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A B S T R A C T

The phase of the channel state information (CSI) is underutilized as a source of information
in wireless sensing due to its sensitivity to synchronization errors of the signal reception. A
linear transformation of the phase is commonly applied to correct linear offsets and, in a
few cases, some filtering in time or frequency is carried out to smooth the data. This paper
presents a novel processing method of the CSI phase to improve the accuracy of human activity
recognition (HAR) in indoor environments. This new method, coined Time Smoothing and
Frequency Rebuild (TSFR), consists of performing a CSI phase sanitization method to remove
phase impairments based on a linear regression transformation method, then a time domain
filtering stage with a Savitzky–Golay (SG) filter for denoising purposes and, finally, the phase
is rebuilt, eliminating distortions in frequency caused by SG filtering. The TSFR method has been
tested on five datasets obtained from experimental measurements, using three different deep
learning algorithms, and compared against five other types of CSI phase processing. The results
show an accuracy improvement using TSFR in all the cases. Concretely, accuracy performance
higher than 90% in most of the studied scenarios has been achieved with the proposed solution.
In few-shot learning strategies, TSFR outperforms the state-of-the-art performance from 35% to
85%.

. Introduction

Wireless Sensing has been a rapidly growing field of study within the Internet of Things in recent years. It involves measuring
ireless channel characteristics using existing wireless networks, such as WiFi networks, to sense environmental changes in the

urrounding area of the network. Human activity recognition (HAR) in indoor environments is one of the main fields of application
f wireless sensing.

The pervasive deployment of wireless networks worldwide and the fact that wireless sensing can be considered a privacy-
reserving solution make this technology a promising alternative to other sensing solutions such as video surveillance with depth
ameras or wearables [1–8]. Those other sensing methods present some drawbacks; for instance, cameras can compromise user
rivacy and, in the case of wearables, users should carry the devices on their person to be monitored. In wireless systems based on
rthogonal frequency-division multiplexing (OFDM), such as WiFi, the Received Signal Strength Indicator (RSSI) and the Channel
tate Information (CSI) are used for wireless sensing. RSSI suffers from significant uncertainties due to the signal fluctuations under
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actual conditions, such as scattering, degradation, and sensitivity to noise [9]. Therefore, in recent years, CSI data have been widely
used due to its major robustness against noise and other impairments of the signal reception. A time series of CSI measurements
show how wireless signals propagate through objects and humans in the time, frequency, and spatial domains and can be used for
different monitoring applications. Due to this, human activity recognition is an important field of wireless sensing, ranging in several
areas such as crowd sensing [10–12], people localization [13–16], vital sign detection [17–19], and gesture recognition [20–28].
Likewise, CSI-based sensing can also be employed in other applications, such as electrical device classification based on the effect
of the impulsive noise in the received signals [29]. In addition, it is worth noticing that IEEE 802.11 has recently approved a new
task group named IEEE 802.11bf to accommodate sensing operations [30] into the WiFi standards.

Most of these papers use deep learning (DL) algorithms to make their predictions. In particular, fully-connected neural networks
FNN) and convolutional neural networks (CNN) are two of the most commonly deep neural network (DNN) models, which are
lso used in this work. As examples, FNNs have been used in works about health [31], credit risk [32], manufacturing [33] or
ecommendation systems [34], among others. For its part, CNNs have given very positive results in image analysis in different
ields, such as health [35,36], aerospace industry [37], autonomous driving [38], agriculture and crops [39,40], robotics [41,42]
r human resource recruiment [43], among others.

CSI measures the channel frequency response (CFR) of a wireless communication link based on OFDM. Several studies have
xplored channel modeling and characterization to optimize power allocation while minimizing interference among subcarriers [44–
6]. In the context of our research, the power allocation methods inherent to the 802.11n standard suffice to operate under
he assumption of a stable and efficient network. Utilizing CSI data, we obtain information in terms of both the amplitude and
hase of the propagation channel for each subcarrier within an OFDM symbol. While the CSI amplitude provides a reasonably
ccurate estimation of the CFR amplitude, the phase contains uncertainties that make it challenging to use in many applications
nd theoretical developments of HAR. Correcting these phase uncertainties in frequency and time domains is a complex task, so
any proposals in wireless sensing choose to work exclusively with amplitude [10,11,13–29].

However, some authors have developed methods to perform channel phase estimation of WiFi CSI for indoor monitoring. A
ide variety of these techniques perform a linear transformation (LT) of the phase to correct the linear impairments caused by

ynchronization issues. In this regard, LT is first used by Souvik Sen et al. [47], where CSI is used to detect the position of people
ithin different rooms, obtaining reasonable results. Qian, K. et al. [48] derive meaningful phase information by employing LT
n the raw CSI to eliminate the significant random noise in the frequency domain. Outlier filtering is applied to shift out biased
bservations. Extracting various statistical features, such as variance, mean, and distribution distance, they obtain an accuracy of
0% for human motion when using three antennas. Wang, X. et al. [49] use LT method for correcting the phase and then employ a
NN with three hidden layers to train the calibrated phases. Their results for detecting human positions in two rooms have about
20% of error in distance. Also, Fang, S. et al. [50] use LT to calibrate CSI phases, then an algorithm to extract different features

s used, and last, a DNN classifies among three different human activities inside a car. In their work, Dang, X. et al. [51] perform
hase LT before using the difference between adjacent subcarriers to train a backpropagation neural network with fingerprint data.
ecently, Cheng, X. et al. [52] constructed the phase difference matrix expanded by the mean and standard deviation of the phase
ifference as a feature matrix after the LT method. Then Savitzky–Golay filter is performed on the raw CSI phase information. More
ecently, Bu, Q. et al. [53] introduce TransferSense, a one-time, environment-independent WiFi sensing method based on DL that
onverts RF sensing tasks into image classification and uses amplitude and phase data corrected with the LT method.

In addition to the LT method, other variants try to correct the errors of the estimated CSI phase, including non-linear errors. In
he work of Kotaru, M. et al. [54], a similar linear phase calibration method is developed as an extension of the LT processing to
ultiple antennas, using the frequency difference between subcarriers to estimate the phase. Zhu, H. et al. [55] correct linear errors

n phase, assuming that the CFR for one specific frequency should be the same even when measured in different bands. Then, they
etermine the time and frequency offsets in each band by matching the terms which define the CFR in each band. In Tadayon, N.
t al. paper [56], the authors estimate time and frequency phase offsets separately. For time offsets, they assume that the channel
mpulse response is a linear combination of periodic functions whose period varies smoothly from sample to sample and try to
orrect the jumps observed at the power delay profile. For frequency offsets, the authors prove that the phase of the signal at the
eceiver follows a normal distribution to obtain an average value of the phase for all subcarriers in each packet or symbol. In a
ovel work, Meneghello, F. et al. [57], the authors consider a multipath propagation model for each CSI sample, using the most
obust path as a reference to correct for time offsets in the remaining paths. They define each CSI sample as a product between the
ontributions that depend on the subcarriers index and a vector representing the independent terms from multipath. Then, for each
ubcarrier, they calculate the terms of that product and multiply it by the conjugate of the one with the strongest path to eliminate
onstant offsets in frequency.

After correcting the phase of the CSI, some works employ filtering to remove noise from the signal. One of the most recently
sed is the Savitzky–Golay (SG) filter, since it allows data smoothing with a reduced distortion of the signal tendency. This filter
as been applied for wireless sensing in the frequency domain [52] and in the time domain [58,59].

In our previous work [60], a channel phase calibration method was presented based on a linear regression of the CSI phase. In
ddition, time smoothing of the phase was carried out through a SG filter, and finally, an algorithm was proposed to correct phase
aps in frequency. The calibration method was tested using the power profile of simulated wireless channels. Based on the previous
ork, this manuscript presents an improved and extended method of phase processing for HAR in wireless sensing. Additionally, to
alidate the proposed method, a comprehensive analysis of the proposal is performed over five different datasets of experimental
easurements of HAR, using three different neural networks and comparing it with five other types of phase processing.

Considering the above, this paper focuses on channel phase processing to improve the accuracy of HAR classification in indoor
2

nvironments with OFDM-based wireless signals. The contributions of this manuscript to the current state of the art are the following:
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• We propose a novel phase processing method of CSI, coined Time Smoothing and Frequency Rebuild (TSFR), to be used for
HAR. It consists, first, of an improved model for channel phase sanitization [60], adjusting and removing some parameters
from the previous work. In addition, a new algorithm has been developed to smooth the phase in the time domain and correct
discontinuities generated in frequency after filtering.

• Two new CSI-based datasets with real measurements have been generated for counting people and position localization in
indoor environments.

• Two regular DNN have been designed for CSI-based HAR: a fully connected network with four hidden layers and one dropout
layer, and a convolutional network with three convolutional layers, three max pool layers and two flatten layers. In addition,
the few-shot meta-learning technique named ProtoNet [61] is also implemented to check the transferability of the results.

• It presents a comprehensive performance analysis of the TSFR proposal for HAR purposes over five datasets (two new, three
from the bibliography) and three DL models (two new, one from the bibliography). In this analysis, the use of the SG filter in the
time domain, frequency domain, and in both domains simultaneously has been assessed. In addition, performance comparisons
have been carried out with the other methods from the state of the art. Furthermore, performance results in terms of accuracy
and confusion matrices have been obtained when working with the processed CSI phase, the CSI amplitude, and both variables
combined.

The rest of the paper is organized as follows: Section 2 summarizes the main concepts on which our proposal is based: CSI and
he Savitzky–Golay filter. Section 3 presents the proposed method. The datasets and the DL algorithms which are utilized in this
ork are described in Section 4. The results and discussion are presented in Section 5. Finally, the paper will be concluded with

ome ideas and future directions in Section 6.
Notation: Matrices are represented in capital letters and boldface. The matrix 𝑶𝑆𝑥𝐾 represents a zero matrix with 𝑆 rows and 𝐾

olumns. 𝑶∗,𝑘 represents the column vector 𝑘, and 𝑶𝑠,∗ the row column 𝑠. The application of the Savitzky–Golay filter is represented
s 𝑆𝐺{⋅, 𝑛, 2𝑙 + 1} being 𝑛 the order of the polynomial used to fit the samples and 𝑙 the length of the filter window.

. Preliminary concepts

.1. Channel state information

CSI describes the properties of the channel through which the signal propagates, in this case, OFDM wireless signals. These
hannel properties depend on the environment and the propagation medium and can therefore be used to extract characteristics of
he environment. In the field of HAR, CSI is widely used because the channel properties are affected by environmental changes. So
hese variations are associated with the different activities to be classified.

For an OFDM system, the received signal in the frequency domain can be modeled as

𝒚 = 𝑯 ⋅ 𝒙 + 𝒛 (1)

here 𝒚 and 𝒙 denote the received and transmitted signal vectors, respectively, 𝒛 is the additive complex white Gaussian noise,
nd 𝑯 represents a diagonal matrix of the CFR, also referred as CSI. The CSI of the 𝑘th subcarrier during the 𝑠th symbol, ℎ𝑠,𝑘, is a
omplex value as follows:

ℎ𝑠,𝑘 = |

|

ℎ𝑠,𝑘|| 𝑒
𝑗𝜃𝑠,𝑘 (2)

here |

|

ℎ𝑠,𝑘|| and 𝜃𝑠,𝑘 are the amplitude and the phase, respectively. The CSI is therefore composed of two independent sources of
nformation, amplitude on the one hand and phase on the other.

At the receiver side, CSI is usually estimated to decode the received signal. In this process, synchronization issues can lead to
everal errors in the estimated CSI, making the treatment of the phase complex for HAR purposes due to its uncertainties and offsets.
n particular, there are three main types of errors [62] affecting the phase that do not reduce communication quality but are of
reat importance when working with CSI for HAR classification in closed environments.

• Sample Frequency Offset (SFO) is due to a mismatch of the oscillators between the transmitter (TX) and the receiver (RX). This
lack of synchronization generates a time shift of the received signal concerning the transmitted signal. As the local oscillator
remains stable over a short time, the SFO is usually treated as a constant.

• Sample Time Offset (STO) occurs because the receiver detects the packet by correlation operation and signal power calculation.
Due to hardware imperfection, this process introduces a random time shift.

• Carrier Frequency Offset (CFO) occurs because the receiver center frequency is not synchronized. The system completes the
estimation and compensation at the receiver by analyzing the cyclic prefix and pilot signals. However, due to hardware
instability, the frequency offset cannot be entirely determined, and this residual offset causes a non-negligible error in the
phase.

herefore, let 𝑯𝑆𝑥𝐾 be the estimated CSI matrix of 𝑆 symbols with 𝐾 subcarriers:

𝑯𝑆𝑥𝐾 =
⎛

⎜

⎜

ℎ̂1,1 ⋯ ℎ̂1,𝐾
⋮ ⋱ ⋮

⎞

⎟

⎟

(3)
3

⎝ℎ̂𝑆,1 ⋯ ℎ̂𝑆,𝐾⎠
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where the (𝑠, 𝑘)th element of 𝑯 can be given by ℎ̂𝑠,𝑘 = |

|

|

ℎ̂𝑠,𝑘
|

|

|

𝑒𝑗𝜃𝑠,𝑘 . Note that each row in Eq. (3) corresponds to one diagonal in 𝐻
from Eq. (1). Likewise, a matrix of the measured CSI phases can be defined as �̂�𝑆×𝐾 where the measured phase at the 𝑘th subcarrier
of the 𝑠th CSI frame can be expressed as:

𝜃𝑠,𝑘 = 𝜃𝑠,𝑘 + 2𝜋
𝑚𝑘
𝑁

⋅ 𝛥𝑡
⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑆𝐹𝑂,𝑆𝑇𝑂

+ 𝛾
⏟⏟⏟

𝐶𝐹𝑂

+𝑍 (4)

here 𝜃𝑠,𝑘 is the actual phase, 𝛥𝑡 is the time lag due to SFO and STO, 𝑚𝑘 is the subcarrier index of the 𝑘th subcarrier, 𝑁 is the
iscrete Fourier transform size for the OFDM generation, 𝛾 is the unknown phase offset due to CFO, and 𝑍 is the measurement
oise [13].

It is worth mentioning that these offsets occur in frequency and time domains and that SFO and STO linearly depend on each
ubcarrier. In the following, several phase processing methods are presented to provide useful information to the models used in
he field of HAR.

.2. Linear transformation

A usual approach to mitigate offset mismatches is to apply a linear transformation. It is noticed that the phase error 2𝜋 𝑚𝑘
𝑁 𝛥𝑡+ 𝛾

in Eq. (4) is a linear function of the subcarrier index 𝑚𝑘. We can estimate for each symbol 𝑠 the phase slope 𝜀𝑠 and the offset 𝜏𝑠
with the following expressions:

𝜀𝑠 =
𝜃𝑠,𝐾 − 𝜃𝑠,1
𝑚𝐾 − 𝑚1

(5)

𝜏𝑠 =
1
𝐾

𝐾
∑

𝑘=1
𝜃𝑠,𝑘 (6)

Finally, subtracting 𝜀𝑠𝑚𝑘 + 𝜏𝑠 from the raw phase 𝜃𝑠,𝑘, we can obtain the calibrated phase, 𝜃′𝑠,𝑘, which is given by

𝜃′𝑠,𝑘 = 𝜃𝑠,𝑘 − 𝜀𝑠𝑚𝑘 − 𝜏𝑠 (7)

2.3. Savitzky-Golay filter

The Savitzky–Golay filter is a filtering method based on local area polynomial least square fitting for time-series signals [63].
It is used to smooth the CSI data and reduce environmental noise interference to facilitate the subsequent feature extraction [64].
The method requires defining a moving window of size 2𝑙 + 1 and a fitting order 𝑛 to perform left-to-right curve filtering. First, the
filtering center is selected, and 2𝑙 + 1 point out of each 𝑙 point around the center is chosen as the primary filtering object. For the
sake of simplicity, a vector 𝒗 smoothed with a Savitzky–Golay filter is defined as

𝒗𝑠𝑔 = 𝑆𝐺 (𝒗, 𝑛, 2𝑙 + 1) (8)

where 𝒗𝑠𝑔 is the output of the filter.
The choice of the optimal parameters for the Savitzky–Golay filter depends on the nature of each problem. Therefore, they are

obtained empirically through an analysis of data. In this work, the parameters of the one-dimensional SG filter have been obtained
experimentally, being 𝑛 = 2 and 𝑙 is 0.1 times the length of the input vector. These are the best values for obtaining the highest
accuracy for data classification (counting and activities) with this paper’s evaluation methods.

Given a CSI phase matrix �̂�, SG filtering could be applied in every dimension of the matrix or in both at the same time. The CSI
phase is expected to exhibit continuity across consecutive subcarriers of OFDM symbols because the channel coherence bandwidth
has to be larger than the subcarrier spacing since the maximum delay spread must be much smaller than the symbol duration for
the WiFi system to operate in a given environment. Furthermore, when CSI estimates of different symbols are obtained with a
periodicity small enough compared with the coherence time of the wireless channel, continuity of the phase is also preserved in the
inter-symbol time domain.

Therefore, this work evaluates the SG filtering in order to maintain the continuous form of the phase in the frequency domain,
in the inter-symbol time domain and in both domains as follows:

1. Frequency domain: It is applied to the CSI estimate of each symbol. One of the filter characteristics is that it retains the width
& height of waveform peaks in noisy signal [65].

2. Time domain: The filter is applied to each subcarrier along consecutive CSI symbols to smooth and ensure phase continuity
over time. Its application has an impact on the frequency domain and can generate distortions.

3. Time–Frequency domains: Applying the filter in both domains at the same time ensures continuity and phase smoothing in
4

both dimensions. This data processing is done according to [66].
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3. Proposed method for phase processing

3.1. Phase sanitization

The idea of the proposed method is to take advantage of the good results offered by the linear transformation while maintaining
ontinuity, i.e., avoiding gaps, in at least one of the two domains of the phase. In this sense, we improve the traditional linear
ransformation shown in Section 2.2 using a linear regression of overall symbol points to remove the slope generated by STO and
FO impairments. The amplitude, ||

|

ℎ̂𝑠,𝑘
|

|

|

, remains constant and unchanged throughout the entire phase sanitation process.
Given the phase matrix �̂�, a linear regression of each 𝑠 symbol (i.e., �̂�𝑠,∗) in �̂� is computed. Then, the linear regression model

unction follows the form:

𝑟𝑠(𝑘) = 𝜀𝑠 ⋅ 𝑘 + 𝜏𝑠 (9)

here 𝜏𝑠 is the offset:

𝜏𝑠 =
̄̂𝜣𝑠,∗ − �̄� ⋅ 𝜀𝑠 (10)

nd 𝜀𝑠 is the linear regression slope:

𝜀𝑠 =

∑𝐾
𝑘=1

(

𝜃𝑠,𝑘 −
̄̂𝜣𝑠,∗

)

(

𝑘 − �̄�
)

∑𝐾
𝑘=1

(

𝑘 − �̄�
)2

(11)

ote that ̄̂𝜣𝒔,∗ and �̄� are the average value of �̂�𝑠,∗ and 𝑘, respectively.
Finally, following the shape of Eq. (7), we can obtain the corrected phased 𝜃𝑠,𝑘 as:

𝜃𝑠,𝑘 = 𝜃𝑠,𝑘 − 𝑘 ⋅ 𝜀𝑠 − 𝜏𝑠 (12)

Fig. 5a shows a graphical example of the LT method and the proposed Linear Regression Transformation (LRT) solution for a
specific CSI frame in the OPERAnet dataset [67].

3.2. Time smoothing and frequency rebuild

At this point, calibrated phases maintain distortions and gaps between adjacent CSI symbols in �̌�. Moreover, applying LT or LRT
methods cannot ensure phase continuity in frequency, since other non-linear errors in hardware, software, or a weak implementation
of the measurements can also generate gaps and deform the received signal and, in consequence, the estimated CSI. For this reason,
a low-pass filter is used to smooth the calibrated CSI phases and ensure phase continuity. Time domain gaps correction makes sense
if the activity to be measured generates changes in the channel at a rate greater than the time interval between OFDM symbols,
which is the case in this work and generally in the HAR field.

Time Smoothing and Frequency Rebuild, TSFR, is the method proposed in this section. Assuming that the calibrated phase is
approximately continuous in frequency and the main discontinuities appear in the time domain between adjacent symbols, SG
filtering is proposed to be applied in the time domain, combined with a threshold-based method to correct the irregularities that
SG filtering generates in the frequency domain and, thus, to maintain continuity.

Once �̌�𝑆𝑥𝐾 have been calculated, SG filtering is carried out in the time domain subcarrier as:

�̌�∗,𝑘 = 𝑆𝐺
(

�̌�∗,𝑘, 2, 0.1 ⋅ 𝑆
)

(13)

Due to the previous time filtering, discontinuities in the frequency domain are generated in the form of a step between subcarrier
locks. A threshold-based method is proposed to remove those quantitatively large gaps that can appear between two adjacent
ubcarriers. In most scenarios, it can be assumed that the phase of the channel frequency response change slowly between adjacent
ubcarriers. As a result, the phase difference between adjacent subcarriers (i.e., 𝜃𝑠,𝑘−𝜃𝑠,𝑘−1) should be small and large gaps could be

considered outliers. Considering that those noisy differences can be approximated to a Gaussian distribution [56], we have defined
a threshold, 𝑑𝑠, which has the form:

𝑑𝑠 = 𝜇𝑠 + 𝜎𝑠 (14)

where 𝜇𝑠 is the average of the phase differences before SG filtering:

𝜇𝑠 =
1

𝐾 − 1

𝐾
∑

𝑘=2

|

|

|

𝜃𝑠,𝑘 − 𝜃𝑠,𝑘−1
|

|

|

(15)

and 𝜎𝑠 is the standard deviation:

𝜎𝑠 =

√

√

√

√

√

∑𝐾
𝑘=2

(

|

|

|

𝜃𝑠,𝑘 − 𝜃𝑠,𝑘−1
|

|

|

− 𝜇𝑠

)2

. (16)
5

𝐾 − 1
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Fig. 1. Histograms and Gaussian distribution approximations of �̌�𝑠,𝑘 − �̌�𝑠,𝑘−1 for HAR datasets described in Section 4.

Fig. 2. Mean value of 𝑑𝑠 for each class. In this case, it increases with the number of people in the room. These data belong to the OPERAnet dataset: tx3rx3.

Consequently, after SG filtering in the time domain, a TSFR phase matrix �̃�𝑆𝑥𝐾 is calculated where the (𝑠, 𝑘)th element follows:

𝜙𝑠,𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙𝑠,𝑘 if 𝑘 = 1

𝜙𝑠,𝑘−1 − 𝑑𝑠 if 𝜖 < −𝑑𝑠
𝜙𝑠,𝑘−1 + 𝑑𝑠 if 𝜖 > 𝑑𝑠
𝜙𝑠,𝑘 − (𝜙𝑠,𝑘−1 − 𝜙𝑠,𝑘−1) otherwise

(17)

being 𝜖 = 𝜙𝑠,𝑘 − 𝜙𝑠,𝑘−1.
In Fig. 1, several histograms of the phase differences of adjacent subcarriers are drawn for different datasets, which are described

in Section 4. One can observe that phase difference distributions present a bell-shape and can be approximated to a Gaussian
distribution.

According to this methodology, the phase of any subcarrier in which the difference with the previous one exceeds 𝑑𝑠 will be
modified. Based on the Gaussian assumption, approximately 30% of the subcarriers of each symbol are modified, including outliers
generated by the SG filtering and actual smoothed values. Therefore, this methodology is not only intended to correct the outliers
due to temporal filtering. It also tries to take advantage of this correction to modify the statistical distribution of the symbol, making
it more characteristic for each activity by means of the 𝑑𝑠 value. The main ideas behind this method are:

– The time evolution of the phase for each subcarrier can reveal information related to the channel variations of each activity.
Therefore, those subcarriers that suffer phase gaps after time filtering are also characteristics of the time evolution of the whole
CSI phase matrix, as shown in Fig. 3. One can observe that some phase differences can be sensitive to the channel changes
related to the activity in the room, while others behave steady. The key point is that the threshold set makes the processed
phases behave differently for each class.

– The corrected phases after the LRT method in each CSI symbol also contain relevant information related to the channel
variations of each activity. Part of this information is present in its statistical variables, such as those referred to Eqs. (14),
(15) and (16). The gaps generated as a result of the temporal filtering can corrupt this valuable information for HAR and,
therefore, these gaps are reduced through the proposed adjustment in Eq. (17).

With this in mind, the 𝑑𝑠 value incorporates information related to each activity into the CSI phase matrix, as is depicted in
Fig. 2, generating a characteristic modal number (𝑑𝑠) for each symbol and applying it in the time domain via time characteristic
subcarriers 𝑘, on which condition |𝜙𝑠,𝑘 − 𝜙𝑠,𝑘−1| > 𝑑𝑠 is satisfied. With this phase correction method, the jumps are not completely
eliminated, but their value is reduced and uniformed to the 𝑑 value. So the information is preserved while distortion is reduced. In
6
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Fig. 3. Frequency distributions of the subcarriers, 𝑘, on which condition |𝜙𝑠,𝑘 − 𝜙𝑠,𝑘−1| > 𝑑𝑠 is satisfied for different number of people in a given room. These
data belong to the OPERAnet dataset: tx3rx3.

Fig. 4. Processed phase of CSI matrices with LT, LRT, LRT+2D SG filtering, and TSFR, using Dataset A.

short, new information is added to each OFDM symbol using the new variable 𝑑𝑠: how many times it is repeated, between which
subcarriers, and what its magnitude is. All this is intended to help the prediction algorithms to classify correctly. The benefits of
this processing are confirmed by the good results obtained, as seen in Section 5.

In Fig. 5b, the effect of the time SG filtering and the gap removal process is shown for a certain CSI symbol in the OPERAnet
dataset (tx1rx1, 𝑠 = 50). We can observe that several large steps are generated after SG filtering in the blue areas and, afterward,
removed with the proposed threshold-based method.

The complete TSFR method is described in Algorithm 1. In Fig. 4, representations of the processed CSI phase matrices using
different phase processing are shown for a certain estimated phase CSI matrix �̂�𝑆𝑥𝐾 corresponding to real measurements. One can
initially observe the synchronization errors in the measured phases. Corrections of the linear phase impairments are carried out with
the proposed LRT solution, and �̌�𝑆𝑥𝐾 matrix is depicted in Fig. 4c. In Fig. 4b, we can also observe the corrections performed with
the traditional LT method. Finally, the output of the TSFR solution �̃�𝑆𝑥𝐾 is given in Fig. 4e. Additionally, we can see in Fig. 4d the
processed phase when the LRT method is applied along with two-dimensional SG filtering.

Finally, after the TSFR-based phase processing, the processed CSI matrix 𝑯𝑆𝑥𝐾 can be reconstructed:

𝑯𝑆𝑥𝐾 =
⎛

⎜

⎜

⎝

ℎ̃1,1 ⋯ ℎ̃1,𝐾
⋮ ⋱ ⋮

ℎ̃𝑆,1 ⋯ ℎ̃𝑆,𝐾

⎞

⎟

⎟

⎠

(18)

where ℎ̃ = |ℎ̂ | 𝑒𝑗𝜙𝑠,𝑘 .
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Fig. 5. (a) Graphical representation of a CFO, SFO, and STO correction in a symbol phase by LRT 𝜃𝑠,𝑘 vs. bibliographic method 𝜃′𝑠,𝑘. These data belong to the
OPERAnet dataset: tx1rx1, 𝑠 = 500K. (b) Phases after LRT (blue), time SG smoothing (red), and TSFR (yellow). Blue areas show adjacent subcarriers where
|𝜙𝑠,𝑘 − 𝜙𝑠,𝑘−1| > 𝑑𝑠 is satisfied. These data belong to the OPERAnet dataset: tx1rx1, 𝑠 = 50.

Algorithm 1: TSFR

1 Input: �̂�𝑆𝑥𝐾 ;
2 Output: �̃�𝑆𝑥𝐾 ;

3 �̌�𝑆𝑥𝐾 = 𝑶𝑆𝑥𝐾 ;

4 �̌�𝑆𝑥𝐾 = 𝑶𝑆𝑥𝐾 ;
5 �̃�𝑆𝑥𝐾 = 𝑶𝑆𝑥𝐾 ;

6 for 𝑠 in 1:𝑆 do
7 𝜽𝑠 ← unwrap phase of �̂�𝑠,∗;
8 𝑏𝑠 ← apply Eq. (10);
9 𝑎𝑠 ← apply Eq. (11);

10 𝜽𝑠 ← apply Eq. (12);

11 �̌�𝑠,∗ = 𝜽𝑠;
12 end

13 for 𝑘 in 1:𝐾 do
14 �̌�𝑘 ← unwrap phase of �̌�∗,𝑘;

15 �̌�𝑘 ← smooth �̌�𝑘 applying Eq. (13);

16 �̌�∗,𝑘 = 𝝓𝑘
17 end
18 for 𝑠 in 1:𝑆 do
19 �̌�𝑠 ← unwrap �̌�𝑠,∗;

20 �̌�𝑠 ← unwrap phase of �̌�𝑠,∗

21 𝜇𝑠 ← apply Eq. (15);
22 𝜎𝑠 ← apply Eq. (16);
23 𝑑𝑠 ← apply Eq. (14);
24 �̃�𝑠 ← apply Eq. (17);
25 �̃�𝑠,∗ = 𝝓𝑠;
26 end

Table 1
Datasets.
Name System Class Scenarios RXs

Dataset A DVB-T2 based Counting and fixed position 1 2
Dataset B WiFi Counting and fixed position 1 1
EHUCount WiFi Counting 5 1
OPERAnet WiFi Counting 1 3
ReWiS WiFi Activities 3 1

4. Evaluation setup description

4.1. Datasets

This section explains the datasets used to test the proposed phase processing method for different human activity recognition
(i.e., people counting people, position detection) and in indoor environments. There are five datasets. Two of them (named A and
B) are not published and are available under request. The other three are public, and their characteristics are described in detail in
their respective papers [10,22,67]. The main characteristics of the datasets are shown in Table 1 and are explained below, especially
for the ones that are not publicly accessible.

4.1.1. Dataset A
Dataset A is a dataset created by our research group at the University of the Basque Country. The dataset’s purpose was to

count people and detect their fixed positions (sitting) in an indoor environment. The measurements were taken in a meeting room
8
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Fig. 6. (a) Experimental room for Dataset A. Measurements have been done from empty room until 4 people, one in each chair. For each number of people, all
the possible occupancy of the chairs were measured. (b) Experimental room for Dataset B. One chair is placed in each of the six selected measurement locations.
Measurements were made with one or two people in the room, with one person by location, covering all the possible combinations of locations and number of
people.

(2.8 m × 4.8 m) with one TX and two RXs. There were four chairs around a table in the room. The TX and the RXs were at the same
height as the table. Measurements were taken in the presence of zero to four people. For each number of people, all the possible
occupancy of the chairs were measured, e.g., with two people in the room, six measurements were performed, each time occupying
different chairs. This makes a total of 16 measurements. The set-up for the measurements is sketched in Fig. 6A.

Three USRPs (Universal Software Radio Peripheral) were used for these measurements, one as a TX and two as RXs. A DVB-T2,
10 MHz, 32K Digital Terrestrial Television (DTT) based signal was employed for the measurements. The channel frequency was
5.4 GHz, and the sampling frequency of the TX and the RX USRPs was doubled to obtain 20 MHz bandwidth (BW). A software (SW)
DVB-T2 receiver was used to decode the T2 signal and obtain the CSI, which were then decimated to work with 𝐾 = 273 subcarriers
at a rate of 606 Hz.

4.1.2. Dataset B
This dataset was created by researchers at the National Autonomous University of Mexico (UNAM). The measurements were

taken in the living room of the researcher’s apartment (approximately 3 × 4 m). Six different locations were selected in the room,
and a chair was placed in each location. In this dataset, 37 classes are classified: one for the vacuum, one for each of the six positions
that have been determined, and one for the combination of measurements with two persons, one in each position, covering all 30
possibilities. Measurements of the room without people taken only 1% of the measurements in contrast with 50% of measurements
with one person or 49% of two people, so the dataset is strongly unbalanced. The room and the locations of the chairs are shown
in Fig. 6B.

The measurement system consisted of two laptops with Qualcomm Atheros QCWB335 network interface cards (NIC). One of the
laptops injected WiFi packets, and the other received the signal and recorded the CSI. The Atheros-CSI-Tool [68] was used for this
purpose. Channel 11 of the 2.4 GHz WiFi band was used with 20 MHz BW (56 subcarriers). An average number of 50K packages
were recorded, and the measurement time ranged from 13 to 18 s.

4.1.3. EHUCount
This dataset was obtained from measurements taken at the facilities of the Faculty of Engineering of the University of the Basque

Country (Bilbao, Spain). The portable test bench consisted of a vector signal generator that was used to transmit a 15 s long pre-
recorded IEEE 802.11n trace in the 2.4 GHz band with 20 MHz BW. The reception was performed by recording the signal as IQ
samples with a signal analyzer to obtain the CSI using an SW WiFi demodulator. This dataset provides CSI from 𝐾 = 52 subcarriers
of the OFDM signal.

Measurements were carried out in five indoor scenarios where up to five people walked casually. The number of CSI traces per
number of people and scenario ranged between 12K and 15K, depending on synchronization issues in the signal decoding process.

4.1.4. OPERAnet
It is a comprehensive dataset intended to evaluate passive HAR and localization techniques with measurements obtained from

synchronized Radio-Frequency devices and vision-based sensors. For our purposes, the dataset consists of CSI data extracted from a
WiFi NIC. Of the vast number of measurements and experiments in this dataset, we only used one, named ‘‘exp028: Crowd counting’’.
The ‘‘exp028’’ dataset contains the CSI from the three TX antennas to each of the three RX antennas. For example, the CSI matrix
generated between TX antenna two and RX antenna two is called tx2rx2. For convenience, only tx1rx1, tx2rx2, and tx3rx3 data
have been used in this work.

For the experiment, a maximum of six people walked continuously and randomly through a room. It started with six people;
then, every 5 min, one person left the monitoring area. The WiFi CSI system consisted of three PCs fitted with an Intel5300 NIC,
which extracts CSI from 𝐾 = 30 subcarriers, spread evenly among the 56 subcarriers of the 20 MHz channel 149 in the 5 GHz band
at a rate of 1.6 kHz.
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Fig. 7. Fully-connected neural network as used in this work for WiFi networks.

4.1.5. ReWiS
These measurements were carried out in three different settings. The experiments involved two subjects who were given

instructions on the type, duration, and location of activities such as jumping, walking, and standing. Each measurement campaign
involved 180 s of data collection for each activity performed by the two people. Measurements were repeated ten times with a time
interval of at least 2 h between measurements. For the generation of the ReWiS dataset, the authors used three Asus RT-AC86U
WiFi routers, each equipped with four antennas. The routers extracted the CSI packets using the Nexmon firmware [69]. The CSIs
were calculated at a rate of 100 Hz, in the 5 GHz band, for 20 and 80 MHz BW, with 𝐾 = 52 and 𝐾 = 242 subcarriers, respectively.

4.2. Deep learning models

To test the proposed method and quantify the improvement over the bibliographic LT method described in Section 2, the datasets
are manipulated in two different ways. The datasets Dataset A, Dataset B, EHUCount, and OPERAnet are evaluated by applying, on
the one hand, a fully-connected neural network (FNN) and, on the other hand, a convolutional neural network (CNN). Stratified
shuffle split cross-validation [70] with 5 iterations are used in the training of both networks.

In turn, the ReWiS dataset is evaluated using ProtoNet [61], a few shot learning (FSL) strategy [71], as described in his work [22].

4.2.1. Fully-connected neural network
In this case, CSI phase data is classified individually per OFDM symbol, assigning each one the label that corresponds to it.

This way, if the dataset has 𝐾 × 𝑆 dimensions, 1 × 𝑆 labels are assigned. The datasets are evaluated using a full-connected neural
network with four hidden layers. In addition, Mish activation layers [72] are introduced between the hidden layers to improve the
information transmitted by the network using one of the new functions layer developed. Finally, a dropout layer of coefficient 0.2
is placed after the first hidden layer to avoid overfitting. The number of neurons of the first, second, third, and fourth hidden layers
is 128, 64, 32, and 16, respectively, for WiFi CSI. DVB-T2 numbers are 256, 128, 64, and 32. The last layer has the same neurons
as the classes to be classified. An example of this FNN is depicted in Fig. 7.

4.2.2. Convolutional neural network
To consider a sufficient time interval in which environmental changes may occur, CSI data are grouped into clusters and evaluated

using a CNN. In each dataset, these groups are formed by a different number of symbols. The resizing of the data in the input network
to make square inputs that can be used as images must consider the number of subcarriers, which changes for each dataset. Therefore,
the dimensions of the inputs of this network are (𝑟, 𝑟, 2), where 𝑟 is equal to 128 or 256 in WiFi datasets or Dataset A, respectively,
and 2 is due to that phase and amplitude are used. This way, the input obtained is comparable to a two-color square image.

This network consists of a two-channel input layer of size (𝑟, 𝑟, 2) and three two-dimensional convolutional layers with 64, 32,
and 32 neurons with three max-pooling layers between them. Behind the convolutional layers is a flattened layer to vectorize the
output. Then, there are two full-connected layers, one with 32 neurons and the last one with the number of classification classes.
An example of this CNN is depicted in Fig. 8.

4.2.3. Few shot learning
In the case of the ReWiS dataset, the objective is to replicate the processing performed by its authors at [22], so FSL ProtoNet

processing is applied to the raw data. The goal of FSL is to generalize quickly to new tasks containing only a few samples with
supervised information. ProtoNet is based on the idea that there is an environment in which points are clustered around a single
prototypical representation for each class.

In this case, four activities are classified: empty, walk, stand, and jump. First, each activity set is divided into intervals of 300
symbols. Single Value Decomposition is applied to each interval to reduce its dimension from 𝑆𝑥𝐾 to 𝐾𝑥𝐾. Finally, the linear
correlation coefficient, or Pearson’s coefficient, is applied to this matrix, obtaining another matrix of linear coefficients, 𝐾𝑥𝐾, which
10
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Fig. 8. Example of a Convolutional Neural Network as used in this work, with an input of size (128,128,2) and output of size N classes.

is the training network’s input. The training is performed by means of a CNN with four convolutional blocks. Each block comprises
a 64-filter 3 × 3 convolution, a batch normalization layer, a ReLU nonlinearity, and a 2 × 2 max-pooling layer that is applied after
each of the blocks.

5. Results and discussion

In this section, several comparative analyses are carried out using the aforementioned datasets and DL models. To do that,
different classification problems of HAR (people counting, position detection, and gesture recognition) are solved through the CSI
information, i.e., using CSI amplitude, CSI phase, or combining amplitude and phase. Furthermore, six different phase processing
methods (LT, LRT, LRT + SG filtering in the frequency domain, LRT + SG filtering in the time domain, LRT + two-dimensional SG
filtering, and the TSFR proposal) are compared when CSI phases feed the described DL models. Accuracies given by the raw values
of the CSI are considered as a benchmark of the models. Performance results are given in terms of averaged percentage values
of accuracy along with the standard deviation. The average and the standard deviation are computed when several scenarios or
receivers are provided in the same dataset.

Tables 2 and 3 show the accuracy results for people counting and position detection, respectively, using the FNN model. In this
network, the values of amplitude and phase, as well as the combination of both, are used separately. The amplitude accuracy is
constant in all columns of Tables 2 and 3 as it does not change after phase processing. Firstly, Table 2 shows that using amplitude
versus raw phase gives better values for the Dataset A and OPERAnet datasets. In contrast, the results for Dataset B and EHUCount
are similar. It is also noted that the LRT calibration of the phase gives better results than the LT method for two of the four datasets,
while the accuracy is the same for the other two. Regarding smoothing, the SG filter gives better results for the time than the
frequency in three of the four datasets analyzed. Still, in OPERAnet, the time smoothing generates a very low accuracy. On the
other hand, 2D smoothing gives better results than frequency or time in all cases. However, the TSFR method using only the phase
is the one that offers the best results of all, maintaining in all cases accuracies above 94%. Table 3 shows the results for classifying
fixed positions in Datasets A and B. In this case, Dataset A consists of 17 classes, while for Dataset B it increases to 37 (Section 4.1).
It can be seen that there is a big difference in the classification capacity of the FNN model in both datasets since using only the
amplitude, Dataset A allows an accuracy of 80%. In comparison, Dataset B remains at 24%, similar to the other phase processing
methods. The high number of classes measured in Dataset B probably limits this model’s capacity. However, in Dataset B, the TSFR
method demonstrates its high capacity to improve the network classification since a high increase of up to 99% is observed. In
Dataset A, TSFR also offers a high accuracy of 96%.

In Tables 4 and 5, the performance of counting people and detecting position, respectively, is given for the proposed CNN
model. In this case, the components of the CSI have been windowed to create images as inputs of the model. This network combines
amplitude and phase values in matrices of the form (𝑟, 𝑟, 2), as explained in Section 4.2. In these tables, we can see performance
indicators similar to those in Tables 2 and 3. First, the LRT method still offers better or equal accuracies than the LT method.

In Table 4, comparing time smoothing with frequency smoothing shows that one offers better results in two datasets and the
other in the other two, with substantial differences. Also, in this case, 2D smoothing improves the frequency or time smoothing
results in all cases, but it is outperformed by the TSFR method, which achieves excellent accuracy of more than 90% in all cases,
and close to 100% in Dataset B and OPERAnet. In this table, it is striking that for Dataset B, the model classifies with an accuracy
of more than 97% regardless of the phase processing used, even for the raw data. As shown in Table 6 and discussed below, this is
related to the fact that there are only three classes, and in reality, it is only classifying two classes well, as the empty class only has
1% of the data.

Table 5 shows the most different results between methods concerning the other tables. For example, frequency smoothing for
Dataset A gives better results than time smoothing or 2D smoothing, while for Dataset B, time smoothing is the best. For example,
for Dataset A, frequency smoothing gives better results than time smoothing or 2D smoothing, while for Dataset B, time smoothing
is the best. Moreover, the accuracy values in both datasets are the lowest of all.

Nevertheless, the TSFR method remains the best, with reasonable accuracy values. The accuracy of the TSFR method in Dataset
B is 96%, compared to the second highest, 33%, and in Dataset A is 88%, while the second highest is 68%.

In addition, we have seen fit to include Table 6 to show the Dataset B metrics in more detail, as the high accuracy in Tables 2,
and 4 can be misleading. Dataset B is an unbalanced dataset in which class 0 occupies 1% of the total size, while classes 1 and 2
11
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Table 2
Accuracy values, in %, of all datasets using a FNN and classifying by number of people in the room.

Dataset Variable Raw LT LRT LRT + SG freq LRT + SG time LRT + SG 2D TSFR

Dataset A
abs 74 ± 5 74 ± 5 74 ± 5 74 ± 5 74 ± 5 74 ± 5 74 ± 5
phase 65 ± 4 81 ± 5 86 ± 1 85 ± 3 96 ± 1 95 ± 1 97 ± 1
abs+phase 72 ± 8 88 ± 3 87 ± 1 89 ± 1 93 ± 5 96 ± 1 94 ± 1

Dataset B
abs 98.1 98.1 98.1 98.1 98.1 98.1 98.1
phase 98.2 98.3 98.5 98.3 98.7 98.7 99.9
abs+phase 98.4 98.3 98.2 98.1 98.7 98.3 99.3

EHUCount
abs 80 ± 7 80 ± 7 80 ± 7 80 ± 7 80 ± 7 80 ± 7 80 ± 7
phase 79 ± 9 79 ± 9 86 ± 5 87 ± 5 99.7 ± 0.1 99.8 ± 0.1 99.7 ± 0.1
abs+phase 84 ± 7 85 ± 7 88 ± 4 89 ± 2 99.8 ± 0.2 98.8 ± 0.8 99.6 ± 0.2

OPERAnet
abs 82 ± 5 82 ± 5 82 ± 5 82 ± 5 82 ± 5 82 ± 5 82 ± 5
phase 50 ± 2 54 ± 5 54 ± 4 81 ± 3 30 ± 1 88 ± 1 94 ± 1
abs+phase 65 ± 1 65 ± 1 65 ± 1 84 ± 1 64 ± 1 85 ± 1 84 ± 1

Table 3
Accuracy values, in %, of Datasets A and B using a FNN and classifying by fixed position of people in the room.

Dataset Variable Raw LT LRT LRT + SG freq LRT + SG time LRT + SG 2D TSFR

Dataset A
abs 80 ± 3 80 ± 3 80 ± 3 80 ± 3 80 ± 3 80 ± 3 80 ± 3
phase 61 ± 1 84 ± 1 86 ± 2 86 ± 2 95 ± 1 97 ± 1 96 ± 1
abs+phase 75 ± 5 86 ± 3 83 ± 4 90 ± 1 90 ± 3 91 ± 2 91 ± 2

Dataset B
abs 24 24 24 24 24 24 24
phase 24 24 26 25 33 26 99
abs+phase 24 23 24 26 30 25 91

Table 4
Accuracy values, in %, of all datasets using a CNN and classifying by number of people in the room.

Dataset Raw LT LRT LRT + SG freq LRT + SG time LRT + SG 2D TSFR

Dataset A 46 ± 8 78 ± 5 81 ± 7 82 ± 9 53 ± 5 80 ± 7 91 ± 3
Dataset B 98.4 98.6 98.3 97.9 98.7 98.3 99.9
EHUCount 34 ± 6 55 ± 7 58 ± 4 75 ± 9 90 ± 4 94 ± 2 96 ± 2
OPERAnet 56 ± 3 55 ± 2 54 ± 4 55 ± 3 77 ± 1 90 ± 3 99.9 ± 0.1

Table 5
Accuracy values, in %, of Datasets A and B using a CNN and classifying by fixed position of people in the room.

Dataset Raw LT LRT LRT + SG freq LRT + SG time LRT + SG 2D TSFR

Dataset A 29 ± 22 62 ± 17 60 ± 8 68 ± 15 42 ± 9 56 ± 6 80 ± 8
Dataset B 24 25 26 25 32 26 96

Table 6
This table is an extension of Tables 2 and 4 for Dataset B. Since this is an unbalanced dataset, accuracy results are shown for each class (0, 1, and 2 people).

Network Variable Raw LT LRT LRT + SG freq LRT + SG time LRT + SG 2D TSFR

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

FNN
abs 0 98 98 0 99 98 0 98 99 0 98 98 0 98 98 0 98 98 0 98 98
phase 0 98 98 0 98 98 0 98 98 0 99 98 0 98 98 0 98 99 99 100 100
abs+phase 0 98 98 0 98 98 0 98 99 0 98 98 0 99 98 0 98 98 99 99 100

CNN abs+phase 0 98 99 0 98 99 0 98 99 0 98 99 0 99 98 0 99 98 99 100 100

are 50% and 49%, respectively. Table 6 is an extension of Tables 2 and 4. It shows that, although the overall accuracy values are
98%, the only method capable of correctly classifying the unbalanced class is the TSFR method.

The ReWiS dataset is analyzed using FSL under the ProtoNet model. In this case, the amplitude and phase values obtained are
ompared using, on the one hand, the raw CSI values and, on the other hand, the CSI values processed with the TSFR method.
he Fig. 9 shows the confusion matrix for each comparison for 20 and 80 MHz, including reference values from [22]. TSFR phase
rocessing improves the CSI raw results from 32% to 82% and from 35% to 85% at 20 and 80 MHz of bandwidth, respectively,
or phase accuracy. These results outperform the accuracy using the amplitude. Testing the TSFR method on this dataset using FSL
mplies that the method supports the extraction of certain features on the processed phase and improves the transferability of its
esults between different scenarios.

To summarize, the results indicate that the TSFR method can improve the classification accuracy by counting people, determining
heir fixed position, and detecting activities using regular neural networks, as shown in all datasets. The success of the Eq. (17)
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Fig. 9. Confusion matrices: (a) and (b) are based on the ReWis method [22] using CSI amplitude. (c) and (d) are achieved with the raw CSI phase. (e) and (f)
are based on the TSFR method. The data corresponds to the configuration of single antennas in transmission and reception.

is observed by comparing the results of the SG filter in the time domain (LRT+SG time) vs. the TSFR method. In all cases, the
proposed method in Eq. (17) to rebuild the distortions generated by the SG filtering in the frequency domain substantially improves
the classification algorithms. The accuracy of the TSFR method is always higher than that given by the exclusive application of
the SG filter in any domain, including both simultaneously. Moreover, TSFR obtains good results when DL algorithms use CSI data
directly, and it also improves results when feature engineering is carried out, as we have observed in the comparative analysis based
on the FSL model. Furthermore, it is worth mentioning that the results seem to indicate that their use in unbalanced datasets may
help to improve the accuracy in detecting under-represented classes.

6. Conclusion & future work

This paper introduces the CSI phase processing method called Time Smoothing and Frequency Rebuild (TSFR) for wireless sensing
HAR. TSFR corrects phase errors through linear regression, applies time-domain smoothing with the Savitzky–Golay filter, and
rebuilds frequency distortions from sanitized phase data. The method is generalized for five datasets with different properties,
varying subcarrier numbers and hardware, while classifications have been done using three DL models, including FSL. Future work
can explore parameter adjustments for specific datasets, including values for the Savitzky–Golay and Gaussian filters to handle
outliers and adapt to dataset specific characteristics.

In summary, this work proves that TSFR outperforms other phase processing methods across five CSI datasets from diverse
wireless systems and HAR activities. The proposal has been validated with three DL networks, providing high accuracy in all cases
and confirming its robustness for HAR in varied wireless sensing conditions.
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