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Abstract
One of the characteristic features of turbulent flows is the emergence of many vortices
which interact, deform, and intersect, generating a chaotic movement. The evolution
of a pair of vortices, e.g., condensation trails of a plane, can be considered as a basic
element of a turbulent flow. This simple example nevertheless demonstrates very rich
behavior which still lacks a complete explanation. In particular, after the reconnection
of the vortices some coherent structures with the shape of a horseshoe emerge. They
have a high level of complexity generated by the interaction of waves running from
the reconnection region. These structures also turn to be very reminiscent to the ones
obtained from the localized induction approximation applied to a polygonal vortex.
It can be considered as an evidence that a pair of vortices creates a corner singularity
during the reconnection. In this work we focus on a study of the reconnection phe-
nomena and the emerged structures. In order to do it we present a new model based
on the approximation of an infinitely thin vortex, which allows us to focus on the
chaotic movement of the vortex center line. The main advantage of the developed
model consists in the ability to go beyond the reconnection time and to see the coher-
ent structures. It is also possible to define the reconnection time by analyzing the fluid
impulse.
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1 Introduction

One possibleway of transition from laminar to turbulent flow is the interaction between
vortices. This is a fascinating process characterized by the reconnection phenomena
when the topology of vortices changes producing a cascade of smaller structureswhich
can also reconnect. Simple examples of such processes are the interaction of a pair of
vortices like a reconnection of aircraft condensation trials, considered byCrow inCrow
(1970), or the collision of vortex rings (Kida et al. 1988; Lim et al. 1992). In both cases
the vortices firstly undergo long-wave deformation and then reconnect generating a
series of smaller rings or eye-shaped structures as those in Fig. 1. This sudden change
of the flow structure is quite impressive and still not completely understood. It is
also interesting that there is a surprising similarity between the statistical behavior
of vortex filaments in turbulent flows for quantum and classical fluids (Bewley et al.
2008; Nemirovskii 2020). Therefore, an explanation of this phenomena may be very
useful for the understanding of turbulence.

Vortices are regions in the fluid where a circular movement of particles happens.
These regions can be recognized by a high magnitude of the vorticity field which is the
curl of the velocity. However, the vorticity field moves with the flow, so the vortices
are also moving and deforming. In non-viscous and barotropic fluid the movement of
the vortex lines obeys the Navier-Stokes equations as if they were objects embedded
into the flow (McGavin and Pontin 2018; Kida and Takaoka 1991). The fact that the
vortices are part of a flow and alsomoved by it leads to that the detection and extraction
of vortices from the solutions of the Navier–Stokes equations is quite challenging, and
it is even more complicated to follow their evolution (McGavin and Pontin 2018).

We develop a new model of vortex interaction based on the approximation of
infinitely thin vortex embedded into a non-viscous fluid. This model allows us to
analyze the behavior of vortices before and after the reconnection moment. After the
reconnection time the model predicts the emergence of structures very reminiscent to
those obtained from the localized induction approximation (LIA) applied to an isolated
eye-shaped vortex. The solution of LIA is related to Riemann’s non-differentiable
function (RNDF, see formula (43)). The ability of the developed model to pass beyond
the reconnection time and see the coherent structures allows to establish a relation
between a classical mathematical object such as RNDF and the turbulent flows.

In the simplest cases of the reconnection it is enough to consider a pair of vortex
tubes, that is, cylindrical regions where the vorticity lines are parallel, and the vorticity
magnitude is decaying far from the cylinder central line. Even in this case we have
two different processes: deformation of the vortex core and deformation of the central
line. The first one leads to the creation of the helical Kelvin waves seen in many
experiments (Leweke et al. 2016), numerical simulations (Laporte and Leweke 2002),
and described in detail in Le Dizés and Lacaze (2005). The presence of the Kelvin
waves leads to a less clean reconnection process what makes more challenging to
understand the phenomena. Their amplitude, however, depends on the size of the
vortex core, so in this article we focus on infinitely thin vortices in order to avoid these
waves. We will refer to this approximation as the vortex filament approximation. In
our model the asymmetric helical structures of Kelvin waves before the reconnection
disappear, but the symmetric ones persist. It can be considered as an indicator that
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these waves have different nature: the ones before are due to the deformation of the
core, but the ones after are due to the emerged singularity.

Many attempts to describe the vortex reconnection were done in the last 50 years.
It started with the pioneer paper of Crow (1970) where the evolution of aircraft con-
densation trails is studied. A pair of initially straight vortices undergoes slow, nearly
planar sinusoidal instability. However, the planes containing the deformed vortices
are different and incline one to another by approximately π/4. The amplitude of the
deformation grows, and after some time, the vortices reconnect forming a train of
vortex rings. The stability analysis is performed in Crow (1970) under the assump-
tion that the vortices are infinitely thin, and the viscosity can be neglected. Suppose
that Xi (s, t) ⊂ R

3 are curves defining central lines of both vortices. We can find the
velocity v of the flow in any point x outside the vortices using the Biot–Savart integral:

v(x) =
2∑

j=1

� j

4π

∫ ∞

−∞
(x − X j (s, t)) ∧ ∂

∂sX j (s, t)ds

|x − X j (s, t)|3 . (1)

Here t is time, s is the parameter of the curve, i ∈ {1, 2}, �i is the vortex strength,
the symbol ∧ defines the vector product, the domain is supposed to be R

3, and the
vortices are infinite. Integrals (1) after the introduction of a cutoff can be also applied
to a point on the vortex providing the velocity ∂

∂tXi (s, t). In Crow (1970) a linear
perturbation analysis is applied to a pair of initially antiparallel vortices finding that
the most unstable mode is the long symmetric wave, called Crow wave. There are also
short and asymmetric waves seen in experiments and predicted by the model, but their
growing rate ismuch slower, and they probably emerge only under certain atmospheric
conditions. The wavelength predicted by the Crow model for aircraft condensation
trails equals 8.6b where b is the initial distance between vortices (aircraft wingspan).
This result slightly exceeds the wavelength obtained in experiments (Ortega et al.
2003) and numerical simulations (Han et al. 2000). It happens because the finite size
core enhances the growth of shorter waves, especially in the case of intense turbulence.

Even though the Crowmodel predicts instability, it is hard to use it for the numerical
simulation or any further analysis. A series of simpler models was proposed in several
papers by Klein and Majda (1991), Klein et al. (1995). Since there is only long-wave
deformation, we can choose an orthonormal basis e1, e2, e3 and suppose that the
vortices are nearly parallel to e3:

Xi (s, t) = se3 + δ2X(2)
i

(
s

δ
,
t

δ2

)
+ o(δ2), (2)

where δ � 1, andX(2)
i (s, t) is always orthogonal to e3, so it can be considered as a 2D

vector. The allowed wavelength is proportional to δ, but they are still long comparing
to the initial distance between vortices that is proportional to δ2. Under this assumption
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the Biot–Savart integral can be approximated up to the leading order in δ:

∂

∂t
Xi (s, t) = J

⎛

⎝αi�i
∂2

∂s2
Xi (s, t) +

∑

i �= j

2� j
Xi (s, t) − X j (s, t)

|Xi (s, t) − X j (s, t)|2

⎞

⎠ , (3)

where αi is a constant which depends on vortex core, �i is the vortex strength, and

J =
(
0 −1
1 0

)
.

There are two terms in (3): the first one is the local self-induction that is the velocity of
the flow generated by the vortex itself, whereas the second one is the velocity produced
by the external flow generated by other vortices. The reconnection after finite time
for this model is proven in Banica et al. (2017). Equation (3) is much easier to use
for numerical simulation. However, due to the singularity in the second term it is
impossible to go beyond the reconnection time. Furthermore, it is not clear whether
assumption (2) holds truewhen the amplitude of Crowwaves is large and consequently
the distance between vortices is small.

Another possible approach to study the reconnection phenomena is to consider
the Navier–Stokes equations. In this case we do not have any problems related to
the singularity and can include all the details such as compressibility, viscosity and
core deformation. The simulation, however, requires more computations and is more
difficult. The direct numerical simulation (DNS) of the incompressible Navier–Stokes
equations is done in Hussain and Duraisamy (2011). The visualization of vortices
with the λ2 criterion (Jeong and Hussian 1995) shows the flattering of the vortex
core near the reconnection region and the formation of threads between vortex rings.
These threads are stretching and may reconnect again if the Reynolds number is big
enough. The presence of viscosity makes it difficult to follow vortex lines due to
the dissipation. Therefore, the topology of the vortices is defined by surfaces not by
the curves and is much more complicated to analyze. In McGavin and Pontin (2018)
the vortex lines are extracted from the solution of the Navier–Stokes equations and
classificated into ones that reconnect, threads and the additional vortex rings which
emerges in the reconnection zone. It again demonstrates that these phenomena contain
a lot of different effects. Another attempt is done in Yao and Hussain (2020) where
the reconnection processes are divided into 3 stages: (1) the vortex cores flattering
and stretching in the reconnection region; (2) cutting and reconnection of the inner
vortex lines that leads to formation of bridges; (3) formation of threads from the rest
vortex lines where the energy is dissipating through a turbulent cascade. More details
are given in the review article (Yao and Hussain 2022). The evolution of threads in
the last stage is very complicated and chaotic for high Reynolds number, that is for
thin vortices or almost non-viscous fluids. Thus, if we consider the Navier–Stokes
equation for small Reynolds number, then we have to deal with the deformation of
the core and the dissipation due to viscosity which does not allow us to extract main
coherent structures. On the other hand for high Reynolds number we face the chaotic
behavior of the threads after reconnection which is also difficult to filter. We can also
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note that the coherent structures emerge not only in the reconnection region but also
far from it as a result of the interaction of running waves. These structures are clearer,
have a distinctive horseshoe shape, and they are the focus of our attention. In particular,
we highlight in this paper that they have a behavior very reminiscent to the evolution
of the corner vortex under LIA.

We show in Fig. 1 themain features that emerge due to the reconnection process.We
perform the solution of the Navier–Stokes equations using the large eddy simulation
(LES) in OpenFOAM software. In Fig. 1a the symmetric large length Crow waves
emerge. Further, in Fig. 1b we can notice small length asymmetric Kelvin waves in
the region close to the reconnection. And finally after the reconnection we can see
in Fig. 1c one horseshoe structure in black rectangle and the bridge going to another
symmetric one. In Hussain and Duraisamy (2011), Yao and Hussain (2020, 2022),
Brenner et al. (2016) the bridge is called thread, whereas the horseshoes are called
bridges, but in this article we will follow the introduced terminology. In this paper we
are not interested in the vortex reconnection cascade (Melander and Hussain 1988) but
in the evolution of the horseshoe structures and in the complexity of the interaction
of the waves that emerge. The extraction of these structures and the definition of the
reconnection time are quite challenging due to the finite thickness of the vortices in
the Navier–Stokes simulation.

The reconnection of vortices also happens in superfluids (Bewley et al. 2008; Fonda
et al. 2019). Even though there are many differences between classical fluids and
superfluids, some features of the turbulent regime have similarities, e.g., classical tur-
bulence flows have a filamentary structure (Nemirovskii 2020). Therefore, the results
in superfluid reconnection are also important for us. Instead of classical vortices, in
superfluids there are quantum vortices that are topological defects where the density
tends to zero. Usually the quantum vortices are studied using Gross–Pitaevskii equa-
tions (Villois et al. 2017) or doing vortex filament approximation (Schwarz 1985)
since the quantum vortices are infinitely thin. There is still a problem on how to model
the reconnection and the change of the topology of the vortices. In Schwarz (1985) it
is done by a heuristic way of measuring the distance between nodes in the discretiza-
tion of the filaments. The resulting shape demonstrates a self-similar behavior with a
circular horseshoe and helical waves running along the reconnected vortices.

The configuration with the horseshoe and helical waves is very reminiscent to the
evolution of a vortex filament that moves according to LIA and at the initial time is
given by two half-lines that meet at point (the corner) with an angle θ (Gutiérrez 2003;
Hoz and Vega 2018; Lipniacki 2003). We will call this vortex the corner vortex. Its
evolution is depicted in Fig. 2. The curve is self-similar and has constant curvature
c(s, t) = c0/

√
2t and torsion τ(s, t) = s/t , where s is the arclength of the curve, t is

time, c0 and θ satisfy the relation sin θ
2 = e−πc20/2 (see Gutiérrez 2003). It is possible

to see that the corner is turned into a circular horseshoe quite similar to the one we can
see in Fig. 1c. The parameter c0 and the angle θ are estimated from the quantum vortex
reconnection experiment in the superfluid helium 4He studied in Fonda et al. (2019).
The obtained data are consistent with the analytical results from Gutiérrez (2003), so
one would expect the local induction approximation to work reasonably well, at least
for quantumvortices. One of the goals of this work is to generalize themodel by adding

123



109 Page 6 of 38 Journal of Nonlinear Science (2023) 33 :109

Fig. 1 Simulation of vortex reconnection using LES in OpenFOAM in a periodic domain of non-
dimensionalized size 80×80×320 discretizedwith 112×112×324 elements.Vortex strength is� = −1500,
vortex core radius is rc = 2, and viscosity μ = 10−5, Re ≈ 6 · 108. The visualization is done with the λ2
criterium
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Fig. 2 Self-similar evolution of a corner vortex from different points of view

the interaction term and to establish a relation between the self-similar behavior of an
infinitely thin corner vortex and the reconnection of vortices.

In this article we present a new model based on the vortex filament approximation
but with the interaction term similar to the one in Klein et al. (1995). This model is able
to go beyond the reconnection moment in a natural way, without any heuristic, and
generate coherent structures. It seems to behave as the one showed in Fig. 2 that we
have just explained. The reconnection time cannot be found from the configuration of
vortices, so we cannot change the topology without introducing an error. However, if
we focus on an integral quantity the reconnection time becomes much more clear. We
study the fluid impulse that is an integral of a cross-product of position and vorticity
calculated around the reconnection region. Initially this integral changes monotoni-
cally but at some time starts to oscillate.We consider this time as the reconnection time.
Furthermore, the behavior of the fluid impulse after reconnection is very reminiscent
to the RNDF. A similar effect for a polygonal vortex was discussed in Hoz and Vega
(2018), and we can consider this as an evidence that the vortices at the reconnection
seem to create a corner similar to the one described in Gutiérrez (2003).

The paper has the following structure. In Sect. 2 the derivation of the equations
from the Biot–Savart law is shown. Next, in Sect. 3 we discuss some properties of the
new model and its relation to the previous ones. In Sect. 4 we describe the numerical
method we use to solve the derived equations. Finally, in Sect. 5 we present results of
the numerical simulation, and inSect. 6we compare the behavior after the reconnection
with the one of an isolated vortex which has the shape of an eye. It can be used as
an approximation of the vortex which emerges after the reconnection (see Fig. 1c)
and also as analog of a curvilinear polygon with only two corners. In Sect. 7, we
make conclusions and discuss possible directions of further research. “Appendix A”
is devoted to an alternative formulation and possible simplification, “Appendix B”
contains the numerical algorithm, and in “Appendix C” the evolution of the eye-shaped
vortex is described.
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Fig. 3 Initial configuration of
vortices

2 Derivation

The velocity of the flux produced by a pair of infinitely thin antiparallel vortices is
given by the Biot–Savart law:

v(x)=− �

4π

(∫ ∞

−∞
(x−X(s)) ∧ ∂X

∂s (s)

|x−X(s)|3 ds−
∫ ∞

−∞
(x−Y(s)) ∧ ∂Y

∂s (s)

|x−Y(s)|3 ds

)
, (4)

where � is the circulation, X(s) and Y(s) are curves in R
3 defining central lines of

both vortices, the symbol ∧ defines the vector product.
The vortices are moving by the flow generated by them; therefore, X(s, t) and

Y(s, t) are also functions of time. For a point x belonging to the vortex X(s, t) the
first integral represents the velocity due to the local self-induction vlia , and the second
integral is the velocity of the external flow vext produced by the vortex Y(s, t). Then,
we can decompose the velocity of the vortex filament into a sum:

∂

∂t
X(s, t) = vlia(s, t) + vext (s, t).

Let us call the components of vector X(s, t) = (
x1(s, t) x2(s, t) x3(s, t)

)T . The
initial configuration of the vortices is depicted in Fig. 3. Now we make the following
assumptions:

1. The vortices are symmetric respect to the plane x1 = 0; hence, we can reduce our
problem to only one unknown curve X(s, t) obtaining the second one by:

Y(s, t) = (−x1(s, t) x2(s, t) x3(s, t)
)T

. (5)
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2. For the velocity of the external flow we will use Rosenhead regularization (Rosen-
head 1930):

vext (s, t) = �

4π

∫ ∞

−∞

(X(s, t)−Y(q, t)) ∧ ∂Y
∂q (q, t)

(
4r2c + |X(s, t)−Y(q, t)|2) 3

2

dq, (6)

where rc is a parameter related to the vortex core, s is the parameter of the curve,
and q is the parameter of the curve used inside the integral. This regularization
prevents the singularity in the interaction term and can be understood as a viscosity
effect during the merging of the cores of the vortices. For the self-induction part
we do not use the regularization because there is no core merging.

3. The second vortex can be linearized near any point s that is in the interval q ∈
(s − α

√
x21 (s, t) + r2c , s + α

√
x21 (s, t) + r2c ) for some parameter α; furthermore,

the tails can be neglected in the Biot–Savart law. The length of this interval is
almost proportional to the distance between vortices. When the second vortex is
far, a large part of it makes a relevant contribution. On the other hand, when it is
close the situation is similar to LIA because the second integral in (4) is close to
singular; thus, we can consider only a small leading piece of it.

4. Either x1(s, t) or
∂x1(s,t)

∂s is small, so the product x1(s, t)
∂x1(s,t)

∂s is neglectable. It
means that a piece of vortex can be oriented in e1 direction only when it is close to
the second vortex.

Self-induction Let us start from the first term in (4) which corresponds to the self-
induction. Here we follow the standard derivation of the vortex filament equation for
binormal flow (Shaffman 1992) using LIA. Fix a time moment and select a point
X(s). We choose a perturbation ρξ(s) = ρ (N(s) cos(θ) + B(s) sin(θ)) with small ρ,
normalN(s), binormalB(s), and some angle θ . The self-induced velocity of the vortex
is found as the limit of Biot–Savart integral when ρ goes to zero. Since the expression
in the integral becomes singular, we can estimate it using only a neighborhood of the
point s with a cut-off Llia where we can expand X(q) in the Taylor series up to the
third order of |q − s|:

vlia(s) ≈ − �

4π

∫ s+Llia

s−Llia

(X(s)+ρξ(s)−X(q)) ∧ Xq(q)

|X(s)+δX(s)−X(q)|3 dq

≈ − �

4π

∫ s+Llia

s−Llia

(
ρξ(s) ∧ (

Xs(s)+(q−s)Xss(s)
)

(
ρ2+(q−s)2|Xs(s)|2

) 3
2

− (q−s)2Xs(s) ∧ Xss(s)

2
(
ρ2+(q−s)2|Xs(s)|2

) 3
2

)
dq, (7)

subindices here designate corresponding derivatives.We have also used that |ξ (s)| = 1
and that it is orthogonal to Xs(s). The first term in (7) represents rotation around the
vortex central line without its alteration, whereas the second one is the movement of
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the central line that gives the self-induced velocity:

vlia ≈ �

4π

Xs ∧ Xss

2|Xs |3

⎛

⎜⎜⎝− 2|Xs |√
|Xs |2 + 4 ρ2

L2
lia

+ ln

⎛

⎜⎜⎝

√
|Xs |2 + 4 ρ2

L2
lia

+ |Xs |
√

|Xs |2 + 4 ρ2

L2
lia

− |Xs |

⎞

⎟⎟⎠

⎞

⎟⎟⎠ .

In the limit ρ/Llia → 0 we obtain the local induction approximation (or the binormal
flow):

vlia(s) = �

4π

(
−1 + ln

(
Llia

ρ
|Xs(s)|

))
Xs(s) ∧ Xss(s)

|Xs(s)|3 . (8)

Assume that the cut-off is inverse to the modulus of tangential vector, that is Llia =
L̃lia/|Xs(s)|, and introduce the first parameter of our model:

ε = 2

−1 + ln
(
L̃lia/ρ

) . (9)

We will see later that the modulus of the tangential vector is growing when the time is
close to the reconnectionmoment. However, due to the regularization in the interaction
term we can bound it from above with a power of rc. The parameter ε represents the
strength of the interaction between vortices.
External flow The second integral in (4) after applying symmetry assumption, Rosen-
head regularization (6) and fixing the time reads

vext (s)= �

4π

∫ ∞

−∞
(2x1(s)e1 + Y(s) − Y(q)) ∧ Yq(q)

(
4r2c +4x21 (s)+4x1(s)(y1(s)−y1(q))+|Y(s)−Y(q)|2) 3

2

dq.

(10)

where component y1(s) of vector Y(s) is given by (5). We can apply assumption 3
obtaining:

vext (s)≈ �

32π(x21 (s)+r2c )
3/2

∫ s+α

√
x21 (s)+r2c

s−α

√
x21 (s)+r2c

2x1(s)e1 ∧ Ys(s)dq
(
1− (q−s)x1(s)x1,s (s)−(q−s)2|Ys (s)|2

x21 (s)+r2c

)3/2 .

Neglecting the term x1(s)x1,s(s) due to assumption 4 we obtain that the external
velocity is

vext (s)= �x1(s)e1 ∧ Ys(s)

16π(x21 (s)+r2c )|Ys(s)|
2α|Ys(s)|√
1+α2|Ys(s)|2

≈ �x1(s)e1 ∧ Ys(s)

8π(x21 (s)+r2c )|Ys(s)|
, (11)

if we choose α large enough.

123



Journal of Nonlinear Science (2023) 33 :109 Page 11 of 38 109

Main equations Summing up (8) with (11) and rescaling the time with [t] = 8πε/�

we obtain the main equations describing the evolution of a pair of symmetric vortices
due to self-induction and interaction:

Xt = Xs ∧ Xss

|Xs |3 − εx1
x21 + r2c

Xs ∧ e1
|Xs | . (12)

In (12) we have also used that |Xs | = |Ys | and Xs ∧ e1 = Ys ∧ e1. The equations
should be equipped with an initial condition X0(s) = X(s, 0) which is usually a
small perturbation of a line be1 + se3 shifted from the origin by a positive value b in
e1 direction and oriented in e3, and the boundary conditions which we will suppose
periodic on an interval s ∈ (0, S).

The parameter ε represents the strength of the vortex interaction when compared
with the self-induction. The bigger it is, the faster the reconnection happens. A more
detailed relation between ε and the velocity of the vortices is shown in Sect. 3. In
that section we also show how ε influences on the vortex stretching. The parameter
rc is necessary in order to avoid the singularity in the interaction term when x1 = 0.
However, it has a physical meaning of viscosity. According to Shaffman (1992) the
radius of the vortex core rc ∼ √

νt , where ν is viscosity and t is time. Since we are
mainly interested in non-viscous reconnection the parameter rc should be as small as
possible. Even though the presence of rc does not allow to see a sharp corner, we still
can see the effect and complexity of wave interaction at later times.

3 Some Properties of the Derived Equations

Relation to previous models
TheKlein–Majda system of equations (Klein et al. 1995) for a pair of nearly parallel

counter-rotating vortices in the symmetric case can be obtained from Eq. (12). Indeed,
in the considered case, taking into account that the vortices are nearly parallel to e3
and including regularization, the Klein–Majda system reads:

∂X
∂t

= �

4π
e3 ∧

(
σ

∂2X
∂s2

− X − Y
|X − Y|2 + r2c

)
,

∂Y
∂t

= − �

4π
e3 ∧

(
σ

∂2Y
∂s2

− Y − X
|Y − X|2 + r2c

)
. (13)

Parameter σ here depends on the structure of the vortex core, X and Y here are
2-dimensional vectors, the third component x3(s, t) = y3(s, t) = s is known and
ignored in the system. We can reduce the number of equations using symmetry:

x1,t̃ = −x2,ss, x2,t̃ = x1,ss − ε
x1

x21 + r2c
, (14)
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where t̃ = �
4π σ t is the rescaled time and ε = 1/σ . Now we will consider Eq. (12)

supposing that the vortex central line is given in the shape

X(s, t) = se3 + aX(2) (ξs, τ t) , (15)

where X(2) · e3 = 0 and ξa � 1. It means that similarly to (14) we have only 2
unknowns, and that the vortices may deviate from the straight line in only a long-wave
shape, comparing with the distance between vortices. In the Klein–Majda paper (Klein
and Majda 1991) these waves are called short waves. However, if we compare them
with the distance between vortices they are long. Plugging (15) into (12) and canceling
the amplitude a we obtain:

τX(2)
t = ξ2e3 ∧ X(2)

ss − ε
x (2)
1

r2c + x21
e2 + O(aξ).

We suppose that the left-hand side and the first two terms of the right-hand side are of
the same order, whereas the rest is smaller; thus, multiplying by a, we get:

Xt = e3 ∧ Xss − ε
x1

r2c + x21
e2,

that is equivalent to (14).
Crow instability Linear stability analysis of (12) predicts a long-wave instability
described by Crow in Crow (1970). Suppose that initially the vortices are parallel
to e3, as depicted in Fig. 3, and add a perturbation:

X(s, t) = be1 + vte2 + se3 + δeμt

⎛

⎝
α cosωs
β cosωs
γ sinωs

⎞

⎠ + O(δ2), (16)

where b is a half of the initial distance between vortices, δ � 1. Without the pertur-
bation the pair of vortices will move in e2 direction with velocity

v = −ε
b

b2 + r2c
, (17)

that is proportional to ε and almost inverse to the distance between vortices. This
result coincides with many previous researches (Crow 1970), with experiments, and
with numerical simulation using the Navier–Stokes equations. Moreover, here we get
another physical meaning of the parameter ε: the bigger it is the faster the pair of
vortices moves in the e2 direction.

Now let us find the frequencies of perturbations for which this straight line solution
is not stable. Plugging (16) into (12) and keeping only linear terms respect to δ we
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obtain

μ

⎛

⎝
α cosωs
β cosωs
γ sinωs

⎞

⎠ = −ω2

⎛

⎝
−β cosωs
α cosωs

0

⎞

⎠ − εαe2
r2c − b2

(
b2 + r2c

)2 cosωs − εβe3b
b2 + r2c

sinωs.

We have an eigenvalue problem

μ

⎛

⎝
α

β

γ

⎞

⎠ =

⎛

⎜⎜⎝

0 ω2 0

−ω2 − ε
r2c −b2

(b2+r2c )
2 0 0

0 − εb
b2+r2c

0

⎞

⎟⎟⎠

⎛

⎝
α

β

γ

⎞

⎠ , (18)

and perturbed solution (16) is unstable if at least one eigenvalue of (18) has positive
real part. It happens for the following frequencies ω and wavelengths λ = 2π/ω:

ω <

√
ε(b2 − r2c )

b2 + r2c
, λ >

2πb√
ε

⎛

⎝ 1 + (rc/b)2√
1 − (rc/b)2

⎞

⎠ . (19)

Since rc represents the radius of the vortex core and is always smaller than the initial
distance between vortices, the square root in expression (19) is always real. These
waves are long and called Crow waves since they were firstly described in Crow
(1970).

It is important to note that since we consider Eq. (12) on the interval s ∈ (0, S)

with periodic boundary conditions we have to be sure that Crow waves (19) fit in this
interval, that is S ≥ λ. It is also interesting that velocity (17) depends on ε/b, whereas
wavelength (19) depends on

√
ε/b; therefore, we cannot reduce number of parameters

and consider only the ratio. Further we will see that ε affects not only on the speed of
the reconnection but also on the angle the vortices make at that moment.
The modulus of the tangential vector The vortex filament equations preserve the mod-
ulus of the tangential vector T = Xs . However, when we have the interaction term as
in (12) it is not true anymore. Nevertheless, we can derive a closed expression for the
modulus |T|. In order to do it we take a derivative of (12) respect to s and calculate
the inner product with T:

|T| ∂

∂t
|T| = −ε

x1
x21 + r2c

(Ts ∧ e1) · T
|T| = −ε

x1
x21 + r2c

(T ∧ Ts) · e1
|T| . (20)

We can also calculate the inner product of Xt with e1 simplifying the expression of
the right-hand side of (20):

x1,t = (T ∧ Ts) · e1
|T|3 . (21)
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Combining (20) with (21) and integrating respect to time we find the expression for
the modulus of the tangential vector:

|T(s, t)| = L0(s)
(
x21 (s, t) + r2c

)−ε/2
, (22)

where L0(s) is a function which does not depend on time and is given by the initial
conditions. The modulus T is growing in the reconnection region (that is x1 goes to
0) and even tends to a singularity when rc tends to 0. It can be understood as a vortex
stretching phenomenon.
Self-similar solution When rc goes to zero, Eq. (12) has self-similar solutions. Let us
define η = s/

√
t and plug X(s, t) = √

tG(η) into (12) assuming that rc = 0:

1

2
√
t
G(η) − η

2
√
t
G′(η) = G′(η) ∧ G′′(η)√

t |G′(η)|3 − ε√
tG1(η)

G′(η) ∧ e1
|G′(η)| .

It is easy to see that after multiplying by
√
t we get an ODE for G(η):

1

2
G(η) − 1

2
ηG′(η) = G′(η) ∧ G′′(η)

|G′(η)|3 − ε

G1(η)

G′(η) ∧ e1
|G′(η)| . (23)

In order to extract the highest derivative we can calculate the cross-product of (23)
with G′(η):

1

2
G ∧ G′ = G′′

|G′| − G′′ · G′

|G′|3 G′ − ε|G′|
G1

e1 + εG ′
1

|G′|G1
G′.

Observe that G′′ · G′ = |G′| d
dη

|G′|, and it can be expressed by lower derivatives
similarly to the previous paragraph. Thus, the final equation is:

G′′ = |G′|1
2
G ∧ G′ + ε|G′|

G1
e1 + ε

G′

|G′|
(
1

η
− 2

G ′
1

G1

)
. (24)

Equation (24) should be equipped with two initial conditions: G(0) and G′(0). It is
not clear which initial conditions we have to impose for the reconnection problem.

The self-similar solution for model (3) is studied in Banica et al. (2017). It appears
that if a singularity is introduced at the beginning, it will persist for the infinite time.
Thus, the self-similar reconnection in model (3) will never have a clear horseshoe in
difference with the corner vortex studied in Gutiérrez (2003). One of the reasons can
be that in model (3) the LIA term has a linear approximation. In Eq. (24) we include
this term in the complete nonlinear form.
Behavior close to the reconnection point Using formula (22) we can bound T1/‖T‖
before the reconnection moment from below. Assume that in the interval s ∈ [s0, s1]
the component x1(s) is growing monotonically (so T1(s) ≥ 0) for value m = x1(s0)
to M = x1(s1). This assumption is correct before reconnection, but the numerical
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simulation shows that it does not hold true after it since the helical waves emerge.
Subject to the proposed assumption we can write the following estimation:

sup
s∈(s0,s1)

|T1|
‖T‖ ≥ 1

s1 − s0

∫ s1

s0

|T1|
‖T‖ds = 1

s1 − s0

∫ s1

s0

x ′
1ds

L0(s)
(
x21 + r2c

)−ε/2

≥ rε
c x1(s)

(s1 − s0)‖L0‖C([s1,s0])
2F1

(
1

2
,−ε

2
,
3

2
,− x21 (s)

r2c

)∣∣∣∣∣

s1

s0

, (25)

where ‖L0‖C([s1,s0]) = sups∈(s0,s1) |L0(s)|, and 2F1(a, b, c, d) is the hypergeometric
function, the modulus of the tangential vector is given by (22). Assume now for
simplicity that rc = 0, the reconnection happens at s0 = 0, and designate s1 = s.
Then, estimate (25) reads

sup
q∈(0,s)

|T1|
‖T‖ ≥ x1+ε

1 (s)

s(1 + ε)‖L0‖C([0,s])
. (26)

If initially the vortices were oriented into x3 direction and separated by value 2b the
norm ‖L0‖C([0,s]) = bε. The furthest point between vortices corresponds to s = λ/2,
where λ is the wavelength of Crow waves given by (19). The value of x1(s) in this
point is not smaller than b, so we can use it to estimate the ratio |T1|‖T‖ :

sup
q∈(0,s)

|T1|
‖T‖ ≥

√
ε

(1 + ε)π
. (27)

This bound is not optimal and is very far from it. Nevertheless, we can expect that the
first component of the tangent vector will grow when we increase ε tending it to 1.
The numerical experiments in Sect. 5 show that it becomes almost parallel to e1, so
the shape of the vortex after reconnection is very close to a horseshoe.

We can also use formula (26) to estimate the maximal possible value of x1. Indeed,
the left-hand side cannot be bigger than 1, so assuming that ‖L0‖C([0,s]) = bε and the
maximum for x1(s) is achieved at s = λ/2 we obtain;

x1(s) ≤ b

(
(1 + ε)π√

ε

) 1
1+ε

.

4 Numerical Method

In this section we describe the numerical method we use to solve system (12). The
main problem for numerical stability of the method is related to the interaction term
which grows when the vortices are close to each other. We consider a simpler case of
Klein–Majda equations (14) to derive possible restrictions for the numerical method.
They come from the relation between the time step τ , the spatial discretization step
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h and the regularization parameter rc. Even though we use a more advanced Runge–
Kutta–Fehlberg method and Eq. (12) has higher nonlinearity, the derived restrictions
hold true in a qualitative way.
Necessary stability conditions We derive the necessary stability conditions for a
simpler case of Klein–Majda equations (14). Consider the following semi-implicit
numerical scheme:

x (k+1)
n = x (k)

n − τ

h2

(
y(k)
n+1 − 2y(k)

n + y(k)
n−1

)
, (28)

y(k+1)
n = y(k)

n + τ

h2

(
x (k+1)
n+1 −2x (k+1)

n +x (k+1)
n−1

)
− ετ

x (k+1)
n

x (k+1)
n

2+r2c

; (29)

where x (k)
n and y(k)

n are approximation of first and second components, respectively,
of the solution X(sn, tk); h and τ are discretization steps for the parameter s and
time, respectively. Assume now that there is a high-frequency but small-amplitude
numerical error δ(k) cos(ωn) in the second component and let us analyze how it will
grow on the next time step. Plugging the perturbed values x (k)

n + δ
(k)
x cos(ωn) and

y(k)
n + δ

(k)
y cos(ωn) into (28), (29) we get for the following expression for the linear

approximation of the error:

δ(k+1)
x cos(ωn)=

(
δ(k)
x + λζδ(k)

y

)
cos(ωn), (30)

δ(k+1)
y cos(ωn)=

(
−(λζ + μ)δ(k)

x + (1 − λ2ζ 2 − λζμ)δ(k)
y

)
cos(ωn), (31)

where

λ = τ/h2, μ = ετ
r2c − x (k)

n
2

(
r2c + x (k)

n
2)2 , ζ = 2(1 − cosω). (32)

The necessary stability condition requires the eigenvalues of the error transformation
matrix be not bigger than 1 by modulus. From (30), (31) we obtain the equation of the
eigenvalues ν:

∣∣∣∣
1 − ν λζ

−λζ − μ 1 − λ2ζ 2 − λζμ − ν

∣∣∣∣ = ν2 − (2 − λ2ζ 2 − λζμ)ν + 1 = 0.

The product of the eigenvalues is always 1; therefore, the necessary stability condition
is satisfied if and only if the roots are complex, that is:

0 ≤ λ2ζ 2 + λζμ ≤ 4, (33)

implying

λζ <
−μ + √

μ2 + 16

2
. (34)
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This condition can be resolved providing a constraint for τ :

τ ≤ 2h2√√√√ζ 2 + εh2ζ r2c −x (k)
n

2

(
r2c +x (k)

n
2
)2

, (35)

for any ω and x (k)
n . The condition has the strongest form when ζ achieves it maximal

value (ζ = 4, see (32)) and x (k)
n = 0, so the condition for τ reads:

τ ≤ h2√
4 + ε h2

r2c

. (36)

Note that for smaller rc we have to use smaller time step. Furthermore, the stability
of the scheme is lost when rc tends to 0 what corresponds to the emergence of a
singularity in the interaction term. Formula (36) implies that for say a two times
smaller regularization parameter rc we have to use a two times smaller time step τ .
However, this relation does not hold true for a higher-order scheme. Indeed, in that
case we will have a higher derivative of the interaction term respect to x . That is the
terms h3/r3c and further will be presented in the constraint for τ . The stability can be
obtained by choosing h proportional to rc, so all terms in the Taylor expansion of the
interaction term will be bounded. However, this choice leads to a very fast growth of
computations, making it very hard to perform the simulation for small rc.
Description of the numerical scheme The main challenge in the numerical solution
of Eq. (12) is that at the reconnection moment the behavior of the interaction term is
close to singular. This time period should be passed with very small time step which
is not needed when the vortices are far from each other. Therefore, we use an adaptive
time step technique: an embedded 5th Runge–Kutta method in time with 8th-order
finite difference discretization in the filament parameter s. The 8th-order scheme gives
the best results of those we have tried. On one hand, the spectral method that has a
higher order requires a higher-order time scheme. On the other hand, a lower-order
spatial discretization does not provide sufficient accuracy, and the method becomes
unstable close to the reconnection point, where the solution tends to singular. We have
also studied the possibility of use of implicit methods, such as Buttke (1986), but
these methods suffer the same requirement of the small time step at the reconnection
moment. Besides, we are interested in the multifractal behavior of the trajectories of
the vortex filament points; therefore, we need data with very high discretization in
time; thus, such advantage of implicit method as large time step cannot be used.

In the implementation of the method we follow the book of Butcher (2008). The
idea of the embedded Runge–Kutta method consists in realization of two Runge–
Kutta schemes on the same points one of order p and another one of order p + 1.
The difference between the outputs of these methods on each step is used for the error
estimation which should have the decay τ 5. If the error is bigger, then we decrease the
time step until the accuracy test is passed. The explicit k-steps Runge–Kutta scheme
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for an ODE x ′(t) = f (x, t) at step n is given by

qi = f

(
tn + αiτ, xn + τ

i−1∑

l=1

βilql

)
, 1 ≤ i < k; (37)

xn+1 = xn + τ

k−1∑

i=1

ciqi ; (38)

where τ is the time step; αi , βil , and ci are the coefficients of the scheme. Usually

the coefficients are given in the Butcher table:
α β

cT
. In order to add the accuracy

test we have to add another vector of coefficients ĉ for the embedded method. We
are using Runge–Kutta–Fehlberg method with the coefficients obtained in Fehlberg
(1969). The adaptive time step allows to decrease the time step when it is necessary. In
our case when the reconnection happens, the interaction term is very close to singular
and therefore, a much smaller time step comparing with the rest of the simulation has
to be used.

To make the solution more stable we use the idea of Hoz and Vega (2014) and
resolve the equations forX andT at the same time adding also the arclength correction
according to (22). The new equations read

Xt = T∧Ts

|T|3 − εx1
x21 + r2c

T ∧ e1
|T| . (39)

Tt = T∧Tss

|T|3 −3
T∧Ts

|T|4
∂|T|
∂s

− ε(
x21+r2c

) |T|

(
x1Ts∧e1+

(
r2c −x21
x21+r2c

− x1
|T|

∂|T|
∂s

)
T∧e1

)
. (40)

Expression (22) for the modulus of the tangential vector allows us to avoid the calcu-
lation of the derivative:

∂|T(s, t)|
∂s

=
(
L ′
0(s)

L0(s)
− ε

x1(s, t)T1(s, t)

x21 (s, t) + r2c

)
|T(s, t)|. (41)

Here L0(s) and its derivative are given as initial condition. Following (Hoz and Vega
2014) we also perform the correction of the tangential vector modulus after each
interaction using formula (22). The method is explained in detail in “Appendix B.”

Even though there are two connected unknowns x1 and T1, the solution of system
(39)–(40) provides the correct result T1 = x1,s . One can wonder whether it is possible
to reduce the number of unknowns and what is the minimal number of independent
functions which describe the evolution of the vortex reconnection. This is studied in
“Appendix A” using the Frenet frame. It turns out that the reconnection of vortices can
be described in terms of just two functions: x1(s, t) and its derivative with respect to
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Fig. 4 Formation of Crow waves for ε = 0.05 and rc = 0.0025. 500 nodes are used in the discretization.
In the front view picture we show only right vortex; in the top view, the vortices are shifted by the mean
value in x2 direction

time x1,t (s, t). However, the equations in this case contain derivatives respect to s up
to the 4th order. Thus, it is much more complicated for the numerical solution.

5 Results

We use the method described in Sect. 4 to solve Eq. (12). There are a few things we
are mainly interested in: (1) the emergence of Crow waves and their length; (2) the
influence of rc to the solution; (3) the formation of the horseshoe structure and the
direction of the tangential vector in that region.
Crow waves In the first test we start from a random perturbation and check the forma-
tion of Crow waves. We start from a small perturbation of a straight vortex separated
by b = 0.11 and consider the evolution following Eq. (12) selecting ε = 0.05 and
rc = 0.025. The results are depicted in Fig. 4. We can see that at time t = 2 we have
almost sinusoidal waves. The wavelength is around π that is very close to the value
0.98π predicted by formula (19) for the given values of ε, b and rc.
Influence of the regularization parameter rc The behavior of the vortices far from the
reconnection is not dependent of rc. However, at times when the vortices are close to
each other the regularization parameter starts to play a crucial role. Furthermore, the
evolution of vortices after reconnection also depends on the parameter rc. We may
expect that when the regularization parameter tends to zero, the shape of vortices will
be less smooth. Therefore, the behavior of vortices after reconnection will resemble
the behavior of a corner vortex. These expectations are confirmed by the numerical
solution, see Figs. 5, 6 and 7.

We have consider a pair of symmetric vortices with initial conditions

X(s, 0) =
⎛

⎝
b − δ cos(s)
−δ cos(s)
s − π

⎞

⎠ (42)
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Fig. 5 Configuration of the vortices before the reconnection at time t = 1.01 for different rc (5 ·10−3—red,
1.25 · 10−3—green, 3.125 · 10−4—blue) and ε = 0.05 (Color figure online)

where b = √
ε/2, δ = b/20, in the interval (0, 2π) discretized with 6000 nodes.

The boundary conditions are periodic. The parameter b is selected using formula (19)
in such a way that there is exactly one Crow wave in the considered interval. If we
decrease b the reconnection may happen in multiple points, thus complicating the
analysis, whereas for larger values of b the reconnection does not happen due to the
periodic boundary conditions. The computations until time t = 1.5 take around a day
on a personal computer that is comparable with the performance of the solution of
the Navier–Stokes equations from Sect. 1 on the same computer. The advantage is
that now we can consider much thinner vortices and has 6000 nodes along the vortex
instead of 320.

The vortices start to touch each other at time t = 1.01, Fig. 5. The influence of rc can
be notice only close to the reconnection region, and the shape of vortices is sharper for
small rc. It is not completely clearwhatwe can call "the reconnectionmoment": the first
touch or the moment when the horseshoe emerges. Both these moments are dependent
on rc. However, the second one has a more complicated dependence since the smallest
size of the horseshoe is dictated by rc: the smaller rc, the smaller the horseshoe structure
will be. This effect is demonstrated in Fig. 6 where the configuration of vortices at
time t = 1.025 is depicted. We can see that even though for all rc we have a contact
the horseshoe appears only for small values of rc. Furthermore, only for small values
of the regularization parameter we can see the helical waves at this time moment. The
fact that we cannot define the reconnection moment does not allow us to change the
topology of vortices that leads to the formation of the bridge between the horseshoes.
The bridge is growing and represents a source of numerical difficulties and possible
instabilities at later times. The bigger bridge at time t = 1.05 can be seen in Fig. 7.
There we can also see the horseshoe and the helical waves for large values of rc. It
is interesting to note that the difference between solutions for rc = 1.25 · 10−3 and
rc = 3.125 · 10−4 is almost neglectable. We can expect that there is a convergence
when rc tends to zero.

The analysis of the influence of rc to the solution shows an important phenomenon:
the reconnection moment cannot be determined, so the "real corner" between vortices
cannot be seen. We can see only the consequences, such as the horseshoe starting
from some minimal size related to rc. This effect also appears in the experiments
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Fig. 6 Configuration of the vortices at time t = 1.25 when the horseshoe structure emerged for all rc
(5 · 10−3—red, 1.25 · 10−3—green, 3.125 · 10−4—blue) and ε = 0.05 (Color figure online)

Fig. 7 Configuration of the vortices after the reconnection at time t = 1.5 for different rc (5 · 10−3—red,
1.25 · 10−3—green, 3.125 · 10−4—blue) and ε = 0.05 (Color figure online)

(Fonda et al. 2019). Since the regularization parameter has the physical meaning of
the radius of vortex core, we can expect that for thick vortices we will never see the
singularity and the shape after the reconnection will be closer to a vortex ring without
any helical waves, since theminimal size of the horseshoe is big and close to the length
of Crow waves. When the vortices get thinner the shape after reconnection becomes
more complicated. However, we still do not see the singularity. One of the challenges
related to this phenomenon is the incapacity to perform the reconnection, that is to say
the change topology, because we do not know when we have to do it. On the one hand
if we reconnect the vortices when they touch each other, the corner they create is not
the one that generates the horseshoe structure. On the other hand, if we wait until the
horseshoe structure emerges we always find an artifact on its tip related to the bridge.
Influence of the parameter ε

The results obtained in Sect. 3 predict that the horseshoe will be closer to circular
when the value of ε increases (formula (27)). We use same initial condition (42) as
before but now the initial distance b = √

ε/2, and the perturbation δ = b/20 both
depend on the parameter ε. It is necessary for two things: firstly, we have to use such
initial distance, so there is at least one Crow wave in the interval; secondly, the change
of perturbation amplitude allows to achieve the reconnection almost at the same time.
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Fig. 8 Configuration of the vortices before the reconnection at time t = 1.1 for different ε (ε = 0.5—red,
ε = 1—green) and rc = 0.05 (Color figure online)

Fig. 9 Configuration of the vortices at time t = 1.2 when the horseshoe structure emerges for different ε

(ε = 0.5—red, ε = 1—green) and rc = 0.05 (Color figure online)

The regularization parameter is set to rc = 0.05, and the interval (0, 2π) is discretized
with 6000 nodes.

The configuration of the vortices at different time moments is depicted in Figs. 8,
9 and 10. In the first figure the reconnection has not happened yet. However, we can
see that the vortices with bigger values of ε move faster in x2 direction and also
the amplitude of Crow wave is bigger due to the bigger initial distance b. In Fig. 9
the moment when the horseshoe structure emerges is depicted, but there are still no
helical waves. For the smaller value of ε the horseshoe structure is not planar and has a
sharper tip. The configuration with helical waves and the horseshoe structure is shown
in Fig. 10. For the large value of ε the horseshoe is almost planar and the vortices look
very similar to the shape we can see in evolution of a corner vortex in Fig. 2.

Another important question one may ask is the behavior of the vortices around the
reconnection. In particular, is there a cusp? Or can we expect a smooth horseshoe? In
order to do it we can analyze the components of the tangential vector T. The bigger
value of the first component T1 corresponds to a smoother horseshoe. Moreover, when
T is parallel to e1 the cusp disappears. A very rough analytical result on the ratio
T1/|T| is presented in Sect. 3. Using numerical simulations we can see that the value
of T1/|T| may be very close to 1 for some ε. In Fig. 11a it is possible to see that
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Fig. 10 Configuration of the vortices after the reconnection at time t = 1.3 for different ε (ε = 0.5—red,
ε = 1—green) and rc = 0.05 (Color figure online)

Fig. 11 The ration T1/‖T‖ for different time moments, different values of ε and rc = 0.05

before the reconnection the projection of normalized vector T to the direction e1 is
small because it is mostly oriented in the e3 direction. However, in Fig. 11b when the
reconnection already happens we can see that there is a bridge, where T1 is close to 0,
and a jump almost of size 1 at tip of the horseshoe. Moreover, the bigger is ε the bigger
is the maximum of T1/|T|. This coincides with the analytical result from Sect. 3. In
Fig. 11c we can see that the bridge is growing and the horseshoe persists.
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6 Comparison with the Eye-Shaped Vortex

Wecan compare the evolution of the reconnected vorticeswith an isolated vortexwhich
has an eye-shape and deforms obeying the local induction approximation. These not
planar vortex can be considered as an approximation of the shape after reconnection
(see Fig. 1c) or as a "two-corner curvilinear polygon". We will see that the evolution
of the eye-shaped vortex has similarities with both the reconnection process and the
evolution of polygonal vortex. It means that even though we cannot see the corner at
the reconnection time, the further evolution of the vortices has a similar structure to
the corner vortex (Fig. 2) under LIA.

It is known Hoz and Vega (2018), Jerrard and Smets (2015) that a polygonal vortex
with M corners has a periodic behavior with period T = 2π/M2, whereas the tra-
jectory of the corner tends to a modification of Riemann’s non-differential function
(RNDF):

R(t) =
∞∑

k=1

eitk
2

k2
(43)

when M tends to infinity, i2 = −1. RNDF is a periodic multifractal that has a peculiar
behavior at points corresponding to rational multiples of the period (Banica and Vega
2022). It can be seen in Fig. 12. We pick a point t∗ = π/4 and multiply it by different
rational numbers. It is easy to see that most of them correspond to local minima and
maxima of the absolute value of (43) and to corners of the graph in the complex plane.
However, points that correspond to the rational multiples with odd denominator fall
into a cusp singularity of the absolute value of RNDF seen as a spiral on the complex
plane. It was shown in Hoz and Vega (2018) that the polygonal vortices have a similar
behavior. Furthermore, at each rational multiple p/q of the period the shape of the
corresponding vortex is also polygonal though not necessary planar. Moreover, the
angle between two adjacent sides tends to π when q tends to infinity. This dependence
on q is more visible in the Hδ process studied in Kumar et al. (2022).

The similar effect can be seen for the eye-shaped vortex which can be considered
as a curvilinear polygon with two corners. The eye-shaped vortex is more similar to
the configuration we have after the reconnection than a polygonal one; therefore, the
comparison with it is interesting to us. In “Appendix C” it is shown that the evolution
of this vortex is quasi-periodic. Moreover, the Fourier analysis of the trajectory that
starts in a corner shows that the dominating frequencies are still the squares like in the
polygonal case.
The fluid impulse of the reconnected vortices We define the fluid impulse around the
corner as

Fl(t) = 1

2

∫ l/2

−l/2
(X(q, t) − X0(t)) ∧ Xs(q, t)dq, (44)

where the corner is located at s = 0 and the interval l is 20% of the whole perimeter of
the vortex. The fluid impulse is important for us because in the case of the reconnection
we cannot extract the singularity point; hence, we cannot find its trajectory, whereas
formula (44) is always applicable. It depends however on the position of the originX0
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Fig. 12 Riemann’s non-differential function (43) on the complex plane and its absolute value

which in the case of the eye-shaped vortex we define as X0(t) = X(0, t). We will be
mainly interested in the oscillations and multi-fractal behavior for which the choice
of origin does not have any influence.

Despite this similarity to the RNDF, the real structure of the fluid impulse of the
eye-shaped vortex is much more complicated, as can be seen in Fig. 13. The curve
is still planar since F1(t) = 0 for all time, the rational multiples of a local maxima
t∗ = 0.10848 also correspond to the local maxima, minima and singular points, but
the scaling of self-similar structures is deformed and there is no real period. The
dependence on the size of the maxima with respect to the size of the denominator is
also presented.

In the case of the reconnection we cannot specify the reconnection point and follow
its trajectory. However, we can calculate fluid impulse (44) around the reconnection
region. The results for different rc and ε = 0.05 are depicted in Fig. 14. Analyzing the
fluid impulse we can detect a sudden change from monotone to oscillating behavior
at time t ≈ 1.01. We call this moment the reconnection time. Note that from the
configuration of the vortices we could not to define this time; thus, analysis of integral
quantities such as the fluid impulse is beneficial for understanding of the reconnection
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Fig. 13 Fluid impulse of an eye-shaped vortex for b = 0.4, θ = π/6 and its modulus. Some maxima a
located in times 3/11t∗, 1/3t∗, 3/7t∗, 3/5t∗, t∗, and the bigger is the denominator, the smaller is the peak
at that (similar to what happens in Kumar et al. 2022)

phenomena. Moreover, one can note that the behavior after the reconnection time is
quite reminiscent to the one of the eye-shaped vortex though the period is different.
The smaller is the regularization parameter rc, the more details we can see in the fluid
impulse.

The extraction of squares however is not possible for the reconnection problem due
to the noise generated by the bridge. Analysis of distribution of minima, maxima, and
singular points using wavelet transform has also faced problems related to the noise.
Maxima for the considered types of signals correspond to singular points that can
be studied using the multifractal analysis (Turiel et al. 2006; Muzy et al. 1993). The
main idea of this approach is to construct the singularity spectrum D(h), that is the
function for which each Hölder exponent h yields the Hausdorff dimension of the set
of points where the function has this exponent. For RNDF the singularity spectrum is
known: D(h) = 4h − 2 for h ∈ [0.5, 0.75], D(h) = 0 for h = 1.5 and D(h) = −∞
otherwise Jaffard (1996). We have tried to use the p-leaders method (Wendt et al.
2007) to estimate the spectrum of RNDF and the fluid impulse. Unfortunately these
signals are quite delicate. Therefore, even in the case of RNDF the approximation of
D(h) is not very accurate (especially for exponents corresponding to D(h) = 0). For
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Fig. 14 Fluid impulse (44) for the reconnection problem with different values of rc , ε = 0.05, and b = √
ε.

The blue line corresponds to normalized and shifted fluid impulse of the eye-shaped vortex with θ = π/6
and b = 0.4. At time t ≈ 1.01 the behavior suddenly changes from monotone growth to oscillation. We
can use it as the definition of the reconnection time

the fluid impulse of the polygonal or reconnected vortices the situation is much worse
even though there is a tendency that h corresponding to maximal D(h) is decreasing
getting closer to 0.75.

Since the multifractal analysis failed, in this paper we perform only a qualitative
analysis of similarity between the fluid impulse of the eye-shaped vortex and the one
of the reconnection problem. We choose a point t∗ related to a local maxima of the
reconnection fluid impulse and check whether the rational multiples of this point also
fall in maxima, minima or singular points. The results are depicted in Fig. 15 for
ε = 0.03, b = 0.22, rc = 6.25 · 10−4. We can see that the rational points mostly fall
into local minima and maxima at least for a short time after reconnection. However
later we can see that the self-similar structure of the fluid impulse vector is completely
lost. In order to obtain a cleaner structure we have to focus on a small time interval
after the reconnection and choose a small regularization parameter rc. This is quite
challenging, due to stability condition (36) of the method. Thus, a new approach is
required to findmore similarities between the reconnection process and the eye-shaped
vortex.
The vortex separation rate he scaling law which determines how the distance between
vortices changes during the reconnection was studied in multiple works (Villois et al.
2017; Fonda et al. 2019; Yao and Hussain 2020). It is not completely clear whether
there are different laws before and after the reconnection or whether this law varies for
quantum and classical fluids. Nevertheless, there are multiple evidences that the sep-
aration rate δ(t) of the vortices after the reconnection should be of the scale

√
t − trec

where trec is the reconnection time. This rate can be observed in experiments (Fonda
et al. 2019) and also coincide with the analytical result for the corner vortex (Gutiérrez
2003).
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Fig. 15 Fluid impulse and its modulus for the reconnection problem when ε = 0.03, b = 0.22, rc =
6.25 · 10−4

In Fig. 16 the separation rates before and after the reconnection are depicted for ε =
0.05 different values of rc. The black dashed lines correspond to the scale

√|t − trec|.
We can see that before and after the reconnection the separation rate is very close to
the square root law. The agreement is better for small values of rc that correspond to
a case of smaller viscosity. We can also note that the x2 component of the position of
the eye-shaped vortex corner has the same square root timescale as the reconnected
vortices (Fig. 16b). This result can be considered as another evidence that the behavior
of the vortices after the reconnection resembles the evolution of the corner vortex even
though we cannot see the corner at the reconnection time due to the presence of the
regularization parameter rc.

7 Conclusions

Even though it is not entirely clear what happens in the reconnection time the further
evolution of vortices contains coherent structures reminiscent to the ones generated by
a polygonal vortex (Hoz and Vega 2018; Jerrard and Smets 2015). In order to extract
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Fig. 16 The minimal distance between vortices before and after the reconnection for ε = 0.05 and different
values of rc

and analyze these structures new model (12) describing the interaction of a pair of
antiparallel vortices is developed. The introduction of the regularization parameter rc
allows us to go beyond the reconnection time. Moreover, the model provides closed
expression (22) for the length of the tangent vector of the vortex central line. This
length is proportional to the circulation, and according to our result, it is increasing,
when the distance between vortices tends to 0. It can be considered as the vortex
stretching phenomenon. The model also predicts the Crow waves firstly described in
Crow (1970) and the formation of coherent structures. These structures are a pair of
horseshoes in the spirit of Schwarz (1985), Gutiérrez (2003) connected by a bridge
which is artificial but cannot be removed due to restrictions of themodel. Nevertheless,
we have shown analytically in Sect. 3 that the non-smoothness of the horseshoe due
to the bridge can be bounded. Finally, the model predicts the square root timescale for
the separation rate after the reconnection.

We performed a numerical simulation for different values of the vortex interaction
parameter ε and the regularization parameter rc. There is a difference with the evolu-
tion of the corner vortex filament shown in Fig. 2 and the reconnection. In the first case
the horseshoe emerges immediately and can be infinitely small, whereas for our model
the smallest possible size of the horseshoe is finite and dictated by the parameter rc.
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This effect makes impossible to determine the reconnection time, sowe can speak only
about the reconnection interval which is getting smaller when rc tends to zero. How-
ever, the reconnection time can be defined better if an integral quantity instead of the
configuration of the vortices is considered.We focus on the fluid impulse that is an inte-
gral of the cross-product between the position and the vorticity calculated in the recon-
nection region. It is possible to see a sudden change of the behavior of this quantity
from monotone to oscillatory happening at the reconnection time (see Fig. 14). Note
also that the smaller rc themore complicated the behavior after the reconnection is. The
oscillations look quite reminiscent to the ones of the fluid impulse of the polygonal vor-
tex (Hoz and Vega 2018) that it tends to Riemann’s non-differential function (RNDF,
formula (43)) when the number of polygon sides tends to infinity. It can be considered
as an evidence that the antiparallel vortices indeed form a corner at the reconnection.
However, a further research is necessary for estimation of the noise produced by the
bridge, studying the influence of the interaction, and calculation of the corner angle.

A possible way to find more similarities between the fluid impulse of reconnecting
vortices and RNDF is to improve the numerical method. In particular condition (36)
is very restrictive because we have to reduce both space and time discretization to
be able to solve problems with small rc. Probably this restriction can be surpassed
by choosing right orders in space and time discretizations. Another way is to apply
filtering to the already obtained fluid impulse or try more advanced methods of the
analysis. We have tried to apply methods of multifractal analysis such as the p-leader
method (Wendt et al. 2007). This approach is based on studying the distribution of the
singular points of the function and the calculation of the singularity spectrum which
can be considered as a fingerprint of the signal. Similar singularity spectrum means
similar multifractal properties of the signals. Since the RNDF is very delicate for such
methods, and the fluid impulse of the reconnecting vortices has a lot of noise, our
analysis could not arrive to any conclusion.

Advances in the study of the vortex reconnection may have a huge impact to the
understanding of turbulence and its structure.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Equations in the Generalized Frenet Frame

Equation (12) can also be rewritten in the generalized Frenet frame following (Hou
et al. 1998). In this part in we use T to designate the normalized tangential vector, not
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just the derivative Xs . Consider the orthonormal frame in R3:

T = Xs

|Xs | , N1 ⊥ T, N2 = T ∧ N1. (45)

For this frame we can write the generalized Frenet system:

∂

∂q
T = κ1N1 − κ2N2, (46)

∂

∂q
N1 = −κ1T + ωN2, (47)

∂

∂q
N2 = κ2T − ωN1, (48)

where q is the arclength parameter, that is ∂
∂q = 1

|Xs |
∂
∂s . In terms of system (46)–(48)

the curvature and the torsion can be calculated as

κ =
√

κ2
1 + κ2

2 , (49)

τ = ω + κ2κ1,q − κ1κ2,q

κ2 , . (50)

On the other hand the vectors T, N1 and N2 change in time following the system

∂

∂t
T = −λ1N2 + λ2N1, (51)

∂

∂t
N1 = −λ2T + λ3N2, (52)

∂

∂t
N2 = λ1T − λ3N1. (53)

We can recover coefficients λi , i ∈ {1, 2, 3} using Eq. (12). Indeed, in frame (45)
final system (12) reads

Xt = uN1 + vN2, (54)

where coefficients are given by

u = κ2 + ε
x1

x21 + r2c
n2, (55)

v = κ1 − ε
x1

x21 + r2c
n1. (56)

Here n1 and n2 are first components of the vectors N1 and N2, respectively. Taking
derivative of (54) respect to s we obtain

Xst = TL(−uκ1 + vκ2) + N1(us − Lωv) + N2(vs + Lωu), (57)
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where L = |Xs |. On the other hand we can write that Xs = LT and take derivative
with respect to t :

Xst = LtT + λ2LN1 − λ1LN2. (58)

Since for X(s, t) the order of differentiation does not matter, we can find the equation
for Lt :

Lt = L(−uκ1 + vκ2), (59)

and also expressions for coefficients λ1 and λ2:

λ1 = −vs

L
− ωu, (60)

λ2 = us
L

− ωv. (61)

We can continue this process and obtain the equations for κ1,t and κ2,t :

κ1,t = 1

L

∂

∂s

(us
L

)
− ωsv + 2ωvs

L
− ω2u + κ1(uκ1 − vκ2) − λ3κ2, (62)

κ2,t = − 1

L

∂

∂s

(vs

L

)
− ωsu + 2ωus

L
+ ω2v + κ2(uκ1 − vκ2) + λ3κ1. (63)

What do we need to close the system? In the expression for u and v we use x1, n1 and
n2 whose equations can be obtained from (54), (52), and (53), respectively:

x1,t = un1 + vn2, , (64)

n1,t = −
(us
L

− ωv
) x1,s

L
+ λ3n2, (65)

n2,t = −
(vs

L
+ ωu

) x1,s
L

− λ3n1. (66)

Here we got rid of λ1 and λ2 using (60), (61). Expressions for ω and λ3 are still
missing. There are two ways to find the first quantity. First one is to use equations (47)
and (48):

ω = n1,sn2 + κ1x1,sn2 − n2,sn1 + κ2x1,sn1
L(n21 + n22)

. (67)

This is a functional equation, and it does not include λ3. However, in order the denom-
inator to be nonzero we have to require n21 + n22 �= 0 that is T �= e1. Another way is to
take a derivative of (47) respect to t and a derivative of (52) respect to q making them
equal that gives a differential equation for ωt :

ωt = usκ2 + vsκ1 + λ3,s

L
+ ω(−vκ2 + uκ1). (68)
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In order to find λ3 we have to make assumptions about our frame. Suppose that
n2 = 0 and use Eq. (66):

λ3 = −
(vs

L
+ ωu

) x1,s
Ln1

= −
(vs

L
+ ωu

) x1,s√
L2 − x21,s

. (69)

Then the direct expressions for N1 and N2 are:

N1 = T1T − e1√
1 − T 2

1

, N2 = e1 ∧ T√
1 − T 2

1

.

To make the first vector not zero the tangential vector should not be oriented in the
e1 direction. Numerical experiments show that if rc > 0 this is true before the recon-
nection and a long time after it. The second vector corresponds to the direction of the
interaction term in system (12). This choice of frame vectors has another advantage
that we can express κ1 using L , x1 and their derivatives. Indeed, calculating inner
product of (46) with N1 and taking into account that Tq · T = 0 we obtain:

κ1 = 1√
L2 − x21,s

∂

∂s

( x1,s
L

)
, ω = κ2x1,s√

L2 − x21,s

. (70)

Using this we can reduce the system of equations to only 3 unknowns:

x1,t = −κ2

√
L2 − x21,s, (71)

Lt = Lε
x1

x21 + r2c
κ2

√
L2 − x21,s, (72)

κ2,t = − 1

L

∂

∂s

(vs

L

)
− ωsu + 2ωus

L
+ ω2v + κ2(uκ1 − vκ2) + λ3κ1. (73)

We will show later that Eq. (72) can be resolved analytically. Besides, similarly to κ1
we can find κ2

κ2 = Lx1,t√
L2 − x21,s

,

and see that it is proportional to the velocity x1,t . Thus, the behavior of the system of
antiparallel vortices is governed by 2 quantities: the distance between vortices x1 and
the velocity of their approximation represented by κ2.

Even though the choice of the interaction frame allows us to reduce the number of
unknowns, it is not very useful in numerical simulation since the 4th derivative of x1
respect to s is required: Eq. (73) includes the second derivative of v, that according
to (56) depends on κ1, that is proportional to the second derivative of x1 due to (70).
In practice, it is better to use initial formulation (12).
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Appendix B: Algorithm for the Numerical Solution

Assume that at time t = t0 the initial valuesX,T are given. Suppose also that we know
function L0(s) from Eq. (22) and its derivative L ′

0(s). We use the following algorithm
to obtain the numerical solution up to the time tend with space discretization step h
and time step �t :
1: while t < tend do
2: accuracy_test_passed ← False
3: while accuracy_test_passed is False do
4: �X ← 0; �T ← 0
5: Xerror ← 0; Terror ← 0
6: for k ← 1 to 6 do
7: ξ ← X; τ ← T
8: for q ← 1 to k − 1 do
9: ξ ← ξ + �t αk−1,q X(q); τ ← τ + �t αk−1,q T(q)

10: end for
11: τ s,h ← FirstDerivative(τ , h)

12: τ ss,h ← SecondDerivative(τ , h)

13: a ← L0(ξ
2
1 + r2c )−ε/2 // modulus of tangential vector (22)

14: b ← L ′
0

L0
− ε

ξ1
ξ21+r2c

τ1 // correction |τ |s/|τ |
15: X(k) ← τ∧τ s,h

a3
− εξ1

a(ξ21+r2c )
τ ∧ e1

16: T(k) ← τ∧(τ ss,h−3bτ s,h)
a3

− ετ1(r2c −ξ21 )

a(ξ21+r2c )2
τ ∧ e1 − εξ1

a(ξ21+r2c )

(
τ s,h−bτ

) ∧ e1

17: �X ← �X + �t ck X(k); �T ← �T + �t ck T(k)

18: Xerror ← Xerror + �t ĉk X(k); Terror ← Terror + �t ĉk T(k)

19: end for// k ← 1 to 6
20: error ← h

√‖Xerror‖2 + ‖Terror‖2
21: if error < threshold then
22: accuracy_test_passed ← True
23: X ← X + �X
24: T ← T + �T
25: t ← t + �t
26: end if
27: �tnew ← 0.9�t

( threshold
error

)0.2

28: �t ← 2�log2(�tnew/�t)��t
29: end while// accuracy test not passed
30: end while// t < tend
The coefficients akq , ck and ĉk are given in Butcher Table 1.
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Table 1 Butcher table for
Runge–Kutta–Fehlberg method
(Fehlberg 1969)

2/9 2/9

1/3 1/12 1/4

3/4 69/128 −243/128 135/64

1 −17/12 27/4 −27/5 16/15

5/6 65/432 −5/16 13/16 4/27 5/144

1/9 0 9/20 16/45 1/12

47/450 0 12/25 32/225 1/30

Appendix C: The Eye-Shaped Vortex

The initial configuration of the eye-shaped vortex is given by

X(s, 0) =
⎛

⎜⎝
b sin s
s − π/2

−b
√

1+cos θ
1−cos θ

− 1
b2

cos s

⎞

⎟⎠ , s ∈ (0, π ], (74)

where b is the thickness of the eye, θ is the angle of the corner, and the part s ∈ (π, 2π ]
is obtained by reflection respect to the plane x = 0. Note that the component x3 is
real only if the expression below square root is positive; therefore, for large angles θ

we also have to use a large separation b.
The evolution of eye-shape vortex (74) with θ = π/6 and b = 0.4 is shown in

Fig. 17. It is possible to see that the movement is quasi-periodic with period T =
3.55 since at that time we see that the vortex has again the eye-shape with the same
orientation (blue line) but a slightly different parameters than at the initial time (red
dashed line).We can also see that at a half-period time the vortex also has an eye-shape
but is rotated (green line) similarly to the polygonal vortex (Hoz and Vega 2018). At a
rational fraction p/q of the quasi-period T we can also see a non-planar curve with q

Fig. 17 Eye-shaped vortex (74) with θ = π/6 and b = 0.4 at different time moments
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Fig. 18 Trajectory, fluid impulse and their Fourier coefficients for the eye-shaped vortex with θ = π/6 and
b = 0.4; the lines connect frequencies corresponding to squares of integers
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or 2q corners for even and odd values of q, respectively. This behavior also coincides
with the one of a polygon.

In Fig. 18a the trajectory of the corner X(0, t) and the fluid impulse around the
corner are depicted. Analyzing the Fourier coefficients (Fig. 18b, c) we can see that
for both the trajectory and the fluid impulse the frequencies corresponding to squares
of integers are dominating similarly to what happens in the case of regular polygons
(Hoz and Vega 2018). It makes the behavior similar to RNDF (43).
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