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Abstract: Racemic cyclopropyl ketones undergo enantioselective 
rearrangement to deliver the corresponding dihydrofurans in the 
presence of a chiral phosphoric acid as catalyst. The reaction involves 
activation of the donor-acceptor cyclopropane substrate by the chiral 
Brønsted acid catalyst that promotes the ring-opening event driven by 
the release of ring strain, generating a carbocationic intermediate that 
subsequently undergoes cyclization. Computational studies 
supported by control experiments support this mechanistic pathway. 

Cyclopropanes are inherently reactive compounds because of 
their thermodynamic tendency to undergo ring-opening driven by 
the release of ring strain.[1] This feature can be used to unveil 
unconventional reactivity patterns in transformations in which 
these molecules are involved. A good example of the particular 
reactivity profile associated to the cyclopropane scaffold is their 
ability to undergo rearrangement to form more stable five- six- or 
seven-membered cyclic compounds.[2] A remarkable case of this 
type of reactivity is the so-called Cloke-Wilson rearrangement, in 
which cyclopropyl ketones form dihydrofurans under thermal 
conditions.[3] The need for high temperatures[4] has become an 
important limitation for the synthetic applicability of thuis reaction 
and, for this reason, some very recent attempts have been 
directed to find milder conditions that enable expanding this 
transformation to more functionalized substrates.[5] Despite all 
these efforts, there are no examples showing the possibility of 
performing this reaction in a catalytic and enantioselective way 
with only two cases reported that comprise an enantiospecific 
Cloke-Wilson rearrangement using enantioenriched starting 
materials (Scheme 1).[6]  

With these precedents in mind, we turned our attention to the 
use of donor-acceptor cyclopropanes[7] such as those shown in 
Scheme 1 as suitable substrates for Cloke-Wilson rearrangement 
upon activation by a Brønsted acid. In particular, chiral BINOL-
based phosphoric acids[8] were envisioned to be able to protonate 
the electron-withdrawing substituent of the D-A cyclopropane, 
increasing the polarity of the C-C bond and facilitating the ring-

opening process that would deliver a carbocation/enol 
intermediate that, upon ring-closure, would generate the final 
dihydrofuran scaffold in an overall process driven by the release 
of ring-strain. Moreover, the participation of this carbocationic 
intermediate would enable the use of racemic starting materials 
and their upgrade into enantiopure adducts by the use of a chiral 
phosphoric acid catalyst through a DYKAT process.[9] In this 
sense, we also anticipated that the combination of H-bonding 
between the phosphate anion and the enol moiety together with 
ion-pairing interactions[10] between the phosphate and the 
stabilized carbocationic moiety would provide the required chiral 
environment for efficient chirality transfer.[11] 
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Scheme 1. Stereoselective Cloke-Wilson rearrangements. 

We first optimized the reaction using cyclopropane 1a as model 
substrate (see Table 1). Through some preliminary experiments, 
we initially observed that this compound was able to undergo fast 
rearrangement at r.t. in the presence of diphenylphosphoric acid, 
to provide dihydrofuran 2a efficiently. Moreover, we also noticed 
that the reaction was taking place at temperatures as low as -30ºC. 
With this information in hand, we proceeded next to survey the 
performance of a family of different chiral Brønsted acids at this 
temperature (entries 1-8 in Table 1), observing that, while the 
archetypical BINOL-based TRIP catalyst 3a was not able to 
promote the reaction (entry 1), 2,2’-bis(aryl) substituted BINOL-
based phosphoric acids 3b-e turned to be active in this 
transformation (entries 2-5). From these different acids tested, 
2,2’-bis(9-phenanthryl)-substituted catalyst 3e was found to be 
the best performing one in terms of both yield and enantiocontrol 
(entry 5). More acidic N-sulfonylphosphoramide 3f and N,N-bis-
sulfonimide 3g promoted a fast reaction but provided almost 
racemic material (entries 6 and 7) and the spirocyclic phosphoric 
acid catalyst 3h also failed to provide high enantiocontrol. Next, 
the influence of the solvent was evaluated in combination with 
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catalyst 3e, observing that changing to m-xylene resulted into a 
slight improvement in the enantioselectivity of the process but with 
an inferior yield (entry 9). Remarkably, a much faster reaction was 
observed when it was carried out in halogenated solvents such as 
CH2Cl2 (entry 10) or 1,2-dichloroethane (entry 11), but with a 
slightly lower enantioselectivity than that provided by m-xylene 
(entries 10 and 11 vs 9). For this reason, binary mixtures of xylene 
with these chlorinated solvents were evaluated (entries 12 and 
13), obtaining an excellent result with the combined use of m-
xylene and 1,2-dichloroethane (entry 13). Finally, we also 
evaluated the reaction using a lower catalyst loading, observing a 
similar performance but requiring for a longer reaction time (entry 
14). 

 
Table 1. Screening for best reaction conditions[a]  

1a

3 (10 mol%)

Solvent, -30ºC

O

R

O

R

P
O

X

3a: R=2,4,6-iPr3C6H2; X=OH
3b: R=3,5-(CF3)2C6H3; X=OH
3c: R=2-naphthyl; X=OH
3d: R=1-naphthyl; X=OH 
3e: R=9-phenanthryl; X=OH
3f: R=9-phenanthryl; X=NHTf
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Entry Catalyst Solvent t [h] Yield [%][b] e.r.[c] 

1 3a Toluene 48 <5 n.d. 

2 3b Toluene 48 13 67:33 

3 3c Toluene 48 45 75:25 

4 3d Toluene 48 72 90:10 

5 3e Toluene 48 82 91:9 

6 3f Toluene 12 91 50:50 

7 3g Toluene 12 83 52:48 

8 3h Toluene 72 63 56:44 

9 3e m-xylene 48 63 96:4 

10 3e CH2Cl2 24 80 93:7 

11 3e Cl(CH2)2Cl 24 85 91:9 

12 3e m-xylene/CH2Cl2  24 76 94:6 

13 3e m-xylene/Cl(CH2)2Cl 24 90 95:5 

14[d] 3e m-xylene/Cl(CH2)2Cl 48 91 95:5 

[a] Reaction carried out in a 0.1 mmol scale of 1a, using 10 mol% of catalyst in 
the indicated solvent (0.2M) at -30 ºC. [b] Yield of pure product after flash 
column chromatography. [c] Determined by HPLC analysis on a chiral 
stationary phase (see Supporting Information). [d] 5 mol% of 3e. 

With an optimal experimental procedure in hands, we proceeded 
to evaluate the scope of the reaction. As it can be seen in Table 
2, the reaction was found to proceed excellently regardless of the 
nature of the alkoxide substituent at the ester moiety of the 

cyclopropane reagent (adducts 2b-e), although the 
enantioselectivity decreased slightly when increasing the size of 
this substituent, requiring for slightly lower temperatures to 
perform on synthetically useful parameters. Remarkably, the 
reaction using cyclopropanes 1a-e as substrates could also be 
scaled up without any negative effect on the yield and 
enantioselectivity. The yield was also significantly affected by the 
size of this substituent, observing that the reaction did not take 
place with the most sterically demanding tert-butyl ester substrate 
(see compound 2f). A similar behavior was observed with 
cyclopropanes with different alkyl substituents at the ketone 
moiety, obtaining in general, excellent results with substrates 
containing linear alkyl substituents (compounds 2g-h and 2l) and 
with a poorer conversion when the steric bulk was increased 
(compound 2i) or without observing any reaction when a less 
reactive phenyl ketone moiety was present (compound 2j).  

 
Table 2. Scope of the reaction.[a] 

2a[b]
 (R3=Bn); 90%, 95:5 e.r.

2b[b]
 (R3=Me); 95%, 95:5 e.r.

2c[b]
 (R3=Et); 92%, 93:7 e.r.

2d[b]
 (R3=n

Pr); 93%, 94:6 e.r.
2e[b]

 (R3=iPr); 92%, 93:7 e.r.
2f (R3=tBu); <5%

2m
91%, 90:10 e.r.

m-xylene/DCE, -30ºC or -40ºC
3e (10 mol%)
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[a] Reaction carried out in a 0.05 mmol scale of 1a-u with 10 mol% of 3e in m-
xylene/DCE (3:1, 0.2M) at -30 ºC. Enantiomeric ratio (e.r.) was determined by 
HPLC analysis (see Supporting Information). [b] Reaction carried out at 0.4 
mmol scale. [c] Reaction carried out in toluene at -60 ºC 

In contrast, 4-nitrophenyl ketone derivative 1k provided 
dihydrofuran 2k in high yield with good e.r. Other cyclopropanes 
with a variety of electron-rich substituents as the donor group 
were successfully tested, obtaining in general good results when 



          

 
 
 
 

substituents of different nature were incorporated at the aryl ring 
(compounds 2m-q). If electron-withdrawing groups that 
decreased the ability of this substituent to stabilize the 
carbocationic intermediate were incorporated, the yield of the 
reaction was affected (see compound 2p) but still maintaining an 
excellent performance with respect to enantiocontrol. Heteroaryl- 
and electron-rich naphthyl substituents were also well tolerated 
(see compounds 2r-t).[12] Interestingly, a cyclopropane such as 1u 
was also found to undergo clean rearrangement under slightly 
modified conditions, leading to the formation of dihydrofuran 2u 
with a quaternary stereocentre, although with modest 
enantioselectivity. 

In addition, cyclopropyl ketones 4a-f that do not incorporate 
the electron-withdrawing alkoxycarbonyl substituent together with 
the acyl moiety were also found to perform excellently in the 
reaction (Table 3). In this case, the structure of the catalyst had 
to be slightly modified, observing that 3d was the best one for the 
reaction. A series of representative examples of donor-acceptor 
cyclopropanes incorporating an α-ketoester or a trifluoroacetyl 
group as the electron-withdrawing substituent reacted efficiently 
under the optimized reaction conditions, providing the 
corresponding 1,2-dihydrofurans with high yield and e.r.[13] 

 
Table 3. Enantioselective Cloke-Wilson rearrangement with ketones 4a-f.[a] 

5a 

75%, 90:10 e.r.

Cl(CH2)2Cl/CH2Cl2, -30 ºC

3d (10 mol%)

5a-f
(±)
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OR2 R1
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92%, 95:5 e.r.
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[a] Reaction carried out in a 0.05 mmol scale of 4a-f using 10 mol% of 3d in 
DCE/DCM (1:1, 0.2M) at -30 ºC. Enantiomeric ratio (e.r.) was determined by 
HPLC analysis (see Supporting Information). [b] Reaction carried out at -60 ºC. 
[c] Reaction carried out in DCE. 

We also carried out a computational study directed to a better 
understanding of the reaction pathway, using BINOL-derived 
phosphoric acid (3i, R=H) as a simplified catalyst. The reaction 
starts through coordination of the catalyst to 1b (Figure 1, top) and, 
at this point, any attempt to locate an intermediate carbocation 
failed and only transition structure TS1 was located. The IRC 
analysis clearly showed that TS1 connects 1b with 2b along a 
concerted but highly asynchronous pathway. Indeed, the IRC 
showed a shoulder, suggesting the presence of a hidden 
intermediate, a situation often found when carbocations that are 
not stable enough to be characterized as minima are involved.[14] 
A geometrical analysis of C9 environment during the course of the 
reaction (see SI) revealed the planarity (as expected for a sp2-

hybridization) of that center. The formation of a carbocationic 
species CB was confirmed by a topological analysis of the 
electron localization function (ELF)[15] which was used for 
monitoring the evolution of the electron population along the 
reaction coordinate (Figure 1, bottom). After point 60 of the IRC 
bonds C1-C2 and C4-C5 increased their population whereas 
bonds C2-C3, C3-C4, C5-C6 and C6-C1 decreased their 
population.[16] This situation continues until several points after 
TS1 (point 121), clearly illustrating the formation of a quinoid form 
for the aryl moiety compatible with the expected delocalization of 
the positive charge. At the start (before point 60) and the end 
(after point 160) of the reaction, a degenerated situation for all the 
aromatic bonds was observed indicating the aromatic character 
of the ring. The ELF analysis also confirms the early cyclopropane 
ring opening and the late C-O bond formation providing enough 
time for the “virtual existence” of a carbocation. 

 

Figure 1. Mechanism of the reaction and evidences for the formation of a 
carbocationic hidden intermediate. 

The development of a planar arrangement capable of surviving 
during a period along the reaction course has dramatic 
consequences for the stereochemical outcome of the reaction. 
Any initial chiral information of the starting substrate is lost during 
the reaction and four possible interconnected approaches are 
possible (See SI). When the real catalyst 3e was considered for 
analyzing the stereochemical preferences the lowest transition 
structure corresponded to that leading to the (R)-isomer (Figure 
2) in a good agreement with experimental results. The driving 
force ultimately responsible for the high selectivity observed with 
3e is the presence of attractive London interactions between the 
phenanthryl moiety and the aromatic ring responsible of 
stabilizing the carbocation that are not present in the transition 
structure leading to the (S)-enantiomer. The presence of such 
favorable interactions was corroborated by NCI analysis,[17] which 
revealed the expected surface between the two aromatic systems. 
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Figure 2. Preferred transition state structure for the reaction (left: NCI analysis). 

To confirm this mechanistic proposal, we carried out a series 
of experiments using an enantioenriched sample of 1b as starting 
material (Scheme 2).[18] When this compound was subjected to 
the Cloke-Wilson rearrangement under the optimized conditions 
with catalyst 3e, adduct (R)-2b was isolated in comparable yield 
and e.r. as observed when the racemic material had been used 
before (see Table 1). Remarkably, using the opposite enantiomer 
of 3e as catalyst, the opposite enantiomer (S)-2b was isolated, 
also with a similar yield and e.r. Finally, the reaction of (1S,2S)-
1b promoted by an achiral catalyst provided 2b as racemic 
product. In all cases, all reactions took place at a comparable rate, 
indicating the absence of any matched/mismatched effect at the 
catalyst/substrate interaction stage. 
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Scheme 2. Enantioselective Cloke-Wilson rearrangement using 
enantioenriched cyclopropane (1S,2S)-1b. 

In conclusion, we have demonstrated that cyclopropyl 
ketones are excellent substrates to undergo enantioselective 
Cloke-Wilson rearrangement catalyzed by a chiral phosphoric 
acid. Under the optimized conditions, the corresponding 
dihydrofuranes are obtained in high yield and enantioselectivity, 
with this transformation showing a wide substrate scope. 
Computational and experimental studies demonstrates that the 
reaction proceeds through the formation of a transient 
carbocationic intermediate that enables the use of racemic 
cyclopropanes as starting materials through a DYKAT process. 
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