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A B S T R A C T

Supervised and unsupervised classification is crucial in many areas where different types of data sets are
common, such as biology, medicine, or industry, among others. A key consideration is that some units are
more typical of the group they belong to than others. For this reason, fuzzy classification approaches are
necessary. In this paper, a fuzzy supervised classification method, which is based on the construction of
prototypes, is proposed. The method obtains the prototypes from an objective function that includes label
information and a distance-based depth function. It works with any distance and it can deal with data sets of
a wide nature variety. It can further be applied to data sets where the use of Euclidean distance is not suitable
and to high-dimensional data (data sets in which the number of features 𝑝 is larger than the number of
observations 𝑛, often written as 𝑝 >> 𝑛). In addition, the model can also cope with unsupervised classification,
thus becoming an interesting alternative to other fuzzy clustering methods. With synthetic data sets along
with high-dimensional real biomedical and industrial data sets, we demonstrate the good performance of the
supervised and unsupervised fuzzy proposed procedures.
1. Introduction

In a variety of fields and applications, supervised or unsupervised
classification is essential. One important question is that not all objects
in a group have the same representativeness. Some are more typical
than others, and therefore some objects better represent the group
they belong to. Perhaps, Fisher’s linear discriminant analysis (LDA) is
one of the most well-known supervised classification methods, using a
crisp type of membership labels. From a crisp point of view, groups
are individually exclusive and no ambiguity is allowed. So, all units
present a yes/no class membership, and an object belongs to a group
if it possesses the necessary and sufficient conditions to determine its
membership. However, in real-world data sets, this crisp approach may
cause classifiers to be incapable of giving trustworthy rates of correct
classification, due to the all-or-nothing concept of group membership.
Alternatively, a fuzzy label indicates degrees of membership, which
are no longer restricted to just two values (yes=1, no=0), but can
be 0, 1, or any value in between. From a fuzzy point of view, it is
possible to model real-world problems where some objects are better
examples and more characteristic or typical of the group than others.
The areas of application of fuzzy approximation are wide, including
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image classification [1], face recognition [2], genetics [3], medicine [4]
or industry. In the latter, fuzzy perspective can be very advantageous to
determine when it is necessary to replace components before they can
damage a machine, and where there is an ordering among the different
conditions of the components.

In the literature, there is an extensive review on unsupervised fuzzy
methods highlighting their historical development [5] and another
review focusing on the performance of such methods [6]. In brief,
the well-known fuzzy 𝑐-means, which uses the Euclidean distance,
has some shortcomings: it is sensitive to the selection of the initial
clustering center point and thus, prone to falling into the problem of
an optimal local solution. In [7] there are different approximations to
compensate for these limitations. Other works use a fuzzy weighting
technique for feature weights [8] or include entropy regularization [9].
The framework introduced in [10] for feature selection in clustering
leads to sparse fuzzy c-means algorithms working with high dimen-
sional data [11]. Other approximations for high dimensional data use
strategies of parallel computing and ensemble learning [12].

On the other hand, little effort has been made into fuzzy supervised
classification. The first fuzzy discriminant method (FDA) computes
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fuzzy within-class and between-class scatter matrices, and the resulting
eigenvalue problem is solved [13]. LDA and FDA are linear classifiers,
based on the use of the Euclidean distance. That makes them unsuitable
for all types of data or more sophisticated situations. Thus, the FDA
method has been extended by using kernels to deal with non-linear sep-
arable problems [14]. A supervised iterative fuzzy k-means using kernel
functions was presented in [15], and kernel-based maximum a posterior
classification has been introduced in [16]. A different approach was
developed in [17], based on fuzzy regression with point prototypes.
More recently, [18] introduced a kernel fuzzy discriminant procedure
to facilitate robust classification in the field of image classification.
Moreover, different approaches are based on the idea of the nearest
prototype [19]. Soft assignments of the data vectors to the prototypes
based on a Gaussian mixture approach were introduced in [20] with the
soft nearest classification method. In [21] the authors introduced an
adaptive prototype-based fuzzy classification approach to address the
problem of classification with large data sets when only a few labeled
objects can be provided by the user. More recently, Ashtari et al. [22]
introduced a different approach, called Supervised Fuzzy Partitioning
(SFP). It is derived from k-means and takes advantage of labels and the
loss function by incorporating them into the objective function through
a surrogate term penalizing the empirical risk. However, the method is
only applicable with the Euclidean distance.

This paper, aiming to address this latter issue, and following the
ideas of [22], proposes a new supervised classification approach called
Fuzzy Classification based on Depth Function (FC-DF).

The major contributions and novelties of this paper are summarized
as follows:

1. FC-DF can use any distance. Thus, it can be applied to a large
spectrum of data types, where the Euclidean distance is not
suitable, but other distances are.

2. FC-DF can be applied to high-dimensional data (data sets in
which the number of features 𝑝 is larger than the number of
observations 𝑛, often written as 𝑝 ≫ 𝑛), which therefore helps
to overcome the curse of dimensionality.

3. Instead of obtaining centroids as prototypes, FC-DF identifies
𝐾 observations, selected from the deepest of the fuzzy group,
as prototypes. In this way, the prototypes always belong to the
sample, which does not always occur with the centroids.

4. The objective function uses the log-loss function and includes
label information as well as a distance-based depth function to
fuzzify the partition.

5. The model can also be adapted to unsupervised classification.
6. The experimental evaluations prove that FC-DF performs signifi-

cantly better than SFP when the characteristics of the data do not
allow the use of the Euclidean distance, but the use of a distance
appropriate to the type of data.

The remainder of the paper is structured as follows: a brief descrip-
tion of the background theory is in Section 2. Section 3 describes the
proposed algorithm. A brief description of the used synthetic and real
data sets is presented in Section 4. Details of the experimental results
obtained on data sets, and discussion are in Section 5. Conclusions and
future work are given in Section 6.

2. Background

This section introduces the notation and provides a brief description
of some concepts, first used in the context of a crisp partition. Then, in
the following section, they are extended to the fuzzy case.

Let 𝐱1,… , 𝐱𝑛 be 𝑛 units measured in R𝑝 and let 𝛿(𝐱𝑖, 𝐱𝑗 ) = 𝛿𝑖𝑗 be a
distance function between observations 𝑖, 𝑗 = 1,… , 𝑛. A fuzzy partition
of the 𝑛 observations into 𝐾 clusters can be expressed by 𝑛 membership
vectors 𝐮𝑖 in R𝐾 , where each 𝑢𝑖𝑘 expresses the membership degree of
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observation 𝑖 to cluster 𝐶𝑘, with 𝑘=1 𝑢𝑖𝑘 = 1 and 𝑢𝑖𝑘 ≥ 0 for 𝑖 = 1,… , 𝑛
and 𝑘 = 1… , 𝐾. In the particular case with one 𝑢𝑖𝑘 = 1 and the
other values equal to 0, the partition is crisp (non-fuzzy). For a crisp
partition, the concepts of geometric variability, proximity function,
distance between two groups and a distance-based depth function have
been previously defined and used in different contexts (for a review
see [23] and references therein). In brief, given a crisp partition, with
samples 𝐱11 ,… , 𝐱1𝑛1 , … , 𝐱𝐾1 ,… , 𝐱𝐾𝑛𝐾 of sizes 𝑛1,… , 𝑛𝐾 (𝑛1 +⋯ + 𝑛𝐾 = 𝑛)
coming from groups 𝐶1,… , 𝐶𝐾 , the geometric variability, 𝑉 (𝐶𝑘), of a
group 𝐶𝑘 is a general measure of dispersion, which reduces to the trace
of the covariance matrix if the distance is the Euclidean, and a natural
estimator is:

𝑉 (𝐶𝑘) =
1
2𝑛2𝑘

∑

𝑖,𝑗∈𝐶𝑘

𝛿2(𝐱𝑘𝑖 , 𝐱
𝑘
𝑗 ), 𝑘 = 1… , 𝐾. (1)

Given an observation 𝐱0, the proximity function of 𝐱0 to a group 𝐶𝑘
epresents the distance (squared) from 𝐱0 to 𝐶𝑘 and is estimated by:

2(𝐱0, 𝐶𝑘) =
1
𝑛𝑘

∑

𝑗∈𝐶𝑘

𝛿2(𝐱0, 𝐱𝑘𝑗 ) − 𝑉 (𝐶𝑘), 𝑘 = 1… , 𝐾. (2)

Given two groups, 𝐶𝑚 and 𝐶𝑙 with 𝑚 ≠ 𝑙, the squared distance between
them is estimated by:

𝛥2(𝐶𝑚, 𝐶𝑙) =
1

𝑛𝑚𝑛𝑙

∑

𝑖∈𝐶𝑚 ,𝑗∈𝐶𝑙

𝛿2(𝐱𝑚𝑖 , 𝐱
𝑙
𝑗 ) − 𝑉 (𝐶𝑚) − 𝑉 (𝐶𝑙), 𝑚, 𝑙 = 1… , 𝐾.

(3)

A depth function based on these concepts was introduced in [23] and,
for each observation 𝐱0, its depth value concerning group 𝐶𝑘 is a value
in [0,1], which indicates the depth degree of them with respect to the
data cloud and it is estimated by:

𝐼(𝐱0, 𝐶𝑘) =
[

1 +
𝜙2(𝐱0, 𝐶𝑘)
𝑉 (𝐶𝑘)

]−1

, 𝑘 = 1… , 𝐾. (4)

Note that (4) takes into account both the relation of unit 𝐱0 with respect
to the other units in the group and the dispersion of all data. As 𝐼 is a
depth function, it assigns to any observation 𝐱0 a degree of centrality,
hus a large value of 𝐼 , or equivalently a small value of 1∕𝐼 , suggests
hat 𝐱0 is more characteristic or typical of the group.

. Method

This section details the new proposed approach, called Fuzzy Classi-
ication, based on Depth Function (FC-DF). First, based on the distances
etween observations, we provide fuzzy versions of the previously
escribed concepts and some results when the Euclidean distance is
sed. Next, we develop the new supervised classification method and its
daptation for fuzzy unsupervised classification. The proposed method
C-DF is summarized in Algorithm 1 and the general process is plotted
n Fig. 1.

.1. Fuzzy versions

Given a fuzzy partition in 𝐾 groups by vector memberships 𝐮𝑖 ∈ R𝐾 ,
= 1,… , 𝑛, the fuzzy versions of the geometric variability, proxim-

ty function and distance between two groups can be defined in the
ollowing way:

• Fuzzy geometric variability of group 𝐶𝑘 (𝑘 = 1,… , 𝐾):

𝑉𝐹 (𝐶𝑘) =
1

2
(

∑

𝑗 𝑢𝑗𝑘
)2

∑

𝑖,𝑗
𝑢𝑖𝑘𝑢𝑗𝑘𝛿

2(𝐱𝑖, 𝐱𝑗 ). (5)

• Fuzzy proximity function of observation 𝐱0 to 𝐶𝑘 (𝑘 = 1,… , 𝐾):

𝜙2
𝐹 (𝐱0, 𝐶𝑘) =

1
∑

∑

𝑢𝑗𝑘𝛿
2(𝐱0, 𝐱𝑗 ) − 𝑉𝐹 (𝐶𝑘). (6)
𝑗 𝑢𝑗𝑘 𝑗
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Fig. 1. Workflow of the general process followed to build the classifier.
• Fuzzy squared distance between two groups 𝐶𝑚 and 𝐶𝑙 (𝑚 ≠ 𝑙,
𝑚, 𝑙 = 1… , 𝐾):

𝛥2
𝐹 (𝐶𝑚, 𝐶𝑙) =

1
∑

𝑗 𝑢𝑗𝑚
∑

𝑗 𝑢𝑗𝑙

∑

𝑖,𝑗
𝑢𝑖𝑚𝑢𝑗𝑙𝛿

2(𝐱𝑖, 𝐱𝑗 )−𝑉𝐹 (𝐶𝑚)−𝑉𝐹 (𝐶𝑙). (7)

Once we have defined these concepts, the fuzzy depth function for
each observation 𝐱0 concerning group 𝐶𝑘, (𝑘 = 1,… , 𝐾) is defined as:

𝐼𝐹 (𝐱0, 𝐶𝑘) =

(

1 +
𝜙2
𝐹 (𝐱0, 𝐶𝑘)
𝑉𝐹 (𝐶𝑘)

)−1

. (8)

All concepts in Eqs. (5) to (8) can be interpreted as the original
concepts, but in a fuzzy context. Therefore, a small value of 𝐼−1𝐹 (𝐱0, 𝐶𝑘)
signals out unit 𝐱0 as a central unit with respect to the fuzzy group 𝐶𝑘.

It is worth noting that all the expressions above are calculated based
on the information of distances between pairs of units without the need
for the coordinates. Nevertheless, if the coordinates of the observations
are available, then the fuzzy center of each group is given by:

𝐯𝑘 =
∑𝑛

𝑖=1 𝑢𝑖𝑘𝐱𝑖
∑𝑛

𝑖=1 𝑢𝑖𝑘
, 𝑘 = 1,… , 𝐾. (9)

When 𝛿 is the Euclidean distance calculated on coordinates 𝐱𝑖 for
the units (𝑖 = 1,… , 𝑛), the following propositions hold (proofs are in
Appendix A, B and C, respectively):

Proposition 1. The fuzzy geometric variability of cluster 𝐶𝑘 is the average
squared Euclidean distance of each observation to the fuzzy center:

𝑉𝐹 (𝐶𝑘) =
1

∑

𝑗 𝑢𝑗𝑘

∑

𝑖
𝑢𝑖𝑘(𝐱𝑖 − 𝐯𝑘)′(𝐱𝑖 − 𝐯𝑘). (10)

Proposition 2. The fuzzy proximity function of observation 𝐱0 to 𝐶𝑘 is the
squared Euclidean distance between the observation and the fuzzy center:

𝜙2
𝐹 (𝐱0, 𝐶𝑘) = ‖𝐱0 − 𝐯𝑘‖2. (11)

Proposition 3. The fuzzy squared distance between two groups 𝐶𝑚 and 𝐶𝑙
is the squared Euclidean distance between the corresponding fuzzy centers:

𝛥2 (𝐶 ,𝐶 ) = ‖𝐯 − 𝐯 ‖

2. (12)
3

𝐹 𝑚 𝑙 𝑚 𝑙
3.2. Supervised Fuzzy classification

As a supervised approach, each observation 𝐱𝑖, 𝑖 = 1,… , 𝑛, in the
training data set has its label 𝑦𝑖. We assume that there are 𝑀 different
labels (𝑦𝑖 ∈ {1,… ,𝑀}, 𝑖 = 1… , 𝑛). Besides, the distances between
each pair of observations 𝐱𝑖 and 𝐱𝑗 are also in the training data set
 =

{

(

𝛿𝑖,𝑗
)𝑛
𝑖,𝑗=1 , (𝑦𝑖)

𝑛
𝑖=1

}

. Given 𝐾 initial prototypes 𝐚1,… , 𝐚𝐾 selected
at random among the 𝑛 units and their corresponding label-prototypes
𝐳1,… , 𝐳𝐾 , we propose, following the work of [22], a Supervised Fuzzy
Partition based on the notion of Depth Function (SFP-DF), which aims
to solve the following problem:

min
𝑢𝑖𝑘 ,𝐚𝑘 ,𝐳𝑘

𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝑢𝑖𝑘𝛿

2(𝐱𝑖, 𝐚𝑘)+𝛼
𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝑢𝑖𝑘𝑙(𝑦𝑖, 𝐳𝑘)+𝛾

𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝑢𝑖𝑘𝑙𝑜𝑔(𝑢𝑖𝑘) , (13)

subject to
𝐾
∑

𝑘=1
𝑢𝑖𝑘 = 1 , 𝑢𝑖𝑘 ≥ 0 , 𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾,

where 𝑙(𝑦𝑖, 𝐳𝑘) = −
∑𝑀

𝑚=1 𝑙𝑜𝑔(𝑧𝑚𝑘)1(𝑦𝑖 = 𝑚) , 𝑚 = 1,… ,𝑀 , ∀𝑖, 𝑘, and
with positive hyperparameters 𝛾 > 0 and 𝛼 ≥ 0.

The first term of (13) seeks for the deepest units, and the second
term represents the within-cluster variability of the labels. As in [22],
the positive hyperparameter 𝛼 controls the contribution of the labels.
When 𝛼 = 0 the label information of the units is not taken into account
and it, therefore, offers a non-supervised version (Fuzzy Clustering).
Smaller values of 𝛾 lead to crisper partitions.

Problem (13) is solved following the block coordinate descent ap-
proach presented in [22]. Within this frame, several smaller optimiza-
tion problems are addressed in each iteration:

Block 1: Optimization of membership vectors. Considering the
prototypes and label-prototypes fixed, problem (13) becomes:

min
𝑢𝑖𝑘

𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝑢𝑖𝑘𝑑𝑖𝑘 + 𝛾

𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝑢𝑖𝑘𝑙𝑜𝑔(𝑢𝑖𝑘) , (14)

subject to: ∑𝐾 𝑢 = 1, 𝑢 ≥ 0, 𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾,
𝑘=1 𝑖𝑘 𝑖𝑘
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and where distances to prototypes, as well as class label information,
are considered in 𝑑𝑖𝑘 = 𝛿2(𝐱𝑖, 𝐚𝑘)−𝛼

∑𝑀
𝑚=1 𝑙𝑜𝑔(𝑧𝑚𝑘)1(𝑦𝑖 = 𝑚). The solution

for (14) is given by:

𝑢𝑖𝑘 =
exp (−𝑑𝑖𝑘∕𝛾)

∑𝐾
𝑙=1 exp (−𝑑𝑖𝑙∕𝛾)

, 𝑘 = 1,… , 𝐾, 𝑖 = 1,… , 𝑛. (15)

Block 2: Optimization of prototypes. Considering the membership
ectors and label-prototypes fixed, problem (13) becomes:

min
𝐚1 ,…,𝐚𝐾

𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝑢𝑖𝑘𝛿

2(𝐱𝑖, 𝐚𝑘) . (16)

hen, (16) requires finding 𝐾 units among the 𝑛 units in the training
ata set that minimize 𝐹 (𝐚1,… , 𝐚𝐾 ) =

∑𝐾
𝑘=1

∑𝑛
𝑖=1 𝑢𝑖𝑘𝛿

2(𝐱𝑖, 𝐚𝑘). Even for
moderate values of 𝑛, it becomes infeasible to find the global optimum
f 𝐹 . Nevertheless, it is sensible to find one prototype 𝐚𝑘 at a time, and
ork sequentially on each 𝑘 = 1,… , 𝐾. That is, for each 𝑘, we find the
nit 𝐚𝑘 ∈  that minimizes 𝐹𝑘(𝐚𝐤) =

∑𝑛
𝑖=1 𝑢𝑖𝑘𝛿

2(𝐱𝑖, 𝐚𝑘).
It is interesting to note that 𝐹𝑘(𝐚𝐤) ∝ 𝐼−1𝐹 (𝐚𝑘, 𝐶𝑘), and therefore

the prototypes are optimized looking for the deepest unit for each
cluster 𝐶𝑘. Moreover, if, instead of prototypes 𝐚𝑘, the fuzzy-centers
𝐯𝑘 are considered as well as the Euclidean distance between units,
then 𝐹𝑘(𝐯𝑘) =

∑

𝑖 𝑢𝑖𝑘‖𝐱𝑖 − 𝐯𝑘‖2, linking to classical 𝐾-Fuzzy Clustering
objective functions.

Block 3: Optimization of label-prototypes. Considering the mem-
bership vectors and prototypes fixed, problem (13) becomes:

min
𝐳1 ,…,𝐳𝐾

(

−
𝐾
∑

𝑘=1

𝑛
∑

𝑖=1
𝑢𝑖𝑘

𝑀
∑

𝑚=1
𝑙𝑜𝑔(𝑧𝑚𝑘)1(𝑦𝑖 = 𝑚)

)

, (17)

having as solution:

𝑧𝑚𝑘 =
∑

𝑖 𝑢𝑖𝑘1(𝑦𝑖 = 𝑚)
∑𝑛

𝑖=1 𝑢𝑖𝑘
, 𝑚 = 1,… ,𝑀, 𝑘 = 1,… , 𝐾. (18)

Note that each label-prototype 𝐳𝑘 itself is a membership vector in
the sense that the sum of its components is 1.

Putting together all the blocks, we have the following algorithm to
solve (13) based on the training data set:

Algorithm 1 FC-DF algorithm.

Input: Distance matrix and labels  =
{

(

𝛿𝑖,𝑗
)𝑛
𝑖,𝑗=1 , (𝑦𝑖)

𝑛
𝑖=1

}

,
𝐾 and hyperparameters 𝛼, 𝛾.

Output: membership vectors 𝐮1,… ,𝐮𝑛,
prototypes 𝐚1,… , 𝐚𝐾 ,
label-prototypes 𝐳1,… , 𝐳𝐾 .

Initialize: prototypes 𝐚1,… , 𝐚𝐾 ,
label-prototypes 𝐳1,… , 𝐳𝐾 .

repeat
Update distance between training units and prototypes

𝑑𝑖𝑘 = 𝛿2(𝐱𝑖, 𝐚𝑘) − 𝛼
∑𝑀

𝑚=1 𝑙𝑜𝑔(𝑧𝑚𝑘)1(𝑦𝑖 = 𝑚).
Update membership vectors 𝐮𝑖 (Block 1).
Update prototypes as the deepest units (Block 2).
Update label-prototypes (Block 3).

until Prototypes do not change.

3.3. Predicting the class of a new unit

Once the training phase is solved, given a new unit 𝐱 and the
quared distance from it to the prototypes 𝛿2(𝐱, 𝐚1),… , 𝛿2(𝐱, 𝐚𝐾 ) follow

these steps:

1. Compute its membership vector 𝐮 = (𝑢1,… , 𝑢𝐾 )′, which mea-
sures the affinity of 𝐱 concerning each prototype, by:

exp (−𝛿2(𝐱, 𝐚𝑘)∕𝛾)
∑𝐾 2

, 𝑘 = 1,… , 𝐾. (19)
4

𝑙=1 exp (−𝛿 (𝐱, 𝐚𝑙)∕𝛾)
2. Compute weighted memberships relative to classes 1,… ,𝑀 , that
measure the affinity of 𝐱 to the M classes, by:

𝑝𝑚 =
𝐾
∑

𝑘=1
𝑢𝑘𝑧𝑚𝑘 , 𝑚 = 1,… ,𝑀. (20)

As ∑𝑀
𝑚=1 𝑧𝑚𝑘 = 1 and ∑𝐾

𝑘=1 𝑢𝑘 = 1 by construction, ∑𝑀
𝑚=1 𝑝𝑚 = 1.

3. Finally, predict its class label by

arg max
𝑚=1,…,𝑀

{𝑝𝑚}. (21)

.3.1. Notes on initialization and tuning of the hyperparameters
The algorithm needs to initialize prototypes and label prototypes,

nd it could be interesting to select the prototypes spread along the
pace [24]. However, in this work, the initialization is carried out
andomly. We repeat the initialization several times, considering the
ne that minimizes the objective function. Then,

1. Initialize 𝐾 prototypes selecting at random 𝐾 units (𝐾 ≥ 𝑀)
among the training data: 𝐚1,… , 𝐚𝐾 .

2. Initialize 𝐾 label-prototypes 𝐳1,… , 𝐳𝐾 taking into account labels
of the prototypes 𝑦𝐚𝑘 , so that 𝑧𝑚𝑘 = 1∕(1 + (𝐾 − 1)𝜖) if 𝑦𝐚𝑘 = 𝑚
and 𝑧𝑚𝑘 = 𝜖∕(1 + (𝐾 − 1)𝜖) otherwise, (𝜖 > 0).

Besides, hyperparameters 𝛾 and 𝛼 need to be tuned. When the num-
ber of hyperparameters to be tuned is large, randomly chosen values
might be more efficient [25], but in this case, since there are only two,
a grid-search approach is adequate. Therefore, as a general procedure
to tune the hyperparameters throughout this work, first positive values
for the hyperparameters are set for the grid, and then the most suitable
values are selected according to the highest accuracy values. When
several hyperparameter combination values reach the highest accuracy,
we keep the first combination that reaches the maximum, but other
practices could be considered as well. If there is no label information
and the algorithm is applied as Fuzzy Clustering (𝛼 = 0), 𝛾 is tuned
based on a permutation approach related to the Gap statistics as in [10].
Since FC-DF is distance-based, the 𝐵 permutations are performed on
pairs of units, and the Gap is derived from the objective function
𝐺(𝛾) =

∑𝐾
𝑘=1

∑𝑛
𝑖=1 𝑢𝑖𝑘𝛿

2(𝐱𝑖, 𝐚𝑘)+𝛾
∑𝐾

𝑘=1
∑𝑛

𝑖=1 𝑢𝑖𝑘𝑙𝑜𝑔(𝑢𝑖𝑘), and therefore the
Gap statistics becomes 𝐺𝑎𝑝(𝛾) = 1

𝐵
∑𝐵

𝑏=1 𝑙𝑜𝑔(𝐺𝑏(𝛾)) − 𝑙𝑜𝑔(𝐺(𝛾)).

4. Data sets

The actual data that support the findings of this study are public
except for the oil data set, which is not publicly available due to the
policy of the industry but it is available, from the corresponding author,
upon reasonable request. The simulated data can be reproduced from
the explanation included.

All these public data sets are frequently used in classification ap-
proaches, and a summary of them is listed in Table 1. The data sets we
use contain continuous data, mixed data (continuous and qualitative),
or functional data derived from Near Infrared spectroscopy. We do not
focus on huge data sets, instead, we focus on high-dimensional data,
unbalanced classes, and different types of data because such data also
plays a vital role in real classification problems.

Below is a brief description of each data set and the purpose they
have been selected for.

4.1. Iris data set

The well-known Iris data set includes three classes (𝐶1 = Setosa,
𝐶2 = Versicolor, 𝐶3 = Virginica) with 50 data points in each class and
4 features (sepal length, sepal width, petal length, petal width). The
aim of this example is mainly illustrative and shows that the proposed
method is competitive when it is compared to other procedures. In
addition, it shows that beyond a purely predictive approach, the fuzzy
perspective offers the opportunity to obtain an idea of the data set. As
the features are continuous, we used the Euclidean distance.
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Table 1
Data set summary. 𝑝: number of features; 𝑛: number of units; 𝑀 : number of classes,
in brackets the number of units in each class; type of the features, and distance used
for the FC-DF analysis.

Data set 𝑝 𝑛 𝑀 Type Distance

Mixture model 2 500 3 (125, 125,250) continuous Euclidean
Spiral 2 375 3 (125, 125, 125) continuous Euclidean
Iris 4 150 3 (50, 50, 50) continuous Euclidean
Alizadeh 2093 64 4 (21, 21, 9, 11) continuous correlation
Oil 1751 244 3 (107, 96, 41) functional first derivative
Cleveland 13 303 2 (137, 160) mixed related

4.2. Synthetic data sets

The two synthetic experiments aim to assess the flexibility of the
supervised classification method and its stability in terms of accuracy.
Again, we used the Euclidean distance.

4.2.1. Synthetic three-component mixture model
As in [22], we have simulated 𝑛 = 500 random samples from the

three-component mixture model with distribution 𝑝(𝑥) = 0.25𝑝(𝑥|𝑦 =
1) + 0.25𝑝(𝑥|𝑦 = 2) + 0.5𝑝(𝑥|𝑦 = 3) where:

• 𝑋|𝑦 = 1 ∼ 𝑁(𝜇1, 𝛴1), with 𝜇1 = (0, 0)′ and 𝛴1 = 𝑑𝑖𝑎𝑔(15, 0.05).
• 𝑋|𝑦 = 2 ∼ 𝑁(𝜇2, 𝐼), with 𝜇2 = (−12, 0)′ and 𝐼 is the identity

matrix.
• 𝑋|𝑦 = 3 ∼ 2

3𝑁(𝜇31, 4𝐼) +
1
3𝑁(𝜇32, 𝐼) with 𝜇31 = (0, 8)′ and

𝜇32 = (0,−4)′.

4.2.2. Spiral data set
Spiral data was generated with library KODAMA in R and 𝑛 = 375

samples from 3 classes uniformly distributed were drawn.

4.3. Real data sets

With the following three data sets, we illustrate the good perfor-
mance of both the unsupervised and the supervised classification new
procedures. The aim is to show how the method works with high-
dimensional data (data sets in which the number of features 𝑝 is larger
than the number of observations 𝑛, 𝑝 ≫ 𝑛) and with distances different
from the Euclidean.

4.3.1. Alizadeh data set
To illustrate the FC-DF fuzzy clustering, we consider the gene

expression data from adult lymphoid malignancies [26], widely used
to illustrate cluster methodology [27,28]. We compared our results
with those obtained using the well-known Fuzzy Clustering based on
distances Fanny [29]. This data set used microarray to characterize
gene expression patterns of the three most prevalent adult lymphoid
malignancies: diffuse large B-cell lymphoma (DLBCL) separated into
two groups DLBCL1 and DLBCL2, follicular lymphoma (FL) and chronic
lymphocytic leukemia (CLL). The data set includes 64 patients (21 in
DLBCL1 and DLBCL2; 9 in FL and 11 in CLL) and the expression level
of 2,093 genes. In this case, the correlation distance was used as usual
for this type of data.

4.3.2. Oil data set
We use this real example to show the usefulness of the supervised

proposal with high dimensional data in which the Euclidean distance
is not appropriate and another type of distance must be used. We
compared our results with those obtained using SFP.

The lubricant must be considered as a component of the machine,
and the condition of the oil is fundamental to ensure its correct opera-
tion and to prevent potential damages. Given the degradation process
that the oils suffer, it becomes appealing to consider the fuzzy approach
to predict the condition of the oils, which is usually assessed by
5

Fig. 2. Oil data set. Each oil, shown as a curve, is represented by 1,751 measurements
of the absorbance at different wavelengths. Classification of oils is according to their
alkaline reserve condition: good condition (𝐶1), fairly good condition (𝐶2), and warning
condition (𝐶3).

measuring the Base Number describing the level of reserve alkaline.
In a different context, [30] also uses the infrared spectrum to classify
alkanes in hydrocarbons. Fig. 2 shows 244 spectrometric curves of
oils obtained from infrared spectroscopy and converted to absorbance
curves that represent the amount of incident light absorbed by the
oil sample. These oils were classified based on their alkaline reserve
condition (107 are in good condition, 96 are in fairly good condition,
and 41 are in warning). The detection of an oil in the warning condition
is essential so that it can be replaced before engine damage occurs.

Here, we carried out two approaches. One, considering each obser-
vation 𝑖 as a 𝑝 = 1, 751 dimensional vector 𝐱𝑖 ∈ R𝑝, which is the classical
approach cases × variables to represent the data and we applied the
SFP method, as it is a fuzzy method that showed good performance on
high-dimensional data [22]. Furthermore, as SFP calculates weights for
the variables for each prototype, it could highlight interesting regions
of wavelength to discriminate classes. The other approach was our pro-
posed method. FC-DF allows the perspective that each oil is represented
as a functional observation to be integrated, i.e., as an observation of
a random curve. Particularly, we calculated the semi-metric distance
based on the first derivative of their absorbance curves [31]. Under this
approach, first B-splines of the curves are fitted, and then, given that
the B-splines are smooth curves, the derivative of them is considered to
compute the classical 𝐿2-norm distance. For both approaches, we split
the data randomly into train (90%) and test (10%) sets. To tune the
hyperparameters, we proceed with a grid search along with a 10-fold
cross-validation approach within the train set. Values in the grid for
SFP were obtained following [22].

4.3.3. Cleveland data set
This heart disease data set [32] is composed of mixed data. There

is quantitative data (age, pressure, cholesterol, ST depression induced
by exercise relative to rest and maximum heart rate level) as well as
binary (exercise induced angina, fasting blood sugar > 120 mg/dl)
and qualitative (gender, resting electrocardiographic results, chest pain,
the slope of the peak exercise ST segment, major vessels colored by
fluoroscopy and thal). The data set contains the measures of these
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Fig. 3. Iris data set. Dispersion plots according to the four measured variables. Large circles indicate the 𝐾 = 5 prototypes obtained with FC-DF. Setosa, Versicolor, and Virginica
groups in green, orange, and purple, respectively.
variables on 303 units, however, 6 which present missing values, were
removed. The aim is to predict the diagnosis of heart disease (less
chance vs more chance). Besides, this data set presents the opportunity
to show how a method that can use any distance allows the results to be
improved. Because we work with mixed variables, as before, we carried
out two approaches.

On the one hand, we codified the qualitative variables with indica-
tor variables (i.e., one-hot-encoded) so that they can be considered as
quantitative. Then the SFP method was applied. The other approach
was our supervised proposed method. Since there is a mixture of
different types of variables, we first separated the quantitative and the
qualitative variables to pool them together later on as follows. First,
the Euclidean distance was considered for quantitative (𝐷1) and the
Gower’s distance for qualitative (𝐷2) data. Then, we considered the
related distance [33] obtained from distances 𝐷1 and 𝐷2, to get the
distance that integrates both types of variables. Note that, as a general
approach, the Gower distance may be appropriate for a combination
of different types of variables. However, we have not used it because
problems arise when the estimated range of a quantitative feature in
the training split is shorter than that observed in the test split.

For both approaches, we split the data randomly in train (66.7%)
and test (33.3%) sets. The quantitative variables were scaled according
6

to their standard deviation in the training set. Again, to tune the
hyperparameters, we proceed with a grid search along with a 10-fold
cross-validation approach within the training set, and values in the grid
for SFP follow [22].

For all the data sets, using a grid search approach, we determined
the appropriate hyperparameters. To this end, training was done on
9 out of 10 folds of the training set, and the remaining fold was left
as the validation set. The best values of the hyperparameters were
chosen according to the results obtained in the validation set. In each
situation, the initialization follows Section 3.3.1 and, to reduce random-
ness due to the haphazard initialization of prototypes, we repeated the
analysis five times for each combination of hyperparameters. Then, we
considered the best one.

All the experimentation was performed on a personal computer
(Intel i5-7500, 4 cores, 3.50 GHz, 15 Gi of RAM and 2.0 Gi of swap
space) running Ubuntu 20.04.6LTS. The code was implemented in R
and it is available in repository https://github.com/rsait/FC-DF.

5. Results and discussion

This section analyzes the results and discusses the behavior of the

proposed methodology.

https://github.com/rsait/FC-DF
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Table 2
Iris data set. Number of prototypes, correct classification rates, and number of incorrect
classified units obtained with different approaches.

Method # Prototypes Correct (%) Incorrect classified units

Classical DA [17] – 98.0 3
FDA [14] – 89.3 16
KFDA [14] – 93.3 10
Fuzzy DA [17] – 89.3 16
Chang [34] 14 100 0
Dasarathy [35] 15 100 0
Bezdek [24] 11 100 0
SFP [22] 5 100/98.7a 0/2a

FC-DF 5 100/98.0a 0/3a

a Results obtained making predictions recalculating the membership vectors.

5.1. Iris data set

Table 2 presents the correct classification obtained with FC-DF and
different procedures, which consider the whole data set as a train and
test set, reported in the literature. Following a grid-search approach
to tune the hyperparameters (𝛾, 𝛼 ∈ {2𝑙 | 𝑙 = −4,−3.5,… , 0.5, 1} and

∈ {3, 4,… , 15}), the best accuracy rate for FC-DF is obtained with
= 0.0884, 𝛼 = 0.354 and 𝐾 = 5 prototypes. One of the prototypes

elongs to the Setosa class, two to Versicolor, and the other two to
irginica (see Fig. 3).

Both SPF and FC-DF achieved a 100% accuracy when the predic-
ions were based on the membership vectors 𝐮𝑖 obtained at the end of
he optimization procedure, being 𝑖 a unit in the training set. Since the
raining and test sets are the same, strictly speaking, it is not necessary
o recalculate the membership vectors following the prediction step
Section 3.3). However, we proceeded with this prediction step to have
ore robust results. For other procedures in Table 2, the information

bout the recalculation of the membership vectors is unknown. It is
rucial to highlight, that although SFP gets a slightly higher accuracy,
lassifying correctly one more instance than FC-DF, the latter achieves
ractically the same accuracy with the same number of prototypes and
sing one less hyperparameter.

The obtained label prototypes (𝐳1,… , 𝐳5) show that each prototype
s clearly from only one class. For instance, 𝐳1 = (1, 0, 0)′ indicates that
rototype 𝐚1 (unit 8) is clearly from class 𝐶1 (Setosa). The same happens
or the rest of the prototypes: prototypes 𝐚2 (unit 81) and 𝐚3 (unit 92)
re related to class 𝐶2 (Versicolor) and prototypes 𝐚4 (unit 103) and 𝐚5
unit 150) to class 𝐶3 (Virginica).

Note that, in all, we have 3 partitions: two fuzzy partitions, one
n 𝐾 = 5 classes given by membership vectors 𝐮𝑖 and the other in

= 3 classes given by the weighted membership 𝐩𝑖; and the third
ne, the crisp partition determined by labels in classes 𝐶1, 𝐶2 and 𝐶3.
he membership vectors can be used to compute the fuzzy geometric
ariabilities. Particularly, it can be seen that there are no differences
etween the classical geometric variability and the fuzzy version for
lass 𝐶1 (𝑉 (𝐶1) = 𝑉𝐹 (𝐶1) = 0.303). Besides, the fuzzy geometric
ariability related to prototype 𝐚1 = 8 of class 𝐶1 remains the same,
roving that the prototype captures the variability around it well. For
lasses 𝐶2 and 𝐶3 small differences between classical and fuzzy versions
ppear, showing there is some fuzziness (see Table 3). Concerning fuzzy
eometric variabilities, it can be seen that prototypes 𝐚2 = 81 and 𝐚3 =
2 account for the variability of 𝐶2 in two halves. However, for class 𝐶3,
he class with the greater variability, the variability around prototype
4 = 103 is bigger (0.563) than the variability around 𝐚5 = 150 (0.286).

Furthermore, the entropies related to the weighted membership
ectors, 𝐩𝑖, 𝑖 = 1, 2, 3, relative to classes help to measure the fuzziness of
he units. In Fig. 4 the horizontal lines, from top to bottom, correspond
o the values of the entropy for four different distributions: uniform
istribution 𝐟1 = (1∕3, 1∕3, 1∕3) with entropy 𝐻(𝐟1) = 1.58; distribution
= (0, 1∕2, 1∕2) with 𝐻(𝐟 ) = 1; distributions 𝐟 = (0, 1∕4, 3∕4) and
7

2 2 3 m
Table 3
Iris data set. Columns 2-4: non-fuzzy geometric variability, 𝑉 (𝐶𝑚), calculated based on
he crisp partition 𝐶1 , 𝐶2 , 𝐶3 and fuzzy geometric variability, 𝑉𝐹 (𝐶𝑚), based on weighted
emberships relative to the 3 classes. Columns 5-9: fuzzy geometric variability based

n the memberships relative to the 5 obtained prototypes.
𝐶1 𝐶2 𝐶3 Prototypes

𝐚1 = 8 𝐚2 = 81 𝐚3 = 92 𝐚4 = 103 𝐚5 = 150

𝑉 (𝐶𝑚) 0.303 0.612 0.871 – – – – –
𝑉𝐹 (𝐶𝑚) 0.303 0.624 0.809 0.303 0.319 0.310 0.563 0.286

Fig. 4. Iris data set. For each flower, the entropy of its weighted membership vector
is shown. The horizontal lines correspond to the entropy for different distributions.

𝐟4 = (0, 3∕4, 1∕4) both with 𝐻(𝐟3) = 𝐻(𝐟4) = 0.81. It can be seen that
ny unit has a fuzziness close to a uniform distribution 𝐟1, five units
re in between the entropy values of distributions 𝐟2 and 𝐟3, and some
ith lower entropy than 𝐻(𝐟3) but never null. All units in 𝐶1 have null

ntropy and, therefore, their classification is not doubtful.

.2. Synthetic three-component mixture model

Fig. 5 shows the precision obtained for the different values of the
yperparameters, whose adjustment was achieved by grid search with
, 𝛼 ∈ {2𝑙 ∶ 𝑙 = −1,−0.5,… , 3.5, 4}. It can be observed that the range
or 𝛾 values was wide enough (Fig. 5, right), as well as the risk of
hoosing a too-large value for 𝛼 (Fig. 5, left). The hyperparameter 𝛼
s related to the labels and considering a value which is too big could
ead to overfitting. Concerning the number of prototypes, with only 3
rototypes just approximately 80% of accuracy is reached since only
ne prototype falls into class 2, so the units of the two subgroups
hat comprise this class are not well characterized. However, with 4
rototypes, one belongs to class 1, one to class 3, and two to class 2
one in each subgroup), an accuracy equal to 97% is achieved in both
he training group and in the test set. When considering 5 or more
rototypes, these accuracy values are improving, since the dispersion
f the data is covered better. Concerning the number of prototypes as a
eneral trend, it can be seen that 𝐾 = 3 might not be enough and that
aving more prototypes raises the classification accuracy.

For each number of prototypes 𝐾 and to get a tuned FC-DF with
ppropriate values of hyperparameters, we considered values related to
aximum accuracy. Then, the performance offered by the tuned FC-DF
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Table 4
Synthetic three component data set. For each 𝐾, values of 𝛾 and 𝛼 with
best accuracy values using the training data. Column 5, the accuracy
obtained on the test set using these hyperparameters.
K 𝛾 𝛼 Accuracy

Evaluation Test

3 4.00 0.50 0.81 0.82
4 1.00 4.00 0.97 0.97
5 0.50 2.83 0.99 0.97
6 2.00 0.50 0.99 0.98
7 2.83 0.50 0.99 0.98
8 1.00 0.50 0.99 0.98
9 0.50 8.00 0.99 0.99
10 1.41 0.50 0.99 0.99

was assessed on the test set, containing 500 new samples drawn from
the same model. The obtained results can be found in Table 4, where
for each 𝐾 the values of hyperparameters 𝛾 and 𝛼 with best accuracy
values obtained in the validation approach using the training data are
shown in the first four columns. The accuracy values obtained on the
test set with the selected hyperparameter values are in the last column.
We can observe that the 10-fold cross-validation approach carried out
within the training set leads to stable values of the hyperparameters,
as the accuracy in the test set is very similar to the accuracy obtained
in the training set. Fig. 6 illustrates the solutions with 𝐾 = 4 and

= 10 prototypes. Note that the method adequately selects the
rototypes, considering more prototypes where the spread of the units
s wider. These results demonstrate the correct performance of the
C-DF procedure and its ability to predict the class of new units.

Furthermore, as it is a distance-based method, it is necessary to
ention the difficulties that arise with its scalability. Precisely, dif-

iculties related to the computation time and storage of the distance
atrix. The method needs to compute the distances between every pair

f units in a set of 𝑛 units, making running times and memory needs
row quadratic 𝑂(𝑛2). We generated samples of different sizes (𝑛 =

500, 1000, 5000, 10000, 15000) and computed the algorithm sequentially.
The algorithm is repeated 5 times as mentioned at the beginning of the
paragraph. The observed running time can be seen in Table 5. Fig. 7
shows the running times (s) and storage need (Mb) according to the
number of samples in the training set.

5.3. Spiral synthetic data

We proceeded in a similar way to tune the hyperparameters and we
8

generated 375 new samples to create a test set. The results obtained M
Table 5
Synthetic three component data set. After repeating the algorithm 5 times, running
times (seconds) with respect to the sample size in the training set.

Sample size

500 1000 5000 10000 15000

Running times (s) 1.9 8.2 213.5 760.2 1729.1

Table 6
Spiral data set. For each 𝐾, values of 𝛾 and 𝛼 with best accuracy values obtained using
the training data (columns 1 to 4 and 6 to 9). In columns 5 and 10, accuracies obtained
on the test set with the selected hyperparameter values.

K 𝛾 𝛼 Evaluation Test K 𝛾 𝛼 Evaluation Test

3 2 4 0.54 0.56 12 2 4 0.91 0.85
4 4 0.25 0.54 0.55 13 2 4 0.92 0.88
5 1 0.25 0.57 0.56 14 2 4 0.92 0.92
6 4 4 0.60 0.62 15 0.5 4 0.93 0.94
7 0.5 2 0.64 0.61 16 0.25 4 0.95 0.96
8 1 4 0.68 0.75 17 2 4 0.96 0.94
9 2 4 0.79 0.84 18 0.25 1 0.96 0.92
10 2 4 0.82 0.85 19 1 1 0.97 0.95
11 1 4 0.86 0.84 20 1 1 0.97 0.94

for the behavior of the hyperparameters are very similar to those
commented for the previous data set, the accuracy being higher as
𝐾 gets bigger and obtaining the stability of the accuracy in the train
and test sets. FC-DF can deal very well with the linear non-separable
problem ( Table 6), with an accuracy greater than 90%, and it has the
ability to place the prototypes in such a way that the entire spiral shape
presented by the data is covered (Fig. 8). This experiment demonstrates
an accurate performance of FC-DF in front of non-linear situations.

5.4. Alizadeh data set

We applied FC-DF as Fuzzy Clustering, with 𝛼 = 0. Hyperparameter
𝛾 is tuned based on a permutation approach related to the Gap statistics
as in [10]. Within this approach, 𝐵 = 100 times permutation was
performed in pairs of units. The number of clusters 𝐾 were selected
based on the Fuzzy Silhouette [36]. This index suggested 𝐾 = 3 clusters
for Fanny (membership exponent 𝑟 = 1.2) while FC-DF indicates 𝐾 = 2
lusters (𝛾 = 2−9), although the silhouette values were low (0.318 and
.185, respectively). Both methods tend to classify CLL and FL classes
ogether in one cluster. This was expected, as the gene expression
rofiles of DLBCL are very different from those of CLL and FL [26].
oreover, FC-DF classified DLBCL1 and DLBCL2 together, while the
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Fig. 6. Synthetic three component data set. Each color indicates a class. Training data set in small circles. Test data set in crosses, when the predicted label is correct; otherwise
squares. Prototypes are indicated by large circles. Left: 𝐾 = 4 prototypes. Right: 𝐾 = 10 prototypes.
Fig. 7. Running times (s) and Storage need (Mb) according to the number of samples
in the training set.

Table 7
Alizadeh data set. For both FC-DF and Fanny, confusion matrices with the number
of clusters pointed by the Silhouette index (left), and considering four groups of
patients (right).
Real FC-DF Fanny FC-DF Fanny

𝐶1 𝐶2 𝐶1 𝐶2 𝐶3 𝐶1 𝐶2 𝐶3 𝐶4 𝐶1 𝐶2 𝐶3 𝐶4

CLL 11 0 11 0 0 11 0 0 0 11 0 0 0
DLBCL1 1 20 1 13 7 0 2 14 5 0 2 11 8
DLBCL2 2 19 0 11 10 1 0 10 10 0 1 10 10
FL 9 0 9 0 0 0 9 0 0 0 9 0 0

Fanny tried to separate them, but did not achieve a good partition (
Table 7, left side).

As we know that there are four groups of patients, we also com-
pared the solutions obtained for 𝐾 = 4 with 𝛾 = 2−1 for FC-DF
and membership exponent 𝑟 = 1.2 for Fanny ( Table 7, right side).
Both methods correctly split the CLL and FL classes. However, neither
method achieves a good separation of the DLBCL1 and DLBCL2 pa-
tients, this might be due to the considerable molecular heterogeneity
9

Fig. 8. Spiral data set. Each color indicates a class. Training data set in small circles.
Test data set in crosses, when the predicted label is correct; otherwise squares. 𝐾 = 14
prototypes (indicated by large circles).

within the DLBCL group [26]. Nevertheless, FC-DF obtains a better sep-
aration between them. Besides the confusion matrix, the fuzzy squared
distance also points in that direction. Identifying the clusters 𝐶3 and
𝐶4 with their closest real class DLBCL1 and DLBCL2, respectively, the
fuzzy squared distance with FC-DF is 𝛥2

𝐹 (𝐶3, 𝐶4) = 0.0064; Surprisingly
the fuzzy squared distance for Fanny is 𝛥2

𝐹 (𝐶3, 𝐶4) = 0, and therefore
the hypothetical fuzzy center is the same for clusters 𝐶3 and 𝐶4.
Membership vectors of the obtained prototypes by FC-DF also suggest
that there is a principal separation between clusters 𝐶1∪𝐶2 and 𝐶3∪𝐶4,
the first two related to CLL and FL and the other two to the different
forms of DLBCL, as expected ( Table 8.)

5.5. Real oil data set

After a grid search (𝛾 ∈ {2−10, 2−9,… , 2−2} and 𝛼 ∈ {2−2, 2−1.5,… ,
22}) and according to the best accuracy value obtained on the valida-
tion set, the best solutions for SFP and FC-DF are obtained with 𝐾 = 10
(𝛾 = 1.37, 𝛼 = 1.27 and 𝜆 = 1.11) and 𝐾 = 3 (𝛾 = 2−9 and 𝛼 = 2−2)
prototypes, respectively.
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Fig. 9. Oil data set. Weighted membership vectors 𝐩 for oils in the test set, the colors indicate the three classes (class 1: good condition; class 2: fairly good condition; class 3:
warning condition).
Table 8
Alizadeh data set. Membership vectors related to clusters obtained for 𝐾 = 4 with
C-DF.
Prototypes 𝑝1 𝑝2 𝑝3 𝑝4
𝐚1 (case 6) 0.671 0.259 0.031 0.039
𝐚2 (case 58) 0.254 0.659 0.045 0.042
𝐚3 (case 29) 0.033 0.049 0.711 0.207
𝐚4 (case 26) 0.041 0.045 0.206 0.708

The obtained results (Table 9) clearly show the benefits of taking
nto account the characteristics of the particular data and the use of

distance according to the data type. Besides, the solution given by
FP was not able to predict any oil in the warning class (𝐶3). Given
hat SFP calculates weights for the features and for each prototype,
t could point out interesting regions of wavelength to discriminate
lasses. Nevertheless, the obtained weights were uniformly distributed
nd did not point to any wavelength of interest to help discriminate
he conditions of the oils. Concerning FC-DF, all oils in the warning
lass were well classified and the information given by the weighted
embership vectors is particularly interesting (Fig. 9). For instance,

t is worth looking for oils with a membership degree bigger than
.15 (half of what is expected under the uniform distribution) for class
arning (class 3), in order to raise an alarm before any damage occurs.

f so, although oils 6, 7, and 8 are in fairly good condition (class 2), they
re signaled out to move to warning condition (class 3). This might be
elevant information for the managers of such engines.

.6. Cleveland data set

After a grid search (𝛾 ∈ {2−4, 2−3.5,… , 21} and 𝛼 ∈ {2−6, 2−5.5,… ,
1}) and according to the best accuracy value obtained on the valida-
ion set, the best solutions for SFP and FC-DF were obtained ( Table 10)
ith 𝐾 = 9 (𝛾 = 1.68, 𝛼 = 1.04 and 𝜆 = 1.37) and 𝐾 = 3 (𝛾 = 2−2 and
= 2−2) prototypes, respectively. The results, again, show the benefits

f using an adequate distance according to the type of data. FC-DF is
10
Table 9
Oil data set. For each K, best accuracy values obtained using the train
data. With the corresponding parameters, accuracy obtained on the test
set for both SFP and FC-DF procedures. In bold, best accuracy values
on the validation set.
K SFP FC-DF

Validation Test Validation Test

3 0.48 0.44 0.71 0.80
4 0.46 0.20 0.65 0.60
5 0.47 0.52 0.71 0.68
6 0.46 0.52 0.69 0.68
7 0.47 0.44 0.69 0.56
8 0.47 0.44 0.68 0.60
9 0.47 0.56 0.67 0.68
10 0.49 0.44 0.66 0.72

Table 10
Cleveland data set. For each K, best accuracy values obtained using the train data.
With the corresponding parameters, accuracy obtained on the test set for both SFP and
FC-DF procedures. In bold, the best accuracy values on the validation set.

K SFP FC-DF

Validation Test Validation Test

2 0.712 0.535 0.813 0.828
3 0.742 0.556 0.854 0.838
4 0.763 0.697 0.848 0.788
5 0.783 0.576 0.854 0.859
6 0.783 0.717 0.854 0.859
7 0.783 0.848 0.854 0.818
8 0.808 0.596 0.854 0.828
9 0.813 0.768 0.854 0.818
10 0.798 0.657 0.854 0.859

more accurate in classifying and, moreover, it is more robust in general
terms since the differences in the assessment between the validation
split and test split are clearly smaller for FC-DF.
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6. Conclusions and future work

FC-DF is a useful and competitive method since it has a number
of advantages over other methods. For instance, it is independent of
the type of data as it is only necessary to select a suitable distance for
each specific data set. For this reason, the procedure becomes more
general than those that are only valid with continuous features and
need to define centroids. Another strength is that, as FC-DF works with
the distances between units, the number of variables is not relevant.
Thus, it works without any type of restriction with high dimensional
data sets. The use of an appropriate distance can prevent the curse
of dimensionality that may arise with high dimensional data. The
obtained results with different types of real data, where the number of
units 𝑛 is smaller than the number of features 𝑝, show how the method

hen using an appropriate distance overcomes such a difficulty. On the
asis of the above, the overall performance of FC-DF is significantly
mproved than that of SFP. While distance-based methods offer a good
lternative to deal with different types of data, they also have an
ntrinsic computational issue related, precisely, to the distance matrix
hey are based on. Similar to kernel methods, the computation and
torage of the distance matrices are the bottleneck to scaling them up
asily. As execution times and required memory grow quadratically, the
ser must take this limitation into account, evaluating the feasibility of
he method when applying it to their own data sets with a large number
f units. However, the method does not present any limitation if the
imension is large. In that sense, the potential user should check only
hat the number of units at hand is not huge to prevent computational
imits. Although this can be considered a limitation of the proposed
ethod, there are many real situations where the number of samples

s not necessarily huge. For example, in Biomedicine, the number of
ases is relatively small on many occasions (especially for rare diseases)
ut the variables (e.g., genes) are the ones that increase dramatically.
lthough we live in a time of great data consumption, it should not be

orgotten that not all studies can have this enormous amount of data
vailable and, therefore, the development of an adequate methodology
or more modest data sets should not be neglected. In any case, future
ork should aim to find ways to deal with large distance matrices. As R

s an interpreted language, memory management is not as efficient as in
ther compiled languages. Thus, as a first step, it could be necessary to
mplement the algorithm in a compiled language, such as C. In addition,
he option of making the prediction and classification based on partially
bserved distances should be explored. The method has hyperparame-
ers that need to be tuned. To this end, a grid search is appropriate. So,
hen the approach is supervised, the selection of the hyperparameter

s made according to an adequate metric (accuracy rate, for instance)
eached on a 𝑘-fold cross-validation setting. The metric to measure the
oodness of the hyperparameters should be considered depending on
he particular characteristics of the data set. When the approach is
on-supervised there is a lack of an external validation variable and,
s an internal validation approach, a permutation approach related
o the Gap statistics leads to good results. Throughout this work, we
erived the Gap statistic based on the main objective function. We think
hat other means could be explored to derive the Gap statistics, for
nstance, based on the concept of fuzzy squared distance. Nevertheless,
his is beyond the scope of this work. Regarding hyperparameters,
t would be very challenging to find ways to offer default values
or the hyperparameters that could give reasonably good results. The
ehavior of FC-DF in simulated and real data was evaluated, verifying
ts usefulness and competitiveness with other methods. For all these
easons, FC-DF can be a very useful tool for researchers from different
urrent and top leading fields of knowledge.
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Appendix A. Proof of Proposition 1

Taking into account that 𝛿 is the Euclidean distance between coor-
inates 𝐱𝑖, 𝐱𝑗 ∈ R𝑝 (𝑖, 𝑗 = 1,… , 𝑛) and that 𝐯𝑘 =

∑

𝑖 𝑢𝑖𝑘𝐱𝑖∕
∑

𝑖 𝑢𝑖𝑘 is the
uzzy center of group 𝐶𝑘 (𝑘 = 1,… , 𝐾):
𝑛

𝑖=1
𝑢𝑖𝑘‖𝐱𝑖 − 𝐯𝑘‖2 =

𝑛
∑

𝑖=1
𝑢𝑖𝑘‖𝐱𝑖 −

1
∑

𝑗 𝑢𝑗𝑘

𝑛
∑

𝑗=1
𝑢𝑗𝑘𝐱𝑗‖2

=
𝑛
∑

𝑖=1
𝑢𝑖𝑘‖

1
∑

𝑗 𝑢𝑗𝑘

𝑛
∑

𝑗=1
𝑢𝑗𝑘(𝐱𝑖 − 𝐱𝑗 )‖2

= 1
(

∑

𝑗 𝑢𝑗𝑘
)2

𝑛
∑

𝑖=1
𝑢𝑖𝑘

𝑝
∑

𝑑=1

( 𝑛
∑

𝑗=1
𝑢𝑗𝑘(𝑥𝑖𝑑 − 𝑥𝑗𝑑 )

)2

= 1
(

∑

𝑗 𝑢𝑗𝑘
)2

𝑝
∑

𝑑=1

∑

𝑖
𝑢𝑖𝑘

(

∑

𝑗
𝑢2𝑗𝑘(𝑥𝑖𝑑 − 𝑥𝑗𝑑 )2

+ 2
∑

1≤𝑗<𝑙≤𝑛
𝑢𝑗𝑘𝑢𝑙𝑘(𝑥𝑖𝑑 − 𝑥𝑗𝑑 )(𝑥𝑖𝑑 − 𝑥𝑙𝑑 )

)

= 1
(

∑

𝑗 𝑢𝑗𝑘
)2

𝑝
∑

𝑑=1

(

∑

𝑖

∑

𝑗
𝑢𝑖𝑘𝑢

2
𝑗𝑘(𝑥𝑖𝑑 − 𝑥𝑗𝑑 )2

+
∑

1≤𝑗<𝑙≤𝑛
𝑢𝑖𝑘𝑢𝑗𝑘𝑢𝑙𝑘

[

(𝑥𝑖𝑑 − 𝑥𝑗𝑑 )2

+ (𝑥𝑖𝑑 − 𝑥𝑙𝑑 )2 + (𝑥𝑗𝑑 − 𝑥2𝑙𝑑 )
]
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= 1
(

∑

𝑗 𝑢𝑗𝑘
)2

𝑝
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𝑑=1

(
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(𝑢𝑖𝑘𝑢2𝑗𝑘 + 𝑢𝑗𝑘𝑢

2
𝑖𝑘)(𝑥𝑖𝑑 − 𝑥𝑗𝑑 )2
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(𝑥𝑖𝑑 − 𝑥𝑗𝑑 )2

+ (𝑥𝑖𝑑 − 𝑥𝑙𝑑 )2 + (𝑥𝑗𝑑 − 𝑥2 )
]

)

𝑙𝑑
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𝐱

𝐚

= 1
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∑
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𝑝
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2(𝐱𝑖, 𝐱𝑗 ) = 𝑉𝐹 (𝐶𝑘).

Appendix B. Proof of Proposition 2

𝜙2
𝐹 (𝐱0, 𝐶𝑘) =

1
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𝑗 𝑢𝑗𝑘
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𝜙2
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Appendix C. Proof of Proposition 3
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𝐹 (𝐶𝑘, 𝐶𝑙) =

1
∑

𝑗 𝑢𝑗𝑘
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∑
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𝑢𝑖𝑘𝑢𝑗𝑙𝛿
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= 1
∑
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∑
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𝑖,𝑗
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= 1
∑
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∑
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𝑗 𝑢𝑗𝑘
∑

𝑗 𝑢𝑗𝑙
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