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Abstract 34 

1H-NMR fingerprinting of edible oils and a set of multivariate classification and regression models 35 

organised in a decision tree is proposed as a stepwise strategy to assure the authenticity and 36 

traceability of olive oils and their declared blends with other vegetable oils (VOs). 1H-NMR 37 

spectral data of oils of the ‘olive oil’ category and their mixtures with the VOs most commonly 38 

used to make blends, i.e. sunflower, high oleic sunflower, corn, refined avocado, refined hazelnut, 39 

refined palm olein and desterolized high oleic sunflower oils, is analysed by pattern recognition 40 

techniques. Partial least squares (PLS) discriminant analysis provides stable and robust binary 41 

classification models to identify the VO, and PLS regression affords models with excellent 42 

precisions and acceptable accuracies to determine the percentage of VO in the mixture. The 43 

performance of this approach is tested with blind samples: the satisfactory results achieved confirm 44 

its potential to support regulations and control bodies. 45 

 46 
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1. Introduction 50 

Olive oil adulteration for the purpose of financial gain has become one of the biggest sources of 51 

agricultural fraud in the European Union, as pointed out by the European Parliament (EC, 2020; 52 

European Parliament, 2014). Both the EU being the world’s largest olive oil producer and 53 

consumer, accounting for 70% of global production (IOC, 2019), as well as the enlarged 54 

competitiveness, highlight the need to update and harmonize analytical methods for quality and 55 

authenticity control of olive oil. In the long-term, a lack of trust in the quality and authenticity of 56 

olive oil has the potential to damage the reputation and competitiveness of the European olive oil 57 

sector. In this context, the European Commission supported the so called OLEUM Project with the 58 

overall objective of improving existing analytical methods and developing new strategies of 59 

analysis for assuring the quality and authenticity of olive oil (OLEUM Project, 2016). 60 

According to the Reg. (EU) 29/2012, olive oils, of any edible category, can be mixed with vegetable 61 

oils (VOs) and marketed highlighting the presence of olive oil on the labelling outside of the list of 62 

ingredients, by words, images or graphic representations, only in the case that it accounts for at least 63 

50% of the blend (EC, 2012). Amendments to this regulation established that Member States have 64 

the possibility to allow or prohibit the production in their territory of blends of olive oil and other 65 

vegetable oils for internal consumption, the marketing in their territory of such blends coming from 66 

other countries, and/or the production in their territory of such blends for marketing in another 67 

Member State or for exportation. In this context, the terms of ‘legal’ and ‘illegal’ blends arise 68 

alluding to admixtures that comply or not with the EU regulation, as well as those adopted by each 69 

Member State. It is noteworthy that the regulation and its amendments do not refer to any analytical 70 

parameter or method to control the percentage of olive oil in the admixture or the botanical origin of 71 

oil. Hence, the need of analytical methods in order to implement the established regulations is 72 

obvious and extremely important (Conte, Bendini, Valli, Lucci, Moret, Maquet, et al., 2019). 73 

Indeed, in literature, very few works deals with the verification of the percentage of olive oil in 74 

fraudulent blends with VOs with regard to the labelling compliance of Reg. (EU) 29/2012, i.e. 75 
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blends with percentages of olive oil close to the 50%. Among them, Gomez-Coca et al. (2020) 76 

successfully proposed the combination of four purity parameters, some described in legislation 77 

(Commission regulation (EEC) 2568/91), organized in decisional trees to discern olive oil 78 

concentrations, using sunflower oil as a model seed oil to blend with olive oil (Gómez-Coca, Pérez-79 

Camino, Martínez-Rivas, Bendini, Gallina Toschi, & Moreda, 2020). The potential of the fatty acid 80 

composition of the oil determined using the official method and multivariate data analysis was also 81 

proved for blends with sunflower oil (Monfreda, Gobbi, & Grippa, 2012) and other seed oils 82 

(Monfreda, Gobbi, & Grippa, 2014). Spectroscopic techniques as TD-NMR and FTIR combined 83 

with chemometrics were investigated for the same goal (De la Mata, Dominguez-Vidal, Bosque-84 

Sendra, Ruiz-Medina, Cuadros-Rodríguez, & Ayora-Cañada, 2012; Santos, Kock, Santos, Lobo, 85 

Carvalho, & Colnago, 2017). Few research works studied the mixtures of olive oil (OO), i.e. blends 86 

of virgin and refined olive oil, with other VOs (De La Mata-Espinosa, Bosque-Sendra, Bro, & 87 

Cuadros-Rodríguez, 2011; De la Mata et al., 2012; Monfreda et al., 2012, 2014), or the challenged 88 

adulteration of refined olive oil with refined hazelnut oil (Agiomyrgianaki, Petrakis, & Dais, 2010; 89 

Mannina, D'Imperio, Capitani, Rezzi, Guillou, Mavromoustakos, et al., 2009). 90 

Chemical methods traditionally used for quality and authenticity control of olive oil are laborious, 91 

time-consuming, involves expensive and toxic chemicals with high environmental impact, require 92 

sample preparation and skilled operators. New and complementary analytical techniques will 93 

overcome some of these drawbacks and/or even support currently used methods to accomplish the 94 

complex task of the detection and quantification of olive oil mixtures with other oils. In this sense, 95 

metabolomic approaches, which allow rapid determination of several classes of chemical 96 

components using efficient advanced instrumental techniques coupled to chemometrics, are given 97 

great attention. MS-based methodologies and NMR spectroscopy are widely used in nowadays 98 

research in food analysis for quality control and traceability (Lioupi, Nenadis, & Theodoridis, 99 

2020). Different NMR techniques, i.e. 1H-NMR, 13C-NMR, 31P-NMR and/or 19F-NMR have been 100 

used to characterise olive oils with authenticity and traceability purposes (Alonso-Salces, 101 
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Segebarth, Garmón-Lobato, Holland, Moreno-Rojas, Fernández-Pierna, et al., 2015; Guillén & 102 

Ruiz, 2001; Jiang, Li, Chen, & Weng, 2018; Vigli, Philippidis, Spyros, & Dais, 2003). Most of the 103 

NMR approaches developed for olive oil authentication, detection of olive oil adulteration and/or 104 

determination of olive oil blends with VOs were based on measuring signals of the NMR spectrum 105 

that give quantitative information of certain compounds or are used to calculate some parameters 106 

and ratios (i.e. profiling) (Agiomyrgianaki et al., 2010; García-González, Mannina, D'Imperio, 107 

Segre, & Aparicio, 2004; Jiang et al., 2018; Mannina et al., 2009; Popescu, Costinel, Dinca, 108 

Marinescu, Stefanescu, & Ionete, 2015; Vigli et al., 2003; Vlahov, 2009; Zamora, Alba, & Hidalgo, 109 

2001). Instead, NMR fingerprinting approaches were only reported in few studies using low-field 110 

NMR spectroscopy (Parker, Limer, Watson, Defernez, Williamson, & Kemsley, 2014; Santos et al., 111 

2017; Wang, Wang, Hou, & Nie, 2020). To the authors’ knowledge, high-field NMR fingerprinting 112 

has been used for the study of mixtures of olive oil with other VOs for the first time in the 113 

framework of OLEUM research project. The aim of the study was to develop an analytical strategy 114 

based on 1H-NMR fingerprinting together with multivariate classification and regression models 115 

organised in a decision tree scheme in order to determine the composition of an oil blend from both 116 

points of view, the botanical nature of the oils and the percentage of each oil in the blend. The 117 

present article describes the second part of the stepwise strategy, which allows to identify the VO 118 

and determine the percentage of VO in a blend with OO, once the presence of oil of the ‘olive oil’ 119 

category has been confirmed by the classification model in the first step of the decision tree. 120 

Furthermore, the performance of the complete stepwise strategy is evaluated by the prediction 121 

results obtained on an external set of blind oil samples and commercial oils. Moreover, it is worth to 122 

be noticed that this analytical strategy addresses some issues not considered in previous approaches, 123 

such as the discrimination between (i) oil samples containing oil of the ‘virgin olive oil’ category 124 

(VOO) and ‘olive oil’ category (OO) and (ii) pure and blended oils, and the study of (iii) a large 125 

sample set with pure oils and blends of the most common VOs used for olive oil adulteration, and 126 
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(iv) a wide range of percentages of the VOs in the blend (including those percentages for the 127 

verification of the labelling compliance of Reg. (EU) 29/2012). 128 

2. Material and methods 129 

2.1. Samples 130 

Genuine samples of virgin (VOO) and extra virgin olive oils (EVOO) (n=176), olive oils (OO, 131 

n=3), refined conventional sunflower oil (normal type sunflower oil, NTSO, n=17), refined high 132 

oleic sunflower oil (HOSO, n=16), desterolized and deodorized high oleic sunflower oil (DOSO, 133 

n=1), refined hazelnut oil (HR, n=11), virgin hazelnut oil (HV, n=6), refined soybean oil (S, n=10), 134 

virgin avocado oil (EVAO, n=1), refined avocado oil (RAO, n=1), refined palm olein oil (RPOO, 135 

n=1) and refined corn oil (CO, n=1) were used to prepare binary mixtures at different percentages 136 

(2%90%) of VOs in VOOs or OOs (1007 blended samples). Samples were obtained in the 137 

framework of Autenfood project (ACCIÓ Programa Operatiu FEDER Catalunya 2014–2020) and 138 

OLEUM project (EC H2020 Programme 2014–2020). Oils from the sample banks of both projects 139 

were produced during two consecutive harvest years (2016/17 and 2017/18). In addition, eight 140 

commercial oil samples collected in the Swedish market were analysed. The label of these 141 

commercial oils described that they were mixtures of VOO or OO, and other VO such as rapeseed 142 

oil, sunflower oil, or a non-identified vegetable oil. 143 

Blends were prepared and preserved under controlled temperature conditions. All pure and blended 144 

oil samples were bottled with nitrogen headspace or minimal air headspace, kept at -20 ºC and 145 

protected from light. Before analysis, oil samples were taken from the cold storage, left to 146 

equilibrate at room temperature at least for 12 h, and shaken vigorously before sampling the oil 147 

aliquot for analysis. 148 

2.2. Chemicals 149 

Deuterated chloroform for NMR analysis (99.8 atom % D) was provided by Sigma-Aldrich Chemie 150 

(Steinheim, Germany). 151 
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2.3. NMR analysis 152 

Aliquots of 150 µL of each oil sample were dissolved in 750 µL of deuterated chloroform, shaken 153 

in a vortex, and placed in a 5 mm NMR capillary. The 1H-NMR experiments were performed at 154 

300K on a Bruker (Rheinstetten, Germany) Avance 500 (nominal frequency 500.13 MHz) equipped 155 

with a 5 mm broadband inverse probe with Z-gradients. The spectra were recorded using a 6.1 µs 156 

pulse (90°), an acquisition time of 3.5 s (50k data points) and a total recycling time of 7.0 s, a 157 

spectral width of 7100 Hz (14 ppm), 32 scans (+ 4 dummy scans), with no sample rotation. Prior to 158 

Fourier transformation, the free induction decays (FIDs) were zero-filled to 64k and a 0.3 Hz line-159 

broadening factor was applied. The chemical shifts were expressed in δ scale (ppm), referenced to 160 

the residual signal of chloroform (7.26 ppm). The spectra were phase- and baseline-corrected 161 

manually, binned with 0.02 ppm-wide buckets, and normalized to total intensity over the region 162 

4.104.26 ppm (glycerol signal). The region of the NMR spectra studied comprised from 0 ppm to 163 

11 ppm. TopSpin 2.1 (2013) and Amix-Viewer 3.7.7 (2006) from Bruker BioSpin GMBH 164 

(Rheinstetten, Germany) were used to perform the processing of the spectra. The data table 165 

generated with the spectra of all samples, excluding the eight buckets in the reference region 166 

4.104.26 ppm, was then submitted to multivariate data analysis. 167 

2.4. Data analysis 168 

Datasets were made up of the 542 buckets of the 1H-NMR spectra (variables in columns) measured 169 

on the oil samples (samples in rows). A total number of 1239 pure and blended oil samples were 170 

analysed by 1H-NMR. Depending on the aim of the multivariate model to be developed, the dataset 171 

contained the NMR spectral data of the corresponding studied samples. Datasets were analysed by 172 

univariate procedures (ANOVA, Fisher index and Box & Whisker plots); and by multivariate 173 

techniques, unsupervised such as principal component analysis (PCA), and supervised as partial 174 

least squares discriminant analysis (PLS-DA) and partial least squares regression (PLS-R) 175 

(Berrueta, Alonso-Salces, & Héberger, 2007). Data analysis was performed by means of the 176 
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statistical software package Statistica 7.0 (StatSoft Inc., Tulsa, OK, USA, 19842004) and The 177 

Unscrambler v9.7 (Camo Software AS, 19862007). 178 

PCA, PLS-DA and PLS-R were applied to the autoscaled or centered data matrix of 1H-NMR 179 

spectra (542 variables) of the oil samples. The presence of outliers in the dataset was analysed by 180 

PCA. In PLS-DA and PLS-R, the optimal number of PLS-components are estimated by cross-181 

validation by plotting the PRESS or RMSEP against the number of PLS-components. Sometimes 182 

there are several almost equivalent local minima on the curve; the first one should be preferred to 183 

avoid overfitting (according to the principle of parsimony). The model with the smallest number of 184 

features should be accepted from among equivalent models on the training set. In PLS-DA, once the 185 

number of PLS-components is optimised, the predictions in the training-test set are represented in a 186 

box and whisker plot in order to define the half of the distance between the quartiles as the 187 

boundary. The regression coefficients (B) of the optimal number of PLS-components denote the 188 

importance of the NMR variables on the model: the larger the B-coefficient, the higher the 189 

influence of the variable on the PLS-DA model or PLS-R model. A large B-coefficient may also 190 

indicate a variable with small absolute values but large relative differences (Esbensen, Guyot, 191 

Westad, & Houmøller, 2002). Classification and regression models achieved by PLS-DA and PLS-192 

R respectively were validated by 3-fold cross-validation or leave-one out cross-validation for 193 

parameter optimization, and by external validation when an external set of samples was available. 194 

Binary classification models can lead to artefacts if they are not used and validated properly 195 

(Kjeldahl & Bro, 2010). The reliability of the classification models developed was studied in terms 196 

of recognition ability (percentage of the samples in the training set correctly classified during the 197 

modelling step), prediction ability in the cross-validation (percentage of the samples in the test set 198 

correctly classified by using the model developed in the training step), and prediction ability in the 199 

external validation (percentage of the samples in the external set correctly classified by using the 200 

optimised model) (Berrueta et al., 2007). The goodness of the regression model fit was evaluated by 201 

means of the prediction error, which is an expression of the error expected when using the 202 
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calibration model to predict; the correlation coefficient between predicted and measured values in 203 

calibration and validation (R-cal and R-val); the coefficient of determination in calibration and 204 

validation (R2-cal and R2-val), which indicates the percentage of the variance in the dependent 205 

variable that the independent variables explain collectively; and the evaluation of the residuals, 206 

which show how well each individual object is modelled and predicted. The RMSEP (root mean 207 

square error in the prediction) expresses the average error to be expected associated with future 208 

predictions, i.e. the estimated precision. Thus, the RMSEP is the practical average prediction error 209 

as estimated by the validation set, and therefore an empirical error estimate, which is expressed in 210 

the original measurement units. The result is expressed as the predicted Y-value ± 2 RMSEP. The 211 

R-RMSEP is the relative prediction error in %, i.e. RMSEP divided by the measured data, and is 212 

comparable to the analytical accuracy (% of relative standard deviation) (Esbensen et al., 2002). 213 

3. Results and discussion 214 

3.1. Mixtures of olive oil with vegetable oils 215 

Oils of the VOO and OO categories and their mixtures with the most common VOs used for 216 

adulteration or making legal blends, i.e. refined conventional sunflower oil, refined high oleic 217 

sunflower oil, desterolized and deodorized high oleic sunflower oil, refined hazelnut oil, virgin 218 

hazelnut oil, refined soybean oil, virgin avocado oil, refined avocado oil, refined palm olein oil and 219 

refined corn oil, were studied. The 1H-NMR spectra of the oil samples, both pure and blended 220 

(binary mixtures of VO with VOO or OO) oils, were recorded; the chemical shifts of 1H signals and 221 

their assignments to protons of the different functional groups are shown in Table S1 in the 222 

supplementary material. The 1H-NMR profiles of the oil samples presented characteristic patterns 223 

of triglycerides, diglycerides and some minor constituents of the unsaponifiable fraction, which are 224 

useful for the determination of the botanical origin of oils and the composition of blended oils 225 

(Alonso-Salces, Berrueta, Quintanilla-Casas, Vichi, Tres, Collado, et al., 2020). 226 



11 

As reported for VOO mixtures with VOs (Alonso-Salces et al., 2020), the proposed approach to 227 

detect blends of OO with other VOs and quantify the percentage of VO in the blend, is based in the 228 

use of the 1H-NMR fingerprint of the oil and a set of multivariate classification and regression 229 

models organized in the decision tree scheme (Figure 1). The first step of this strategy is to 230 

determine whether the oil sample contains VOO or OO using the classification model (PLS-DA 231 

model 1 in Table 1), already described in the first part of the study (Alonso-Salces et al., 2020). 232 

Once the presence of OO is confirmed in the oil sample, binary classification models developed by 233 

PLS-DA are used to (i) detect a certain VO in a blend with OO, (ii) determine in which proportion 234 

(low or high) the VO is present, and (iii) differentiate between ‘legal’ (containing NTSO or HOSO) 235 

and ‘illegal’ (containing other VOs) blends with OO, using sunflower oil as a seed oil model 236 

(Gómez-Coca et al., 2020; Monfreda et al., 2012). The PLS-DA models achieved for blends of VOs 237 

and OO (PLS-DA models 2967 and 7071) are shown in Tables 14 and Tables S2S5 238 

(supplementary material). Finally, a regression model built by PLS-R determines the percentage of 239 

VO in the blend with OO. These PLS-DA and PLS-R models and their chemical interpretation are 240 

described in the next sections. 241 

3.1.1. PLS-DA models to discriminate blends of olive oils with vegetable oils 242 

Satisfactory PLS-DA models for all the VOs (RPOO, CO, HOSO, NTSO, DOSO, RAO and HR) 243 

were achieved using the whole percentage range of VO in the OO mixture, i.e. 080% VO in OO 244 

(PLS-DA models 3036 in Table S2 in the supplementary material). Prediction abilities of the 245 

binary classification models developed to discriminate between OO blends with RPOO, CO or 246 

HOSO were 95100% for both categories; with NTSO, DOSO or RAO, 8487% for the OO blends 247 

with the specific VO, and 9197% for the OO blends that did not contain the specific VO; and with 248 

HR, 97% for HR-OO category and 89% for the non-HR category. 249 

The main 1H signals responsible for the identification of OO blends containing RPOO were the 250 

methylene protons of saturated fatty acids (#9a), which presented significantly higher intensities in 251 
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RPOO-OO blends, even though were not completely discriminant; whereas the methylene (#9c) and 252 

allylic (#12b) protons of linoleic acid showed lower intensities in the RPOO category. Palm oil is, 253 

among the VOs studied, the one that contains the highest amounts of saturated fatty acids (Vigli et 254 

al., 2003). Indeed, palmitic acid is the major saturated fatty acid in palm oil, being present in similar 255 

amounts as oleic acid. Meanwhile, linoleic acid is a minor compound in palm oil, present in similar 256 

concentrations as in OO, and in lower amounts than in the other VOs (Montoya, Cochard, Flori, 257 

Cros, Lopes, Cuellar, et al., 2014). 258 

The blends of CO in OO were distinguished from the other VOs in OO as a result of its 259 

characteristic profiles of fatty acids and triacylglycerides (Christopoulou, Lazaraki, Komaitis, & 260 

Kaselimis, 2004; Gómez-Ariza, Arias-Borrego, García-Barrera, & Beltran, 2006; Jabeur, Zribi, 261 

Makni, Rebai, Abdelhedi, & Bouaziz, 2014; Yang, Ferro, Cavaco, & Liang, 2013). The intensity of 262 

the most influential signals, i.e. the methyl protons of the acyl groups of linoleic acid (#7c) and 263 

saturated fatty acids (#7a), the bis-allylic protons of linolenic acid (#15b) and the glyceryl protons at 264 

4.304.32 ppm of triacylglycerides (#18), were higher in the blends containing CO; while the 265 

glyceryl protons at 4.284.30 ppm of triacylglycerides (#18) showed the opposite trend. In fact, 266 

corn oil present similar linoleic contents to sunflower oil, and significantly higher ones than refined 267 

avocado, refined hazelnut, palm and olive oil; slightly higher amounts of linolenic acid than the 268 

other oils studied; and a level of saturated fatty acids lower than palm oil but similar or slightly 269 

higher than the rest of the oils considered in the model (Guillén & Ruiz, 2003; Jiang et al., 2018; 270 

Monfreda et al., 2012; Vigli et al., 2003). 271 

The major contribution to the binary classification models built to determine the presence of HOSO 272 

in OO was due to the methylene protons oleic acid (#9b), the allylic protons of linoleic acid (#12b) 273 

and the vinylic protons of unsaturated fatty acids (#24), which exhibited higher intensities in the 274 

blends with HOSO, partially overlapping with the non-HOSO category. These observations were in 275 

accordance with the fact that HOSO contains higher amounts of oleic acid than sunflower, corn and 276 

palm oils, similar to avocado oil, and lower than hazelnut and olive oils. Linoleic acid is present in 277 
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larger amounts in HOSO than in palm, olive, hazelnut and avocado oils and lower than in sunflower 278 

and corn oils. The allylic protons of linolenic acid (#12c) of HOSO-OO blends displayed intensities 279 

overlapping with the 1st and 2nd quartiles of the non-HOSO category. Actually, linolenic contents of 280 

HOSO are similar to those of HR and slightly lower than the other studied oils. The methylene 281 

protons of saturated fatty acids (#9a) were also influent in the model, displaying intermediate-high 282 

values for HOSO-OO blends overlapping the 2nd, 3rd and 4th quartiles of the non-HOSO category, 283 

but far from RPOO-OO blends, which exhibit the largest contents. These observations are 284 

supported by previously descriptions of the composition of the pure oils (Green & Wang, 2020; 285 

Guillén et al., 2003; Jović, Smolić, Primožič, & Hrenar, 2016; Vigli et al., 2003). 286 

Among the most influential variables in the binary classification models achieved for the detection 287 

of NTSO in OO, the methyl (#7c) and bis-allylic (#15a) protons of linoleic acid, and the vinylic 288 

protons (#24), the methyl protons at 1.001.02 ppm (#7) and the methylene protons at 1.321.34 289 

ppm (#9) of unsaturated fatty acids, displayed higher intensities in the OO blends with NTSO. The 290 

opposite trends were observed for the allylic (#12a) and methyl (#7b) protons of oleic acid. This 291 

behaviour agreed with the composition of sunflower oil, which is characterised by the largest 292 

contents of linoleic acid and unsaturated fatty acids, and the lowest contents of oleic acid respect to 293 

the other oils studied (Christopoulou et al., 2004; Guillén et al., 2003; Jabeur et al., 2014; Jović et 294 

al., 2016; Monfreda et al., 2012; Yang et al., 2013). 295 

The PLS-DA model built to distinguish OO blends containing DOSO presented the highest absolute 296 

B coefficients for the allylic protons of oleic (#12a) and linoleic (#12b) acids and the methylene 297 

protons of oleic acid (#9b). During the desterolization process, the dehydration of sterols and the 298 

elimination of the acid group of sterol esters take place by bleaching, producing olefinic 299 

degradation products and di-steryl ethers; however the profiles of triacylglycerides and fatty acids 300 

are practically unaltered (Grob, Biedermann, Bronz, & Giuffré, 1994). Instead, the deodorization 301 

process may affect the composition of triglycerides, diglycerides, fatty acids and minor components 302 

of the unsaponifiable fraction, depending mainly on the temperature and time of the process 303 
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(Aparicio & Harwood, 2013). Thus, DOSO is characterized by relatively high contents of oleic and 304 

linoleic acids as HOSO. Nevertheless, the intensities of the signal due to oleic acid (#12a and #9b) 305 

in DOSO-OO blends presented a large variability and were significantly higher than in the non-306 

DOSO category, even though not completely discriminant between both categories. In contrast, 307 

linoleic acid signal (#12b) intensities of DOSO-OO blends exhibited less variability and overlapped 308 

with the 1st and 2nd quartiles of the non-DOSO category. The methyl protons of linoleic acid (#7c) 309 

in DOSO-OO blends exhibited a narrow range of intensities close to the 2nd quartiles of the non-310 

DOSO category. The vinylic protons of unsaturated fatty acids (#24) displayed lower intensities and 311 

high variability in the blends with DOSO overlapping the 1st, 2nd and 3rd quartiles of the non-DOSO 312 

category. 313 

Refined avocado oil presents intermediate compositions regarding its fatty acid profiles compared 314 

to the other oils studied (Guillén et al., 2003; Jabeur et al., 2014; Jović et al., 2016; Vigli et al., 315 

2003; Yang et al., 2013), as well as its sterol contents, in particular β-sitosterol (Al-Ismail, Alsaed, 316 

Ahmad, & Al-Dabbas, 2010; Fernandes, Gómez-Coca, Pérez-Camino, Moreda, & Barrera-Arellano, 317 

2017; Green et al., 2020; Parcerisa, Casals, Boatella, Codony, & Rafecas, 2000). In fact, the 318 

intermediate composition of RAO was reflected in the NMR spectra, and in particular in the most 319 

important variables in the binary classification model to detect RAO in OO. Thus, the methyl (#7c), 320 

allylic (#12b) and α-methylene (#13c) protons of linoleic acid and the methyl protons of β-sitosterol 321 

(#4) exhibited signals for the RAO-OO blends with intensity ranges overlapping with 2nd, 3rd and 4th 322 

quartiles of the non-RAO category. Whereas, the α-methylene protons of linolenic acid (#13d) and 323 

the methylene protons at 1.321.34 ppm of unsaturated fatty acids (#9) of RAO-OO blends 324 

presented intensity ranges overlapping with 1st, 2nd and 3rd quartiles of the non-RAO category, and a 325 

median intensity value lower for RAO-OO mixtures than for the other types of mixtures. The signal 326 

intensities of the methylene protons at 1.201.22 ppm of the acyl group of saturated fatty acids (#9) 327 

in RAO-OO blend overlapped the 2nd and 3rd quartiles of the non-RAO category. 328 
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The most contributing variables for the identification of HR in OO were the methyl (#7b) and 329 

allylic (#12a) protons of oleic acid, presenting higher intensities in the HR-OO blends; and the 330 

methyl (#7d), bis-allylic (#15b) and allylic (#12c) protons of linolenic acid, the vinylic protons of 331 

unsaturated fatty acids (#24), the β-methylene (#10a) and methyl (#7a) protons of saturated fatty 332 

acids and the methyl protons of terpenic alcohols or sterols (#2), showing lower intensities in the 333 

mixtures of HR with OO than in the other VO-OO blends. Refined hazelnut oil contains the highest 334 

amounts of oleic acid among the VOs studied, and comparable contents to those of olive oil. HR 335 

presents the lowest linolenic acid contents similar to HOSO, therefore the linolenic signal intensities 336 

overlapped with 1st and 2nd quartiles of the non-HR category (Green et al., 2020; Guillén et al., 337 

2003; Jović et al., 2016; Parcerisa et al., 2000; Vigli et al., 2003). Each oil type presents 338 

characteristic profiles of sterols and terpenic alcohols (Al-Ismail et al., 2010; Aparicio et al., 2013; 339 

Fernandes et al., 2017; Parcerisa et al., 2000), which in the present model contributed to the 340 

distinction of OO blends with and without HR. 341 

In order to improve the classification results of the full percentage range models, further PLS-DA 342 

models were developed, the stepwise strategy proceed as follows. Once the oil sample is classified 343 

as containing OO in the first stage of the decision tree scheme (Figure 1), a PLS-DA model 344 

classifies the sample according to their level of VO in the OO, i.e. low (OOs with 020% VOs) and 345 

high (OOs with 3080% VOs); the prediction abilities being of 96% and 94% for the low and high 346 

categories respectively (PLS-DA model 29 in Table 1). The most influential variables on the model 347 

were the methyl protons of saturated fatty acids (07a) and β-sitosterol (#4); the allylic (#12b), bis-348 

allylic (#15a) and α-methylene (#13c) of linoleic acid; and the vinylic protons (#24), the methyl 349 

protons at 1.001.02 ppm (#7) and the methylene protons at 1.321.33 ppm (#9) of unsaturated 350 

fatty acids, which exhibited lower intensities in the low category, overlapping with the 1st and 2nd 351 

quartiles of the high category. In contrast, the 1H signals of linolenic acid (#7d and #15b) and oleic 352 

acid (#12a) displayed higher intensities in the low category, overlapping with the 3rd and 4th 353 

quartiles of the high category. The chemical composition of the blends that constituted each 354 
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category justified these observations, since the low category contained samples with highest 355 

proportions of OO, which is the oil that contains the highest concentrations of oleic acid together 356 

with HR; whereas in the high category, blends with high percentages of VOs characterised by high 357 

linoleic and β-sitosterol contents were included (Al-Ismail et al., 2010; Aparicio et al., 2013; 358 

Fernandes et al., 2017; Green et al., 2020; Guillén et al., 2003; Jović et al., 2016; Parcerisa et al., 359 

2000; Vigli et al., 2003). 360 

In next stage of the decision tree scheme (Figure 1), an oil sample, classified in the low category 361 

(PLS-DA model 29 in Table 1), is predicted by binary classification models in order to identify the 362 

specific VO contained in the OO blend (PLS-DA models 4450 in Table 2 and PLS-DA models 363 

3743 in Table S3 in the supplementary material). The PLS-DA models developed including or not 364 

pure OO samples in the dataset were similar. The recognition and prediction abilities achieved were 365 

higher than 95% of hits in the models for detecting RPOO, CO and HOSO in OO blends; c.a. 90% 366 

for NTSO, DOSO and HR in OO blends; and c.a. 8085% for RAO in OO blends. The most 367 

influential variables in the binary classification models for OO blends with ≤20% RPOO, NTSO, 368 

DOSO or HR (except the saturated fatty acid signals) were the same as in the corresponding models 369 

built for the full percentage range of VO in OO, but also other characteristic signals stood out. In 370 

the particular case of the PLS-DA models for mixtures of CO and OO, the methyl protons of the 371 

acyl group of linoleic acid (#7c) was the main responsible for the distinction of OO mixtures 372 

containing CO from those without CO. The identification of low proportions of HOSO in OO were 373 

mainly due to the higher intensity of the 1H signals of the methylene protons of saturated fatty acids 374 

(#9a) and unsaturated fatty acids with signals at 1.301.34 ppm (#9), which presented higher 375 

intensities in the HOSO category. The most influent signals for distinguishing low percentages of 376 

RAO in OO were those due to the polyunsaturated fatty acids. Thus, the intensities of the methyl 377 

(#7c) and β-methylene (#10c) protons of linoleic acid displayed intensities with similar median 378 

values in both categories but different variabilities. Furthermore, the signal intensities of the 379 

methylene protons of linolenic acid (#9c) and the methylene protons at 1.311.34 ppm (#9) and the 380 
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vinylic protons (#24) of unsaturated fatty acids were lower in the OO blends containing RAO, 381 

overlapping with the 1st and 2nd quartiles of the non-RAO category. 382 

Taking into account that with the above models, all CO-OO blends and 95% of the RPOO-OO 383 

blends were identified, as well as at least 95% of the OO blends not containing CO or RPOO 384 

(Table 2 and Table S3 in the supplementary material), further classification models were developed 385 

with datasets without the 1H-NMR spectral data of RPOO-OO and CO-OO mixtures. The PLS-DA 386 

models achieved (PLS-DA models 5155 in Table S4 in the supplementary material) afforded 387 

better classification abilities to detect NTSO and RAO in OO-blends, and similar results to resolve 388 

the presence of HOSO, DOSO or HR in OO-blends. Hence, once it is discarded that the OO sample 389 

contains RPOO or CO using the PLS-DA models 37, 38, 44 and 45 (Table 2 and S3 in the 390 

supplementary material), the presence of HOSO, NTSO, DOSO, RAO or HR in an OO blend is 391 

predicted by PLS-DA model 5155. A part from the 1H signals that were important in the previous 392 

PLS-DA models, these models presented particular influential variables that contributed to improve 393 

their classification abilities. Thus, regarding PLS-DA model 52 for NTSO-OO blends, the 394 

methylene protons of oleic acid (#9b) presented lower intensities in the NTSO category, whereas 395 

the glyceryl protons of triacylglycerides (#18) showed higher intensities in the NTSO category. 396 

Concerning PLS-DA model 54 for RAO-OO blends, the signal intensities of the methyl protons of 397 

oleic acid (#7b) and the glyceryl protons of triacylglycerides (#23) in the OO blends containing 398 

RAO were overlapping with the 1st, 2nd and 3rd quartiles of the non-RAO category; and the α-399 

methylene of linoleic (#13c) and linolenic acids (#13d), with the 2nd, 3rd and 4th quartiles of the non-400 

RAO category. This observation is consistent with the characteristic intermediate composition of 401 

fatty acids that RAO presents, as referred above. No models to discriminate pure OOs from blends 402 

of VOs with OO were built due to the low number of pure OO samples available for modelling in 403 

the present study. 404 

PLS-DA models were also developed for the blends with 2080% VOs in OO in order to identify 405 

the VO contained in the mixture (PLS-DA models 5662 in Table 3). The recognition and 406 
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prediction abilities of the binary classification models achieved for OO blends with RPOO, CO, 407 

DOSO or HR were 98100% for both categories; OO blends with NTSO and RAO, ≥91% for both 408 

categories; and OO blends with HOSO, 86% for the HOSO category and 99% for the non-HOSO 409 

category. Since all blends were correctly classified by the RPOO-OO and CO-OO models, further 410 

PLS-DA models to detect 2080% VO in OO were built using a dataset without the 1H-NMR 411 

spectral data of RPOO and CO blends with OO (PLS-DA models 6367 in Table S5 in the 412 

supplementary material). These models afforded better recognition and prediction abilities than the 413 

previous ones, except for HR-OO blend. Indeed, the models for the identification of OO mixtures 414 

with and without NTSO or HOSO allowed the correct classification of all samples of both 415 

categories; the model for RAO-OO mixtures identified all samples containing RAO and 92% of 416 

samples in the non-RAO category; and the model for DOSO-OO mixtures gave the same 417 

classification results as the model built including RPOO and CO spectral data. The model to 418 

differentiate OO mixtures with and without HR provided slightly worse classifications than 419 

previous model but over 90% of hits for both categories. In fact, the detection of the adulteration of 420 

OO with HR is one of the main challenge in fraud detection due to the close composition of both 421 

refined oils (Agiomyrgianaki et al., 2010; García-González et al., 2004; Gómez-Ariza et al., 2006; 422 

Mannina et al., 2009). 423 

The PLS-DA model for OO blends with RPOO (PLS-DA model 56) disclosed that the signals of 424 

the methylene protons of saturated fatty acids (#9a), mainly due to palmitic acid, and the methylene 425 

protons of linoleic acid (#9c) were completely discriminant between OO blends containing ≥20% 426 

RPOO and OO blends with the other VOs in the same percentages. As a result, the measurement of 427 

just one of these two variables would be enough to establish whether an OO is mixed with RPOO in 428 

percentages ≥20%. The trends observed for these signals were the same as in the OO blends with 429 

low proportions of VOs. 430 

With regard to the binary classification model obtained to detect OO blends with ≥20% CO (PLS-431 

DA model 57), the most significant variables were the same as those in the full range model, and 432 
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showed similar trends; even though in the model for the high range (≥20% CO in OO), the 433 

methylene protons of oleic acid (#9b) and the methyl protons of linolenic acid (#7d) and β-sitosterol 434 

(#4) were also preponderant. Oleic acid signal presented lower intensities in the CO category and 435 

overlapped with the 1st and 2nd quartiles of the non-CO category, since corn oil together with 436 

sunflower oil are the oils with the lowest contents of this fatty acid. While the signals of linolenic 437 

acid and β-sitosterol displayed higher intensities in the CO category, in agreement with the known 438 

higher amounts of both compounds in corn oil compared to the other VOs blended with OO 439 

(Aparicio et al., 2013; Guillén et al., 2003; Monfreda et al., 2012; Vigli et al., 2003). 440 

The models achieved to identify the presence of HOSO in OO in high proportions (PLS-DA models 441 

58 and 63) presented the highest absolute B coefficients for the same variables than in the full range 442 

model (PLS-DA model 32) and followed the same trend. In PLS-DA model 63, additional signals 443 

due to oleic acid (#12a) and linoleic acid (#9c) contributed to the discrimination. The signal due to 444 

saturated fatty acids (#9a) presented a B coefficient three times higher than the rest of the signals in 445 

this model than in the full range model. 446 

The binary classification models built to detect OO blends with ≥20% NTSO (PLS-DA model 59 447 

and 64) presented the same influential variables and observed trends as the previous NTSO-OO 448 

models described above (the full percentage and low content models). However, once the presence 449 

of RPOO and CO in the OO blend was discarded by the PLS-DA models 56 and 57 respectively, 450 

the signals of the bis-allylic (#15a) and allylic (#12b) protons of linoleic acid, the methylene protons 451 

at 1.341.36 ppm (#9) and the vinylic protons (#24) of unsaturated fatty acids, and the methylene 452 

protons of oleic acid (#9b) were completely discriminant between both categories, thus any of this 453 

variable can be used as markers to determine whether an OO blend contains NTSO at concentration 454 

≥20%. 455 

The most discriminant variables in the binary classification models for OO blends with ≥20% 456 

DOSO (PLS-DA model 60 and 65) were the same as in the corresponding model achieved for the 457 

full percentage range. With respect to the PLS-DA models for the detection of ≥20% RAO in OO 458 
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(PLS-DA models 61 and 66), fewer 1H signals were influent in these models compared to the full 459 

percentage range and the low content models. Among them, the signals of the methylene protons of 460 

oleic acid (#9b) and the allylic protons of linoleic acid (#12b) in the RAO category overlapped with 461 

the 3rd and 4th quartiles of the non-RAO category, as a result of RAO characteristic intermediate 462 

composition of these fatty acids among the VOs studied. Meanwhile, the signal intensities of 463 

methylene protons of linolenic acids (#9c) and the vinylic protons of unsaturated fatty acids (#24) 464 

showed lower intensities in the RAO-OO blends, overlapping with the 1st quartile of the non-RAO 465 

category. 466 

As for the full percentage range and the low range models built to detect HR in OO, the most 467 

contributing variables to PLS-DA models 62 and 67 for blends with ≥20% HR in OO were, not only 468 

the allylic protons of linoleic (#12b) and oleic (#12a) acids and the methyl protons of oleic acid 469 

(#7b), but also the methylene protons of oleic acid (#9b); all of them presenting higher intensities in 470 

the HR-OO blends. The trends of the signal intensities of the methyl protons of saturated fatty acids 471 

(#7a) and linolenic acid (#7d), the vinylic protons of unsaturated fatty acids (#24) were similar to 472 

those observed in previous models, presenting lower intensities in the HR-OO blends. The allylic 473 

(#12c) and α- methylene (#13d) protons of linolenic acids were also significant for the 474 

differentiation of the OO blends with and without HR, and followed the same trend as its methyl 475 

protons (#7d). 476 

3.1.2. PLS-DA models to discriminate between ‘legal’ and ‘illegal’ blends of olive oil and 477 

vegetable oils 478 

Regarding the aforementioned possibilities that Reg. (EU) 29/2012 and its amendments offer to the 479 

Member States, the potential of the present multivariate approach to implement those regulations 480 

was demonstrated with the following case study. The most common seed oils used to blend with 481 

olive oil are refined conventional (normal type) sunflower oil and refined high oleic sunflower oil, 482 

thus sunflower oil was considered as a model seed oil of ‘legal’ blends. While the blends of olive 483 

oil with the other VOs studied would not be permitted in some or all of the situations specified in 484 
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the regulation, and therefore, were considered as ‘illegal’ blends. Binary classification models were 485 

developed to first distinguish between ‘legal’ and ‘illegal’ blends, and then differentiate which of 486 

the two types of sunflower oils, i.e. NTSO or HOSO, is in a ‘legal’ blend with OO (Figure S2 in the 487 

supplementary material). Afterwards, the percentage of NTSO or HOSO in the blend can be 488 

determined by the regression models that are reported in section 3.1.4 in order to verify the 489 

percentage of NTSO or HOSO in the declared blend or determine the level of adulteration of the 490 

OO. 491 

The binary classification model discriminating between ‘legal’ blends (OO with NTSO or HOSO) 492 

and ‘illegal’ blends (OO with RPOO, CO, DOSO, RAO or HR) provided prediction abilities of 493 

86% and 98% respectively (PLS-DA model 70 in Table 4). As previously reported for ‘legal’ and 494 

‘illegal’ blends with VOO (Alonso-Salces et al., 2020), the most influential variables in the 495 

classification model were the bis-allylic (#15b) and methyl (#7d) protons of linolenic acid, which 496 

presented higher intensities and/or variability in the ‘illegal’ category. Whereas, the methyl (#7c) 497 

and bis-allylic (#15a) protons of linoleic acid and the vinylic protons of unsaturated fatty acids 498 

(#24) showed higher intensities and/or variability in the ‘legal’ category. Other relevant variables in 499 

the model for OO blends were the allylic (#12a) and methyl (#7b) protons of oleic acid, which 500 

exhibit lower intensities and high variability in the ‘legal’ category; and the α-methylene protons of 501 

linoleic acid (#13c), the methyl protons of β-sitosterol (#4) and the methyl protons of terpenic 502 

alcohols or sterols (#2), with higher intensities in the ‘legal’ blends. The well-known differences in 503 

the composition of fatty acids, sterols and terpenic alcohols of NTSO and HOSO respect to the VOs 504 

included in the ‘illegal’ category and OO supported these observations. 505 

In order to differentiate ‘legal’ OO blends containing NTSO from those with HOSO, binary 506 

classification models were constructed affording prediction abilities of 97% for both categories 507 

(PLS-DA models 71 in Table 4). Regarding the most important variables in the model, the most 508 

discriminant variables were the methylene protons of oleic acid (#9b) and the glyceryl protons of 509 

triacylglycerides (#18), which presented higher intensities and lower variability in HOSO category; 510 
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and the vinylic protons at 5.305.32 ppm of unsaturated fatty acids (#24), which exhibited lower 511 

intensities and variabilities in HOSO category. Furthermore, the α-methylene protons of oleic acid 512 

(#13b) and the vinylic protons at 5.325.34 ppm of unsaturated fatty acids (#24) showed higher 513 

signal intensities in HOSO blends than in NTSO blends; in contrast with the α-methylene (#13d) 514 

and allylic (#12c) of linolenic acid, the methylene protons at 1.321.36 ppm of unsaturated fatty 515 

acids (#9) and the methyl protons of linoleic (#7c) that exhibited higher intensities and variability in 516 

NTSO blends. Indeed, HOSO contains higher amounts of oleic acid and lower concentrations of 517 

linoleic and linolenic acids (polyunsaturated fatty acids) than NTSO (Jović et al., 2016). 518 

3.1.3. PLS-DA models to discriminate between different blends of vegetable oils and olive oil 519 

In the case that more than one binary PLS-DA model of the decision tree scheme (Figure 1) 520 

classifies an oil sample as containing the corresponding VO, further binary classification models 521 

can be built using datasets containing only the information related to those specific VOs. For 522 

instance, PLS-DA models shown in Table 4 were built to distinguish OO mixtures containing 523 

DOSO or HR (PLS-DA model 74), RAO or HR (PLS-DA model 75), RAO or DOSO (PLS-DA 524 

model 76) and DOSO or HOSO (PLS-DA model 77). 525 

The prediction abilities of the model to differentiate between mixtures with DOSO and HR were 526 

84% for the DOSO-OO blends and 95% for the HR-OO blends. The major contributing signals to 527 

this model were the allylic protons of oleic acid (#12a) and the methyl protons of saturated fatty 528 

acids (#9a) and oleic acid (#9b), which presented lower intensities in the HR-OO blends 529 

overlapping with the 1st, 2nd and 3rd quartiles of the DOSO category; and the allylic protons (#12b), 530 

bis-allylic (#15a), methyl (#7c) and methylene (#9c) protons of linoleic acid, which showed lower 531 

intensities in the DOSO-OO blends. The allylic and bis-allylic signal intensity ranges of the DOSO 532 

category partially overlapped with the 1st and 2nd quartiles of the HR category, whereas the methyl 533 

signal of the DOSO category completely overlapped with the 1st quartile, and the methylene signal, 534 

with the 1st, 2nd and 3rd quartiles of the HR category. 535 
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Concerning the distinction of RAO-OO and HR-OO blends, the prediction abilities achieved by the 536 

corresponding model were 82% for RAO category and 84% for HR category. The most influential 537 

variables in the model were the oleic acid signals due to the methylene (#9b), methyl (#7b) and 538 

allylic (#12a) protons of oleic acid and the methylene protons of linoleic acid (#9c), which 539 

presented higher intensities in HR-OO blends, overlapping with 3rd and 4th quartiles of the RAO 540 

category. In contrast, the intensity range of the methylene protons of saturated fatty acids (#9a) in 541 

the RAO category overlapped with the 3rd and 4th quartiles of the HR category. Refined hazelnut 542 

oils are known to present higher contents of oleic acid, similar concentrations of linoleic acid and 543 

lower amounts of saturated fatty acids than refined avocado oil (Green et al., 2020; Parcerisa et al., 544 

2000). 545 

With respect to the model to differentiate RAO-OO and DOSO-OO blends, the prediction abilities 546 

afforded by the model were 95% for the RAO category and 97% for the DOSO category. Among 547 

the most dominant variables in the model, the linoleic signals due to the methyl (#7c) and allylic 548 

(#12b) protons, and the methyl proton signal of squalene (#11) displayed higher intensities in RAO-549 

OO mixtures; whereas the oleic signals due to the allylic (#12a), methylene (#9b) and methyl (#7b) 550 

protons and the signals of the methylene (#9c) and β-methylene (#10c) protons of linolenic acid 551 

showed higher intensities in DOSO-OO mixtures. 552 

The binary classification model for the differentiation of DOSO-OO and HOSO-OO mixtures 553 

achieved prediction abilities of 95% and 100% respectively. The main signals responsible for the 554 

discrimination were the methylene protons of saturated fatty acids (#9a), which presented similar 555 

intensity values for both categories but higher variability in the HOSO-OO blends; the allylic 556 

(#12b) and methyl (#7c) protons of linoleic acid, and the vinylic protons at 5.325.34 ppm of 557 

unsaturated fatty acids (#24), which exhibited higher intensities in the OO blends with HOSO; and 558 

the allylic (#12a) and methylene (#9b) protons of oleic acid, and the vinylic protons at 559 

5.355.38 ppm of unsaturated fatty acids (#24), which presented higher intensities and variabilities 560 

in OO blends with DOSO. 561 
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Taking into account the trends observed for the most influential variables in the models achieved 562 

for the discrimination of DOSO-OO blends from other VO-OO mixtures, DOSO-OO blends 563 

presented higher concentrations of oleic acid than OO blends with HR, RAO and HOSO, which are 564 

the VOs that presented the highest contents according to literature (Green et al., 2020; Guillén et al., 565 

2003; Jović et al., 2016; Parcerisa et al., 2000); and contained lower amounts of linoleic acid than 566 

the OO blends with these VOs. DOSO, which is an oil obtained from the desterolization and 567 

deodorization of high oleic sunflower oil was expected to present higher contents of linoleic acid, 568 

close to HOSO. However, DOSO blends contained even lower amounts of linoleic acid than the 569 

blends with HR and RAO. These results evidenced that during the desodorization and/or 570 

desterolization process the fatty acid profile of the oil was altered resulting in lower linoleic acid 571 

contents and higher oleic acid contents. It is already known that during this raffination processes 572 

drastic conditions are used that leads to olefinic degradation of sterols, the isomerization of 573 

squalene and linoleic and linolenic acid, among other changes in the chemical composition of the 574 

oil (Aparicio et al., 2013; Grob et al., 1994). 575 

3.1.4. PLS-R models to determine the percentage of vegetable oil in a blend with olive oil 576 

After the VO contained in the blend with OO is identified using the classification models in the 577 

decision tree scheme (Figure 1 and Figure S2 in the supplementary material), a PLS regression 578 

model determines the percentage of VO contained in the mixture with OO. Thus, PLS-R models for 579 

binary mixtures of RPOO, CO, HOSO, NTSO, DOSO, RAO or HR with OO were successfully 580 

built (PLS-R models 1327 in Table 5). The full range of % VO in the OO blend was divided in 581 

smaller sub-ranges and a PLS-R model was developed for each one. These regression models 582 

provided more accurate predictions than the PLS-R models constructed for the full range of % VO. 583 

The most influential variables on the regression models for each VO-OO blend corresponded to 584 

those observed for the classification models for that blend, and therefore, were explained by the 585 

characteristic composition in fatty acids, triacylglycerides and squalene of the oils present in the 586 
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blend. The coherence in the chemical interpretation of the B regression coefficients supported the 587 

robustness of the models attained. 588 

All regression models disclosed for OO blends presented excellent precisions; most of the models 589 

yielded R2 values >0.99, except for the low % range models of HOSO and RAO with R2 values of 590 

0.97 and 0.930.96 respectively. The models permitted the quantification of the % VO in OO with 591 

accuracies under 5% R-RMSEP for contents of ≥5% RPOO, ≥6% CO, ≥10% HR, ≥16% DOSO, 592 

≥16% HOSO, ≥9% NTSO and ≥31% RAO; 515% R-RMSEP for contents of 25% RPOO, 26% 593 

CO, 310% HR, 516% DOSO, 716% HOSO, 39% NTSO and 531% RAO; and 1520% R-594 

RMSEP for contents of 23% HR, 45% DOSO, 57% HOSO, 23% NTSO and 45% RAO. 595 

As reported in section 3.1.1, the classification abilities of the PLS-DA models to identify RAO-OO 596 

blends at low RAO percentages became better when pure OO samples were excluded of the dataset 597 

in the modelling step. This fact indicated that the samples of 2% RAO in OO and pure OO were 598 

close to the boundary and therefore misclassified. Thus, the limit of detection was established in the 599 

range between 2% and 4% RAO in OO. Indeed, RAO and OO contains similar amounts of saturated 600 

fatty acids, linoleic and linolenic acids, and RAO presents relative high contents of oleic acid 601 

respect to most of the other VOs blended with OO. The detection limits of the models to verify the 602 

presence of RPOO, CO, HOSO, NTSO, DOSO and HR in OO were under 2% VO in the blend. 603 

These results are alike or outperform those reported in literature using NMR or other analytical 604 

techniques. In previous NMR studies, high field 1H-NMR detected the adulteration of refined 605 

hazelnut oil in olive oil at a proportion of 10% using linear discriminant analysis (Mannina et al., 606 

2009), and even at 8% using 1H and 13C-NMR and artificial neural networks (García-González et 607 

al., 2004), or as low as 1% using 1H and 31P-NMR and canonical discriminant analysis or 608 

classification binary trees (Agiomyrgianaki et al., 2010). 13C-NMR and discriminant data analysis 609 

distinguished several VOs such as sunflower, avocado, soybean and hazelnut oils at 5% in OO 610 

(Guyader, Thomas, Portaluri, Jamin, Akoka, Silvestre, et al., 2018). Other approaches that detected 611 

contents of 14% sunflower, soybean and corn oils in olive oil were based on voltammetric 612 
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fingerprinting (Tsopelas, Konstantopoulos, & Kakoulidou, 2018), mass spectrometry fingerprinting 613 

(Sánchez-Hernández, Nozal, Marina, & Crego, 2012), fluorescence spectroscopy (Tan, Li, Jiang, 614 

Shi, Xiao, Jia, et al., 2018), Raman spectroscopy (Philippidis, Poulakis, Papadaki, & Velegrakis, 615 

2017), or the determination of the composition of fatty acids, sterols, triglycerides and different 616 

chemical parameters and ratios (Contiñas, Martínez, Carballo, & Franco, 2008; Christopoulou et al., 617 

2004; Jabeur et al., 2014; Monfreda et al., 2012; Yang et al., 2013). The analysis of the volatile 618 

profile managed to disclose hazelnut oil in olive oil in level as low as 5% (Mildner-Szkudlarz & 619 

Jeleń, 2008). FTIR or triacylglyceride fingerprints allowed the detection of high oleic sunflower oil 620 

in levels as low as 10% (De La Mata-Espinosa et al., 2011; Jović et al., 2016). The analysis of 621 

sterols and their degradation products were proposed to determine the adulteration of edible oils 622 

with desterolized sunflower oil, but the limit of detection of this approach was not determined 623 

(Biedermann, Grob, Mariani, & Schmidt, 1996; Grob et al., 1994). To the authors’ knowledge, no 624 

data was found in literature regarding the adulteration of OO with avocado oil, neither virgin nor 625 

refined. 626 

3.2. Prediction of blends of oil of the ‘virgin olive oil’ or ‘olive oil’ categories and other 627 

vegetable oil 628 

The composition of thirty six blind oil samples provided within the OLEUM project and eight 629 

commercial oils was predicted by the binary classification models and regression models following 630 

the complete decision tree scheme (Figure S1 and S2 in the supplementary material). Table S6 631 

(supplementary material) gathers for each sample: i) the PLS-DA models used, and the 632 

corresponding classification predictions regarding the category of the olive oil, the VO and the 633 

low/high level of VO in the blend; ii) % VO in the blend determined by the PLS-R model built for 634 

the type of blend (VO-VOO or VO-OO) previously predicted by the classification models; and iii) 635 

the predictions of the complementary PLS-DA models, such as PLS-DA models 7477 (Table 4), 636 

which are specific binary classification models to distinguish mixtures of two particular VOs. 637 
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Most of the samples were predicted satisfactory according to the description provided. Indeed, the 638 

category of olive oil, i.e. VOO or OO, the particular VO and the percentage of VO in the oil sample 639 

were accurately determined. All ‘legal’ mixtures of VOO or OO with 4060% NTSO or HOSO, all 640 

the blends of RPOO-OO and HV-VOO (530% VO), and the blends of EVAO-VOO and HR-OO 641 

with ≥10% VO were correctly identified and the percentage of VO properly figured out. Only blind 642 

samples 16, 17 and 19 were predicted to present slightly higher % VO in VOO, and blind sample 643 

26, scarcely lower % HR in OO than those given in the description. The DOSO-OO blends were 644 

satisfactory determined by the classification and regression models achieved for these mixtures; just 645 

for blind sample 36, the % DOSO in OO was barely lower than predicted. The blend of 10% DOSO 646 

in OO (blind sample 34) was confused with mixtures of 211% of HOSO in OO. For the blend of 647 

5% EVAO in VOO (blind sample 13), the VO contained was not recognised by any of the 648 

classification models, but the percentage of VO was within the calibration range of the regression 649 

models made for EVAO-VOO, HOSO-VOO and HR-VOO blends. Indeed, the EVAO-VOO model 650 

predicted correctly the percentage of EVAO in the mixture. The blend of 5% HR in OO (blind 651 

sample 25) was not detected by any of the HR-OO classification models but it was by the RAO-OO 652 

models. The RAO-OO blends at different proportions (blind samples 2124) were identified by the 653 

classification models built for both RAO-OO and DOSO-OO, and the % VO in OO determined by 654 

the regression models constructed for both mixtures. However, the PLS-DA model 76 (Table 4), 655 

which distinguishes these two mixtures, predicted satisfactorily that the blends contained RAO, 656 

except for the mixture of 10% RAO in OO. Despite this, the RAO-OO regression model calculated 657 

accurately the content of RAO in the blends of 10%, as well as 20% RAO in OO. The error in the 658 

prediction of % RAO for the blend of 30% RAO in OO was 15.7%, higher than expected. The 659 

blends of 5% RAO in OO was close to the detection limit, therefore the corresponding regression 660 

model was not able to predict it properly. 661 

Regarding the commercial oils analysed, they were declared to be mixtures of vegetable oils or 662 

NTSO with EVOO or VOO. Samples 37 and 38 were confirmed to contain VOO, whereas sample 663 
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44 was classified as an OO blend. Furthermore, these three samples were predicted to contain 664 

NTSO in accordance with their label specifications. All the other commercial oil samples (3943) 665 

were labelled as mixtures of VOO or EVOO with rapeseed oil, however all of them were classified 666 

as blends of OO. These results are not conclusive since no blends of rapeseed oil with VOO or OO 667 

were available to be included in the modelling step of the present study. From the predictions of the 668 

classification and regression models of the decision tree scheme, it could be infer that most of these 669 

samples (39, 4143) presented close composition to blends of 50% CO in OO or to pure HR oil. 670 

Taking into account the content of oleic acid, the main fatty acid in rapeseed, CO and HR oils, 671 

which is around 60%, 30% and 80% respectively, according to literature (Guillén et al., 2003; Jiang 672 

et al., 2018; Vigli et al., 2003; Yang et al., 2013), it may be deduced that those samples, if 673 

containing rapeseed oil, have about 25% rapeseed oil in OO, as specified in the label. Sample 40 674 

was identified by all classification models as NTSO-OO blends, and predicted to have 93% NTSO. 675 

In order to predict blends of rapeseed oil with VOO and OO, these type of blends must be included 676 

in the dataset used to build the models of the decision tree scheme, as well as any other VO that 677 

could be of interest so as to certify the percentage of VO in VOO or OO blends or detect olive oil 678 

adulterations. 679 

4. Conclusion 680 

1H-NMR fingerprinting of olive oils coupled to multivariate data analysis provides chemical tools 681 

to detect blends between oils of the ‘olive oil’ category and vegetable oils, and quantify the 682 

percentage of each oil in the mixture, as reported for oil blends with the ‘virgin olive oil’ category 683 

in the first part of the present study (Alonso-Salces et al., 2020). 1H-NMR spectral data of oils of 684 

the ‘olive oil’ category and their mixtures with refined palm olein oil, corn oil, sunflower oil, high 685 

oleic sunflower oil, desterolized high oleic sunflower oil, refined avocado oil and refined hazelnut 686 

oil, was used to optimized and validated binary classification and regression models by PLS-DA 687 

and PLS-R respectively. These PLS-DA and PLS-R models were arranged in a decision tree 688 

scheme in order to determine the composition of an oil sample. Satisfactory, robust and stable 689 
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classification models were achieved, and excellent precisions and acceptable accuracies were 690 

afforded by the regression models developed for the determination of the percentage of VO in the 691 

OO blends. Moreover, the reliability of both classification and regression models was supported by 692 

the chemical interpretation of the most influential variables in the models. The percentage of the 693 

VO in the OO blend is determined with accuracies under the 20% of R-RMSEP for contents as low 694 

as 2% RPOO, CO, NTSO or HR, 4% DOSO or RAO and 5% HOSO in OO. The limits of the 695 

detection were under 2% RPOO, CO, HOSO, NTSO, DOSO or HR and 24% RAO in OO. 696 

The complete stepwise strategy based on 1H-NMR fingerprinting of an oil sample in combination 697 

with chemometrics and proposed to determine the content of mixtures of oils of the ‘virgin olive 698 

oil’ or ‘olive oil’ categories and vegetable oils allow to (i) confirm the presence of VOO or OO in 699 

an oil sample; (ii) discriminate between pure olive oils and their blends with VOs to a certain 700 

extent, given by the detection limit disclosed for each VO; (iii) identify the VO in the blend with 701 

VOO or OO; (iv) distinguish between blends made with different VOs and VOO or OO, or (v) with 702 

the same VO at different concentrations; and (vi) determine the percentage of VO blended with 703 

VOO or OO. The performance and effectiveness of the proposed strategy was tested predicting 704 

blind samples, which confirmed its feasibility to support Reg. (EU) 29/2012. Further studies should 705 

be carried out with larger balanced sample sets that cover the variability of olive oils of both 706 

categories (VOO and OO) and the vegetable oils of interest. The different possible sources of 707 

variability, i.e. varieties of each botanical species, agronomical and climatic conditions, harvests 708 

and geographical origins among others, should be considered. The implementation of this approach 709 

requires the development of a databank of 1H-NMR fingerprints of oils legally blended or submitted 710 

to adulteration, as well as of the adulterants and their blends, representative of the natural oil 711 

variability and compositional differences, in order to guarantee robust models for both 712 

authentication and fraud detection. It is worth to note that this requirement is feasible in practice 713 

since among the objectives of the OLEUM project are to develop the OLEUM databank, an online 714 

integrated quality assurance database of olive oil analytical methods and chemical data, as well as 715 
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the OLEUM Network of a worldwide community of proficient analytical laboratories involved in 716 

olive oil analysis, which can also contribute to feeding and updating the databank over time. 717 
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Figure captions 899 

Figure 1. Decision tree scheme constituted of PLS-DA classification and PLS-R regression 900 

models to determine the composition of binary mixtures of oils of the ‘olive oil’ category and other 901 

vegetable oils. Abbreviations: VOO, virgin olive oil; OO, olive oil; VO, vegetable oil; NTSO, 902 

refined conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic sunflower 903 

oil; DOSO, desterolized and deodorized high oleic sunflower oil; HR, refined hazelnut oil; RAO, 904 

refined avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 905 
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Figure S1. Decision tree scheme constituted of PLS-DA classification and PLS-R regression 908 

models to determine the composition of binary mixtures of oils of the ‘virgin olive oil’ or ‘olive oil’ 909 

categories and other vegetable oils. Abbreviations: VOO, virgin olive oil; OO, olive oil; VO, 910 

vegetable oil; NTSO, refined conventional sunflower oil (normal type sunflower oil); HOSO, 911 

refined high oleic sunflower oil; DOSO, desterolized and deodorized high oleic sunflower oil; HR, 912 

refined hazelnut oil; HV, virgin hazelnut oil; S, refined soybean oil; EVAO, virgin avocado oil; 913 

RAO, refined avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 914 

Figure S2. Decision tree scheme constituted of PLS-DA classification and PLS-R regression 915 

models for a case study: Discrimination between ‘legal’ (containing NTSO or HOSO) and ‘illegal’ 916 

(not containing NTSO or HOSO) blends, and determination of % NTSO or HOSO in binary 917 

mixtures with oils of the ‘virgin olive oil’ or ‘olive oil’ categories. Abbreviations: VOO, virgin 918 

olive oil; OO, olive oil; VO, vegetable oil; NTSO, refined conventional sunflower oil (normal type 919 

sunflower oil); HOSO, refined high oleic sunflower oil. 920 
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1 

Tables 1 

Table 1 2 

PLS-DA models to discriminate between pure and blended oils containing oils of the ‘olive oil’ or 3 

‘virgin olive oil’ categories and vegetable oils, and binary mixtures with different proportions of 4 

vegetable oil in olive oil.1 5 

PLS-DA 

model Data 

PLS-

comp Boundary Class2 

Class 

code n p %R %P 

1 Pure & blend VOO/OO 4 0.4079 VOO 0 838 0.70 97 97 

    OO 1 356 0.30 98 98 

29 Pure & blend OO 16 0.4388 020% VOs in 

OO 

0 184 0.52 97 96 

    3080% VOs in 

OO 

1 171 0.48 95 94 

 6 

1 Abbreviations: n, number of samples; centered data; PLS-comp, number of PLS components; p, prior probability; %R, % of 7 

recognition ability; %P, % of prediction ability in cross-validation; VOO, virgin olive oil; OO, olive oil; VO, vegetable oil; NTSO, 8 

refined conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic sunflower oil; DOSO, desterolized and 9 

deodorized high oleic sunflower oil; HR, refined hazelnut oil; HV, virgin hazelnut oil; S, refined soybean oil; EVAO, virgin avocado 10 

oil; RAO, refined avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 11 

2 Samples contained in each class: VOO, pure VOOs and blends of VOO with VOs (NTSO, HOSO, EVAO, HV, HR or S); OO, pure 12 

OOs and blends of OO with VOs (RPOO, CO, HOSO, NTSO, DOSO, RAO or HR); 020% VOs in OO, pure OOs and blends of 13 

OO with 220% VOs (RPOO, CO, HOSO, NTSO, DOSO, RAO or HR); 3080% VOs in OO, blends of OO with 3080% VOs 14 

(RPOO, CO, HOSO, NTSO, DOSO, RAO or HR). 15 

  16 

Table(s)



2 

Table 2 17 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 220% 18 

vegetable oil in olive oil.1 19 

PLS-DA 

model Data 

PLS-

comp Boundary Class2 

Class 

code n p %R %P 

44 220% VOs in OO  2 0.2604 non-RPOO 0 130 0.86 98 97 

        RPOO 1 21 0.14 95 95 

45 220% VOs in OO  7 0.3987 non-CO 0 132 0.87 96 96 

        CO 1 20 0.13 100 100 

46 220% VOs in OO  3 0.3359 non-HOSO 0 140 0.92 98 98 

        HOSO 1 12 0.08 100 100 

47 220% VOs in OO  12 0.3176 non-NTSO 0 114 0.75 96 89 

        NTSO 1 38 0.25 97 89 

48 220% VOs in OO  8 0.2189 non-DOSO 0 131 0.87 92 85 

        DOSO 1 20 0.13 95 95 

49 220% VOs in OO  6 0.2633 non-RAO 0 131 0.86 83 82 

        RAO 1 21 0.14 90 90 

50 220% VOs in OO  14 0.3408 non-HR 0 131 0.87 97 92 

        HR 1 19 0.13 100 95 
 20 

1 See abbreviations in Table 1. 21 

2 Samples contained in each class: non-RPOO, blends of OO with 220% VOs (CO, HOSO, NTSO, DOSO, RAO or HR); RPOO, 22 

blends of OO with 220% RPOO; non-CO, blends of OO with 220% VOs (RPOO, HOSO, NTSO, DOSO, RAO or HR); CO, 23 

blends of OO with 220% CO; non-HOSO, blends of OO with 220% VOs (RPOO, CO, NTSO, DOSO, RAO or HR); HOSO, 24 

blends of OO with 220% HOSO; non-NTSO, blends of OO with 220% VOs (RPOO, CO, HOSO, DOSO, RAO or HR); NTSO, 25 

blends of OO with 220% NTSO; non-DOSO, blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, RAO or HR); DOSO, 26 

blends of OO with 220% DOSO; non-RAO, blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, DOSO or HR); RAO, 27 

blends of OO with 220% RAO; non-HR, blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, DOSO or RAO); HR, blends 28 

of OO with 220% HR. 29 

  30 



3 

Table 3 31 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 2080% 32 

vegetable oil in olive oil.1 33 

PLS-DA 

model Data 

PLS-

comp Boundary Class2 

Class 

code n p %R %P 

56 2080% VOs in OO  1 0.3445 non-RPOO 0 185 0.88 100 100 

        RPOO 1 25 0.12 100 100 

57 2080% VOs in OO  7 0.4410 non-CO 0 178 0.85 100 100 

        CO 1 31 0.15 100 100 

58 2080% VOs in OO  5 0.4063 non-HOSO 0 182 0.87 99 99 

        HOSO 1 28 0.13 86 86 

59 2080% VOs in OO  6 0.3650 non-NTSO 0 151 0.72 100 99 

        NTSO 1 59 0.28 93 92 

60 2080% VOs in OO  4 0.3127 non-DOSO 0 188 0.90 100 99 

        DOSO 1 20 0.10 100 100 

61 2080% VOs in OO  5 0.3195 non-RAO 0 187 0.89 95 94 

        RAO 1 23 0.11 91 91 

62 2080% VOs in OO  9 0.3083 non-HR 0 187 0.91 99 98 

        HR 1 19 0.09 100 100 
 34 

1 See abbreviations in Table 1. 35 

2 Samples contained in each class: non-RPOO, blends of OO with 2080% VOs (CO, HOSO, NTSO, DOSO, RAO or HR); RPOO, 36 

blends of OO with 2080% RPOO; non-CO, blends of OO with 2080% VOs (RPOO, HOSO, NTSO, DOSO, RAO or HR); CO, 37 

blends of OO with 2080% CO; non-HOSO, blends of OO with 2080% VOs (RPOO, CO, NTSO, DOSO, RAO or HR); HOSO, 38 

blends of OO with 2080% HOSO; non-NTSO, blends of OO with 2080% VOs (RPOO, CO, HOSO, DOSO, RAO or HR); NTSO, 39 

blends of OO with 2080% NTSO; non-DOSO, blends of OO with 2080% VOs (RPOO, CO, HOSO, NTSO, RAO or HR); DOSO, 40 

blends of OO with 2080% DOSO; non-RAO, blends of OO with 2080% VOs (RPOO, CO, HOSO, NTSO, DOSO or HR); RAO, 41 

blends of OO with 2080% RAO; non-HR, blends of OO with 2080% VOs (RPOO, CO, HOSO, NTSO, DOSO or RAO); HR, 42 

blends of OO with 2080% HR. 43 

  44 



4 

Table 4 45 

PLS-DA models to discriminate between ‘legal’ and ‘illegal’ blends of olive oil and vegetable oils, 46 

between ‘legal’ blends of OO with NTSO and HOSO, between OO blends with DOSO and HR, 47 

between OO blends with RAO and HR, between OO blends with RAO and DOSO, and between 48 

OO blends of with DOSO and HOSO.1 49 

PLS-DA 

model Data 

PLS-

comp Boundary Class 

Class 

code n p %R %P 

702 280% VOs in OO  13 0.3960 ‘Illegal’ blend 0 199 0.61 99 98 

        ‘Legal’ blend 1 125 0.39 87 86 

712 280% NTSO in OO  5 0.3979 NTSO 0 88 0.70 98 97 

  280% HOSO in OO      HOSO 1 37 0.30 97 97 

743 280% DOSO in OO  3 0.4805 DOSO 0 37 0.50 86 84 

  280% HR in OO      HR 1 37 0.50 97 95 

753 280% RAO in OO  3 0.5011 RAO 0 38 0.51 79 82 

  280% HR in OO      HR 1 37 0.49 86 84 

763 280% RAO in OO  6 0.4723 RAO 0 38 0.51 95 95 

  280% DOSO in OO      DOSO 1 37 0.49 100 97 

773 280% DOSO in OO  3 0.4280 DOSO 0 37 0.50 95 95 

  280% HOSO in OO      HOSO 1 37 0.50 100 100 
 50 

1 See abbreviations in Table 1. 51 

2 Samples contained in each class: ‘Illegal’ blends, blends of OO with 280% VOs (RPOO, CO, DOSO, RAO or HR); ‘Legal’ 52 

blends, blends of OO with 280% VOs (HOSO or NTSO); NTSO, blends of OO with 280% NTSO; HOSO, blends of OO with 53 

280% HOSO. 54 

3 Samples contained in each class: DOSO, blends of OO with 280% DOSO; HR, blends of OO with 280% HR; RAO, blends of 55 

OO with 280% RAO; HOSO, blends of OO with 280% HOSO. 56 

  57 



5 

Table 5 58 

PLS-R models to determine the percentage of a certain vegetable oil in a binary mixture with olive 59 

oil.1 60 

PLS-R 

model Data2 n 

PLS-

comp R-cal R-val R2-val 

RMSEP 

(% VO) 

13 220% RPOO in OO4 20 4 0.9997 0.9993 0.9986 0.25 

14 2080% RPOO in OO3 25 1 0.9993 0.9992 0.998 0.80 

15 210% CO in OO4 12 1 0.997 0.996 0.992 0.32 

16 1080% CO in OO3 32 1 0.99992 0.99990 0.9998 0.32 

17 220% HOSO in OO4 10 2 0.994 0.983 0.97 1.0 

18 1080% HOSO in OO3 25 3 0.9994 0.9992 0.998 0.80 

19 220% NTSO in OO3 34 4 0.9989 0.9978 0.996 0.45 

20 2080% NTSO in OO3 54 1 0.997 0.994 0.989 1.4 

21 220% DOSO in OO4 19 6 0.998 0.994 0.987 0.78 

22 2080% DOSO in OO4 18 2 0.997 0.996 0.991 2.0 

23 210% RAO in OO4 11 5 0.997 0.963 0.93 0.76 

24 220% RAO in OO4 17 9 0.9994 0.9812 0.963 1.3 

25 2080% RAO in OO4 17 4 0.9991 0.9974 0.995 1.5 

26 220% HR in OO4 14 3 0.9988 0.9977 0.995 0.49 

27 2080% HR in OO3 21 3 0.9997 0.9995 0.9990 0.64 
 61 

1 Abbreviations: n, number of samples; centered data; PLS-comp, number of PLS components; R-cal, correlation coefficient in 62 

calibration; R-val, correlation coefficient in validation; R2-val, coefficient of determination in validation; RMSEP, root mean square 63 

error in the prediction (% VO). 64 

2 Samples used to build each model. 65 

3 3-fold cross-validation. 66 

4 Leave-one-out cross-validation. 67 
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Figure S1. Decision tree scheme constituted of PLS-DA classification and PLS-R regression models to determine the composition of binary mixtures 

of oils of the ‘virgin olive oil’ or ‘olive oil’ categories and other vegetable oils. Abbreviations: VOO, virgin olive oil; OO, olive oil; VO, 

vegetable oil; NTSO, refined conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic sunflower oil; DOSO, 

desterolized and deodorized high oleic sunflower oil; HR, refined hazelnut oil; HV, virgin hazelnut oil; S, refined soybean oil; EVAO, 

virgin avocado oil; RAO, refined avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 
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Figure S2. Decision tree scheme constituted of PLS-DA classification and PLS-R regression 

models for a case study: Discrimination between ‘legal’ (containing NTSO or HOSO) 

and ‘illegal’ (not containing NTSO or HOSO) blends, and determination of % NTSO 

or HOSO in binary mixtures with oils of the ‘virgin olive oil’ or ‘olive oil’ categories. 

Abbreviations: VOO, virgin olive oil; OO, olive oil; VO, vegetable oil; NTSO, refined 

conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic 

sunflower oil. 
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Supplementary material: Tables 

Table S1 

Chemical shift assignments of the 1H-NMR signals of the main components in olive oil. 

# Chemical shift 
(ppm) 

Multiplicitya Functional group Attribution 

1 0.318 d -CH2- (cyclopropanic ring) cycloartenol 
2 0.527 s -CH2- alcohol, sterol  
3 0.543 d -CH2- (cyclopropanic ring) cycloartenol 
4 0.669 s -CH3 (C18-steroid group) -sitosterol 
5 0.687 s -CH3 (C18-steroid group) stigmasterol 
6 0.740 t -CH3 (

13C satellite of signal at  
   0.87 ppm, acyl group)  
7 0.80-1.04 t -CH3 (acyl group)  
7a 0.83 t -CH3 (acyl group) saturated 
7b 0.866 t -CH3 (acyl group) oleic (or -9) 
7c 0.89 t -CH3 (acyl group) linoleic (or -6) 
7d 0.960 t -CH3 (acyl group) linolenic (or -3) 
8 0.987 t -CH3 (

13C satellite of signal at  
   0.87 ppm, acyl group)  
9 1.19-1.44  -(CH2)n- (acyl group)  
9a 1.243  -(CH2)n- (acyl group) saturated 
9b 1.256  -(CH2)n- (acyl group) oleic (or -9) 
9c 1.288  -(CH2)n- (acyl group) linoleic (or -6) and linolenic 

(or -3)  
10 1.51-1.65  -OCO-CH2-CH2- (acyl group)  
10a 1.57  -OCO-CH2-CH2- (acyl group) saturated 
10b 1.58  -OCO-CH2-CH2- (acyl group) oleic (or -9) 
10c 1.59  -OCO-CH2-CH2- (acyl group) linoleic (or -6) and linolenic 

(or -3) 
11 1.662 s -CH3 squalene 
12 1.96-2.07  -CH2-CH=CH- (acyl group)  
12a 1.97  -CH2-CH=CH- (acyl group) oleic (or -9) 
12b 2.01-2.03  -CH2-CH=CH- (acyl group) linoleic (or -6) and linolenic 

(or -3) 
12c 2.05-2.07  -CH2-CH=CH- (acyl group) linolenic (or -3) 
13 2.22-2.32 m -OCO-CH2- (acyl group)  
13a 2.24 m -OCO-CH2- (acyl group) saturated 
13b 2.25 m -OCO-CH2- (acyl group) oleic (or -9) 
13c 2.27 m -OCO-CH2- (acyl group) linoleic (or -6) 
13d 2.31 m -OCO-CH2- (acyl group) linolenic (or -3) 
14 2.40-2.45 m -OCO-CH2- (

13C satellite of signal at   
   2.26-2.32 ppm, acyl group)  
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# Chemical shift 
(ppm) 

Multiplicitya Functional group Attribution 

15 2.72-2.82  =CH-CH2-CH= (acyl group)  
15a 2.754 t =CH-CH2-CH= (acyl group) linoleic (or -6) 
15b 2.789 t =CH-CH2-CH= (acyl group) linolenic (or -3) 
16 3.69-3.73 d -CH2OH (glyceryl group) sn-1,2-diacylglycerides 
17 4.05-4.09 q >CH-OH (glyceryl group) sn-1,3-diacylglycerides 
18 4.09-4.32  -CH2OCOR (glyceryl group) triacylglycerides 
19 4.571 d  terpene 
20 4.648 s  terpene 
21 4.699 s  terpene 
22 5.05-5.15 m >CHOCOR (glyceryl group) sn-1,2-diacylglycerides 
23 5.22-5.28 m >CHOCOR (glyceryl group) triacylglycerides 
24 5.28-5.38 m -CH=CH- (acyl group)  
25 5.52-5.43 m -CH=CH- (13C satellite of signal at  
   5.28-5.38 ppm, acyl group)  
26 5.72-5.76 dt =CH- (phenolic ring) phenolic compounds 
27 5.986  =CH- (phenolic ring) phenolic compounds 
28 6.551 dt =CH- (phenolic ring) phenolic compounds 
29 6.607 dd =CH- (C8’; phenolic ring) dialdehyde of oleuropein 

lacking a carboxymethyl group 
aldehydic form of oleuropein 

30 6.79-6.73 d =CH- (C5’, C7’; phenolic ring) dialdehyde of secoiridoids 
(oleuropein, ligstroside) lacking 
a carboxymethyl group 
aldehydic form of secoiridoid 
(oleuropein, ligstroside) 

31 7.05-7.00 dt =CH- (C4’, C8’; phenolic ring) dialdehyde of ligstroside 
lacking a carboxymethyl group 
aldehydic form of ligstroside 

32 7.562 s =CH-O- (C3) aldehydic form of secoiridoid 
(oleuropein, ligstroside) 

33 8.14-8.06  >C(OH)OR volatile compounds 
 

34 9.215 d -CHO (C1) dialdehyde of secoiridoids 
(oleuropein, ligstroside) lacking 
a carboxymethyl group 

35 9.51 d -CHO E-2-alkenals (E-2-hexenal) 
36 9.626 dd -CHO (C3) dialdehyde of secoiridoids 

(oleuropein, ligstroside) lacking 
a carboxymethyl group 

  dd -CHO (C1) aldehydic form of secoiridoids 
(oleuropein, ligstroside) 

 

  



Table S2 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 280% 

vegetable oil in olive oil.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

30 080% VOs in OO  2 0.1815 non-RPOO 0 315 0.88 100 100 

        RPOO 1 41 0.12 95 95 

31 080% VOs in OO  7 0.3545 non-CO 0 310 0.87 96 95 

        CO 1 46 0.13 100 100 

32 080% VOs in OO  7 0.3662 non-HOSO 0 319 0.90 98 97 

        HOSO 1 37 0.10 95 95 

33 080% VOs in OO  12 0.2809 non-NTSO 0 268 0.75 98 97 

        NTSO 1 88 0.25 85 85 

34 080% VOs in OO  5 0.1652 non-DOSO 0 319 0.90 91 91 

        DOSO 1 37 0.10 84 84 

35 080% VOs in OO  11 0.2354 non-RAO 0 318 0.89 96 92 

        RAO 1 38 0.11 95 87 

36 080% VOs in OO  15 0.2270 non-HR 0 319 0.90 93 89 

        HR 1 37 0.10 100 97 

1 Abbreviations: n, number of samples; centered data; PLS-comp, number of PLS components; p, prior probability; %R, % of 

recognition ability; %P, % of prediction ability in cross-validation; %P-EV, % of prediction ability in external validation; 

OO, olive oil; VO, vegetable oil; NTSO, refined conventional sunflower oil (normal type sunflower oil); HOSO, refined high 

oleic sunflower oil; DOSO, desterolized and deodorized high oleic sunflower oil; HR, refined hazelnut oil; RAO, refined 

avocado oil; RPOO, refined palm olein oil; CO, refined corn oil. 

2 Samples contained in each class: non-RPOO, pure OOs and blends of OO with 280% VOs (CO, HOSO, NTSO, DOSO, 

RAO or HR); RPOO, blends of OO with 280% RPOO; non-CO, pure OOs and blends of OO with 280% VOs (RPOO, 

HOSO, NTSO, DOSO, RAO or HR); CO, blends of OO with 280% CO; non-HOSO, pure OOs and blends of OO with 

280% VOs (RPOO, CO, NTSO, DOSO, RAO or HR); HOSO, blends of OO with 280% HOSO; non-NTSO, pure OOs 

and blends of OO with 280% VOs (RPOO, CO, HOSO, DOSO, RAO or HR); NTSO, blends of OO with 280% NTSO; 

non-DOSO, pure OOs and blends of OO with 280% VOs (RPOO, CO, HOSO, NTSO, RAO or HR); DOSO, blends of OO 

with 280% DOSO; non-RAO, pure OOs and blends of OO with 280% VOs (RPOO, CO, HOSO, NTSO, DOSO or HR); 

RAO, blends of OO with 280% RAO; non-HR, pure OOs and blends of OO with 280% VOs (RPOO, CO, HOSO, NTSO, 

DOSO or RAO); HR, blends of OO with 280% HR. 

  



Table S3 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 220% 

vegetable oil in olive oil.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

37 020% VOs in OO  2 0.2399 non-RPOO 0 162 0.89 98 98 

        RPOO 1 21 0.11 95 95 

38 020% VOs in OO  12 0.3522 non-CO 0 164 0.89 97 95 

        CO 1 20 0.11 100 100 

39 020% VOs in OO  4 0.3039 non-HOSO 0 172 0.93 96 96 

        HOSO 1 12 0.07 100 100 

40 020% VOs in OO  11 0.2770 non-NTSO 0 143 0.79 93 90 

        NTSO 1 38 0.21 97 89 

41 020% VOs in OO  8 0.1904 non-DOSO 0 164 0.89 88 89 

        DOSO 1 20 0.11 95 90 

42 020% VOs in OO  7 0.2110 non-RAO 0 163 0.89 82 80 

        RAO 1 21 0.11 90 81 

43 020% VOs in OO  14 0.2809 non-HR 0 162 0.90 94 90 

        HR 1 19 0.10 95 95 

1 See abbreviations in Table S2. 

2 Samples contained in each class: non-RPOO, pure OOs and blends of OO with 220% VOs (CO, HOSO, NTSO, DOSO, 

RAO or HR); RPOO, blends of OO with 220% RPOO; non-CO, pure OOs and blends of OO with 220% VOs (RPOO, 

HOSO, NTSO, DOSO, RAO or HR); CO, blends of OO with 220% CO; non-HOSO, pure OOs and blends of OO with 

220% VOs (RPOO, CO, NTSO, DOSO, RAO or HR); HOSO, blends of OO with 220% HOSO; non-NTSO, pure OOs 

and blends of OO with 220% VOs (RPOO, CO, HOSO, DOSO, RAO or HR); NTSO, blends of OO with 220% NTSO; 

non-DOSO, pure OOs and blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, RAO or HR); DOSO, blends of OO 

with 220% DOSO; non-RAO, pure OOs and blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, DOSO or HR); 

RAO, blends of OO with 220% RAO; non-HR, pure OOs and blends of OO with 220% VOs (RPOO, CO, HOSO, NTSO, 

DOSO or RAO); HR, blends of OO with 220% HR. 

  



Table S4 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 220% 

vegetable oil in olive oil, once the presence of RPOO or CO is discarded.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

51 220% VOs in OO  2 0.3689 non-HOSO 0 98 0.89 98 97 

  without RPOO and CO data     HOSO 1 12 0.11 100 100 

52 220% VOs in OO  7 0.3706 non-NTSO 0 72 0.65 100 99 

  without RPOO and CO data     NTSO 1 38 0.35 95 92 

53 220% VOs in OO  8 0.2569 non-DOSO 0 89 0.82 91 85 

  without RPOO and CO data     DOSO 1 20 0.18 100 95 

54 220% VOs in OO  10 0.3905 non-RAO 0 87 0.81 91 87 

  without RPOO and CO data     RAO 1 20 0.19 100 95 

55 220% VOs in OO  15 0.3948 non-HR 0 89 0.82 97 92 

  without RPOO and CO data     HR 1 19 0.18 100 95 

1 See abbreviations in Table S1. 

2 Samples contained in each class: non-HOSO, blends of OO with 220% VOs (NTSO, DOSO, RAO or HR); HOSO, blends 

of OO with 220% HOSO; non-NTSO, blends of OO with 220% VOs (HOSO, DOSO, RAO or HR); NTSO, blends of OO 

with 220% NTSO; non-DOSO, blends of OO with 220% VOs (HOSO, NTSO, RAO or HR); DOSO, blends of OO with 

220% DOSO; non-RAO, blends of OO with 220% VOs (HOSO, NTSO, DOSO or HR); RAO, blends of OO with 220% 

RAO; non-HR, blends of OO with 220% VOs (HOSO, NTSO, DOSO or RAO); HR, blends of OO with 220% HR. 

  



Table S5 

PLS-DA models to detect the presence of a certain vegetable oil in a binary mixture of 

2080% vegetable oil in olive oil, once the presence of RPOO or CO is discarded.1 

PLS-DA 
model Data 

PLS-
comp Boundary Class2 

Class 
code n p %R %P 

63 2080% VOs in OO  3 0.4447 non-HOSO 0 125 0.82 100 100 

  without RPOO and CO data     HOSO 1 27 0.18 100 100 

64 2080% VOs in OO  3 0.4443 non-NTSO 0 95 0.62 100 100 

  without RPOO and CO data     NTSO 1 59 0.38 100 100 

65 20-80% VOs in OO  4 0.2963 non-DOSO 0 131 0.87 99 99 

  without RPOO and CO data     DOSO 1 20 0.13 100 100 

66 2080% VOs in OO  2 0.3560 non-RAO 0 131 0.85 92 92 

  without RPOO and CO data     RAO 1 23 0.15 100 100 

67 2080% VOs in OO  8 0.2858 non-HR 0 132 0.86 97 95 

  without RPOO and CO data     HR 1 22 0.14 91 91 

1 See abbreviations in Table S1. 

2 Samples contained in each class: non-HOSO, blends of OO with 2080% VOs (NTSO, DOSO, RAO or HR); HOSO, 

blends of OO with 2080% HOSO; non-NTSO, blends of OO with 2080% VOs (HOSO, DOSO, RAO or HR); NTSO, 

blends of OO with 2080% NTSO; non-DOSO, blends of OO with 2080% VOs (HOSO, NTSO, RAO or HR); DOSO, 

blends of OO with 2080% DOSO; non-RAO, blends of OO with 2080% VOs (HOSO, NTSO, DOSO or HR); RAO, 

blends of OO with 2080% RAO; non-HR, blends of OO with 2080% VOs (HOSO, NTSO, DOSO or RAO); HR, blends 

of OO with 2080% HR. 

 



Table S6 

Prediction of the composition of blind oil samples using the decision tree schemes in Figures S1 and S2 in the supplementary material and the 

complementary PLS-DA models.1,2 

PLS-DA PLS-R   

Blind 
sample Models applied Predictions 

Predicting 
model Blend % VO Description 

1   1, 2, 25-28, 68, 69 ‘Legal’ NTSO in VOO   3 NTSO-VOO 39.6 ± 1.9   EVOO + NTSO, 60:40 

2   1, 2, 25-28, 68, 69 ‘Legal’ NTSO in VOO   3 NTSO-VOO 50.8 ± 1.9   EVOO + NTSO, 50:50 

3   1, 2, 25-28, 68, 69 ‘Legal’ NTSO in VOO   3 NTSO-VOO 61.4 ± 1.9   EVOO + NTSO, 40:60 

4   1, 2, 25-28, 68, 69 ‘Legal’ HOSO in VOO   5 HOSO-VOO 40.0 ± 3.9   EVOO + HOSO, 60:40 

5   1, 2, 25-28, 68, 69 ‘Legal’ HOSO in VOO   5 HOSO-VOO 50.1 ± 3.9   EVOO + HOSO, 50:50 

6   1, 2, 25-28, 68, 69 ‘Legal’ HOSO in VOO   5 HOSO-VOO 60.3 ± 3.9   EVOO + HOSO, 40:60 

7   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ NTSO in OO   20 NTSO-OO 41.7 ± 2.8   OO + NTSO, 60:40 

8   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ NTSO in OO   20 NTSO-OO 51.2 ± 2.8   OO + NTSO, 50:50 

9   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ NTSO in OO   20 NTSO-OO 62.1 ± 2.8   OO + NTSO, 40:60 

10   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ HOSO in OO   18 HOSO-OO 39.9 ± 1.6   OO + HOSO, 60:40 

11   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ HOSO in OO   18 HOSO-OO 49.9 ± 1.6   OO + HOSO, 50:50 

12   1, 30-36, 29, 56-67, 70, 71 ‘Legal’ HOSO in OO   18 HOSO-OO 60.3 ± 1.6   OO + HOSO, 40:60 

13  1, 2, 3-24, 68, 69 VOO; low; non-VO; ‘illegal’  4 HOSO-VOO 3.9 ± 6.8  EVOO + EVAO, 95:5 

  73 2-5% HR in VOO  6 EVAO-VOO 6.5 ± 2.1   

          11 HR-VOO 3.9 ± 5.6     

14   1, 2, 3-24, 68, 69 VOO; low; EVAO; ‘illegal’   6 EVAO-VOO 12.9 ± 2.1   EVOO + EVAO, 90:10 

15   1, 2, 3-24, 68, 69 VOO; low; EVAO; ‘illegal’   6 EVAO-VOO 23.9 ± 2.1   EVOO + EVAO, 80:20 

16   1, 2, 25-28, 68, 69 VOO; high; EVAO; ‘illegal’   7 EVAO-VOO 42.6 ± 3.4   EVOO + EVAO, 70:30 

17   1, 2, 3-24, 68, 69 VOO; low; HV; ‘illegal’   9 HV-VOO 9.5 ± 2.6   EVOO + HV, 95:5 

18   1, 2, 3-24, 68, 69 VOO; low; HV; ‘illegal’   9 HV-VOO 10.9 ± 2.6   EVOO + HV, 90:10 

19   1, 2, 3-24, 68, 69 VOO; low; HV; ‘illegal’   9 HV-VOO 26.0 ± 2.6   EVOO + HV, 80:20 

20   1, 2, 25-28, 68, 69 VOO; high; HV; ‘illegal’   9 HV-VOO 27.4 ± 2.6   EVOO + HV, 70:30 

            

            



PLS-DA PLS-R   

Blind 
sample Models applied Predictions 

Predicting 
model Blend % VO Description 

21   1, 30-36, 29, 37-67, 70, 71 OO; low; RAO, DOSO; ‘illegal’   21 DOSO-OO 1.4 ± 1.6   OO + RAO, 95:5 

    76 RAO in OO   23 RAO-OO 0.0 ± 1.5     

22  1, 30-36, 29, 37-67, 70, 71 OO; low; RAO, DOSO; ‘illegal’  21 DOSO-OO 4.4 ± 1.6  OO + RAO, 90:10 

    76 DOSO in OO   23 RAO-OO 9.0 ± 1.5     

23   1, 30-36, 29, 37-67, 70, 71 OO; low; RAO, DOSO; ‘illegal’   21 DOSO-OO 13.2 ± 1.6   OO + RAO, 80:20 

    76 RAO in OO  24 RAO-OO 22.3 ± 2.7     

24   1, 30-36, 29, 37-67, 70, 71 OO; low; RAO, DOSO; ‘illegal’   21 DOSO-OO 19.2 ± 1.6   OO + RAO, 70:30 

  76 RAO in OO  24 RAO-OO 22.6 ± 2.7   

25   1, 30-36, 29, 37-55, 70, 71 OO; low; RAO; ‘illegal’   24 RAO-OO 12.7 ± 2.7   OO + HR, 95:5 

26   1, 30-36, 29, 37-67, 70, 71 OO; low; HR, RAO; ‘illegal’   25 RAO-OO 36.2 ± 3.1   OO + HR, 90:10 

    75 HR in OO   26 HR-OO 6.4 ± 1.0     

27   1, 30-36, 29, 37-55, 70, 71 OO; low; HR; ‘illegal’   26 HR-OO 15.0 ± 1.0   OO + HR, 80:20 

          27 HR-OO 20.3 ± 1.3     

28   1, 30-36, 29, 37-55, 70, 71 OO; low; HR; ‘illegal’   27 HR-OO 28.3 ± 1.3   OO + HR, 70:30 

29   1, 30-36, 29, 37-67, 70, 71 OO; low; RPOO, RAO, DOSO; ‘illegal’   13 RPOO-OO 5.2 ± 0.5   OO + RPOO, 95:5 

30   1, 30-36, 29, 37-67, 70, 71 OO; low; RPOO, RAO, DOSO; ‘illegal’   13 RPOO-OO 10.1 ± 0.5   OO + RPOO, 90:10 

31   1, 30-36, 29, 37-67, 70, 71 OO; low; RPOO; ‘illegal’   13 RPOO-OO 19.8 ± 0.5   OO + RPOO, 80:20 

          14 RPOO-OO 20.4 ± 1.6     

32   1, 30-36, 29, 37-67, 70, 71 OO; low; RPOO; ‘illegal’   14 RPOO-OO 30.7 ± 1.6   OO + RPOO, 70:30 

33   1, 30-36, 29, 37-55, 70, 71 OO; low; DOSO; ‘illegal’   21 DOSO-OO 4.8 ± 1.6   OO + DOSO, 95:5 

34   1, 30-36, 29, 37-55, 70, 71 OO; low; DOSO/HOSO; legal-HOSO   17 HOSO-OO 2.0 ± 2.1   OO + DOSO, 90:10 

  77 HOSO in OO  18 HOSO-OO 11.2 ± 1.6   

          21 DOSO-OO 12.4 ± 1.6     

35   1, 30-36, 29, 37-55, 70, 71 OO; low; DOSO; ‘illegal’   21 DOSO-OO 21.0 ± 1.6   OO + DOSO, 80:20 

          22 DOSO-OO 20.1 ± 4.0     

36   1, 30-36, 29, 37-55, 70, 71 OO; low; DOSO/HR; ‘illegal’   22 DOSO-OO 35.1 ± 4.0   OO + DOSO, 70:30 

    74 DOSO in OO   27 HR-OO 29.4 ± 1.3     

            



PLS-DA PLS-R   

Blind 
sample Models applied Predictions 

Predicting 
model Blend % VO Description 

37   1, 2, 25-28, 68, 69 VOO; high; NTSO; legal-NTSO   3 NTSO-VOO 99.4* ± 1.9   Label: EVOO + NTSO, 
65:35 

38   1, 2, 25-28, 68, 69 VOO; high; NTSO; legal-NTSO   3 NTSO-VOO 104.9* ± 1.9   Label: VOO + 
Vegetable oil 

39   1, 30-36, 29, 37-67, 70, 71 OO; low; CO, RAO, HR; ‘illegal’   16 CO-OO 56.4 ± 0.6   Label: EVOO +  

    75 HR in OO   27 HR-OO 107.3* ± 1.3   Rapeseed oil  

40   1, 30-36, 29, 56-67, 70, 71 OO; high; NTSO; legal-NTSO   20 NTSO-OO 93.2* ± 2.8   Label: VOO + Rapeseed  

           oil, 80:20 

41   1, 30-36, 29, 37-67, 70, 71 OO; low; CO, RAO, HR; ‘illegal’   16 CO-OO 52.0 ± 0.6   Label: VOO + Rapeseed  

    75 HR in OO   27 HR-OO 106.9* ± 1.3   oil, 75:25  

42   1, 30-36, 29, 37-67, 70, 71 OO; low; CO, RAO, HR; ‘illegal’   16 CO-OO 41.6 ± 0.6   Label: VOO + Rapeseed  

    75 HR in OO   27 HR-OO 95.5* ± 1.3   oil, 75:25  

43   1, 30-36, 29, 37-67, 70, 71 OO; low; CO, RAO, HR, DOSO; ‘illegal’   16 CO-OO 51.2 ± 0.6   Label: VOO + Rapeseed  

    75 HR in OO   27 HR-OO 106.9* ± 1.3   oil, 80:20  

44   1, 30-36, 29, 56-67, 70, 71 OO; high; NTSO; legal-NTSO   20 NTSO-OO 93.3* ± 2.8   
Label: VOO + 
Vegetable oil, 80:20 

1 Abbreviations: VOO, virgin olive oil; OO, olive oil; VO, vegetable oil; NTSO, refined conventional sunflower oil (normal type sunflower oil); HOSO, refined high oleic sunflower oil; DOSO, 

desterolized and deodorized high oleic sunflower oil; HR, refined hazelnut oil; HV, virgin hazelnut oil; S, refined soybean oil; EVAO, virgin avocado oil; RAO, refined avocado oil; RPOO, refined 

palm olein oil; CO, refined corn oil. 

2 Complementary PLS-DA models: PLS-DA models 7477 in Table 4, and PLS-DA models 7273 in Table S1 in Alonso-Salces et al. (2020). 

* Extrapolated results (outside the calibration range). 




