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Abstract 
In this diploma thesis, different techniques of Predictive Maintenance based on Machine Learning 
are compared. In particular, the Remaining Useful Life of a ball bearing of the shaft of a Wind 
Turbine was predicted with different methods: Classification algorithms, degradation models and 
real time updates using a Kalman Filter. In the first half, the theory of ball bearing failure 
mechanisms, predictive maintenance and machine learning is analyzed. At the second half, 
different methods are implemented for the prediction of the remaining useful life. Last, the writer 
comes to a conclusion about the efficiency of each method. 

Key words: Machine Learning, Predictive Maintenance, Remaining Useful Life, Degradation 
Models, Classification, Kalman Filter  

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      

Περίληψη 
Σε αυτή τη διπλωματική εργασία, γίνεται σύγκριση μεθόδων μηχανικής μάθησης για προδεικτική 
συντήρηση. Ειδικότερα, γίνεται πρόβλεψη για την εναπομένουσα ωφέλιμη ζωή ενός εδράνου, 
στον άξονα μιας ανεμογεννήτριας, με τις εξής μεθόδους, αλγόριθμους classification, μοντέλα 
degradation και συνεχής ανανέωση, με χρήση του φίλτρου Kalman. Σε πρώτη φάση, αναλύεται 
η θεωρία, σχετικά με τους μηχανισμούς αστοχίας των εδράνων, την μηχανική μάθηση και την 
προδεικτική συντήρηση. Στη συνέχεια, αυτές οι μέθοδοι, χρησιμοποιούνται για τον υπολογισμό 
της εναπομένουσας ωφέλιμης ζωής. Τέλος, ο συγγραφές αναλύει τα συμπεράσματά του για την 
αποδοτικότητα της κάθε μεθόδου.  

Key words: Μηχανική μάθηση, Προδεικτική συντήρηση, Εναπομένουσα ωφέλιμη ζωή, 
Degradation Models, Classification, Φίλτρα Kalman  
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1.Introduction 

1.1 Problem Statement 
 

Without a doubt, ball bearings play a crucial role on the function of a machine because they 
reduce friction and they absorb the applied loads. Because of these reasons, they are some of 
the first parts that are checked when a machine malfunctions. Depending on the application, they 
are considered expendable because they fail after a certain number of cycles of use and they are 
changed frequently. But, in some cases, ball bearings may be replaced with unfavourable results, 
because they might possibly come with big costs and their replacement could stop the whole 
production process. For these reasons, in specific applications the failure of a ball bearing has to 
be avoided and a distinctive example is that of a wind turbine. A wind turbine can not function 
without a ball bearing in its shaft, so it is crucial that failure has to be avoided. Failure can be 
avoided, by monitoring the condition of the ball bearing and by implementing predictive 
maintenance techniques, to ensure that it functions properly. Moreover, a model that calculates 
its remaining useful life (RUL), can be used so that the engineer responsible for the ball bearing, 
can be informed with detail about its health condition and most importantly, know when it is 
needed to take action. Knowing when action is needed is very important and it increases 
productivity, because maintenance or any kind of interference can be scheduled very close to the 
predicted time of malfunction. As a result, the ball bearing is utilized for the maximum available 
time and also the needs for possible replacements and maintenance are minimized. Thus, time 
wasted for maintenance and breakdowns and costs for maintenance are greatly reduced.  

1.2 Objectives 
 

It is now understood, how beneficial it is to implement predictive maintenance in the ball bearing 
of a wind turbine and because of that, the objective of this diploma thesis is to implement machine 
learning methods for predictive maintenance using real time data and time-frequency analysis. 
Specifically, the remaining useful life of a ball bearing will be predicted and estimated with 
different methods in order to compare them and highlight their benefits. 

 

1.3 Bearing failure 

A sizable share of wind turbine breakdowns is caused by bearing problems. It is not unexpected 
that a variety of reasons and circumstances might result in premature failure. But, using 
recommended procedures, applying the right lubricant, and employing the correct materials all 
significantly increase lifespans. 



                                                                                                
 
                                                                                                                      
As it was mentioned before, bearings are necessary for wind turbine functionality, these precise 
parts are frequently subjected to a range of unfavorable and even harsh working situations and 
environments. Thus, endangering the dependability and productivity of a turbine as well as the 
performance and its lifespan. It might be difficult to fully comprehend typical failure mechanisms 
in turbine bearings since each premature bearing failure will be distinct owing to the numerous 
potential reasons in the context of specific operating circumstances. Notwithstanding the 
difficulties, there are ways to decrease the possibility of early bearing failures, lower maintenance 
and operating costs, encourage longer bearing service life, and, ultimately, support maintaining 
turbines in operation as planned. The dependability of equipment is a constant source of difficulty 
for those in charge of running wind farms, and the reliability of bearings throughout a wind turbine 
is a crucial component of the equation. Failure can occur, due to various root causes and threaten 
bearing performance and reliability at every turn. [1],[2] 

 

Reason of failure 

The most important reason that a bearing can fail is the improper condition monitoring. It is 
crucial that a bearing is monitored so that the details regarding its condition are known to the 
operator. If it is not, a variety of problems can occur and the operators will not be able to act in 
order to prevent such problems. Moreover, an important reason of failure is sudden stops of the 
wind turbine, because they greatly strain the bearing and can help begin the deterioration early. 
Generally, rapid changes in torque are the cause of strain development and that the bearing was 
not designed for. In addition, ineffective lubrication causes significant friction between the roller 
and the raceway thus creating excessive strain. Last but not least, environmental conditions, such 
as moisture, can have detrimental consequences for wind turbine bearings. If bearings are not 
effectively protected form moisture and too much is present within a turbine, rust can occur and 
lubricants will become ineffective thus causing premature failure. Furthermore, moisture will 
corrode the bearing and can damage electrical equipment. [3] 

 

Kinds of Failure 

In various wind turbine bearing’s positions, white etching cracks can appear, as in figure 1-1. 
These cracks are more common in bigger wind turbines of the megawatt and multi-megawatt 
classes. These cracks, found at the end of the failure chain, appear white when acid-etched and 
form within the microstructure of the steel. Microscopically, this may be seen on the surface. 
Based on failure analysis, their genesis is frequently traceable to the rolling contact fatigue of a 
bearing and to physical factors that might hasten rolling contact fatigue. High moment loads, 
friction, heat, misalignment, and other physical factors may result in higher than expected 
stresses, which may result in fatigue, or environmental factors, such as water contamination, 
corrosion, and stray electrical currents, which may result in lower than expected material 
strengths, which may also result in fatigue. An example of fatigue can be seen in figure 1-2. [3] 

http://www.renewableenergyworld.com/articles/2013/06/protecting-wind-turbines-in-extreme-temperatures.html
http://www.renewableenergyworld.com/articles/2013/06/protecting-wind-turbines-in-extreme-temperatures.html


                                                                                                
 
                                                                                                                      

 

Figure 1-1 White etching Cracks [3] 

 

 

Figure 1-2 Material Fatigue [3] 

When two improperly lubricated surfaces glide against one another, material is transferred from 
one surface to the other, generating adhesive wear, the results of this are visible in figure 1-3. 
In addition, the friction that results can heat the substance to levels that lead to rehardening. 
Thus, changing the microstructure of the rollers and raceways in a bearing which accelerates the 
deterioration, because of the increased stress, excessive friction, and generated heat that isn't 
needed. These elements will wear a bearing down over time until it is no longer usable. [2],[3] 

 



                                                                                                
 
                                                                                                                      
Micropitting, also known as surface distress, is characterized by little cracks that progressively 
become larger and obstruct a bearing's smooth operation. This deterioration, is typically brought 
on by insufficient lubrication and affects not just the bearings but also the gear teeth. The ensuing 
damages result in concentrated stresses and excessive frictional heat, which compromise a 
bearing's ability to operate. Once it starts, the cracks propagate fast, resulting in failure, spalling 
(the flaking of the bearing material), and loss of bearing function.[1],[2],[3] 

 

Figure 1-3 Inadequate lubrication [3] 

When water or other corrosive substances enter a bearing's inside, corrosion develops like in 
figure 1-4. Rust can start to form on a bearing's steel surface when lubrication is not providing 
enough protection, harming the bearing. A bearing is highly vulnerable to water, and only a tiny 
amount of water is enough to severely reduce service life.[3] 

 

Figure 1-4 Corrosive substance [3] 

 

 



                                                                                                
 
                                                                                                                      
Failure Prevention 

High stresses that cause fatigue can be mitigated by bearings made of premium steel and with 
compressive residual stresses. Various protective heat treatments, surface treatments, coatings 
and hybrid bearings incorporating incredibly hard and durable ceramic rolling elements, high-
strength stainless steel for corrosion resistance, and other measures can be taken to strengthen 
the material strength of a bearing depending on the circumstances. The rolling components and 
inner and outer rings of a bearing may benefit from a specialized black oxidation treatment done 
by the bearing manufacturer to increase resistance and guard mainly against adhesive wear, as 
well as for several other failure modes. As the dimensions will remain the same as the bearings 
that were first placed, bearings with such surface treatments can be used as upgrades and 
replacements in existing turbine systems. These situations can be avoided with proper lubricant 
management and regular habits. When it comes to lubricating correctly and keeping an eye out 
for degrading grease or oil, contaminated water, and particle pollution, maintenance personnel 
should take care to avoid over- or under-greasing, using the incorrect lubricant, and/or combining 
incompatible lubricants. Need of lubrication may be significantly reduced, by using suitable sealing 
design to ensure adequate amounts of lubricant remain. Correct sealing of the places where 
bearings are positioned helps prevent corrosion. As preventative measures, implementing a 
humidity management system and using components that are properly designed to prevent 
condensation inside a system are important.[1],[2],[3] 

 

Predictive maintenance benefits 

Early identification of operational issues in wind turbines, is now made possible by Predictive 
Maintenance. Measurements of numerous physical operational characteristics, such as vibration, 
temperature, displacements, and others, are used to identify abnormalities. By using the data, 
bearing and other component issues may be identified before they become more serious and 
require corrective action. 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      

2.Predictive Maintenance 

2.1 What predictive maintenance is 

In order to forecast breakdowns well, in advance of the need for immediate action, predictive 
maintenance makes extensive use of process data and sophisticated analytical techniques. More 
process data becomes available with the use of ideas like Industry 4.0 or Smart Factory. As a 
result, it is possible to predict the runtime of assets with increasing precision. This maintenance 
strategy is typically used when substantial expenditures are incurred as a result of maintenance 
or downtime. While maintenance tasks are complicated, it can also make scheduling simpler. With 
this kind of industrial maintenance, businesses are able to foresee problems before they happen 
and prepare the appropriate maintenance interventions and processes. The development of data 
processing, analytics, and artificial intelligence has made it possible for maintenance specialists 
to plan predictive maintenance based on foreseeing errors and malfunctions.[5],[6] 

Predictive maintenance keeps an eye on the functionality and state of the equipment while it's in 
operation. The idea behind it is to be able to anticipate when machinery is likely to break down, 
based on a variety of parameters, and then lower the risk of failure by preventing failure. Correct 
prediction requires condition monitoring, which is defined as continuous monitoring of equipment 
throughout process conditions to guarantee optimum machine use. The application of artificial 
intelligence has opened up new possibilities for predictive maintenance, since data analysis 
enables not only the prediction of probable failures but also the formulation of suggestions for 
modifying operating conditions to obtain the desired production outcomes. Prescriptive 
maintenance is the term used to describe this maintenance approach.[5],[6] 

In predictive maintenance, the engineers in charge of maintaining industrial machinery employ a 
technique to forecast precisely when a piece of machinery will break down and then carry out 
repair to keep the production machines operating as efficiently as possible. This makes sure that 
a piece of equipment in need of repair is turned off just before it breaks, allowing the equipment 
to function for the duration of the maintenance period for the maximum feasible time.  This 
maintenance strategy's key benefit is the cost savings, by lowering unexpected downtime and 
raising production rates. The current status of equipment components is presented in real-time 
statistical data, minimizing production hiccups. The time spent doing maintenance activities is 
also optimized, in addition to the usage of replacement components. Since it needs the 
procurement of extremely precise equipment as well as suitable software that can support the 
data generated during equipment operation, predictive maintenance is regarded as the most 
difficult maintenance technique. [5],[6] 

Predictive maintenance also aims to extend the life span of equipment, as is the case with 
preventive maintenance. The condition of machinery is monitored, using both overall and 
component level analysis. This enables replacement parts to be ordered when required and 
maintenance teams to continuously optimize machinery, thus increasing its longevity. Finally, a 
significant benefit of predictive maintenance is the provision of an auditable documentation trail. 



                                                                                                
 
                                                                                                                      
Because predictive maintenance involves the collection of vast amounts of data, it provides a 
robust paper trail that can support warranty claims and compliance with Good Manufacturing 
Practice (GMP) or ISO standards. This documentation trail provides greater transparency, 
accountability and reliability for companies seeking to demonstrate the quality and reliability of 
their products and services.[7] 

2.2 Comparison to other maintenance approaches 

 

Figure 2-1 The evolution of maintenance strategies [5] 

The adoption of predictive maintenance over traditional preventive maintenance is proving to be 
highly advantageous for businesses across many sectors. The benefits that come with predictive 
maintenance are significant and numerous. One of the primary benefits is a reduction in 
maintenance costs. Predictive maintenance enables the allocation of resources and labor only 
when needed, by analyzing when a machine or device actually requires attention. This is in stark 
contrast to preventive maintenance, which relies on a set schedule that may not reflect the actual 
status of the equipment. Another advantage is the reduction in the frequency of major equipment 
failures. Predictive maintenance quickly identifies issues with equipment, enabling maintenance 
crews to address the problem before it escalates and causes productivity losses. As such, major 
equipment failures are greatly reduced, or avoided altogether, compared to traditional 
maintenance techniques. [7] 



                                                                                                
 
                                                                                                                      
2.3 PM applications in industry 

 

Figure 2-2 Comparison of maintenance approaches [5] 

The global predictive maintenance market is projected to reach a value of $6.3 billion in the next 
years, as indicated in a report conducted by “Market Research Future”. This growth can be 
attributed to the increasing adoption of predictive maintenance techniques in various industries. 
It is already being utilized or planned to be implemented by 83% of manufacturing companies 
within the next two years. A report titled "Digital Industrial Revolution with Predictive 
Maintenance" revealed that 91% of manufacturers implementing predictive maintenance 
experience a significant reduction in repair time and unplanned downtime. Additionally, 93% of 
these manufacturers reported improvements in aging industrial infrastructure. According to 
another report, the adoption of predictive maintenance in factories can yield several benefits, 
including a 12% reduction in costs, a 9% improvement in uptime, a 14% decrease in safety, 
health, environment, and quality risks, and a 20% extension in the lifespan of aging assets. Also, 
the report provides examples of how companies like EasyJet, Transport for London (TfL), and 
Nestle have leveraged predictive maintenance to enhance the efficiency of their technicians, 
improve the customer experience, and minimize unplanned downtime. These real-world examples 
highlight the tangible benefits that can be achieved through the implementation of predictive 
maintenance strategies.[9] 



                                                                                                
 
                                                                                                                      
Predictive maintenance has been proven to be highly cost-effective, according to research 
conducted by the US Department of Energy. By implementing predictive maintenance software, 
companies can achieve significant financial gains and enjoy a remarkable return on investment 
(ROI). The benefits include a substantial reduction of maintenance costs by 25% to 30%, a drastic 
decrease in breakdowns by 70% to 75%, and a notable decline in downtime by 35% to 45%. In 
contrast, reactive maintenance is a traditional maintenance strategy where equipment or parts 
are repaired or replaced only after they have broken down or failed. Surprisingly, many companies 
still rely on reactive maintenance and organize their maintenance schedules accordingly. This 
means they wait for failures or breakdowns to occur before taking action to restore the 
equipment's functionality. However, this approach can be highly costly. Compared to proactive 
measures such as predictive maintenance, reactive maintenance can result in expenses that are 
four to five times higher. Immediate costs incurred with reactive maintenance include lost 
productivity due to unexpected failures, lack of inventory backup for quick repairs, and inefficient 
communication among maintenance teams. These consequences can be avoided by adopting 
predictive maintenance strategies, which enable early detection of potential issues and allow for 
proactive measures to be taken before failures occur.[10] 

Leaders at any business that depends on complex machinery or devices know that regular 
maintenance is essential to smooth and efficient operations. Without timely maintenance, 
machinery breaks down, leading to downtime, costly repairs and sometimes even replacement. 
The common practice of preventive maintenance entails regularly inspecting equipment and 
tuning it up, before it needs repairs. But the emerging practice of predictive maintenance aims to 
build upon preventive approaches and make them more efficient and cost-effective. When a 
breakdown occurs, unexpected equipment downtime is the most dreaded consequence, along 
with poor workplace performance and unplanned expenses. Due to the early engagement and 
proactive service approach, downtimes can be avoided or planned ahead of time with minimal 
impact on the customer. In other words, by integrating predictive maintenance, equipment 
conditions are optimized which ultimately reduce machine downtime and directly influence 
the bottom line.[10] 

 

2.4 Condition Monitoring 
Initially, in order to ensure optimal performance and minimize downtime, it is crucial to identify 
the conditions that need to be monitored for each machine. This analysis may involve visual 
inspections, auditory checks, thermal observations, or a combination of these and other criteria. 
The next technological step is to determine the correct sensors and monitoring tools that need to 
be installed for each machine.[8] 

Vibration analysis is an effective method for predicting potential problems with machinery. By 
analyzing small changes in vibration patterns, imbalances or misalignments can be identified, 
while high levels of vibration may indicate issues with bearings or other machine components. 
Vibration analysis can detect these issues early on, allowing for prompt corrective action to be 
taken. Sound and ultrasonic analysis can also provide valuable insights by identifying changes in 



                                                                                                
 
                                                                                                                      
normal sound patterns that may indicate wear or other types of deterioration. Ultrasonic analyses 
can further help in determining the overall health of a system by translating high-frequency 
sounds, such as those produced by steam or air leaks, into the audible range. Infrared analysis 
is another method that can uncover hidden issues. By using thermography to translate 
temperature changes into a visible spectrum, even slight deviations from normal operational 
temperatures can provide early warning signs of impending problems. Fluid analysis is essential 
for the proper maintenance of machinery. Beyond simply monitoring fluid levels and temperature, 
a physical and chemical analysis of fluids can provide critical information about the condition of 
mechanical components. By detecting the rate of degradation in coolants and lubricants, 
preventive steps can be taken when necessary. Other predictive maintenance technologies are 
available to cater to specific industrial needs. These include laser alignment, electrical circuit 
monitoring, crack detection, corrosion monitoring, and electrical resistance measurements. [8] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      

3.Machine Learning 
Machine Learning is a subset of Artificial Intelligence (AI) and as a component of AI, machine 
learning enables computers to automatically learn from experience and develop without having 
to be programmed for anything. The creation of computer processes that can utilize data and 
learn from it independently is the focus of machine learning. In order to detect patterns in the 
data and build a knowledge base that can be utilized to make judgments in the future, learning 
as a process begins with the observation of data in the form of examples or some other sort of 
instruction.[11] 

It is understood that machine learning’s primary goal is to enable computer systems to 
automatically learn without human intervention or input while also enabling them to adapt to the 
demands of various situations. Computers may learn automatically without special programming 
or human interaction thanks to machine learning, which allows them to modify their behavior 
accordingly. They are able to learn and develop fundamental behavioral patterns for various 
classes, train the data, and provide predictions for them through exploratory data analysis and 
the use of computer algorithms. To identify patterns in the data and make the best judgments 
moving forward based on the examples, the learning process starts with observations that are 
examples or empirical outcomes. Given that each of the aforementioned concepts employ 
classification and regression, machine learning and exploratory data analysis are complementary 
ideas. Hence, Machine Learning retains the benefits that computers provide while also being tied 
to mathematical optimization approaches. As a result, machine learning is the process of building 
models or patterns using a dataset and a computer system. Classification and regression are the 
most well-known approaches that have been created and employed, depending on the nature of 
the problem. [11] 

Supervised learning  

The ability of a machine learning model to learn the function that translates an input into an 
output based on examples of input-output pairs is called Supervised Learning. A model of this 
type takes the function from a labeled data set made up of training samples. In supervised 
learning, each sample consists of an input item and a target value. The training data are examined 
by such an algorithm, which then deduces a function that may be applied to assign fresh samples. 
The program should ideally be able to correctly predict the label from unidentified samples.[12] 

Unsupervised Learning  

Unsupervised learning is a sort of algorithm that looks for patterns in uncategorized data. The 
objective is to force the machine to imitate, which is a crucial aspect of learning for humans, in 
order to construct an internal perspective of its surroundings, and then use that internal view to 
make content. It differs from supervised learning in that the computer organizes the data instead 
of a human expert by identifying patterns in the form of probability density functions. [12] 



                                                                                                
 
                                                                                                                      
Partial supervision learning  

A large family of machine learning algorithms known as semi-supervised learning makes use of 
both labeled and unlabeled data concurrently. This makes it a combination of supervised and 
unsupervised learning techniques. Partial supervised learning's central concept is to use data in 
different ways depending on whether or not they are labeled. In the case of labeled data, the 
method updates the model weights using supervised learning; in the case of unlabeled data, on 
the contrary, the approach minimizes the difference in predictions across comparable data. [12] 

 

3.1 Data Analysis and Feature Engineering 

3.1.1 Data preprocessing 

The inductive links between the variables are significant. This implies that when one variable 
changes, it is only natural for another to do so as well. Finding the connections between the data 
and the speed at which these connections may be made are two difficulties that arise. The precise 
use of the appropriate tools and models for each data set, is essential to the validity of these 
linkages. Data preprocessing consists of a set of procedures that help to obtain a better picture 
of the data. The most common problem found in data encountered by analysts is the presence 
of noise. Noise in data is the existence of incorrect values within a data set resulting from data 
mining. Data that has errors and outliers, i.e., unhelpful information, is classified as noisy and 
can confuse the mining algorithms, and therefore needs to be addressed at the preprocessing 
stage.[5] 

3.1.2 Mathematical transformations 

The preprocessing of data plays a crucial role in building an effective prediction model. It is 
essential to ensure that the data is in a manageable and suitable form for accurate analysis. 
Different models may have varying requirements for data processing, ranging from no processing 
at all to specific data transformations. One common aspect of data processing is the need for all 
the variables to be on the same scale or possess certain characteristics, such as symmetry. This 
ensures that the model can effectively interpret and utilize the data. To achieve this, several 
widely used methods are employed, including centering, scaling, and skewness removal.[13],[14] 

Centering involves subtracting the average value from each data point of a predictor variable. 
This process effectively shifts the distribution to have a zero mean. By doing so, the model can 
focus on the relative differences between data points rather than absolute values. [13],[14] 

Scaling, on the other hand, aims to normalize the variables by dividing each value by the standard 
deviation. This results in the predictor variables having a common standard deviation of one. 
Scaling is particularly useful when the variables have different scales or units, as it brings them 

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe
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to a consistent level for analysis. It ensures that no single variable dominates the model due to 
its larger scale.[13],[14] 

Skewness removal is employed when the distribution of the data is skewed, meaning it is 
asymmetrical. In such cases, transforming the data using mathematical functions can help 
achieve a more symmetric distribution. Common transformations include applying the logarithm, 
square root, or inverse functions to the data. These transformations can mitigate the impact of 
extreme values and promote a more balanced distribution, which is beneficial for prediction 
models.[13],[14] 

When the values are distributed symmetrically or closely resemble a symmetric distribution, they 
exhibit a more desirable behavior in prediction models. Symmetric distributions tend to align with 
the assumptions made by many statistical models, leading to more reliable and accurate 
predictions.[13],[14] 

In summary, data processing techniques like centering, scaling, and skewness removal play a 
vital role in preparing the data for prediction models. These methods ensure that the data is in a 
manageable form, with variables on the same scale and possessing desired characteristics, 
ultimately enhancing the performance and interpretability of the prediction model. [13],[14] 

3.1.3 Feature Engineering 

The act of choosing, modifying, and converting unprocessed data into features is known as feature 
engineering. It is important, to create and train better features, in order to make machine learning 
effective. A machine learning approach, called feature engineering, uses data to generate new 
variables, that are not present, in the training set. With the aim of streamlining and accelerating 
data transformations, while also improving model accuracy, it may generate new features for both 
supervised and unsupervised learning. For machine learning models, feature engineering is 
necessary. No matter the architecture or the data, a bad feature will directly affect the model. A 
crucial stage in machine learning is feature engineering. The process of incorporating artificial 
features into an algorithm is referred to as feature engineering. This algorithm then makes use of 
these fake traits to enhance performance or, in other words, to provide better outcomes. As data 
scientists work with data almost exclusively, accuracy of the models becomes crucial. When feature 
engineering tasks are carried out properly, the final dataset is ideal and includes all of the 
significant elements that have an impact on the business problem. The most precise prediction 
models and the most beneficial insights are generated as a result of these datasets.[15] 

Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is a powerful and straightforward method that can greatly 
enhance our understanding of data by examining its qualities. This approach is often employed 
when the objective is to generate new hypotheses or identify patterns within the data. It is 
particularly useful when dealing with large volumes of unanalyzed qualitative or quantitative 
data.[15] 
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Outlier Treatment 

One important aspect of feature engineering, is outlier treatment, which involves eliminating 
outliers from a dataset. By removing outliers, one can obtain a more accurate representation of 
the data across various scales, ultimately impacting the performance of the models. The magnitude 
of this impact may vary depending on the specific model being used. For example, linear regression 
is highly sensitive to outliers. Therefore, it is crucial to address outliers before training the models. 
Some models are not affected by outliers, such as Tree-based models and Support Vector 
Machines. For example, in Tree-based models, the prediction is based on logical statements made 
with smaller portions of the data, such as “if predictor A is greater than X, predict the class to be 
Y”. In Support Vector Machines, some parts of the data aren’t regarded and such values that are 
very far from the rest of the data influence the prediction threshold very little. [13],[14],[15] 

There are several strategies available for handling outliers in data analysis. The first strategy is 
removal, which entails deleting data entries that contain outliers. However, it is important to 
consider that if outliers are present across multiple variables, this approach may result in a 
significant loss of data, potentially impacting the overall analysis. An alternative approach is 
replacing values. In this method, outliers are treated as missing values and substituted with 
suitable imputation techniques. By replacing these extreme values with estimated values based on 
the remaining dataset, one can maintain the overall distribution while mitigating the influence of 
outliers. Another technique is capping, where outlier values are replaced with either an arbitrary 
value or a value obtained from the distribution of the variable. This method ensures that extreme 
values are substituted with more reasonable values, reducing their impact on subsequent 
analyses.[13],[14],[15] 

By employing these strategies, analysts can effectively manage outliers in their datasets, improving 
the accuracy and reliability of their analysis. It is essential to carefully consider the specific 
characteristics of the data and the goals of the analysis when selecting the appropriate outlier 
treatment method.[15] 

Discretization 

Another technique commonly used, is discretization. Discretization is the process of converting 
continuous variables, models, or functions into discrete ones. This is achieved by constructing a 
series of continuous intervals, also known as bins, that span the range of the desired variable, 
model, or function. Discretization can be particularly useful when dealing with data that contains 
a large number of distinct values, as it simplifies the analysis by reducing the number of unique 
categories.[15] 

Overall, exploratory data analysis, coupled with outlier treatment and discretization techniques, 
provides valuable insights into the data, facilitates the discovery of patterns, and enables more 



                                                                                                
 
                                                                                                                      
accurate modeling and analysis. By thoroughly understanding the characteristics and peculiarities 
of the data, we can extract meaningful information and make informed decisions. [15] 

 

Principal Component Analysis 

The aim of Principal Component Analysis (PCA) is to find a set of linear combinations of the 
predictors that have the highest variance, otherwise known as the principal components. To 
achieve this, the first principal component is determined by finding the linear combination of 
predictors with the greatest possible variability. Following this, subsequent principal components 
are calculated to capture any remaining variation while remaining uncorrelated to all previous 
principal components. The key advantage of PCA is that it produces uncorrelated components, 
which is why it is a popular method for data reduction. In some predictive models, uncorrelated 
or low correlation predictors are preferred for improved numerical stability and optimized 
solutions.[13] 

PCA is a method that generates new predictors suited to these types of models. Initially, PCA 
prioritizes predictors with greater variation by searching for linear combinations that maximize 
variability. In the case of predictors with different orders of magnitude, the first few components 
will summarize higher magnitude predictors, while the later components will summarize lower 
variance predictors. Thus, higher variability predictors will have larger PC weights on the initial 
components. It is noteworthy that PCA identifies data structure based on measurement scales 
instead of significant relationships that suit the current problem. As most data sets consist of 
predictors on different scales and skewed distributions, it is recommended to transform skewed 
predictors and center and scale the predictors beforehand to prevent PCA from summarizing 
distributional differences and predictor scale information. Centering and scaling allow PCA to 
uncover the underlying relationships within the data without bias from its original measurement 
scales. After selecting the appropriate predictor variable transformations, PCA can be applied. 
Lastly, for data sets with numerous predictor variables, it is necessary to determine the 
components to retain. [13] 

One popular technique for determining the optimal number of components to retain when 
performing PCA is to use a heuristic approach that involves generating a scree plot. This type of 
plot displays the ordered component number on the x-axis and the corresponding amount of 
summarized variability on the y-axis. Typically, the first few principal components will capture a 
large proportion of the total variability in the data, resulting in a sharp drop-off in the scree plot. 
Beyond this point, additional components will contribute less and less to the overall variability 
until the plot levels off. 

By examining the scree plot, analysts can determine the point at which the rate of decrease in 
summarized variability slows down and the curve begins to level off. In general, the optimal 
number of components to retain can be selected by identifying the component number just before 
this leveling off point. For example, in Figure 3-1, it is clear that the curve begins to level off after 



                                                                                                
 
                                                                                                                      
component 5, suggesting that the first four principal components would be most useful in 
summarizing the variability in this dataset. 

Using a heuristic approach such as this can help to simplify the PCA process by providing a 
straightforward method for identifying the most informative principal components. By retaining 
only the most informative components, analysts can reduce the dimensionality of their data and 
provide a more concise summary of the underlying patterns and relationships within the original 
dataset. [13] 

 

Figure 3-1 Plot of the percentage of variance of each component [13] 

 

Another exploratory use of PCA is characterizing which predictors are associated with each 
component. Recall that each component is a linear combination of the predictors and the 
coefficient for each predictor is called the loading. Loadings that are near zero imply that the 
predictor variable had minimal effect on that particular component. This feature of PCA enables 
one to identify and interpret the significance of individual predictors in the identification of a given 
principal component. Therefore, exploring the loadings of a dataset can lead to a better 
understanding of its underlying structure and provide valuable insights into the relationship 
between inputs. [13] 

 

 



                                                                                                
 
                                                                                                                      

 

Figure 3-2 Example of PCA with three components [13] 

 

Missing Values 

Another problem that occurs in predictors is missing values. In some cases, the values are missing 
because the values are under a limit of detection and in these cases, they are often given a 
random value from zero to that limit. The existence of missing values is mostly connected to the 
predictor, rather than the sample. If the number of missing values is substantial, then that 
predictor is removed from the model. Though, some models are unaffected by missing values. 
Moreover, when missing values burden the model, it is possible that they are imputated and this 
can be achieved by constructing a predictive model for the imputation of the data. A usual 
imputation method is K-Nearest Neighbours that will be thoroughly analysed later. [13] 

Removing Predictors 

Removing predictors can potentially improve the model. That happens because fewer predictors 
decrease the complexity of the model, thus the computational time is also decreased. In addition, 
the removal of predictors that are greatly correlated, is beneficial because providing the same 



                                                                                                
 
                                                                                                                      
information only burdens the model. Also, the removal of predictors with problematic values, 
increases the model’s efficiency and stability.  [13] 

Correlations between predictors 

Sometimes, there is a relationship between predictors and they are correlated. In order to 
calculate that, a correlation matrix can be made, which shows the correlation between the 
predictors. Generally, strongly related predictors are avoided because they make the model more 
complex without improving it. [13] 

Adding Predictors 

Mostly for categorical predictors, like gender or race etc, predictors can be decomposed in the 
form of dummy variables. In order to form the dummy variables, the data is disintegrated and 
categorised. The new categories formed is matched with a different dummy variable that usually 
has a value of 1 or 0. [13] 

Binning 

The main motivation of binning is to make the model more robust and prevent overfitting, 
however, it has a cost to the performance. Every time something is binned, information is sacrificed 
and the data is more regularized. The trade-off between performance and overfitting is the key 
point of the binning process. For numerical columns, except for some obvious overfitting cases, 
binning might be redundant for some kind of algorithms, due to its effect on model performance. 
However, for categorical columns, the labels with low frequencies probably affect the robustness 
of statistical models negatively. Thus, assigning a general category to these less frequent values 
helps to keep the robustness of the model. For example, if the data size is 100,000 rows, it might 
be a good option to unite the labels with a count less than 100 to a new category 
like ‘Other’.[14],[15] 

 

One-hot encoding 

One-hot encoding is a widely used technique in machine learning for encoding categorical 
variables. This method transforms categorical data, which can be difficult for algorithms to 
interpret, into a numerical format that facilitates analysis and modeling. It achieves this by 
spreading the values in a column across multiple flag columns and assigning binary values of 0 or 
1 to indicate the presence or absence of a particular category.[14] 

The process of one-hot encoding involves creating new binary columns, each corresponding to a 
unique category in the original categorical column. If there are N distinct values in the column, it 
is sufficient to map them to N-1 binary columns. The reason for this is that the absence of a 



                                                                                                
 
                                                                                                                      
category can be inferred from the absence of a 1 in all the binary columns. Hence, the missing 
value can be deduced without the need for an additional column.[14] 

The term ‘one-hot’ in one-hot encoding refers to the representation of each category as a vector 
with a single element set to 1, indicating its presence, and all other elements set to 0. This binary 
representation effectively captures the relationship between the original categorical column and 
the encoded columns. One-hot encoding allows algorithms to process categorical data and 
leverage the information it contains without losing any significant details. By converting categorical 
variables into a numerical format, it enables the grouping and comparison of categories, as well 
as the calculation of distances between different categories. This encoding technique is particularly 
useful in various machine learning tasks, such as classification and clustering, where categorical 
variables need to be incorporated into models that require numerical inputs. It helps algorithms 
interpret and analyze categorical data more effectively, enhancing the performance and accuracy 
of machine learning models. 

 

Grouping Operations 

In most machine learning algorithms, the training dataset follows a structure where each instance 
is represented by a row, and each column corresponds to a distinct feature of that particular 
instance. This type of organized data is commonly referred to as "Tidy" data. However, it is 
important to note that many datasets often do not conform to the tidy data definition mentioned 
earlier. This deviation arises due to instances having multiple rows associated with them. In such 
scenarios, a common approach is to group the data based on the instances, resulting in each 
instance being represented by a single row. The key focus during these group by operations is to 
determine the appropriate aggregation functions for the features. When dealing with numerical 
features, it is often convenient to use aggregation options such as the average or sum functions. 
On the other hand, handling categorical features presents a greater complexity in selecting suitable 
aggregation methods. [14] 

 

Categorical Column Grouping 

When dealing with categorical columns, there are several options available for grouping and 
encoding the data. The first option involves selecting the label with the highest frequency, 
essentially performing a ‘max’ operation for categorical columns. This approach identifies the most 
common label within each group and assigns it as the representative value. It is a simple yet 
effective method for encoding categorical data. Another approach is to create a pivot table. This 
method is similar to the encoding technique discussed earlier but with a slight difference. Instead 
of using binary notation, it utilizes aggregated functions to define values for the grouped and 
encoded columns. This approach proves beneficial when the goal is to move beyond binary flag 
columns and consolidate multiple features into aggregated features, which often provide more 



                                                                                                
 
                                                                                                                      
informative representations of the data. Lastly, one can apply a group by function after performing 
one-hot encoding. This approach retains all the data while simultaneously transforming the 
encoded column from a categorical to a numerical representation. This can be particularly useful 
when further analysis or modeling requires numerical input rather than categorical data.[15] 

 

Numerical Column Grouping 

When it comes to grouping numerical columns, two commonly used aggregation functions are the 
sum and mean functions. The choice between these functions depends on the specific meaning 
and purpose of the feature being analyzed. The sum function is often preferred when the numerical 
column represents a quantity that can be accumulated or added up. For example, if one is dealing 
with a dataset of sales transactions and has a numerical column representing the total revenue 
generated from each transaction, using the sum function would allow the user to group and 
calculate the total revenue for different categories or subsets of the data. This can be useful when 
trying to understand the overall revenue contribution from various factors or when comparing the 
total values among different groups. On the other hand, the mean function is commonly used 
when the numerical column represents an average or a measure of central tendency. For instance, 
if  the user has a dataset of student grades and a numerical column represents the scores achieved 
in a particular subject, using the mean function would allow them to calculate the average score 
for different groups or categories. This can provide insights into the performance level or the 
typical scores attained within each group. Ultimately, the selection of the sum or mean function 
depends on the specific nature of the numerical column and the analytical goals. Both functions 
serve different purposes, with the sum function focusing on the accumulation or total value, while 
the mean function emphasizes the average or central tendency of the data.[15] 

 

3.2 Classification algorithms 

Classification is a predictive modelling technique that involves utilizing input variables to estimate 
a mapping function, enabling the identification of discrete output variables such as labels or 
categories. The primary task of a classification algorithm is to predict the label or category 
associated with a given set of input variables. While classification methods can incorporate both 
discrete and real-valued variables, the key requirement is that instances must be assigned to one 
of two or more distinct classes.[16] 

Classification algorithms are employed to make predictions about data. These algorithms operate 
by utilizing a provided dataset that has already been categorized into two or more distinct classes. 
This labeled dataset serves as the input, enabling the generation of a classification model. Once 
the model is created, it can be utilized to assign new, unlabeled data to the appropriate class 
based on the learned patterns and characteristics observed in the labeled dataset. [17] 

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114#3abe
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The initial dataset is typically divided into two main groups: the training dataset and the test 
dataset. The training dataset is used to construct the classification model, while the test dataset 
is employed to evaluate the performance of the model. To ensure the validity of the model, 
various partitioning techniques, such as Cross-Validation, are used for validation.               Cross 
Validation involves dividing the dataset into a predetermined number (k) of groups or folds. One 
of these groups is designated as the test set, while the remaining groups serve as the training 
set. This process is repeated k times, with each group being used as the test set once. Cross-
Validation is a versatile approach that works effectively on different types of datasets. However, 
alternative partitioning methods, such as fixed partitioning, can be employed when dealing with 
exceptionally large datasets. [17] 

It's worth noting that different classification approaches can vary significantly from one another. 
There are various algorithms and techniques available, each with its own distinct characteristics 
and suitability for different types of problems. To assess the performance of various classification 
algorithms, several metrics are computed to evaluate the quality of the constructed model and 
determine if any adjustments are needed. One key metric is accuracy, which measures the 
proportion of correctly classified data compared to the total data in the test dataset. Additionally, 
for each class, metrics like recall and precision are determined. Recall refers to the ratio of data 
accurately classified in a specific class to the total data belonging to that class. It focuses on 
capturing how well the model identifies instances of a particular class correctly. On the other 
hand, precision represents the ratio of data correctly classified in a specific class to the total data 
assigned to that class. Precision measures the model's ability to accurately label instances for a 
given class. It is crucial to consider recall and precision alongside accuracy, as accuracy alone 
may not fully characterize the model's output. This becomes particularly important when dealing 
with imbalanced datasets, where the distribution of classes is uneven. In such cases, evaluating 
recall and precision helps provide a more comprehensive understanding of the model's 
performance and its ability to handle the imbalanced nature of the data. [17] 

3.2.1 SVM (Support Vector Machines) 

The support vector machine is likely the most widely used supervised learning approach for 
classification and regression problems. Nonetheless, it is primarily largely employed in machine 
learning for classification challenges. As seen in the figure 3-3, the purpose of this technique is 
to discover the best line, or decision boundary, for classifying the n-dimensional space into classes 
so that more data points may be conveniently placed in the correct class in the future. The 
hyperplane is the ideal decision boundary, and the support vector machine selects the outermost 
vectors that contribute to build it.[5] 

 



                                                                                                
 
                                                                                                                      

 

Figure 3-3 Support Vector Machines algorithm [5] 

 

The linear type is a classifier for linearly separable data, which implies that if a dataset can be 
classified into two classes using a single straight line, it is linearly separable data, and the classifier 
is linear. Non-linear data is non-linearly separable data, which means that if a dataset cannot be 
classified using a straight line, it is non-linear data, and the classifier employed is non-linear. The 
benefits of employing support vector machines include the fact that they operate well in high-
dimensional spaces and that even when the number of dimensions exceeds the number of 
samples, the approach remains effective. Furthermore, because it only employs a subset of 
training points in the decision function, the support vector machine is cheap in terms of computing 
memory and adaptable because alternative functions may be given for the choice 
function.[5],[13] 

One downside of utilizing a support vector machine is that it is vital to avoid overfitting when 
selecting the normalization functions and conditions if the number of features exceeds the number 
of samples. Lastly, because they are obtained from a time-consuming five-fold cross-validation 
procedure, support vector machines do not provide direct probability estimates.[5],[13] 



                                                                                                
 
                                                                                                                      
3.2.2 K – Nearest Neighbours 

 

Figure 3-4 K nearest neighbours algorithm [18] 

The K Nearest Neighbors (KNN) method is used to address classification and regression issues. 
The approach used to produce these predictions works by computing the distance between the 
test and training data, assuming that the difference between comparable data is modest. Based 
on the previously registered locations from the training data, it enables the identification and 
categorization of new data while taking their features into consideration. The algorithm will 
register these features of the new sites and categorize them based on their proximity to other 
places, which can be seen in the figure 3-4. The parameter "K" in KNN refers to the number of 
nearest neighbors, i.e. the space produced by these nearest points. The distance between the 
new and training data points is determined by the value of K. K is a positive integer that is 
normally small and should be odd.[12] 

 

3.2.3 Naive Bayes 

Bayesian networks are a type of probabilistic machine learning technique that is based on the 
Bayes theorem and may be used for a variety of classification problems. Bayes' theorem is a 
straightforward mathematical method for calculating probability. Conditional probability is a 
measure of the likelihood of an event occurring if another event has already occurred. It is a 
classification strategy based on Bayes' theorem, which assumes prediction independence. Simply 
expressed, the Bayes classifier believes that the presence of one feature in a class has no bearing 
on the presence of other attributes.[5] 

Bayes’ Theorem is a method that calculates the probability of an event based on a set of other 
probabilities. Specifically, it determines the posterior probability of event A given that event B has 



                                                                                                
 
                                                                                                                      
occurred. Utilizing Bayesian networks offers several benefits. First, it is a simple and efficient 
technique for accurately predicting multiple classifications and determining the order of a test 
data set. Second, when the independence criteria are met, Bayesian networks outperform models 
like logistic regression while using less training data. Additionally, they demonstrate superior 
performance when dealing with input variables that have classes, especially in comparison to 
numerical input variables. Despite these advantages, there are drawbacks to employing Bayesian 
networks. For instance, if a category variable in the test data set includes a category not present 
in the training data set, the model will automatically assign a probability of zero, rendering it 
unable to make accurate forecasts. This issue is known as zero frequency. Moreover, Bayesian 
networks are often considered poor estimators, necessitating caution when interpreting prediction 
probabilities. Lastly, the assumption of independent predictions poses another weakness, as 
obtaining a group of entirely independent predictors is challenging in practical applications.[5] 

 

3.2.4 Decision Trees 

A dynamic and well-liked technique for classification and regression applications is the decision 
tree. Various properties are examined retroactively when building decision trees, and the attribute 
that best separates the data is utilized in each node. By employing the characteristics that are 
most effective for the job, the training sample is segregated using decision trees. The shortest 
tree that can be used to correctly represent the input-output connections while avoiding 
overfitting. Data and the best feature are first placed into the root node of decision trees so that 
they may be segregated based on their metrics.[11] 

In contrast to other supervised learning algorithms, the decision tree method may be utilized to 
resolve regression and classification issues. The purpose of employing a decision tree is to build 
a training model that can be used to predict the order or value of the target variable by learning 
fundamental choice rules gleaned from previous data. The ‘root’ of the decision tree serves as 
the beginning point for predicting a class label in a record. The root attribute and the record's 
attribute values are contrasted. Based on the comparison, the branch associated with that value 
is followed and moved on to the following node. There are two different forms of decision trees, 
depending on the type of variable. the continuous variable decision tree, where a continuous 
variable decision tree is one that has a continuous target variable, and the categorical variable 
decision tree, which is a categorical variable decision tree with a categorical target variable.[5] 

Decision trees have a problem in that they are extremely scalable, especially if a database has a 
lot of columns. A procedure called as decision tree pruning is used to address this tree overload. 
Pruning a decision tree involves deleting decision nodes one at a time, beginning with the leaf 
node, to preserve overall correctness. This is accomplished by splitting the actual training set into 
training and validation portions.[5] 

 



                                                                                                
 
                                                                                                                      
3.2.5 Random Forest 

Using decision tree techniques, the random forest is a supervised machine learning approach. It 
uses machine learning to address classification and regression problems. It makes use of 
ensemble learning, a method for mixing many classifiers to solve challenging issues. A random 
forest algorithm is made up of several decision trees and based on the decision tree's predictions, 
this algorithm decides the result. By averaging the results of several trees, the prediction is made 
and when there are more trees, the accuracy of the results get better. When coping with missing 
data, the random forest method performs more accurately than the decision tree approach. 
Moreover, it avoids the issue of overfitting the decision tree by randomly selecting a subset of 
features at each random forest tree's node split point.[5] 

The main difference between random forest and decision tree methods is that the latter randomly 
constructs root nodes and divides nodes. The random forest uses the storage approach to 
produce the necessary forecast. Storage necessitates the usage of several samples as opposed 
to a single sample of data. A collection of attributes and observations used to generate predictions 
is known as a training dataset. The output of decision trees from the random forest method varies 
depending on the training data used.[5] 

The outputs will be graded, and the best one will be chosen as the ultimate output. An ensemble 
approach is used by random forest classification to provide the desired outcome. The training 
data is used to train different decision trees. After the nodes are separated, a random selection 
of observations and characteristics are included in this dataset. The random forest algorithm's 
capacity to be applied to both regression and classification with accurate predictions is one of its 
benefits. The random forest algorithm is better at predicting outcomes than the decision tree 
approach and is able to handle big data sets with ease. Nevertheless, it has certain drawbacks, 
including the need for more time and advanced processing resources as compared to the decision 
tree approach.[5] 

3.2.6 Logistic Regression 

Despite its name, logistic regression is not a regression model; rather, it is a classification model. 
In terms of problems involving binary and linear classification, it is a fairly efficient method. A 
classification model with linearly separable categories that is easy to use and yields outstanding 
results. It is a commonly used classification technique in the industrial sector. The logistic 
regression model is a statistical method for binary classification that may be expanded to multi-
class classification, just like Adaline and Perceptron.[5] 

The training data must be used to construct the logistic regression algorithm's coefficients. For 
this, maximum likelihood estimate is employed. Maximum likelihood estimate is a common 
learning approach utilized by many machine learning algorithms, despite the fact that 
assumptions are made on the distribution of the data. Using the best coefficients, a model could 
forecast values for the default class that were very near 1, and for the other class, values that 
were very near 0. Maximum likelihood logistic regression seeks coefficient values that minimize 



                                                                                                
 
                                                                                                                      
the difference between the model's projected probability and the actual probabilities found in the 
data. The emphasis of the methodology, the logistic function, led to the naming of the technique 
logistic regression. In order to describe the features of population expansion in ecology, such as 
how it expands quickly and finally approaches the carrying capacity of the ecosystem, statisticians 
developed the logistic function, often known as the sigmoid function. Each real-valued integer 
may be converted to a number between 0 and 1, but never exactly between those two points, 
using this S-shaped curve.[5] 

3.3 Regression algorithms 

Regression methods are employed to predict continuous values by establishing a mapping 
function between the input variables and the output variable. The main focus of regression 
problems is to estimate this mapping function accurately. Regression models are particularly 
useful when the target variable is a numerical value, such as the remaining useful life of a 
component, or a probability, such as the likelihood of failure for a part in a machine.[16] 

A wide range of regression algorithms exists to tackle different types of problems and 
accommodate various data characteristics. These algorithms offer diverse approaches and 
techniques to capture the underlying relationships between the input and output variables. Some 
commonly used regression algorithms include linear regression, polynomial regression, support 
vector regression, decision tree regression, random forest regression, and neural network 
regression. These algorithms work with the same principles in Regression as in Classification and 
they have small differences to adapt to the different goal of each method.  

Linear regression is a straightforward and widely applied algorithm that assumes a linear 
relationship between the input and output variables. Polynomial regression, on the other hand, 
extends the linear model by introducing higher-degree polynomial terms to capture non-linear 
relationships.[16] 

These are just a few examples of regression algorithms, and the choice of algorithm depends on 
the specific problem, the nature of the data, and the desired accuracy and interpretability of the 
model. 

3.3.1 Simple linear regression 
 

In the context of quantitative variables, simple linear regression is a fundamental statistical 
technique used to estimate the relationship between an independent variable and a dependent 
variable. It aims to establish a linear connection between the two variables by fitting a straight 
line to the data. The independent variable, also known as the predictor or explanatory variable, 
is the variable that is believed to have an impact on the dependent variable. The dependent 
variable, also known as the response variable or outcome variable, is the variable being predicted 
or explained by the independent variable.[16] 



                                                                                                
 
                                                                                                                      
The objective of simple linear regression is to find the best-fitting line that minimizes the 
difference between the observed data points and the predicted values on that line. This line is 
determined by estimating the slope and intercept parameters. The slope represents the change 
in the dependent variable for each unit change in the independent variable, while the intercept 
indicates the value of the dependent variable when the independent variable is zero. By analyzing 
the relationship between the independent and dependent variables through linear regression, one 
can quantify the strength and direction of the association. The resulting linear model can then be 
used to make predictions or draw inferences about the dependent variable based on specific 
values of the independent variable.[16] 

It is important to note that the assumptions of simple linear regression should be carefully 
considered, such as linearity, independence, constant variance (homoscedasticity), and normality 
of residuals. Violations of these assumptions may impact the accuracy and reliability of the 
regression analysis, requiring further exploration and potential adjustments. Simple linear 
regression serves as a foundational tool in data analysis and provides a basis for more advanced 
regression techniques. It is commonly used in various fields, including economics, social sciences, 
finance, and engineering, to uncover relationships and make predictions based on quantitative 
variables.[16] 

 

3.3.2 Multiple linear regression 
Multiple linear regression is an extension of simple linear regression that allows for the prediction 
of a dependent variable based on the values of two or more independent variables. It is a 
statistical technique that enables the examination of the relationship between multiple predictors 
and a single response variable. 

In multiple linear regression, the goal is to establish a linear equation that best describes the 
relationship between the dependent variable and the independent variables. The equation takes 
the form: 

 
Y = β₀ + β₁X₁ + β₂X₂ + ... + βₚXₚ + ɛ 

Here, Y represents the dependent variable, β₀ is the intercept, β₁, β₂, ..., βₚ are the regression 
coefficients (also known as slopes), X₁, X₂, ..., Xₚ represent the independent variables, and ɛ 
denotes the error term. 

The coefficients (β₁, β₂, ..., βₚ) in the equation provide the estimated change in the dependent 
variable associated with a one-unit change in each respective independent variable, holding other 
variables constant. The intercept (β₀) represents the estimated value of the dependent variable 
when all independent variables are zero.[16] 



                                                                                                
 
                                                                                                                      
Multiple linear regression assumes that the relationship between the dependent variable and the 
independent variables is linear. It also assumes that the error term (ɛ) follows a normal 
distribution with a mean of zero and constant variance. Additionally, it assumes that the 
independent variables are not highly correlated with each other (multicollinearity). By fitting the 
multiple linear regression model to the data, analysts can examine the statistical significance of 
each independent variable and assess their individual contributions to the prediction of the 
dependent variable. The model can be used to make predictions, test hypotheses, and gain 
insights into the relationships between the variables. Before conducting multiple linear regression, 
it is important to assess the assumptions of the model, such as linearity, independence of errors, 
constant variance, normality of residuals, and absence of multicollinearity. Violations of these 
assumptions may require additional steps, such as transforming variables or considering 
alternative regression techniques. 

Multiple linear regression is widely used in various fields, including social sciences, economics, 
finance, marketing, and healthcare, to analyze complex relationships and make predictions based 
on multiple independent variables. 

[16] 

 

 3.3.3 Polynomial regression 
Polynomial regression is a regression technique used to model and identify nonlinear relationships 
between dependent and independent variables. While simple linear regression assumes a linear 
relationship, polynomial regression allows for more flexible modeling by introducing polynomial 
terms. In polynomial regression, the relationship between the dependent variable and 
independent variable(s) is represented by a polynomial equation. The equation takes the form: 

Y = β₀ + β₁X + β₂X² + ... + βₙXⁿ + ɛ 

Here, Y represents the dependent variable, X represents the independent variable, β₀, β₁, β₂, ..., 
βₙ are the coefficients, X², X³, ..., Xⁿ are the polynomial terms of X up to the nth degree, and ɛ 
represents the error term. 

By including polynomial terms in the equation, polynomial regression can capture and model 
nonlinear relationships that cannot be adequately represented by a straight line. The degree of 
the polynomial (n) determines the complexity of the model and the number of bends or curves it 
can accommodate. The coefficients (β₀, β₁, β₂, ..., βₙ) in the equation are estimated using 
techniques such as least squares, which minimizes the sum of the squared differences between 
the observed and predicted values. These coefficients indicate the contribution and direction of 
each polynomial term in the model.[16] 



                                                                                                
 
                                                                                                                      
Polynomial regression can be beneficial when the relationship between the variables is expected 
to exhibit curvature or when simple linear regression fails to capture the underlying pattern. 
However, it is important to avoid overfitting the data by selecting an appropriate degree of the 
polynomial. Overfitting occurs when the model fits the training data too closely but performs 
poorly on new, unseen data. Polynomial regression is widely used in various fields, including 
physics, biology, finance, and engineering, where nonlinear relationships are prevalent. It allows 
for more flexible modeling and provides a better fit for complex data patterns, enabling 
researchers and analysts to gain insights and make predictions beyond the constraints of linear 
relationships.[16] 

The efficiency of a model is often assessed using some measure of accuracy when it predicts a 
numeric outcome. Yet, there are other metrics for gauging accuracy, each with subtle differences. 
Relying only on one statistic makes it difficult to grasp a model's benefits and drawbacks. 
Understanding if the model is suitable for purpose requires looking at visualizations of the model 
fit, particularly residual plots. This chapter talks about these methods.[13] 

 

3.3.4 Regression vs Classification 
The main distinction between classification and regression is that although classification aids in 
the prediction of discrete class labels, regression assists in the prediction of continuous quantities. 
The two categories of machine learning algorithms also have certain similarities. An integer-
formatted discrete value can be predicted using a regression technique. A continuous value can 
be predicted by a classification method as a class label probability. [16] 

For example, a dataset that includes student data from a specific university. Each student's height 
may be predicted in this situation using a regression algorithm based on factors including weight, 
gender, food, and field of study. As height is a continuous variable, regression is used in this 
situation. The height of a person can have any number of different values. [16] 

On the other hand, classification may be used to determine whether or not an email is spam. To 
determine the likelihood that an email is spam, the algorithm examines the sender's address and 
the email's keywords. A classification method may be used to identify whether it will be cold or 
hot based on the provided temperature measurements, similar to how a regression model can be 
used to forecast the temperature for the following day.[16] 

 

 

https://www.springboard.com/blog/data-science/regression-vs-classification/
https://www.springboard.com/blog/data-science/regression-vs-classification/
https://www.springboard.com/blog/data-science/regression-vs-classification/
https://www.springboard.com/blog/data-science/regression-vs-classification/


                                                                                                
 
                                                                                                                      

4.Application of PM in Bearing Failure 

4.1 Predictive failure models /Remaining Useful Life (RUL) 

Without a doubt one of the most important values in predictive maintenance is Remaining Useful 
Life. Remaining Useful Life (RUL), estimates the time a machine is able to operate before it fails. 
This way, the maintenance plan can be scheduled in order to ensure the machine’s efficient 
operation and avoid any possible malfunctions and minimize downtime. Depending on the 
available data, RUL can be calculated with various methods, by comparing its lifetime data to 
similar machine’s lifetime, by comparing it to Run-to-failure histories of similar machines and by 
comparing it to an indicator’s threshold value that detects failure 

The survival function plot in Figure 4-1 shows the probability that a battery will fail based on how 
long it has been in operation. The plot shows, for example, that if the battery is in operation for 
75 cycles, it has a 90% chance of being at the end of its life time.[19] 

 

Figure 4-1 Survivor Function plot of a battery [19] 

 

In the figure 4-2, the degradation profiles of historical run-to-failure data sets from an engine are 
shown in blue and the current data from the engine is shown in red. Based on the profile the 
engine most closely matches, the RUL is estimated to be around 65 cycles.[19] 



                                                                                                
 
                                                                                                                      

 

Figure 4-2 Similarity based plot of an engine [19] 

Figure 4-3 shows an exponential degradation model that tracks failure in a high-speed bearing 
used in a wind turbine. The condition indicator is shown in blue. The degradation model predicts 
that the bearing will cross the threshold value in approximately 9.5 days. The region shaded in 
red represents the confidence bounds for this prediction.[19] 

 

Figure 4-3 Degradation plot of a High-speed bearing in a wind turbine [19] 

 



                                                                                                
 
                                                                                                                      
4.2 Application of Feature Engineering  

As it was explained thoroughly before, for the calculation of the remaining useful life of a 
component and any predictive maintenance technique, the raw data have to be properly 
processed to be in a manageable from. That includes both, doing the proper mathematical 
transformations needed and selecting the predictors with the biggest merit. 

The dataset is collected from a 2MW wind turbine high-speed shaft driven by a 20-tooth pinion 
gear. A vibration signal of 6 seconds was acquired each day for 50 consecutive days. [20] 

The dataset is available on:  

https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data 

First of all, plotting the data in the time domain gives as an initial impression about them. From 
the figure 4-4, the vibration signals from the wind turbine bearing dataset exhibit a noticeable 
increasing trend in signal impulsiveness when analyzed in the time domain. This implies that the 
signals are becoming more impulsive or abrupt over time. To quantify the impulsiveness of these 
signals and potentially use them as prognostic features, various indicators can be employed. 
These indicators provide numerical measures that capture different aspects of impulsiveness in 
the signal. [20],[21] 

One such indicator is kurtosis, which measures the heaviness of the tails of a distribution. A higher 
kurtosis value indicates a more impulsive or heavy-tailed distribution, suggesting the presence of 
abrupt changes or extreme values in the signal. Another indicator is the peak-to-peak value, 
which measures the difference between the highest and lowest points in a signal. A larger peak-
to-peak value suggests greater variations or spikes in the signal, indicating increased 
impulsiveness. Crest factors can also serve as useful indicators of impulsiveness. The crest factor 
represents the ratio of the peak amplitude of a signal to its root mean square (RMS) value. A 
higher crest factor indicates sharper peaks and a more impulsive signal. By calculating these 
indicators for the wind turbine bearing dataset, researchers and analysts can obtain quantitative 
measures of impulsiveness that can be used as prognostic features. These features can provide 
valuable insights into the condition and health of the bearings, allowing for the detection of 
potential faults or degradation over time. Machine learning algorithms can be trained on these 
features to develop predictive models for bearing performance and remaining useful life 
estimation, aiding in maintenance planning and preventing unexpected failures.[20],[21] 



                                                                                                
 
                                                                                                                      

 

Figure 4-4 Time domain representation of the collected data [20] 

 

Spectral kurtosis is considered a powerful tool for wind turbine prognosis in frequency domain. 
To visualize the changes in spectral kurtosis along time in the frequency domain, a plot can be 
created showing the spectral kurtosis values as a function of frequency and the measurement 
day.[20],[21] 

 

 



                                                                                                
 
                                                                                                                      

 

Figure 4-5 Frequency domain representation of Spectral Kurtosis [20] 

 

It is obvious from the figure 4-5, that an increasing mean value of spectral kurtosis at a specific 
frequency, such as around 10 kHz, suggests a gradual deterioration of the bearing condition as 
the machine operates. 

To mitigate the potential impact of noise and improve the robustness of the extracted features 
for remaining useful life (RUL) prediction, a causal moving mean filter is applied. The purpose of 
this filter is to smooth out the noise while preserving the trend and important information in the 
features. The causal moving mean filter operates by calculating the mean value of a lag window 
of 5 steps for each data point in the extracted features. The term ‘causal’ indicates that only past 
or current values are used in the filtering process, ensuring that no future values are included. 
This approach prevents any leakage of future information into the filtering process, maintaining 
the integrity of the time series data. By applying the causal moving mean filter, the noise with an 
opposite trend that could potentially harm RUL prediction is reduced. The filter effectively 
attenuates high-frequency variations or outliers that may introduce undesired fluctuations or 
distortions in the features. It is important to note that the choice of the lag window size (in this 
case, 5 steps) should be determined based on the characteristics of the data and the desired level 



                                                                                                
 
                                                                                                                      
of smoothing. A larger lag window can provide a smoother output but may also introduce more 
delay in capturing changes in the data. The results of smoothing are visible in the figure 4-6. 
[20],[21] 

 

Figure 4-6 Example of smoothing of SKMean [20] 

The application of the causal moving mean filter helps enhance the performance of feature-based 
analysis, particularly for metrics like monotonicity. Monotonicity, which measures the trend 
direction of a feature, may be adversely affected by noise. Smoothing the data with the causal 
moving mean filter improves the robustness of the monotonicity metric, allowing for more 
accurate assessment of the trend direction and aiding in the prediction of the remaining useful 
life of the system. In addition to visualizing the changes in spectral kurtosis over time, statistical 
features derived from the spectral kurtosis can serve as potential indicators of bearing 
degradation in the wind turbine system. Common statistical features, such as mean, standard 
deviation, and other descriptive statistics, can be calculated from the spectral kurtosis values at 
each frequency and measurement day. These features provide quantitative measures that 
summarize the distribution and behavior of the spectral kurtosis over time. By analyzing these 
statistical features, trends and patterns can be identified that are indicative of bearing 
degradation. The standard deviation of spectral kurtosis values can also provide valuable 
information. An increasing standard deviation may indicate higher variability or inconsistency in 



                                                                                                
 
                                                                                                                      
the spectral kurtosis, potentially reflecting irregularities or changes in the bearing 
condition.[20],[21] 

 

Figure 4-7 Monotonicity of the extracted features [20] 

In this example, Principal Component Analysis (PCA) is utilized for dimension reduction and 
feature fusion. The chosen features are selected from the figure 4-7 and they are those with 
monotonicity higher than 0.3. However, prior to performing PCA, it is important to normalize the 
features to ensure they are on the same scale. Normalization helps prevent any bias or undue 
influence from features with larger magnitudes. A good practice is to normalize the features using 
the mean and standard deviation obtained from the training data. By subtracting the mean and 
dividing by the standard deviation, the features are centered around zero with a standard 
deviation of one. This normalization process ensures that each feature contributes equally during 
the PCA analysis. Additionally, PCA coefficients, which represent the weights or loadings of each 
original feature in the principal components, are calculated based on the training data. These 
coefficients capture the relationship and importance of each feature in the dimension reduction 
process. It is worth noting that the normalization and PCA steps are applied to the entire dataset 
together to maintain the relationship between features and capture the most important 
information during dimension reduction. This consistent processing across the entire dataset 



                                                                                                
 
                                                                                                                      
helps maintain the integrity and coherence of the data, ensuring reliable and meaningful results 
in subsequent analysis or prediction tasks.[20],[21] 

 

Figure 4-8 PCA plot [20] 

It is obvious from the figure 4-8 that PCA 1 can properly describe the deterioration of the ball 
bearing because its values increase with the same rhythm as the degradation process advances. 
Thus PCA 1 can be used as a health indicator for the ball bearing. [20],[21] 

4.3 Classification approach 

In order to predict the remaining useful life of the ball bearing, two different classification 
algorithms were used. In this case, a specific value is not predicted, but the health indicator data 
is divided in different classes and each class represents a state of the health of the ball bearing. 
The two algorithms that were used, are the Support Vector Machines and the K-Nearest 
Neighbours and the data was divided in four classes, which are: ‘good condition’, ‘medium 
condition’, ‘bad condition repair soon’ and ‘repair asap’. The thresholds that were chosen to divide 
the classes, were a percentage of the maximum value of the health indicator.  The threshold of 
the “good condition” class is 45% of the maximum value of the health indicator, the threshold of 



                                                                                                
 
                                                                                                                      
the “medium condition” class is 70% of the maximum value of the health indicator, the threshold 
of the “bad condition repair soon” class is 86% of the maximum value of the health indicator and 
above that value the class is “repair asap”. First, the Support Vector Machines algorithm was 
made with the ‘fitcecoc’ function using MATLAB’s Statistics and Machine Learning Toolbox that is 
used for training multi-class classification models using the Error Correcting Output Codes (ECOC) 
framework. The ECOC framework is a strategy for decomposing a multi-class classification 
problem into multiple binary classification subproblems   

The results of the SVM algorithm were: 

 

Figure 4-9 Results of the SVM algorithm 



                                                                                                
 
                                                                                                                      
The K nearest neighbours algorithm was made with the ‘fitcknn’ function which is a function in 
MATLAB’s Statistics and Machine Learning Toolbox that is used for training a k-nearest neighbours 
classifier  

The results of the KNN algorithm were: 

 

Figure 4-10 Results of the KNN algorithm 



                                                                                                
 
                                                                                                                      
4.4 Degradation model approach 

As products are increasingly designed to have higher reliability and developed within shorter 
timeframes, it often becomes impractical to test new designs until they fail under normal 
operating conditions. In such cases, it is sometimes possible to estimate the reliability of unfailed 
test samples by relying on the accumulated test time data and making assumptions about the 
distribution. However, this approach typically introduces a significant level of uncertainty in the 
results. An alternative option in this scenario is to employ degradation analysis. Degradation 
analysis entails measuring performance data that directly correlates with the anticipated failure 
of the product in question. Numerous failure mechanisms can be directly linked to the degradation 
of specific product components, and by analyzing the degradation over time, analysts can 
extrapolate an estimated failure time. [22] 

In certain scenarios, it is feasible to directly assess the decline of a physical attribute over time, 
such as the wear of brake pads, the growth of a crack, or the deterioration of performance 
characteristics like battery voltage or the luminous flux of an LED bulb. These instances fall into 
the category of Non-Destructive Degradation Analysis. Conversely, in other situations, direct 
measurement of degradation may not be viable without invasive or destructive techniques that 
would impact the product's subsequent performance. Therefore, only a single degradation 
measurement can be obtained. For instance, measuring corrosion in a chemical container or 
evaluating the strength of an adhesive bond. These cases fall into the category of Destructive 
Degradation Analysis. Nevertheless, in both cases, it remains crucial to establish a threshold level 
of degradation or performance that indicates failure. [22] 

The analysis of Non-Destructive Degradation pertains to testing situations where multiple 
degradation measurements for each sample can be taken over time. To determine the appropriate 
failure level or degradation point leading to failure, basic mathematical models are utilized to 
extrapolate each sample's degradation measurements towards the point in time when failure is 
expected to occur. The extrapolated failure times are subsequently analyzed in the same manner 
as conventional time-to-failure data, as the number of samples being tested increases, so the 
level of confidence in the results increases . Following the recording of degradation information, 
the next step involves aligning the measurements with the defined failure level so as to estimate 
the failure time. [22] 

The exponential model is a widely used methodology in model-based studies. Originally, a 
Bayesian approach updated the model parameters, allowing for measured information 
integration. There have been various modifications and applications of the exponential model in 
health management and Remaining Useful Life (RUL) prediction. An improvement to the model 
involves updating parameters with multiple historical degradation signals acquired through 
condition monitoring. This integration leads to a more comprehensive analysis and model 
refinement. Researchers have also combined Bayesian updating with the Expectation 
Maximization (EM) algorithm to efficiently estimate the model parameters. This integration 
provides a closed-form RUL distribution, offering valuable insights into the remaining useful life 
of the system. [22] 



                                                                                                
 
                                                                                                                      
The exponential model is effective in predicting RUL for systems with exponential like degradation 
processes, making it a versatile and robust tool in multiple industries where accurate RUL 
prediction is critical for maintenance planning and decision-making. [22] 

A comparative study was conducted to analyze the efficacy of sensorless and sensor-rich 
strategies in Prognostics health management for ball screw systems. The researchers aimed to 
achieve early diagnosis, health assessment, and remaining useful life (RUL) prediction of the ball 
screw. The findings of their investigation revealed the significant value of torque signals in fault 
diagnosis and the identification of incipient failures, while the vibration signals exhibited a clear 
exponential degradation trend in the system. [23],[24],[25] 

Upon determining the degradation behavior, through the trend of the Health Indicator, the 
proposed method focused on estimating the RUL using an exponential model. This model 
effectively captured the time evolution of the Health Indicator and provided predictions of how 
long it would last before crossing the Failure Threshold. To construct the exponential degradation 
model, a Degradation Detection Threshold was established, enabling the prediction of future 
values of the Health Indicator. This model characterized the degradation behavior as an 
exponential stochastic process with an offset term. A comprehensive degradation model typically 
comprises both stochastic and deterministic components. The stochastic part accounts for the 
variation in the degradation process, while the deterministic part represents a constant physical 
phenomenon. [23],[24],[25] 

 

4.4.1 Exponential degradation model 

It was proven above that the model that best describes the degradation process of a ball bearing 
is an exponential degradation model. In further detail, the function that can calculate the health 
indicator of the bearing in the most efficient way is  

 

where h (t ) is the health indicator as a function of time. ϕ is the intercept term considered as a 
constant. θ and β  are random parameters determining the slope of the model, where θ is 
lognormal-distributed and β is Gaussian-distributed. At each time step t, the distribution 
of θ and β is updated to the posterior based on the latest observation of h (t ). ϵ  is a Gaussian 
white noise yielding to N (0,σ 2 ). The −𝜎𝜎2

2
 term in the exponential is to make the expectation 

of h (t ) satisfy. The selection of threshold is usually based on the historical records of the machine 
or some domain-specific knowledge. Since no historical data is available in this dataset, the last 
value of the health indicator is chosen as the threshold. In order, to calculate the remaining useful 
life, the predictive maintenance toolbox in matlab will be used. The prior of the slope parameters 



                                                                                                
 
                                                                                                                      

are chosen arbitrarily with large variances (E (θ )=1, Var(θ ) =106,         E ( β )=1,Var(β ) =106) 
so that the model is mostly relying on the observed data. Based on E [h (0)] =ϕ +E (θ ), 
intercept ϕ is set to −1 so that the model will start from 0 as well. An exponential degradation 
model is built with these parameters and using the built in functions, of the predictive 
maintenance toolbox, the remaining useful life is predicted and the figure is created.  

 

Figure 4-11 Exponential Degradation model plot 

 

4.4.2 Linear Degradation Model 

As explained in the previous chapter, the correct degradation model for the prediction of the 
remaining useful life of a ball bearing, is an exponential degradation model. Though, in some 
cases a linear model might be implemented to predict the remaining useful life. The main benefits 
are that the linear model is simpler and it requires less computational time. Using the least squares 
method, the line that best fits in the data can be found, and the slope and the intercept of the 
linear model can be estimated. A linear model based on the health indicator data can be 
constructed in MATLAB and the results are shown in figures 4-12 and 4-13 



                                                                                                
 
                                                                                                                      

 

Figure 4-12 Plot of the linear degradation model 

 

Figure 4-13 Plot of the Error in the Linear degradation model 



                                                                                                
 
                                                                                                                      
 

4.5 Real time update approach using Kalman Filter 

Modern systems typically incorporate multiple sensors to estimate hidden states based on a series 
of measurements. For instance, a GPS receiver estimates the location and velocity, with these 
being the hidden states, while the differential time of arrival of satellite signals serves as the 
measurements.[26] 

One of the major challenges in tracking and control systems is achieving accurate and precise 
estimation of hidden states amid uncertainty. In GPS receivers, the uncertainty in measurements 
arises from various external factors such as thermal noise, atmospheric effects, slight variations 
in satellite positions, receiver clock precision, and more. To address this challenge, the Kalman 
Filter has emerged as a fundamental and widely used estimation algorithm.[26] 

The Kalman Filter generates estimations of hidden variables based on imperfect and uncertain 
measurements. It also predicts future system states based on previous estimations. The filter 
derives its name from Rudolf E. Kálmán (May 19, 1930 – July 2, 2016), who introduced a recursive 
solution to the discrete-data linear filtering problem in his influential paper published in 1960. 
Today, the Kalman Filter finds applications in target tracking (radar), location and navigation 
systems, control systems, computer graphics, and numerous other domains. [26] 

It is possible that RUL can be updated on real time by implementing the Kalman filter. In order 
to use Kalman filter, a series of equations is needed, for the construction of the algorithm. The 
variables of the equations are, ‘X’ which is the state vector, ‘P’ which is the estimate covariance 
and ‘K’ which is the Kalman Gain. The algorithm consists of the repetition of two steps, the 
‘Prediction’ and the ‘Correction’, during the Prediction step the time update equations are used 
and in the Correction. step the equations used are the measurement update.  

During the Prediction step the state extrapolation equation is used to predict the state in the next 
step and then the estimate covariance is predicted. In order to correct the values from the 
previous step the Kalman gain is calculated. Then the state vector is corrected and last the 
estimate covariance is corrected. For the next iteration the same cycle starts from the beginning 
of the prediction step until the end. In order to initiate the process, the values needed are, the 
initial state vector ‘X’ and the initial estimate covariance ‘P’. In some cases, if the initial values are 
unknown, they can be chosen randomly and the Kalman filter, since it is a repetitive process, will 
converge on the correct values but with more iterations.[26],[27] 

Figure 4-14 below contains all the variables used for the calculations. 



                                                                                                
 
                                                                                                                      

 

Figure 4-14 Variables used in a Kalman Filter [26] 

 Figure 4-15 contains all the equations used in a Kalman filter 

 

Figure 4-15 Equations used in a Kalman Filter [26] 



                                                                                                
 
                                                                                                                      
The whole calculation process can be summarized in the figure below. 

 

Figure 4-16 A complete figure of the operation of the Kalman filter [27] 

In order to implement the Kalman filter the equations above have to be adapted to the known 
Degradation models.  

The degradation model that describes the health indicator ‘h’ is the following [20]: 

ℎ(𝑡𝑡) = 𝛷𝛷 + 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 (𝛽𝛽𝛽𝛽 + 𝜀𝜀 −  𝜎𝜎
2

2
)  (1) 

By differentiating, the equation above, with respect to time, the result is this equation: 

𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝛽𝛽𝛽𝛽 + 𝜀𝜀 − 𝜎𝜎2

2
)  (2) 

Equation (2) can be rewritten as 

ℎ − 𝛷𝛷 =  𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃(𝛽𝛽𝛽𝛽 + 𝜀𝜀 − 𝜎𝜎2

2
)  (3) 

Thus, the equation (3) is  

𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝛽𝛽(ℎ − 𝛷𝛷)  (4) 

Also  



                                                                                                
 
                                                                                                                      

𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑑𝑑

= ℎ𝑘𝑘+1−ℎ𝑘𝑘
𝑑𝑑𝑑𝑑

  (5) 

In that case dt can be ignored and by combining equations (4) and (5) the result is  

ℎ𝑘𝑘+1 − ℎ𝑘𝑘 = 𝛽𝛽(ℎ𝑘𝑘 − 𝛷𝛷)  (6) 

Which is  

ℎ𝑘𝑘+1 = ℎ𝑘𝑘(1 + 𝛽𝛽) + 𝛽𝛽𝛽𝛽   (7) 

The two variable β,Φ are parameters that determine some characteristics of the degradation 
model and they do not have a physical meaning . So, in order to further simplify the last equation, 
two new variables will be introduced ‘a’ and ‘g’. Where, 

 𝑎𝑎 = (1 + 𝛽𝛽)   (8) 

and  

𝑔𝑔 =  𝛽𝛽𝛽𝛽   (9) 

By combining equations (7),(8) and (9) the final form of the equation of the health indicator is   

ℎ𝑘𝑘+1 = 𝑎𝑎ℎ𝑘𝑘 + 𝑔𝑔   (10) 

Last but not least the variables a and g are not constant so their values will be calculated with 
the equations  

𝑎𝑎𝑘𝑘+1 = 𝑎𝑎𝑘𝑘  (11) 

𝑔𝑔𝑘𝑘+1 = 𝑔𝑔𝑘𝑘   (12) 

The equations (10),(11) and (12) will be used as the state extrapolation equations in order to 
create a Kalman filter. The state vector is 𝑥𝑥 = [ ℎ;𝑎𝑎;𝑔𝑔]    

The measurement vector is the health indicator values   

The initial values of the state vector are 𝑥𝑥0 = [ ℎ0;𝑎𝑎0;𝑔𝑔0] = [0; 1; 1]    

The estimate covariance 𝑃𝑃 = [10,0,0 ; 0,10,0 ; 0,0,10] 



                                                                                                
 
                                                                                                                      
The process noise covariance 𝑄𝑄 = [5,0,0 ; 0,5,0 ; 0,0,5].  

The process noise matrix could be calculated using a theoretical model, but there was not such 
a model available, so it was estimated intuitively. Using a trial and error method the value that 
best represents the system was found.  

The measurement covariance 𝑅𝑅 = [155,0,0 ; 0,155,0 ; 0,0,155] 

The measurements, in this case, the health indicator values are noisy and their covariance was 
calculated and it is 102. Initially this value was used, but the error of the model was big, so using 
a trial and error method the value of the measurement covariance was changed. 

The initial value of the health indicator  ℎ0 = 0 because the health indicator is a measure of how 
damaged the ball bearing, at the beginning the ball bearing is supposed to be at its best condition. 
The other values of the state vector and the estimate covariance are chosen randomly and if even 
if they are far from the correct values the Kalman filter will still operate properly and after some 
iterations their values will converge on the correct ones. A Kalman filter was constructed, in 
MATLAB with all the equations above and the results are shown in the figures 4-17 and 4-18 
below 

 

Figure 4-17 Plot of the model made with the Kalman Filter 



                                                                                                
 
                                                                                                                      

 

Figure 4-18 Plot of the error of the model made by the Kalman Filter 

 
 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      

5.Conclusions and future work 

Comparison between approaches 

To begin with, the classification approach does not make a prediction about the accurate 
remaining useful life, but it is a very useful tool because it consults the user of how damaged the 
ball bearing is. In practice, the user wants to be consulted when to repair the ball bearing in order 
to avoid any unwanted breakdowns. Thus, using this algorithm, the user knows when the health 
indicator gets above a certain threshold, which means that it is close to failing so that the user 
makes any needed actions. The two algorithms give the same results because only on predictor 
was used. All the other features were rejected during the feature engineering, because they were 
inaccurate. That means that if any other predictor was added the accuracy of the algorithms 
would decrease immensely.  

The Linear degradation model can be used to predict the remaining useful life, in the specific 
case, with relatively high accuracy. It is obvious from the first figure that the linear model fits in 
the data and according to the second figure the error is relatively low. At its maximum, the error 
is 20% of the maximum value of the health indicator and the mean value of the error is 8.5%. In 
a situation where great accuracy is not required, a linear model can be implemented, instead of 
an exponential model, in order to reduce computational time. Moreover, a linear model is simpler 
than an exponential, thus it is easier to construct and depending on the needed accuracy, it can 
produce satisfying results.  

The exponential degradation model, was proven in the theoretical part, that can accurately predict 
the remaining useful life of a ball bearing. In the figure 4-11 it is visible that the exponential 
model fits in the data and can accurately predict the Remaining Useful Life of a ball bearing. The 
model, is relatively easy to make, because it does not require very complex information about the 
problem. Also, using the Predictive Maintenance toolbox in MATLAB simplifies greatly the problem 
because all the calculations and figures are made with the built in functions. 

Last but not least, it is proven that the Kalman filter can be implemented in order to update the 
remaining useful life in real time. The values predicted by the Kalman filter converge on the actual 
values of the health indicator after few iterations, which means that the initial values that were 
used in the Kalman filter were accurate. Also, the values of the error have an oscillating behaviour 
with a steady period and around the same maximum and minimum values. Moreover, the 
maximum value of the error is 35% of the maximum value of the health indicator and the mean 
value of the error is 20% of the maximum value. It is possible that, if more accurate information 
is available about the model, the Kalman filter that is built can produce results with smaller error. 
Which means that, the filter, will converge on the model by oscillating between maximum and 
minimum values that are very close to the measurements. Nevertheless, the Kalman filter that 
was constructed, gave out satisfying and accurate results and it can be used to update in real 
time, the remaining useful life of a ball bearing.  



                                                                                                
 
                                                                                                                      
To conclude, the prediction of the Remaining Useful Life is both very important and very 
interesting. The importance was greatly analyzed, in the previous chapters and its interest is 
found in the different methods that can be chosen and how different they operate but still give 
similar results. Also, the Kalman filter is a very fascinating tool that can be used to solve a vast 
amount of different problems. Its beauty is hidden in the fact that it can operate even with limited 
and noisy measurements and still give accurate results.   

Directions for future work 

The classification algorithms with some adjustments can be implemented to give more accurate 
results and give answers to more challenging problems. First, in a similar problem where more 
information is available, there would be more predictors in order to divide the data, thus making 
the algorithm more complex. Also, more classes could be added, in order to inform the user, with 
greater detail about the condition of the ball bearing, so that they take immediate action.   

The remaining useful life can be updated in real time with greater accuracy by using a more 
complex Kalman Filter. Specifically, a dual extended Kalman filter would give greatly accurate 
results, because one filter would be used to simultaneously estimate the parameters and the 
other the state of the model. Although, in that case more information about the model is required. 
In another direction, a simple Kalman filter, could be used to predict the remaining useful life 
with limited data by calculating the health indicator. In the problem that was studied, the value 
of the error has a repetitive behaviour, similar to oscillation with almost stable period and 
maximum values and the Kalman gain has a smooth declining behaviour. Thus, the error can be 
replicated as a function and the gain as another function. These functions can be applied, in the 
equation for the state vector correction, in order to make a model that predicts the values of the 
health indicator.  

Concluding, predictive maintenance, is a virgin industry and when it is absorbed by the industries, 
the whole production process will be greatly improved. The whole process will be sped up because 
of the reduced unwanted downtimes, the products will be cheaper because of the reduced 
maintenance costs and the quality of the products will be increased because at every point of the 
production the condition of the machines will be monitored and any unwanted malfunctions will 
be predicted. Also, there is a plethora of other techniques, that can be implemented, in order to 
calculate the remaining useful life of a component and predict when maintenance is needed in 
general. Predictive maintenance is a very interesting object of studies and engineers spend 
countless hours to improve their knowledge bringing humanity closer to the fifth industrial 
revolution.    
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7.Annex 

7.1 Support Vector Machines algorithm 

clc 

clear 

data = [0; 1.0634698965758003; 1.6198648856633131; 2.2619072656147585; 

2.4778802985226918; 2.2943845251715773; 2.7740425761314293; 

2.9180203015730326; 3.367736654366372; 3.159961869377379; 

3.4998663197029094; 3.998420146295548; 4.7016055877799339; 

4.6474796899727275; 5.0296419995753423; 6.13871875384978; 

6.9484578507084684; 6.7415437845933468; 6.1400964755969554; 

6.2934825206386513; 5.9268511844752494; 5.0148520152985068; 

4.5008137340201113; 5.1675760428773723; 5.3093600729497954; 

5.6159501705990778; 8.1250934863113446; 9.0049394472183568; 

9.4804881601481554; 10.280265933803911; 11.083833378254168; 

12.957521954684625; 13.268755548065453; 13.888865664639129; 

15.593199227412203; 17.68485152051311; 19.000952262294874; 

22.121072555510139; 20.458639240135312; 21.807860406793182; 

20.447913063968951; 23.125561318160997; 25.753613005143702; 

25.170528605148871; 29.37452173787678; 30.335214444785265; 

32.340198658042972; 29.930206533282856; 31.76226266865903; 

35.339371181804907]; 

 



                                                                                                
 
                                                                                                                      
 

max_val = max(data); 

 

labels = cell(length(data),1); 

for i=1:length(data) 

if data(i) <= 0.45*max_val 

labels{i} = 'good condition'; 

elseif data(i) > 0.45*max_val && data(i) <= 0.70*max_val 

labels{i} = 'medium condition'; 

elseif data(i) > 0.70*max_val && data(i) <= 0.86*max_val 

labels{i} = 'bad condition repair soon'; 

else 

 

labels{i} = 'repair asap'; 

end 

end 

 

svm_model = fitcecoc(data,labels); 

 

predicted_labels = predict(svm_model,data) 

 



                                                                                                
 
                                                                                                                      
7.2 K Nearest Neighbours algorithm  

clc 

clear 

 

data = [0; 1.0634698965758003; 1.6198648856633131; 2.2619072656147585;  

                   2.4778802985226918; 2.2943845251715773; 2.7740425761314293;  

                   2.9180203015730326; 3.367736654366372; 3.159961869377379;  

                   3.4998663197029094; 3.998420146295548; 4.7016055877799339; 

                   4.6474796899727275; 5.0296419995753423; 6.13871875384978;  

                   6.9484578507084684; 6.7415437845933468; 6.1400964755969554;  

                   6.2934825206386513; 5.9268511844752494; 5.0148520152985068;  

                   4.5008137340201113; 5.1675760428773723; 5.3093600729497954;  

                   5.6159501705990778; 8.1250934863113446; 9.0049394472183568;  

                   9.4804881601481554; 10.280265933803911; 11.083833378254168;  

                   12.957521954684625; 13.268755548065453; 13.888865664639129;  

                   15.593199227412203; 17.68485152051311; 19.000952262294874;  

                   22.121072555510139; 20.458639240135312; 21.807860406793182;  

                   20.447913063968951; 23.125561318160997; 25.753613005143702;  

                   25.170528605148871; 29.37452173787678; 30.335214444785265;  

                   32.340198658042972; 29.930206533282856; 31.76226266865903;  

                   35.339371181804907]; 

 



                                                                                                
 
                                                                                                                      
 

% Define the maximum value 

maxval = max(data); 

 

% Define the thresholds for each class 

good_thres = 0.45*maxval; 

medium_thres = 0.70*maxval; 

bad_thres = 0.86*maxval; 

 

% Initialize labels 

labels = cell(size(data)); 

 

% Classify data 

for i = 1:length(data) 

    if data(i) <= good_thres 

        labels{i} = 'good condition'; 

    elseif data(i) <= medium_thres 

        labels{i} = 'medium condition'; 

    elseif data(i) <= bad_thres 

        labels{i} = 'bad condition repair soon'; 

    else 

        labels{i} = 'repair asap'; 

    end 



                                                                                                
 
                                                                                                                      
end 

 

% Prepare input and output variables for k-nearest neighbor algorithm 

inputs = data; 

outputs = categorical(labels); 

 

% Create and train the k-nearest neighbor algorithm model 

k = 3; % Number of neighbors to consider 

mdl = fitcknn(inputs,outputs,'NumNeighbors',k); 

 

% Test the model on the same input data 

predictions = predict(mdl,inputs) 

 

% Compare the predicted labels to the true labels 

accuracy = sum(predictions == outputs)/length(outputs) 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      
7.3 Linear degradation model 

clc 

clear 

data = [0; 1.0634698965758003; 1.6198648856633131; 2.2619072656147585; 

2.4778802985226918; 2.2943845251715773; 2.7740425761314293; 

2.9180203015730326; 3.367736654366372; 3.159961869377379; 

3.4998663197029094; 3.998420146295548; 4.7016055877799339; 

4.6474796899727275; 5.0296419995753423; 6.13871875384978; 

6.9484578507084684; 6.7415437845933468; 6.1400964755969554; 

6.2934825206386513; 5.9268511844752494; 5.0148520152985068; 

4.5008137340201113; 5.1675760428773723; 5.3093600729497954; 

5.6159501705990778; 8.1250934863113446; 9.0049394472183568; 

9.4804881601481554; 10.280265933803911; 11.083833378254168; 

12.957521954684625; 13.268755548065453; 13.888865664639129; 

15.593199227412203; 17.68485152051311; 19.000952262294874; 

22.121072555510139; 20.458639240135312; 21.807860406793182; 

20.447913063968951; 23.125561318160997; 25.753613005143702; 

25.170528605148871; 29.37452173787678; 30.335214444785265; 

32.340198658042972; 29.930206533282856; 31.76226266865903; 

35.339371181804907]; 

 

x = 1:length(data); 



                                                                                                
 
                                                                                                                      
A = [x', ones(length(x),1)]; 

b = data; 

lin_params = A \ b; 

 

m = lin_params(1) % slope 

b = lin_params(2) % intercept 

 

y = m*x + b; 

figure 

plot(x,data,x,y) 

xlabel('Time(day)') 

ylabel('Degradation Level') 

legend('Data', 'Linear Model') 

Y = y'; 

 

Err = abs((Y-data)/data); 

figure 

plot(Err) 

xlabel('Time(day)') 

ylabel('Error') 

mean(Err) 

 

 



                                                                                                
 
                                                                                                                      
7.4 Kalman Filter 

clear  

clc 

% times tou health indicator pou prokuptoun apo feature engineering 

data = [0; 1.0634698965758003; 1.6198648856633131; 2.2619072656147585; 

2.4778802985226918; 2.2943845251715773; 2.7740425761314293; 

2.9180203015730326; 3.367736654366372; 3.159961869377379; 

3.4998663197029094; 3.998420146295548; 4.7016055877799339; 

4.6474796899727275; 5.0296419995753423; 6.13871875384978; 

6.9484578507084684; 6.7415437845933468; 6.1400964755969554; 

6.2934825206386513; 5.9268511844752494; 5.0148520152985068; 

4.5008137340201113; 5.1675760428773723; 5.3093600729497954; 

5.6159501705990778; 8.1250934863113446; 9.0049394472183568; 

9.4804881601481554; 10.280265933803911; 11.083833378254168; 

12.957521954684625; 13.268755548065453; 13.888865664639129; 

15.593199227412203; 17.68485152051311; 19.000952262294874; 

22.121072555510139; 20.458639240135312; 21.807860406793182; 

20.447913063968951; 23.125561318160997; 25.753613005143702; 

25.170528605148871; 29.37452173787678; 30.335214444785265; 

32.340198658042972; 29.930206533282856; 31.76226266865903; 

35.339371181804907]; 

%initial values 



                                                                                                
 
                                                                                                                      
h = 0; 

a = 1; 

g = 1; 

i = 1; 

HI = []; 

Err = []; 

% eklego times gia P , Q ,R 

 

P = 10*eye(3); 

Q = 5*eye(3); 

R = 155*eye(3) ; 

 

while i<51 

z = data(i) 

h = [h 1]*[a;g]; 

a = a; 

g = g; 

A = P+Q; % nea timh p 

Z = A / (A+R); %Gain 

G = Z * [1;1;1] 

d1 = (z-h)*G; % ypologismos error*Gain 

d = [1 0 0]*d1; 

%nees times hat 



                                                                                                
 
                                                                                                                      
h = h+d 

g = g+d; 

a = a+d; 

HI(i) = h; 

%ypologismos neou P 

D = (eye(3) - G); 

P = D.*P.*D' + G.*R.*G'; 

e = abs((data(i)-h)/data(i)) 

Err(i)=e; 

i = i+1 

end 

 

figure 

plot(HI) 

hold on 

plot(data) 

hold on 

xlabel('Time (days)') 

ylabel('Degradation Level') 

legend('Kalman Filter', 'data') 

 

figure 

plot(Err) 



                                                                                                
 
                                                                                                                      
xlabel('Time (days)') 

ylabel('Error') 

legend('Error') 

mean(Err') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      
7.5 Feature Engineering and Exponential model [20] 

 

7.5.1 Main code [20] 

timeUnit = 'day'; 

 

hsbearing = fileEnsembleDatastore(... 

    fullfile('.', 'WindTurbineHighSpeedBearingPrognosis-Data-master'), ... 

    '.mat'); 

hsbearing.DataVariables = ["vibration", "tach"]; 

hsbearing.IndependentVariables = "Date"; 

hsbearing.SelectedVariables = ["Date", "vibration", "tach"]; 

hsbearing.ReadFcn = @helperReadData; 

hsbearing.WriteToMemberFcn = @helperWriteToHSBearing; 

tall(hsbearing) 

fs = 97656; % Hz 

reset(hsbearing) 

tstart = 0; 

figure 

hold on 

while hasdata(hsbearing) 

    data = read(hsbearing); 

    v = data.vibration{1}; 



                                                                                                
 
                                                                                                                      
    t = tstart + (1:length(v))/fs; 

    % Downsample the signal to reduce memory usage 

    plot(t(1:10:end), v(1:10:end)); 

    tstart = t(end); 

end 

hold off 

xlabel('Time (s), 6 second per day, 50 days in total'); 

ylabel('Acceleration (g)'); 

 

hsbearing.DataVariables = ["vibration", "tach", "SpectralKurtosis"]; 

colors = parula(50); 

figure 

hold on 

reset(hsbearing) 

day = 1; 

while hasdata(hsbearing) 

    data = read(hsbearing); 

    data2add = table; 

     

    % Get vibration signal and measurement date 

    v = data.vibration{1}; 

     

    % Compute spectral kurtosis with window size = 128 



                                                                                                
 
                                                                                                                      
    wc = 128; 

    [SK, F] = pkurtosis(v, fs, wc); 

    data2add.SpectralKurtosis = {table(F, SK)}; 

     

    % Plot the spectral kurtosis 

    plot3(F, day*ones(size(F)), SK, 'Color', colors(day, :)); 

     

    % Write spectral kurtosis values 

    writeToLastMemberRead(hsbearing, data2add); 

     

    % Increment the number of days 

    day = day + 1; 

end 

hold off 

xlabel('Frequency (Hz)') 

ylabel('Time (day)') 

zlabel('Spectral Kurtosis') 

grid on 

view(-45, 30) 

cbar = colorbar; 

ylabel(cbar, 'Fault Severity (0 - healthy, 1 - faulty)') 

hsbearing.DataVariables = [hsbearing.DataVariables; ... 

    "Mean"; "Std"; "Skewness"; "Kurtosis"; "Peak2Peak"; ... 



                                                                                                
 
                                                                                                                      
    "RMS"; "CrestFactor"; "ShapeFactor"; "ImpulseFactor"; "MarginFactor"; "Energy"; ... 

    "SKMean"; "SKStd"; "SKSkewness"; "SKKurtosis"]; 

hsbearing.SelectedVariables = ["vibration", "SpectralKurtosis"]; 

reset(hsbearing) 

while hasdata(hsbearing) 

    data = read(hsbearing); 

    v = data.vibration{1}; 

    SK = data.SpectralKurtosis{1}.SK; 

    features = table; 

     

    % Time Domain Features 

    features.Mean = mean(v); 

    features.Std = std(v); 

    features.Skewness = skewness(v); 

    features.Kurtosis = kurtosis(v); 

    features.Peak2Peak = peak2peak(v); 

    features.RMS = rms(v); 

    features.CrestFactor = max(v)/features.RMS; 

    features.ShapeFactor = features.RMS/mean(abs(v)); 

    features.ImpulseFactor = max(v)/mean(abs(v)); 

    features.MarginFactor = max(v)/mean(abs(v))^2; 

    features.Energy = sum(v.^2); 

     



                                                                                                
 
                                                                                                                      
    % Spectral Kurtosis related features 

    features.SKMean = mean(SK); 

    features.SKStd = std(SK); 

    features.SKSkewness = skewness(SK); 

    features.SKKurtosis = kurtosis(SK); 

     

    % write the derived features to the corresponding file 

    writeToLastMemberRead(hsbearing, features); 

end 

hsbearing.SelectedVariables = ["Date", "Mean", "Std", "Skewness", "Kurtosis", "Peak2Peak", ... 

    "RMS", "CrestFactor", "ShapeFactor", "ImpulseFactor", "MarginFactor", "Energy", ... 

    "SKMean", "SKStd", "SKSkewness", "SKKurtosis"]; 

featureTable = gather(tall(hsbearing)); 

featureTable = table2timetable(featureTable) 

variableNames = featureTable.Properties.VariableNames; 

featureTableSmooth = varfun(@(x) movmean(x, [5 0]), featureTable); 

featureTableSmooth.Properties.VariableNames = variableNames; 

 

%featureTableSmooth = featureTable; 

%featureTableSmooth.Properties.VariableNames = variableNames; 

 

 

figure 



                                                                                                
 
                                                                                                                      
hold on 

plot(featureTable.Date, featureTable.SKMean); 

plot(featureTableSmooth.Date, featureTableSmooth.SKMean); 

hold off 

xlabel('Time') 

ylabel('Feature Value') 

legend('Before smoothing', 'After smoothing') 

title('SKMean') 

breaktime = datetime(2013, 3, 27); 

breakpoint = find(featureTableSmooth.Date < breaktime, 1, 'last'); 

trainData = featureTableSmooth(1:breakpoint, :); 

% Since moving window smoothing is already done, set 'WindowSize' to 0 to 

% turn off the smoothing within the function 

featureImportance = monotonicity(trainData, 'WindowSize', 0); 

helperSortedBarPlot(featureImportance, 'Monotonicity'); 

trainDataSelected = trainData(:, featureImportance{:,:}>0.3); 

featureSelected = featureTableSmooth(:, featureImportance{:,:}>0.3) 

meanTrain = mean(trainDataSelected{:,:}); 

sdTrain = std(trainDataSelected{:,:}); 

trainDataNormalized = (trainDataSelected{:,:} - meanTrain)./sdTrain; 

coef = pca(trainDataNormalized); 

PCA1 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 1); 

PCA2 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 2); 



                                                                                                
 
                                                                                                                      
%PCA2 = (featureSelected{:,:} - meanTrain) ./ sdTrain * coef(:, 1); 

figure 

numData = size(featureTable, 1); 

scatter(PCA1, PCA2, [], 1:numData, 'filled') 

xlabel('PCA 1') 

ylabel('PCA 2') 

cbar = colorbar; 

ylabel(cbar, ['Time (' timeUnit ')']) 

healthIndicator = PCA1; 

figure 

plot(featureSelected.Date, healthIndicator, '-o') 

xlabel('Time') 

title('Health Indicator') 

healthIndicator = healthIndicator - healthIndicator(1); 

threshold = healthIndicator(end); 

mdl = exponentialDegradationModel(... 

    'Theta', 1, ... 

    'ThetaVariance', 1e6, ... 

    'Beta', 1, ... 

    'BetaVariance', 1e6, ... 

    'Phi', -1, ... 

    'NoiseVariance', (0.1*threshold/(threshold + 1))^2, ... 

    'SlopeDetectionLevel', 0.05); 



                                                                                                
 
                                                                                                                      
 

% Keep records at each iteration 

totalDay = length(healthIndicator) - 1; 

estRULs = zeros(totalDay, 1); 

trueRULs = zeros(totalDay, 1); 

CIRULs = zeros(totalDay, 2); 

pdfRULs = cell(totalDay, 1); 

 

% Create figures and axes for plot updating 

figure 

ax1 = subplot(2, 1, 1); 

ax2 = subplot(2, 1, 2); 

 

for currentDay = 1:totalDay 

     

    % Update model parameter posterior distribution 

    update(mdl, [currentDay healthIndicator(currentDay)]) 

     

    % Predict Remaining Useful Life 

    [estRUL, CIRUL, pdfRUL] = predictRUL(mdl, ... 

                                         [currentDay healthIndicator(currentDay)], ... 

                                         threshold); 

    trueRUL = totalDay - currentDay + 1; 



                                                                                                
 
                                                                                                                      
     

    % Updating RUL distribution plot 

    helperPlotTrend(ax1, currentDay, healthIndicator, mdl, threshold, timeUnit); 

    helperPlotRUL(ax2, trueRUL, estRUL, CIRUL, pdfRUL, timeUnit) 

     

    % Keep prediction results 

    estRULs(currentDay) = estRUL; 

    trueRULs(currentDay) = trueRUL; 

    CIRULs(currentDay, :) = CIRUL; 

    pdfRULs{currentDay} = pdfRUL; 

     

    % Pause 0.1 seconds to make the animation visible 

    pause(0.1) 

end 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      
7.5.2 Helper Functions [20] 

7.5.2.1 helperAlphaLambdaPlot [20] 

function alphaBoundProbablity = helperAlphaLambdaPlot(alpha, trueRULHist, estRULHist, ... 

    CIRULHist, pdfRULHist, degradationTime, breakpoint, timeUnit) 

%HELPERALPHALAMBDAPLOT create alpha-lambda plot and the probability metric 

 

%  Copyright 2018 The MathWorks, Inc. 

 

N = length(trueRULHist); 

t = 1:N; 

t2 = t((degradationTime+1):end); 

 

% Compute the alpha bounds 

alphaPlus = trueRULHist + alpha*trueRULHist; 

alphaMinus = trueRULHist - alpha*trueRULHist; 

 

% ---------------- Alpha-Lambda Plot -------------------- 

figure 

hold on 

grid on 

 

% Plot true RUL and its alpha bounds 



                                                                                                
 
                                                                                                                      
plot(t, trueRULHist) 

fill([t fliplr(t)], [alphaPlus(t)' fliplr(alphaMinus(t)')], ... 

    'b', 'FaceAlpha', 0.2, 'EdgeColor', 'none') 

 

% Plot the estimated RUL and its confidence intervals 

plot(t2, estRULHist(t2), '--') 

fill([t2 fliplr(t2)], ... 

    [CIRULHist(t2, 1)' fliplr(CIRULHist(t2, 2)')], ... 

    'r', 'FaceAlpha', 0.2, 'EdgeColor', 'none') 

 

% Plot the train-test breakpoint 

ylow = 0; 

yup = 80; 

plot([breakpoint breakpoint], [ylow yup], 'k-.') 

 

% Add labels and legends 

ylim([ylow yup]) 

hold off 

xlabel(['Time (' timeUnit ')']) 

ylabel(['RUL (' timeUnit ')']) 

legend('True RUL', ['\alpha = +\\-' num2str(alpha*100) '%'], ... 

    'Predicted RUL After Degradation Detected', ... 

    'Confidence Interval After Degradation Detected', 'Train-Test Breakpoint') 



                                                                                                
 
                                                                                                                      
 

% ---------------- Probability Metric -------------------- 

% Compute the probability of predicted RUL within alpha bounds 

alphaBoundProbablity = zeros(N, 1); 

for i = 1:N 

    pdfRUL = pdfRULHist{i}; 

    idx = (pdfRUL{:, 1} > alphaMinus(i)) & (pdfRUL{:, 1} < alphaPlus(i)); 

    prob = sum(pdfRUL{idx, 2}); 

    alphaBoundProbablity(i) = prob; 

end 

end 

 

 

 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      
7.5.2.2 helperPlotRUL [20] 

function helperPlotRUL(ax, trueRUL, estRUL, CIRUL, pdfRUL, timeUnit) 

%HELPERPLOTRULDISTRIBUTION helper function to refresh the distribution plot 

 

%  Copyright 2018 The MathWorks, Inc. 

cla(ax) 

hold(ax, 'on') 

plot(ax, pdfRUL{:,1}, pdfRUL{:,2}) 

plot(ax, [estRUL estRUL], [0 pdfRUL{find(pdfRUL{:,1} >= estRUL, 1), 2}]) 

plot(ax, [trueRUL trueRUL], [0 pdfRUL{find(pdfRUL{:,1} >= trueRUL, 1), 2}], '--') 

idx = pdfRUL{:,1} >= CIRUL(1) & pdfRUL{:,1}<=CIRUL(2); 

area(ax, pdfRUL{idx, 1}, pdfRUL{idx, 2}, ... 

    'FaceAlpha', 0.2, 'FaceColor', 'g', 'EdgeColor', 'none'); 

hold(ax, 'off') 

ylabel(ax, 'PDF') 

xlabel(ax, ['Time (' timeUnit ')']) 

legend(ax, 'pdf of RUL', 'Estimated RUL', 'True RUL', 'Confidence Interval') 

 

 

 

 



                                                                                                
 
                                                                                                                      
7.5.2.3 helperPlotTrend [20] 

 

function helperPlotTrend(ax, currentDay, healthIndicator, mdl, threshold, timeUnit) 

%HELPERPLOTTREND helper function to refresh the trending plot 

 

%  Copyright 2018 The MathWorks, Inc. 

t = 1:size(healthIndicator, 1); 

HIpred = mdl.Phi + mdl.Theta*exp(mdl.Beta*(t - mdl.InitialLifeTimeValue)); 

HIpredCI1 = mdl.Phi + ... 

    (mdl.Theta - sqrt(mdl.ThetaVariance)) * ... 

    exp((mdl.Beta - sqrt(mdl.BetaVariance))*(t - mdl.InitialLifeTimeValue)); 

HIpredCI2 = mdl.Phi + ... 

    (mdl.Theta + sqrt(mdl.ThetaVariance)) * ... 

    exp((mdl.Beta + sqrt(mdl.BetaVariance))*(t - mdl.InitialLifeTimeValue)); 

 

cla(ax) 

hold(ax, 'on') 

plot(ax, t, HIpred) 

plot(ax, [t NaN t], [HIpredCI1 NaN, HIpredCI2], '--') 

plot(ax, t(1:currentDay), healthIndicator(1:currentDay, :)) 

plot(ax, t, threshold*ones(1, length(t)), 'r') 

hold(ax, 'off') 

if ~isempty(mdl.SlopeDetectionInstant) 



                                                                                                
 
                                                                                                                      
    title(ax, sprintf('Day %d: Degradation detected!\n', currentDay)) 

else 

    title(ax, sprintf('Day %d: Degradation NOT detected.\n', currentDay)) 

end 

ylabel(ax, 'Health Indicator') 

xlabel(ax, ['Time (' timeUnit ')']) 

legend(ax, 'Degradation Model', 'Confidence Interval', ... 

    'Health Indicator', 'Threshold', 'Location', 'Northwest') 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      
7.5.2.4 helperReadData [20] 

 

function data = helperReadData(filename, variables) 

% Read data variables for the fileEnsemble 

% 

% Inputs: 

% filename  - a string of the file name to read from. 

% variables - a string array containing variable names to read. 

%             It must be a subset of DataVariables specified 

%             in fileEnsembleDatastore. 

% Output: 

% data      - return a table with a single row 

 

% Copyright 2017-2018 The MathWorks, Inc. 

 

data = table; 

mfile = matfile(filename); % Allows partial loading 

for ct = 1:numel(variables) 

    if strcmp(variables{ct}, "Date") 

        % Extract the datetime information from the file names 

        % as the independent variable of the ensemble datastore 

        [~, fname] = fileparts(filename); 

        token = regexp(fname, 'data-(\w+)', 'tokens'); 



                                                                                                
 
                                                                                                                      
        data.Date = datetime(token{1}{1}, 'InputFormat', 'yyyyMMdd''T''HHmmss''Z'''); 

    else 

        val = mfile.(variables{ct}); 

        % Convert non-scalar values into a single cell 

        if numel(val) > 1 

            val = {val}; 

        end 

        data.(variables{ct}) = val; 

    end 

end 

end 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      
7.5.2.5 helperSortedBarPlot [20] 

 

function sortedIdx = helperSortedBarPlot(tbl, ylbl) 

% HELPERSORTEDBARPLOT helper function to create sorted bar plot 

 

%  Copyright 2018 The MathWorks, Inc. 

[~, sortedIdx] = sort(tbl{1,:}, 'descend'); 

tblSorted = tbl(:, sortedIdx); 

figure 

bar(tblSorted{1,:}) 

xticks(1:size(tblSorted,2)) 

xticklabels(tbl.Properties.VariableNames(sortedIdx)) 

xtickangle(45) 

ylabel(ylbl) 

end 

 

 

 

 

 

 

 



                                                                                                
 
                                                                                                                      
7.5.2.6 helperWriteToHSBearing [20] 

 

function helperWriteToHSBearing(filename, data) 

% Write data to the fileEnsemble 

% Inputs: 

% filename - a string of the file name to write to. 

% data     - a structure 

save(filename, '-append', '-struct', 'data'); 

end 
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