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ABSTRACT: Racemic γ-substituted allenes undergo enantioselective higher order [8+2]-cycloaddition with azaheptaful-
venes using a chiral amino acid-derived amidophosphine as catalyst, providing the corresponding azaazulenoid cycload-
ducts with excellent levels of regio-, diastereo- and enantioselectivities. In this reaction, the activated allylic phosphonium 
ylide intermediate participates as the C2-component of the reaction, in contrast to the conventional reactivity of this type 
of zwitterionic intermediates as C3-components in cycloaddition reactions. 

The ability of electrophilic allenes to form 1,3-dipoles 
upon activation with a Lewis base catalyst has become a 
landmark for the development of a wide variety of annu-
lation reactions. Since the pioneering reports by the 
groups of Lu and Kwon,1 many examples of enantioselec-
tive cycloaddition reactions involving electron-deficient 
allenes have been disclosed,2 in parallel with the devel-
opment of chiral tertiary phosphines as nucleophilic or-
ganocatalysts.3 However, most of the examples reported in 
the literature are typically limited to the use of (achiral) 
allenes that do not contain any substituent at the γ-
position.4 There are some particular examples in which 
racemic γ-substituted allenes have been employed as C3-
scaffolds in asymmetric (3+2) cycloadditions (Scheme 1, 
Eq. 1).5 However, their use as C2-components has been 
scarce and it is restricted to their reactivity at the γ,δ-
positions, which requires either an enolizable γ-
substituted allenoate6 or a particularly functionalized 
substrate that incorporates a leaving group at the δ-
position (Scheme 1, Eqs. 2 and 3 respectively).7 

In view of the state of the art, and in connection with 
our research program devoted to the development of 
enantioselective transformations catalyzed by chiral ter-
tiary phosphines,8 we envisaged the potential use of ra-
cemic γ-substituted allenes as 2π-components in catalytic 
and enantioselective higher order [8+2]-cycloaddition 
with azaheptafulvenes under phosphine catalysis (see 
Scheme 1, Eq. 4). This type of cycloadditions, that involve 
more than 6π-electrons, are currently experiencing a 
renaissance.9 In particular, and despite pioneering non-
asymmetric precedents on [8+2]-cycloadditions by Doe-
ring and Houk,10 that were followed by several reports 
afterwards,11 enantioselective variants of higher order 
cycloadditions have only been successfully accomplished 
in the last few years.12 On the other hand, there are two 
precedents on enantioselective [4+3]12i,n and [4+4]12l high-

er-order cycloadditions using allenes as the 1,3-dipole 
source, but both cases involve the participation of the 
allene reagent as a C4-component and therefore as the 
source of the 4π-partner of the reaction. 
Scheme 1. γ-Substituted allenes in phosphine-
catalyzed enantioselective cycloadditions. 
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As a proof of concept (see Table 1, entry 1), we reacted 
N-sulfonyl derivative 1a with commercially available ethyl
2,3-butadienoate (2a) in the presence of a catalytic
amount of isoleucine-derived amidophosphine 3a, which
has demonstrated its proficiency for the activation of
allenoates in other examples of enantioselective reac-
tions.3e Two cycloadducts (4a and 5a) derived from the
2π- and 4π-reactivity of the allenoate were isolated from
this initial experiment, but the target cyclohep-
ta[b]pyrrole product 4a was the minor one and the enan-
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tioselectivity was poor. When tert-butyl allenoate (2b) 
was employed, the enantiocontrol was improved, but the 
[8+2]-cycloadduct was still the minor product (entry 2). 
This tendency was reversed when phenyl ester 2c was 
used, isolating cycloadduct 4c as the major product, but 
with very poor enantiocontrol (entry 3). Interestingly, 
phenyl thioester 2d and phenyl ketone 2e behaved exclu-
sively as 2π components (entries 4 and 5), and the corres-
ponding cycloadducts 4d and 4e were obtained as single 
isomers, still with poor enantiocontrol, but in a good yield 
in the latter case. Strikingly, allenic amide 2f turned out 
to be an excellent 2π component in this reaction, since 
the corresponding [8+2]-cycloadduct 4f was formed as a 
single regioisomer, with high yield and with excellent 
enantiocontrol (entry 6).  
Table 1. Preliminary results and catalyst screeninga 
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Entry R1 EWG Cat. 4/5b Yield 

(%)c 
ee 
(%)d 

1 Ns (1a) CO2Et (2a) 3a 0.3:1  29e 28f 

2 Ns (1a) CO2t-Bu (2b) 3a 0.2:1  47e 53g 

3 Ns (1a) CO2Ph (2c) 3a 2.4:1  37e 20h 

4 Ns (1a) C(O)SPh (2d) 3a >20:1  22 (4d) 17 

5 Ns (1a) C(O)Ph (2e) 3a >20:1  72 (4e) 22 

6 Ns (1a) C(O)NPh2 (2f) 3a >20:1 88 (4f) 96 

7 Ts (1b) C(O)NPh2 (2f) 3a >20:1 96 (4g) 95 

8 Ts (1b) C(O)NPh2 (2f) 3b >20:1 98 (4g) 87 

9 Ts (1b) C(O)NPh2 (2f) 3c >20:1 99 (4g) 92 

10 Ts (1b) C(O)NPh2 (2f) 3d >20:1 70 (4g) 74 

11 Ts (1b) C(O)NPh2 (2f) 3e >20:1 92 (4g) 80 

12 Ts (1b) C(O)NPh2 (2f) 3f >20:1 99 (4g) 96 

13 Ts (1b) C(O)NPh2 (2f) 3g >20:1 98 (4g) 99 

aReactions carried out on 0.05 mmol scale of 1 and 2 with 
10 mol% of 3 in toluene (0.05 M) at 25 °C. bDetermined by 1H-
NMR analysis of crude reaction mixture. cYields refer to 
isolated pure products 4. dEnantiomeric excess of 4 deter-
mined by HPLC on a chiral stationary phase. eCombined 
yield for both isomers 4 and 5. fThe structure and the absolu-
te configuration of 5a (89% e.e.) was determined by X-ray 
diffraction analysis. g5b: 87% ee. h5c: 10% ee. 

In order to further improve the reaction, azaheptaful-
vene 1b was evaluated, providing similar levels of selecti-
vity, although we could observe that this substrate was 
significantly more reactive than 1a, leading to the forma-
tion of cycloadduct 4g in 96% yield and with 95% ee, in a 
significantly shorter time (entry 7). The structure of cyc-

loadducts 4 and 5 were confirmed by X-ray diffraction 
analysis of 4g and 5a being its absolute configuration 
unambiguously determined. A series of experiments were 
then carried out in order to fine-tune the chiral scaffold of 
the catalyst (entries 7-13). Slightly inferior results were 
produced by tert-leucine and valine analogues (3b-c), and 
a significant drop of performance and enantiocontrol was 
observed with phenylglycine derivative 3d (entry 10), 
while phenylalanine-derived catalyst 3e showed to provi-
de good yield and a moderate enantiocontrol (entry 11). 
Interestingly, optimal results were achieved with threoni-
ne-based catalysts (entries 12 and 13), and in particular, 
using the silyl-protected analogue 3g, which afforded 
cycloadduct 4g almost quantitatively with 98% ee (entry 
13). 

With optimal reaction conditions in hand, we decided 
to study the scope of the reaction with respect to structu-
ral modifications on both components, azaheptafulvenes 1 
and allenic amides 2 (Table 2). In a first analysis, we could 
observe that the performance of the reaction was not 
affected at all by the nature of the sulfonamide group 
attached to the azaheptafulvene, isolating the correspon-
ding cycloadducts in all cases in excellent yields and with 
very high enantioselectivity after 2-5 h (compounds 4f-i). 
Table 2. Scope of the reactiona 
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aReactions carried out on 0.1 mmol scale of 1 and 2 with 10 
mol% of 3g in toluene (0.05 M) at 25 °C. Yields refer to pure 
isolated products 4f-u, and ee was determined by HPLC on a 
chiral stationary phase. bReaction carried out at 50 °C. cReac-
tion carried out on 1.0 mmol scale of 1b and 2f. dn.d.: not 
determined. 

We next focused on the performance of substituted 
racemic allenic amides incorporating aryl groups of diffe-
rent electronic nature at the γ-position (Substrates 2g-o). 
A slight increase of the reaction temperature was required 



to overcome the reduced reactivity observed with this 
type of allenic amides, and reaction times could be shor-
tened from 72-96 h at 25 °C to 18-36 h at 50 °C, while 
maintaining the excellent levels of enantiocontrol. In all 
cases, the corresponding [8+2]-cycloadducts 4j-r were 
isolated as a single regio- and diastereoisomer with an 
exquisite enantiocontrol (99% ee or superior). The 
electronic nature of the aromatic ring did not affect the 
reaction performance significantly. Thus, the presence of 
one electron-withdrawing substituent on the different 
positions of the aryl group of the allenic amide was virtu-
ally irrelevant and the corresponding cycloadducts 4k-l 
and 4o-p were isolated essentially as a single enantiomer 
in high yields (71-86%). Alkoxy substituents were also well 
tolerated and the enantioselectivity was excellent in all 
cases (adducts 4m, 4n and 4q). Similarly, the naphthyl 
derivative 4r was isolated in good yield and with excellent 
enantiocontrol. The robustness of the reaction was evalu-
ated with cycloadduct 4j at a higher 1.0 mmol scale with 
satisfactory results (See example in Table 2). Additionally, 
several racemic γ-alkyl substituted allenic amides 2p-r 
were evaluated using the optimal reaction conditions, 
observing that both γ-methyl and γ-ethyl-susbtituted 
substrates 2p and 2q reacted efficiently, providing 
adducts 4s and 4t. Remarkably, no side-product involving 
reactivity through the enolizable position of the γ-alkyl 
substituent was observed. An exception to the generally 
good reaction performance arose from the use of the 
bulkier γ-isopropyl substituted allenic amide (2r), which 
did not afford the corresponding cycloadduct after 96 h at 
50 °C or 80 °C. The absolute and relative configurations of 
disubstituted azaazulenes 4k and 4s were also unambi-
guously determined by X-ray diffraction analysis and the 
absolute stereostructure of all other cycloadducts 4 obtai-
ned was assigned assuming an identical stereochemical 
outcome for all reactions. 

The selectivity of the reaction can be rationalized on 
the basis of the following stereochemical model. Based on 
previous calculations carried out for amino acid-derived 
phosphines and benzyl allenoate,13 a similar nucleophilic 
attack is assumed to occur between catalyst 3g and allenic 
amides 2. In these reported computational studies, the 
allenic component serves as a three-carbon component in 
(3+2)-cycloaddition reactions with imines13a and enones,13b 
in contrast to our allenic amides, which behave as two-
carbon synthons (2π components). Despite these diffe-
rences, our reaction must involve the same type of allyl 
phosphonium ylide intermediate that suggests a very 
plausible similar three-dimensional arrangement during 
the cycloaddition process. Taking into account this diffe-
rence and in analogy with these reports we propose a 
tentative stereochemical model for the reaction in which 
an H-bond is established between the amide group of the 
catalyst and the sulfonyl group of the azaheptafulvene 
(Figure 1). 
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Figure 1. Stereochemical model. 

In conclusion, we have demonstrated that racemic γ-
substituted allenic amides are excellent 2π components 
for the enantioselective [8+2]-cycloaddition with azahep-
tafulvenes catalyzed by amino acid-derived amidophos-
phines. This reaction represents a direct strategy for the 
easy preparation of azaazulenoids scaffolds which have 
demonstrated to present important pharmacological and 
physical properties. Under optimal conditions a variety of 
mono- and disubstituted cycloadducts have been obtai-
ned in high yields with exquisite levels of peri-, regio-, 
diastereo- and enantioselectivity. 
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SYNOPSIS TOC.  
 
The higher order cycloaddition between racemic γ-substituted allenic amides and azaheptafulvenes proceeds effi-
ciently under chiral phosphine catalysis with complete periselectivity, leading to the exclusive formation of the 
[8+2] cycloaddition product. The reaction provides a direct access to aza-azulenoid adducts with a variety of substi-
tuents and with perfect levels of regio- and diastereoselectivity and with very high enantioselectivities 
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