detections on
12: if ′q′ key is pressed then
13: release all the used keys
14: break from the loop
15: end if
16: end while
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8.2. Experiments with the integrated modules

After putting all the modules together, a test was made for evaluating the
performance of the whole system. A total of 10 games were played, all using the
same hardware mentioned in Chapter 5.2. In two of the games the agent managed
to win the fight whereas the 8 remaining games turned out to be a defeat. In the first
two games Cuphaead took the three hit points needed for being defeated and the
first win came in the 3rd game where Cuphead took two hits and after 1 minute and
9 seconds Goopy was defeated. In the next game Cuphead also won the fight after
exactly 1 minute and taking only one hit point. In the next two games Cuphead lost
again and in the 7th game the situation in which Cuphead could not be detected
happened. After a few seconds in the fight and dashing towards the right side of
the screen while being down, Cuphead was not detected and the fight was aborted
after taking only one hit point. In the remaining fights Cuphead also lost by taking
all three health points. The statistics of the 10 games are shown in Table 8.1

Table 8.1: Statistics of the 10 games played by the agent. Each row represents a different
game along with information related to that game such as wether it won that fight or not,
the issues faced, the hit points taken by Cuphead and the time taken for winning the fight.

Game Won Issues Hit points Time
1 No None 3 -
2 No None 3 -
3 Yes None 2 1min 9s
4 Yes None 1 1min 0s
5 No None 3 -
6 No None 3 -

7 No
Cuphead stands beyond

the right limit.
1 -

8 No None 3 -
9 No None 3 -
10 No None 3 -

Lastly, some latency has been observed at the time of playing the game which
caused some issues. The most significant was that the window showing each frame
with the detections doesn’t display the frames at the same time that the window
containing the game does. After a frame is shown in the game window, it takes
only a few more milliseconds to show that same frame with the detections in the
other window. In addition to this, it was also observed that in some states Cuphead
doesn’t execute the expected action or actions for that state of the game given the
detections. For instance, in some cases where Cuphead is not facing Goopy, the
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8. Experiments and analysis of the results

expected behaviour is that Cuphead turns and faces Goopy. However, in these cases
Cuphead remains facing in the opposite direction where Goopy is and turns after a
few frames have passed.
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CHAPTER 9
Conclusions

Asmentioned in the introduction, the goal of the project was to build an AI approach
for playing the game Cuphead using Object detection and DRL. Although the initial
proposal of using DRL couldn’t be executed, given that only a few simple rules
were defined based on the detections, the system managed to win 2 times out of 10
and the general idea of building a system capable of playing the game was achieved.

The method used for gathering data to build the data set showed that getting
labeled data without manually annotating images is viable for purposes like this.
By defining a method for linking the classes of the data set that has been used for
training the network and then generating labeled images containing our desired
classes, we create a way of creating labeled data without having to use other tools
to annotate images one by one by hand. Analyzing the classes to associate a class
or a group of classes of the original data set that the network has been trained on
to each object to be recognized and implementing the method for generating the
labeled images may take more time than annotating a few hundred images by hand.
However, once we have the whole method implemented, we could get hundreds or
even thousands of annotated images in a few minutes which makes it easier for
building different and larger data sets.

After all the experiments and putting all the modules together we achieved a
notorious improvement at the time of detecting both Cuphead and Goopy in the
game. While the pre-trained YOLO model barely detected Cuphead and struggled
detecting Goopy in different scenarios in the fight, after the final training process
YOLO was able to accurately detect both Cuphead and Goopy in almost all frames.
It could be seen how important quality data is, as the difference between the
results after the first training stage and the second training stage was huge. The
improvement could be seen in scenarios where Cuphead was not moving left or
right, as after the first training process, YOLO could only detect Cuphead moving
left, right or while being down and after the final training process Cuphead is
detected in these scenarios. Similarly, in scenarios where Goopy stays close to the
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9. Conclusions

left or right sides of the screen, YOLO struggled to detect him even after the first
training phase and this problem was solved after the second training phase.

In the end, there are some improvements that could be done in all modules
that would significantly improve the system’s performance and could increase the
number of times in which Goopy is defeated. First, the method for labeling the
data could be improved for making the object detection even more accurate. By
finding more classes to associate to each object, selecting only the detections with
the most precise bounding box placements or balancing the generated data to get
an even more balanced data set that contains labeled data in all stages of the fight,
we could make YOLO detect the desired object in a more precise way. More precise
bounding box placements in the training data means more precise detections and
this could help define more precise rules for playing the game.

Also, by improving the defined rules for playing the game the times where
Cuphead wins the fight would increase. As mentioned before, by improving the
quality of the bounding boxes in the detections, we could define a new set of
rules, more precise than the ones currently defined that would help Cuphead avoid
more damage and therefore, win more games. In scenarios where Goopy increases
its size, the area of the bounding box that YOLO places in the image gets bigger.
Goopy makes itself bigger in the first and second phase of the fight but each of
them needs to be treated differently. In the first phase, if Goopy gets bigger means
that the special attack is happening and Cuphead needs to be crouched down and
standing still without moving, while in the second phase Goopy has always a bigger
area in it’s bounding box compared to the version of Goopy at the start of the
fight. Different thresholds could be defined by measuring the bounding boxes more
accurately, as the Goopy in the second phase of the fight has a different size than
the one in the first phases’ special attack, even if both are similar.

Finally, the most evident improvement to the system could be replacing the
human based rules by a DRL approach for playing the game. A DRL approach
means an extra computational cost to the system but also a more precise way of
automatically playing the game.
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