

UNIVERSITY OF WEST ATTICA UNIVERSIDAD DEL PAIS VASCO

FACULTY OF ENGINEERING FACULTY OF ENGINEERING VITORIA-GASTEIZ

DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

Diploma Thesis

Machine learning methods for predictive maintenance using real-time data and time-frequency
analysis

Dimitrios Iason Papadopoulos

Supervisors: Georgios Chamilothoris, Vanessa Garcia, Saioa Etxebarria

Vitoria-Gasteiz, May 2023

GRADO EN INGENIERÍA MECÁNICA

TRABAJO FIN DE GRADO

Machine learning methods for predictive
maintenance using real-time data and

time-frequency analysis

Alumno/Alumna: PAPADOPOULOS DIMITRIOS IASON

Director/Directora (1): GARCIA VANESSA

Director/Directora (2): ETXEBARRIA SAIOA

Fecha: 29-05-2023

Acknowledgments

First of all, I would like to thank my supervisor from the mechanical engineering department of
the University of West Attica, Georgios Chamilothoris, for guiding me throughout the duration of
my thesis and my supervisors from the mechanical engineering department of the University of
the Basque Country, Vanessa Garcia and Saioa Etxebarria for their important contribution in my
effort. Moreover, I would like to thank my family and friends, for supporting me for the whole
duration of my studies.

Abstract
In this diploma thesis, different techniques of Predictive Maintenance based on Machine Learning
are compared. In particular, the Remaining Useful Life of a ball bearing of the shaft of a Wind
Turbine was predicted with different methods: Classification algorithms, degradation models and
real time updates using a Kalman Filter. In the first half, the theory of ball bearing failure
mechanisms, predictive maintenance and machine learning is analyzed. At the second half,
different methods are implemented for the prediction of the remaining useful life. Last, the writer
comes to a conclusion about the efficiency of each method.

Key words: Machine Learning, Predictive Maintenance, Remaining Useful Life, Degradation
Models, Classification, Kalman Filter

Περίληψη
Σε αυτή τη διπλωματική εργασία, γίνεται σύγκριση μεθόδων μηχανικής μάθησης για προδεικτική
συντήρηση. Ειδικότερα, γίνεται πρόβλεψη για την εναπομένουσα ωφέλιμη ζωή ενός εδράνου,
στον άξονα μιας ανεμογεννήτριας, με τις εξής μεθόδους, αλγόριθμους classification, μοντέλα
degradation και συνεχής ανανέωση, με χρήση του φίλτρου Kalman. Σε πρώτη φάση, αναλύεται
η θεωρία, σχετικά με τους μηχανισμούς αστοχίας των εδράνων, την μηχανική μάθηση και την
προδεικτική συντήρηση. Στη συνέχεια, αυτές οι μέθοδοι, χρησιμοποιούνται για τον υπολογισμό
της εναπομένουσας ωφέλιμης ζωής. Τέλος, ο συγγραφές αναλύει τα συμπεράσματά του για την
αποδοτικότητα της κάθε μεθόδου.

Key words: Μηχανική μάθηση, Προδεικτική συντήρηση, Εναπομένουσα ωφέλιμη ζωή,
Degradation Models, Classification, Φίλτρα Kalman

Table of Contents
Abstract .. 4

Περίληψη.. 5

Table of figures ... 8

1.Introduction.. 9

1.1 Problem Statement .. 9

1.2 Objectives ... 9

1.3 Bearing failure .. 9

2.Predictive Maintenance ... 14

2.1 What predictive maintenance is .. 14

2.2 Comparison to other maintenance approaches ... 15

2.3 PM applications in industry ... 16

2.4 Condition Monitoring ... 17

3.Machine Learning .. 19

3.1 Data Analysis and Feature Engineering .. 20

3.1.1 Data preprocessing .. 20

3.1.2 Mathematical transformations .. 20

3.1.3 Feature Engineering ... 21

3.2 Classification algorithms ... 28

3.2.1 SVM (Support Vector Machines) ... 29

3.2.2 K – Nearest Neighbours ... 31

3.2.3 Naive Bayes ... 31

3.2.4 Decision Trees ... 32

3.2.5 Random Forest .. 33

3.2.6 Logistic Regression ... 33

3.3 Regression algorithms ... 34

3.3.1 Simple linear regression .. 34

3.3.2 Multiple linear regression .. 35

3.3.3 Polynomial regression .. 36

3.3.4 Regression vs Classification .. 37

4.Application of PM in Bearing Failure ... 38

4.1 Predictive failure models /Remaining Useful Life (RUL) .. 38

4.2 Application of Feature Engineering ... 40

4.3 Classification approach .. 45

4.4 Degradation model approach ... 48

4.4.1 Exponential degradation model .. 49

4.4.2 Linear Degradation Model ... 50

4.5 Real time update approach using Kalman Filter ... 52

5.Conclusions and future work ... 58

Comparison between approaches .. 58

Directions for future work ... 59

6.Bibliography ... 60

7.Annex .. 63

7.1 Support Vector Machines algorithm .. 63

7.2 K Nearest Neighbours algorithm.. 65

7.3 Linear degradation model ... 68

7.4 Kalman Filter ... 70

7.5 Feature Engineering and Exponential model [20] .. 74

7.5.1 Main code [20] .. 74

7.5.2 Helper Functions [20] .. 83

Table of figures
Figure 1-1 White etching Cracks [3] .. 11
Figure 1-2 Material Fatigue [3] ... 11
Figure 1-3 Inadequate lubrication [3] ... 12
Figure 1-4 Corrosive substance [3] .. 12
Figure 2-1 The evolution of maintenance strategies [5] .. 15
Figure 2-2 Comparison of maintenance approaches [5] .. 16
Figure 3-1 Plot of the percentage of variance of each component [13] .. 24
Figure 3-2 Example of PCA with three components [13] ... 25
Figure 3-3 Support Vector Machines algorithm [5] ... 30
Figure 3-4 K nearest neighbours algorithm [18] ... 31
Figure 4-1 Survivor Function plot of a battery [19] .. 38
Figure 4-2 Similarity based plot of an engine [19] .. 39
Figure 4-3 Degradation plot of a High-speed bearing in a wind turbine [19] 39
Figure 4-4 Time domain representation of the collected data [20] .. 41
Figure 4-5 Frequency domain representation of Spectral Kurtosis [20] .. 42
Figure 4-6 Example of smoothing of SKMean [20] ... 43
Figure 4-7 Monotonicity of the extracted features [20] ... 44
Figure 4-8 PCA plot [20] .. 45
Figure 4-9 Results of the SVM algorithm .. 46
Figure 4-10 Results of the KNN algorithm .. 47
Figure 4-11 Exponential Degradation model plot .. 50
Figure 4-12 Plot of the linear degradation model .. 51
Figure 4-13 Plot of the Error in the Linear degradation model ... 51
Figure 4-14 Variables used in a Kalman Filter [26] ... 53
Figure 4-15 Equations used in a Kalman Filter [26] .. 53
Figure 4-16 A complete figure of the operation of the Kalman filter [27] 54
Figure 4-17 Plot of the model made with the Kalman Filter .. 56
Figure 4-18 Plot of the error of the model made by the Kalman Filter .. 57

1.Introduction

1.1 Problem Statement

Without a doubt, ball bearings play a crucial role on the function of a machine because they
reduce friction and they absorb the applied loads. Because of these reasons, they are some of
the first parts that are checked when a machine malfunctions. Depending on the application, they
are considered expendable because they fail after a certain number of cycles of use and they are
changed frequently. But, in some cases, ball bearings may be replaced with unfavourable results,
because they might possibly come with big costs and their replacement could stop the whole
production process. For these reasons, in specific applications the failure of a ball bearing has to
be avoided and a distinctive example is that of a wind turbine. A wind turbine can not function
without a ball bearing in its shaft, so it is crucial that failure has to be avoided. Failure can be
avoided, by monitoring the condition of the ball bearing and by implementing predictive
maintenance techniques, to ensure that it functions properly. Moreover, a model that calculates
its remaining useful life (RUL), can be used so that the engineer responsible for the ball bearing,
can be informed with detail about its health condition and most importantly, know when it is
needed to take action. Knowing when action is needed is very important and it increases
productivity, because maintenance or any kind of interference can be scheduled very close to the
predicted time of malfunction. As a result, the ball bearing is utilized for the maximum available
time and also the needs for possible replacements and maintenance are minimized. Thus, time
wasted for maintenance and breakdowns and costs for maintenance are greatly reduced.

1.2 Objectives

It is now understood, how beneficial it is to implement predictive maintenance in the ball bearing
of a wind turbine and because of that, the objective of this diploma thesis is to implement machine
learning methods for predictive maintenance using real time data and time-frequency analysis.
Specifically, the remaining useful life of a ball bearing will be predicted and estimated with
different methods in order to compare them and highlight their benefits.

1.3 Bearing failure

A sizable share of wind turbine breakdowns is caused by bearing problems. It is not unexpected
that a variety of reasons and circumstances might result in premature failure. But, using
recommended procedures, applying the right lubricant, and employing the correct materials all
significantly increase lifespans.

As it was mentioned before, bearings are necessary for wind turbine functionality, these precise
parts are frequently subjected to a range of unfavorable and even harsh working situations and
environments. Thus, endangering the dependability and productivity of a turbine as well as the
performance and its lifespan. It might be difficult to fully comprehend typical failure mechanisms
in turbine bearings since each premature bearing failure will be distinct owing to the numerous
potential reasons in the context of specific operating circumstances. Notwithstanding the
difficulties, there are ways to decrease the possibility of early bearing failures, lower maintenance
and operating costs, encourage longer bearing service life, and, ultimately, support maintaining
turbines in operation as planned. The dependability of equipment is a constant source of difficulty
for those in charge of running wind farms, and the reliability of bearings throughout a wind turbine
is a crucial component of the equation. Failure can occur, due to various root causes and threaten
bearing performance and reliability at every turn. [1],[2]

Reason of failure

The most important reason that a bearing can fail is the improper condition monitoring. It is
crucial that a bearing is monitored so that the details regarding its condition are known to the
operator. If it is not, a variety of problems can occur and the operators will not be able to act in
order to prevent such problems. Moreover, an important reason of failure is sudden stops of the
wind turbine, because they greatly strain the bearing and can help begin the deterioration early.
Generally, rapid changes in torque are the cause of strain development and that the bearing was
not designed for. In addition, ineffective lubrication causes significant friction between the roller
and the raceway thus creating excessive strain. Last but not least, environmental conditions, such
as moisture, can have detrimental consequences for wind turbine bearings. If bearings are not
effectively protected form moisture and too much is present within a turbine, rust can occur and
lubricants will become ineffective thus causing premature failure. Furthermore, moisture will
corrode the bearing and can damage electrical equipment. [3]

Kinds of Failure

In various wind turbine bearing’s positions, white etching cracks can appear, as in figure 1-1.
These cracks are more common in bigger wind turbines of the megawatt and multi-megawatt
classes. These cracks, found at the end of the failure chain, appear white when acid-etched and
form within the microstructure of the steel. Microscopically, this may be seen on the surface.
Based on failure analysis, their genesis is frequently traceable to the rolling contact fatigue of a
bearing and to physical factors that might hasten rolling contact fatigue. High moment loads,
friction, heat, misalignment, and other physical factors may result in higher than expected
stresses, which may result in fatigue, or environmental factors, such as water contamination,
corrosion, and stray electrical currents, which may result in lower than expected material
strengths, which may also result in fatigue. An example of fatigue can be seen in figure 1-2. [3]

http://www.renewableenergyworld.com/articles/2013/06/protecting-wind-turbines-in-extreme-temperatures.html
http://www.renewableenergyworld.com/articles/2013/06/protecting-wind-turbines-in-extreme-temperatures.html

Figure 1-1 White etching Cracks [3]

Figure 1-2 Material Fatigue [3]

When two improperly lubricated surfaces glide against one another, material is transferred from
one surface to the other, generating adhesive wear, the results of this are visible in figure 1-3.
In addition, the friction that results can heat the substance to levels that lead to rehardening.
Thus, changing the microstructure of the rollers and raceways in a bearing which accelerates the
deterioration, because of the increased stress, excessive friction, and generated heat that isn't
needed. These elements will wear a bearing down over time until it is no longer usable. [2],[3]

Micropitting, also known as surface distress, is characterized by little cracks that progressively
become larger and obstruct a bearing's smooth operation. This deterioration, is typically brought
on by insufficient lubrication and affects not just the bearings but also the gear teeth. The ensuing
damages result in concentrated stresses and excessive frictional heat, which compromise a
bearing's ability to operate. Once it starts, the cracks propagate fast, resulting in failure, spalling
(the flaking of the bearing material), and loss of bearing function.[1],[2],[3]

Figure 1-3 Inadequate lubrication [3]

When water or other corrosive substances enter a bearing's inside, corrosion develops like in
figure 1-4. Rust can start to form on a bearing's steel surface when lubrication is not providing
enough protection, harming the bearing. A bearing is highly vulnerable to water, and only a tiny
amount of water is enough to severely reduce service life.[3]

Figure 1-4 Corrosive substance [3]

Failure Prevention

High stresses that cause fatigue can be mitigated by bearings made of premium steel and with
compressive residual stresses. Various protective heat treatments, surface treatments, coatings
and hybrid bearings incorporating incredibly hard and durable ceramic rolling elements, high-
strength stainless steel for corrosion resistance, and other measures can be taken to strengthen
the material strength of a bearing depending on the circumstances. The rolling components and
inner and outer rings of a bearing may benefit from a specialized black oxidation treatment done
by the bearing manufacturer to increase resistance and guard mainly against adhesive wear, as
well as for several other failure modes. As the dimensions will remain the same as the bearings
that were first placed, bearings with such surface treatments can be used as upgrades and
replacements in existing turbine systems. These situations can be avoided with proper lubricant
management and regular habits. When it comes to lubricating correctly and keeping an eye out
for degrading grease or oil, contaminated water, and particle pollution, maintenance personnel
should take care to avoid over- or under-greasing, using the incorrect lubricant, and/or combining
incompatible lubricants. Need of lubrication may be significantly reduced, by using suitable sealing
design to ensure adequate amounts of lubricant remain. Correct sealing of the places where
bearings are positioned helps prevent corrosion. As preventative measures, implementing a
humidity management system and using components that are properly designed to prevent
condensation inside a system are important.[1],[2],[3]

Predictive maintenance benefits

Early identification of operational issues in wind turbines, is now made possible by Predictive
Maintenance. Measurements of numerous physical operational characteristics, such as vibration,
temperature, displacements, and others, are used to identify abnormalities. By using the data,
bearing and other component issues may be identified before they become more serious and
require corrective action.

2.Predictive Maintenance

2.1 What predictive maintenance is

In order to forecast breakdowns well, in advance of the need for immediate action, predictive
maintenance makes extensive use of process data and sophisticated analytical techniques. More
process data becomes available with the use of ideas like Industry 4.0 or Smart Factory. As a
result, it is possible to predict the runtime of assets with increasing precision. This maintenance
strategy is typically used when substantial expenditures are incurred as a result of maintenance
or downtime. While maintenance tasks are complicated, it can also make scheduling simpler. With
this kind of industrial maintenance, businesses are able to foresee problems before they happen
and prepare the appropriate maintenance interventions and processes. The development of data
processing, analytics, and artificial intelligence has made it possible for maintenance specialists
to plan predictive maintenance based on foreseeing errors and malfunctions.[5],[6]

Predictive maintenance keeps an eye on the functionality and state of the equipment while it's in
operation. The idea behind it is to be able to anticipate when machinery is likely to break down,
based on a variety of parameters, and then lower the risk of failure by preventing failure. Correct
prediction requires condition monitoring, which is defined as continuous monitoring of equipment
throughout process conditions to guarantee optimum machine use. The application of artificial
intelligence has opened up new possibilities for predictive maintenance, since data analysis
enables not only the prediction of probable failures but also the formulation of suggestions for
modifying operating conditions to obtain the desired production outcomes. Prescriptive
maintenance is the term used to describe this maintenance approach.[5],[6]

In predictive maintenance, the engineers in charge of maintaining industrial machinery employ a
technique to forecast precisely when a piece of machinery will break down and then carry out
repair to keep the production machines operating as efficiently as possible. This makes sure that
a piece of equipment in need of repair is turned off just before it breaks, allowing the equipment
to function for the duration of the maintenance period for the maximum feasible time. This
maintenance strategy's key benefit is the cost savings, by lowering unexpected downtime and
raising production rates. The current status of equipment components is presented in real-time
statistical data, minimizing production hiccups. The time spent doing maintenance activities is
also optimized, in addition to the usage of replacement components. Since it needs the
procurement of extremely precise equipment as well as suitable software that can support the
data generated during equipment operation, predictive maintenance is regarded as the most
difficult maintenance technique. [5],[6]

Predictive maintenance also aims to extend the life span of equipment, as is the case with
preventive maintenance. The condition of machinery is monitored, using both overall and
component level analysis. This enables replacement parts to be ordered when required and
maintenance teams to continuously optimize machinery, thus increasing its longevity. Finally, a
significant benefit of predictive maintenance is the provision of an auditable documentation trail.

Because predictive maintenance involves the collection of vast amounts of data, it provides a
robust paper trail that can support warranty claims and compliance with Good Manufacturing
Practice (GMP) or ISO standards. This documentation trail provides greater transparency,
accountability and reliability for companies seeking to demonstrate the quality and reliability of
their products and services.[7]

2.2 Comparison to other maintenance approaches

Figure 2-1 The evolution of maintenance strategies [5]

The adoption of predictive maintenance over traditional preventive maintenance is proving to be
highly advantageous for businesses across many sectors. The benefits that come with predictive
maintenance are significant and numerous. One of the primary benefits is a reduction in
maintenance costs. Predictive maintenance enables the allocation of resources and labor only
when needed, by analyzing when a machine or device actually requires attention. This is in stark
contrast to preventive maintenance, which relies on a set schedule that may not reflect the actual
status of the equipment. Another advantage is the reduction in the frequency of major equipment
failures. Predictive maintenance quickly identifies issues with equipment, enabling maintenance
crews to address the problem before it escalates and causes productivity losses. As such, major
equipment failures are greatly reduced, or avoided altogether, compared to traditional
maintenance techniques. [7]

2.3 PM applications in industry

Figure 2-2 Comparison of maintenance approaches [5]

The global predictive maintenance market is projected to reach a value of $6.3 billion in the next
years, as indicated in a report conducted by “Market Research Future”. This growth can be
attributed to the increasing adoption of predictive maintenance techniques in various industries.
It is already being utilized or planned to be implemented by 83% of manufacturing companies
within the next two years. A report titled "Digital Industrial Revolution with Predictive
Maintenance" revealed that 91% of manufacturers implementing predictive maintenance
experience a significant reduction in repair time and unplanned downtime. Additionally, 93% of
these manufacturers reported improvements in aging industrial infrastructure. According to
another report, the adoption of predictive maintenance in factories can yield several benefits,
including a 12% reduction in costs, a 9% improvement in uptime, a 14% decrease in safety,
health, environment, and quality risks, and a 20% extension in the lifespan of aging assets. Also,
the report provides examples of how companies like EasyJet, Transport for London (TfL), and
Nestle have leveraged predictive maintenance to enhance the efficiency of their technicians,
improve the customer experience, and minimize unplanned downtime. These real-world examples
highlight the tangible benefits that can be achieved through the implementation of predictive
maintenance strategies.[9]

Predictive maintenance has been proven to be highly cost-effective, according to research
conducted by the US Department of Energy. By implementing predictive maintenance software,
companies can achieve significant financial gains and enjoy a remarkable return on investment
(ROI). The benefits include a substantial reduction of maintenance costs by 25% to 30%, a drastic
decrease in breakdowns by 70% to 75%, and a notable decline in downtime by 35% to 45%. In
contrast, reactive maintenance is a traditional maintenance strategy where equipment or parts
are repaired or replaced only after they have broken down or failed. Surprisingly, many companies
still rely on reactive maintenance and organize their maintenance schedules accordingly. This
means they wait for failures or breakdowns to occur before taking action to restore the
equipment's functionality. However, this approach can be highly costly. Compared to proactive
measures such as predictive maintenance, reactive maintenance can result in expenses that are
four to five times higher. Immediate costs incurred with reactive maintenance include lost
productivity due to unexpected failures, lack of inventory backup for quick repairs, and inefficient
communication among maintenance teams. These consequences can be avoided by adopting
predictive maintenance strategies, which enable early detection of potential issues and allow for
proactive measures to be taken before failures occur.[10]

Leaders at any business that depends on complex machinery or devices know that regular
maintenance is essential to smooth and efficient operations. Without timely maintenance,
machinery breaks down, leading to downtime, costly repairs and sometimes even replacement.
The common practice of preventive maintenance entails regularly inspecting equipment and
tuning it up, before it needs repairs. But the emerging practice of predictive maintenance aims to
build upon preventive approaches and make them more efficient and cost-effective. When a
breakdown occurs, unexpected equipment downtime is the most dreaded consequence, along
with poor workplace performance and unplanned expenses. Due to the early engagement and
proactive service approach, downtimes can be avoided or planned ahead of time with minimal
impact on the customer. In other words, by integrating predictive maintenance, equipment
conditions are optimized which ultimately reduce machine downtime and directly influence
the bottom line.[10]

2.4 Condition Monitoring
Initially, in order to ensure optimal performance and minimize downtime, it is crucial to identify
the conditions that need to be monitored for each machine. This analysis may involve visual
inspections, auditory checks, thermal observations, or a combination of these and other criteria.
The next technological step is to determine the correct sensors and monitoring tools that need to
be installed for each machine.[8]

Vibration analysis is an effective method for predicting potential problems with machinery. By
analyzing small changes in vibration patterns, imbalances or misalignments can be identified,
while high levels of vibration may indicate issues with bearings or other machine components.
Vibration analysis can detect these issues early on, allowing for prompt corrective action to be
taken. Sound and ultrasonic analysis can also provide valuable insights by identifying changes in

normal sound patterns that may indicate wear or other types of deterioration. Ultrasonic analyses
can further help in determining the overall health of a system by translating high-frequency
sounds, such as those produced by steam or air leaks, into the audible range. Infrared analysis
is another method that can uncover hidden issues. By using thermography to translate
temperature changes into a visible spectrum, even slight deviations from normal operational
temperatures can provide early warning signs of impending problems. Fluid analysis is essential
for the proper maintenance of machinery. Beyond simply monitoring fluid levels and temperature,
a physical and chemical analysis of fluids can provide critical information about the condition of
mechanical components. By detecting the rate of degradation in coolants and lubricants,
preventive steps can be taken when necessary. Other predictive maintenance technologies are
available to cater to specific industrial needs. These include laser alignment, electrical circuit
monitoring, crack detection, corrosion monitoring, and electrical resistance measurements. [8]

3.Machine Learning
Machine Learning is a subset of Artificial Intelligence (AI) and as a component of AI, machine
learning enables computers to automatically learn from experience and develop without having
to be programmed for anything. The creation of computer processes that can utilize data and
learn from it independently is the focus of machine learning. In order to detect patterns in the
data and build a knowledge base that can be utilized to make judgments in the future, learning
as a process begins with the observation of data in the form of examples or some other sort of
instruction.[11]

It is understood that machine learning’s primary goal is to enable computer systems to
automatically learn without human intervention or input while also enabling them to adapt to the
demands of various situations. Computers may learn automatically without special programming
or human interaction thanks to machine learning, which allows them to modify their behavior
accordingly. They are able to learn and develop fundamental behavioral patterns for various
classes, train the data, and provide predictions for them through exploratory data analysis and
the use of computer algorithms. To identify patterns in the data and make the best judgments
moving forward based on the examples, the learning process starts with observations that are
examples or empirical outcomes. Given that each of the aforementioned concepts employ
classification and regression, machine learning and exploratory data analysis are complementary
ideas. Hence, Machine Learning retains the benefits that computers provide while also being tied
to mathematical optimization approaches. As a result, machine learning is the process of building
models or patterns using a dataset and a computer system. Classification and regression are the
most well-known approaches that have been created and employed, depending on the nature of
the problem. [11]

Supervised learning

The ability of a machine learning model to learn the function that translates an input into an
output based on examples of input-output pairs is called Supervised Learning. A model of this
type takes the function from a labeled data set made up of training samples. In supervised
learning, each sample consists of an input item and a target value. The training data are examined
by such an algorithm, which then deduces a function that may be applied to assign fresh samples.
The program should ideally be able to correctly predict the label from unidentified samples.[12]

Unsupervised Learning

Unsupervised learning is a sort of algorithm that looks for patterns in uncategorized data. The
objective is to force the machine to imitate, which is a crucial aspect of learning for humans, in
order to construct an internal perspective of its surroundings, and then use that internal view to
make content. It differs from supervised learning in that the computer organizes the data instead
of a human expert by identifying patterns in the form of probability density functions. [12]

Partial supervision learning

A large family of machine learning algorithms known as semi-supervised learning makes use of
both labeled and unlabeled data concurrently. This makes it a combination of supervised and
unsupervised learning techniques. Partial supervised learning's central concept is to use data in
different ways depending on whether or not they are labeled. In the case of labeled data, the
method updates the model weights using supervised learning; in the case of unlabeled data, on
the contrary, the approach minimizes the difference in predictions across comparable data. [12]

3.1 Data Analysis and Feature Engineering

3.1.1 Data preprocessing

The inductive links between the variables are significant. This implies that when one variable
changes, it is only natural for another to do so as well. Finding the connections between the data
and the speed at which these connections may be made are two difficulties that arise. The precise
use of the appropriate tools and models for each data set, is essential to the validity of these
linkages. Data preprocessing consists of a set of procedures that help to obtain a better picture
of the data. The most common problem found in data encountered by analysts is the presence
of noise. Noise in data is the existence of incorrect values within a data set resulting from data
mining. Data that has errors and outliers, i.e., unhelpful information, is classified as noisy and
can confuse the mining algorithms, and therefore needs to be addressed at the preprocessing
stage.[5]

3.1.2 Mathematical transformations

The preprocessing of data plays a crucial role in building an effective prediction model. It is
essential to ensure that the data is in a manageable and suitable form for accurate analysis.
Different models may have varying requirements for data processing, ranging from no processing
at all to specific data transformations. One common aspect of data processing is the need for all
the variables to be on the same scale or possess certain characteristics, such as symmetry. This
ensures that the model can effectively interpret and utilize the data. To achieve this, several
widely used methods are employed, including centering, scaling, and skewness removal.[13],[14]

Centering involves subtracting the average value from each data point of a predictor variable.
This process effectively shifts the distribution to have a zero mean. By doing so, the model can
focus on the relative differences between data points rather than absolute values. [13],[14]

Scaling, on the other hand, aims to normalize the variables by dividing each value by the standard
deviation. This results in the predictor variables having a common standard deviation of one.
Scaling is particularly useful when the variables have different scales or units, as it brings them

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe

to a consistent level for analysis. It ensures that no single variable dominates the model due to
its larger scale.[13],[14]

Skewness removal is employed when the distribution of the data is skewed, meaning it is
asymmetrical. In such cases, transforming the data using mathematical functions can help
achieve a more symmetric distribution. Common transformations include applying the logarithm,
square root, or inverse functions to the data. These transformations can mitigate the impact of
extreme values and promote a more balanced distribution, which is beneficial for prediction
models.[13],[14]

When the values are distributed symmetrically or closely resemble a symmetric distribution, they
exhibit a more desirable behavior in prediction models. Symmetric distributions tend to align with
the assumptions made by many statistical models, leading to more reliable and accurate
predictions.[13],[14]

In summary, data processing techniques like centering, scaling, and skewness removal play a
vital role in preparing the data for prediction models. These methods ensure that the data is in a
manageable form, with variables on the same scale and possessing desired characteristics,
ultimately enhancing the performance and interpretability of the prediction model. [13],[14]

3.1.3 Feature Engineering

The act of choosing, modifying, and converting unprocessed data into features is known as feature
engineering. It is important, to create and train better features, in order to make machine learning
effective. A machine learning approach, called feature engineering, uses data to generate new
variables, that are not present, in the training set. With the aim of streamlining and accelerating
data transformations, while also improving model accuracy, it may generate new features for both
supervised and unsupervised learning. For machine learning models, feature engineering is
necessary. No matter the architecture or the data, a bad feature will directly affect the model. A
crucial stage in machine learning is feature engineering. The process of incorporating artificial
features into an algorithm is referred to as feature engineering. This algorithm then makes use of
these fake traits to enhance performance or, in other words, to provide better outcomes. As data
scientists work with data almost exclusively, accuracy of the models becomes crucial. When feature
engineering tasks are carried out properly, the final dataset is ideal and includes all of the
significant elements that have an impact on the business problem. The most precise prediction
models and the most beneficial insights are generated as a result of these datasets.[15]

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a powerful and straightforward method that can greatly
enhance our understanding of data by examining its qualities. This approach is often employed
when the objective is to generate new hypotheses or identify patterns within the data. It is
particularly useful when dealing with large volumes of unanalyzed qualitative or quantitative
data.[15]

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe

Outlier Treatment

One important aspect of feature engineering, is outlier treatment, which involves eliminating
outliers from a dataset. By removing outliers, one can obtain a more accurate representation of
the data across various scales, ultimately impacting the performance of the models. The magnitude
of this impact may vary depending on the specific model being used. For example, linear regression
is highly sensitive to outliers. Therefore, it is crucial to address outliers before training the models.
Some models are not affected by outliers, such as Tree-based models and Support Vector
Machines. For example, in Tree-based models, the prediction is based on logical statements made
with smaller portions of the data, such as “if predictor A is greater than X, predict the class to be
Y”. In Support Vector Machines, some parts of the data aren’t regarded and such values that are
very far from the rest of the data influence the prediction threshold very little. [13],[14],[15]

There are several strategies available for handling outliers in data analysis. The first strategy is
removal, which entails deleting data entries that contain outliers. However, it is important to
consider that if outliers are present across multiple variables, this approach may result in a
significant loss of data, potentially impacting the overall analysis. An alternative approach is
replacing values. In this method, outliers are treated as missing values and substituted with
suitable imputation techniques. By replacing these extreme values with estimated values based on
the remaining dataset, one can maintain the overall distribution while mitigating the influence of
outliers. Another technique is capping, where outlier values are replaced with either an arbitrary
value or a value obtained from the distribution of the variable. This method ensures that extreme
values are substituted with more reasonable values, reducing their impact on subsequent
analyses.[13],[14],[15]

By employing these strategies, analysts can effectively manage outliers in their datasets, improving
the accuracy and reliability of their analysis. It is essential to carefully consider the specific
characteristics of the data and the goals of the analysis when selecting the appropriate outlier
treatment method.[15]

Discretization

Another technique commonly used, is discretization. Discretization is the process of converting
continuous variables, models, or functions into discrete ones. This is achieved by constructing a
series of continuous intervals, also known as bins, that span the range of the desired variable,
model, or function. Discretization can be particularly useful when dealing with data that contains
a large number of distinct values, as it simplifies the analysis by reducing the number of unique
categories.[15]

Overall, exploratory data analysis, coupled with outlier treatment and discretization techniques,
provides valuable insights into the data, facilitates the discovery of patterns, and enables more

accurate modeling and analysis. By thoroughly understanding the characteristics and peculiarities
of the data, we can extract meaningful information and make informed decisions. [15]

Principal Component Analysis

The aim of Principal Component Analysis (PCA) is to find a set of linear combinations of the
predictors that have the highest variance, otherwise known as the principal components. To
achieve this, the first principal component is determined by finding the linear combination of
predictors with the greatest possible variability. Following this, subsequent principal components
are calculated to capture any remaining variation while remaining uncorrelated to all previous
principal components. The key advantage of PCA is that it produces uncorrelated components,
which is why it is a popular method for data reduction. In some predictive models, uncorrelated
or low correlation predictors are preferred for improved numerical stability and optimized
solutions.[13]

PCA is a method that generates new predictors suited to these types of models. Initially, PCA
prioritizes predictors with greater variation by searching for linear combinations that maximize
variability. In the case of predictors with different orders of magnitude, the first few components
will summarize higher magnitude predictors, while the later components will summarize lower
variance predictors. Thus, higher variability predictors will have larger PC weights on the initial
components. It is noteworthy that PCA identifies data structure based on measurement scales
instead of significant relationships that suit the current problem. As most data sets consist of
predictors on different scales and skewed distributions, it is recommended to transform skewed
predictors and center and scale the predictors beforehand to prevent PCA from summarizing
distributional differences and predictor scale information. Centering and scaling allow PCA to
uncover the underlying relationships within the data without bias from its original measurement
scales. After selecting the appropriate predictor variable transformations, PCA can be applied.
Lastly, for data sets with numerous predictor variables, it is necessary to determine the
components to retain. [13]

One popular technique for determining the optimal number of components to retain when
performing PCA is to use a heuristic approach that involves generating a scree plot. This type of
plot displays the ordered component number on the x-axis and the corresponding amount of
summarized variability on the y-axis. Typically, the first few principal components will capture a
large proportion of the total variability in the data, resulting in a sharp drop-off in the scree plot.
Beyond this point, additional components will contribute less and less to the overall variability
until the plot levels off.

By examining the scree plot, analysts can determine the point at which the rate of decrease in
summarized variability slows down and the curve begins to level off. In general, the optimal
number of components to retain can be selected by identifying the component number just before
this leveling off point. For example, in Figure 3-1, it is clear that the curve begins to level off after

component 5, suggesting that the first four principal components would be most useful in
summarizing the variability in this dataset.

Using a heuristic approach such as this can help to simplify the PCA process by providing a
straightforward method for identifying the most informative principal components. By retaining
only the most informative components, analysts can reduce the dimensionality of their data and
provide a more concise summary of the underlying patterns and relationships within the original
dataset. [13]

Figure 3-1 Plot of the percentage of variance of each component [13]

Another exploratory use of PCA is characterizing which predictors are associated with each
component. Recall that each component is a linear combination of the predictors and the
coefficient for each predictor is called the loading. Loadings that are near zero imply that the
predictor variable had minimal effect on that particular component. This feature of PCA enables
one to identify and interpret the significance of individual predictors in the identification of a given
principal component. Therefore, exploring the loadings of a dataset can lead to a better
understanding of its underlying structure and provide valuable insights into the relationship
between inputs. [13]

Figure 3-2 Example of PCA with three components [13]

Missing Values

Another problem that occurs in predictors is missing values. In some cases, the values are missing
because the values are under a limit of detection and in these cases, they are often given a
random value from zero to that limit. The existence of missing values is mostly connected to the
predictor, rather than the sample. If the number of missing values is substantial, then that
predictor is removed from the model. Though, some models are unaffected by missing values.
Moreover, when missing values burden the model, it is possible that they are imputated and this
can be achieved by constructing a predictive model for the imputation of the data. A usual
imputation method is K-Nearest Neighbours that will be thoroughly analysed later. [13]

Removing Predictors

Removing predictors can potentially improve the model. That happens because fewer predictors
decrease the complexity of the model, thus the computational time is also decreased. In addition,
the removal of predictors that are greatly correlated, is beneficial because providing the same

information only burdens the model. Also, the removal of predictors with problematic values,
increases the model’s efficiency and stability. [13]

Correlations between predictors

Sometimes, there is a relationship between predictors and they are correlated. In order to
calculate that, a correlation matrix can be made, which shows the correlation between the
predictors. Generally, strongly related predictors are avoided because they make the model more
complex without improving it. [13]

Adding Predictors

Mostly for categorical predictors, like gender or race etc, predictors can be decomposed in the
form of dummy variables. In order to form the dummy variables, the data is disintegrated and
categorised. The new categories formed is matched with a different dummy variable that usually
has a value of 1 or 0. [13]

Binning

The main motivation of binning is to make the model more robust and prevent overfitting,
however, it has a cost to the performance. Every time something is binned, information is sacrificed
and the data is more regularized. The trade-off between performance and overfitting is the key
point of the binning process. For numerical columns, except for some obvious overfitting cases,
binning might be redundant for some kind of algorithms, due to its effect on model performance.
However, for categorical columns, the labels with low frequencies probably affect the robustness
of statistical models negatively. Thus, assigning a general category to these less frequent values
helps to keep the robustness of the model. For example, if the data size is 100,000 rows, it might
be a good option to unite the labels with a count less than 100 to a new category
like ‘Other’.[14],[15]

One-hot encoding

One-hot encoding is a widely used technique in machine learning for encoding categorical
variables. This method transforms categorical data, which can be difficult for algorithms to
interpret, into a numerical format that facilitates analysis and modeling. It achieves this by
spreading the values in a column across multiple flag columns and assigning binary values of 0 or
1 to indicate the presence or absence of a particular category.[14]

The process of one-hot encoding involves creating new binary columns, each corresponding to a
unique category in the original categorical column. If there are N distinct values in the column, it
is sufficient to map them to N-1 binary columns. The reason for this is that the absence of a

category can be inferred from the absence of a 1 in all the binary columns. Hence, the missing
value can be deduced without the need for an additional column.[14]

The term ‘one-hot’ in one-hot encoding refers to the representation of each category as a vector
with a single element set to 1, indicating its presence, and all other elements set to 0. This binary
representation effectively captures the relationship between the original categorical column and
the encoded columns. One-hot encoding allows algorithms to process categorical data and
leverage the information it contains without losing any significant details. By converting categorical
variables into a numerical format, it enables the grouping and comparison of categories, as well
as the calculation of distances between different categories. This encoding technique is particularly
useful in various machine learning tasks, such as classification and clustering, where categorical
variables need to be incorporated into models that require numerical inputs. It helps algorithms
interpret and analyze categorical data more effectively, enhancing the performance and accuracy
of machine learning models.

Grouping Operations

In most machine learning algorithms, the training dataset follows a structure where each instance
is represented by a row, and each column corresponds to a distinct feature of that particular
instance. This type of organized data is commonly referred to as "Tidy" data. However, it is
important to note that many datasets often do not conform to the tidy data definition mentioned
earlier. This deviation arises due to instances having multiple rows associated with them. In such
scenarios, a common approach is to group the data based on the instances, resulting in each
instance being represented by a single row. The key focus during these group by operations is to
determine the appropriate aggregation functions for the features. When dealing with numerical
features, it is often convenient to use aggregation options such as the average or sum functions.
On the other hand, handling categorical features presents a greater complexity in selecting suitable
aggregation methods. [14]

Categorical Column Grouping

When dealing with categorical columns, there are several options available for grouping and
encoding the data. The first option involves selecting the label with the highest frequency,
essentially performing a ‘max’ operation for categorical columns. This approach identifies the most
common label within each group and assigns it as the representative value. It is a simple yet
effective method for encoding categorical data. Another approach is to create a pivot table. This
method is similar to the encoding technique discussed earlier but with a slight difference. Instead
of using binary notation, it utilizes aggregated functions to define values for the grouped and
encoded columns. This approach proves beneficial when the goal is to move beyond binary flag
columns and consolidate multiple features into aggregated features, which often provide more

informative representations of the data. Lastly, one can apply a group by function after performing
one-hot encoding. This approach retains all the data while simultaneously transforming the
encoded column from a categorical to a numerical representation. This can be particularly useful
when further analysis or modeling requires numerical input rather than categorical data.[15]

Numerical Column Grouping

When it comes to grouping numerical columns, two commonly used aggregation functions are the
sum and mean functions. The choice between these functions depends on the specific meaning
and purpose of the feature being analyzed. The sum function is often preferred when the numerical
column represents a quantity that can be accumulated or added up. For example, if one is dealing
with a dataset of sales transactions and has a numerical column representing the total revenue
generated from each transaction, using the sum function would allow the user to group and
calculate the total revenue for different categories or subsets of the data. This can be useful when
trying to understand the overall revenue contribution from various factors or when comparing the
total values among different groups. On the other hand, the mean function is commonly used
when the numerical column represents an average or a measure of central tendency. For instance,
if the user has a dataset of student grades and a numerical column represents the scores achieved
in a particular subject, using the mean function would allow them to calculate the average score
for different groups or categories. This can provide insights into the performance level or the
typical scores attained within each group. Ultimately, the selection of the sum or mean function
depends on the specific nature of the numerical column and the analytical goals. Both functions
serve different purposes, with the sum function focusing on the accumulation or total value, while
the mean function emphasizes the average or central tendency of the data.[15]

3.2 Classification algorithms

Classification is a predictive modelling technique that involves utilizing input variables to estimate
a mapping function, enabling the identification of discrete output variables such as labels or
categories. The primary task of a classification algorithm is to predict the label or category
associated with a given set of input variables. While classification methods can incorporate both
discrete and real-valued variables, the key requirement is that instances must be assigned to one
of two or more distinct classes.[16]

Classification algorithms are employed to make predictions about data. These algorithms operate
by utilizing a provided dataset that has already been categorized into two or more distinct classes.
This labeled dataset serves as the input, enabling the generation of a classification model. Once
the model is created, it can be utilized to assign new, unlabeled data to the appropriate class
based on the learned patterns and characteristics observed in the labeled dataset. [17]

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe
https://www.springboard.com/blog/data-science/regression-vs-classification/

The initial dataset is typically divided into two main groups: the training dataset and the test
dataset. The training dataset is used to construct the classification model, while the test dataset
is employed to evaluate the performance of the model. To ensure the validity of the model,
various partitioning techniques, such as Cross-Validation, are used for validation. Cross
Validation involves dividing the dataset into a predetermined number (k) of groups or folds. One
of these groups is designated as the test set, while the remaining groups serve as the training
set. This process is repeated k times, with each group being used as the test set once. Cross-
Validation is a versatile approach that works effectively on different types of datasets. However,
alternative partitioning methods, such as fixed partitioning, can be employed when dealing with
exceptionally large datasets. [17]

It's worth noting that different classification approaches can vary significantly from one another.
There are various algorithms and techniques available, each with its own distinct characteristics
and suitability for different types of problems. To assess the performance of various classification
algorithms, several metrics are computed to evaluate the quality of the constructed model and
determine if any adjustments are needed. One key metric is accuracy, which measures the
proportion of correctly classified data compared to the total data in the test dataset. Additionally,
for each class, metrics like recall and precision are determined. Recall refers to the ratio of data
accurately classified in a specific class to the total data belonging to that class. It focuses on
capturing how well the model identifies instances of a particular class correctly. On the other
hand, precision represents the ratio of data correctly classified in a specific class to the total data
assigned to that class. Precision measures the model's ability to accurately label instances for a
given class. It is crucial to consider recall and precision alongside accuracy, as accuracy alone
may not fully characterize the model's output. This becomes particularly important when dealing
with imbalanced datasets, where the distribution of classes is uneven. In such cases, evaluating
recall and precision helps provide a more comprehensive understanding of the model's
performance and its ability to handle the imbalanced nature of the data. [17]

3.2.1 SVM (Support Vector Machines)

The support vector machine is likely the most widely used supervised learning approach for
classification and regression problems. Nonetheless, it is primarily largely employed in machine
learning for classification challenges. As seen in the figure 3-3, the purpose of this technique is
to discover the best line, or decision boundary, for classifying the n-dimensional space into classes
so that more data points may be conveniently placed in the correct class in the future. The
hyperplane is the ideal decision boundary, and the support vector machine selects the outermost
vectors that contribute to build it.[5]

Figure 3-3 Support Vector Machines algorithm [5]

The linear type is a classifier for linearly separable data, which implies that if a dataset can be
classified into two classes using a single straight line, it is linearly separable data, and the classifier
is linear. Non-linear data is non-linearly separable data, which means that if a dataset cannot be
classified using a straight line, it is non-linear data, and the classifier employed is non-linear. The
benefits of employing support vector machines include the fact that they operate well in high-
dimensional spaces and that even when the number of dimensions exceeds the number of
samples, the approach remains effective. Furthermore, because it only employs a subset of
training points in the decision function, the support vector machine is cheap in terms of computing
memory and adaptable because alternative functions may be given for the choice
function.[5],[13]

One downside of utilizing a support vector machine is that it is vital to avoid overfitting when
selecting the normalization functions and conditions if the number of features exceeds the number
of samples. Lastly, because they are obtained from a time-consuming five-fold cross-validation
procedure, support vector machines do not provide direct probability estimates.[5],[13]

3.2.2 K – Nearest Neighbours

Figure 3-4 K nearest neighbours algorithm [18]

The K Nearest Neighbors (KNN) method is used to address classification and regression issues.
The approach used to produce these predictions works by computing the distance between the
test and training data, assuming that the difference between comparable data is modest. Based
on the previously registered locations from the training data, it enables the identification and
categorization of new data while taking their features into consideration. The algorithm will
register these features of the new sites and categorize them based on their proximity to other
places, which can be seen in the figure 3-4. The parameter "K" in KNN refers to the number of
nearest neighbors, i.e. the space produced by these nearest points. The distance between the
new and training data points is determined by the value of K. K is a positive integer that is
normally small and should be odd.[12]

3.2.3 Naive Bayes

Bayesian networks are a type of probabilistic machine learning technique that is based on the
Bayes theorem and may be used for a variety of classification problems. Bayes' theorem is a
straightforward mathematical method for calculating probability. Conditional probability is a
measure of the likelihood of an event occurring if another event has already occurred. It is a
classification strategy based on Bayes' theorem, which assumes prediction independence. Simply
expressed, the Bayes classifier believes that the presence of one feature in a class has no bearing
on the presence of other attributes.[5]

Bayes’ Theorem is a method that calculates the probability of an event based on a set of other
probabilities. Specifically, it determines the posterior probability of event A given that event B has

occurred. Utilizing Bayesian networks offers several benefits. First, it is a simple and efficient
technique for accurately predicting multiple classifications and determining the order of a test
data set. Second, when the independence criteria are met, Bayesian networks outperform models
like logistic regression while using less training data. Additionally, they demonstrate superior
performance when dealing with input variables that have classes, especially in comparison to
numerical input variables. Despite these advantages, there are drawbacks to employing Bayesian
networks. For instance, if a category variable in the test data set includes a category not present
in the training data set, the model will automatically assign a probability of zero, rendering it
unable to make accurate forecasts. This issue is known as zero frequency. Moreover, Bayesian
networks are often considered poor estimators, necessitating caution when interpreting prediction
probabilities. Lastly, the assumption of independent predictions poses another weakness, as
obtaining a group of entirely independent predictors is challenging in practical applications.[5]

3.2.4 Decision Trees

A dynamic and well-liked technique for classification and regression applications is the decision
tree. Various properties are examined retroactively when building decision trees, and the attribute
that best separates the data is utilized in each node. By employing the characteristics that are
most effective for the job, the training sample is segregated using decision trees. The shortest
tree that can be used to correctly represent the input-output connections while avoiding
overfitting. Data and the best feature are first placed into the root node of decision trees so that
they may be segregated based on their metrics.[11]

In contrast to other supervised learning algorithms, the decision tree method may be utilized to
resolve regression and classification issues. The purpose of employing a decision tree is to build
a training model that can be used to predict the order or value of the target variable by learning
fundamental choice rules gleaned from previous data. The ‘root’ of the decision tree serves as
the beginning point for predicting a class label in a record. The root attribute and the record's
attribute values are contrasted. Based on the comparison, the branch associated with that value
is followed and moved on to the following node. There are two different forms of decision trees,
depending on the type of variable. the continuous variable decision tree, where a continuous
variable decision tree is one that has a continuous target variable, and the categorical variable
decision tree, which is a categorical variable decision tree with a categorical target variable.[5]

Decision trees have a problem in that they are extremely scalable, especially if a database has a
lot of columns. A procedure called as decision tree pruning is used to address this tree overload.
Pruning a decision tree involves deleting decision nodes one at a time, beginning with the leaf
node, to preserve overall correctness. This is accomplished by splitting the actual training set into
training and validation portions.[5]

3.2.5 Random Forest

Using decision tree techniques, the random forest is a supervised machine learning approach. It
uses machine learning to address classification and regression problems. It makes use of
ensemble learning, a method for mixing many classifiers to solve challenging issues. A random
forest algorithm is made up of several decision trees and based on the decision tree's predictions,
this algorithm decides the result. By averaging the results of several trees, the prediction is made
and when there are more trees, the accuracy of the results get better. When coping with missing
data, the random forest method performs more accurately than the decision tree approach.
Moreover, it avoids the issue of overfitting the decision tree by randomly selecting a subset of
features at each random forest tree's node split point.[5]

The main difference between random forest and decision tree methods is that the latter randomly
constructs root nodes and divides nodes. The random forest uses the storage approach to
produce the necessary forecast. Storage necessitates the usage of several samples as opposed
to a single sample of data. A collection of attributes and observations used to generate predictions
is known as a training dataset. The output of decision trees from the random forest method varies
depending on the training data used.[5]

The outputs will be graded, and the best one will be chosen as the ultimate output. An ensemble
approach is used by random forest classification to provide the desired outcome. The training
data is used to train different decision trees. After the nodes are separated, a random selection
of observations and characteristics are included in this dataset. The random forest algorithm's
capacity to be applied to both regression and classification with accurate predictions is one of its
benefits. The random forest algorithm is better at predicting outcomes than the decision tree
approach and is able to handle big data sets with ease. Nevertheless, it has certain drawbacks,
including the need for more time and advanced processing resources as compared to the decision
tree approach.[5]

3.2.6 Logistic Regression

Despite its name, logistic regression is not a regression model; rather, it is a classification model.
In terms of problems involving binary and linear classification, it is a fairly efficient method. A
classification model with linearly separable categories that is easy to use and yields outstanding
results. It is a commonly used classification technique in the industrial sector. The logistic
regression model is a statistical method for binary classification that may be expanded to multi-
class classification, just like Adaline and Perceptron.[5]

The training data must be used to construct the logistic regression algorithm's coefficients. For
this, maximum likelihood estimate is employed. Maximum likelihood estimate is a common
learning approach utilized by many machine learning algorithms, despite the fact that
assumptions are made on the distribution of the data. Using the best coefficients, a model could
forecast values for the default class that were very near 1, and for the other class, values that
were very near 0. Maximum likelihood logistic regression seeks coefficient values that minimize

the difference between the model's projected probability and the actual probabilities found in the
data. The emphasis of the methodology, the logistic function, led to the naming of the technique
logistic regression. In order to describe the features of population expansion in ecology, such as
how it expands quickly and finally approaches the carrying capacity of the ecosystem, statisticians
developed the logistic function, often known as the sigmoid function. Each real-valued integer
may be converted to a number between 0 and 1, but never exactly between those two points,
using this S-shaped curve.[5]

3.3 Regression algorithms

Regression methods are employed to predict continuous values by establishing a mapping
function between the input variables and the output variable. The main focus of regression
problems is to estimate this mapping function accurately. Regression models are particularly
useful when the target variable is a numerical value, such as the remaining useful life of a
component, or a probability, such as the likelihood of failure for a part in a machine.[16]

A wide range of regression algorithms exists to tackle different types of problems and
accommodate various data characteristics. These algorithms offer diverse approaches and
techniques to capture the underlying relationships between the input and output variables. Some
commonly used regression algorithms include linear regression, polynomial regression, support
vector regression, decision tree regression, random forest regression, and neural network
regression. These algorithms work with the same principles in Regression as in Classification and
they have small differences to adapt to the different goal of each method.

Linear regression is a straightforward and widely applied algorithm that assumes a linear
relationship between the input and output variables. Polynomial regression, on the other hand,
extends the linear model by introducing higher-degree polynomial terms to capture non-linear
relationships.[16]

These are just a few examples of regression algorithms, and the choice of algorithm depends on
the specific problem, the nature of the data, and the desired accuracy and interpretability of the
model.

3.3.1 Simple linear regression

In the context of quantitative variables, simple linear regression is a fundamental statistical
technique used to estimate the relationship between an independent variable and a dependent
variable. It aims to establish a linear connection between the two variables by fitting a straight
line to the data. The independent variable, also known as the predictor or explanatory variable,
is the variable that is believed to have an impact on the dependent variable. The dependent
variable, also known as the response variable or outcome variable, is the variable being predicted
or explained by the independent variable.[16]

The objective of simple linear regression is to find the best-fitting line that minimizes the
difference between the observed data points and the predicted values on that line. This line is
determined by estimating the slope and intercept parameters. The slope represents the change
in the dependent variable for each unit change in the independent variable, while the intercept
indicates the value of the dependent variable when the independent variable is zero. By analyzing
the relationship between the independent and dependent variables through linear regression, one
can quantify the strength and direction of the association. The resulting linear model can then be
used to make predictions or draw inferences about the dependent variable based on specific
values of the independent variable.[16]

It is important to note that the assumptions of simple linear regression should be carefully
considered, such as linearity, independence, constant variance (homoscedasticity), and normality
of residuals. Violations of these assumptions may impact the accuracy and reliability of the
regression analysis, requiring further exploration and potential adjustments. Simple linear
regression serves as a foundational tool in data analysis and provides a basis for more advanced
regression techniques. It is commonly used in various fields, including economics, social sciences,
finance, and engineering, to uncover relationships and make predictions based on quantitative
variables.[16]

3.3.2 Multiple linear regression
Multiple linear regression is an extension of simple linear regression that allows for the prediction
of a dependent variable based on the values of two or more independent variables. It is a
statistical technique that enables the examination of the relationship between multiple predictors
and a single response variable.

In multiple linear regression, the goal is to establish a linear equation that best describes the
relationship between the dependent variable and the independent variables. The equation takes
the form:

Y = β₀ + β₁X₁ + β₂X₂ + ... + βₚXₚ + ɛ

Here, Y represents the dependent variable, β₀ is the intercept, β₁, β₂, ..., βₚ are the regression
coefficients (also known as slopes), X₁, X₂, ..., Xₚ represent the independent variables, and ɛ
denotes the error term.

The coefficients (β₁, β₂, ..., βₚ) in the equation provide the estimated change in the dependent
variable associated with a one-unit change in each respective independent variable, holding other
variables constant. The intercept (β₀) represents the estimated value of the dependent variable
when all independent variables are zero.[16]

Multiple linear regression assumes that the relationship between the dependent variable and the
independent variables is linear. It also assumes that the error term (ɛ) follows a normal
distribution with a mean of zero and constant variance. Additionally, it assumes that the
independent variables are not highly correlated with each other (multicollinearity). By fitting the
multiple linear regression model to the data, analysts can examine the statistical significance of
each independent variable and assess their individual contributions to the prediction of the
dependent variable. The model can be used to make predictions, test hypotheses, and gain
insights into the relationships between the variables. Before conducting multiple linear regression,
it is important to assess the assumptions of the model, such as linearity, independence of errors,
constant variance, normality of residuals, and absence of multicollinearity. Violations of these
assumptions may require additional steps, such as transforming variables or considering
alternative regression techniques.

Multiple linear regression is widely used in various fields, including social sciences, economics,
finance, marketing, and healthcare, to analyze complex relationships and make predictions based
on multiple independent variables.

[16]

 3.3.3 Polynomial regression
Polynomial regression is a regression technique used to model and identify nonlinear relationships
between dependent and independent variables. While simple linear regression assumes a linear
relationship, polynomial regression allows for more flexible modeling by introducing polynomial
terms. In polynomial regression, the relationship between the dependent variable and
independent variable(s) is represented by a polynomial equation. The equation takes the form:

Y = β₀ + β₁X + β₂X² + ... + βₙXⁿ + ɛ

Here, Y represents the dependent variable, X represents the independent variable, β₀, β₁, β₂, ...,
βₙ are the coefficients, X², X³, ..., Xⁿ are the polynomial terms of X up to the nth degree, and ɛ
represents the error term.

By including polynomial terms in the equation, polynomial regression can capture and model
nonlinear relationships that cannot be adequately represented by a straight line. The degree of
the polynomial (n) determines the complexity of the model and the number of bends or curves it
can accommodate. The coefficients (β₀, β₁, β₂, ..., βₙ) in the equation are estimated using
techniques such as least squares, which minimizes the sum of the squared differences between
the observed and predicted values. These coefficients indicate the contribution and direction of
each polynomial term in the model.[16]

Polynomial regression can be beneficial when the relationship between the variables is expected
to exhibit curvature or when simple linear regression fails to capture the underlying pattern.
However, it is important to avoid overfitting the data by selecting an appropriate degree of the
polynomial. Overfitting occurs when the model fits the training data too closely but performs
poorly on new, unseen data. Polynomial regression is widely used in various fields, including
physics, biology, finance, and engineering, where nonlinear relationships are prevalent. It allows
for more flexible modeling and provides a better fit for complex data patterns, enabling
researchers and analysts to gain insights and make predictions beyond the constraints of linear
relationships.[16]

The efficiency of a model is often assessed using some measure of accuracy when it predicts a
numeric outcome. Yet, there are other metrics for gauging accuracy, each with subtle differences.
Relying only on one statistic makes it difficult to grasp a model's benefits and drawbacks.
Understanding if the model is suitable for purpose requires looking at visualizations of the model
fit, particularly residual plots. This chapter talks about these methods.[13]

3.3.4 Regression vs Classification
The main distinction between classification and regression is that although classification aids in
the prediction of discrete class labels, regression assists in the prediction of continuous quantities.
The two categories of machine learning algorithms also have certain similarities. An integer-
formatted discrete value can be predicted using a regression technique. A continuous value can
be predicted by a classification method as a class label probability. [16]

For example, a dataset that includes student data from a specific university. Each student's height
may be predicted in this situation using a regression algorithm based on factors including weight,
gender, food, and field of study. As height is a continuous variable, regression is used in this
situation. The height of a person can have any number of different values. [16]

On the other hand, classification may be used to determine whether or not an email is spam. To
determine the likelihood that an email is spam, the algorithm examines the sender's address and
the email's keywords. A classification method may be used to identify whether it will be cold or
hot based on the provided temperature measurements, similar to how a regression model can be
used to forecast the temperature for the following day.[16]

https://www.springboard.com/blog/data-science/regression-vs-classification/
https://www.springboard.com/blog/data-science/regression-vs-classification/
https://www.springboard.com/blog/data-science/regression-vs-classification/
https://www.springboard.com/blog/data-science/regression-vs-classification/

4.Application of PM in Bearing Failure

4.1 Predictive failure models /Remaining Useful Life (RUL)

Without a doubt one of the most important values in predictive maintenance is Remaining Useful
Life. Remaining Useful Life (RUL), estimates the time a machine is able to operate before it fails.
This way, the maintenance plan can be scheduled in order to ensure the machine’s efficient
operation and avoid any possible malfunctions and minimize downtime. Depending on the
available data, RUL can be calculated with various methods, by comparing its lifetime data to
similar machine’s lifetime, by comparing it to Run-to-failure histories of similar machines and by
comparing it to an indicator’s threshold value that detects failure

The survival function plot in Figure 4-1 shows the probability that a battery will fail based on how
long it has been in operation. The plot shows, for example, that if the battery is in operation for
75 cycles, it has a 90% chance of being at the end of its life time.[19]

Figure 4-1 Survivor Function plot of a battery [19]

In the figure 4-2, the degradation profiles of historical run-to-failure data sets from an engine are
shown in blue and the current data from the engine is shown in red. Based on the profile the
engine most closely matches, the RUL is estimated to be around 65 cycles.[19]

Figure 4-2 Similarity based plot of an engine [19]

Figure 4-3 shows an exponential degradation model that tracks failure in a high-speed bearing
used in a wind turbine. The condition indicator is shown in blue. The degradation model predicts
that the bearing will cross the threshold value in approximately 9.5 days. The region shaded in
red represents the confidence bounds for this prediction.[19]

Figure 4-3 Degradation plot of a High-speed bearing in a wind turbine [19]

4.2 Application of Feature Engineering

As it was explained thoroughly before, for the calculation of the remaining useful life of a
component and any predictive maintenance technique, the raw data have to be properly
processed to be in a manageable from. That includes both, doing the proper mathematical
transformations needed and selecting the predictors with the biggest merit.

The dataset is collected from a 2MW wind turbine high-speed shaft driven by a 20-tooth pinion
gear. A vibration signal of 6 seconds was acquired each day for 50 consecutive days. [20]

The dataset is available on:

https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data

First of all, plotting the data in the time domain gives as an initial impression about them. From
the figure 4-4, the vibration signals from the wind turbine bearing dataset exhibit a noticeable
increasing trend in signal impulsiveness when analyzed in the time domain. This implies that the
signals are becoming more impulsive or abrupt over time. To quantify the impulsiveness of these
signals and potentially use them as prognostic features, various indicators can be employed.
These indicators provide numerical measures that capture different aspects of impulsiveness in
the signal. [20],[21]

One such indicator is kurtosis, which measures the heaviness of the tails of a distribution. A higher
kurtosis value indicates a more impulsive or heavy-tailed distribution, suggesting the presence of
abrupt changes or extreme values in the signal. Another indicator is the peak-to-peak value,
which measures the difference between the highest and lowest points in a signal. A larger peak-
to-peak value suggests greater variations or spikes in the signal, indicating increased
impulsiveness. Crest factors can also serve as useful indicators of impulsiveness. The crest factor
represents the ratio of the peak amplitude of a signal to its root mean square (RMS) value. A
higher crest factor indicates sharper peaks and a more impulsive signal. By calculating these
indicators for the wind turbine bearing dataset, researchers and analysts can obtain quantitative
measures of impulsiveness that can be used as prognostic features. These features can provide
valuable insights into the condition and health of the bearings, allowing for the detection of
potential faults or degradation over time. Machine learning algorithms can be trained on these
features to develop predictive models for bearing performance and remaining useful life
estimation, aiding in maintenance planning and preventing unexpected failures.[20],[21]

Figure 4-4 Time domain representation of the collected data [20]

Spectral kurtosis is considered a powerful tool for wind turbine prognosis in frequency domain.
To visualize the changes in spectral kurtosis along time in the frequency domain, a plot can be
created showing the spectral kurtosis values as a function of frequency and the measurement
day.[20],[21]

Figure 4-5 Frequency domain representation of Spectral Kurtosis [20]

It is obvious from the figure 4-5, that an increasing mean value of spectral kurtosis at a specific
frequency, such as around 10 kHz, suggests a gradual deterioration of the bearing condition as
the machine operates.

To mitigate the potential impact of noise and improve the robustness of the extracted features
for remaining useful life (RUL) prediction, a causal moving mean filter is applied. The purpose of
this filter is to smooth out the noise while preserving the trend and important information in the
features. The causal moving mean filter operates by calculating the mean value of a lag window
of 5 steps for each data point in the extracted features. The term ‘causal’ indicates that only past
or current values are used in the filtering process, ensuring that no future values are included.
This approach prevents any leakage of future information into the filtering process, maintaining
the integrity of the time series data. By applying the causal moving mean filter, the noise with an
opposite trend that could potentially harm RUL prediction is reduced. The filter effectively
attenuates high-frequency variations or outliers that may introduce undesired fluctuations or
distortions in the features. It is important to note that the choice of the lag window size (in this
case, 5 steps) should be determined based on the characteristics of the data and the desired level

of smoothing. A larger lag window can provide a smoother output but may also introduce more
delay in capturing changes in the data. The results of smoothing are visible in the figure 4-6.
[20],[21]

Figure 4-6 Example of smoothing of SKMean [20]

The application of the causal moving mean filter helps enhance the performance of feature-based
analysis, particularly for metrics like monotonicity. Monotonicity, which measures the trend
direction of a feature, may be adversely affected by noise. Smoothing the data with the causal
moving mean filter improves the robustness of the monotonicity metric, allowing for more
accurate assessment of the trend direction and aiding in the prediction of the remaining useful
life of the system. In addition to visualizing the changes in spectral kurtosis over time, statistical
features derived from the spectral kurtosis can serve as potential indicators of bearing
degradation in the wind turbine system. Common statistical features, such as mean, standard
deviation, and other descriptive statistics, can be calculated from the spectral kurtosis values at
each frequency and measurement day. These features provide quantitative measures that
summarize the distribution and behavior of the spectral kurtosis over time. By analyzing these
statistical features, trends and patterns can be identified that are indicative of bearing
degradation. The standard deviation of spectral kurtosis values can also provide valuable
information. An increasing standard deviation may indicate higher variability or inconsistency in

the spectral kurtosis, potentially reflecting irregularities or changes in the bearing
condition.[20],[21]

Figure 4-7 Monotonicity of the extracted features [20]

In this example, Principal Component Analysis (PCA) is utilized for dimension reduction and
feature fusion. The chosen features are selected from the figure 4-7 and they are those with
monotonicity higher than 0.3. However, prior to performing PCA, it is important to normalize the
features to ensure they are on the same scale. Normalization helps prevent any bias or undue
influence from features with larger magnitudes. A good practice is to normalize the features using
the mean and standard deviation obtained from the training data. By subtracting the mean and
dividing by the standard deviation, the features are centered around zero with a standard
deviation of one. This normalization process ensures that each feature contributes equally during
the PCA analysis. Additionally, PCA coefficients, which represent the weights or loadings of each
original feature in the principal components, are calculated based on the training data. These
coefficients capture the relationship and importance of each feature in the dimension reduction
process. It is worth noting that the normalization and PCA steps are applied to the entire dataset
together to maintain the relationship between features and capture the most important
information during dimension reduction. This consistent processing across the entire dataset

helps maintain the integrity and coherence of the data, ensuring reliable and meaningful results
in subsequent analysis or prediction tasks.[20],[21]

Figure 4-8 PCA plot [20]

It is obvious from the figure 4-8 that PCA 1 can properly describe the deterioration of the ball
bearing because its values increase with the same rhythm as the degradation process advances.
Thus PCA 1 can be used as a health indicator for the ball bearing. [20],[21]

4.3 Classification approach

In order to predict the remaining useful life of the ball bearing, two different classification
algorithms were used. In this case, a specific value is not predicted, but the health indicator data
is divided in different classes and each class represents a state of the health of the ball bearing.
The two algorithms that were used, are the Support Vector Machines and the K-Nearest
Neighbours and the data was divided in four classes, which are: ‘good condition’, ‘medium
condition’, ‘bad condition repair soon’ and ‘repair asap’. The thresholds that were chosen to divide
the classes, were a percentage of the maximum value of the health indicator. The threshold of
the “good condition” class is 45% of the maximum value of the health indicator, the threshold of

the “medium condition” class is 70% of the maximum value of the health indicator, the threshold
of the “bad condition repair soon” class is 86% of the maximum value of the health indicator and
above that value the class is “repair asap”. First, the Support Vector Machines algorithm was
made with the ‘fitcecoc’ function using MATLAB’s Statistics and Machine Learning Toolbox that is
used for training multi-class classification models using the Error Correcting Output Codes (ECOC)
framework. The ECOC framework is a strategy for decomposing a multi-class classification
problem into multiple binary classification subproblems

The results of the SVM algorithm were:

Figure 4-9 Results of the SVM algorithm

The K nearest neighbours algorithm was made with the ‘fitcknn’ function which is a function in
MATLAB’s Statistics and Machine Learning Toolbox that is used for training a k-nearest neighbours
classifier

The results of the KNN algorithm were:

Figure 4-10 Results of the KNN algorithm

4.4 Degradation model approach

As products are increasingly designed to have higher reliability and developed within shorter
timeframes, it often becomes impractical to test new designs until they fail under normal
operating conditions. In such cases, it is sometimes possible to estimate the reliability of unfailed
test samples by relying on the accumulated test time data and making assumptions about the
distribution. However, this approach typically introduces a significant level of uncertainty in the
results. An alternative option in this scenario is to employ degradation analysis. Degradation
analysis entails measuring performance data that directly correlates with the anticipated failure
of the product in question. Numerous failure mechanisms can be directly linked to the degradation
of specific product components, and by analyzing the degradation over time, analysts can
extrapolate an estimated failure time. [22]

In certain scenarios, it is feasible to directly assess the decline of a physical attribute over time,
such as the wear of brake pads, the growth of a crack, or the deterioration of performance
characteristics like battery voltage or the luminous flux of an LED bulb. These instances fall into
the category of Non-Destructive Degradation Analysis. Conversely, in other situations, direct
measurement of degradation may not be viable without invasive or destructive techniques that
would impact the product's subsequent performance. Therefore, only a single degradation
measurement can be obtained. For instance, measuring corrosion in a chemical container or
evaluating the strength of an adhesive bond. These cases fall into the category of Destructive
Degradation Analysis. Nevertheless, in both cases, it remains crucial to establish a threshold level
of degradation or performance that indicates failure. [22]

The analysis of Non-Destructive Degradation pertains to testing situations where multiple
degradation measurements for each sample can be taken over time. To determine the appropriate
failure level or degradation point leading to failure, basic mathematical models are utilized to
extrapolate each sample's degradation measurements towards the point in time when failure is
expected to occur. The extrapolated failure times are subsequently analyzed in the same manner
as conventional time-to-failure data, as the number of samples being tested increases, so the
level of confidence in the results increases . Following the recording of degradation information,
the next step involves aligning the measurements with the defined failure level so as to estimate
the failure time. [22]

The exponential model is a widely used methodology in model-based studies. Originally, a
Bayesian approach updated the model parameters, allowing for measured information
integration. There have been various modifications and applications of the exponential model in
health management and Remaining Useful Life (RUL) prediction. An improvement to the model
involves updating parameters with multiple historical degradation signals acquired through
condition monitoring. This integration leads to a more comprehensive analysis and model
refinement. Researchers have also combined Bayesian updating with the Expectation
Maximization (EM) algorithm to efficiently estimate the model parameters. This integration
provides a closed-form RUL distribution, offering valuable insights into the remaining useful life
of the system. [22]

The exponential model is effective in predicting RUL for systems with exponential like degradation
processes, making it a versatile and robust tool in multiple industries where accurate RUL
prediction is critical for maintenance planning and decision-making. [22]

A comparative study was conducted to analyze the efficacy of sensorless and sensor-rich
strategies in Prognostics health management for ball screw systems. The researchers aimed to
achieve early diagnosis, health assessment, and remaining useful life (RUL) prediction of the ball
screw. The findings of their investigation revealed the significant value of torque signals in fault
diagnosis and the identification of incipient failures, while the vibration signals exhibited a clear
exponential degradation trend in the system. [23],[24],[25]

Upon determining the degradation behavior, through the trend of the Health Indicator, the
proposed method focused on estimating the RUL using an exponential model. This model
effectively captured the time evolution of the Health Indicator and provided predictions of how
long it would last before crossing the Failure Threshold. To construct the exponential degradation
model, a Degradation Detection Threshold was established, enabling the prediction of future
values of the Health Indicator. This model characterized the degradation behavior as an
exponential stochastic process with an offset term. A comprehensive degradation model typically
comprises both stochastic and deterministic components. The stochastic part accounts for the
variation in the degradation process, while the deterministic part represents a constant physical
phenomenon. [23],[24],[25]

4.4.1 Exponential degradation model

It was proven above that the model that best describes the degradation process of a ball bearing
is an exponential degradation model. In further detail, the function that can calculate the health
indicator of the bearing in the most efficient way is

where h (t) is the health indicator as a function of time. ϕ is the intercept term considered as a
constant. θ and β  are random parameters determining the slope of the model, where θ is
lognormal-distributed and β is Gaussian-distributed. At each time step t, the distribution
of θ and β is updated to the posterior based on the latest observation of h (t). ϵ  is a Gaussian
white noise yielding to N (0,σ 2). The −𝜎𝜎2

2
 term in the exponential is to make the expectation

of h (t) satisfy. The selection of threshold is usually based on the historical records of the machine
or some domain-specific knowledge. Since no historical data is available in this dataset, the last
value of the health indicator is chosen as the threshold. In order, to calculate the remaining useful
life, the predictive maintenance toolbox in matlab will be used. The prior of the slope parameters

are chosen arbitrarily with large variances (E (θ)=1, Var(θ) =106, E (β)=1,Var(β) =106)
so that the model is mostly relying on the observed data. Based on E [h (0)] =ϕ +E (θ),
intercept ϕ is set to −1 so that the model will start from 0 as well. An exponential degradation
model is built with these parameters and using the built in functions, of the predictive
maintenance toolbox, the remaining useful life is predicted and the figure is created.

Figure 4-11 Exponential Degradation model plot

4.4.2 Linear Degradation Model

As explained in the previous chapter, the correct degradation model for the prediction of the
remaining useful life of a ball bearing, is an exponential degradation model. Though, in some
cases a linear model might be implemented to predict the remaining useful life. The main benefits
are that the linear model is simpler and it requires less computational time. Using the least squares
method, the line that best fits in the data can be found, and the slope and the intercept of the
linear model can be estimated. A linear model based on the health indicator data can be
constructed in MATLAB and the results are shown in figures 4-12 and 4-13

Figure 4-12 Plot of the linear degradation model

Figure 4-13 Plot of the Error in the Linear degradation model

4.5 Real time update approach using Kalman Filter

Modern systems typically incorporate multiple sensors to estimate hidden states based on a series
of measurements. For instance, a GPS receiver estimates the location and velocity, with these
being the hidden states, while the differential time of arrival of satellite signals serves as the
measurements.[26]

One of the major challenges in tracking and control systems is achieving accurate and precise
estimation of hidden states amid uncertainty. In GPS receivers, the uncertainty in measurements
arises from various external factors such as thermal noise, atmospheric effects, slight variations
in satellite positions, receiver clock precision, and more. To address this challenge, the Kalman
Filter has emerged as a fundamental and widely used estimation algorithm.[26]

The Kalman Filter generates estimations of hidden variables based on imperfect and uncertain
measurements. It also predicts future system states based on previous estimations. The filter
derives its name from Rudolf E. Kálmán (May 19, 1930 – July 2, 2016), who introduced a recursive
solution to the discrete-data linear filtering problem in his influential paper published in 1960.
Today, the Kalman Filter finds applications in target tracking (radar), location and navigation
systems, control systems, computer graphics, and numerous other domains. [26]

It is possible that RUL can be updated on real time by implementing the Kalman filter. In order
to use Kalman filter, a series of equations is needed, for the construction of the algorithm. The
variables of the equations are, ‘X’ which is the state vector, ‘P’ which is the estimate covariance
and ‘K’ which is the Kalman Gain. The algorithm consists of the repetition of two steps, the
‘Prediction’ and the ‘Correction’, during the Prediction step the time update equations are used
and in the Correction. step the equations used are the measurement update.

During the Prediction step the state extrapolation equation is used to predict the state in the next
step and then the estimate covariance is predicted. In order to correct the values from the
previous step the Kalman gain is calculated. Then the state vector is corrected and last the
estimate covariance is corrected. For the next iteration the same cycle starts from the beginning
of the prediction step until the end. In order to initiate the process, the values needed are, the
initial state vector ‘X’ and the initial estimate covariance ‘P’. In some cases, if the initial values are
unknown, they can be chosen randomly and the Kalman filter, since it is a repetitive process, will
converge on the correct values but with more iterations.[26],[27]

Figure 4-14 below contains all the variables used for the calculations.

Figure 4-14 Variables used in a Kalman Filter [26]

 Figure 4-15 contains all the equations used in a Kalman filter

Figure 4-15 Equations used in a Kalman Filter [26]

The whole calculation process can be summarized in the figure below.

Figure 4-16 A complete figure of the operation of the Kalman filter [27]

In order to implement the Kalman filter the equations above have to be adapted to the known
Degradation models.

The degradation model that describes the health indicator ‘h’ is the following [20]:

ℎ(𝑡𝑡) = 𝛷𝛷 + 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 (𝛽𝛽𝛽𝛽 + 𝜀𝜀 − 𝜎𝜎
2

2
) (1)

By differentiating, the equation above, with respect to time, the result is this equation:

𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝛽𝛽𝛽𝛽 + 𝜀𝜀 − 𝜎𝜎2

2
) (2)

Equation (2) can be rewritten as

ℎ − 𝛷𝛷 = 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃(𝛽𝛽𝛽𝛽 + 𝜀𝜀 − 𝜎𝜎2

2
) (3)

Thus, the equation (3) is

𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝛽𝛽(ℎ − 𝛷𝛷) (4)

Also

𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑑𝑑

= ℎ𝑘𝑘+1−ℎ𝑘𝑘
𝑑𝑑𝑑𝑑

 (5)

In that case dt can be ignored and by combining equations (4) and (5) the result is

ℎ𝑘𝑘+1 − ℎ𝑘𝑘 = 𝛽𝛽(ℎ𝑘𝑘 − 𝛷𝛷) (6)

Which is

ℎ𝑘𝑘+1 = ℎ𝑘𝑘(1 + 𝛽𝛽) + 𝛽𝛽𝛽𝛽 (7)

The two variable β,Φ are parameters that determine some characteristics of the degradation
model and they do not have a physical meaning . So, in order to further simplify the last equation,
two new variables will be introduced ‘a’ and ‘g’. Where,

 𝑎𝑎 = (1 + 𝛽𝛽) (8)

and

𝑔𝑔 = 𝛽𝛽𝛽𝛽 (9)

By combining equations (7),(8) and (9) the final form of the equation of the health indicator is

ℎ𝑘𝑘+1 = 𝑎𝑎ℎ𝑘𝑘 + 𝑔𝑔 (10)

Last but not least the variables a and g are not constant so their values will be calculated with
the equations

𝑎𝑎𝑘𝑘+1 = 𝑎𝑎𝑘𝑘 (11)

𝑔𝑔𝑘𝑘+1 = 𝑔𝑔𝑘𝑘 (12)

The equations (10),(11) and (12) will be used as the state extrapolation equations in order to
create a Kalman filter. The state vector is 𝑥𝑥 = [ℎ;𝑎𝑎;𝑔𝑔]

The measurement vector is the health indicator values

The initial values of the state vector are 𝑥𝑥0 = [ℎ0;𝑎𝑎0;𝑔𝑔0] = [0; 1; 1]

The estimate covariance 𝑃𝑃 = [10,0,0 ; 0,10,0 ; 0,0,10]

The process noise covariance 𝑄𝑄 = [5,0,0 ; 0,5,0 ; 0,0,5].

The process noise matrix could be calculated using a theoretical model, but there was not such
a model available, so it was estimated intuitively. Using a trial and error method the value that
best represents the system was found.

The measurement covariance 𝑅𝑅 = [155,0,0 ; 0,155,0 ; 0,0,155]

The measurements, in this case, the health indicator values are noisy and their covariance was
calculated and it is 102. Initially this value was used, but the error of the model was big, so using
a trial and error method the value of the measurement covariance was changed.

The initial value of the health indicator ℎ0 = 0 because the health indicator is a measure of how
damaged the ball bearing, at the beginning the ball bearing is supposed to be at its best condition.
The other values of the state vector and the estimate covariance are chosen randomly and if even
if they are far from the correct values the Kalman filter will still operate properly and after some
iterations their values will converge on the correct ones. A Kalman filter was constructed, in
MATLAB with all the equations above and the results are shown in the figures 4-17 and 4-18
below

Figure 4-17 Plot of the model made with the Kalman Filter

Figure 4-18 Plot of the error of the model made by the Kalman Filter

5.Conclusions and future work

Comparison between approaches

To begin with, the classification approach does not make a prediction about the accurate
remaining useful life, but it is a very useful tool because it consults the user of how damaged the
ball bearing is. In practice, the user wants to be consulted when to repair the ball bearing in order
to avoid any unwanted breakdowns. Thus, using this algorithm, the user knows when the health
indicator gets above a certain threshold, which means that it is close to failing so that the user
makes any needed actions. The two algorithms give the same results because only on predictor
was used. All the other features were rejected during the feature engineering, because they were
inaccurate. That means that if any other predictor was added the accuracy of the algorithms
would decrease immensely.

The Linear degradation model can be used to predict the remaining useful life, in the specific
case, with relatively high accuracy. It is obvious from the first figure that the linear model fits in
the data and according to the second figure the error is relatively low. At its maximum, the error
is 20% of the maximum value of the health indicator and the mean value of the error is 8.5%. In
a situation where great accuracy is not required, a linear model can be implemented, instead of
an exponential model, in order to reduce computational time. Moreover, a linear model is simpler
than an exponential, thus it is easier to construct and depending on the needed accuracy, it can
produce satisfying results.

The exponential degradation model, was proven in the theoretical part, that can accurately predict
the remaining useful life of a ball bearing. In the figure 4-11 it is visible that the exponential
model fits in the data and can accurately predict the Remaining Useful Life of a ball bearing. The
model, is relatively easy to make, because it does not require very complex information about the
problem. Also, using the Predictive Maintenance toolbox in MATLAB simplifies greatly the problem
because all the calculations and figures are made with the built in functions.

Last but not least, it is proven that the Kalman filter can be implemented in order to update the
remaining useful life in real time. The values predicted by the Kalman filter converge on the actual
values of the health indicator after few iterations, which means that the initial values that were
used in the Kalman filter were accurate. Also, the values of the error have an oscillating behaviour
with a steady period and around the same maximum and minimum values. Moreover, the
maximum value of the error is 35% of the maximum value of the health indicator and the mean
value of the error is 20% of the maximum value. It is possible that, if more accurate information
is available about the model, the Kalman filter that is built can produce results with smaller error.
Which means that, the filter, will converge on the model by oscillating between maximum and
minimum values that are very close to the measurements. Nevertheless, the Kalman filter that
was constructed, gave out satisfying and accurate results and it can be used to update in real
time, the remaining useful life of a ball bearing.

To conclude, the prediction of the Remaining Useful Life is both very important and very
interesting. The importance was greatly analyzed, in the previous chapters and its interest is
found in the different methods that can be chosen and how different they operate but still give
similar results. Also, the Kalman filter is a very fascinating tool that can be used to solve a vast
amount of different problems. Its beauty is hidden in the fact that it can operate even with limited
and noisy measurements and still give accurate results.

Directions for future work

The classification algorithms with some adjustments can be implemented to give more accurate
results and give answers to more challenging problems. First, in a similar problem where more
information is available, there would be more predictors in order to divide the data, thus making
the algorithm more complex. Also, more classes could be added, in order to inform the user, with
greater detail about the condition of the ball bearing, so that they take immediate action.

The remaining useful life can be updated in real time with greater accuracy by using a more
complex Kalman Filter. Specifically, a dual extended Kalman filter would give greatly accurate
results, because one filter would be used to simultaneously estimate the parameters and the
other the state of the model. Although, in that case more information about the model is required.
In another direction, a simple Kalman filter, could be used to predict the remaining useful life
with limited data by calculating the health indicator. In the problem that was studied, the value
of the error has a repetitive behaviour, similar to oscillation with almost stable period and
maximum values and the Kalman gain has a smooth declining behaviour. Thus, the error can be
replicated as a function and the gain as another function. These functions can be applied, in the
equation for the state vector correction, in order to make a model that predicts the values of the
health indicator.

Concluding, predictive maintenance, is a virgin industry and when it is absorbed by the industries,
the whole production process will be greatly improved. The whole process will be sped up because
of the reduced unwanted downtimes, the products will be cheaper because of the reduced
maintenance costs and the quality of the products will be increased because at every point of the
production the condition of the machines will be monitored and any unwanted malfunctions will
be predicted. Also, there is a plethora of other techniques, that can be implemented, in order to
calculate the remaining useful life of a component and predict when maintenance is needed in
general. Predictive maintenance is a very interesting object of studies and engineers spend
countless hours to improve their knowledge bringing humanity closer to the fifth industrial
revolution.

6.Bibliography
1.Protecting Wind-Turbine Bearings, Dayananda Raju,

https://www.windsystemsmag.com/protecting-wind-turbine-bearings/

2.WHITE ETCHING CRACKS – A CONSEQUENCE, NOT A ROOT CAUSE OF BEARING FAILURE,
Kenred Stadler, Reinder H. Vegter, David Vaes

https://evolution.skf.com/white-etching-cracks-a-consequence-not-a-root-cause-of-bearing-
failure/

3.https://www.skf.com/binaries/pub12/Images/0901d1968064c148-Bearing-failures---14219_2-
EN_tcm_12-297619.pdf

4.The leading causes of wind turbine bearing failures, Philipp Schmidd

https://www.linkedin.com/pulse/leading-causes-wind-turbine-bearing-failures-philipp-schmid

5.George Aslanidis, Predictive maintenance in Industry 5.0, UNIVERSITY OF WEST ATTICA,2021

6.Deloitte , Predictive Maintenance Taking pro-active measures based on advanced data analytics
to predict and avoid machine failure ,2017

7.Can Predictive Maintenance Protect Your Business?, Ross Mudrick

https://www.businessnewsdaily.com/10920-predictive-maintenance-business.html

8.What is predictive maintenance

https://www.sap.com/insights/what-is-predictive-maintenance.html

9.Predictive Maintenance: What’s the Economic value?, Amir Kupervas

https://www.anodot.com/blog/predictive-maintenance/

10.5 advantages of using predictive maintenance in Field Service Management, Eirini Saranti

https://fieldcode.com/en/resources/blog/5-advantages-of-predictive-maintenance-and-how-to-
leverage-on-them

11.Stafylas Demetrios, Wildfire Prediction Using Machine Learning, UNIVERSITY OF WEST
ATTICA,2022

https://www.windsystemsmag.com/protecting-wind-turbine-bearings/
https://evolution.skf.com/white-etching-cracks-a-consequence-not-a-root-cause-of-bearing-failure/
https://evolution.skf.com/white-etching-cracks-a-consequence-not-a-root-cause-of-bearing-failure/
https://www.skf.com/binaries/pub12/Images/0901d1968064c148-Bearing-failures---14219_2-EN_tcm_12-297619.pdf
https://www.skf.com/binaries/pub12/Images/0901d1968064c148-Bearing-failures---14219_2-EN_tcm_12-297619.pdf
https://www.linkedin.com/pulse/leading-causes-wind-turbine-bearing-failures-philipp-schmid
https://www.businessnewsdaily.com/10920-predictive-maintenance-business.html
https://www.sap.com/insights/what-is-predictive-maintenance.html
https://www.anodot.com/blog/predictive-maintenance/
https://fieldcode.com/en/resources/blog/5-advantages-of-predictive-maintenance-and-how-to-leverage-on-them
https://fieldcode.com/en/resources/blog/5-advantages-of-predictive-maintenance-and-how-to-leverage-on-them

12.Vafeiadis Vasileios, Using Artificial Intelligence to model rainfall induced damages,
UNIVERSITY OF WEST ATTICA,2022

13.Max Kuhn, Kjell Johnson, Applied Predictive Modeling, Springer Science+Business Media, New
York 2013, ISBN 978-1-4614-6848-6

14.Fundamental Techniques of Feature Engineering for Machine Learning, Emre Rencberoglu

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe

15.What is Feature Engineering - Importance, Tools and Techniques for Machine Learning, Harshil
Patel

https://towardsdatascience.com/what-is-feature-engineering-importance-tools-and-techniques-
for-machine-learning-2080b0269f10

16.Regression VS. Classification in Machine Learning: What’s the Difference?, Sakshi Gupta

https://www.springboard.com/blog/data-science/regression-vs-classification/

17.Manfredi Manfre, Creation of a Machine Learning model for the Predictive Maintenance of an
engine equipped with a rotating shaft, POLITECNICO DI TORINO,2020

18.K-Nearest Neighbor(KNN) Algorithm for Machine Learning

K-Nearest Neighbor(KNN) Algorithm for Machine Learning - Javatpoint

19.Three Ways to Estimate Remaining Useful Life for Predictive Maintenance, Aditya Baru, Rachel
Johnson

Three Ways to Estimate Remaining Useful Life for Predictive Maintenance - MATLAB & Simulink
(mathworks.com)

20.Wind Turbine High-Speed Bearing Prognosis

https://www.mathworks.com/help/predmaint/ug/wind-turbine-high-speed-bearing-
prognosis.html

21.Mohamad Danish Anis, ‘Towards Remaining Useful Life Prediction in Rotating Machine Fault
Prognosis: An Exponential Degradation Model’, International Conference on Condition Monitoring
and Diagnosis – Perth – Australia, 2018

22.Degradation Data Analysis

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe
https://towardsdatascience.com/what-is-feature-engineering-importance-tools-and-techniques-for-machine-learning-2080b0269f10
https://towardsdatascience.com/what-is-feature-engineering-importance-tools-and-techniques-for-machine-learning-2080b0269f10
https://www.springboard.com/blog/data-science/regression-vs-classification/
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
https://www.mathworks.com/company/newsletters/articles/three-ways-to-estimate-remaining-useful-life-for-predictive-maintenance.html
https://www.mathworks.com/company/newsletters/articles/three-ways-to-estimate-remaining-useful-life-for-predictive-maintenance.html
https://www.mathworks.com/help/predmaint/ug/wind-turbine-high-speed-bearing-prognosis.html
https://www.mathworks.com/help/predmaint/ug/wind-turbine-high-speed-bearing-prognosis.html

https://reliawiki.org/index.php/Degradation_Data_Analysis

23.Naipeng Li, Yaguo Lei, Jing Lin, Steven X. Ding, ‘An Improved Exponential Model for Predicting
Remaining Useful Life of Rolling Element Bearings’, IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS,2015

24.Islem Bejaoui, Dario Bruneo, Maria Gabriella Xibilia, A Data-Driven Prognostics Technique and
RUL Prediction of Rotating Machines Using an Exponential Degradation Model, 7th International
Conference on Control, Decision and Information Technologies (CoDIT’20), 2020

25.Pin Li, Xiaodong Jia, Jianshe Feng, Hossein Davari, Guan Qiao, Yihchyun Hwang, Jay Lee,
Prognosability study of ball screw degradation using systematic methodology, Mechanical
Systems and Signal Processing, 2018

26.Kalman Filter, Alex Becker

https://www.kalmanfilter.net/default.aspx

27.Greg Welch, Gary Bishop, An Introduction to the Kalman Filter, University of North Carolina at
Chapel Hill Chapel Hill, NC 27599-3175, 2006

https://reliawiki.org/index.php/Degradation_Data_Analysis
https://www.kalmanfilter.net/default.aspx

7.Annex

7.1 Support Vector Machines algorithm

clc

clear

data = [0; 1.0634698965758003; 1.6198648856633131; 2.2619072656147585;

2.4778802985226918; 2.2943845251715773; 2.7740425761314293;

2.9180203015730326; 3.367736654366372; 3.159961869377379;

3.4998663197029094; 3.998420146295548; 4.7016055877799339;

4.6474796899727275; 5.0296419995753423; 6.13871875384978;

6.9484578507084684; 6.7415437845933468; 6.1400964755969554;

6.2934825206386513; 5.9268511844752494; 5.0148520152985068;

4.5008137340201113; 5.1675760428773723; 5.3093600729497954;

5.6159501705990778; 8.1250934863113446; 9.0049394472183568;

9.4804881601481554; 10.280265933803911; 11.083833378254168;

12.957521954684625; 13.268755548065453; 13.888865664639129;

15.593199227412203; 17.68485152051311; 19.000952262294874;

22.121072555510139; 20.458639240135312; 21.807860406793182;

20.447913063968951; 23.125561318160997; 25.753613005143702;

25.170528605148871; 29.37452173787678; 30.335214444785265;

32.340198658042972; 29.930206533282856; 31.76226266865903;

35.339371181804907];

max_val = max(data);

labels = cell(length(data),1);

for i=1:length(data)

if data(i) <= 0.45*max_val

labels{i} = 'good condition';

elseif data(i) > 0.45*max_val && data(i) <= 0.70*max_val

labels{i} = 'medium condition';

elseif data(i) > 0.70*max_val && data(i) <= 0.86*max_val

labels{i} = 'bad condition repair soon';

else

labels{i} = 'repair asap';

end

end

svm_model = fitcecoc(data,labels);

predicted_labels = predict(svm_model,data)

7.2 K Nearest Neighbours algorithm

clc

clear

data = [0; 1.0634698965758003; 1.6198648856633131; 2.2619072656147585;

 2.4778802985226918; 2.2943845251715773; 2.7740425761314293;

 2.9180203015730326; 3.367736654366372; 3.159961869377379;

 3.4998663197029094; 3.998420146295548; 4.7016055877799339;

 4.6474796899727275; 5.0296419995753423; 6.13871875384978;

 6.9484578507084684; 6.7415437845933468; 6.1400964755969554;

 6.2934825206386513; 5.9268511844752494; 5.0148520152985068;

 4.5008137340201113; 5.1675760428773723; 5.3093600729497954;

 5.6159501705990778; 8.1250934863113446; 9.0049394472183568;

 9.4804881601481554; 10.280265933803911; 11.083833378254168;

 12.957521954684625; 13.268755548065453; 13.888865664639129;

 15.593199227412203; 17.68485152051311; 19.000952262294874;

 22.121072555510139; 20.458639240135312; 21.807860406793182;

 20.447913063968951; 23.125561318160997; 25.753613005143702;

 25.170528605148871; 29.37452173787678; 30.335214444785265;

 32.340198658042972; 29.930206533282856; 31.76226266865903;

 35.339371181804907];

% Define the maximum value

maxval = max(data);

% Define the thresholds for each class

good_thres = 0.45*maxval;

medium_thres = 0.70*maxval;

bad_thres = 0.86*maxval;

% Initialize labels

labels = cell(size(data));

% Classify data

for i = 1:length(data)

 if data(i) <= good_thres

 labels{i} = 'good condition';

 elseif data(i) <= medium_thres

 labels{i} = 'medium condition';

 elseif data(i) <= bad_thres

 labels{i} = 'bad condition repair soon';

 else

 labels{i} = 'repair asap';

 end

end

% Prepare input and output variables for k-nearest neighbor algorithm

inputs = data;

outputs = categorical(labels);

% Create and train the k-nearest neighbor algorithm model

k = 3; % Number of neighbors to consider

mdl = fitcknn(inputs,outputs,'NumNeighbors',k);

% Test the model on the same input data

predictions = predict(mdl,inputs)

% Compare the predicted labels to the true labels

accuracy = sum(predictions == outputs)/length(outputs)

7.3 Linear degradation model

clc

clear

data = [0; 1.0634698965758003; 1.6198648856633131; 2.2619072656147585;

2.4778802985226918; 2.2943845251715773; 2.7740425761314293;

2.9180203015730326; 3.367736654366372; 3.159961869377379;

3.4998663197029094; 3.998420146295548; 4.7016055877799339;

4.6474796899727275; 5.0296419995753423; 6.13871875384978;

6.9484578507084684; 6.7415437845933468; 6.1400964755969554;

6.2934825206386513; 5.9268511844752494; 5.0148520152985068;

4.5008137340201113; 5.1675760428773723; 5.3093600729497954;

5.6159501705990778; 8.1250934863113446; 9.0049394472183568;

9.4804881601481554; 10.280265933803911; 11.083833378254168;

12.957521954684625; 13.268755548065453; 13.888865664639129;

15.593199227412203; 17.68485152051311; 19.000952262294874;

22.121072555510139; 20.458639240135312; 21.807860406793182;

20.447913063968951; 23.125561318160997; 25.753613005143702;

25.170528605148871; 29.37452173787678; 30.335214444785265;

32.340198658042972; 29.930206533282856; 31.76226266865903;

35.339371181804907];

x = 1:length(data);

A = [x', ones(length(x),1)];

b = data;

lin_params = A \ b;

m = lin_params(1) % slope

b = lin_params(2) % intercept

y = m*x + b;

figure

plot(x,data,x,y)

xlabel('Time(day)')

ylabel('Degradation Level')

legend('Data', 'Linear Model')

Y = y';

Err = abs((Y-data)/data);

figure

plot(Err)

xlabel('Time(day)')

ylabel('Error')

mean(Err)

7.4 Kalman Filter

clear

clc

% times tou health indicator pou prokuptoun apo feature engineering

data = [0; 1.0634698965758003; 1.6198648856633131; 2.2619072656147585;

2.4778802985226918; 2.2943845251715773; 2.7740425761314293;

2.9180203015730326; 3.367736654366372; 3.159961869377379;

3.4998663197029094; 3.998420146295548; 4.7016055877799339;

4.6474796899727275; 5.0296419995753423; 6.13871875384978;

6.9484578507084684; 6.7415437845933468; 6.1400964755969554;

6.2934825206386513; 5.9268511844752494; 5.0148520152985068;

4.5008137340201113; 5.1675760428773723; 5.3093600729497954;

5.6159501705990778; 8.1250934863113446; 9.0049394472183568;

9.4804881601481554; 10.280265933803911; 11.083833378254168;

12.957521954684625; 13.268755548065453; 13.888865664639129;

15.593199227412203; 17.68485152051311; 19.000952262294874;

22.121072555510139; 20.458639240135312; 21.807860406793182;

20.447913063968951; 23.125561318160997; 25.753613005143702;

25.170528605148871; 29.37452173787678; 30.335214444785265;

32.340198658042972; 29.930206533282856; 31.76226266865903;

35.339371181804907];

%initial values

h = 0;

a = 1;

g = 1;

i = 1;

HI = [];

Err = [];

% eklego times gia P , Q ,R

P = 10*eye(3);

Q = 5*eye(3);

R = 155*eye(3) ;

while i<51

z = data(i)

h = [h 1]*[a;g];

a = a;

g = g;

A = P+Q; % nea timh p

Z = A / (A+R); %Gain

G = Z * [1;1;1]

d1 = (z-h)*G; % ypologismos error*Gain

d = [1 0 0]*d1;

%nees times hat

h = h+d

g = g+d;

a = a+d;

HI(i) = h;

%ypologismos neou P

D = (eye(3) - G);

P = D.*P.*D' + G.*R.*G';

e = abs((data(i)-h)/data(i))

Err(i)=e;

i = i+1

end

figure

plot(HI)

hold on

plot(data)

hold on

xlabel('Time (days)')

ylabel('Degradation Level')

legend('Kalman Filter', 'data')

figure

plot(Err)

xlabel('Time (days)')

ylabel('Error')

legend('Error')

mean(Err')

7.5 Feature Engineering and Exponential model [20]

7.5.1 Main code [20]

timeUnit = 'day';

hsbearing = fileEnsembleDatastore(...

 fullfile('.', 'WindTurbineHighSpeedBearingPrognosis-Data-master'), ...

 '.mat');

hsbearing.DataVariables = ["vibration", "tach"];

hsbearing.IndependentVariables = "Date";

hsbearing.SelectedVariables = ["Date", "vibration", "tach"];

hsbearing.ReadFcn = @helperReadData;

hsbearing.WriteToMemberFcn = @helperWriteToHSBearing;

tall(hsbearing)

fs = 97656; % Hz

reset(hsbearing)

tstart = 0;

figure

hold on

while hasdata(hsbearing)

 data = read(hsbearing);

 v = data.vibration{1};

 t = tstart + (1:length(v))/fs;

 % Downsample the signal to reduce memory usage

 plot(t(1:10:end), v(1:10:end));

 tstart = t(end);

end

hold off

xlabel('Time (s), 6 second per day, 50 days in total');

ylabel('Acceleration (g)');

hsbearing.DataVariables = ["vibration", "tach", "SpectralKurtosis"];

colors = parula(50);

figure

hold on

reset(hsbearing)

day = 1;

while hasdata(hsbearing)

 data = read(hsbearing);

 data2add = table;

 % Get vibration signal and measurement date

 v = data.vibration{1};

 % Compute spectral kurtosis with window size = 128

 wc = 128;

 [SK, F] = pkurtosis(v, fs, wc);

 data2add.SpectralKurtosis = {table(F, SK)};

 % Plot the spectral kurtosis

 plot3(F, day*ones(size(F)), SK, 'Color', colors(day, :));

 % Write spectral kurtosis values

 writeToLastMemberRead(hsbearing, data2add);

 % Increment the number of days

 day = day + 1;

end

hold off

xlabel('Frequency (Hz)')

ylabel('Time (day)')

zlabel('Spectral Kurtosis')

grid on

view(-45, 30)

cbar = colorbar;

ylabel(cbar, 'Fault Severity (0 - healthy, 1 - faulty)')

hsbearing.DataVariables = [hsbearing.DataVariables; ...

 "Mean"; "Std"; "Skewness"; "Kurtosis"; "Peak2Peak"; ...

 "RMS"; "CrestFactor"; "ShapeFactor"; "ImpulseFactor"; "MarginFactor"; "Energy"; ...

 "SKMean"; "SKStd"; "SKSkewness"; "SKKurtosis"];

hsbearing.SelectedVariables = ["vibration", "SpectralKurtosis"];

reset(hsbearing)

while hasdata(hsbearing)

 data = read(hsbearing);

 v = data.vibration{1};

 SK = data.SpectralKurtosis{1}.SK;

 features = table;

 % Time Domain Features

 features.Mean = mean(v);

 features.Std = std(v);

 features.Skewness = skewness(v);

 features.Kurtosis = kurtosis(v);

 features.Peak2Peak = peak2peak(v);

 features.RMS = rms(v);

 features.CrestFactor = max(v)/features.RMS;

 features.ShapeFactor = features.RMS/mean(abs(v));

 features.ImpulseFactor = max(v)/mean(abs(v));

 features.MarginFactor = max(v)/mean(abs(v))^2;

 features.Energy = sum(v.^2);

 % Spectral Kurtosis related features

 features.SKMean = mean(SK);

 features.SKStd = std(SK);

 features.SKSkewness = skewness(SK);

 features.SKKurtosis = kurtosis(SK);

 % write the derived features to the corresponding file

 writeToLastMemberRead(hsbearing, features);

end

hsbearing.SelectedVariables = ["Date", "Mean", "Std", "Skewness", "Kurtosis", "Peak2Peak", ...

 "RMS", "CrestFactor", "ShapeFactor", "ImpulseFactor", "MarginFactor", "Energy", ...

 "SKMean", "SKStd", "SKSkewness", "SKKurtosis"];

featureTable = gather(tall(hsbearing));

featureTable = table2timetable(featureTable)

variableNames = featureTable.Properties.VariableNames;

featureTableSmooth = varfun(@(x) movmean(x, [5 0]), featureTable);

featureTableSmooth.Properties.VariableNames = variableNames;

%featureTableSmooth = featureTable;

%featureTableSmooth.Properties.VariableNames = variableNames;

figure

hold on

plot(featureTable.Date, featureTable.SKMean);

plot(featureTableSmooth.Date, featureTableSmooth.SKMean);

hold off

xlabel('Time')

ylabel('Feature Value')

legend('Before smoothing', 'After smoothing')

title('SKMean')

breaktime = datetime(2013, 3, 27);

breakpoint = find(featureTableSmooth.Date < breaktime, 1, 'last');

trainData = featureTableSmooth(1:breakpoint, :);

% Since moving window smoothing is already done, set 'WindowSize' to 0 to

% turn off the smoothing within the function

featureImportance = monotonicity(trainData, 'WindowSize', 0);

helperSortedBarPlot(featureImportance, 'Monotonicity');

trainDataSelected = trainData(:, featureImportance{:,:}>0.3);

featureSelected = featureTableSmooth(:, featureImportance{:,:}>0.3)

meanTrain = mean(trainDataSelected{:,:});

sdTrain = std(trainDataSelected{:,:});

trainDataNormalized = (trainDataSelected{:,:} - meanTrain)./sdTrain;

coef = pca(trainDataNormalized);

PCA1 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 1);

PCA2 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 2);

%PCA2 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 1);

figure

numData = size(featureTable, 1);

scatter(PCA1, PCA2, [], 1:numData, 'filled')

xlabel('PCA 1')

ylabel('PCA 2')

cbar = colorbar;

ylabel(cbar, ['Time (' timeUnit ')'])

healthIndicator = PCA1;

figure

plot(featureSelected.Date, healthIndicator, '-o')

xlabel('Time')

title('Health Indicator')

healthIndicator = healthIndicator - healthIndicator(1);

threshold = healthIndicator(end);

mdl = exponentialDegradationModel(...

 'Theta', 1, ...

 'ThetaVariance', 1e6, ...

 'Beta', 1, ...

 'BetaVariance', 1e6, ...

 'Phi', -1, ...

 'NoiseVariance', (0.1*threshold/(threshold + 1))^2, ...

 'SlopeDetectionLevel', 0.05);

% Keep records at each iteration

totalDay = length(healthIndicator) - 1;

estRULs = zeros(totalDay, 1);

trueRULs = zeros(totalDay, 1);

CIRULs = zeros(totalDay, 2);

pdfRULs = cell(totalDay, 1);

% Create figures and axes for plot updating

figure

ax1 = subplot(2, 1, 1);

ax2 = subplot(2, 1, 2);

for currentDay = 1:totalDay

 % Update model parameter posterior distribution

 update(mdl, [currentDay healthIndicator(currentDay)])

 % Predict Remaining Useful Life

 [estRUL, CIRUL, pdfRUL] = predictRUL(mdl, ...

 [currentDay healthIndicator(currentDay)], ...

 threshold);

 trueRUL = totalDay - currentDay + 1;

 % Updating RUL distribution plot

 helperPlotTrend(ax1, currentDay, healthIndicator, mdl, threshold, timeUnit);

 helperPlotRUL(ax2, trueRUL, estRUL, CIRUL, pdfRUL, timeUnit)

 % Keep prediction results

 estRULs(currentDay) = estRUL;

 trueRULs(currentDay) = trueRUL;

 CIRULs(currentDay, :) = CIRUL;

 pdfRULs{currentDay} = pdfRUL;

 % Pause 0.1 seconds to make the animation visible

 pause(0.1)

end

7.5.2 Helper Functions [20]

7.5.2.1 helperAlphaLambdaPlot [20]

function alphaBoundProbablity = helperAlphaLambdaPlot(alpha, trueRULHist, estRULHist, ...

 CIRULHist, pdfRULHist, degradationTime, breakpoint, timeUnit)

%HELPERALPHALAMBDAPLOT create alpha-lambda plot and the probability metric

% Copyright 2018 The MathWorks, Inc.

N = length(trueRULHist);

t = 1:N;

t2 = t((degradationTime+1):end);

% Compute the alpha bounds

alphaPlus = trueRULHist + alpha*trueRULHist;

alphaMinus = trueRULHist - alpha*trueRULHist;

% ---------------- Alpha-Lambda Plot --------------------

figure

hold on

grid on

% Plot true RUL and its alpha bounds

plot(t, trueRULHist)

fill([t fliplr(t)], [alphaPlus(t)' fliplr(alphaMinus(t)')], ...

 'b', 'FaceAlpha', 0.2, 'EdgeColor', 'none')

% Plot the estimated RUL and its confidence intervals

plot(t2, estRULHist(t2), '--')

fill([t2 fliplr(t2)], ...

 [CIRULHist(t2, 1)' fliplr(CIRULHist(t2, 2)')], ...

 'r', 'FaceAlpha', 0.2, 'EdgeColor', 'none')

% Plot the train-test breakpoint

ylow = 0;

yup = 80;

plot([breakpoint breakpoint], [ylow yup], 'k-.')

% Add labels and legends

ylim([ylow yup])

hold off

xlabel(['Time (' timeUnit ')'])

ylabel(['RUL (' timeUnit ')'])

legend('True RUL', ['\alpha = +\\-' num2str(alpha*100) '%'], ...

 'Predicted RUL After Degradation Detected', ...

 'Confidence Interval After Degradation Detected', 'Train-Test Breakpoint')

% ---------------- Probability Metric --------------------

% Compute the probability of predicted RUL within alpha bounds

alphaBoundProbablity = zeros(N, 1);

for i = 1:N

 pdfRUL = pdfRULHist{i};

 idx = (pdfRUL{:, 1} > alphaMinus(i)) & (pdfRUL{:, 1} < alphaPlus(i));

 prob = sum(pdfRUL{idx, 2});

 alphaBoundProbablity(i) = prob;

end

end

7.5.2.2 helperPlotRUL [20]

function helperPlotRUL(ax, trueRUL, estRUL, CIRUL, pdfRUL, timeUnit)

%HELPERPLOTRULDISTRIBUTION helper function to refresh the distribution plot

% Copyright 2018 The MathWorks, Inc.

cla(ax)

hold(ax, 'on')

plot(ax, pdfRUL{:,1}, pdfRUL{:,2})

plot(ax, [estRUL estRUL], [0 pdfRUL{find(pdfRUL{:,1} >= estRUL, 1), 2}])

plot(ax, [trueRUL trueRUL], [0 pdfRUL{find(pdfRUL{:,1} >= trueRUL, 1), 2}], '--')

idx = pdfRUL{:,1} >= CIRUL(1) & pdfRUL{:,1}<=CIRUL(2);

area(ax, pdfRUL{idx, 1}, pdfRUL{idx, 2}, ...

 'FaceAlpha', 0.2, 'FaceColor', 'g', 'EdgeColor', 'none');

hold(ax, 'off')

ylabel(ax, 'PDF')

xlabel(ax, ['Time (' timeUnit ')'])

legend(ax, 'pdf of RUL', 'Estimated RUL', 'True RUL', 'Confidence Interval')

7.5.2.3 helperPlotTrend [20]

function helperPlotTrend(ax, currentDay, healthIndicator, mdl, threshold, timeUnit)

%HELPERPLOTTREND helper function to refresh the trending plot

% Copyright 2018 The MathWorks, Inc.

t = 1:size(healthIndicator, 1);

HIpred = mdl.Phi + mdl.Theta*exp(mdl.Beta*(t - mdl.InitialLifeTimeValue));

HIpredCI1 = mdl.Phi + ...

 (mdl.Theta - sqrt(mdl.ThetaVariance)) * ...

 exp((mdl.Beta - sqrt(mdl.BetaVariance))*(t - mdl.InitialLifeTimeValue));

HIpredCI2 = mdl.Phi + ...

 (mdl.Theta + sqrt(mdl.ThetaVariance)) * ...

 exp((mdl.Beta + sqrt(mdl.BetaVariance))*(t - mdl.InitialLifeTimeValue));

cla(ax)

hold(ax, 'on')

plot(ax, t, HIpred)

plot(ax, [t NaN t], [HIpredCI1 NaN, HIpredCI2], '--')

plot(ax, t(1:currentDay), healthIndicator(1:currentDay, :))

plot(ax, t, threshold*ones(1, length(t)), 'r')

hold(ax, 'off')

if ~isempty(mdl.SlopeDetectionInstant)

 title(ax, sprintf('Day %d: Degradation detected!\n', currentDay))

else

 title(ax, sprintf('Day %d: Degradation NOT detected.\n', currentDay))

end

ylabel(ax, 'Health Indicator')

xlabel(ax, ['Time (' timeUnit ')'])

legend(ax, 'Degradation Model', 'Confidence Interval', ...

 'Health Indicator', 'Threshold', 'Location', 'Northwest')

end

7.5.2.4 helperReadData [20]

function data = helperReadData(filename, variables)

% Read data variables for the fileEnsemble

%

% Inputs:

% filename - a string of the file name to read from.

% variables - a string array containing variable names to read.

% It must be a subset of DataVariables specified

% in fileEnsembleDatastore.

% Output:

% data - return a table with a single row

% Copyright 2017-2018 The MathWorks, Inc.

data = table;

mfile = matfile(filename); % Allows partial loading

for ct = 1:numel(variables)

 if strcmp(variables{ct}, "Date")

 % Extract the datetime information from the file names

 % as the independent variable of the ensemble datastore

 [~, fname] = fileparts(filename);

 token = regexp(fname, 'data-(\w+)', 'tokens');

 data.Date = datetime(token{1}{1}, 'InputFormat', 'yyyyMMdd''T''HHmmss''Z''');

 else

 val = mfile.(variables{ct});

 % Convert non-scalar values into a single cell

 if numel(val) > 1

 val = {val};

 end

 data.(variables{ct}) = val;

 end

end

end

7.5.2.5 helperSortedBarPlot [20]

function sortedIdx = helperSortedBarPlot(tbl, ylbl)

% HELPERSORTEDBARPLOT helper function to create sorted bar plot

% Copyright 2018 The MathWorks, Inc.

[~, sortedIdx] = sort(tbl{1,:}, 'descend');

tblSorted = tbl(:, sortedIdx);

figure

bar(tblSorted{1,:})

xticks(1:size(tblSorted,2))

xticklabels(tbl.Properties.VariableNames(sortedIdx))

xtickangle(45)

ylabel(ylbl)

end

7.5.2.6 helperWriteToHSBearing [20]

function helperWriteToHSBearing(filename, data)

% Write data to the fileEnsemble

% Inputs:

% filename - a string of the file name to write to.

% data - a structure

save(filename, '-append', '-struct', 'data');

end

	Abstract
	Περίληψη
	Table of figures
	1.Introduction
	1.1 Problem Statement
	1.2 Objectives
	1.3 Bearing failure

	2.Predictive Maintenance
	2.1 What predictive maintenance is
	2.2 Comparison to other maintenance approaches
	2.3 PM applications in industry
	2.4 Condition Monitoring

	3.Machine Learning
	3.1 Data Analysis and Feature Engineering
	3.1.1 Data preprocessing
	3.1.2 Mathematical transformations
	3.1.3 Feature Engineering

	3.2 Classification algorithms
	3.2.1 SVM (Support Vector Machines)
	3.2.2 K – Nearest Neighbours
	3.2.3 Naive Bayes
	3.2.4 Decision Trees
	3.2.5 Random Forest
	3.2.6 Logistic Regression

	3.3 Regression algorithms
	3.3.1 Simple linear regression
	3.3.2 Multiple linear regression
	3.3.3 Polynomial regression
	3.3.4 Regression vs Classification

	4.Application of PM in Bearing Failure
	4.1 Predictive failure models /Remaining Useful Life (RUL)
	4.2 Application of Feature Engineering
	4.3 Classification approach
	4.4 Degradation model approach
	4.4.1 Exponential degradation model
	4.4.2 Linear Degradation Model

	4.5 Real time update approach using Kalman Filter

	5.Conclusions and future work
	Comparison between approaches
	Directions for future work

	6.Bibliography
	7.Annex
	7.1 Support Vector Machines algorithm
	7.2 K Nearest Neighbours algorithm
	7.3 Linear degradation model
	7.4 Kalman Filter
	7.5 Feature Engineering and Exponential model [20]
	7.5.1 Main code [20]
	7.5.2 Helper Functions [20]
	7.5.2.1 helperAlphaLambdaPlot [20]
	7.5.2.2 helperPlotRUL [20]
	7.5.2.3 helperPlotTrend [20]
	7.5.2.4 helperReadData [20]
	7.5.2.5 helperSortedBarPlot [20]
	7.5.2.6 helperWriteToHSBearing [20]

