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Abstract

Class Binarization strategies decompose the original multi-class problem into several binary sub-problems. One
versus One (OVO) is one of the most popular Class Binarization techniques, which considers every pair of classes
as a different sub-problem. Usually, the same classifier is applied to every sub-problem and then all the outputs are
combined by some voting scheme. In this paper we present a novel idea where for each test instance we try to assign
the best classifier in each sub-problem of OVO. To do so, we have used two simple Dynamic Classifier Selection
(DCS) strategies that have not been used in this context. The two DCS strategies use K-NN to obtain the local region
of the test-instance, and the classifier that performs the best for those instances in the local region, is selected to
classify the new test instance. The difference between the two DCS strategies remains in the weight of the instance.
In this paper we also have proposed a novel approach in those DCS strategies. Instead of using the K-NN method
to achieve the local regions, we propose to use a version of K-NN obtained from the state-of-the-art called K-NN
Equality (K-NNE). K-NNE is similar to K-NN, but it obtains the K nearest neighbors of each class. We have carried
out an empirical study over several UCI databases, which shows the robustness of our proposal.

Keywords: Machine Learning, Supervised Classification, Decomposition Strategies, One against One, Classifier
Combination, Dynamic Classifier Selection

1. Introduction

The objective of the Supervised Classification strategies is to classify the new unlabelled samples in their correct
class. To do so, these strategies create a prediction model (also denoted as classifier) based on a training set of well
labelled instances.

A classification problem with only two classes is known as a binary classification problem. A simple example of
a binary classification problem are the yes/no or true/false problems. On the other hand the problems with more than
two classes are known as multi class problems. However for several kind of classifiers, such as SVM, it is easier to
build a classifier to distinguish only between two classes. Because of that, two general approaches have been adopted
to deal with multi class problems: to create a single decision function that considers all the classes or to decompose
the problem into several binary sub-problems (also known as class-binarization).

In the latest years the class-binarization strategies are getting more common in the literature. There are 3 main
techniques: One versus All (OVA)[2], One versus One (OVO)[12] and Error Correcting Output Codes (ECOC)[9].
In this work we focus our attention on OVO strategy, which compares the cases belonging to two classes in each
sub-problem; the remaining classes are ignored in each sub-problem.
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OVO gives the option to consider each sub-problem as independent and to select a different base classifier in
each sub-problem, which could be considered as an example of static classifier selection problem. For classification
selection scheme two categories exist: static and dynamic. In the first case, regions of competence are defined during
the training phase, while in the second case, they are defined during the classification phase taking into account the
characteristics of the sample to be classified.

In the literature it is possible to find several works that propose the selection of different base classifiers in each
sub-problem statically; however conclusions of these works are contradictory: some works obtain significant improve-
ments, while others reject this hypothesis.

In this paper, we propose to extend this idea trying to assign dynamically the best base classifier in each sub-
problem of OVO. We have called to this new approach DYNOVO. We present several variations of DYNOVO using
two simple Dynamic Classifier Selection (DCS) strategies from the state-of-the-art. Those strategies select the classi-
fier that obtains the best accuracy in a local region, which is defined by the K-Nearest Neighbor (K-NN) algorithm. In
order to adapt those DCS strategies we have made several changes on the K-NN algorithm, moreover we propose the
use of another K-NN version called K-Nearest Neighbor Equality (K-NNE) from the state-of-the-art which fits prop-
erly in this problem. For our experiments we have chosen several well-known classifier from the Machine Learning
paradigms: SVM, C4.5, Ripper, Naive Bayes and Bayesian Network. We have carried out our experiments over 22
UCI databases. Experimental results show that DYNOVO obtains very good results.

The rest of the paper is organized as follows: In Section 2 we review the Class Binarization techniques, focusing
on OVO strategy. In Section 3 we review the Dynamic Classifier Selection technique while Section 4 is devoted
to related work. Section 5 describes the proposed approach and Section 6 shows the experimental results obtained.
Finally, Section 7 states the conclusions of our work and future research lines.

2. Class Binarization

Several machine learning techniques, such as SVM, were designed to solve two-class problems. However many
real-word problems involve the discrimination of more than two classes. In order to use those algorithms in multi-
class problem the class binarization strategies divide the original problem into several two-class problems. It has been
proven the benefits to use the binarization techniques in multi-class problems [15] and due to those promising results
the use of these strategies has been extended to other base classifiers, such as Ripper [14] or C4.5 [9]. In the recent
years the class binarization strategies are receiving more attention in the literature, and one indicative of that is that
recently several reviews have been published [29] [18] [15].

The Class Binarization techniques are divided by two steps: decomposition and combination.
In the decomposition step, the multi-class problem is decomposed into several binary sub-problems. The most

popular strategies consist on grouping classes into two groups in each sub-problem, in this way each binary classifier
compares two groups of classes between them. The code-matrix is an easy way to represent how the classes are
grouped.

In the code matrix each class takes values in the set of {+1, -1, 0}, where +1 indicates that the class is associated to
the positive class, -1 indicates that the class is associated to the negative class and 0 indicates that the class is ignored
in this binary sub-problem. In Figure 1 an example of a code matrix can be seen; it shows how a 5-class problem
{θ1, θ2, θ3, θ4, θ5} is decomposed into a 6 binary sub-problems { f1, f2, f3, f4, f5, f6}. For instance, it can be seen that in
the sub-problem f1, the classifier is constructed in such manner that the cases belonging to θ1 and θ2 are grouped in
class +1 and the cases of θ3 and θ5 in class -1. So this classifier compares θ1 and θ2 classes with θ3 and θ5, whereas
the cases that belong to θ4 are ignored.

Each of these sub-problems returns an output with a prediction. The combination step consists on combining these
predictions to made the final decision. The simplest combination is the majority vote, where each sub-problem returns
a vote and the class with the largest number of votes is predicted.

Different decomposition strategies have been developed where One Vs One (OVO) is one of the strategies that has
received more attention in the literature.

2.1. One versus One (OVO)
OVO decomposition scheme decomposes a K class multiclass problem into a K(K − 1)/2 sub-problems. Each

sub-problem is responsible to differentiate one pair of classes (θi, θ j), where θi , θ j; the remaining classes are ignored.
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classi f iers︷                           ︸︸                           ︷
f1 f2 f3 f4 f5 f6

classes



θ1
θ2
θ3
θ4
θ5


+1 0 −1 −1 0 +1
+1 +1 −1 −1 +1 0
−1 +1 +1 −1 0 0
0 −1 0 +1 0 +1
−1 −1 0 −1 −1 −1



f1 → θ1, θ2 vs θ3, θ5
f2 → θ2, θ3 vs θ4, θ5
f3 → θ3 vs θ1, θ2
f4 → θ4 vs θ1, θ2, θ3, θ5
f5 → θ2 vs θ5
f6 → θ1, θ4 vs θ5

Figure 1: Example of a code matrix

Figure 2 illustrates a code matrix of how a 5-class problem is decomposed in OVO: in each sub-problem one class
is represented as +1 class, another one is represented as -1 and the remaining classes are represented as 0.

+1 +1 +1 +1 0 0 0 0 0 0
−1 0 0 0 +1 +1 +1 0 0 0

0 −1 0 0 −1 0 0 +1 +1 0
0 0 −1 0 0 −1 0 −1 0 +1
0 0 0 −1 0 0 −1 0 −1 −1


Figure 2: OVO code-matrix

There are different aggregations of combining the output predictions of the sub-problems. The simplest combina-
tion strategy is the majority vote [14] [12]. An immediate extension is the Weighted Voting, where the vote of each
output is weighted based on the confidence level returned by the classifier [22]. Hastie and Tibshirani [21] propose
another combination that tries to find the best approximation of the class posterior probabilities given the posterior
probabilities of the pairwise sub-problems.

Although OVO requires a high number of sub-problems (specially when the number of classes is high), it is worth
mentioning that each classifier is trained only with the samples from the corresponding pair of classes, hence the
decision boundaries to distinguish the classes are simpler and the required time is not high. However there are several
proposals that try to reduce the number of sub-problems, where most of these works are based on a hierarchical
structure [32] [11].

3. Dynamic Classifier Selection (DCS)

As different classifiers usually make different error on different samples, Dynamic Classifier Selection (DCS)
based methods attempt to predict the single classifier which is most likely to be correct for a given sample. To do so,
the “best” classifier for each partition is determined on a validation process. For classification, an unknown sample is
assigned to a partition, and the output of the best classifier for that partition is the one used to make the final decision.

The first Dynamic Classification approaches are introduced by Woods [39] and are based on K-NN algorithm.
He proposes two methods: Overall Local Accuracy (OLA) and Local Class Accuracy: both methods obtain the
classifiers’ accuracy in local regions in the surroundings of the unknown test sample, the classifier with the best
accuracy is selected to classify the unknown sample. Smith [36] proposes an immediate extension of OLA applying
the Distance Weighted K-NN (DW-OLA). Giacinto and Roli [19] also extend Woods’s work incorporating distance
weighted and classifiers confidence levels to two new methods called A Priori and A Posteriori. On the other hand,
there are also other works which are not based on the K-NN method, for instance, Liu and Yuan [28] propose to use
clustering: they divide the feature space into several clusters for each base classifier. The unknown sample is assigned
to a cluster for each base classifier, and the classifier of the most accurate cluster is selected to classify the unknown
sample.

Recently, the DCS methods have been extended to Dynamic Ensemble Selection (DES): instead of finding the
most suitable classifier, the most suitable ensemble for each sample is selected. Ko et al. [25] propose 4 new dynamic
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selection schemes. Those methods obtain the K nearest neighbors of the test point and the classifiers that classify
correctly those neighbors, are used as ensemble to classify the test instance. On the other hand, Dos Santos et al.
[10] introduce a two step DES method: in the first step, highly accurate candidates ensembles are selected; in the
second step, among those ensembles, for each test sample, the ensemble with the largest confidence level is selected.
In a further work Cavalin et al. [7] extend the previous work and they adapt it to Dynamic Multistage Organization
strategy.

4. Related Works

In a classification problem, the classical way is to select the optimal base classifier for the database and all the
sub-problems are classified with this classifier. As in binarization strategies there are too many sub-problems, it is
possible that this base classifier could have difficulties to deal with all the sub-problems appeared, returning the wrong
result in some of them. This raises the question - should the same base classifier be used on all sub-problems? or
should sub-problems be tuned independently?

In the literature there are several works that treat the sub-problems independently. But to our knowledge excepting
the introduced by Arruti et al [3] and Bautista et al [6] there are not more works that present an algorithm specifically
for the cases that the sub-problems are treated independently. The majority of the approaches propose a method that
try to select the best classifier or best parameters of the classifier for each sub-problem and they compare the new
proposal with the results obtained without tuning.

On the one hand, some proposals focus on attempting to select the best base classifier in each sub-problem [38].
On the other hand, other approaches try to select the best hyper-parameters of SVM in each sub-problem. Because of
the high number of possible values of the hyper-parameters, most of these works use evolutionary algorithms. Lebrun
et al [26] and Liepert [27] propose the use of Genetic Algorithms while Souza et al [37] propose the use of Particle
Swarm Optimization. The results obtained by these four works are contradictory since two of them consider that the
independent tune of the sub-problems is better while the other two consider that there is no significant difference.

Lorena and Carvalho [30] consider that none of the mentioned works perform a rigorous statistical analysis.
Thus, they investigate the use of Genetic Algorithms to automatically tune the parameters of each binary SVM. They
conclude that the use of same parameter values in all binary SVM is sufficient to obtain good results.

In his Phd Thesis Reid [34] also deals with this problem and he concludes that it is better to tune the classifiers
when the decision boundaries of sub-problems have different shape, otherwise, he concludes that it is better the same
base classifier.

In the literature we have found an algorithm, proposed by Galar et al. [16] and Bagheri et al. [5] independently,
that combine OVO with DCS strategies. Their main idea is to reduce the number of classifiers in OVO avoiding the
no competent pairwise comparisons. The K nearest neighbors of a new instance are obtained and OVO is applied only
considering those classes which are in the neighborhood.

On the other hand, there is also another work proposed by Kapp et al. [24] that selects the hyper-parameters of
SVM dynamically. But this work does not use the DCS strategies and does not treat each sub-problem independently;
it is oriented to data-streaming and similar problems. The authors consider that when knowledge about the environ-
ment is updated with new observations, the previously parametrized models need to be re-evaluated. To do so, they
use the Particle Swarm Optimization.

5. Proposed approach: Dynamic Classifier Selection in OVO (DYNOVO)

Most of the works mentioned in Section 4 follow a similar procedure: they tune statically the classifier of each
pairwise sub-problem. The hypothesis that the previous works follow is that the boundaries that distinguish the
different sub-problems vary depending on the classes. We extend this idea and we consider that the shape of the
boundaries between two classes can vary also, hence the use of the different base classifiers can be appropriate.
Because of that, we propose a new method, called DYNOVO, that tries to select the best base classifier dynamically
for each test pattern in each binary sub-problem: basically our method combines OVO with Dynamic Classifier
Selection (DCS) strategies.
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The structure of DYNOVO is similar to those most common DCS strategies and it is divided into two levels:
validation and classification. The only difference is that the method is adapted to the pairwise decomposition strategy
format.

The aim of the validation step is to see with which base classifier each training instance obtains correct or incorrect
results by the different sub-problems. Each training sample is classified by different base classifiers for the different
pairwise sub-problems. But instead of classifying it for every sub-problem, it is classified only in those sub-problems
where the class the training sample belongs to is distinguished, since the remaining sub-problems can not return the
correct result: if the training set belongs to class θi, the sub-problem that distinguish θ j and θk (θi , θ j, θi , θk) never
will return the correct class. Hence, these sub-problems don’t need to be treated and computational load is saved in
the validation phase.

In the classification step, when an instance to be classified is arrived, our method tries to select the best base clas-
sifier for each sub-problem. To do so each sub-problem is treated independently. In each sub-problem the surrounding
training samples of the new instance are obtained and the base classifier that obtains the best results for these instances
in the validation phase is selected to classify it. In order to make this selection we have chosen the following DCS
strategies:

• Overall Local Accuracy (OLA) [39]: When an instance to be classified is arrived, its surrounding region is
selected obtaining its K-Nearest Neighbors. It calculates the local accuracy of each base classifier for these K
neighbors. The base classifier with the highest local accuracy is selected to classify the test sample.

• Distance Weighted - Overall Local Accuracy (DW-OLA) [36]: This method is an immediate extension of OLA.
When the local accuracy is calculated, each K neighbor receives a weight depending on their distance to the test
sample, where the closer ones receive a higher weight.

Both strategies use K-NN method to delimit the local region. As we have mentioned previously, our approach has
to be adapted to the OVO strategy. Because of that we have made a little change in the K-NN algorithm when the
local region is obtained. Moreover we also propose to use a K-NN variation presented in the state-of-the-art called
K-NN Equality (K-NNE) [35].

• K Nearest Neighbor (K-NN) [1]: K-NN is one of the most popular machine learning algorithms. When a new
instance to be classified is arrived, the K most similar training instances are obtained and the most represented
class among those K neighbors is assigned to the new instance. In order to measure the similarity, it is necessary
to use a metric, being the euclidean distance one of the most common.

It is worth mentioning that in this case K-NN is not used to classify a new unlabelled instance, but to delimit
the local region of it. Our method tries to select the best base classifier for each sub-problem; because of that
each sub-problem is treated independently. Therefore instead of taking into account all the training instances,
for each sub-problem it only finds the K nearest neighbors of the test sample that belong to the classes of the
sub-problem.

• K Nearest Neighbor Equality (K-NNE) [35]: K-NNE is an extension of K-NN in which the classes are treated
independently: it searches in each class the K nearest neighbors and assigns the class whose K neighbors have
the minimal mean distance to the sample test. In this way all the classes take part in the final decision.

5.1. Example: obtaining the local regions

Figure 3 illustrates how the local-regions are obtained for 3 new cases in a 3-class problem with different strategies:
OLA and our proposal applying K-NN and K-NNE. In the figures the 3 new cases are represented as □, △ and ◦. We
want to emphasize that the local regions are not used to classify the unlabelled instances as in K-NN, indeed they are
used to select the classifier which will be used to classify the unlabelled instances.

In Figure 3(a) it is shown an example of how OLA method obtains the local region applying K-NN method for
the 3 unknown samples; in this example the K parameter is given a value of 6. The circle around the new case and
with the same color represents its local region, and the 6 nearest neighbors are highlighted in bold. It can be seen that
a different base classifier is selected for each of those samples.
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Figure 3: Example of how the local regions are obtained for each strategy.
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Figure 3(b) shows the extension of OLA to OVO. It can be seen that in each sub-problem different samples take
part in the decision of the base classifier, hence, in some cases different base classifier are selected to classify the same
unlabelled instance in each sub-problem.

Figure 3(c) illustrates an extension of the previous figure using in this case K-NNE to select the local regions, in
this approach the value of K is 3. The way to represent the local region of each new case varies: they are formed by the
3 nearest neighbors of each class. The instances that correspond to the local region of each new case are connected by
a line of their color and they are highlighted in bold with a circle around them. Comparing with the previous example
more distant instances take part in the classifier selection decision, but both classes are in equal conditions.

6. Experiments

In this section we explain the experimental setup. Moreover we carry out an empirical study in order to analyzed
the usefulness of DYNOVO. To do so we compare the proposed variations of DYNOVO with the state-of-the-art
methods.

6.1. Datasets

We have selected 22 databases from the UCI repository [4] to perform the experiments. A summary of these
databases is shown in Table 1.

Table 1: Characteristics of the databases
Database #Cases #Atributes #Classes
Annealing 798 38 5
Balance-scale 625 4 3
Car 1728 6 4
Cmc 1473 9 3
Dermatology 366 33 6
Ecoli 336 7 8
Glass 214 9 7
Image Segmentation 2310 19 7
Iris 150 4 3
Lymph 148 18 4
Nursery 12960 8 5
Optdigits 5620 64 10
Page-blocks 5473 10 5
Pendigits 10992 16 10
Satimage 6435 36 6
Solar-flare-1 323 12 6
Solar-flare-2 1066 12 6
Vehicle 846 18 4
Vowel 990 13 11
Waveform 5000 21 3
Wine 178 13 3
Zoo 101 17 7

6.2. Base Classifiers

To carry out the experiments we have chosen 5 different base classifiers from a software package for Machine
Learning Called WEKA [20]. The selected classifiers are from different natures in order to give variability and
reliability to the experimental phase. It is worth saying that in our experiments we have treated the classifiers as black
boxes and we have used their WEKA package default parameters.

• J48 (C4.5 clone) [33], decision tree algorithm. It makes a post-pruning phase, based on error based pruning
algorithm. The parameters used are the following:

– Confidence Factor = 0.25.

– Minimum number of instances = 2.

– Unpruned = False.
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• SM0 (SVM clone) [31], kernel methods. It creates a hyperplane where the categories are divided by a clear gap
that is as wide as possible. The parameters used are the following:

– Fit logistic models = False.

– C = 1.0.

– Epsilon = 1.0E-12.

– Kernel = Polynomial kernel.

– Tolerance parameter = 0.001.

• JRip (Ripper clone) [8], rule induction classifier. It builds a rule-set by repeatedly adding rules to an empty
rule-set until all positive examples are covered. The parameters used are the following:

– Check error rate: True.

– Minimal weights of instances: 2.0.

– Number of runs of optimizations: 2.

– Prune: True.

• Naive Bayes [23], statistical learning algorithm. It is based on Bayesian rules and, given that the value of the
class is known, it assumes independence between the occurrences of feature values to predict the class.

• Bayesian Network, [13] statistical learning algorithm. It is a probabilistic graphical model that represents a set
of random variables and their conditional independences via a directed acyclic graph. The parameters used are
the following:

– Estimator: Simple Estimator.

– Search Algorithm: K2.

– ADTree: False.

6.3. Experimental setup

The classification performance is obtained by means of a stratified 10-fold cross-validation. Some of the com-
pared algorithms need a validation process which consists of a 5-fold cross-validation made for each training fold
independently.

The DCS methods that we have selected in our proposal, use K-NN algorithm to define the local region, and de-
pending on the K value the results vary. Because of that we have run these methods over several K values: 6,12,18,24,
30 when K-NN is used and 3,6,9,12,15 when K-NNE is used. It is worth mentioning that as in each sub-problem there
are two classes and K-NNE obtains the K nearest neighbors of each class, the number of neighbors that take part in
K-NN and K-NNE are the same.

6.4. Obtained results

In this sub-section we show the results obtained by 4 different variations of DYNOVO.
Table 2 shows the results obtained by DYNOVO when K-NN is used to obtain the local regions. This table

is separated into two sections: in the left side are shown the results obtained when OLA is used as DCS method
(DYNOVO-OLA-KNN), whereas in the right side are shown those obtained when DW-OLA is used (DYNOVO-DW-
OLA-KNN).

Table 3 shows the results obtained by DYNOVO when K-NNE is used to obtain the local regions. As in the
previous table, this time also the table is divided into two parts: in the left side are shown the results obtained when
OLA is used as DCS method (DYNOVO-OLA-KNNE) and in the right side the results obtained when DW-OLA is
used (DYNOVO-DW-OLA-KNNE).

For each DYNOVO variation the average of the best K is remarked in bold. These K values are used in the next
sub-section to compare DYNOVO’s variations with other state of the art methods.
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DYNOVO-OLA-KNN DYNOVO-DW-OLA-KNN
DB K=6 K=12 K=18 K=24 K=30 K=6 K=12 K=18 K=24 K=30
anneal 98.998 98.886 98.886 98.664 98.775 99.220 99.109 99.332 99.220 99.109
balance-scale 89.600 89.600 89.760 89.920 89.760 89.600 89.760 89.600 89.760 89.760
car 96.065 96.181 96.296 96.296 96.296 96.065 96.007 96.123 96.123 96.123
cmc 54.175 54.039 52.682 54.311 54.175 53.700 54.447 53.225 54.107 54.039
dermatology 96.721 97.268 97.541 97.541 97.541 96.721 96.721 96.448 97.268 97.268
ecoli 86.905 87.202 87.798 87.500 87.202 86.905 87.798 87.202 87.202 87.202
glass 68.224 71.495 70.093 70.093 69.626 68.692 71.495 70.561 71.028 71.028
iris 95.333 97.333 96.667 95.333 95.333 96.000 96.000 95.333 95.333 95.333
imgsegment 97.229 97.359 97.489 97.273 97.229 97.229 97.229 97.532 97.229 97.229
lymph 87.838 87.162 85.135 83.784 85.135 87.838 88.514 85.811 83.784 84.459
nursery 98.526 98.526 98.549 98.573 98.573 98.526 98.526 98.611 98.634 98.634
optdigits 98.310 98.203 98.132 98.132 98.132 98.238 98.149 98.043 98.043 98.060
page-blocks 97.278 97.058 97.077 97.040 97.131 97.223 97.150 97.223 97.186 97.278
pendigits 98.781 98.817 98.763 98.799 98.754 98.772 98.790 98.790 98.817 98.790
satimg 89.464 89.448 89.510 89.371 89.355 89.510 89.588 89.588 89.448 89.542
solar-flare1 70.279 70.279 69.969 69.969 69.969 71.827 71.827 71.517 71.207 71.827
solar-flare2 75.328 75.235 75.141 75.141 75.141 75.235 75.235 75.141 75.047 75.141
vehicle 73.995 74.823 74.586 74.232 74.586 73.404 74.941 73.759 73.759 74.941
vowel 90.909 89.192 89.495 89.495 89.293 91.818 90.909 90.808 90.909 90.909
waveform-5000 84.520 84.520 85.180 85.260 85.560 84.020 83.860 84.600 84.800 85.040
wine 95.506 95.506 95.506 95.506 95.506 96.629 96.629 96.629 96.629 96.629
zoo 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030
Mean 88.228 88.416 88.240 88.148 88.186 88.373 88.623 88.314 88.298 88.426

Table 2: Classification accuracies of DYNOVO when K-NN is used to obtain the local region.

DYNOVO-OLA-KNNE DYNOVO-DW-OLA-KNNE
DB K=3 K=6 K=9 K=12 K=15 K=3 K=6 K=9 K=12 K=15
anneal 98.998 98.775 98.886 98.886 98.664 99.332 99.220 99.443 99.443 99.443
balance-scale 88.640 89.600 89.600 89.440 89.760 89.440 90.720 90.720 90.560 90.880
car 96.065 95.428 96.181 96.296 96.238 96.817 96.181 96.470 96.470 96.470
cmc 53.836 54.243 53.225 53.496 53.632 61.371 62.322 62.322 63.069 62.865
dermatology 96.995 97.541 96.995 97.268 97.541 96.995 96.995 96.721 97.268 97.541
ecoli 86.310 86.905 86.905 87.798 87.500 87.798 88.095 89.583 89.583 90.179
glass 72.897 71.495 71.963 71.495 71.028 75.701 76.636 75.234 75.701 75.234
iris 96.000 96.667 96.000 96.000 96.000 95.333 96.000 96.000 96.000 95.333
imgsegment 97.186 97.143 96.883 97.013 96.797 97.532 97.749 97.706 97.532 97.403
lymph 87.838 87.162 87.162 86.486 86.486 87.162 87.838 86.486 87.162 86.486
nursery 98.511 98.349 98.156 98.526 98.573 98.634 98.495 98.387 98.696 98.719
optdigits 98.149 98.132 98.096 98.025 97.954 98.096 98.096 98.060 98.007 97.883
page-blocks 96.638 96.821 96.675 96.656 96.620 97.625 97.625 97.533 97.552 97.460
pendigits 98.362 98.353 98.435 98.444 98.444 98.408 98.344 98.372 98.444 98.490
satimg 88.594 88.205 88.625 88.656 88.485 89.899 89.806 89.930 90.070 90.023
solar-flare1 70.279 69.969 69.969 69.659 69.659 73.994 73.994 73.994 73.684 73.375
solar-flare2 74.953 75.235 75.235 74.953 75.047 76.735 77.486 77.486 76.923 76.923
vehicle 74.823 74.704 73.641 75.296 75.414 80.733 82.151 82.388 83.097 83.688
vowel 90.404 90.000 89.293 89.293 88.889 91.818 91.616 90.909 90.707 91.616
waveform-5000 84.000 83.920 84.160 84.540 84.540 84.380 84.320 84.400 84.980 85.160
wine 95.506 95.506 95.506 95.506 95.506 96.067 96.629 96.629 96.629 96.629
zoo 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030
Mean 88.273 88.236 88.119 88.217 88.173 89.586 89.879 89.809 89.937 89.947

Table 3: Classification accuracies of DYNOVO when K-NNE is used to obtain the local region.
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6.5. Comparing the results

In this sub-section we compare our proposals with other state-of-the-art methods. We have divided the experiments
into two parts: in the first one OLA is applied in those methods that select the classifiers dynamically, while in the
second one DW-OLA is applied. We show the results of each part on Tables 4 and 5. Following, we briefly describe
the strategies that correspond to each column of the tables.

• Best Single (OVO-BS) [12]: Each database is classified with every classifier defined in sub-section 6.2 applying
OVO decomposition strategy. The result of the best base classifier is shown in each database.

• Galar et al. (Galar) [16]: It finds the K nearest neighbors of the test instance and it applies OVO only considering
those classes in the neighborhood. The K value is established to 3 times the number of classes. The result of
the best base classifier is shown in each database.

• Static selection (OVO-ST) [38]: For each sub-problem it is selected independently the base classifier that obtains
the best result after a validation process.

• DCS methods (OLA [39] or DW-OLA [36]): Depending on the table the DCS strategy that is used vary. In
the first table is OLA the strategy that is compared, while in the second table is DW-OLA. As it has been
commented before, the DCS strategies are run over several K values, in the tables the results of the K value with
the highest mean are shown.

• Dynamic selection of the base classifier in each sub-problem with K-NN (DYNOVO-OLA-KNN or DYNOVO-
DW-OLA-KNN): It is tried to select the best base classifier in each sub-problem independently and dynamically.
K-NN is used to obtain the local region in DCS strategies. The results obtained by the best K value in Table
2 are shown. In Figure 3(b) it can be seen a graphical example of how DYNOVO-OLA-KNN and DYNOVO-
DW-OLA-KNN obtain the local regions.

• Dynamic selection of the base classifier in each sub-problem with K-NNE (DYNOVO-OLA-KNNE or DYNOVO-
DW-OLA-KNNE): Similar to the previous one with the difference that it uses K-NNE instead of K-NN. The
results obtained by the best K value in Table 3 are shown. In Figure 3(c) it can be seen a graphical example of
how DYNOVO-OLA-KNNE and DYNOVO-DW-OLA-KNNE obtain the local regions.

Table 4 shows the results obtained when OLA is used in the methods that select dynamically the base classifiers.
It could be seen that our proposal DYNOVO-OLA-KNN shows the best result in the majority of the cases: it reaches
the best result in 8 of the databases. Moreover it achieves the best mean and rank values also. Our other proposal,
DYNOVO-OLA-KNNE, obtains the best results in 4 of the databases and it gets the third best mean.

Table 5 shows the results obtained when DW-OLA is used in the methods that select dynamically the base clas-
sifiers. Our proposal DYNOVO-DW-OLA-KNNE shows the best result in 15 of the databases and it reaches also the
best mean and rank. This time our other proposal, DYNOVO-DW-OLA-KNN, also gets interesting results since it
obtains the second best mean and rank.

These results, show that methods which select the base classifiers dynamically in OVO obtain promising results.
However, we can not obtain any meaningful conclusion without using a statistical test. Hence, in the next sub-section,
we carry out an statistical analysis in order to find whether significant differences among the results obtained exists or
not.

6.6. Statistical analysis

As we have several methods to compare, according to Garcı́a et al. [17], we have used the Iman-Davenport test
to detect statistical differences among the different strategies. If the difference exists, we apply the Shaffer post-hoc
test in order to find out which algorithms are distinctive among them. We show the most relevant p-values obtained
in the pairwise comparisons in tables, where ”+” symbol implies that the first algorithm is statistically better than the
confronting one, whereas ”=” means that there are not significant differences between them.

With respect to OLA the results of the statistical analysis reject the null hypothesis that all the methods are
equivalent, since the p-value (0.0200) returned by the Iman-Davenport test is lower than our α-value (0.1). In Table 6
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DB OVO-BS Galar OVO-ST OLA DYNOVO-OLA-KNN DYNOVO-OLA-KNNE
anneal 98.552 98.552 98.998 98.664 98.886 98.998
balance-scale 90.400 90.400 89.120 89.440 89.600 88.640
car 93.866 93.866 93.692 95.833 96.181 96.065
cmc 54.582 54.447 53.089 51.663 54.039 53.836
dermatology 97.541 98.361 96.995 95.902 97.268 96.995
glass 73.832 73.832 70.561 71.495 71.495 72.897
ecoli 86.607 86.905 85.417 86.607 87.202 86.310
imgsegment 97.186 97.013 97.143 97.143 97.359 97.186
iris 96.667 96.667 96.667 94.667 97.333 96.000
lymph 87.162 87.162 86.486 86.486 87.162 87.838
nursery 97.238 97.130 97.824 98.071 98.526 98.511
optdigits 98.292 98.523 98.256 98.256 98.203 98.149
page-blocks 97.223 97.168 97.003 97.003 97.058 96.638
pendigits 98.026 98.299 98.426 98.690 98.817 98.362
satimg 88.283 88.361 88.454 88.858 89.448 88.594
solar-flare1 70.279 70.588 69.969 71.517 70.279 70.279
solar-flare2 75.516 75.516 75.141 74.672 75.235 74.953
vehicle 75.414 75.887 76.123 74.941 74.823 74.823
vowel 82.828 83.636 84.949 83.232 89.192 90.404
waveform-5000 86.700 86.720 86.680 84.500 84.520 84.000
wine 98.876 98.876 96.067 98.315 95.506 95.506
zoo 96.040 96.040 95.050 95.050 97.030 97.030
Mean 88.232 88.361 87.823 87.773 88.416 88.273
Rank 3.16 2.93 4.20 4.16 2.72 3.82

Table 4: Classification accuracies of different methods. In those approaches that select the classifiers dynamically, OLA method is used.

we show the most relevant p-values obtained with Shaffer post-hoc test. Although there are not statistical differences
in each pairwise comparisons, DYNOVO-OLA-KNN is close to outperform statistically OVO-ST and OLA, since
the p-value is low. Because of that, and taking into account that the results obtained in Table 4, we consider that
DYNOVO-OLA-KNN performs better than the other methods.

Considering DW-OLA, the Iman-Davenport test also returns p-value (0.0002) lower than α-value, so we execute
the Shafer post-hoc test. The achieved p-values could be seen in Table 7. The results show that DYNOVO-DW-OLA-
KNNE is the most robust strategy since it outperforms significantly OVO-BS, OVO-ST and DW-OLA.

6.7. Computational complexity

In order to provide a more complete study, we analyze the time and space complexity of our proposal.
The computational load of building the model is pretty big, since it involves to classify every training instance

over every classifiers for every pair of classes. Those results are stored on a table, hence, this task only needs to be
executed once. At classification time the information of the tables is retrieved from the table.

To analyse the computational and spatial complexity of classifying a new instance, let us examine the process that
such instance undergoes.

• For every pair of classes in the dataset, a vote is cast: The number of pair of classes is O(C2), where C is the
number of classes.

– Search the K nearest neighbors: K-NN using kd-tree has a search time of O(K log(ITR)), where ITR the
number of instances in the training set from where the model has been built and K is the number of nearest
neighbours.

– Search the classifier that best classifies the neighbors: This is achieved by a search in a table that stores
if a classifier type classified correctly an instance in the sub-problem associated to a pair of classes. The
table has the pair of classes, the training instances and the classifier types as keys and a boolean as value.
If implemented as a hash table, the searching time is O(1) in the average.

– The instance is classified according to the best classifier: It is clear that this depends of the classifier, but
being K-NN a lazy algorithm, and thus a slow one, it looks sensible to assume O(K log ITR) is an upper
bound in the execution time.

• The instance is assigned the class with the majority of votes: It takes O(C2) time to tally all the votes.

11



DB OVO-BS Galar OVO-ST DW-OLA DYNOVO-DW-OLA-KNN DYNOVO-DW-OLA-KNNE
anneal 98.552 98.552 98.998 99.220 99.109 99.443
balance-scale 90.400 90.400 89.120 89.120 89.760 90.880
car 93.866 93.866 93.692 95.833 96.007 96.470
cmc 54.582 54.447 53.089 51.663 54.447 62.865
dermatology 97.541 98.361 96.995 95.082 96.721 97.541
glass 73.832 73.832 70.561 71.495 71.495 75.234
ecoli 86.607 86.905 85.417 84.821 87.798 90.179
imgsegment 97.186 97.013 97.143 96.926 97.229 97.403
iris 96.667 96.667 96.667 94.667 96.000 95.333
lymph 87.162 87.162 86.486 88.514 88.514 86.486
nursery 97.238 97.130 97.824 98.071 98.526 98.719
optdigits 98.292 98.523 98.256 98.185 98.149 97.883
page-blocks 97.223 97.168 97.003 96.766 97.150 97.460
pendigits 98.026 98.299 98.426 98.717 98.790 98.490
satimg 88.283 88.361 88.454 88.827 89.588 90.023
solar-flare1 70.279 70.588 69.969 72.136 71.827 73.375
solar-flare2 75.516 75.516 75.141 74.578 75.235 76.923
vehicle 75.414 75.887 76.123 75.650 74.941 83.688
vowel 82.828 83.636 84.949 85.455 90.909 91.616
waveform-5000 86.700 86.720 86.680 83.920 83.860 85.160
wine 98.876 98.876 96.067 98.315 96.629 96.629
zoo 96.040 96.040 95.050 96.040 97.030 97.030
Mean 88.232 88.361 87.823 87.909 88.623 89.947
Rank 3.59 3.36 4.50 4.16 3.30 2.09

Table 5: Classification accuracies of different methods. In those approaches that select the classifiers dynamically, DW-OLA method is used.

Table 6: Shaffer test results when OLA is used
Hypothesis p-value
DYNOVO-OLA-KNN vs OVO-ST =(0.1323)
DYNOVO-OLA-KNNvs OLA =(0.1323)
Galar vs OVO-ST =(0.2405)
Galar vs OLA =(0.2958)
DYNOVO-OLA-KNN vs DYNOVO-OLA-KNNE =(0.5312)
OVO-BS vs OVO-ST =(0.6383)
OVO-BS vs OLA =(0.6383)
Galar vs DYNOVO-OLA-KNNE =(0.8127)

Table 7: Shaffer test results when DW-OLA is used
Hypothesis p-value
DYNOVO-DW-OLA-KNNE vs OVO-ST +(2.9E-4)
DYNOVO-DW-OLA-KNNEvs DW-OLA +(0.0025)
DYNOVO-DW-OLA-KNNE vs OVO-BS +(0.0783)
DYNOVO-DW-OLA-KNNE vs Galar =(0.2405)
DYNOVO-DW-OLA-KNNE vs DYNOVO-DW-OLA-KNN =(0.3273)
DYNOVO-DW-OLA-KNN vs OVO-ST =(0.3273)
Galar vs OVO-ST =(0.3273)
OVO-BS vs OVO-ST =(0.7493)
DYNOVO-DW-OLA-KNN vs OLA =(0.8803)
Galar vs OLA =(0.9509)

Within these assumptions the average execution time of all the process is O(K log(ITR)C2). Let us note that ITR

is different for every pair of classes in the C2 sub-problems, but in average will be (N/C) ∗ 2. If N is the number
of instances in the original database, the average execution time will be O(K log(N)C2), so the classification time
is logarithmic in the number of instances in the original dataset and quadratic in the number of classes, provided
reasonable classification complexity of the classifiers used.

With respect to space complexity, the approach would request O(C2ITRT ) space, that, as stated above, amounts to
O(NCT ), with N the number of instances in the original database. Storage of the classifier models should never be
bigger than O(KN), even with lazy paradigms using kd-trees structures or similar.

Compared with other OVO versions, our proposal has a bigger space complexity, due to the need of storing big
tables. About time complexity, only the search for the K neighbours and the lookup in the hash table are not made
in other OVO versions. As the comparisons with other methods are considerably in favour of DYNOVO-DW-OLA-
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KNNE, and the differences with other OVO versions are mostly in space requirements, we consider that its good
performance compensates this extra computational cost.

6.8. Discussion
After all these experiments, considering only the state-of-the-art methods, the first conclusion that we have ob-

tained is that selecting different base classifier for each sub-problem statically in OVO (OVO-ST), does not outperform
the best single classifier in OVO (OVO-BS). These results coincide with those found in the state-of-the-art [27] [37].
On the other hand, it is worth mentioning that the algorithm proposed by Galar et al. [16] obtains interesting result
and although it uses less sub-problems than OVO, it shows the best performance among the state-of-the-art methods.

On the other hand it can be seen that the proposed approach obtains promising results. It gets better mean and
rank than the compared methods with almost all the variations (the exception is DYNOVO-OLA-KNNE strategy).
Moreover the statistical tests show the good performance of our proposal.

Finally DYNOVO-DW-OLA-KNNE is which shows the best performance. It obtains the best mean with a signif-
icant difference and the statistical test shows its solidity. Furthermore, it can be seen in Table 3 that all the averages
obtained with the different K values overcome the averages obtained by state-of-the-art methods. The combination
of DW-OLA and K-NNE gives some advantages which result beneficial to select the appropriate base classifier. Let
us consider that we are trying to select the appropriate base classifier to classify a new unknown instance for the
sub-problem that distinguishes between θi and θ j classes. Also consider that all its K nearest nehighbors belong to θi
class. Under these circumstances, it is more likely to select a base classifier that tends to return θi class. But if the
new unknown sample belongs to θ j, it is more likely to predict the wrong class. This problem can be minimized using
K-NNE algorithm, since it gives the chance to participate to all the classes. In this manner the selected base classifier
should be able to differentiate both classes. However, it is possible to be a significant difference in the distance to the
new unknown sample between the K nearest neighbors of θi and θ j. Therefore it is not completely adequate that all
the neighbors have the same influence when the base classifier is selected. So one possibility is to assign different
weights to each neighbor depending in their distance to the new sample, in other words, apply DW-OLA.

7. Conclusion

In this paper we present a new proposal called DYNOVO which aims to improve classification accuracy in su-
pervised classification multi-class problems. Among several base classifiers, the approach attempts to select the best
base classifier in OVO dynamically for each test patterns. To do so we have chosen several well-known classifiers
from different Machine Learning paradigms: SVM, C4.5 Decision Tree, Ripper, Bayes Networks and Naive Bayes.
We have presented 4 different variations of our proposal which have been tested over 22 databases from the UCI
repository.

The novel procedure proposed has shown its usefulness due to the competitive results obtained. We have shown
the positive synergy existing between OVO and DCS strategies, specially when K-NNE is utilized to obtain the local
region and the instances of the local region are weighted by the distance to the new unknown case.

This fact open doors for future combinations of OVO and DCS using more complex DCS strategies or to extend
it to Dynamic Ensemble Selection strategies. Furthermore, it would be interesting to introduce these strategies in the
more general ECOC framework.
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