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Abstract 41 

 42 

Early energy analyses of agriculture revealed that behind higher labor and land productivity of 43 

industrial farming there was a decrease in energy returns on invested energy in comparison to past 44 

organic agricultural systems. Studies on recent trends show that efficiency gains in production 45 

and use of inputs have again improved energy returns somewhat. However, most of these 46 

agricultural energy studies have focused only on external inputs at the crop level, concealing the 47 

important role of internal biomass flows that livestock and forestry recirculate within 48 

agroecosystems. Here we show for the first time the changing energy profiles of agroecosystems, 49 

including livestock and forestry, with a circular bioeconomic approach that accounts for the 50 

energy returns to external inputs, internal biomass reuses, and both, synthesizing the results of 82 51 

farm systems in North America and Europe from 1830 to 2012. With this historical multi-EROI 52 

approach, we found a general trend towards much lower external returns, little or no increases in 53 

internal returns, and almost no improvement in total returns. The energy trap was driven by shifts 54 

towards a growing cropping dependence on fossil-fueled external inputs, much more intensive 55 

livestock produce fed with grains, less forestry, and a structural disintegration of agroecosystem 56 

components by increasingly linear industrial farm managements. Overcoming the energy trap 57 

requires nature-based solutions to reduce current dependence on fossil-fueled external industrial 58 

inputs, and increase the circularity and complexity of agroecosystems to provide healthier diets.  59 

 60 

[INSTERT Fig. 1 HERE] 61 

 62 

1 Introduction 63 

 64 

This article provides a summary of the results obtained by the international project Sustainable 65 

Farm Systems: Long-Term Socio-Ecological Metabolism in Western Agriculture (SFS), which 66 

has been working since 2012 to compile the largest data set on energy analysis of past and present 67 

agroecosystems calculated so far with the same approach and methodology. The environmental 68 

history perspective of the SFS project has led us to rethink the energy accounting methods applied 69 

for half a century to mainly contemporary agricultural systems, calculating a single energy return 70 

(EROI) on the industrial inputs expended by farmers from outside of their farms (Pimentel et al. 71 

1973; Leach 1975, 1976; Pimentel and Pimentel 1979; Fluck and Baird 1980; Naredo and Campos 72 
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1980; Smil, Nachman and Long 1983; Stanhill 1984; Smil 1984; Dazhong and Pimentel 1984; 73 

Jones 1989; Giampietro, Cerretelli and Pimentel 1992; Fluck 1992; Hammerschlag 2006; Murphy 74 

et al. 2011; Pimentel 2011). Although some of these early energy case studies made comparative 75 

analyses among the agricultural managements of countries and regions with different levels of 76 

agricultural industrialization, only one studied a 19th-century farm system (Bayliss-Smith 1982). 77 

 78 

Given the linearity of today’s industrial agriculture that is highly dependent on external industrial 79 

inputs (seeds, synthetic fertilizers, herbicides, pesticides, tractors, electric implements, imported 80 

feed), it has made sense to focus the energy analysis on a single EROI that expresses the extent 81 

to which these farm systems are energy sinks instead of net energy suppliers to the rest of society 82 

(Marshall and Brockway 2020). This also contributes to assess what minimum EROI the societal 83 

system must achieve to maintain its own metabolic complexity (Giampietro, Mayumi and Sorman 84 

2011, 2013). Nevertheless, to study preindustrial fully solar-based agricultures means dealing 85 

with something completely different. Given the scarcity and cost of external energy sources then 86 

available, preindustrial farmers had to rely on a circular multifunctional management of their 87 

agroecosystems. Livestock feeding, and its supply of tractive force and manure, played a key role 88 

in the bioeconomic circularity that integrated the management of cropland, forestland, and 89 

pastureland to recirculate soil nutrients between them (Krausmann 2004).  90 

 91 

Cropping-pasture integration, combined with leguminous crops, was the hallmark of the English 92 

agricultural revolution and its later adoption in Atlantic and continental Europe (Campbell and 93 

Overton 1991; Allen 2008; Tello et al. 2017). Indeed, this was also a key feature of a much broader 94 

set of practices for maintaining soil fertility across continents throughout world history of farming 95 

(McNeill and Winiwarter 2004, 2010), which the new advances towards an agroecological 96 

transition are currently recovering everywhere in the world (Gliessman 2016; Wezel et al. 2020; 97 

González de Molina and López-García 2021; Pirdashti et al. 2015; Xie et al. 2018; Farias et al. 98 

2020; Emran et al. 2022).  99 

 100 

Therefore, energy analysis of past and present farm systems can no longer conceal the role of 101 

internal biomass reuse flows of agroecosystems in an analytical black box (Tello et al. 2015, 2016; 102 

Guzmán and González de Molina, 2017). The energy returns to the internal energy inputs must 103 

be accounted for, together with the external ones. These internal energy returns have two 104 

meanings. On the one hand, they account for a partial energy efficiency in the agroecosystem 105 

functioning. On the other hand, they assess the proportion of energy recirculated for the 106 

agroecosystem reproduction relative to the final product extracted. These internal matter-energy 107 

flows becomes temporarily stored in the living funds of the agroecosystem, such as livestock, 108 

fertile soils, and trees, while the energy extracted as products is dissipated and no longer plays a 109 
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role in their sustenance. Therefore, the ratio of internal reuses compared to the energy dissipated 110 

as human consumption provides relevant information for the sustainability of agroecosystems, 111 

provided that this internal recirculation keeps a complex integration between the living funds to 112 

prevent them from quickly becoming dissipative.  113 

 114 

The last condition is important because societies did not always fulfill it in past times. In the 115 

expanding agricultural frontiers with a great shortage of labor relative to the abundance of land 116 

there was not enough labor capacity for sufficient biomass recirculation, but yields were not 117 

affected in the short term because the soils were very rich in nutrients. This was the case in the 118 

19th-century North American Great Plains, where Western settlement began with cattle ranching, 119 

followed by plowing the sod for an export-oriented grain growing that was kept separate from 120 

most livestock. Only a small fraction of the nutrients removed from these soils returned to them 121 

as manure (Burke et al. 2002), and that soil mining lasted until yield decrease and population 122 

growth paved the way for greater cropping-pasture integration (Cunfer 2005, 2021; Cunfer and 123 

Krausmann 2016; Gutman 2018). Therefore, if the energy analysis of agricultural systems is to 124 

be sustainable, it must account for the energy return to internal reuses, external inputs, and both 125 

(Gingrich, Cunfer and Aguilera 2018). The last review article published on the subject considers 126 

this agroecological multi-EROI methodology the most circular energy analysis of farm systems 127 

developed to date (Hercher-Pasteur et al. 2020). 128 

 129 

We know from previous research on crop-specific energy balances that the energy returns to 130 

external inputs were lower in highly industrialized agricultural systems than in more traditional 131 

ones less dependent on industrial inputs (Pimentel and Pimentel 1979; Dazhong and Pimentel 132 

1984; Giampietro, Cerretelli and Pimentel 1992). More recent research has found that efficiency 133 

gains in the production and use of agrochemicals and machinery have improved agricultural 134 

energy returns to external inputs from the 1980s onwards (Pellegrini and Fernandez 2018; 135 

Marshall and Brockaway 2020), particularly in Europe (Bajan et al. 2021), although with 136 

differences between products, regions, types of management and scales (Harchaoui and 137 

Chatzimpiros 2019; Gingrich and Krausmann 2018; Aguilera et al. 2015; Hamilton et al. 2013; 138 

Murphy et al. 2011; Pelletier et al. 2011; Dalgaard, Halberg and Porter 2001; Schroll 1994). Our 139 

research questions are the following. What happens when we calculate these energy balances not 140 

only for specific crops, but for entire agroecosystems from past organic to current industrial 141 

agriculture? What role has played in this socioecological transition the disintegration between 142 

agricultural, livestock and forestry components of agroecosystems? In section 2 we explain our 143 

case studies, conceptual approaches, and methods; in section 3 we present and discuss the results, 144 

and in section 4 we conclude. 145 

 146 
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2 Materials and methods: 147 

 148 

2.1. Case studies 149 

 150 

This article builds on 82 energy balances calculated in different points of time from 1840 to 2012 151 

in 19 multi-scalar case studies of 5 countries, ranging from the farm and municipal to county or 152 

national level, always referred to whole agroecosystems encompassing cropland, pasture and 153 

forest uses, or at least two of them. These system-wide energy analyses have been carried out in 154 

Nemaha, Chase and Decatur counties in Kansas, United States (Cunfer, Watson and MacFadyen 155 

2018); Queens, Kings and Prince counties in Prince Edward Island (MacFadyen and Watson 156 

2018), and the province of Quebec, Canada (Parcerisas and Dupras 2018); Sankt Florian and 157 

Grünburg regions in Upper Austria (Gingrich et al. 2018a), and the whole Austria (Gingrich and 158 

Krausmann 2018); Holubí Zhoř village and a farm in Czech Republic (Fraňková and Cattaneo 159 

2018); and seven Spanish municipalities: Santa Fe in Granada province, Andalusia (Guzmán and 160 

González de Molina 2007); Caldes de Montbui, Castellar de Vallès, Polinyà and Sentmenat in 161 

Barcelona province (Marco et al. 2018; Gómez 2017) and Les Oluges in Lleida province, 162 

Catalonia (Díez et al. 2018); Manacor in the Mallorca Island (Fullana et al. 2021); together with 163 

a county (Baix and Alt Maresme in Catalonia; Parcerisas, personal communication) and the whole 164 

country of Spain (Guzmán et al. 2018; González de Molina et al 2020). The location map (Fig. 165 

SM1), and the full list of case studies with the energy returns (Table SM1), are in the 166 

Supplementary Material.  167 

 168 

These case studies show differences in natural resource endowments, types of management and 169 

technical implements used, and the spatial scales of their system boundaries. Each of them has its 170 

own characteristics and history, discussed in the original articles presenting results for each case.  171 

This previous work, based on a qualitative comparison of seven regional-scale case studies, 172 

suggested an agroecosystem energy transition characterized by diverging energy profiles in 173 

traditional organic and industrial agriculture (Gingrich et al. 2018b). In this synthesis, we draw 174 

on a larger sample of multi-scalar case studies, including local, regional, and national cases, to 175 

conduct optimality analyses of the possible relationships among three interrelated EROIs 176 

compared to their actual historical shifts, and statistical analyses testing whether statistically 177 

significant trends can be identified in the changing energy profiles across this transition. If 178 

common trends appear despite their biogeographical, socioeconomic, and historical differences, 179 

and the multi-scale character of the sample, this will mean that they underwent similar structural 180 

changes that drove their long-term socioecological paths. 181 

 182 
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Traditional organic farming, as it still prevailed throughout most of the 19th century in Europe, 183 

relied on renewable biomass flows managed to reproduce their agroecosystem components, while 184 

agricultural colonization in North America frontiers, despite being less integrated and more 185 

extractive, also relied on very small non-renewable energy inputs (Cunfer et al. 2018; MacFadyen 186 

et al. 2018). We denote this type as solar-based farming system. In contrast, industrial agriculture 187 

as it emerged in the early 20th century and became dominant in Western industrialized countries 188 

after World War II, relies largely on external inputs such as synthetic fertilizers, agrochemicals 189 

for weed and disease control, machinery, and imported feed associated with high carbon 190 

emissions, water pollution, soil degradation and biodiversity loss (Pimentel 2011; Rockström et 191 

al. 2020; Crippa et al. 2021). 192 

 193 

2.2. Conceptual approach to the circular energy analysis of agroecosystems  194 

 195 

Farmers build agroecosystems coproducing with nature (Gliessman and Engles, 2015; Van der 196 

Ploeg 2014). Fig. 2 depicts the system boundaries, the main compartments or energy ‘funds’, and 197 

the energy flows considered in this approach (Gingrich, Cunfer and Aguilera 2018). Its circular 198 

approach aims to highlight the structural changes between internal and external energy inputs 199 

throughout the industrialization of agriculture (Tello et al. 2016; Galán et al. 2016; Guzmán and 200 

González de Molina 2017; Gingrich et al. 2018b). The conceptual frame of our agroecological 201 

multi-EROI model is the study of agricultural social metabolism (González de Molina and Toledo 202 

2014; González de Molina et al. 2020), and the accounting methodology is based on the 203 

bioeconomic ‘fund-flow’ analysis introduced by Georgescu-Roegen (1971, 1976) which has been 204 

further developed by Giampietro, Mayumi and Sorman (2011, 2013). 205 

 206 

[INSERT Fig. 2 HERE] 207 

 208 

Living ‘funds’ are the structural components of agroecosystems that can supply a flow of useful 209 

products to farmers and society, provided their own reproductive needs are met (livestock, soils, 210 

landscapes, farm-associated biodiversity). The more diverse and integrated through internal 211 

matter-energy flows these funds are, the more complex and circular the agroecosystem is (Fig. 212 

2). Depending on where the boundaries of the energy analysis are set, the type of products and 213 

inputs considered vary. This, combined with the adoption of a linear approach with a single EROI 214 

or a multi-EROI agroecological circular one, leads to different results expressing partial or whole 215 

system energy returns (Murphy et al. 2011; Arizpe, Giampietro and Ramos-Martin 2011; 216 

Hercher-Pasteur et al. 2020). When energy analyses only consider specific crops (Pracha and 217 

Volk 2011; Pagani et al. 2017; Pellegrini and Fernández 2018), they cannot address the structural 218 

changes that industrialization of agriculture has meant for the loss of biophysical integration and 219 
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circularity of agroecosystems (Patrizi et al. 2018; Marco et al. 2018; Font et al. 2020), and for 220 

landscape heterogeneity and biodiversity (Marull et al. 2019a, 2019b, 2018). 221 

 222 

A sustainability assessment of the evolution of energy efficiency of farming must take these 223 

structural changes into account, given their contribution to global warming and environmental 224 

degradation (Crippa et al. 2021; Rockström et al. 2020; Tilman et al. 2002; Tilman 1999). These 225 

detrimental impacts have a lot to do with the dependence of industrial agriculture on fossil-fuel 226 

based external inputs (Pimentel 2011), as well as with the lack of circularity and integration of 227 

agroecosystems. Reducing or overcoming dependence on external inputs will curtail 228 

environmental degradation, but raises concerns about energy yields and land and labor 229 

requirements. Divesting from fossil energy inputs while improving energy returns on investment 230 

(Hammerschlag 2006) requires a new advance towards more circular agrarian bioeconomy 231 

(Schmidt, Padel and Levidow 2012). This agrarian bioeconomy will contribute to the UN 232 

Sustainable Development Goals as proposed by the UN Committee on World Food Security (CFS 233 

2021; Caron et al. 2018), the FAO 2018 Scaling Up Agroecology Initiative (FAO 2018), the IPCC 234 

(2019) recommendations in the special report on Climate Change and Land, and the new EU 235 

agroecology initiatives beyond the Farm to Fork Strategy within the European Green Deal 236 

(European Commission 2022).  237 

 238 

2.3. The circular multi-EROI accounting method of agroecosystems 239 

 240 

The differentiation between external inputs and recirculation of internal biomass flows is the 241 

cornerstone of our circular bioeconomic approach that combines three EROI indicators to analyze 242 

the changing fund-flow patterns of agroecosystems (Table 1).  243 

 244 

[INSERT Table 1 HERE] 245 

 246 

Based on this accounting method, we calculate three different and interrelated energy indicators 247 

using as output the useful biomass provided to farmers and society at the exit gate of the 248 

agroecosystem considered (FP or Final Produce). The most aggregate EROI indicator is the Final 249 

EROI (or FEROI), which measures the energy return in terms of the ratio of FP biomass flows to 250 

the whole set of energy carriers used as inputs, either coming from outside or within the 251 

agroecosystem (TIC or Total Inputs Consumed): 252 

 253 

Final EROI (or 𝐹𝐸𝑅𝑂𝐼) =  
𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒 (𝐹𝑃)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 (𝑇𝐼𝐶)
.                          (1) 254 

 255 
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TIC can be split into External Inputs (EI) and the internal flows of Biomass Reused (BR), where 256 

𝑇𝐼𝐶 = 𝐵𝑅 + 𝐸𝐼. This allows to decompose FEROI into two other energy indicators, the  257 

 258 

External Final EROI (or 𝐸𝐹𝐸𝑅𝑂𝐼 =  
𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒 (𝐹𝑃)

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠 (𝐸𝐼)
)                                             (2) 259 

and the 260 

Internal Final EROI (or 𝐼𝐹𝐸𝑅𝑂𝐼 =  
𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒 (𝐹𝑃)

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑢𝑠𝑒𝑑 (𝐵𝑅)
)                          (3) 261 

 262 

Distinguishing between BR and EI flows, and accounting for them in a systemic way, provides a 263 

consistent analysis of the long-term 
𝐸𝐼

𝐵𝑅
 structural shifts.  Recall that IFEROI is not only a partial 264 

indicator of energy efficiency, but also the ratio of the biomass energy reinvested in the 265 

reproduction of the agroecosystem living funds to the FP dissipative energy extracted from it. 266 

The core idea underpinning this conceptual approach is the principle that all living systems rely 267 

on internal biophysical cycles that sustain their reproduction over time (Jordan 2016). The 268 

recirculation of matter-energy flows allows them to maintain complexity, increase temporary 269 

energy storage, and decrease internal entropy by keeping them away from thermodynamic 270 

equilibrium (Ho 2013; Morowitz and Smith 2007). That also applies to agroecosystems 271 

(Gliessman and Engles 2015; Guzmán and González de Molina 2017). 272 

  273 

2.4. Analyzing the changing energy profiles of agroecosystems along socioecological transitions 274 

 275 

To identify general trends in the changing energy profiles of agroecosystems, we use the 276 

following function that relates FEROI, EFEROI and IFEROI values:  277 

 278 

𝐹𝐸𝑅𝑂𝐼 =  
𝐸𝐹𝐸𝑅𝑂𝐼·𝐼𝐹𝐸𝑅𝑂𝐼

𝐸𝐹𝐸𝑅𝑂𝐼+𝐼𝐹𝐸𝑅𝑂𝐼
                                                                                                            (4) 279 

 280 

The proof is straightforward:  
𝐸𝐹𝐸𝑅𝑂𝐼·𝐼𝐹𝐸𝑅𝑂𝐼

𝐸𝐹𝐸𝑅𝑂𝐼+𝐼𝐹𝐸𝑅𝑂𝐼
=  

𝐹𝑃

𝐸𝐼
 · 

𝐹𝑃

𝐵𝑅
𝐹𝑃

𝐸𝐼
+ 

𝐹𝑃

𝐵𝑅

=  
𝐹𝑃2

𝐸𝐼·𝐵𝑅
 

𝐹𝑃(𝐸𝐼+𝐵𝑅)

𝐸𝐼·𝐵𝑅
 
=  

𝐹𝑃

𝐸𝐼+𝐵𝑅
= 𝐹𝐸𝑅𝑂𝐼. 281 

 282 

Expression (4) is the equation of a three-dimensional surface that encompasses all the values that 283 

FEROI, EFEROI and IFEROI can take at the same time (Fig. 3a).  284 

 285 

[INSERT Fig. 3 HERE] 286 

 287 

In any visualization of empirical results, this surface is limited by the highest EROI value found 288 

in the analyzed agroecosystems, since despite the increasing curvature of the surface towards the 289 
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vertical axis it does not have a theoretical upper limit. The curvature reveals the existence of 290 

diminishing returns at any point (i.e., additional FEROI increases always require greater 291 

proportional increases in EFEROI, IFEROI or both). In Fig. 3b, this possibility surface is drawn 292 

as a two-dimensional ‘energy map’ where the contour levels represent equal FEROI values.  293 

 294 

As these energy maps show the three EROI values of an agroecosystem at the same time, they 295 

can visualize the changing energy profiles of farm systems throughout the socioecological 296 

transition from preindustrial organic to full industrial agricultures in a deeper analytical way than 297 

using three time series for each EROI, as we did before with a limited number of these case studies 298 

(Gingrich et al. 2018b). High EFEROI values would be the hallmark of traditional solar-based 299 

organic agriculture due to their low dependence on external inputs, which in turn would require a 300 

great reliance on internal recirculation of biomass flows and lower IFEROI values. Accordingly, 301 

the FEROI-IFEROI-EFEROI coordinates of traditional organic agroecosystems would be near 302 

the left corner in the energy map (Fig. 3b). Industrialization would free agricultural systems from 303 

labor-intensive biomass reuses by replacing them with increasingly cheaper external inputs based 304 

on fossil fuels, moving their energy profiles towards other regions of the energy map. Any 305 

displacement along the contour lines expresses a change in the energy profiles of agroecosystems 306 

in terms of their EFEROI-IFEROI values while keeping the same value level of FEROI, whereas 307 

the opposite is true for any displacement outside contour lines.  308 

 309 

This possibility surface allows to calculate optimal shifts to increase FEROI scores by changing 310 

the EFEROI-IFEROI variables (Fig. 4), another useful reference to compare with the actual paths. 311 

Note that the gradient direction of each vector expresses, at any point of the energy map, the 312 

optimal EFEROI-IFEROI value shifts required to attain the largest possible FEROI increase there. 313 

The length of each vector expresses the respective potential of FEROI improvement for any 314 

agroecosystem placed in different regions of the energy map. The shorter length of vectors as they 315 

move towards higher FEROI values indicates the inevitable diminishing returns due to entropy. 316 

 317 

[INSERT Fig. 4 HERE] 318 

 319 

This is a descriptive analysis, not a prescription. We know that higher FEROI values are beneficial 320 

to farmers, and to society at large, but only if all else remains equal or better. Since we cannot 321 

take this for granted, more research is required on the impacts of these energy changes on different 322 

dimensions not included in the model to consider potential trade-offs. However, comparing the 323 

real FEROI-EFEROI-IFEROI paths with the optimal ones provides a useful information to 324 

interpret the changing energy profiles of agroecosystem throughout socioecological transitions. 325 
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Here we use for the first time this multi-EROI possibility surface as an energy mapping of the 326 

changing energy profiles of agroecosystems from past organic to current industrial management.  327 

   328 

2.5. Statistical analyses of the main drivers of FEROI trends 329 

 330 

Historical studies of our 82 energy balances performed one by one suggested the hypothesis that 331 

the main drivers of long-term FEROI trends may have been the changing role of cropping, 332 

livestock raising, and forestry along the structural change from the organic farming of the 333 

preindustrial era, highly circular and integrated, to the highly linear and disintegrated current 334 

industrial agriculture.  335 

 336 

To test this hypothesis, we used linear mixed-effects models with either FEROI, EFEROI, or 337 

IFEROI as dependent variables, introducing as fixed effects livestock energy produce per unit of 338 

farmland (LIV), the share of woodland area over total farmland (WS), the energy product per unit 339 

of farmland (FP), the human labor performed in energy terms per farmland hectare (L), the year 340 

to which each energy balance corresponds (Y), and the spatial scale (S) of the case study (i.e., 341 

country, province, county, village, farm). Each case study was introduced as a random effect 342 

nested within its country. FP and L are used as control variables for natural resource endowment, 343 

land use intensification, and technical change, which are needed given the large differences 344 

between the case studies in these respects. Introducing Y as independent variable avoids temporal 345 

autocorrelation, and introducing the random effect avoids spatial autocorrelation. The analysis 346 

was performed with the package “Rcmdr” (Fox 2005) in R (R Development Core Team 2009). 347 

Models were chosen that complied with basic statistical assumptions and that improved the AIC 348 

value by at least two units in relation to the other models. When necessary, response variables 349 

were transformed, or influential values were removed from the data. 350 

 351 

We performed an additional test, shown in the Supplementary Material, to search for statistically 352 

significant differences among the three periods studied: traditional organic (1830-1900), 353 

intermediate organic-industrial (1901-1950) and full industrial agriculture (1951-2012). Paired 354 

sample t-tests with a significance level of 0.05 were run between pairs of the three periods. When 355 

multiple years were available for a case study in any given period, we kept only one value by 356 

removing the values for those years closest to the other periods. These three statistical tests of 357 

linear mixed effects and the additional paired sample t-test provide much stronger insight into the 358 

underlying driving forces of the main common trends in the observed muti-EROIs, compared to 359 

the previous summary with only one part of this database published in Gingrich et al. (2018). 360 

 361 

 362 
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3 Results and discussion 363 

 364 

3.1. The energy trap of industrial farming 365 

 366 

Fig. 5 depicts the sample of 82 farm systems as points with different color according to the 367 

historical period in the above three-dimensional possibility surface. Below the figure depicts the 368 

same results in the bidimensional energy map where FEROI values are shown with contour lines.  369 

 370 

[INSERT Fig. 5 HERE] 371 

 372 

The changing energy profile of our 82 agroecosystems displays a general trend that we name an 373 

‘energy trap’ defined as the clustering of most FEROI-EFEROI-IFEROI industrial farming data 374 

near to the origin axes of the three-dimensional surface encompassing all possible values these 375 

three EROIs can simultaneously take. In 17 out of 19 case studies energy returns on external 376 

inputs (EFEROI) are higher in the traditional organic group than in the industrial farming group. 377 

In the industrial group, the energy returns on internal biomass flows (IFEROI) are greater than in 378 

the traditional organic cases in 14 cases, but these IFEROI increases are smaller than the 379 

corresponding EFEROI decreases (see also Table SM1 and Fig. SM5 in the Supplementary 380 

Material). This explains why in this sample we do not have cases that shifted to very high IFEROI 381 

values located in the right corner of Fig. 5. Finally, FEROI values are lower in industrialized than 382 

in traditional organic times in 11 case studies out of 19, and equal in one case. These simultaneous 383 

FEROI-EFEROI-IFEROI changes driven by increases in external inputs (EI) greater than the 384 

corresponding increases in final product (FP), and greater than decreases in biomass reuses (BR) 385 

when they occurred, has brought their energy profiles closer to the origin vertex of the energy 386 

map where the values of the three EROIs are the lowest (Fig. 5). Therefore, our answer to the first 387 

research question is that agricultural industrialization has led to an energy trap when external, 388 

internal, and total input returns are considered together in a long-term historical perspective for 389 

entire agroecosystems, and not only single crops or activities.  390 

 391 

The general picture of the energy trap of industrial farm systems shown in Fig. 5 is confirmed by 392 

the basic statistics of the FEROI-EFEROI-IFEROI data set (see Table SM2 in the Supplementary 393 

Material). According to the paired sampled t-tests, mean FEROI values were not significantly 394 

different (p-values > 0.05) across all case studies and time periods despite having a lower mean 395 

in full industrial than in the traditional organic or intermediate organic-industrial farming cases. 396 

Conversely, EFEROI values significantly decreased (p-values < 0.05) from the traditional organic 397 

cases to the intermediate period, and from the latter to the full industrial period, confirming the 398 

energy trap. IFEROI values were significantly smaller (p-values < 0.05) in the organic and 399 
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intermediate periods than in the industrial period. This confirms that the higher dependence on 400 

fossil-fueled external inputs (EI) went hand in hand with lower efforts in biomass-energy 401 

reinvestment (BR) in the reproduction of the living funds of the agroecosystems. Conversely, the 402 

much lower reliance on EI of past organic farming involved higher BR values per unit of final 403 

produce (FP). The three EROI values follow a normal distribution, but dispersion is high as 404 

expected in a multiscale sample of very different sites in biogeographical and historical terms.  405 

 406 

Our corroboration of the energy trap of industrial agriculture contrasts with the results obtained 407 

in several studies, including some of our SFS project, which have found improvements in external 408 

EROIs (i.e., EFEROI here) of industrial farming from the 1980-1990s onwards (Marshall and 409 

Brockway 2020; Harchaoui and Chatzimpiros 2019; Pellegrini and Fernández 2018; Gingrich and 410 

Krausmann 2018; Aguilera et al. 2015). The long-term historical character of our data set puts 411 

these later results into clearer perspective. The improvements observed in recent decades are very 412 

small compared to the steep EFEROI decline during the transition from traditional solar-based to 413 

current fossil-based agriculture.  414 

 415 

The mean FEROI values were not significantly different along the three time periods due to 7 416 

outliers with FEROI values of full industrial farming that outperform those of traditional organic 417 

or intermediate organic-industrial systems (Fig. 5, and Supplementary Material). This can be 418 

explained by the different composition of their agroecosystems, and the way they changed over 419 

time. Three of them are in the Great Plains of the United States where colonization began in the 420 

1870-1880s through extensive cattle ranching with extremely low IFEROI and FEROI values, 421 

placing their green dots near to the origin vertex in bottom corner of Fig. 5. They then evolved 422 

into an intermediate organic-industrial mixed farming more integrated with pasture and higher 423 

FEROI values, until the shocks of the Great Depression and the Dust Bowl drought led to an early 424 

adoption of industrial agriculture in some areas (e.g., Nemaha) compared to Europe. This, in turn, 425 

gave rise to either higher (Nemaha and Decatur) or stagnant (Chase) FEROI values also 426 

depending on variations in rainfall, soil quality and proportion of livestock raising (Cunfer, 427 

Watson and MacFadyen 2018; Cunfer and Krausmann 2016; Cunfer 2005). 428 

 429 

Other exceptions with FEROI industrial values greater than those of traditional organic or 430 

intermediate organic-industrial agricultures were in colder and wetter bioregions such as the 431 

Canadian Prince Edward Island (MacFadyen and Watson 2018). There, the importance of forest 432 

products levelled out higher energy returns in the long run, except when cereals, potatoes, and 433 

livestock became more important and decreased EFEROI scores (Queens County). In the Czech 434 

village of Holubí Zhoř, the FEROI and IEFROI values of traditional organic farming were scant 435 

due to the cost of livestock feeding in the poor soils of the Bohemian-Moravian highlands with 436 
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low temperatures and rainfall, compared to a current organic farm (Fraňková and Cattaneo 2018). 437 

In Sankt Florian municipality of Upper Austria, a cropland specialization of rich soils meant 438 

current higher FEROI values (including the sale of straw, a flow currently reused or wasted in 439 

other places), compared to traditional organic farming when livestock densities were similar but 440 

meant a higher energy burden (Gingrich et al. 2018a). This later shift went contrary to the one 441 

found in the neighboring Grünburg municipality, specialized on cattle and pig rearing, as well as 442 

in the whole of Austria despite the rise in FEROI values in 1991 and 2010 (Gingrich and 443 

Krausmann 2018).  444 

 445 

Therefore, upon closer examination these exceptions have a lot to do with the agroecosystem 446 

composition and economic specialization (Gingrich et al., 2018b) making their paths consistent 447 

with the interpretation of the main drivers behind the general trend towards the energy trap: 448 

livestock and forestry components were the main explanation of these outliers, together with land 449 

and labor endowments. All in all, these outlier cases remind us that the overall trajectory toward 450 

steeply decreasing EFEROI scores, combined with only minor IFEROI increases and almost no 451 

FEROI improvements, was not a necessity but a historically contingent result of a global, but 452 

regionally differentiated socioecological transition. The fact that some common trends appear 453 

despite the large differences among these 82 agroecosystems indicates that they shared certain 454 

structural changes that drove their long-term paths.  455 

 456 

3.2 Structural changes: livestock and forestry roles in the energy transition 457 

 458 

The growing relevance of livestock production and the declining relevance of forestry have been 459 

two main drivers of the FEROI values adopted during the transition from traditional organic to 460 

full industrial farm systems in the Global North countries, counties, and municipalities of our data 461 

set. The results of the mixed-effects models confirm that they were decisive factors that drove the 462 

profiles of energy returns to all inputs consumed, to internal biomass reuses, and to external inputs 463 

in the 82 agroecosystems of the sample, once the differences in natural resource endowment and 464 

land and labor intensities have been controlled, as well as temporal and spatial autocorrelation. 465 

FEROI values increase with FP and with woodland share (WS), whereas they decrease as human 466 

labor (HL) and livestock produce (LP) increase, as expected. Furthermore, FEROI values 467 

significantly decrease as the year (Y) of the energy balance is more contemporary, as shown in 468 

the mixed-effects model (5):  469 

 470 

𝐹𝐸𝑅𝑂𝐼 = 3.49 + 0.01 · 𝐹𝑃 + 1.21 ·  𝑊𝑆 − 0.31 · 𝐻𝐿 − 0.05 · 𝐿𝑃 − 0.002 · 𝑌                       (5) 471 

 472 
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Although all the variables have a significant effect on FEROI, the ones with the greatest weight 473 

are WS, FP, and LP, in this order. AIC values for the chosen models and their null models, and 474 

Chi sq. and P(>Chi sq.) values for each variable are given in the Supplementary Material for all 475 

the three mixed-effects models. 476 

 477 

Converting log (IFEROI) into the dependent variable gives the following equation (6), where 478 

yields as control variable (FP) has a higher weight than the relevance of woodland (WS): 479 

 480 

log  ( 𝐼𝐹𝐸𝑅𝑂𝐼) =  −1.07 + 0.02 · 𝐹𝑃 + 1.58 · 𝑊𝑆                                                                       (6) 481 

 482 

This result confirms a feature already observed in Gingrich et al. (2018b). On the one side, the 483 

maintenance of internal biomass reuse flows (BR) devoted to livestock feeding, or too slight a 484 

decrease of them, which are the predominant BR trends per unit of land found in the dataset (see 485 

the Supplementary Material), turn LP statistically not significant. On the other side, the variation 486 

in the relevance of woodland share (WS) is significant given that forestry entails a much higher 487 

energy FP with any BR per unit of land. However, we know that behind those steady trends in 488 

livestock-related BR flows there has been a profound structural change from mixed organic 489 

farming, where extensive grazing integrated all land uses with each other, to livestock feeding in 490 

linear industrial feedlots disintegrated from the rest of farmland. This feature is clearly observed 491 

using the entire energy balance as a scanning of the underlying structural fund-flow pattern of 492 

most case studies. 493 

 494 

Regarding EFEROI, we removed the 2012 balance of the Czech Republic of a single organic farm 495 

because it was an influential value, and we also used log (EFEROI) as dependent variable to 496 

obtain statistically significant results in equation (7):  497 

 498 

log  (𝐸𝐹𝐸𝑅𝑂𝐼) = 27.57 + 0.02 · 𝐹𝑃 − 0.13 · 𝐿𝑃 + 1.19 · 𝑆𝑛𝑎𝑡𝑖𝑜𝑛 − 0.35 · 𝑆𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒 +499 

0.33 · 𝑆𝑚𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙𝑖𝑡𝑦 + 2.01 · 𝑊𝑆 − 0.01 · 𝑌                                                                            (7) 500 

 501 

The variable that has the most important effect is the year of the balance sheet (Y) so that when 502 

the year is more recent, the lower is the dependent variable. This clearly confirms the energy trap 503 

of industrial agriculture driven by increases of external energy inputs (EI) greater than the growth 504 

in the final energy produce (FP) obtained. Then comes the livestock produce per farmland unit 505 

(LP) with the expected negative effect, revealing the importance for the energy trap of the dietary 506 

transition to greater meat production and consumption, besides the impact of fossil-fueled 507 

agrochemicals and machinery in EI values. And then, the scale of analysis (S), the woodland share 508 

(WS with a positive effect), and the control variable of yields (FP with a positive effect). This also 509 



15 
 

confirms the relevance of forest abandonment in the Global North as part and parcel of the energy 510 

trap, after controlling for the differences in biogeographic resource endowments.  511 

 512 

The statistical significance of the scale of analysis (S) reveals that log (EFEROI) values are higher 513 

when accounted for at the nation-wide energy balances than at the other lower scales (province, 514 

county, or municipality; see the Supplementary Material). Although this result deserves further 515 

research, we observe that it has to do with the fact that when leaping from the municipal or county 516 

level to the country scale some matter-energy flows that are counted as external inputs (EI) at the 517 

lower levels become internal biomass reuses (BR) at the national level. A relevant case are the 518 

grains coming from another municipality, county, or province of the same country to be used as 519 

animal feed, which must be counted as an external input (EI) when they are bought outside the 520 

municipal, county or province system boundaries considered. When the energy balance is carried 521 

out at the national level, these same flows will be counted as BR, and only the animal feed 522 

imported from abroad will be considered EI. This reduces the amount of EI in the denominator 523 

when the agricultural energy balance is scaled up at the country level, while in the numerator FP 524 

includes all flows consumed within and sold outside the system boundaries at all scales 525 

considered, leading to higher EFEROI values when they are calculated at the national level. That 526 

must be considered when using our multi-EROI approach in multiscale case studies. 527 

 528 

According to these results, the proportion of forest area and intensity of livestock production have 529 

been two main factors that most explain the final energy returns (FEROI) of these 82 530 

agroecosystems, meaning that industrialization deeply changed the energy profiles of their fund-531 

flow patterns. In most cases, synthetic fertilizers accounted for the largest share of external energy 532 

inputs (EI), greater than machinery and fuel (Aguilera et al. 2015). Once farmers were able to 533 

replenish soil fertility with cost efficient fossil-based fertilizers, they no longer needed to rely on 534 

either livestock manure or biomass transfers between agroecosystem compartments to replenish 535 

depleted cropland soils, breaking the energy-nutrient nexus between crops, livestock and grazing 536 

land that was key to traditional organic agriculture (Krausmann 2004). The end of the 537 

multipurpose use of livestock as recycler of crop by-products, provider of manure and driving 538 

force, and carrier of soil nutrients from uncultivated to cultivated land, has meant a structural 539 

change of agroecosystems led by the nutritional transition towards a diet with very high meat and 540 

dairy consumption in the Western countries here studied (Schramski, Woodson and Brown 2020; 541 

Henry et al. 2019; Alexander et al. 2016; Westhoek et al. 2014).  542 

 543 

Throughout the 20th century the share of crops allocated to livestock feeding grew from 10% to 544 

45% of global production of grains (Haberl et al. 2016; Smil 2000). In Spain, the energy content 545 

of land produce diverted to livestock feeding rose from 28% in 1900 to 53% in 2008 (Guzmán et 546 
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al. 2018). While livestock was managed at the service of farmland for millennia, current industrial 547 

agriculture cultivates a large amount of land at the service of livestock with great matter-energy 548 

losses (Alexander et al. 2017). This explains why, instead of a simple substitution of EI for BR, 549 

agricultural industrialization entailed a functional change that turned BR flows into feed and 550 

fodder while reducing or abandoning pastures and the reuse of crop by-products as animal feeding 551 

(Soto et al. 2016; Marco et al. 2018; González de Molina et al. 2020). The growth of cultivated 552 

feed has countered the simultaneous abandonment of other traditional forms of biomass 553 

recirculation, such as green manures, composting of animal manure, and crop rotation with 554 

legumes. Despite the substitution of tractors for horses and mules, the number of cattle, pigs and 555 

hens have greatly increased livestock densities only to produce animal protein. In industrial farm 556 

systems with a high share of animal production, imported feed becomes the largest external input 557 

(Padró et al. 2017; Díez et al. 2018).  558 

 559 

In traditional solar-based agroecosystems, the high land and energy costs of livestock feeding was 560 

addressed through a close integration of animal husbandry with complex land uses (Patrizi et al. 561 

2018; Guzmán, González de Molina and Alonso 2011; Guzmán and González de Molina 2009). 562 

This integrative role has virtually disappeared with livestock industrialization. Current feedlots 563 

perform a linear feed-to-meat bioconversion disconnected from the rest of the agroecosystem 564 

living funds. Therefore, in addition to the steep increases in external inputs (EI), our results show 565 

that blundering into the energy trap has to do with the structural change of agroecosystems in the 566 

relationship between farmland and livestock that has limited or totally offset the BR decreases 567 

while deeply modifying its role (Marco et al. 2018).  568 

 569 

It helps realize the energetic importance of this disintegration to compare the partial returns of 570 

organic-multifunctional and industrial livestock raising using either a circular integrated 571 

accounting or a linear one. When the linear energy yield of a feed-to-meat bioconversion is 572 

accounted for at the barnyard or feedlot gate, industrial livestock breeding outperforms traditional 573 

multifunctional animal husbandry—although at the expense of animal wellbeing. When 574 

compared with an agroecosystem circular way, either traditional organic or novel agroecology 575 

managements outperform the industrial feedlots due to the addition of manure and driving force 576 

as outputs, and the reuse of by-products as input savings (Marco et al. 2018; Patrizi et al. 2018; 577 

Tello et al. 2016; Pérez-Neira, Soler-Montiel and Simón-Fernández 2014; Pérez Neira 2016; 578 

Pirdashti et al. 2015).  579 

 580 

The disintegration between livestock and the entirety of agroecosystems has also put an end the 581 

previous balance of livestock size relative to cropland and forest components. This, and the 582 

increase in world feed trade, has led to quantities of manure that exceed the capacity of nearby 583 
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cropland to absorb them in importing regions with high livestock densities, turning slurry into a 584 

polluting waste (Cattaneo, Marull and Tello 2018). Meanwhile, soil organic matter is being 585 

depleted in feed exporting regions (Padró et al. 2017, 2019; Infante-Amate et al. 2022). Both 586 

contribute to breaking the global N and P biogeochemical cycles on which soil fertility depends 587 

(Rockström et al. 2020; Billen et al. 2021). 588 

 589 

The decline of forestry and agroforestry, and the consequent shrinking relevance of wood biomass 590 

in agricultural produce (FP), is the second structural change that drove the energy trap of 591 

industrial agriculture by disintegrating forests from the rest of agroecosystem living funds. Wood 592 

is the densest energy carrier of all biomass products that can be gathered in large quantities with 593 

comparatively less effort. The diminishing importance of wood in many parts of the global North 594 

has gone hand in hand with the land-sparing effect of an increasingly intensified agriculture 595 

segregated from forest uses (Gingrich et al. 2007). In Spain, the share of wood in the agricultural 596 

output halved from 1950 to 2010 (Soto et al. 2018), which resulted in lower EFEROI and FEROI 597 

values (Guzmán et al. 2018). Conversely, forestry intensification (e.g., in some parts in the 598 

Canadian Prince Edward Island) contributed to relatively higher FEROI because forestry uses less 599 

EI per unit of FP than cropland, and almost no BR at all. Forest transition, consisting of a 600 

decreasing importance of wood in many of our case studies, led to lower final energy returns 601 

(FEROI) and reinforced the decrease of external returns (EFEROI) as well.  602 

 603 

3.3 Limits of our circular multi-EROI model and possibilities for further research 604 

 605 

Models are useful tools for only a limited number of tasks. When we propose and use new ones, 606 

it is always good to explicitly warn of their limits not only to avoid misuse, but also to help new 607 

research go further. Our circular approach has abandoned a single-minded notion of energy 608 

efficiency of complex systems, using multiple EROIs instead of one. The black box of the 609 

functioning of agroecosystems has begun to be opened, highlighting the role of the internal reuse 610 

of biomass as a reinvestment of farmers in the living funds’ reproduction. In doing so, we have 611 

followed Georgescu-Roegen’s (1971) distinction between biophysical ‘funds’ and ‘flows’ and 612 

placed the sustainability focus on their relationship: how much is given to them in relation to what 613 

is taken out from them. However, we recognize that we end up summarizing the long-term paths 614 

followed by the flow/flow values of three EROIs without delving too much into the fund/flow 615 

ones behind. And we also admit that this means aggregating in the EI, BR, and FP values different 616 

types of energy flows of different power ranges, qualities and reproductive functions for the 617 

different funds involved.  618 

 619 
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A combination of emergy and exergy analyses at farm and agroecosystem levels can tackle better 620 

than our Material and Energy Flow Accounting (MEFA) the latter energy aggregation problem, 621 

and the recent proposals made by Jean Hercher-Pasteur with other colleagues at the Institut Agro 622 

in Montpellier have start overcoming the previous linearity required to account for emergy 623 

transformities (Hercher-Pasteur 2020, Hercher-Pasteur et al. 2022). The MuSIASEM proposal by 624 

Mario Giampietro and other ICTA colleagues (Giampietro, Mayumi and Sorman 2011, 2013) is 625 

the best-known approach to overcome at the same time the two main limitations of our MEFA 626 

approach. As put forward by Julien-François Gerber and Arnim Scheidel (2018), MuSIASEM is 627 

more integrative and comprehensive than MEFA, although MEFA is more easily comparative 628 

and historical. There are also further possibilities for our circular MEFA analysis of farm systems 629 

to advance, like the agroecological multi-EROI proposal made by some of our co-authors 630 

(Guzmán and González de Molina 2015, 2017).  631 

 632 

When we closely examine in the 82 energy balances how the living funds of agroecosystems are 633 

interconnected by their matter-energy flows, we discover a loss of biophysical circularity and 634 

complexity in most industrial cases (Marco et al. 2018; Font et al. 2020). This suggests that the 635 

same factors underlying the poor energy performance of industrial agriculture have also led to 636 

severe and manifold environmental degradations (Rockström et al. 2020; Crippa et al. 2021; 637 

Tilman et al. 2002). Could this degradation of agroecosystems have been an additional cause of 638 

the energy trap of industrial agriculture? If this reversal causation holds true, industrial farming 639 

would have involved an eco-inefficient endeavor to substitute external inputs (EI) for internal 640 

functioning of natural processes (BR), both belowground through the turnover of organic matter 641 

that feeds soil biota and sustains its fertility (Maeder 2002), and aboveground in the land cover 642 

complexity that hosts all kinds of biodiversity-related ecosystem services (Carpenter et al. 2009; 643 

Marull et al. 2019a). Degrading the nature-based ecosystem services has compelled industrial 644 

farmers to replace them by increasing amounts of non-renewable external inputs of mechanical 645 

and agrochemical character (Giampietro 1997).  646 

 647 

This hypothesis is also supported by other research showing that the biophysical yield gaps 648 

between organic and industrial farming at the crop level (Ponisio et al. 2015; Pagani et al. 2017) 649 

can be compensated for by the higher landscape agroecological synergies that characterized the 650 

circular bioeconomy of many traditional organic farming and are now being recovered by new 651 

agroecology farm managements (Padró et al. 2017, 2019 and 2020; Wezel et al. 2020). 652 

Addressing this question requires forthcoming research combining energy analysis with other 653 

assessments, such as soil nutrient balances (Tello et al. 2012; González de Molina et al. 2015; 654 

Cunfer 2021; Galán 2021; Güldner 2021; Corbacho and Padró 2021; Güldner, Larsen and Cunfer, 655 

2021), energy-landscape integrated analyses (Marull et al., 2019b, 2018), and other modelling 656 



19 
 

from a nexus approach (Alexander et al. 2015; Giampietro, Mayumi and Sorman, 2011, 2013). 657 

To that aim, the agroecological multi-EROI model here summarized is a first step in the research 658 

needed to advance towards more sustainable and circular agri-food systems within planetary 659 

boundaries (Tello and González de Molina 2017).  660 

 661 

The multi-EROI optimization analysis explained above can also be useful in forthcoming research 662 

to identify and compare the existing options to overcome the energy trap of fossil fuel-based 663 

industrial agriculture. According to the directions and lengths of the gradient vectors to improve 664 

the final energy returns of farm systems (FEROI) by changing their internal and external energy 665 

returns (Fig. 3b), two main roadmaps can be discerned. On the one hand, towards a new 666 

agroecology transition aimed at overcoming the current dependence on external inputs through 667 

the search for higher final energy returns from nature-based solutions based on the internal 668 

recirculation of biomass within closely integrated landscapes and territories. Or, on the other 669 

hand, towards new industrial farms such as high-tech greenhouses and vertical crops relying on a 670 

higher consumption of renewable energy while saving on land and internal recirculation of 671 

biomass (Fig. 6).  672 

 673 

[INSERT Fig. 6 HERE] 674 

    675 

The shift towards the left agroecological region in Fig. 6 points to a sustainable way-out based on 676 

increasing 
𝐹𝑃

𝐵𝑅
 energy returns (IFEROI), by reintegrating the living funds of agroecosystems into 677 

more complex and bio-economically circular food territories (Altieri and Nicholls 2012; González 678 

de Molina and López-García 2021). According to our analysis, restoring sustainable forestry and 679 

agroforestry (Pérez Neira 2016) to abandoned woodland in the Global North, reducing livestock 680 

production and consumption, and restarting extensive livestock grazing that reintegrates forests, 681 

grasslands, and cropland management, would drive such agroecological advances that increase 682 

IFEROI and FEROI returns. This fits with current prospective scenarios of a European 683 

agroecology transition (Poux and Aubert 2018; Billen et al. 2021; European Commission 2022), 684 

in line with FAO (2018), and with United Nations proposals (CFS 2021). 685 

 686 

Conversely, agricultural factories located in the opposite right region of the same Fig. 6 might 687 

also try to replace fossil synthetic fertilizers with compost, stop using pesticides, and increase 
𝐹𝑃

𝐸𝐼
 688 

returns (EFEROI) through self-production of renewable energy. However, like any other factory, 689 

these would no longer be agroecosystems but industrial sites. They can only produce provisioning 690 

goods, not all the regulatory and supporting ecosystem services that complex agroecology 691 

landscapes provide through their aboveground and belowground biodiversity. In addition to this, 692 
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the materials and energy required to build and operate these agricultural factories raise serious 693 

concerns about their sustainability and viability on a large scale (Slameršak et al. 2022; Nieto et 694 

al. 2020; Krausmann et al. 2017). In any case, the worst agricultural final energy yield prospects 695 

seem to be trying to merge the two way-outs along the diagonal line in Fig, 6, where all vectors 696 

are shorter from the origin vertex according to the optimality analysis shown in Fig. 4. Society 697 

must decide the way forward, and we need more research to inform this crucial societal decision. 698 

These final prospective considerations on how to get out of the energy trap of industrial 699 

agriculture, based on the optimality analysis of the possible relationships that exist between the 700 

three EROIs of our circular energy modeling of farming, go further beyond the agroecosystem 701 

energy transition view that we proposed earlier (Gingrich et al. 2018b). 702 

 703 

4 Conclusion 704 

 705 

Mapping for the first time in a multi-EROI possibility surface the changing energy profiles of 82 706 

North American and European agroecosystems throughout the long-term transition from 707 

traditional organic to full industrial agriculture, we conclude that the prevailing path has led them 708 

to an energy trap of low energy returns on external inputs and, in most cases, on all inputs 709 

consumed as well. This has been the combined effect of sharp increases in non-renewable external 710 

inputs and only minor or no reductions of internal reuses of biomass flows due to dietary transition 711 

and forest abandonment in the Global North. This has entailed deep changes in the structural 712 

composition of agroecosystems and the energy carriers that flow in and out of them. The 713 

functional disconnection among cropland, livestock, pastures, and forests has led to linear 714 

agroecosystem flows increasingly driven towards a very inefficient feed-to-meat energy 715 

bioconversion. Together with the declining significance of energy efficient forestry, this 716 

combination of factors explains the poor energy performance of industrial agriculture in the 717 

Global North. 718 

 719 

Therefore, this article reveals for the first time the importance for the low energy performance of 720 

industrial agriculture of the structural change from a circular integration between agriculture, 721 

livestock, and forestry in past organic agroecosystems, up to the linearity of their disaggregation 722 

at present. This has been possible thanks to bringing to light with a circular multi-EROI analysis 723 

the importance of internal recirculation of the matter-energy flows that reproduce in good state 724 

the living funds of agroecosystems. According to these analyses and results, a sustainable way 725 

out of the energy trap of industrial agriculture will be to manage agroecosystems so that farmers 726 

reinvest once more in the internal cycles of nature. These cycles integrate the living funds of 727 

agroecosystems in a more circular biophysical turnover capable to upgrade their energy 728 

efficiency, reduce GHG emissions, improve soil fertility and carbon sequestration, prevent water 729 
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pollution, and keep the supporting and regulating ecosystem services that biodiversity provides 730 

(Dainese et al. 2019; van der Ploeg et al. 2019; Migliorini and Wezel 2017). The agroecological 731 

multi-EROI energy analysis applied in this study is a contribution to this task. 732 
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