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“If you can’t solve a problem,
then there is an easier problem you can solve:

find it.”
— George Pólya
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1

Introduction

1.1 Optimization Problems

Optimization is an area of research which intersects computer science, applied mathematics and operations
research. Optimization problems are a set of problems in which the goal is to obtain a feasible solution which
maximizes or minimizes a fitness function (also named objective function or utility function). Throughout this
thesis, without loss of generality, we will assume maximization problems. Mathematically, a fitness function
f is formally described as a function:

f : Ω → R
x ; f(x)

, (1.1)

where Ω is the search space (the space of solutions), x ∈ Ω is a possible solution and f(x) is the fitness
function value of the solution x, which is a real number.

Fitness functions can describe set problems (where the solutions describe sets of objects), graph problems
(where, according to a graph, the solutions classify edges or vertexes) or numerical problems (where the
solutions are sets of numbers), among others. In addition, even if the solutions of two or more problems are
equally described, their meaning might be completely different.

An optimization problem is formally described in the following way:

arg maxx∈Ω f(x)
subject to gi(x) ≤ bi , i ∈ {1, . . . , imax} and bi ∈ R, (1.2)

where the inequalities gi(x) ≤ bi are the constraints, i.e., they define the feasible region. Bear in mind
that, without loss of generality, any other inequality or equality (such as gi(x) ≥ bi or gi(x) = bi) can be
redefined and rewritten as one or two constraints gi(x) ≤ bi because of the additive inverse property. For any
optimization problem, the functions f and gi could be defined by means of several parameters. An instance
of the optimization problem is defined by specifying all the parameter values of the functions f and gi and
the values bi. If an optimization problem is defined without any constraint (imax = 0), then it is called an
unconstrained problem and all the solutions of the search space are feasible solutions; otherwise, it is called a
constrained problem. A feasible solution with the highest fitness function value is an optimal solution. When
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f has only one optimal solution, then the fitness function is unimodal; otherwise, the fitness function is
multimodal.

According to the search space, optimization problems can be classified in two types of problems: continuous
optimization problems [82] and Combinatorial Optimization Problems (COPs) [3]. The most common search
space for continuous optimization problems is Ω = R+n. On the other hand, COPs are characterized by
having infinite numerable or discrete search spaces. In the infinite case, the usual search space is Ω ⊆ Z+n,
whereas in the finite case, the usual search spaces are binary strings of length n and the permutation space
of the set {1, . . . , n}. In the finite cases, the former group defines binary-based COPs and the latter group
generates permutation-based COPs.

There are many examples of COPs. Some of the most well-known COPs in the fields of computer science,
applied mathematics and operations research are Sorting Problems, Integer Programming Problems, the
Maximum Satisfiability Problem, the Unconstrained Binary Quadratic Problem, the Chromatic Number
Problem, Assignment Problems, the Minimum Spanning Tree Problem, Knapsack Problems, the Traveling
Salesman Problem, The Flowshop Scheduling Problem and the Facility Location Problem. Furthermore,
in other fields, such as physics and economics, some of the studied problems are equivalent optimization
problems described with a different explanation and/or notation. For example, in physics, the simplest and
the most known Ising Model is described by a Hamiltonian function, which is equivalent to the study of the
Maximum Cut Problem, a well-known problem in computer science and operations research.

Let us briefly explain some examples of optimization problems to show the variety of definitions, representa-
tions and fitness functions. In the Integer Linear Programming (the canonical form), the objective is to find
an integer vector that maximizes a linear fitness function where the region of feasible solutions is a convex
region described by a set of linear inequalities. In this scenario, n is the number of dimensions to describe the
region and a solution is defined as x = (x1, . . . , xn) (it being a point of the feasible region). In the Maximum
Satisfiability Problem, n is the number of binary variables. The objective is to assign to each binary variable a
TRUE-FALSE value in order to satisfy the maximum number of clauses Ck (subsets of binary variables, asser-
tion or negation, combined by logical operators AND and OR) expressed in the fitness function f =

∑
k Ck.

In the Knapsack Problem, there is a set of objects {i1, . . . , in}, determined by their weight {w1, . . . , wn} and
their utility {u1, . . . , un}. The objective is to select a subset of objects S ⊆ {i1, . . . , in} such that the sum
of their weights does not exceed the capacity of the knapsack (

∑
j∈S wj ≤ W ) and the sum of their utility

values is maximum (max
∑
j∈S uj). The solutions of the problem can also be redescribed by binary strings

of length n (the number of different objects), in which each bit xi describes if the object i is included in the
knapsack or not. In the Traveling Salesman Problem, the objective is to give the shortest path (in terms of
minimum distance, time or cost) to visit all the given cities once starting and ending at the same point. In
this problem, a solution is denoted by a permutation of length n (the number of cities), where the particular
ordering of the permutation determines in which order the cities have to be visited. In the Unconstrained
Binary Quadratic Problem, the goal is to maximize a quadratic fitness function by a suitable choice of the
binary variables. The solutions are described by binary strings of length n. This last particular problem is
formally described in Chapter 2.

1.2 How to solve COPs

It is obvious that any COP can be solved with an exhaustive analysis of all the feasible solutions, computing
all the fitness function values and comparing them to select the optimal solution (“brute-force search”).
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Unfortunately, this strategy is not efficient when the size of the problem (or, equivalently, the size of the
search space) is large and/or the fitness function is computationally expensive to evaluate. It is well known
that the exhaustive analysis is not always viable, see for example the book "Computers and Intractability: A
Guide to the Theory of NP-Completeness" by Garey and Johnson [42]. In the first chapter of the book, the
authors present several initial definitions about problems, algorithms and time complexity. Considering these
initial definitions, the authors show an example of the execution time of polynomial and exponential time
complexity algorithms according to the size of the problem. It is clearly proved that, for the first case, when
the size of the problem increases, the required time is still tractable, whereas for the second case it is not.
Let us present a simple example of the latter case. For any instance of the Traveling Salesman Problem with
n+ 1 cities and one of which is the starting point, the size of the space of solutions is n!. Let us assume that
evaluating a solution requires 1 millisecond. Therefore, when n = 10, the required time to evaluate all the
solutions is one hour approximately; however, when n = 15, the required time to evaluate all the solutions is
more than 40 years!

The difference between the required computational time (and/or memory) to solve COPs classifies them in
two groups: P (polynomial) problems and NP (non-deterministic polynomial) problems. In addition, the
algorithms that solve optimization problems follow the same classification (evaluating the worst possible
scenario of the algorithm in terms of computational cost): polynomial time algorithms and non-deterministic
polynomial time algorithms. This classification of the problems still gains more relevance because of the
well-known P vs NP problem, one of the 7 Millennium Prize Problems selected by the Clay Mathematical
Institute and a major unsolved problem in the field of Theoretical Computer Science. Informally speaking,
the problem consists of determining whether or not all the optimization problems that can be verified in
polynomial time can be solved by a polynomial time algorithm. Currently, there is no known polynomial
algorithm to solve NP problems (equivalently, a polynomial time algorithm which solves all the instances of
a NP problem). Because of that, in order to solve optimization problems efficiently, most of the research has
been carried out in the design of exact, heuristic and metaheuristic algorithms [2, 62, 63, 69, 89].

Exact algorithms [41] theoretically always achieve an optimal solution of the studied problem, even if the
required computational cost (in terms of time or memory) for at least one instance is exponential. The interest
of this kind of algorithms is not only to obtain the optimal solution, but they are also useful to understand
the problem in essence and how to solve them efficiently. Two very well-known examples of this kind of
algorithms to solve optimization problems are the simplex algorithm, which has polynomial time average-
case complexity to solve the Integer Linear Programming, and the dynamic programming algorithm, which
solves the Knapsack Problem in polynomial time with respect to the number of objects but the required
memory is exponential. On the other hand, heuristic and metaheuristic algorithms [44] obtain high quality
solutions in a reasonable computational time, but they do not guarantee that the optimal solution will be
achieved. The difference between heuristic and metaheuristic algorithms is that, whereas heuristic algorithms
are mostly designed with respect to the definition of the studied problem, metaheuristic algorithms are higher-
level procedures: they do not depend on the definition of the problems and they guide subordinate heuristics
for exploring and exploiting the search space [12, 43, 88, 101]. Besides, metaheuristic algorithms are capable
of tackling problems whose fitness function is not a mathematical close expression.

However, a disadvantage about heuristic and metaheuristic algorithms is that, for any instance of a problem,
the algorithm can behave differently in two different and independent runs. This case can be obtained when
a step of the algorithm depends on a probability p ∈ (0, 1), for example. So, to evaluate the performance of
an algorithm, it is necessary to repeat runs of the algorithm with the same instance (when the algorithm can
return different solutions), to select an appropriate set of instances and to compare it with other possible
algorithms to solve the selected instances. Mainly, in the literature, researchers compare their proposal with
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several state-of-the-art algorithms to solve a particular problem and they use a specific metric to evaluate
and compare their performance. One of the main critical steps of this process is to choose an appropriate set
of instances of the analyzed problem to make a fair comparison. In other words, the set of instances must
be representative of all the possible scenarios that the problem can generate and the algorithms cannot use
any information about the instances in advance. There are two types of instances: real-world instances and
artificial instances.

Metaheuristic algorithms can be classified in several ways according to specific criteria. From all the possible
classifications, we will highlight the following classification in three groups: constructive methods, local-based
algorithms and population-based algorithms. In constructive methods, the algorithm generates a solution by
the addition and union of the components of a solution. Two well-known constructive methods are Kruskal’s
algorithm [67] and Prim’s algorithm [93]. Secondly, local-based algorithms always consider one solution. At
each step, the algorithms study the neighboring solutions and select a solution that improves the considered
one. The algorithm ends when all the neighboring solutions are worse than the considered one. A well-
known local-based algorithm is Greedy Randomized Adaptive Search Procedure (GRASP) [38]. Lastly, in
a population-based algorithm, a population (a set or a multiset of solutions) is used to generate a new
population. The objective is to get better solutions (to improve fitness function) when the number of iterations
increases. Among population-based algorithms, the most common are Evolutionary Algorithms [5, 28, 33, 47,
57].

1.3 Evolutionary Algorithms

Evolutionary Algorithms are a set of algorithms based on Darwin’s theory of evolution. The theory describes
the evolution and adaptation of the species to the environment according to the principle of natural se-
lection, favoring the best adapted species. This phenomenon is summarized as “survival of the fittest”, by
Herbert Spencer. In addition, another factor is the occurrence of small, apparently random and undirected
variations between the manner of response and physical embodiment of parents and their children (denoted
as “mutation”). Through these variations, new combinations of characteristics occur and are evaluated. The
best individuals survive and reproduce new individuals with their best features with respect to the environ-
ment (denoted as “crossover”), whereas the worst individuals perish. The same theory can be translated to
programming and creating new algorithms to solve COPs. In practice, it has been shown that this kind of
algorithms are widely applicable and they perform efficiently. Some of the subareas of Evolutionary Algo-
rithms are Evolutionary Programming [40], Evolution Strategies [6, 10], Genetic Programming [64] and, the
most popular subarea, Genetic Algorithms [57, 110].

Genetic Algorithms were initially designed to solve COPs, and later they were redesigned for continuous
problems. Let us explain an iteration of a generic Genetic Algorithm. Starting from a population, first the
algorithm selects a subset of solutions from the population. The selection procedure is defined by a selection
operator. Secondly, the algorithm takes two or more selected solutions (the parents) and they are combined to
generate new solutions (the children) which define a new population. The crossover operator defines how the
children are generated. The goal is to keep the best features of the parents. Finally, the mutation operator can
modify the children randomly (depending on a probability). The operator is defined by primitive functions
such as conditional logical operators and/or mathematical functions. In Algorithm 1 the general pseudocode
of a generic Genetic Algorithm is introduced.
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Algorithm 1 General pseudocode of a generic Genetic Algorithm
Obtain an initial population D0

while Stop criteria = FALSE do
Select a subset of individuals from the population Di: DS

i

Apply the crossover operator to DS
i : Di+ 1

3

Apply the mutation operator to Di+ 1
3
: Di+ 2

3

Generate a new population Di+1 with Di, Di+ 1
3
and Di+ 2

3

i = i+ 1
end while
Return Best individual of the final population

Some well-known selection operators are n-tournament selection, proportional selection and truncation se-
lection [11, 119]. The n-tournament selection considers n solutions and takes the best solution to form the
subset of individuals of the population. The proportional selection generates a probability distribution based
on the fitness function value of each individual of the population, and that distribution generates the selected
population. The truncation selection generates a number of solutions greater than the population size N and
chooses the best N solutions. On the other hand, the most used crossover operator is the m-point crossover,
in which a solution is created by combining m+ 1 disjoint parts of its parents.

1.4 Estimation of Distribution Algorithms

From all the subareas of Evolutionary Algorithms, there is an intriguing group which has gained relevance in
the last few years: Estimation of Distribution Algorithms (EDAs) [70]. EDAs, also named Probabilistic Model-
Building Genetic Algorithms, were introduced for the first time in the field of Evolutionary Computation by
Mühlenbein and Paaβ [85]. The main characteristic of EDAs with respect to generic Evolutionary Algorithms
is the use of probability distributions instead of the usual natural evolution operators, such as recombination
and mutation. In this way, EDAs start with a population D, in most cases by means of sampling a uniform
probability distribution over the search space. There are several ways to study EDAs, depending on how an
iteration of the algorithm is described. The most common explanation of a step of an EDA is the following
one. From the population Di (where i indicates the iteration of the algorithm), EDAs use a selection operator
and obtain a subset of solutions DS

i which is used to learn a probability distribution PLi . This distribution
can be learnt from scratch or by modifying the probability distribution used to sample the population at
the previous iteration (such as in Compact Genetic Algorithm (cGA) [51]). The ideal goals of the learned
probability distribution are to summarize the main features of the selected solutions and to highlight the
best solutions. Finally, the learned probability distribution is sampled to obtain a new set of solutions and
to generate a new population Di+1, which is used at the next iteration of the algorithm. In Algorithm 2
the general pseudocode of an EDA which learns a probability distribution from scratch at each iteration is
introduced.

EDAs have been and are being designed, applied and analyzed in the solution of COPs. They have been
mostly designed and studied for binary-based COPs. Some examples of the designed EDAs for binary-based
COPs are Univariate Marginal Distribution Algorithm (UMDA) [85], Population-based Incremental Learning
(PBIL) [7] and Factorized Distribution Algorithm (FDA) [84]. Moreover, they have also been complemented
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Algorithm 2 General pseudocode of an EDA
Obtain an initial population D0

while Stop criteria = FALSE do
Select a subset of individuals from the population Di: DS

i

Learn a probability distribution from DS
i : PLi

Sample a new set of individuals using PLi : Di+ 1
2

Generate a new population Di+1 with Di and Di+ 1
2

i = i+ 1
end while
Return Best individual of the final population

with a theoretical study with the purpose of understanding and improving these algorithms [48, 49, 84]. The
first theoretical studies focused on the convergence behavior of the algorithm and the first studied algorithms
were UMDA [77, 118, 119] and PBIL [48, 49, 56]. Nonetheless, several works have been presented recently in
the literature with the aim of attaining new results regarding the runtime [26, 27, 65, 71, 72, 111, 112, 115],
the population sizing [83, 91, 117] or the model accuracy of EDAs [30]. We highly recommend the work [66]
for a state-of-the-art on binary EDAs.

From [66], we want to highlight three inspiring works that have been considered to present our results. In [48],
the authors prove that when the fitness function is unimodal, PBIL converges to the global optimum. In [49],
it is proved that any discrete EDA generates a population with an optimal solution if any solution of the
search space can be generated at any iteration of the algorithm. In addition, in the same work, the authors
review a dynamical system used in the literature to study UMDA and PBIL. In the present work, we have
considered the idea of studying EDAs as dynamical systems. Last but not least, in [84], the authors study
the convergence behavior of the FDA using Boltzmann and truncation selection and by analyzing finite and
infinite populations, which shows the influence of the assumption of infinite populations and the differences
in the obtained results.

Current theoretical research of binary EDAs is often based on runtime analysis. The goal is to find bounds on
the number of generations to sample a high quality or optimal solution for the first time. This goal has a close
connection with the practical use of the algorithms, where we would like to sample an optimal solution as soon
as possible. Notice that an optimal solution can be reached for an algorithm without requiring convergence
to it [113].

1.5 Which heuristic is the most appropriate to solve a COP?

It is observed that there exist many exact and (meta)heuristic algorithms to solve COPs. But the questions
are: 1) is there an algorithm that outperforms any other algorithm at any COP problem/instance? and 2)
why researchers develop new designs of exact and (meta)heuristic algorithms? There exists an article whose
results answer both questions: “No Free Lunch Theorems for Optimization” [114]. The main result states
that any two algorithms designed to solve COPs will perform, on average, equally well over all optimization
problem instances. In addition, any algorithm performs, on average, as well as a random search. Therefore,
the performance of an algorithm and the comparison among algorithms is completely dependent on the
evaluated problem instance. This observation leads to a new intriguing question: having a particular COP,
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which is the algorithm that will perform better? The idilic goal is to present an association that, given a COP
(instance), the “oracle” function returns the most efficient algorithm to solve it [97]. This scenario is known in
the literature as the Algorithm Selection Problem [96, 97] and the resolution of it would significantly reduce
the cost of solving problems. To do so, the association considers the definition of the COP, the difficulty
of the problem instances and the design of the algorithms. The study of the relations between COPs and
algorithms is the primary study in the area of the algorithm selection (which is closely related to the field of
computational complexity).

f(x1)

f(x2)

x1
x2

xn f(xn)

Ω R
f

...
...

Set of algorithms

Algorithm 1
Algorithm 2
Algorithm 3

Algorithm k

...

COP instance Performance

P(Algorithm i)

P(Algorithm 1)
P(Algorithm 2)

P(Algorithm k)

...

...

Application of
the algorithm

Fig. 1.1: Schema of the algorithm selection to solve a COP instance.

This objective can be addressed by two main theoretical research lines, depending on the focus, and a final
step of joining the obtained results. The two main research lines are: to study the design and characteristics
of the algorithms and to study the definition of the COP and the range of possible instances generated by
the problem. The first line focuses on analyzing the algorithms and obtaining results which can be used for
its practical application (as previously said, theoretical studies of the algorithms). The second line focuses on
the definition, characteristics and equivalences among problems and problem instances. However, grouping
problems or instances is a difficult task as they come defined in a variety of different forms. For example, the
definition of the Unconstrained Binary Quadratic Problem is not apparently related with the definition of the
well-known Knapsack Problem (even if the solutions of both problems are described by binary strings). Several
mathematical tools presented in the literature to confront this problem are: equivalences and taxonomization
of COPs (and/or COP instances) [35, 75], generation of surrogate models [73, 106, 116], study of linkage
among the variables [21, 52], decomposition of the fitness functions [34, 35] and classification of the problem
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instances [1]. From all the mentioned research lines, we are especially intrigued by surrogated models and
the decomposition of fitness functions. Both research lines share a crucial property of the study: analyze
a very “related” and different fitness function. This can be done by a (re)definition, a generation and/or a
simplification of the fitness function. For example, in [35], the authors use the Fourier transform and calculate
the Fourier coefficients of several permutation-based combinatorial optimization problems. Therefore, their
analysis diverges from the particular definition of each problem and presents a new “framework” in which a
result can be extended to many problems. In this framework, the authors are able to see which instances of
different problems are equivalent and which possible rankings can be generated from a specific combinatorial
problem.

In this thesis, we will focus on the Walsh decomposition. However, for a better comprehension of it, first
we present briefly the most well-known decomposition of continuous functions in mathematics: the Fourier
analysis. The Fourier analysis allows any continuous function to be studied as a sum of simple trigonometric
functions. Particularly, the most basic representation of a continuous function is to approximate it by a
weighted sum of sine and cosine functions:

f(x) ∼ a0 +

∞∑
j=1

aj cos

(
2πjx

P

)
+ bj sin

(
2πjx

P

)
, (1.3)

where P is the periodicity of the function and aj , bj are the Fourier coefficients. When j tends to infinity (i.e.,
the approximation is described with a higher number of sine and cosine functions), the approximated function
converges pointwise to f . The Fourier transform is used to simplify complex mathematical expressions, to
transform differential equations or to process signals, for example.

1.6 The Walsh decomposition

The Walsh functions is a complete set of orthogonal functions introduced by Walsh in [108]. Although this
set of functions was originally described for functions defined over the interval (0, 1), it has been extended to
decompose any discrete function, similar to the Fourier transform over the continuous functions. This decom-
position process is known as the Walsh transform, Walsh-Hadamard transform or Walsh-Fourier transform.

The Walsh transform has been recently used in the field of evolutionary computation in the solution of many
binary and real-world COPs. For example, it has been used to create accurate surrogate models for black-box
optimization [73, 106, 116], to study the linkage discovery problem [21, 52] or to recover polynomials in which
the monomials with small degrees are the most significant [68, 86], among others. In all the previous mentioned
works, the authors present algorithms and methodologies to build proxies based on the Walsh functions
which are accurate approximations of an original function or to use the steps of the Walsh decomposition
to approximate fitness functions as polynomials in which non-null monomials have low order. For example,
in the black-box optimization, the generated approximations of the fitness function have low computational
cost; and in the linkage discovery problem, Walsh coefficients show the relation among the variables in a
very direct way which is crucial to design new methodologies to solve the problem. In addition, each Walsh
function associated to at least one variable presents a partition of the solutions of the search space. So, the
analysis of the relations among the variables can be extended and can observe the meaning of the values of
the Walsh coefficients. Particularly, the most intriguing Walsh coefficients are the ones with a null value.
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1.7 Fitness function as ranking of solutions

The Walsh decomposition presents a bijection between sets of Walsh coefficients and pseudo-Boolean func-
tions, i.e., functions whose solutions are codified as 0-1 vectors. Moreover, in the particular case of binary-
based COPs, a very relevant result states that any fitness function of binary-based COPs can be redefined as
a pseudo-Boolean function. In fact, any pseudo-Boolean function can be written uniquely as a multi-linear
polynomial of degreem ≤ n [15, 50]. Consequently, it is intractable to analyze all the sets of Walsh coefficients.

One way to approach this diversity is to consider each fitness function as a ranking generator or, equivalently,
a ranking of solutions of the search space. A ranking of solutions is an ordered list of all the solutions of the
search space Ω. Throughout this thesis, we denote a ranking of solutions with the letter r. Hence, a ranking
of solutions defined by a a fitness function f is an ordered list of all the solutions according to their fitness
function values: the first solution is the solution with the highest fitness function value, the second solution
is the second highest fitness function value, and so on. Therefore, a COP can be interpreted as the set of
rankings generated by its definition. The most important feature of the rankings is the relative order of the
solutions according to the fitness function, not their exact fitness function values. This makes sense as most
algorithms, such as local search or evolutionary algorithms with tournament or ranking selection (to name a
few), only consider the ranking of solutions in their machinery instead of the specific fitness function value of a
solution. This avenue has been previously followed in works such as [54]. In the mentioned article, the authors
show that the studied permutation-based COPs cannot generate all the possible rankings of solutions and
they present “the intersection of COPs”, i.e., instances that can be generated by several COPs. Our desired
goal is to present a characterization of the rankings according to their features which allows us to select the
most “appropriate” algorithm (in terms of efficiency) to solve (an instance of) a problem.

1.8 Instance generation

The study of the rankings of solutions allows us to recognize the scenarios that can and cannot be generated
by the studied COP. Still, among all the possible instances of a problem, there are significant differences. So,
even for a specific problem, it is necessary to evaluate the proposed algorithms in a wide range of instances
for a correct evaluation. Because of the lack of real-world instances of the studied problem, researchers study
and generate artificial instances to validate their proposed algorithms.

In order to obtain random instances of a problem, researchers determine the specific values of a set of
parameters to define a case of the problem. In general, those values can be conducted in two ways: selecting
values to define problem instances that satisfy some properties (to study “easy” and “hard” scenarios, for
example), or generating random values from uniform distributions. Nevertheless, generating artificial instances
knowing very little or nothing about them and evaluating the performance of the algorithms using them can
induce some wrong assumptions, ideas and/or results.

1.9 Main motivations of the thesis

Our main motivation is to go a step further in the study of the relations between COPs and optimization
algorithms. The new knowledge would allow us to present several results that can be considered to improve
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any “oracle” proposed in the future: that is to say, the obtained results in these areas facilitate us to propose
an algorithm that, due to its design and the definition of the COP (instance), we know in advance is the most
efficient algorithm from a particular set of algorithms to solve the problem. However, in this thesis, we do not
focus on proposing a new “oracle”, but on: 1) the study of COPs avoiding the classical scope of analyzing each
problem independently and centering on their exact definition, and on 2) the theoretical studies of algorithms
with a lack of studies in the literature. Depending on the scope, we divide the motivations of this thesis in
two groups.

In the study of COPs, we strongly believe that the Walsh transform can give us more information about
binary-based COPs and their instances. One of the ideal objectives that we believe that the Walsh decom-
position is able to achieve, is to present “a common framework” to study any binary-based COP. The first
motivation of this thesis is to present a framework based on the Walsh decomposition for binary-based COPs
where we can study the problems, compare the existing results in the literature with the proposed frame-
work, establish equivalences and relations among the problems, highlight characteristics of each problem and
present classifications of problem instances in “an abstract way”.

With the presented framework in mind, our second motivation is to better understand the meaning of the
Walsh decomposition and Walsh coefficients in order to extend any result obtained from a particular problem
to new problems and scenarios. Particularly, we are interested in the study of the rankings of solutions
based on the Walsh decomposition. Because of the bijection that exists between Walsh decomposition and
pseudo-Boolean functions, the intriguing research question is if the definition of the Walsh coefficients allows
pseudo-Boolean functions to be classified and then extended to the study of the rankings of solutions.

In the study of the algorithms, we will focus on the subfield of EDAs. In this field, particular attention
has been paid to the solution of binary-based COPs, where theoretical results at different levels have been
provided for different implementations of EDAs. However, this development has not been extended to other
non-binary-based COPs, such as permutation-based COPs. In order to bridge this gap, in this thesis our
motivation is to extend part of those results to the area of permutation-based COPs.

While several EDAs have been designed for permutation-based COPs which use probabilistic models specif-
ically designed for codifying probability distributions over permutation spaces (for example, [103]), we con-
centrate on those that use the Mallows model, as it is the one that has received the highest attention in
the literature. The Mallows model [78] is considered as the analogous distribution of the Gaussian distri-
bution over the permutation space and it can be included in a more general class of probability models:
distance-based exponential models. The Mallows model has been used for designing EDAs in the solution of
the Permutation Flowshop Scheduling Problem [17, 18] and the Vehicle Routing Problem with Time Win-
dows [92]. In the mentioned articles, the authors design EDAs in which a Mallows model is learnt from the
selected population at each iteration of the algorithm. In [18], the authors named this algorithm Mallows-
EDA, whereas in [17, 92] the authors generalize and expand Mallows-EDA. However, even if the mentioned
articles have presented competitive results in practice, it is still not clear which mechanisms allow them to
obtain those results and there are no studies that analyze the behavior of the applied algorithms. All in all,
our motivation behind this second part of the thesis is to present, for the first time, a theoretical analysis
of EDAs designed for permutation-based COPs, and a mathematical modeling to study their behavior in
several scenarios of increasing complexity. To the best of our knowledge, there are no theoretical studies on
permutation-based EDAs. Therefore, we seek general knowledge for a better comprehension of the algorithms
designed over the permutation space.
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1.10 Outlook of the dissertation

This thesis presents new advances by expanding the analysis in the following subjects: study of the Walsh
decomposition, characterization of pseudo-Boolean functions, generation of rankings of solutions and math-
ematical modeling of algorithms.

In the first part of this thesis, divided in three chapters, we study pseudo-Boolean functions and the instances
that each function can generate. In Chapter 2, we consider the Walsh decomposition and calculate the
Walsh coefficients of several binary-based COPs: the Unconstrained Binary Quadratic Problem, the Max-
Cut Problem and the Number Partitioning Problem. We observe that most of the Walsh coefficients of
the studied problems are null values and the non-null Walsh coefficients follow several patterns. Then, in
Chapter 3, we study pseudo-Boolean functions. We define the partitions of the solutions based on the Walsh
functions and we show the equations that any pseudo-Boolean function of degree m < n fulfill. In addition,
the induced partitions are considered to define the words of a ranking and Dyck Words and to present the
necessary conditions of a ranking of solutions to be generated by a pseudo-Boolean function of degree m < n.
Finally, to finish the first part of the thesis, in Chapter 4, we present several experiments about the rankings
of solutions generated by sampling coefficients (parameters) uniformly at random. We observe that there
exist rankings more usual (in terms of frequency) than the rest, which might lead to wrong conclusions.

In the second part, we focus on EDAs designed for permutation-based COPs to present a first mathematical
modeling to study algorithms. Particularly, in Chapter 5, we present a mathematical framework to study a
Mallows-EDA and focus on the convergence behavior of the algorithm for several fitness functions. Considering
the ideas presented in previous works in the literature, such as [49, 84, 119], we study the sequence of the
expected probability distributions obtained at each iteration of the algorithm (or, equivalently, we study the
behavior of the algorithm when the population size tends to infinity). In this way, the randomness is removed
and the algorithm is modeled as a dynamical system. Finally, our proposed mathematical framework is used
to calculate the convergence behavior of the algorithm for several fitness functions. The studied functions are
the constant function, the needle in a haystack and a function defined by means of a Mallows model centered
at different permutations.

To conclude the thesis, in Chapters 6 and 7, we summarize our work and the main contributions and we
present several future works.





Part I

Analysis of COP instances and pseudo-Boolean functions





2

A general framework based on Walsh decomposition

2.1 Introduction

A binary-based COP which has grown in importance in the last years is the Unconstrained Binary Quadratic
Problem (UBQP) [15, 62]. The UBQP is the NP-hard problem with the lowest possible degree polynomial
function and similar to the study of 2-degree pseudo-Boolean functions. Besides the fact that the basic defini-
tion of the UBQP has been studied in a direct way, it has also been used to reformulate other combinatorial
problems as UBQP instances. For example, the Linear Ordering Problem, several constrained binary prob-
lems and pseudo-Boolean functions of order 3 or more can be redefined as UBQP instances [62]. Moreover, the
Ising Problem, which is equivalent to the UBQP, is currently being used for the recent research in Quantum
Annealing [58, 105]. Many metaheuristic algorithms have been proposed in the literature not only to solve
the UBQP, but to solve its particular cases and generalizations, such as the Maximum Independent Set [76]
and the multi-objective UBQP [74] and to develop theoretical analyses of them [20, 81, 98].

Considering all, in this study we overview the main definition and properties of the Walsh decomposition
and we calculate the Walsh coefficients of the UBQP. By the Walsh decomposition, not only the main
characteristics of a particular problem can be observed, but the relation, common properties and differences
of several binary-based COPs can be studied as well. The analysis of “the common framework” would imply
that the study of just one specific problem would be enough to present new results for any similar binary
problem. Moreover, this framework would be capable of comparing and classifying different problem instances
and to study the complexity and characteristics of any particular scenario. This analysis would present the
possibility of being able to choose the most appropriate algorithm for a particular instance of a binary-based
COP.

The main goals of this study are to overview the main definition and properties of the Walsh coefficients
and to calculate the Walsh coefficients of several popular unconstrained binary-based COPs to observe how
the common properties among the problems are shown in the Walsh coefficients. In addition, the opposite
question will be demonstrated: given a set of Walsh coefficients, is there an instance of a specific problem that
produces that set of coefficients? Which constraints must fulfill the Walsh coefficients to define an instance
of a problem? With these results, a first example of a representation of “the common framework” of binary
problems is shown.

The rest of this chapter is organized as follows. In Section 2.2, the definition of Walsh decomposition and
some basic properties are shown. In Section 2.3, the computation of the Walsh coefficients of the UBQP
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are calculated. In Section 2.4, the Walsh coefficients of the Max-Cut Problem and the NPP are studied. In
Section 2.5, we elaborate about the relevance of the presented framework in order to taxonomize problems
and algorithms, pointing out to several relevant research questions. Finally, Section 2.6 concludes the chapter.

2.2 Walsh functions

Let us start with the definition of pseudo-Boolean functions.

Definition 1. Pseudo-Boolean functions. Let Ω = {0, 1}n be the search space (binary strings of length
n) and x = xnxn−1 . . . x1 ∈ Ω a solution. Then, a function f : Ω −→ R is a pseudo-Boolean function.

f : Ω = {0, 1}n −→ R
x = xnxn−1 · · ·x1 7−→ f(x) = f(xnxn−1 · · ·x1)

. (2.1)

By using this notation, the solutions can be ordered as binary numbers. Moreover, each character (bit) of
the solutions is considered as a binary variable. Let us denote by Xn, Xn−1, . . . , X1 the binary variables.

Definition 2. Additively Decomposable Function (ADF). Let f be a pseudo-Boolean function. Then,
f is an additively decomposable function (ADF) if f can be rewritten in the following way:

f(X1, . . . , Xn) = f1(s1) + · · ·+ fk(sk), (2.2)

where k ≥ 2; si ⊂ {X1, . . . , Xn}; si 6⊂ sj ,∀i 6= j; and

k⋃
i=1

si = {X1, . . . , Xn}. (2.3)

We say that the decomposition of an ADF is minimal if for any i value fi(si) is not an ADF. Bear in mind
that even if the subsets si are unique in a minimal decomposition, the subfunctions fi might not be unique.

Example 1. Let f be the following pseudo-Boolean function:

f(x1, x2, x3) = x1 + x1x2 − x1x3. (2.4)

As it can be observed, f is an additively decomposable function:

f(x1, x2, x3) = f1(x1, x2) + f2(x1, x3). (2.5)

Still, there are more than one option to define f1 and f2 subfunctions. One example would be to define f1
and f2 in the following way:

f1(x1, x2) = cx1 + x1x2 and f2(x1, x3) = dx1 − x1x3, such that c, d ∈ R and c+ d = 1. (2.6)

For example, if c = 1,
f1(x1, x2) = x1 + x1x2 and f2(x1, x3) = −x1x3, (2.7)

whereas if c = 0,
f1(x1, x2) = x1x2 and f2(x1, x3) = x1 − x1x3. (2.8)
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Definition 3. Additively Separable Function (ASF). Let f be a pseudo-Boolean function. Then, f is
an additively separable function (ASF) if it is an additively decomposable function and si ∩ sj = ∅, for all
pairs of sets (si, sj), for all i 6= j.

When the intersection of the sets of variables is empty, the decomposition is unique. If it is known that the
fitness function analyzed in a specific problem is an ASF, then the algorithm used to solve that problem can
work independently over each subfunction fi and finally combine those results.

Next, we briefly summarize the Walsh functions and Walsh decomposition, which is enough for the com-
prehension of our work. For the reader interested in the formal mathematical definition and properties, we
recommend the following works: [22, 45, 46, 53, 108].

Definition 4. Walsh decomposition. The Walsh decomposition is an additive decomposition of a pseudo-
Boolean function using Walsh functions. Any pseudo-Boolean function f can be written as a Walsh polynomial:

f(x) =

2n∑
i=1

αsiWsi(x), (2.9)

where si ⊆ {X1, . . . , Xn}, αsi ∈ R is the Walsh coefficient of f associated to the set si and

Wsi(x) :=
∏
Xj∈si

{
+1, xj = 1
−1, xj = 0.

(2.10)

is the Walsh function associated to the set si, for all non-empty subsets si of {X1, . . . , Xn}. We define
W∅(x) = 1 for any solution x. The functions Wsi form an orthogonal basis for the space of all pseudo-
Boolean functions. For any solution x, the calculus of Wsi(x) can be interpreted in the following way:

Wsi(x) =

{
+1, if |{Xj ∈ si : xj = 0}| ≡ 0 (mod2)
−1, otherwise. (2.11)

This second notation shows that for a solution x the parity of the number of 0s in the subset si is enough to
know if Wsi(x) = 1 or not.

To simplify the notation, let us denote the variables of each Walsh coefficient with subscripts: for example,
α{Xi,Xj} = α{i,j}. Talking of variables, the Walsh coefficients are ordered based on binary numbers: for any
variable Xi, the k-th Walsh coefficient relates the variable Xi if the number k − 1 in binary form fulfills
xi = 1, for any k = 1, . . . , 2n. On the other hand, a superscript αf is used if it is required to express the
Walsh coefficient of a particular function f .

The Walsh decomposition of a pseudo-Boolean function is unique, i.e., there is only one Walsh decomposition
for each pseudo-Boolean function. In order to calculate the Walsh coefficients of a pseudo-Boolean function,
we will use the Walsh-Hadamard transform. First, let us calculate 2n × 2n Hadamard matrix by Sylvester’s
construction [100].

H0 = [1] ; Hn =

[
Hn−1 Hn−1
Hn−1 −Hn−1

]
,∀n ≥ 1. (2.12)
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Once we have Hn, the Walsh coefficients of a function f are calculated in the following way:

α :=


α∅
α{1}
α{2}
α{1,2}
. . .

α{1,...,n}

 =
1

2n
Hn ·


f(1 . . . 11)
f(1 . . . 10)
f(1 . . . 01)
f(1 . . . 00)
· · ·

f(0 · · · 00)

 . (2.13)

As it can be observed, in general, it is necessary to know all the fitness function values to determine the
Walsh coefficients. Note that α∅ is the average fitness function value. Let us denote by F the matrix of all
the fitness function values ordered decreasingly according to their binary number:

F =


f(1 . . . 11)
f(1 . . . 10)
f(1 . . . 01)
· · ·

f(0 · · · 00)

 . (2.14)

Once we know how the Walsh coefficients of a function can be calculated, the next step is to observe several
basic properties. These properties are some of the most used properties in the literature in practice and their
proofs are trivial. Let us start with the addition property and the scalar multiplication.

Lemma 1. Let t(x) = c1 · f(x) + c2 · g(x), where f(x) and g(x) are two pseudo-Boolean functions, and
c1, c2 ∈ R. Let us denote αt, αf and αg the Walsh coefficients of t(x), f(x) and g(x), respectively. Then,
αt = c1 · αf + c2 · αg.

Secondly, let us show how the Walsh coefficients of a function are altered when a function is extended to a
bigger domain.

Lemma 2. Let f be a pseudo-Boolean function defined over the set {X ′1, . . . , X ′k} and f∗ the extension of f
defined over the set {X1, . . . , Xn}, where {X ′1, . . . , X ′k} ⊂ {X1, . . . , Xn}: that is to say,

f∗(xnxn−1 . . . x1) = f(x′kx
′
k−1 . . . x

′
1), (2.15)

where x′kx
′
k−1 . . . x

′
1 is the binary substring of xnxn−1 . . . x1. Let us denote αf and αf

∗
the Walsh coefficients

of f and f∗, respectively. Then,

αf
∗

s =

{
αfs , if s ⊆ {X ′1, . . . , X ′k}
0, otherwise. (2.16)

Therefore, combining both results, if a fitness function f can be decomposed as a sum of j subfunctions fi,
then the Walsh coefficients of the function f is the sum of Walsh coefficients of all the subfunctions fi after
extending its domain to the set {X1, . . . , Xn}. That is to say, if

f(xnxn−1 . . . x1) = f1(s1) + f2(s2) + · · ·+ fj(sj) (2.17)
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{X1, X2, X3}

f1

{X1, X2} {X1, X3} {X2, X3}

f1

{X1}

f1

{X2}

f2

{X3}

f1, f2 ∅

Fig. 2.1: Graphical representation of the power set of {X1, X2, X3} and example of the Walsh coefficients
equivalence with the subfunctions f1 and f2.

such that si ⊂ {X1, . . . , Xn} and f∗i is the extension of the subfunction fi to the domain {X1, . . . , Xn} for
any i = 1, . . . , j value, then

αf = αf
∗
1 + αf

∗
2 + · · ·+ αf

∗
j . (2.18)

This interpretation can be displayed in a graphic. If we draw the power set of {X1, . . . , Xn} with respect
to the inclusion, each node represents the Walsh coefficients to the associated set of variables. If the node
has at least one dependent subfunction fi, it means that the Walsh coefficient is the sum of all the Walsh
coefficients of the subfunctions associated to that set of variables. If there are no subfunctions fi, then the
Walsh coefficient associated to that subset is 0.

Figure 2.1 shows an example of how the coefficients of a Walsh decomposition are dependent on the Walsh
coefficients of its subfunctions. The function f displayed for the figure is f(X1, X2, X3) = f1(X1, X2)+f2(X3).
In this example, the nodes with the label f1 are part of the power set of {X1, X2}, the nodes with the label
f2 are part of the power set of X3; and finally the nodes with no labels are neither part of the power set of
{X1, X2} nor the power set of {X3}. Hence, it is easy to check which Walsh coefficients are dependent on its
subfunctions or not. Moreover, we can summarize it with the following expression:

αfs =


αf1s + αf2s , if s = ∅
αf1s , if s ⊆ {X1, X2} and s 6= ∅
αf2s , if s = {X3}
0, otherwise.

(2.19)

In addition, bearing this idea in mind, two observations known in the literature are obtained in a direct way.
The first observation is presented as the following lemma.

Lemma 3. f is an ADF if and only if α(f)
{1,...,n} = 0.
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The proof of the lemma is trivial. The second observation is that any nk-landscape function (see [60, 73])
has at most n · 2k+1 non-null Walsh coefficients. To get the maximum number of non-null Walsh coefficients,
the defined nk-landscape function must be an ASF.

2.3 Walsh coefficients of the UBQP

In the next two sections, some known unconstrained binary-based COPs will be considered. For each problem,
their Walsh coefficients, the number of required parameters to define each problem and the equivalences
among them have been studied. The results presented in this section are stated with their respective proof in
a simplified version and the results from Section 2.4 are stated as corollaries. The complete proofs are based on
the definition of the Walsh coefficients and the uniqueness of Walsh polynomials to describe pseudo-Boolean
functions. These results can be directly calculated from the Walsh transform.

Our first studied problem is the UBQP. As previously mentioned, UBQP (which is equivalent to the Ising
Problem) is one of the most used ADF studied in the literature because of the simplicity of its definition
and its application in real-world problems. In Section 2.4, two particular cases of the UBQP are studied: the
Max-Cut Problem and the NPP.

Definition 5. Unconstrained Binary Quadratic Problem (UBQP). The goal of this problem is to
maximize a quadratic fitness function by a suitable choice of binary variables. Let n be the size of the problem,
M = [aij ]

n
i,j=1 a matrix of real values of size n × n, and xnxn−1 . . . x1 an n length binary string. Then the

objective of the problem is to find a solution xnxn−1 . . . x1 that maximizes the following sum:

f(xnxn−1 . . . x1) =

n∑
i,j=1

aijxixj . (2.20)

It is common to assume that M is upper triangular or symmetric, without loss of generality. Let us consider
the former structure.

Let us calculate the Walsh coefficients of an UBQP.

Lemma 4. For n = 1, the Walsh coefficients of the UBQP are:

α∅ = α{1} =
a11
2
. (2.21)

Proof. When n = 1, the matrix of values is M = [a11]. So, f(1) = a11 and f(0) = 0. Therefore,

[
α∅
α{1}

]
=

1

2
H1 · F =

1

2

[
1 1
1 −1

]
·
[
a11
0

]
=

[
a11/2
a11/2

]
. (2.22)

2
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Lemma 5. For n ≥ 2, the Walsh coefficients of the UBQP are as follows:

α∅ =
1

4

n−1∑
i=1

n∑
j=i+1

aij +
1

2

n∑
i=1

aii;

α{i} =
1

4

 i∑
j=1

aji +

n∑
j=i

aij

 , 1 ≤ i ≤ n;

α{i,j} =
aij
4
, 1 ≤ i < j ≤ n;

αs = 0,∀s ⊆ {X1, . . . , Xn} such that |s| > 2. (2.23)

Proof. Let us prove it by induction. Before starting with the proof, let us explain some notation used through-
out the proof. Let us denote by F (i) the 2i × 1 objective function values matrix F and α(i) as the 2i × 1
Walsh coefficients matrix α.

For n = 2,

F (2) =


f(11)
f(10)
f(01)
f(00)

 =


a11 + a12 + a22

a22
a11
0

 . (2.24)

Therefore,

α(2) =


α∅
α{1}
α{2}
α{1,2}

 =
1

22
H2 · F (2) =

1

4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·

a11 + a12 + a22

a22
a11
0

 =
1

4


2a11 + a12 + 2a22

2a11 + a12
a12 + 2a22

a12

 , (2.25)

obtaining the same solutions of the statement.

Now, let us assume that for n− 1 the result is obtained. Let us calculate for n.

α(n) =
1

2n
Hn · F (n)

=
1

2n

[
Hn−1 Hn−1
Hn−1 −Hn−1

]
·
[
A(n−1) + F (n−1)

F (n−1)

]
=

1

2n

[
Hn−1 ·A(n−1) + 2Hn−1 · F (n−1)

Hn−1 ·A(n−1)

]
, (2.26)

where A(n−1) is a 2n−1 × 1 auxiliary matrix where each row is f(1xn−1 . . . x1)− f(0xn−1 . . . x1), ordered as
binary numbers. So,
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A(n−1) =



∑n
i=1 ain∑n
i=2 ain∑n
i=1
i 6=2

ain∑n
i=3 ain
. . .
ann

 . (2.27)

By the definition of the inductive process of the Hadamard matrix, the expression α(n) can be simplified
according to the Walsh coefficients of {X1, . . . , Xn−1} variables:

α(n) =

[
α(n−1)

0

]
+

1

2n

[
Hn−1 ·A(n−1)

Hn−1 ·A(n−1)

]
, (2.28)

where 0 is a 2n−1 × 1 null matrix and

Hn−1 ·A(n−1) =



2n−2
∑n−1
j=1 ajn + 2n−2

∑n−1
j=1 anj + 2n−1ann

2n−2(a1n + an1)
2n−2(a2n + an2)

0
2n−2(a3n + an3)

0
0
0

2n−2(a4n + an4)
· · ·


. (2.29)

Consequently, by the induction hypothesis and expanding the equations, the following Walsh coefficients are
obtained:

α
(n)
∅ = α

(n−1)
∅ +

1

2n

2n−2
n−1∑
j=1

ajn + 2n−1ann

 =
1

4

n−1∑
i=1

n∑
j=i+1

aij +
1

2

n∑
i=1

aii;

α
(n)
{i} = α

(n−1)
{i} +

1

2n
(
2n−2(ain)

)
=

1

4

 i∑
j=1

aji +

n∑
j=i

aij

 , 1 ≤ i ≤ n− 1;

α
(n)
{n} = 0 +

1

2n

2n−2
n−1∑
j=1

ajn + 2n−1ann

 =
1

4

 n∑
j=1

ajn + ann

 ;

α
(n)
{i,j} = α

(n−1)
{i,j} + 0 =

aij
4
, 1 ≤ i < j ≤ n− 1;

α
(n)
{i,n} = 0 +

1

2n
(
2n−2ain

)
=
ain
4
, 1 ≤ i ≤ n− 1;

α
(n)
{i,j,k} = α

(n−1)
{i,j,k} + 0 = 0, 1 ≤ i < j < k ≤ n, (2.30)
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and this last argument can be used for any Walsh coefficient associated to more than 2 variables. Therefore,
the lemma is proved. 2

This lemma works for any matrixM , without any condition about the coefficients aij . In addition, this lemma
helps us to understand the opposite problem and our next step: given a set of Walsh coefficients, is there an
UBQP instance that produces that set of coefficients? In that case, how does the matrix M look like? The
following lemma answers both questions.

Lemma 6. Given α Walsh coefficients, they have been produced by an UBQP instance if they fulfill the
following two conditions:

1. αs = 0, if |s| > 2.

2.

α∅ =

n∑
i=1

α{i} −
n−1∑
i=1

n∑
j=i+1

α{i,j}. (2.31)

Moreover, the UBQP matrix defined by the given α coefficients is the matrix M = [aij ]
n
i,j=1 such that:

aij = 4α{i,j}, 1 ≤ i < j ≤ n;

aii = 2

α{i} − i−1∑
j=1

α{j,i} −
n∑

j=i+1

α{i,j}

 , 1 ≤ i ≤ n. (2.32)

Proof. The first constraint is obtained from the fact that the fitness function of an UBQP can only be
described as a polynomial of maximum order 2. The second constraint is due to the fact that there are 1 +
n+

(
n
2

)
Walsh coefficients and

(
n+1
2

)
parameters on the matrixM to define an UBQP instance. Consequently,

there exists one Walsh coefficient which is dependent. The easiest way to calculate that dependency is to
consider the fitness function value of the solution 0 . . . 0:

f(0 . . . 0) = 0 = α∅ −
n∑
i=1

α{i} +

n−1∑
i=1

n∑
j=i+1

α{i,j} (2.33)

and the second constraint is obtained. To obtain the description of the parameters ofM , the equation system
described in the proof of Lemma 5 must be solved.

α{i,j} =
aij
4

=⇒ aij = 4α{i,j}, 1 ≤ i < j ≤ n;

α{i} =
1

2
aii +

1

4

n∑
j=1
i6=j

aij =
1

2
aii +

n∑
j=1
i 6=j

α{i,j} =⇒ aii = 2

α{i} − n∑
j=1
i 6=j

α{i,j}

 , 1 ≤ i ≤ n. (2.34)

2
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This result can be interpreted geometrically. Let us consider the Euclidean space of Walsh coefficients asso-
ciated to less than 3 variables whose dimension is d = 1 + n +

(
n
2

)
. All the Walsh coefficients of an UBQP

except one (α∅, for example) are linearly independent. Consequently, UBQP can be represented as a d − 1
dimensional hyperplane of Rd. Moreover, the second constraint of Lemma 6 specifies which exact hyperplane
is considered. In addition, it must be mentioned that if a real additive term would be added to the definition
of the UBQP, then any Walsh decomposition of order 2 or less can be represented as a particular UBQP
instance.

2.4 Particular cases of UBQP

Definition 6. Max-Cut Problem. Let G(V,E) be an undirected graph (|V | = n) in which every edge
{vi, vj} ∈ E has an assigned interaction weight Cij ∈ R. The objective of this problem is to find a subset of
vertexes W ⊆ V such that maximizes

∑
{vi,vj}∈δ(W )

Cij , (2.35)

where δ(W ) is the set of edges with just one vertex in the subset W : that is to say, vi ∈ W and vj ∈ V \W ,
or viceversa.

Any solution of the Max-Cut Problem can be described with a binary string of length n. Each xi determines
if the vertex vi is in W or not. Let us denote xi = 1 if vi ∈ W , and xi = 0 otherwise. So, if xi = xj ,
then {vi, vj} /∈ δ(W ). Considering this interpretation, it is possible to rewrite the objective function in the
following way:

n−1∑
i=1

n∑
j=i+1

Cij (xi + xj − 2xixj) =

n∑
i=1

i−1∑
j=1

Cji +

n∑
j=i+1

Cij

xi − 2

n−1∑
i=1

n∑
j=i+1

Cijxixj . (2.36)

The Max-Cut Problem is a particular case of the UBQP: that is to say, any Max-Cut Problem of n vertexes
can be described as an UBQP of n × n dimensional matrix of real values. We can rewrite it as an UBQP
with the following transformation:

aii =

i−1∑
j=1

Cji +

n∑
j=i+1

Cij and aij = −2Cij . (2.37)

The particularity of the case can be easily identified calculating its Walsh coefficients as well.

Corollary 1. For n ≥ 2, the Walsh coefficients of the Max-Cut Problem are as follows:
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α∅ =
1

2

n−1∑
i=1

n∑
j=i+1

Cij ;

α{i,j} = − Cij
2
, 1 ≤ i < j ≤ n;

αs = 0,∀s ⊆ {X1, . . . , Xn} such that |s| 6= 0, 2. (2.38)

However, it must be mentioned that any UBQP of size n can be described as a Max-Cut Problem of n + 1
variables and fixing the value of one variable [8].

Now let us consider the opposite problem: given a set of Walsh coefficients, is there a Max-Cut instance that
produces that set of coefficients?

Corollary 2. Given α Walsh coefficients, they describe an instance of the Max-Cut Problem if they fulfill the
following two conditions:

1. αs = 0, if |s| 6= 0, 2.

2.

α∅ = −
n∑
i=1

n∑
j=i+1

α{i,j}. (2.39)

Moreover, the edges of the Max-Cut Problem defined by the given α Walsh coefficients are the following ones:

Cij = −2α{i,j}.

Consequently, for a particular set of Walsh coefficients, we can ensure if there exists a Max-Cut instance which
produces those Walsh coefficients. Bearing in mind all the observations about the Max-Cut problem and its
similarities with the UBQP, the Walsh coefficients of the Max-Cut problem can be geometrically interpreted
as a subspace of the hyperplane defined by the Walsh coefficients of the UBQP in Rd. The number of linearly
independent Walsh coefficients for the Max-Cut Problem is

(
n
2

)
and every instance of the Max-Cut Problem

can be interpreted as an UBQP instance with a complete symmetry property for all the variables, without
distinctions between the solutions xn . . . x1 and 1 . . . 1− xn . . . x1. The subspace of the Max-Cut Problem is
described by the second constraint of Corollary 2.

Definition 7. Number Partitioning Problem (NPP). Let Z = {z1, . . . , zn} be a set of non-negative
integer numbers. The objective of the problem is to find a subset P of Z such that the difference between the
sum of the values of P and Z\P is minimized:∣∣∣∣∣∣

∑
zi∈P

zi −
∑

zi∈Z\P

zi

∣∣∣∣∣∣ . (2.40)

That is to say, for any binary solution xn . . . x1, if we denote xi = 1 if zi ∈ P and xi = 0 if zi ∈ Z\P , we
want to minimize the following difference:

f(xn . . . x1) =

∣∣∣∣∣∑
xi=1

zi −
∑
xi=0

zi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

zi − 2

n∑
i=1

zixi

∣∣∣∣∣ . (2.41)
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If there exists a solution x′ such that f(x′) = 0, then x′ is the optimal solution and Z has a perfect partition.
If there exists a solution x′ such that f(x′) = 1, then x′ is the optimal solution.

In order to avoid several trivial situations, let us assume that zi 6= 0, for any i value. NPP can be modeled as an
instance of an UBQP. To do so, f2 fitness function is calculated, instead of f . This variation does not affect on
the relative comparisons among the solutions: for any two solutions x and y, f(x) > f(y)⇐⇒ f2(x) > f2(y)
due to the non-negativity of the numbers. Hence, they produce the same ranking of solutions. For that reason,
any algorithm based on the ranking of solutions will behave similarly for f and f2 fitness functions. In order
to simplify the notation, let us denote c =

∑n
i=1 zi. So,

f2(xn . . . x1) =

(
c− 2

n∑
i=1

zixi

)2

= c2 − 4c

(
n∑
i=1

zixi

)
+ 4

(
n∑
i=1

zixi

)2

= c2 + 4

n∑
i=1

zi(zi − c)xi + 8

n−1∑
i=1

n∑
j=i+1

zizjxixj . (2.42)

Consequently, we can model this problem as an UBQP. Dropping the additive constant c2 and defining

aii = 4zi(zi − c) and aij = 8zizj (i < j) (2.43)

an equivalent UBQP is obtained. If the constant term c2 is kept, then the coefficient α∅ will increase, but the
ranking of solutions will be the same.

Furthermore, it can be observed that any set of Walsh coefficients which describes a NPP instance also
describes an instance of the Max-Cut Problem. If we define Cij = −4zizj , then the Max-Cut Problem
with the defined Cij values generates the same objective function values (and consequently the same Walsh
coefficients). Nevertheless, bear in mind that Max-Cut Problem is a maximization problem, whereas NPP is
a minimization problem. To generate the opposite ranking of solutions, it is enough to use the definition of
the coefficients of the Max-Cut Problem multiplied by −1: Cij = 4zizj .

Corollary 3. Let f be the function generated by a NPP and c2 = (
∑n
i=1 zi)

2. Then, for n ≥ 2, the Walsh
coefficients of the function f2 − c2 can be written as follows:

α∅ = − 2

n−1∑
i=1

n∑
j=i+1

zizj ;

α{i,j} = 2zizj , 1 ≤ i < j ≤ n;

αs = 0,∀s ⊆ {X1, . . . , Xn} such that |s| 6= 0, 2. (2.44)

This result is quite surprising because if we calculate the Walsh coefficients directly from the definition of
the NPP (with the fitness function f instead of f2), then the number of non-null Walsh coefficients is quite
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larger. This is due to the symmetry property for all the variables, without distinctions between the solutions
xn . . . x1 and 1 . . . 1 − xn . . . x1 (analogous to the Max Cut Problem). Specifically, all the Walsh coefficients
associated to an even number of variables are non-null, whereas for f2 there are n(n − 1)/2 + 1 non-null
Walsh coefficients at most. Therefore, this example shows that different definitions of equivalent problems in
terms of the ranking of solutions they produce can generate different Walsh decompositions, which increases
the interest of studying this framework.

Considering the non-null Walsh coefficients, let us calculate the main constraints to know if a set of Walsh
coefficients can be produced by a NPP instance. Because f2 can be described as a Max-Cut Problem, the
Walsh coefficients associated to zero or two variables are the only non-null Walsh coefficients. It remains to
observe if the non-null coefficients must fulfill more specific constraints.

Bear in mind that NPP is a combinatorial problem which each instance is defined by n non-negative integer
numbers, and when f2 is calculated, the generated coefficients are dependent on those n numbers. On the
other hand, the number of Walsh coefficients associated to two variables are n(n − 1)/2. Consequently, the
number of possible combinations of Walsh coefficients produced by NPP instances is much lower than the
ones produced by Max-Cut instances.

Corollary 4. Given α Walsh coefficients, they describe an NPP instance if they fulfill the following condi-
tions:

1. αs = 0, if |s| 6= 0, 2.

2.

α∅ = −
n∑
i=1

n∑
j=i+1

α{i,j}. (2.45)

3. When n ≥ 4, for all 1 ≤ i < j < k < l ≤ n,

α{i,j}α{k,l} = α{i,k}α{j,l} = α{i,l}α{j,k}. (2.46)

4. αs ≡ 0 (mod 2) (αs ∈ N).

5. For all 1 ≤ i < j < k ≤ n, α{i,k}α{j,k}2α{i,j}
is a perfect square.

Moreover, the numbers zi of the NPP defined by the given α Walsh coefficients are the following ones: for
all i 6= j 6= k 6= i,

zi =

√
α{i,j}α{i,k}

2α{j,k}
. (2.47)

Several observations can be deduced from the previous corollary. Firstly, the first two constraints are the same
ones obtained for the Max-Cut Problem. Secondly, the third constraint requires to observe all the equalities
in groups of 4 indexes. However, when n ≥ 5, some equations can be deduced from other equalities, so it is
not necessary to check all of them. In the following example this idea is shown.

Example 2. When n = 5, if α{1,2}α{3,4} = α{1,3}α{2,4} and α{1,2}α{3,5} = α{1,3}α{2,5} are satisfied, then it
follows α{2,5}α{3,4} = α{2,4}α{3,5}. Hence, two equalities deduce a third one.
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The last detail is about the forth and fifth constraints. Both constraints are associated to the fact that NPP is
defined over a set of non-negative integer numbers. Because of that, these observations make us think about
a generalization of the NPP over a set of non-negative real numbers.

Geometrically, the Euclidean space defined by the Walsh coefficients of f2 is a subspace of the Max-Cut
Problem. Indeed, the dimension of the subspace of Rd for the NPP is n. In this comparison, the main
difference between the space of Walsh coefficients of the Max-Cut Problem and the NPP is the domain of the
problems: the NPP parameters are defined over natural numbers, whereas the Max-Cut Problem parameters
are real values.

2.5 Discussion

A remarkable fact of our previous results is that there exist functions that produce the same ranking of
solutions, but however they have completely different set of Walsh coefficients. Given that an algorithm
which only considers the ranking of solutions will behave the same in those functions, a relevant question is
what the smallest non-null set of Walsh coefficients for a specific function is. This is equivalent to ask for the
minimal structure of Walsh coefficients for a specific ranking of solutions of the search space. The research
about the connection between Walsh coefficients and rankings can open interesting avenues. A first question
is to know the set of rankings (functions) that can be generated with some non-null Walsh coefficients, or
what the smallest non-null set of Walsh coefficients to make a problem NP-hard. Furthermore it would be
possible to think in algorithms that are efficient for some kind of rankings and associate them with Walsh
coefficients.

2.6 Conclusions

In this chapter, the Walsh coefficients have been obtained for several unconstrained binary-based COPs. In
Section 2.2, some basic properties of Walsh decomposition have been revised to show the interest of this
orthogonal basis. In Sections 2.3 and 2.4, the Walsh coefficient of some known binary-based COPs have been
calculated. Besides calculating the Walsh polynomial of a problem instance, we have also studied the opposite
direction: given a Walsh polynomial, in which cases they define a problem instance. From these results, the
similarities and differences known in the literature have been checked. Moreover, several comments about the
geometrical interpretation of the problems and the Walsh coefficients have been added. Finally, in Section 2.5,
possible future research questions are briefly suggested and commented.



3

Characterization of rankings generated by pseudo-Boolean functions

3.1 Introduction

In Chapter 2, it is shown that the Walsh decomposition indicates the relation among the variables. Moreover,
it is observed that, in several binary-based COPs, the majority of the Walsh coefficients are zeros. Based on
that, our study continues studying the meaning of the null Walsh coefficients and analyzes its implications.
Let us present an example about a null Walsh coefficient.

Example 3. Let f be an UBQP instance and s a subset of variables such that n ≥ |s| > 2. By definition of
the Walsh functions,

Ws(x) :=
∏
Xj∈s

{
+1, xj = 1
−1, xj = 0

=

{
+1, if |{Xj ∈ s : xj = 0}| ≡ 0 (mod 2)
−1, otherwise. (3.1)

On the other hand, by Lemma 5, αs = 0. Therefore, considering that the Walsh functions is a complete set
of orthogonal functions, the following equality is obtained.

αs =
∑

x∈{0,1}n
f(x) ·Ws(x) = 0 (3.2)

Let us define
Es = {x ∈ {0, 1}n : |{Xj ∈ s : xj = 0}| ≡ 0 (mod 2)} (3.3)

and
Os = {x ∈ {0, 1}n : |{Xj ∈ s : xj = 0}| ≡ 1 (mod 2)} . (3.4)

(The formal definitions of the sets Es and Os are introduced in Section 3.2).

Hence,
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x∈{0,1}n

f(x) ·Ws(x) = 0⇐⇒
∑

x∈{0,1}n
f(x) ·

{
+1 , x ∈ Es
−1 , x ∈ Os

= 0

⇐⇒
∑
x∈Es

f(x)−
∑
x∈Os

f(x) = 0

⇐⇒
∑
x∈Es

f(x) =
∑
x∈Os

f(x). (3.5)

Example 3 shows an equality (deduced from the set of variables s) that any UBQP instance must fulfill.
Consequently, for each set of variables s such that |s| > 2, an equality is defined which all the UBQP
instances must fulfill.

Following the idea of Example 3 and inspired by the works of [19, 35, 54, 55], in this chapter, we analyze for
the first time the rankings generated by pseudo-Boolean functions of degree m ≤ n, being n the size of the
search space. Our main contributions are the following. First, we prove that there exist rankings that cannot
be generated by a pseudo-Boolean function of degree m < n. Moreover, we exactly present the necessary
conditions for a ranking to be generated by an m-degree pseudo-Boolean function. We provide a novel and
easy-to-compute procedure to check when a ranking cannot be generated by an m-degree pseudo-Boolean
function. Secondly, we study if the obtained necessary conditions are sufficient conditions to prove when
a ranking can be generated by m-degree pseudo-Boolean functions. When m = n − 1, we conjecture that
the answer is affirmative and we calculate the exact number of rankings generated by (n− 1)-degree pseudo-
Boolean functions; whereas when m < n−1, the presented procedure is not sufficient to check if a ranking can
be generated by an m-degree pseudo-Boolean function. Throughout this chapter, we present several examples
for the particular case of m = 2 (analogous to the UBQP).

The rest of this chapter is organized as follows. In Section 3.2, the required mathematical concepts are defined.
In Section 3.3, the main results are shown: the analysis of the rankings of solutions generated by an m-degree
pseudo-Boolean function. Finally, in Section 3.4, conclusions are presented.

3.2 Preliminaries

In this chapter, we focus on pseudo-Boolean functions considered as ranking generators. As mentioned in
Chapter 1, any pseudo-Boolean function can be written uniquely as a multi-linear polynomial of degreem ≤ n
(notice that for any bit xi, if the rest of the bit values are fixed, then the function f is linear with respect to
xi):

f(x) = a0 +
∑

1≤i1≤n

ai1xi1 +
∑

1≤i1<i2≤n

ai1i2xi1xi2 + · · ·+
∑

1≤i1<···<im≤n

ai1...imxi1 . . . xim . (3.6)

Definition 8. Degree of a pseudo-Boolean function. A pseudo-Boolean function is of degree m ≤ n if
the degree of its polynomial representation is m.

We highly recommend [15] for a deep introduction to pseudo-Boolean functions and their main properties.
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Bear in mind that the same ranking of solutions can represent several functions, see Example 4. We denote
a ranking generated by a pseudo-Boolean function f with the letter rf .

Example 4. Let Ω = {0, 1}2. The two different 1-degree pseudo-Boolean functions f(x) = 3x1 − 2x2 and
g(x) = −4 + 6x1 − 2x2 generate the same ranking of solutions.

x 11 10 01 00
f(x) 1 −2 3 0
g(x) 0 −6 2 −4

=⇒
{
f(01) > f(11) > f(00) > f(10)
g(01) > g(11) > g(00) > g(10)

=⇒ rf = rg =


01
11
00
10

 . (3.7)

Moreover, for any fitness function f , real constant c and positive real constant c′, the rankings generated by
f , f + c and c′ · f are the same: rf .

To simplify, let us assume that the studied pseudo-Boolean functions are injective. Even the presented analysis
can be replicated for non-injective pseudo-Boolean functions, the notation needs to be much more tedious.
With this simplification in mind, even though there are infinite n-dimensional pseudo-Boolean functions, the
number of possible rankings that can be generated by them is 2n!, which is also the number of permutations
of the group Σ2n . Consequently, we can group pseudo-Boolean functions that generate the same ranking of
solutions and study COPs as the sets of all the rankings that can be generated by all the instances of the
problems. Note that all the results we could obtain for a set of rankings can be extended to all the COPs
that generate those rankings regardless of how they have been defined. For instance, the set of rankings that
can be generated by both the UBQP and the NPP could be solved in the same way.

Notice that, given a pseudo-Boolean function f as in Equation (3.6), the value of the coefficient a0 does not
change the ranking. Because of that, we assume that a0 = 0 for the rest of the manuscript.

Next, let us define a partition of Ω based on the parity of zeros of the solutions. Definition 9 is analogous to
the one presented in [102] or the Hamming weight [14, 94].

Definition 9. Even (odd) solutions. Let x ∈ Ω be an even (odd) solution, labeled as E (O), if it contains
an even (odd) number of 0 values. Let us denote by E (O) the set of all even (odd) solutions.

By definition, {E ,O} is a partition of Ω such that |E| = |O| = 2n−1. For the presented results in this study,
there is no difference if we define even and odd solutions according to the number of ones in a solution. The
definition of the set of even (odd) solutions can be extended and defines a partition according to a non-empty
set of variables s ⊆ {1, . . . , n}.

Definition 10. Even (odd) solutions defined by s. Let s ⊆ {1, . . . , n} be a non-empty set of variables
and x ∈ Ω. Then, x is an even (odd) solution defined by s, labeled as Es (Os), if it contains an even (odd)
number of 0 values from the set of s. Moreover, let us denote by Es (Os) the set of all even (odd) solutions
defined by s. By definition, {Es,Os} is a partition of Ω such that |Es| = |Os|.

When the subset s is clear from the context, we simplify the notation and remove the subscript s from E and
O.
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3.3 Studying the rankings generated by pseudo-Boolean functions

The main result of this section is to show and prove the existence of rankings of solutions that cannot be
generated by any m-degree pseudo-Boolean function, where m < n. In addition, the necessary conditions for
a ranking to be generated by an m-degree pseudo-Boolean function are presented.

3.3.1 Characterization of pseudo-Boolean functions of degree m < n

Let us introduce a characterization of pseudo-Boolean functions according to the partitions of even and odd
solutions. To present the characterization of pseudo-Boolean functions, we start with the following lemma.

Lemma 7. Let j, n ∈ N, 1 ≤ j < n, a set of variables {i1, . . . , ij} ⊂ {1, . . . , n} and a subset of variables
s ⊆ {1, . . . , n} such that |s| > j. Then, given a value to the variables with indices in {i1, . . . , ij}, the number of
even and odd solutions defined by s is the same. In other words, for any two j-tuples (c1, . . . , cj), (d1, . . . , dj) ∈
{0, 1}j, the following equality holds:

|{x ∈ Es : xi1 = c1 ∧ · · · ∧ xij = cj}| = |{x ∈ Os : xi1 = d1 ∧ · · · ∧ xij = dj}|. (3.8)

Proof. The lemma is deduced from the definition of the partition {Es,Os}. In terms of the relation between
the sets {i1, . . . , ij} and s, there are three types of possible scenarios: (a) {i1, . . . , ij} ⊂ s; (b) {i1, . . . , ij} 6⊂ s
and s ∩ {i1, . . . , ij} 6= ∅; and (c) s ∩ {i1, . . . , ij} = ∅.

Without loss of generality, let us consider the case (a) and that s has 1 ≤ t < n− j additional elements apart
from {i1, . . . , ij}. Then, there are 2t−1 solutions of Es of length j+ t and 2n−j−t options for the rest of terms
in {1, . . . , n}. Therefore, there are in total 2n−j−1 solutions of Es and 2n−j−1 solutions of Os, where the bit
values in the positions {i1, . . . , ij} are determined as in Equation (3.8). The cases (b) and (c) are proved
analogously. 2

Lemma 7 proves our main result. It is stated in Theorem 1.

Theorem 1. Let Ω = {0, 1}n and f : Ω −→ R a pseudo-Boolean function. Then, f is a pseudo-Boolean
function of degree m < n if and only if

∀s ⊆ {1, . . . , n} such that |s| > m ,
∑
x∈Es f(x) =

∑
x∈Os f(x)

∃s ⊆ {1, . . . , n} such that |s| = m and
∑
x∈Es f(x) 6=

∑
x∈Os f(x).

(3.9)

Furthermore, when the equality holds, the sum
∑
x∈Es f(x) is half of the sum of the function value of all the

solutions of the search space:

2n−1 · f̄ = 2n−2
∑

1≤i1≤n

ai1 + 2n−3
∑

1≤i1<i2≤n

ai1i2 + · · ·+ 2n−m−1
∑

1≤i1<i2<···<im≤n

ai1...im , (3.10)

where f̄ is the average fitness function value of f .
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Proof. =⇒ Let f be an m-degree polynomial defined over {0, 1}n. Considering Equality (3.8) of Lemma 7,
for any set s such that |s| > m, there are the same number of solutions with xi1 = 1, with xi1 = xi2 = 1,
. . . and with xi1 = · · · = xim = 1 in Es and Os. Therefore, each coefficient ai1 , ai1i2 , ..., ai1...im appears the
same number of times in

∑
x∈Es f(x) and in

∑
x∈Os f(x) and, consequently,

∑
x∈Es f(x) =

∑
x∈Os f(x).

On the other hand, because f is anm-degree polynomial, there exists, at least, one non-null coefficient ai1...im .
Consequently, when s = {i1, . . . , im}, the solutions such that xi1 = · · · = xim = 1 only appear in Es whereas
the rest of coefficients appear the same number of times in

∑
x∈Es f(x) and

∑
x∈Os f(x). So, it implies that∑

x∈Es f(x) 6=
∑
x∈Os f(x).

⇐= Let f : Ω −→ R be a function that fulfills Equation (3.9). Let us consider a set of binary variables s such
that |s| = m and

∑
x∈Es f(x) 6=

∑
x∈Os f(x). Because of Equality (3.8) of Lemma 7, for any non-empty subset

of indexes {i1, . . . , ij} ⊂ s, the coefficient ai1...ij appears the same number of times in the sums
∑
x∈Es f(x)

and
∑
x∈Os f(x). Therefore, because the solutions such that xi1 = · · · = xim = 1 only appear in Es, the only

coefficient which causes
∑
x∈Es f(x) 6=

∑
x∈Os f(x) is the coefficient ai1...im , which implies that ai1...im 6= 0

and consequently the function f is at least an m-degree pseudo-Boolean function.

In addition, by hypothesis, for any set of binary variables s such that |s| > m, the equality
∑
x∈Es f(x) =∑

x∈Os f(x) holds. Then, the solutions such that xi1 = · · · = xi|s| = 1 have no relevance in the sums and
therefore ai1...i|s| must be a null coefficient. Consequently, f is an m-degree polynomial.

Finally, let us calculate the exact value of the sum
∑
x∈Es f(x) = 2n−1f̄ . For a set of indexes {i1, . . . , ij},

1 ≤ j ≤ n, the number of solutions such that xi1 = · · · = xij = 1 is 2n−j . Because f is an m-degree pseudo-
Boolean function, for any subset of indexes {i1, . . . , ij} such that m < j ≤ n, then aii...ij = 0, which implies
that Equation (3.10) is fulfilled. 2

Notice that Equation 3.9 depends on the cardinality of s, not on the indexes of s. Theorem 1 shows all
the conditions that any m-degree pseudo-Boolean function must fulfill. In addition, from Theorem 1, the
following corollary is obtained.

Corollary 5. Let f be an m-degree pseudo-Boolean function defined over {0, 1}n (m < n). For any subsets
s, s′ ⊆ {1, . . . , n} such that |s|, |s′| ≥ m+ 1, then the following holds,

∑
x∈Es∩Os′

f(x) =
∑

x∈Es′∩Os

f(x) (3.11)

and ∑
x∈Es∩Es′

f(x) =
∑

x∈Os∩Os′

f(x). (3.12)

In addition, if s ⊂ s′, Equalities (3.11) and (3.12) are rewritten respectively as∑
x∈Es∩Os′\s

f(x) =
∑

x∈Os∩Os′\s

f(x) (3.13)

and ∑
x∈Es∩Es′\s

f(x) =
∑

x∈Os∩Es′\s

f(x). (3.14)



34 3 Characterization of rankings generated by pseudo-Boolean functions

Proof. By Theorem 1, for any subsets s, s′ such that |s|, |s′| ≥ m+ 1,

∑
x∈Es

f(x) =
∑
x∈Es′

f(x) =
∑
x∈Os

f(x) =
∑
x∈Os′

f(x). (3.15)

On the other hand, since for any subset s {Es,Os} is a partition of Ω, we can decompose each summation:

∑
x∈Es

f(x) =
∑

x∈Es∩Es′

f(x) +
∑

x∈Es∩Os′

f(x). (3.16)

Consequently,

∑
x∈Es

f(x) =
∑
x∈Es′

f(x)⇐⇒
∑

x∈Es∩Es′

f(x) +
∑

x∈Es∩Os′

f(x) =
∑

x∈Es′∩Es

f(x) +
∑

x∈Es′∩Os

f(x)

⇐⇒
∑

x∈Es∩Os′

f(x) =
∑

x∈Es′∩Os

f(x). (3.17)

Equality (3.12) is analogously obtained:∑
x∈Es

f(x) =
∑
x∈Os′

f(x)⇐⇒
∑

x∈Es∩Es′

f(x) =
∑

x∈Os∩Os′

f(x). (3.18)

Finally, when s ⊂ s′:

• If x ∈ Es ∩ Es′ , then x ∈ Es ∩ Es′\s.

• If x ∈ Es ∩ Os′ , then x ∈ Es ∩ Os′\s.

• If x ∈ Os ∩ Os′ , then x ∈ Os ∩ Es′\s.

• If x ∈ Os ∩ Es′ , then x ∈ Os ∩ Os′\s.

Consequently, ∑
x∈Es∩Os′

f(x) =
∑

x∈Es′∩Os

f(x)⇐⇒
∑

x∈Es∩Os′\s

f(x) =
∑

x∈Os∩Os′\s

f(x) (3.19)

and ∑
x∈Es∩Es′

f(x) =
∑

x∈Os′∩Os

f(x)⇐⇒
∑

x∈Es∩Es′\s

f(x) =
∑

x∈Os∩Es′\s

f(x). (3.20)

2

Once Theorem 1 and Corollary 5 are presented, our next goal is to show that there exist rankings of solutions
that cannot be generated by pseudo-Boolean functions of degree m < n.
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3.3.2 Study of pseudo-Boolean functions of degree m = n− 1

Based on Theorem 1, several new results are obtained. The first result will prove that some rankings of
solutions follow a pattern which implies that they do not fulfill the equalities of Equation (3.9) of Theorem 1
(and consequently cannot be generated by a (n − 1)-degree pseudo-Boolean function or, equivalently, the
ranking can only be generated by an n-degree pseudo-Boolean function). This specific result is enough to
prove that, when m < n, m-degree pseudo-Boolean functions cannot generate all the possible rankings from
the space of solutions1.

To show that the pseudo-Boolean functions of degree m < n cannot generate all the rankings of solutions,
new definitions are required.

Definition 11. Word of a ranking. Let f be a pseudo-Boolean function defined over {0, 1}n and rf the
ranking generated by f . Let us denote by rf (i) the i-th solution of the ranking rf . Then, we define the word
of the ranking rf , denoted by Wf , as the ordered list of length 2n with the alphabet {E,O} in the following
way:

Wf =

 w1

...
w2n

 s.t. wi =

{
E, if rf (i) is an even solution
O, if rf (i) is an odd solution. (3.21)

When a word is considered without a function f , we simplify the notation and remove the subindex f from
W .

Example 5. Let us consider the fitness function f(x) = x1 − 3x2 + 3x3 − 2x1x2 + 7x1x3 − x2x3 + 11x1x2x3
and calculate the word of its ranking.

x 111 110 101 100 011 010 001 000
f(x) 16 −1 11 3 −4 −3 1 0

=⇒ rf =



111
101
100
001
000
110
010
011


=⇒Wf =



E
O
E
E
O
O
E
O


. (3.22)

Moreover, we extend the definition of the words of a ranking and present two new definitions.

Definition 12. Word of a ranking defined by s. Let f be a pseudo-Boolean function defined over {0, 1}n,
rf the ranking generated by f and s a subset of binary variables. Let us denote by rf (i) the i-th solution of
the ranking rf . Then, we define the word of the ranking rf defined by s, denoted by W s

f , as the ordered list
of length 2n with the alphabet {E,O} in the following way:

1 Note that any ranking of solutions generated by an m-degree pseudo-Boolean function can be generated by a
pseudo-Boolean function of degree m+ 1 and, by induction, by a pseudo-Boolean function of degree n ≥ m.
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W s
f =

 w
s
1
...

ws2n

 s.t. wsi =

{
E, if rf (i) is an even solution defined by s
O, if rf (i) is an odd solution defined by s. (3.23)

When a word defined by s is considered without a function f , we simplify the notation and remove the subindex
f from W s.

Definition 13. Word of a ranking with constraints C. Let f be a pseudo-Boolean function defined over
{0, 1}n and C a set of constraints (specific bit values) defined over k bit values, 1 ≤ k ≤ n− 1. Let us denote
by f |C the reduction of the function f to all the solutions that fulfill the constraints of C, and rf |C the ranking
generated by f |C . Then, we define the word of the ranking rf |C , denoted by Wf |C , as the ordered list of length
2n−k with the alphabet {E,O} in the following way:

Wf |C =

 w1

...
w2n−k

 s.t. wi =

{
E, if rf |C (i) is an even solution
O, if rf |C (i) is an odd solution. (3.24)

Example 6. Let us consider the fitness function f of Example 5 and s = {2, 3}. Then, the word of the ranking
defined by s is:

rf =



111
101
100
001
000
110
010
011


=⇒W s

f =



E
O
O
E
E
E
O
O


. (3.25)

On the other hand, if we are considering the ranking of solutions that satisfies the constraint C: x1 = 0 (or,
equivalently, the function f |x1=0), then the word of the ranking is:

rf |C =


100
000
110
010

 =⇒Wf |C =


E
O
O
E

 . (3.26)

Once we have defined the word of a ranking, we present a specific type of word: Dyck Words [24].

Definition 14. Dyck Word. Let W be a word of length 2n and ∆i the difference between the number of E
and O letters for the first i letters in a word W , 1 ≤ i ≤ 2n. Then, a word is a Dyck Word, with E (O) as
dominant letter, if for any i, ∆i ≥ 0 (∆i ≤ 0).

The Catalan number Cat2n−1 is the number of possible Dyck Words of length 2n with a fixed dominant letter,
where Catn =

(
2n
n

)
/(n+ 1).

In the literature, there exist a large number of articles about Dyck Words and equivalent definitions (such as
Dyck paths) are also analyzed [29, 79].
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Example 7. The word Wf from Example 5 is a Dyck Word with E as dominant letter.

rf =



111
101
100
001
000
110
010
011


=⇒Wf =



E
O
E
E
O
O
E
O


=⇒ ∆ =



∆1

∆2

∆3

∆4

∆5

∆6

∆7

∆8


=



1
0
1
2
1
0
1
0


. (3.27)

Once we have defined Dyck Words, we present Proposition 1 which shows rankings that cannot be generated
by a (n− 1)-degree pseudo-Boolean function.

Proposition 1. Let n ≥ 2 and Ω = {0, 1}n. Let r be a ranking of solutions from Ω and W the word generated
by r. If W is a Dyck Word, then r cannot be generated by a (n− 1)-degree pseudo-Boolean function.

Proof. By reduction ad absurdum. Let r be a ranking generated by a (n−1)-degree pseudo-Boolean function
f (rf = r) and W a Dyck Word generated by r with E as dominant letter. By definition of the ranking of
solutions and Dyck Words, we can group the solutions by 2n−1 different pairs of even-odd solutions, (xe, xo),
such that f(xe) > f(xo) for all pairs. Therefore,

∑
x∈E f(x) >

∑
x∈O f(x) is deduced, which goes against

Theorem 1 with s = {1, . . . , n}. For Dyck Words with O as dominant letter, we obtain the opposite inequality.

2

Remark 3.1 Due to Proposition 1 and Note 1, there exist rankings that cannot be generated by pseudo-
Boolean functions of degree m < n.

Example 8. Let n = 3 and f be the following fitness function:

f(x) = −16 + 33x1 + 34x2 + 36x3 − 64x1x2 − 64x1x3 − 64x2x3 + 128x1x2x3. (3.28)

The function is similar to the well-known function BINVAL. By definition of f , it is obvious that
∑
x∈E f(x) >∑

x∈O f(x). So, by Proposition 1, the function f cannot be rewritten as a pseudo-Boolean function of degree
2 whose ranking of solutions is rf .

Proposition 1 shows a necessary condition that any ranking must fulfill to have the possibility of being
generated by a (n − 1)-degree pseudo-Boolean function. Our next step is to check the “opposite direction”
of Proposition 1: if the word W of a ranking r is not a Dyck Word, is it possible for r to be generated by a
(n− 1)-degree pseudo-Boolean function?

In order to shed some light on this issue, we first prove the result for n = 3. This is done by exhaustively
verifying that any ranking of solutions r whose word is not a Dyck Word can be generated by a 2-degree
pseudo-Boolean function f . Then, for n > 3, we conjecture that the result is true (notice that for n = 4, the
study of 24! ≈ 2 · 1013 rankings is not computationally tractable) and, assuming that the conjecture is true,
we give the exact number of rankings that cannot be generated by (n− 1)-degree pseudo-Boolean functions.

Let us present the sufficient result of Proposition 1 when n = 3.
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Proposition 2. Let n = 3 and Ω = {0, 1}n. Let r be a ranking of solutions from Ω and W the word generated
by r. IfW is not a Dyck Word, then there exists a 2-degree pseudo-Boolean function f whose generated ranking
is r (rf = r).

Let us present a conjecture about the generalization of Proposition 2. For now on, we assume that the
following conjecture is true.

Conjecture 1. Let n ≥ 2 and Ω = {0, 1}n. Let r be a ranking of solutions from Ω and W the word generated
by r. If W is not a Dyck Word, then there exists a (n−1)-degree pseudo-Boolean function f whose generated
ranking is r (rf = r).

In Appendix A, we present two observations which could be helpful to prove Conjecture 1, which is an
extension of Proposition 2. The presented observations can be extended for any n ≥ 4 value and (n − 1)-
degree pseudo-Boolean functions. The first observation analyzes the coefficients of the 2-degree pseudo-
Boolean functions and their impact on the generated ranking of solutions. The second observation studies
the fitness function value of the solution 111 and specifies in which positions the solution “can be inserted”
to generate a feasible ranking.

Assuming that Conjecture 1 is true, Proposition 1 and Conjecture 1 allow us to count the number of rankings
of solutions that cannot be generated by (n− 1)-degree pseudo-Boolean functions.

Corollary 6. Let n ≥ 2 and Ω = {0, 1}n. Then, there are 2
2n−1+1 · 2

n! rankings that cannot be generated by
(n− 1)-degree pseudo-Boolean functions.

Proof. There are Cat2n−1 Dyck Words with E as dominant letter and the same number of Dyck Words with
O as dominant letter. In addition, each E (O) letter of the Dyck Word corresponds to any even (odd) solution,
which implies that there are

(
2n−1!

)2 rankings that generate that particular Dyck Word. Consequently, the
number of rankings that cannot be generated by (n− 1)-degree pseudo-Boolean functions is

2 · Cat2n−1 ·
(
2n−1!

)2
= 2 · 2n!

2n−1!(2n−1 + 1)!
·
(
2n−1!

)2
=

2

2n−1 + 1
· 2n!. (3.29)

2

Furthermore, because of Note 1, when Ω = {0, 1}n, a ranking that cannot be generated by (n − 1)-degree
pseudo-Boolean functions is impossible to be generated by m-degree pseudo-Boolean functions, where m <
n− 1. Consequently, the previous number is also an upper bound of the number of rankings that cannot be
generated by pseudo-Boolean functions of degree m < n− 1. Note that, the proportion of rankings that can
only be generated by n-degree pseudo-Boolean functions (functions which fulfill a1···n 6= 0) tends to 0 when
n tends to infinity.

Example 9. For n = 3, the number of rankings that cannot be generated by 2-degree pseudo-Boolean functions
is

2

2n−1 + 1
· 2n! =

2

5
· 8! = 16128. (3.30)

Consequently, for n = 3, there are exactly 24192 possible rankings that can be generated by 2-degree pseudo-
Boolean functions out of 40320; that is, 60% of all the possible rankings.
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3.3.3 Study of pseudo-Boolean functions of degree m < n− 1

The presented results up to this point are based on Theorem 1 when m = n−1. Our next step is to generalize
and study the case of Dyck Words for m-degree pseudo-Boolean functions, where m < n − 1. This section
extends Proposition 1 for any n ≥ 3 and m < n− 1. However, this extension shows the necessary condition
for a ranking to be generated by a pseudo-Boolean function of degree m < n− 1, not the sufficient condition.

First, a variation of Definition 14 is presented.

Definition 15. Dyck Word defined by s. Let us consider ∆s
i the difference between the number of E and

O letters for the first i letters in a word W s, 1 ≤ i ≤ 2n. Then, the word W s is a Dyck Word, with E (O) as
dominant letter, if for any i, ∆s

i ≥ 0 (∆s
i ≤ 0).

With Definition 15, we present an extension of Proposition 1.

Lemma 8. Let n ≥ 3 and Ω = {0, 1}n. Let r be a ranking of solutions from Ω, s a set of binary variables
such that n ≥ |s| > m ≥ 1 and W s the word of the ranking r defined by s. If W s is a Dyck Word, then r
cannot be generated by an m-degree pseudo-Boolean function.

Proof. The proof of the lemma is analogous to the proof of Proposition 1. 2

Bear in mind that Lemma 8 does not focus on a specific set s. Therefore, for a ranking rf , there might be
more than one possible way to apply Lemma 8 and to prove that rf cannot be generated by a pseudo-Boolean
function of degree m ≤ n− 1.

In addition, using a similar argument of the proof of Proposition 1, Equations (3.11) and (3.12) from Corol-
lary 5 can be also used to show new rankings that cannot be generated bym-degree pseudo-Boolean functions.
For example, it is possible to define new groups of solutions (such as G1 = Es ∩ Os′ and G2 = Os ∩ Es′ , or
G1 = Es ∩ Es′ and G2 = Os ∩ Os′) and show several new rankings that cannot be generated by a pseudo-
Boolean function of degree m.

Example 10. For n = 4, the ranking

r = [0111 0001 0010 1001 1010 1111 1100 0100 0000 1011 1000 0011 1101 0101 0110 1110]T (3.31)

cannot be generated by a 2-degree pseudo-Boolean function because for the set s = {1, 2, 3}

W s = [E E E E E E E E O O O O O O O O]T (3.32)

is a Dyck Word.

Once Lemma 8 has been presented, the opposite research question is studied: for n ≥ 3 and m < n− 1, can
we prove that any ranking which has no Dyck Words defined by all subset of variables s such that |s| ≥ m+1
can be generated by an m-degree pseudo-Boolean function? In Example 11, a counterexample is presented.
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Example 11. Let n = 4 and r be the following ranking:

r = [0100 0101 1000 1001 0000 1011 0011 1100 1010 1110 0111 0110 1101 0001 0010 1111]T . (3.33)

We will observe that: (a) for any set of variables s such that |s| ≥ 3, W s is not a Dyck Word; and (b) the
ranking cannot be generated by a 2-degree pseudo-Boolean function.

(a) Let us calculate the words W s defined by the sets s such that |s| ≥ 3.

s W s

{1, 2, 3, 4} [O E O E E O E E E O O E O O O E]T

{1, 2, 3} [E O O E O O O E E O E O O E E E]T

{1, 2, 4} [O E E O O E O E O O O E O E E E]T

{1, 3, 4} [E O E O O O E O E O O E E E O E]T

{2, 3, 4} [E E E E O O E O O E O O O O E E]T

(3.34)

Therefore, for any set s such that |s| ≥ 3, the presented ranking has no Dyck Words defined by s.

(b) Let s = {1, 2, 3} and s′ = {1, 2, 4}. By Corollary 5, if a 2-degree pseudo-Boolean function can generate r,
then

∑
x∈Es∩Es′

f(x) =
∑

x∈Os∩Os′

f(x) (3.35)

must be fulfilled. However,

Es ∩ Es′ = {1100, 0001, 0010, 1111} and Os ∩ Os′ = {0000, 0011, 1110, 1101} (3.36)

and, by definition of the ranking r,

f(0000) > f(1100), f(0011) > f(0001), f(1110) > f(0010) and f(1101) > f(1111). (3.37)

Consequently, ∑
x∈Es∩Es′

f(x) <
∑

x∈Os∩Os′

f(x), (3.38)

which implies that r cannot be generated by a 2-degree pseudo-Boolean function.

In addition, based on Corollary 5, the following result is obtained.

Corollary 7. Let n ≥ 3 and j ∈ {1, . . . , n}. Let r be a ranking and s = {1, . . . , n}\{j} a set of variables.
Let C : xj = cj be a constraint and Wf |C the word of the ranking generated by f |C . If Wf |C is a Dyck Word,
then r cannot be generated by a (n− 2)-degree pseudo-Boolean function.

Proof. Let s′ = {1, . . . , n}. Then, by Corollary 5,
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x∈Es∩Os′\s

f(x) =
∑

x∈Os∩Os′\s

f(x) and
∑

x∈Es∩Es′\s

f(x) =
∑

x∈Os∩Es′\s

f(x)

⇐⇒
∑

x∈Es|xj=0

f(x) =
∑

x∈Os|xj=0

f(x) and
∑

x∈Es|xj=1

f(x) =
∑

x∈Os|xj=1

f(x). (3.39)

Consequently, if Wf |C is a Dyck Word (no matter if xj = 0 or xj = 1), one of the previous equalities is not
fulfilled, which implies that r cannot be generated by a (n− 2)-degree pseudo-Boolean function. 2

Therefore, the study of Dyck Words allows us to recognize rankings that cannot be generated by any pseudo-
Boolean function of degreem < n−1. The reason for not obtaining the opposite result of Lemma 8 (similar to
the case of n = 3 with Proposition 2) is that, for all |s| > m, Lemma 8 studies each equality of Equation (3.9)
of Theorem 1 independently, whereas Theorem 1 ensures that all the equalities of Equation (3.9) are fulfilled
at the same time.

To remark the dissimilarities between Lemma 8 and Corollary 5, we present Example 12 for 3-dimensional
linear pseudo-Boolean functions.

Example 12. Let n = 3 and m = 1. In this example, we present: (a) the number of rankings of solutions that
cannot be discarded by Lemma 8 (the upper bound of the number of possible rankings that can be generated
by linear pseudo-Boolean functions); and (b) the number of rankings of solutions that can be generated by
linear pseudo-Boolean functions (counted by Corollary 5).

In the following table, we show if a solution is even or odd according to a set s.

s 111 110 101 100 011 010 001 000
{1, 2, 3} E O O E O E E O
{1, 2} E O O E E O O E
{1, 3} E O E O O E O E
{2, 3} E E O O O O E E

(3.40)

(a) Lemma 8 (or, equivalently, the equalities of Equation (3.9) of Theorem 1) implies that any linear pseudo-
Boolean function cannot have any Dyck Word over the sets s such that |s| ≥ 2 (deduced from the following
4 equalities):

(a.1)
∑
x∈E{1,2,3} f(x) =

∑
x∈O{1,2,3} f(x);

(a.2)
∑
x∈E{1,2} f(x) =

∑
x∈O{1,2} f(x);

(a.3)
∑
x∈E{1,3} f(x) =

∑
x∈O{1,3} f(x);

(a.4)
∑
x∈E{2,3} f(x) =

∑
x∈O{2,3} f(x).

(3.41)

To bound the number of rankings, we have counted the rankings that generate a Dyck Word over one,
two, three and four sets of variables ({1, 2, 3}, {1, 2},{1, 3} and {2, 3}), and then we apply the inclusion-
exclusion principle.

|{Rankings generated by linear pseudo-Boolean functions}| ≤
∑

I⊆{1,...,4}

(−1)|I| |∩i∈IR′i| =

= 40320− 64512 + 30720− 4032 = 2496, (3.42)

where R′i is the set of rankings that fulfills the equality (a.i).



42 3 Characterization of rankings generated by pseudo-Boolean functions

(b) Corollary 5 implies that any linear pseudo-Boolean function must fulfill all the following 12 equalities:

(b.1)
∑
x∈E{1,2,3}∩O{1,2} f(x) =

∑
x∈O{1,2,3}∩E{1,2} f(x);

(b.2)
∑
x∈E{1,2,3}∩E{1,2} f(x) =

∑
x∈O{1,2,3}∩O{1,2} f(x);

(b.3)
∑
x∈E{1,2,3}∩O{1,3} f(x) =

∑
x∈O{1,2,3}∩E{1,3} f(x);

(b.4)
∑
x∈E{1,2,3}∩E{1,3} f(x) =

∑
x∈O{1,2,3}∩O{1,3} f(x);

(b.5)
∑
x∈E{1,2,3}∩O{2,3} f(x) =

∑
x∈O{1,2,3}∩E{2,3} f(x);

(b.6)
∑
x∈E{1,2,3}∩E{2,3} f(x) =

∑
x∈O{1,2,3}∩O{2,3} f(x);

(b.7)
∑
x∈E{1,2}∩O{1,3} f(x) =

∑
x∈O{1,2}∩E{1,3} f(x);

(b.8)
∑
x∈E{1,2}∩E{1,3} f(x) =

∑
x∈O{1,2}∩O{1,3} f(x);

(b.9)
∑
x∈E{1,2}∩O{2,3} f(x) =

∑
x∈O{1,2}∩E{2,3} f(x);

(b.10)
∑
x∈E{1,2}∩E{2,3} f(x) =

∑
x∈O{1,2}∩O{2,3} f(x);

(b.11)
∑
x∈E{1,3}∩O{2,3} f(x) =

∑
x∈O{1,3}∩E{2,3} f(x);

(b.12)
∑
x∈E{1,3}∩E{2,3} f(x) =

∑
x∈O{1,3}∩O{2,3} f(x).

(3.43)

Similar to (a), we have counted the number of rankings that generate a Dyck Word over i sets of variables,
i = 1, . . . , 12, and then we apply the inclusion-exclusion principle to count the exact number of rankings
that can be generated by linear pseudo-Boolean functions.

|{Rankings generated by linear pseudo-Boolean functions}| =
∑

I⊆{1,...,12}

(−1)|I| |∩i∈IRi| =

=40320− 322560 + 1196160− 2693664 + 4082640

− 4368624 + 3368400− 1875312 + 743376− 203280 + 36288− 3840 + 192

=96, (3.44)

where Ri is the set of rankings that fulfills the equality (b.i).

Example 12 shows why Corollary 5 obtains the exact number rankings that can be generated by pseudo-
Boolean functions of degree m < n and shows why Lemma 8 does not. Therefore, Lemma 8 is not a sufficient
condition to prove which rankings can be generated. A future work is to take advantage of the analysis of
the words of the ranking and study the features that remain to achieve the sufficient condition.

3.4 Conclusions

In this chapter, we have presented a characterization of pseudo-Boolean functions of degree m < n, where n
is the size of the search space, and the necessary conditions of a ranking of solutions to be generated by an
m-degree pseudo-Boolean function. For the characterization, according to the parity of zeros of each solution
(with respect to a set of variables), we have shown the equalities that any m-degree pseudo-Boolean function
must fulfill. Based on those equalities, we present the word of a ranking (defined by a set of variables), we
introduce Dyck Words and we present a necessary condition: if the word of a ranking defined by a set s
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such that |s| > m is a Dyck Word, then the ranking is impossible to be generated by an m-degree pseudo-
Boolean function. On the other hand, we present a conjecture about the sufficient condition of a ranking to
be generated by a (n− 1)-degree pseudo-Boolean function. In Appendix A, we show two observations about
Conjecture 1.





4

Generation and study of artificial instances

4.1 Introduction

In Chapter 3, it is shown and proved that there exist rankings of solutions that cannot be generated by
a pseudo-Boolean function of degree m < n. Consequently, regarding rankings of solutions, the number of
possible scenarios is fewer than 2n!. Because of that, our next step is to study those possible rankings and
their main features.

As mentioned in Chapter 1, researchers choose real-world instances or they generate artificial instances in
order to evaluate the performance of the proposed algorithm. In this chapter, we will focus on the latter group.
To generate artificial instances, when there is no premeditated selection of the parameters of the problem to
generate instances, uniform distributions are considered to fix the parameter values. The idea behind this
procedure is that if we sample coefficients uniformly at random to generate instances, then all the feasible
scenarios (and, equivalently, rankings of solutions) are generated uniformly as well. Unfortunately, this is not
always true.

The main objective of the experiments presented in this chapter is not only to show that sampling coefficients
uniformly at random generates “biased fitness functions” (in terms of frequency), but also to extract features
and characteristics of the rankings of solutions generated by this process. The study of the features of the
generated rankings will allow us to understand why some algorithms perform better in most of the instances
of the studied problem.

To the best of our knowledge, there is one “initial” reference which is closely related to our analysis: [19]. In
the mentioned article, the authors prove that, when the algorithm only considers the ranking of solutions to
compare solutions, sampling in the space of coefficients uniformly at random is not equivalent to sampling
instances in the space of functions uniformly at random. To do so, the authors consider the Linear Ordering
Problem (and, briefly, the Quadratic Assignment Problem and the Permutation Flowshop Scheduling Prob-
lem) and analyze the instances generated by sampling coefficients uniformly at random. They observe that,
from all the possible rankings that can be generated by the definition of the problem, there are some rankings
which are sampled more frequently. Furthermore, the authors define a grouping of the rankings according to
their frequency in the sample and they analyze the inequalities that each group of rankings induces. Based
on that work, in [54] the authors count exactly how many rankings of solutions the Linear Ordering Problem
and the Traveling Salesman Problem can exactly generate and which rankings of solutions can be obtained
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by both problems. The authors of [19] and [54] illustrate their conclusions considering permutation-based
COPs. In this chapter, the considered COPs to carry out a similar analysis are the UBQP and the NPP.

This chapter is organized as follows. In Section 4.2 the experimental results over the UBQP are shown and
an analysis of the obtained results is discussed. In Section 4.3 the experiments for the NPP are detailed and
analyzed. Finally, Section 4.4 concludes the chapter.

4.2 Experimental analysis of the rankings of the UBQP

In this section, we have conducted some experiments on the rankings of solutions generated by the UBQP
(similar to the experiments carried out in [19]). The objectives of our experiments are to study those rankings
in terms of their frequency when the coefficients of the UBQP matrix are sampled uniformly at random and
to extract characteristics of them.

The experiments conducted in this section are done for the case n = 3. The main drawback of our experiments
is that for n ≥ 4 it is not computationally tractable. As mentioned in Chapter 3, note that when n = 4, the
cardinality of the space of possible rankings of solutions is 24!.

As observed in Example 9, the number of possible rankings of solutions generated by the UBQP is 24192.
Considering that, we have generated a representative sample of instances of the UBQP by sampling the
coefficients of the UBQP matrix uniformly at random. For n = 3, the UBQP requires 6 coefficients to describe
an instance: a1, a2, a3, a12, a13, a23. The considered space to generate the coefficients of the UBQP matrix to
generate the representative sample is the hypercube of dimension 6 centered at the origin: [−0.5, 0.5]6 (to
avoid the unbounded space R6). In order to have a representative sample of the rankings generated by the
UBQP, initially we have generated 5 million rankings and then the sample size has been increasing by 1
million until all the possible 24192 rankings have been generated at least once. After generating a sample of
27 million rankings, all the rankings have been generated at least once. In Figure 4.1, we have ordered the
24192 rankings according to the number of times that each ranking has been generated.

In Table 4.1, a summary of the number of different rankings of solutions that have been sampled according to
their frequencies in the sample are shown. In this table, we take into account the sample, order the rankings by
their frequency, and observe the deciles: that is to say, how many of them represent (10d)% of the sample, for
d = 1, . . . , 10. For example, the 89 most frequent rankings of the generated sample represent approximately
2.7 million of the generated rankings (10%); the 220 most frequent rankings of the generated sample represent
approximately 5.4 million of the generated rankings (20%); and so on. It is clear that a few rankings represent
most of the sample, which clearly means that there are rankings which are more intriguing to analyze.

To see the main features of the most frequent rankings, we have focused on three characteristics: number
of local optimal solutions with respect to the Hamming distance, the similarities of the rankings and the
probability of occurrence.

Table 4.1: Number of different rankings of the UBQP (n = 3) ordered by their frequencies in the sample and
the percentage they represent.

Size of the sample 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Number of different rankings 89 220 418 672 1006 1469 2221 3609 6621 24192
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First, we have calculated the number of local optimal solutions of each ranking according to the Hamming
distance. For the Hamming distance, two solutions are neighbors if the distance between them is 1. In
Figure 4.1, the plot is divided in three figures, with different colors, according to the number of local optimal
solutions.

We observe that the most frequent rankings have only one optimal solution, with significant difference with
the rest of rankings. In the ordered list of rankings with respect to their occurrence in the sample, the most
frequent ranking with two local optimal solutions is placed in the 607th position (its frequency in the sample
is 9839). Furthermore, the most frequent ranking with three local optimal solutions is placed in the 6617th
position (its frequency in the sample is 540). This is very intriguing knowing that, from all the possible
rankings generated by the UBQP, most of the rankings have two optimal solutions. In Table 4.2, the number
of possible rankings and sampled rankings are shown. It is clear that the distribution of the number of
rankings with one, two or three local optimal solutions and the distribution of the sampled rankings with
one, two or three local optimal solutions are completely different. For the UBQP, 6912 rankings have one local
optimal solution (28.6% of the rankings), 15840 rankings have two optimal solutions (65.5% of the rankings)
and the rest of rankings have three optimal solutions (5.9% of the rankings). But in the generated sample for
the UBQP, the majority of the rankings generated by sampling coefficients uniformly at random have one
local optimal solution (79.76%), 19.69% of the rankings have two local optimal solutions and very few have
three local optimal solutions (0.542%).

Next, based on the generated sample of rankings, we have calculated the exact frequency/probability of
generating a specific ranking of solutions by sampling the coefficients of the UBQP matrix uniformly at
random. This measures exactly the “regions” in which each ranking is generated by the UBQP. To do so,
we have calculated the hypervolume of each ranking in the defined hypercube [−0.5, 0.5]6; that is to say, we
calculate the regions of the hypercube in which all the points of a specific region generate a ranking rf . So,
we divide the hypercube in 24192 regions. Based on the previous results (Table 4.2), we expected in advance
that the measures of each region of the hypercube would not be the same.

To calculate the hypervolume of each region, we have considered the system of inequalities that each ranking
defines and calculate the implicit region defined by the system of inequalities and the hypercube [−0.5, 0.5]6.
Consequently, the hypervolume is obtained integrating 1 in the calculated region, and because the hyper-
volume of the hypercube is 1, the obtained result is also the probability of generating a specific ranking
of solutions by sampling the coefficients of the UBQP matrix uniformly at random. However, even if this
process is exact, it is worth mentioning that there have been some computational issues in the calculation of

Table 4.2: Number of the rankings generated by the UBQP for n = 3. Each row groups the rankings according
to the number of local optimal solutions. In the second and third columns, the number and percentage of
different rankings generated by the UBQP are shown. In the fourth and fifth columns, the number of sampled
rankings are shown (from the 27M size sample). In the last column, the 95% confidence interval (CI) of the
number of sampled rankings is shown.

Rankings Sampled rankings
(24192) (27M)

L. Opt. Sol. # % # % 95% CI
1 6912 28.57 21535236 79.760 (79.745, 79.775)
2 15840 65.48 5318316 19.697 (19.682, 19.712)
3 1440 5.95 146448 0.542 (0.540, 0.545)
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Table 4.3: First 4 non-symmetric rankings with the largest hypervolume values generated by the UBQP for
n = 3.

Ranking Hypervolume
f(111) > f(101) > f(011) > f(001) > f(100) > f(110) > f(000) > f(010) 0.0013237847 ∼ 32a
f(111) > f(110) > f(011) > f(101) > f(010) > f(100) > f(001) > f(000) 0.0012966579 ∼ 31a
f(110) > f(010) > f(000) > f(100) > f(001) > f(011) > f(111) > f(101) 0.0012152778 ∼ 29a
f(111) > f(110) > f(101) > f(011) > f(010) > f(100) > f(001) > f(000) 0.0011013455 ∼ 27a

the exact hypervolumes of some rankings. We believe that the issues are due to the dimension of the space
(6) and some particularly small regions. Therefore, sampling would provide an estimation of the hypervolume
of each region generated by the UBQP.

A main observation of these hypervolumes is that there exists a symmetry of the rankings. Two rankings of
solutions are symmetric and have the same hypervolume value if the difference between both rankings is a
permutation of the bits (in other words, for all the solutions, permute the bits according to a rule) and/or
a reversion of the ranking of solutions (in other words, the optimal solution in the first ranking is the worst
solution in the second ranking, the second best solution in the first ranking is the second worst solution in
the second ranking, and so on).

Example 13. The rankings
rf = [111 101 011 001 100 110 000 010]T (4.1)

and
rf = [001 000 011 010 100 101 110 111]T (4.2)

are symmetric rankings because r′f is rf after a reversion and the permutation of the bits (1 3 2) (explicitly,
x3x2x1 → x1x3x2): 

111
101
011
001
100
110
000
010


Reversion

=⇒



010
000
110
100
001
011
101
111


Permutation

=⇒
(1 3 2)



001
000
011
010
100
101
110
111


. (4.3)

So, when n = 3, each ranking has 2 × n! = 12 rankings (including itself) which are symmetric and have
the same hypervolume value. Therefore, the regions of the hypercube can be grouped in sets of 12 regions
and there might be 24192/12 = 2016 different hypervolume values. In Table 4.3, the first 4 non-symmetric
rankings with the largest and different hypervolume values are shown.

Even if the obtained largest hypervolume values are very small, let us take into account that if all the rankings
had the same probability to be sampled (or, equivalently, the assumption in question in [19] was true), the
values would be a = 1/24192 = 0.0000413770. Consequently, there is a significant difference of the values.
The 4 groups of rankings of Table 4.3 (the 48 symmetric rankings) represent almost 6% of the hypercube
(in the case that the regions were uniform, the 4 groups of rankings would represent almost 0.2% of the
hypercube).
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Fig. 4.1: Frequency of the 24192 rankings of the UBQP (n = 3) generated in a 27M size sample, in descending
order of frequency (Y axis in logarithmic scale) and divided in three figures according to the number of local
optimal solutions. Considering the Hamming distance 1, the top figure shows the rankings with one local
optimal solution (the global optimum), colored in red. The center figure shows the rankings with two local
optimal solutions, colored in blue. Finally, the bottom figure shows the rankings with three local optimal
solutions, colored in orange. The colored vertical lines indicate the most frequent ranking with two and three
optimal solutions.
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4.3 Experimental analysis of the rankings of the NPP

In this section, we have conducted several experiments on the rankings generated by the NPP. First, we
observe how many rankings are generated by the problem sampling integer numbers uniformly at random.
Then, we study those rankings and analyze their features.

Because the NPP can be reformulated as a particular case of the UBQP, it is already known that the problem
cannot generate all the rankings of solutions by sampling coefficients of the NPP uniformly at random (for
any integer value n). Additionally, before starting with the experiments, it is necessary to elaborate “injective
NPP instances” and local optimal solutions. By definition of the NPP, two opposite solutions have the same
fitness function value: f(xn . . . x1) = f((1−xn) . . . (1−x1)), for any solution xn . . . x1. Hence, two assumptions
have been considered: (i) we only consider the solutions such that x1 = 1 for the rankings generated by the
NPP, and (ii) we study instances of the NPP which are injective (that is to say, for any Z ′ ⊂ Z, Z ′ does
not have a perfect partition). On the other hand, when we consider local optimal solutions (regarding the
Hamming distance), we must consider the opposite solutions (the ones such that x1 = 0) to make realistic
conclusions. For example, the solutions 0011 and 1101 are neighbors because the Hamming distance between
0011 and 0010 (which is the opposite solution of 1101) is 1.

The experiments conducted to study the NPP are done for the cases n ∈ {3, 4, 5}. For the cases n ∈ {3, 4},
similar to the initial step of Section 4.2, first we have exhaustively counted how many rankings of solutions
can be generated by instances of the NPP. To do so, we have analyzed whether or not a ranking of solutions
generates a consistent system of inequalities (regarding the definition of the NPP, in which the number of
coefficients is n). When n = 3, there are 4 solutions such that x1 = 1 (which implies that the number of
possible rankings is 4! = 24) and the number of rankings generated by the NPP is 6. When n = 4, the number
of rankings generated by the NPP is 168 (out of the 8! = 40320 possible rankings). For the case n = 5, a
different avenue has been followed because we have not been able to calculate in advance the exact number
of different rankings that can be generated by the NPP.

4.3.1 Cases n ∈ {3, 4}

For n ∈ {3, 4}, to generate an instance, we sample n integer values from the set {1, . . . , 2k} uniformly at
random, where k ≥ n. We have tested the results for several k values and sample sizes, obtaining similar
results. Because of that, we will only show the results for a sample whose size is 1M and k = n+ 2. From all
the sampled instances, we have only considered the injective rankings.

When n = 3, we have obtained the 6 rankings of solutions, and they follow a symmetry: from one ranking,
the rest of rankings are obtained by permuting the bits. The main difference among the different samples
generated for n = 3 is that when the value of k increases, the number of non-injective instances is reduced.
Notwithstanding the value of k, the 6 rankings are generated uniformly. Consequently, in this particular case,
sampling integers uniformly at random is equivalent to sampling NPP instances uniformly at random.

Nevertheless, when n = 4, we have obtained the 168 rankings of solutions. If we consider the symmetry of the
rankings obtained by the permutation of the bits (from one ranking, we obtain 4! = 24 symmetric rankings),
there are 7 non-symmetric rankings. In Figure 4.2, we have ordered the 168 rankings according to the number
of times that each ranking has been generated in the sample, and the plot is divided in three figures, with
different colors, according to the number of local optimal solutions. In Table 4.4, the number of possible
rankings and sampled rankings are shown.
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It is obvious that, even if the NPP can be reformulated as a particular case of the UBQP, the obtained results
for the NPP (Table 4.4) differs significantly from the results of the UBQP (Table 4.2). For the NPP, 96 (out
of 168) rankings have one local optimal solution, 48 have two local optimal solutions and 24 have three local
optimal solutions. Nevertheless, in the generated sample, nearly half of the sample is composed of rankings
with one local optimal solution (49.54%), a quarter of rankings with two local optimal solutions (24.67&)
and the remaining quarter of rankings with three local optimal solutions (25.8%).

To conclude the experiments of the case n = 4, we study the rankings generated by the NPP. A meaningful
characteristic of our sample is that we identify 3 group of rankings according to the number of times that
each ranking has been sampled. There are 24 rankings that each ranking has been sampled more than 8600
times; there are 72 rankings that each ranking has been sampled between 5500 and 6000 times; and the last
72 rankings have been sampled less than 2900 each. This is similar to the grouping that appears in [19], where
the authors group the instances generated by the LOP in four classes labeled as “S rankings”, “M rankings”,
“L rankings” and “XL rankings”.

4.3.2 Case n = 5

First, to generate each ranking, we sample 5 integer values from the set {1, . . . , 20000} uniformly at random.
Due to the symmetry of the rankings obtained by the permutation of bits, the total number of rankings
generated by the NPP and the number of rankings generated by the NPP with l local optimal solutions
must be divisible by 5! = 120. Therefore, we have stopped increasing the sample when the total number of
different rankings and the number of different rankings with l local optimal solutions (generated by the NPP)
were divisible by 120. This scenario has been obtained with a sample of 5 million rankings, whose number
of different rankings is 32760 (273 non-symmetric rankings). From all the sampled instances, we have only
considered the injective rankings.

In Figure 4.3, we have ordered the 32760 rankings according to the number of times that each ranking has
been generated, and the plot is divided in four figures, with different colors, according to the number of local
optimal solutions. We can observe a similarity between the shapes of Figure 4.1 and Figure 4.3, but the local
optimal distribution is completely different. The most frequent rankings have three local optimal solutions.
Moreover, in the ordered list of rankings with respect to their occurrence in the sample, the most frequent
ranking with one local optimal solution is placed in the 590th position (its frequency in the sample is 824);

Table 4.4: Number of the rankings generated by the NPP for n = 4. Each row groups the rankings according
to the number of local optimal solutions. In the second and third columns, the number and percentage of
different rankings generated by the NPP are shown. In the fourth and fifth columns, the number of sampled
injective rankings are shown (from the 1M size sample). In the last column, the 95% confidence interval (CI)
of the number of sampled rankings is shown.

Rankings Sampled rankings
(168) (1000000)

L. Opt. Sol. # % # % 95% CI
1 96 57.14 408296 49.54 (49.43,49.65)
2 48 28.57 203309 24.67 (24.58,24.76)
3 24 14.29 212613 25.8 (25.90,25.70)
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the most frequent ranking with two local optimal solutions is placed in the 587th position (its frequency in
the sample is 827); and, lastly, the most frequent ranking with four local optimal solutions is placed in the
1207th position (its frequency in the sample is 577). In addition, in Table 4.5, a summary of the number of
rankings generated in the sample are shown. From all the different rankings generated by the NPP, 4800,
8160, 16800 and 3000 rankings have one, two, three and four local optimal solutions, respectively. On the
other hand, the number of rankings generated in the sample with one, two, three and four local optimal
solutions are 13.34%, 18.32%, 59.43% and 8.91%, respectively. If we compare the obtained results with the
case n = 4 (Table 4.4), the most intriguing result is that the proportion of the number of different rankings
and the rankings generated in the 5M sample (columns 3 and 5 of Table 4.5) seem more similar, although
the differences are statistically significative (with respect to Pearson’s chi-squared test).

Table 4.5: Number of the rankings generated by the NPP for n = 5. Each row groups the rankings according
to the number of local optimal solutions. In the second and third columns, the number and percentage of
different rankings generated by the NPP are shown. In the fourth and fifth columns, the number of sampled
injective rankings are shown (from the 5M size sample). In the last column, the 95% confidence interval (CI)
of the number of sampled rankings is shown.

Rankings Sampled rankings
(32760) (5000000)

L. Opt. Sol. # % # % 95% CI
1 4800 14.65 665803 13.34 (13.31,13.37)
2 8160 24.91 914194 18.32 (18.29,18.35)
3 16800 51.28 2965922 59.43 (59.39,59.48)
4 3000 9.16 444431 8.91 (8.88,8.93)
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Fig. 4.2: Frequency of the 168 rankings of the NPP (n = 4) generated in a 1M size sample, in descending order
of frequency and divided in three figures according to the number of local optimal solutions. Considering the
Hamming distance 1, the top figure shows the rankings with one local optimal solution (the global optimum),
colored in red. The center figure shows the rankings with two local optimal solutions, colored in blue. Finally,
the bottom figure shows the rankings with three local optimal solutions, colored in orange. The colored
vertical lines indicate the most frequent ranking with one and two optimal solutions.
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Fig. 4.3: Frequency of the 32760 rankings of the NPP (n = 5) generated in a 5M size sample, in descending
order of frequency (Y axis in logarithmic scale) and divided in four figures according to the number of local
optimal solutions. Considering the Hamming distance 1, the first figure shows the rankings with one local
optimal solution (the global optimum), colored in red. The second figure shows the rankings with two local
optimal solutions, colored in blue. The third figure shows the rankings with three local optimal solutions,
colored in orange. Finally, the last figure shows the rankings with four local optimal solutions, colored in
light magenta. The colored vertical lines indicate the most frequent ranking with one, two and four optimal
solutions.
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4.4 Conclusions

In this chapter, we have presented experimental analyses of the rankings generated by the UBQP for n = 3
and the NPP for n ∈ {3, 4, 5}. It is confirmed that sampling coefficients uniformly at random to generate
instances of the problem does not always generate instances of the problem uniformly at random, at least in
terms of the rankings generated. For example, whereas in the case of the NPP for n = 3 we have generated
instances of the problem uniformly, in the cases of the UBQP for n = 3 and the NPP for n ∈ {4, 5},
the generated samples are biased. Furthermore, we have presented an analysis of the generated samples of
rankings of solutions, studying several properties of them, such as the number of local optimal solutions and
the probability of the occurrence.
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5

A mathematical analysis of EDAs with distance-based exponential
models

5.1 Introduction

Our second main motivation of this thesis is to explore permutation-based EDAs, similar to the works
presented in the literature in the field of binary EDAs, to improve their understanding and performance and
to solve COPs efficiently.

As mentioned in Chapter 1, theoretical studies can focus on many different objectives. For EDAs designed
for binary-based COPs, the first theoretical studies focus on convergence analysis, whereas current research
is often based on runtime analysis. Many mathematical frameworks have been presented in the literature to
gain knowledge of binary EDAs. Nevertheless, permutation-based EDAs have not gained the same attention
of researchers and there are no mathematical frameworks in the literature to study this kind of algorithms.
Inspired by the path followed for the theoretical studies of binary EDAs, our first motivation is to generate
a mathematical model that can be used to analyze permutation-based EDAs theoretically. Our proposed
analysis over a permutation-based EDA focuses on convergence analysis. Convergence analysis is a very
gripping starting point for original analyses to gain insights into the studied algorithms and to know in which
scenarios the algorithm is guaranteed to converge to the optimal model by its design.

On the other hand, some permutation-based EDAs and applications that have been considered throughout
this thesis are the following ones. In [103], the authors compare two permutation-based EDAs (Edge Histogram
Based Sampling Algorithm and Node Histogram Based Sampling Algorithm), both designed by the authors,
and their performances are compared over the Quadratic Assignment Problem and the Flowshop Scheduling
Problem. In [18], the authors present an EDA in which, at each iteration, the algorithm learns a Mallows
model. In addition, they present some experiments to solve the Permutation FlowShop Scheduling Problem
to compare its performance with other permutation-based EDAs and they obtained better results in several
cases. In [17], the authors expand the EDA used in [18] and they present the Generalized Mallows-EDA
(GM-EDA). They also experiment with hybrid versions of GM-EDA and they present competitive results
in comparison to other state-of-the-art algorithms. In [92], the authors consider the Generalized Mallows
Distribution to design an EDA which is used to solve the Vehicle Routing Problem with Time Windows.

As we can observe, permutation-based EDAs have presented strong competitive results in the solution of some
practical problems. However, in spite of the excellent results obtained by these algorithms, it is still not clear
which mechanisms allow these algorithms to obtain these results. Furthermore, the advances in the design
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of new EDAs for permutation-based COPs have not been complemented with their mathematical modeling
due to the wide range of possible situations that the algorithm can involve. Because of that, our second
motivation is to study the reasons and the characteristics of the used algorithms to achieve the presented
results.

Considering both motivations, in this chapter, the convergence behavior of the Mallows-EDA has been studied.
To do so, a mathematical modeling based on dynamical systems is presented to achieve our objective. Our
first goal is to present a mathematical framework which allows the reproducibility of this study to different
distance-based exponential models and new fitness functions. Then, we consider the presented framework to
calculate the convergence behavior of the algorithm for several fitness functions. The studied functions are
the constant function, the needle in a haystack (analogous to the definition presented in [95]) and the Mallows
model. Our second goal is to carry out an analysis so as to provide new knowledge on the convergence behavior
of permutation-based algorithms. Moreover, for the analyzed objective functions in this thesis, the obtained
results are unexpected. We have observed that, for the scenarios in which the initial probability distribution
is the uniform distribution or the fitness function is constant, the model converges to the optimal solution.
However, in the rest of studied simple scenarios, the algorithm can converge to a degenerate distribution not
necessarily centered at the optimal solution, or to a non-degenerate probability distribution. To determine
the limit behavior of the algorithm, the equations to recognize the fixed points of the dynamical system
are shown. These obtained results are dissimilar to the existing results in the literature for binary EDAs
(for example, in [48, 49, 119], the studied algorithms converge to degenerate distributions centered at local
optima or global optimum of the studied fitness function). Finally, our final goal is to present the obtained
knowledge in this study to lay the basis for upcoming research in this area. As far as we know, our results
are the first theoretical analysis given in the literature for permutation-based EDAs, and show the obstacles
in achieving high quality theoretical results in this unexplored area. The presented analysis shows that, given
an objective function, the initial probability distribution determines the limit behavior of the algorithm.
Therefore, our first proposed algorithmic adaptation is to apply alternative initializations for obtaining high
quality solutions. On the other hand, another proposed work is to analyze the expected number of iterations
to achieve a high quality or optimal solution for the first time and connect it with the current tendency of
the theoretical studies of EDAs.

This chapter is organized as follows. In Section 5.2, the basic concepts related with the Mallows model and
our mathematical framework are introduced. In Section 5.3, the convergence behavior of the framework is
studied for a constant objective function f . In Section 5.4, the function f analyzed is a needle in a haystack
function. In Section 5.5, the function f analyzed is a Mallows model. In Sections 5.3, 5.4 and 5.5, two initial
distributions are considered for the analysis: the uniform distribution and a Mallows probability distribution.
Finally, in Section 5.6, conclusions are presented.

5.2 EDA based on Mallows models

5.2.1 Notation

The solutions of the studied optimization problems are permutations of length n. Let us denote by Σn the
n-permutation space (|Σn| = n! = N) and f : Σn −→ R the function to maximize. Let us denote by σ a
permutation from Σn or a solution of the function f . Throughout this chapter, σ(i) represents the position
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of the element i in the solution σ. Moreover, let us define an adjacent transposition of a permutation σ as a
swap of two consecutive elements. Additionally, σ−1 is the inverse permutation of σ.

In Algorithm 2 (in Chapter 1), the general pseudocode of an EDA has been introduced. Still, there exists
another possible interpretation of a step of an EDA in which probability distributions are considered as the
main mathematical tool to study the algorithm. In this second description, the algorithm starts the iteration
i from a probability distribution Pi and a population Di is sampled. Then, DS

i is selected and finally a
new probability distribution is learnt for the next iteration, PLi = Pi+1. Throughout this study, the last
description has been considered the main interpretation of EDAs for a better comprehension of Sections 5.2.2
and 5.2.4.

The probability distributions can be represented using probability vectors. Let us denote by pi(σ) the proba-
bility of σ under Pi. Therefore, we can denote by Pi = (pi(σ1), . . . , pi(σN )) the probability distribution of the
population at iteration i. If we are studying EDAs with finite populations, the vector Pi can be considered as
the “empirical probability mass function” of Di (and analogous with PSi from the population DS

i ). We must
emphasize that this representation of the populations by probability vectors is conceptual and it is really
helpful for our proposed theoretical study, but it cannot be applied in practical EDAs due to the required
memory. Moreover, the subscripts used for the permutations of the probability vectors distinguish the N
permutations of Σn where an order has been set up. The space of possible probability vectors Ωn is defined
in the following way:

Ωn =

(p(σ1), p(σ2), . . . , p(σN )) :

N∑
j=1

p(σj) = 1, 0 ≤ p(σj) ≤ 1, j = 1, . . . , N

 . (5.1)

To avoid the trivial case, it is assumed that any initial probability vector P0 satisfies that p0(σj) < 1, for
j = 1, . . . , N (D0 is not formed only by one specific solution). Note that Ωn contains degenerate distributions.
Let us denote by 1σk = {(p(σ1), . . . , p(σN )) ∈ Ωn | p(σk) = 1} the degenerate probability distribution centered
at σk.

Hence, if Pi are considered the references of each step of an EDA, then the EDA can be considered a sequence
of probability distributions, each one given by a stochastic transition rule G:

P0 −→ P1 −→ P2 −→ · · ·
G G G , (5.2)

that is, Pi = G(Pi−1) = Gi(P0), ∀i ∈ N. Given a probability distribution Pi, the operator G outputs the
probability distribution obtained after sequentially applying the sampling, the selection operator and the
learning step. In this chapter, the considered algorithm to analyze is the Mallows-EDA [18] and the selection
operator used throughout this analysis is a 2-tournament selection. The details are explained in Sections 5.2.3
and 5.2.4.

Hence, our objective is to study the convergence behavior described as follows:

lim
i−→∞

Gi(P0). (5.3)
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5.2.2 EDAs based on expectations

The application of the EDA schema to deal with optimization problems can involve an unapproachable variety
of situations and behaviors. Due to this difficulty and following the ideas presented in the literature, our
proposed mathematical modeling studies the expected probability distribution generated after one iteration
of the algorithm. So, our proposed framework studies the deterministic function G : Ωn −→ Ωn which assigns
the expected probability distribution of the operator G : Ωn −→ Ωn, similar to the idea followed in [48]:

Pi+1 = G(Pi) = E[G(Pi)] = E[(a ◦ φ)(Pi)] =
∑
P∈Ωn

a(P ) · p(φ(Pi) = P ), (5.4)

where a(P ) is the probability distribution obtained after applying the approximation step, φ is the selection
operator and p(φ(Pi) = P ) is the probability to obtain P from Pi. The details of our proposed selection
operator and approximation step are explained in Section 5.2.4

Moreover, Pi = Gi(P0). Studying the expected probability distribution, each time the algorithm is applied,
the deterministic operator G removes the random drift and avoids ending in a different probability distri-
bution. Another equivalent interpretation of the deterministic operator G is the study of EDAs when the
population size of Di and DS

i tends to infinity [31, 32, 107, 119]. By the Glivenko-Canteli theorem [25], when
the population size tends to infinity, the empirical probability distribution of Di and DS

i converge to the
underlying probability distribution of Di and DS

i , respectively. Under this assumption, Pi and PSi can be
thought of as the population and the selected population at iteration i: in other words, Pi and PSi replace
the populations Di and DS

i of the finite model, respectively. Therefore, our study can be thought of as the
analysis of an EDA that works with the limit distributions of large populations. In Algorithm 3 the general
pseudocode of an EDA based on expectations is shown.

Algorithm 3 General pseudocode of an EDA based on expectations
Obtain an initial probability distribution P0

while No convergence do
Compute the probability of selection from Pi by means of φ (selection operator): PSi
Compute PLi to approximate PSi
Pi+1 = PLi
i = i+ 1

end while
Return Final probability distribution

Typical selection operators φ are n-tournament selection, proportional selection and truncation selection [11,
119].

Therefore, the operator G induces a deterministic sequence:

P0 −→ P1 −→ P2 −→ · · ·
G G

(5.5)

and the new objective is to study
lim
i−→∞

Gi(P0). (5.6)

In Section 5.2.4, the function G used to study the convergence behavior of the algorithm is defined.
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5.2.3 Mallows model

The Mallows model [78] is a distanced-based exponential probability model over permutations. Under this
model, the probability value of every permutation σ ∈ Σn depends on two parameters: a central permutation
σ0 and a spread parameter θ. The Mallows model is defined as follows:

P (σ) =
1

ϕ(θ, σ0)
e−θd(σ,σ0), (5.7)

where d is an arbitrary distance function defined over the permutation space, d(σ, σ0) is the distance from
σ to the central permutation σ0, and ϕ(θ, σ0) =

∑
σ∈Σn e

−θd(σ,σ0) is the normalization constant. Due to the
definition of the Mallows model, it is considered the analogous distribution of the Gaussian distribution over
permutations. To simplify notation, let us denote by MM(σ0, θ) a Mallows probability distribution centered
at σ0 and with spread parameter θ. Bear in mind that when θ = 0, MM(σ0, 0) is a uniform probability
distribution for any σ0 ∈ Σn.

An important property of a Mallows model is that any two permutations at the same distance from the
central permutation have the same probability value. Hence, we can group the permutations according to
their distance to the central permutation.

Different distances can be used with the Mallows model, such as Cayley distance, Hamming distance or, the
most used distance in the literature for the Mallows model, Kendall tau distance [61], which is the one we
use in our EDA analysis.

Definition 16. Kendall tau distance dτ (σ, π) counts the number of pairwise disagreements between σ and π.
It can be mathematically defined as follows:

dτ (σ, π) = |{(i, j) : i < j, (σ(i) < σ(j) ∧ π(i) > π(j)) ∨ (σ(i) > σ(j) ∧ π(i) < π(j))}| (5.8)

where σ(i) is the position of the element i in the permutation σ (and similarly with σ(j), π(i) and π(j)).

By definition, Σn with dτ is a metric space. For simplification purposes, let us denote by σπ the composition
of σ and π (i.e., σπ = σ◦π) and d(σ, π) the Kendall tau distance between σ and π. According to the definition,
the distance between two permutations is a non-negative integer between 0 and D = n(n − 1)/2 =

(
n
2

)
. A

property of Kendall tau distance is that, for any σ, π ∈ Σn, d(σ, π) + d(π, I ′σ) = d(σ, I ′σ) = D, where
I ′ = (n n− 1 · · · 1). Consequently,

2
∑
π∈Σn

d(σ, π) =
∑
π∈Σn

(d(σ, π) + d(π, I ′σ)) =
∑
π∈Σn

D = N ·D. (5.9)

Another property is that Kendall tau distance has the right invariance property; that is, d(σ, π) = d(σρ, πρ)
for every permutation σ, π, ρ ∈ Σn [61]. Consequently, the normalization constant of the Mallows model can
without loss of generality be written as ϕ(θ).

Kendall tau distance can be equivalently written as
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d(σ, π) =

n−1∑
i=1

Vi(σ, π), (5.10)

where Vi(σ, π) is the minimum number of adjacent swaps to set the value π(i) in the i-th position of
σ [80]. It is worth noting that there exists a bijection between any permutation σ of Σn and the vec-
tor (V1(σ, I), . . . , Vn−1(σ, I)), where I represents the identity permutation and Vi(σ, I) ∈ {0, . . . , n − i},
∀i = 1, . . . , n− 1. Furthermore, the components Vi(σ, I) are independent when σ is uniform on Σn.

Finally, with Kendall tau distance, the Mallows model with central permutation σ0 and spread parameter θ
and the Mallows model with central permutation I ′σ0 and spread parameter −θ are equivalent [39]. Therefore,
without loss of generality, we assume that θ > 0.

5.2.4 Mathematical modeling

As mentioned previously, in this section we present a mathematical framework to study the convergence
behavior of a Mallows-EDA by a deterministic operator based on expectations. Before presenting our proposed
mathematical modeling, we want to present how the Mallows-EDA is defined in [18].

The main characteristic of the Mallows-EDA is that the learned probability distribution is a Mallows prob-
ability distribution. To learn a Mallows model, σ0 and θ parameters must be estimated. By the maximum
likelihood estimation method, the exact parameters are calculated. The log-likelihood function for a finite
population {σ1, . . . , σM} is as follows [39]:

−Mθ

n−1∑
i=1

V̄i −M logϕ(θ), (5.11)

where V̄i denotes the observed mean for Vi: V̄i =
∑M
j=1 Vi(σj , σ0)/M . As we can observe in Equation (5.11),

the value −Mθ
∑n−1
i=1 V̄i depends on σ0 and θ, whereas the value −M logϕ(θ) only depends on θ. Therefore,

for a fixed non-negative value θ, maximizing the log-likelihood function is equivalent to minimizing
∑n−1
i=1 V̄i.

This problem is also known as the rank aggregation problem and the Kemeny ranking problem and it is an
NP-hard problem [4, 9]. This makes the theoretical analysis very complex.

Therefore, given a sample of M permutations {σ1, . . . , σM}, the first step to obtain the maximum likelihood
estimators of the Mallows model is to obtain a permutation σ0 which minimizes

∑n−1
i=1 V̄i. Let us denote by σ̂0

the estimated central permutation for the previous minimization problem. Once we obtain σ̂0, the maximum
likelihood estimator of θ, denoted by θ̂, is obtained by solving the following equation [39]:

n−1∑
i=1

V̄i =
n− 1

eθ − 1
−
n−1∑
i=1

n− i+ 1

e(n−i+1)θ − 1
. (5.12)

Despite the fact that previous theoretical studies that use dynamical systems ([48, 118], for example) have
closed formulae, the solution of this equation has not. For that reason, a numerical method such as, e.g.
Newton-Raphson, has to be used to solve the equation. This is another reason that shows the complexity of
the theoretical analysis. Once σ̂0 and θ̂ are estimated, the Mallows model is completely defined and it is used
to sample new solutions for the next iteration of the algorithm. In Algorithm 4 the general pseudocode of
Mallows-EDA defined in [18] is shown.
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Algorithm 4 General pseudocode of Mallows-EDA
Obtain an initial population D0

while Stop criteria = FALSE do
Select a subset of individuals from the population Di: DS

i

Estimate σ0: σ̂0
Estimate θ based on σ̂0: θ̂
Sample a new set of individuals using MM(σ̂0, θ̂): Di+ 1

2

Generate a new population Di+1 with Di and Di+ 1
2

i = i+ 1
end while
Return Best individual of the final population

Throughout this analysis, in order to study the convergence behavior of the Mallows-EDA based on expecta-
tions, the deterministic operator G = a ◦φ is used. This operator is a composition of the selection operator φ
and the approximation step a used to learn the Mallows model. Hence, the operator φ returns the expected
selection probability of the solutions from Pi and the function a uses the maximum likelihood estimation
method to learn a Mallows model from PSi .

The selection operator studied in this work has been the widely used 2-tournament selection, but it is worth
mentioning that the use of any selection operator based on rankings of solutions which satisfy impartiality
and no degeneration properties defined in [32] will produce the same results. This selection operator is based
on the ranking of solutions according to the objective function f and cannot assign extreme probabilities.
Given the probability distribution Pi at iteration i and assuming a maximization problem, the expected
probability of selecting a solution σ is the sum of all the binary selections in which σ and a solution π with
a lower or equal fitness function value has been chosen, that is:

pSi (σ) = 2
∑

π|f(σ)>f(π)

pi(σ)pi(π) +
∑

π|f(σ)=f(π)

pi(σ)pi(π). (5.13)

Once we have PSi calculated, the function a deals with the probabilities pSi (σ) to learn a new Mallows model
which is the probability distribution of the next generation. In order to work with the probability vectors
and the expected probability distributions and to estimate σ0 and θ, Equations (5.11) and (5.12) must be
reformulated. To do so, the value V̄i is calculated using pS(σ) as the proportion of the solution σ in the
selected population by the weighted average value of Vi(σ, σ0). So, we have

V̄i =
∑
σ∈Σn

Vi(σ, σ0) · pS(σ). (5.14)

Therefore,

n−1∑
i=1

V̄i =

n−1∑
i=1

∑
σ∈Σn

Vi(σ, σ0) · pS(σ) =
∑
σ∈Σn

d(σ, σ0) · pS(σ). (5.15)

So the maximum likelihood estimator of σ0 from the expected selected population is the following:
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σ̂0 = arg min
σ∈Σn

∑
π∈Σn

d(π, σ) · pS(π). (5.16)

The maximum likelihood estimator of σ0 might not be unique. In Sections 5.4 and 5.5, we will observe some
PS probability distributions in which the estimated central permutation is not unique.

To estimate θ, we can use Equation (5.12) in the same way as with finite populations and solve the following
equation:

∑
σ∈Σn

d(σ, σ̂0) · pS(σ) =
n− 1

eθ − 1
−
n−1∑
i=1

n− i+ 1

e(n−i+1)θ − 1
. (5.17)

Throughout this study, two observations related to the estimation of the spread parameter are considered.
Firstly, the right-hand side of Equation (5.17) is not defined when θ = 0. Still, the right-hand side of Equa-
tion (5.17) tends to

(
n
2

)
/2 when θ tends to 0 and θ = 0 is a removable singularity (see proof in Proposition 3

of Appendix B).

Considering this observation, the following lemma proves that when the estimated central permutation is
unique, then the estimated spread parameter has a positive value. It is worth mentioning that Lemma 9 is
independent of the objective function f and the iteration i of the algorithm.

Lemma 9. Let Pi be a Mallows probability distribution with central permutation σ0 and spread parameter
θ ≥ 0, and PSi the probability distribution after a 2-tournament selection over Pi. Let σ̂0 be the unique
estimator of the central permutation of Pi+1. Then, the value θ̂ which solves the following equation

∑
σ∈Σn

d(σ, σ̂0) · pS(σ) =
n− 1

eθ̂ − 1
−
n−1∑
i=1

n− i+ 1

e(n−i+1)θ̂ − 1
(5.18)

is a positive value. Equivalently,
∑
σ∈Σn d(σ, σ̂0) · pS(σ) is a value lower than

(
n
2

)
/2.

Proof. First, let us consider the function g:

g(θ) =

{
n−1
eθ−1 −

∑n−1
i=1

n−i+1
e(n−i+1)θ−1 , if θ 6= 0

1
2

(
n
2

)
, if θ = 0.

(5.19)

The function g is a continuous decreasing function such that g(θ) + g(−θ) =
(
n
2

)
, limθ−→−∞ g(θ) =

(
n
2

)
and

limθ−→∞ g(θ) = 0 (see proof in Proposition 4 of Appendix B).

Secondly, for any σ̂0 and θ̂ parameters,
∑
σ∈Σn d(σ, σ̂0)·pS(σ) is a value from the interval (0,

(
n
2

)
). In particular,

∑
σ∈Σn

d(σ, σ̂0) · pS(σ) +
∑
σ∈Σn

d(σ, I ′σ̂0) · pS(σ) =

(
n

2

) ∑
σ∈Σn

pS(σ) =

(
n

2

)
. (5.20)

Considering that, by hypothesis, σ̂0 is the unique estimator of the central permutation of Pi+1,∑
σ∈Σn

d(σ, σ̂0) · pS(σ) <
∑
σ∈Σn

d(σ, I ′σ̂0) · pS(σ) (5.21)
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is obtained and therefore

∑
σ∈Σn

d(σ, σ̂0) · pS(σ) <
1

2

(
n

2

)
. (5.22)

2

The second observation is that in the approximation step of our algorithm, at any iteration, if PS is a Mallows
model with central permutation σ0 and spread parameter θ, then the learned Mallows model is the same
one: σ̂0 = σ0 and θ̂ = θ. The argument to prove this observation is that the probabilities of the solutions
are ordered inversely according to their distance to σ0. Hence, Equation (5.16) obtains the minimum value
at σ0 and it is unique. Furthermore, when θ̂ = θ, Equation (5.17) is fulfilled because PS is a Mallows model.
Another way to understand this observation is that when we work with infinite population and the sampling
step is not needed, the probability distribution is kept constant. To simplify notation, let us consider the
uniform distribution as a Mallows model with central permutation σ0 ∈ Σn and spread parameter 0.

In addition, it is assumed that the algorithm learns 1σk probability distribution if PS = 1σk . Note that 1σk
is obtained as the limit distribution of MM(σk, θ) when θ tends to infinity.

Once we have defined the selection operator and how we learn a new probability distribution, our operator
G is defined. The schema of one iteration of the algorithm is the following:

φ a
· · · −→ Pi −→ PSi −→ Pi+1 −→ · · ·︸ ︷︷ ︸

G = a ◦ φ

, (5.23)

where φ is 2-tournament selection and a is the approximation step that learns a Mallows probability distri-
bution by the maximum likelihood estimation method.

The aim of the following sections is to apply our proposed mathematical modeling in some scenarios. Each
scenario considers an objective function f and an initial probability distribution P0. Our objective is to
calculate Gi(P0) when i tends to infinity. To do so, Gi(P0) are calculated, for i = 1, 2, 3, . . . , and the results
are analyzed. In some particular cases, it is enough to calculate G(P0) to induce the limit behavior of the
algorithm. For the most difficult cases, we study the fixed points of the algorithm and their attraction
behavior, following the same idea used in the literature as in [48], among others.

In order to simplify the analysis and to present the tools and methods used to achieve our objectives, in
this study we have considered three specific cases for the objective function. In Section 5.3, f is a constant
function; in Section 5.4, f is a needle in a haystack function; and in Section 5.5, f is defined by a Mallows
model. Objective functions such as the constant function and the needle in a haystack function have been used
in many studies of different algorithms in the literature, whereas the Mallows model has been studied as an
example of a unimodal objective function and to analyze the relation among the learned Mallows probability
distributions by our dynamical system and the objective function. For these cases, we have considered P0 as
a uniform distribution or a Mallows model.
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5.3 Limiting behavior for a constant function

In this first scenario, the function f to optimize is constant: f(σ) = c, ∀σ ∈ Σn. Hence, any solution can be
considered as a global optimum. In this situation, it is proved that the algorithm keeps the initial probability
distribution forever. We can summarize all the results from this section in Theorem 2.

Theorem 2. If f is a constant function and P a Mallows probability distribution, then G(P ) = P .

Proof. Starting from any Mallows model MM(σ0, θ), let us observe the first iteration of the algorithm and
calculate G(P ). It is proved that the selection method keeps the same distribution, and then the learned
parameters are σ0 and θ.

When f is a constant function, all the solutions are global optima. So, the selection probability of each
solution is the same as the initial probability:

pS(σ) = p(σ),∀σ ∈ Σn =⇒ PS = P. (5.24)

Given that PS = P , the next step of the algorithm is to estimate the parameters to learn a Mallows model
from P . By the observation from Section 5.2.4 about the estimation of the parameters from a Mallows model,
it is deduced that σ̂0 = σ0 and θ̂ = θ. Consequently, it is proved that when f is a constant function, G(P ) = P
for any Mallows distribution P . 2

5.4 Limiting behavior for a needle in a haystack function

In the next case, f is a needle in the haystack function centered at σ∗; the function is constant except for
one solution σ∗, which is the optimal solution. Let us define

f(σ) =

{
c′, σ = σ∗

c, σ 6= σ∗
(5.25)

such that c′ > c.

In this section, the analysis focuses on the evolution and the convergence behavior of the algorithm when the
fitness function can only take two possible values, one value for the optimal solution and the second value for
any other solution. The analysis has been separated into three sections. In Section 5.4.1, the case when P0

is a uniform distribution is considered. In this particular case, the main procedure of the algorithm is shown
and some general results are explained. As a result of this analysis, the case when P0 is a Mallows model
centered at σ∗ is analyzed, which is mentioned in Section 5.4.2. Finally, in Section 5.4.3, P0 is a Mallows
model centered at σ0 6= σ∗. In this case, a general observation among the rest of Mallows models is explained.
To do so, the fixed points of the algorithm are calculated.
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5.4.1 P0 a uniform initial probability distribution

In this section, it is proved that when the initial probability distribution is a Mallows distribution centered
at the optimal solution of the needle in the haystack function, the algorithm converges to the degenerate
distribution centered at the optimum. The obtained result in this section can be summarized in the following
lemma.

Lemma 10. Let f be a needle in a haystack function centered at σ∗ and P0 a Mallows model with central
permutation σ∗ and spread parameter θ0 ≥ 0. Then, the proposed EDA always converges to the degenerate
distribution centered at σ∗.

Proof. Let us start the demonstration from the case that P0 is a uniform distribution. In order to calculate
the limit behavior of the algorithm, let us start by calculating G(P0), starting from the computation of PS0 .
In this case, there are two different cases to analyze in the selection step. If σ∗ is chosen to take part in
the tournament, then it has an equal or higher function value than any other permutation, so σ∗ is always
selected. For the permutations σ 6= σ∗, they behave in the same way as when f is a constant function. So the
probability after selection is as follows:

pS0 (σ) =

{
p0(σ)(2− p0(σ)), if σ = σ∗

p0(σ)(1− p0(σ∗)), if σ 6= σ∗.
(5.26)

This same argument can be used for any iteration of the algorithm for the selection operator.

After the selection probability has been computed, let us study the estimation of the parameters for the
Mallows models. Let us start with the estimation of the central permutation in different iterations of the
algorithm, and after that, the estimated spread parameters.

At the first iteration of Algorithm 3, in order to calculate σ̂0 for P1, it is necessary to calculate the solution
of Equation (5.16) using PS0 . Bear in mind that for any σ 6= σ∗,

∑
π∈Σn\{σ,σ∗}

d(π, σ) · pS0 (π) =
∑

π∈Σn\{σ,σ∗}

d(π, σ∗) · pS0 (π) (5.27)

because the selection probabilities for all the permutations except σ∗ are the same, and the right invariance
property over the Kendall tau distance ensures that the number of solutions at each distance is the same:
that is, for a fixed d ∈ {0, . . . , D}, |{π ∈ Σn : d(π, σ) = d}| is constant for any σ ∈ Σn (see Definition 17).

Let σ 6= σ∗. Thus, d(σ, σ∗) = d > 0. Therefore, considering Equation (5.27) and pS0 (σ∗) > pS0 (σ),

∑
π∈Σn

d(π, σ) · pS0 (π) =
∑

π∈Σn\{σ,σ∗}

d(π, σ) · pS0 (π) + d · pS0 (σ∗) + 0 · pS0 (σ)

>
∑

π∈Σn\{σ,σ∗}

d(π, σ∗) · pS0 (π) + d · pS0 (σ) + 0 · pS0 (σ∗) =
∑
π∈Σn

d(π, σ∗) · pS0 (π), (5.28)

and it proves that the maximum likelihood estimator of the central permutation is σ∗.
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So P1 is a Mallows model with central permutation σ∗. Because of the uniqueness of the estimated central
permutation and by Lemma 9, the estimated spread parameter of P1 is a positive value. In order to generalize
the obtained results to any iteration of the algorithm, let us calculate the central permutation of P2. To
determine PS1 , we consider Equation (5.26) from P1. Accordingly, for each solution, the lower the distance to
σ∗, the higher the probability of selecting the solution is. Therefore, to calculate P2, we can repeat the same
argument of Section 5.3 to prove that σ̂0 = σ∗. This same argument can be repeated for any iteration i > 2.

Once it has been proved that σ∗ is the estimated central permutation for the learned Mallows model at any
iteration of the algorithm, let us study the estimation of θ. As mentioned previously, there is no closed formula
for the solution of Equation (5.17). Hence, instead of calculating the value of θ, we follow a different avenue
to prove the limiting behavior of the algorithm. Knowing by Lemma 9 that the estimated spread parameter
θ̂ at any iteration of the algorithm is positive, we prove that the estimated spread parameter increases in two
consecutive iterations.

Particularly, Equation (5.17) is analyzed to see if the spread parameter at iteration i+ 1 is a higher or lower
value than the spread parameter at iteration i. To this end, two consecutive iterations are considered and the
difference between

∑
σ∈Σn d(σ, σ∗)·pSi (σ) and

∑
σ∈Σn d(σ, σ∗)·pSi+1(σ) is analyzed. Without loss of generality,

let us analyze the relation when i = 0.

The difference between the values of the left-hand side of (5.17) depends on the values pS0 (σ) and pS1 (σ),
∀σ ∈ Σn. Firstly, remember that

∑
σ∈Σn d(σ, σ∗) · pS0 (σ) was used to calculate the spread parameter of the

Mallows probability distribution P1. Hence, by the definition of the operator a it holds that
∑
σ∈Σn d(σ, σ∗) ·

pS0 (σ) and
∑
σ∈Σn d(σ, σ∗) · p1(σ) are the same value (this argument has been used to specify that the

estimated parameters of a Mallows model to learn a new Mallows model are the same). Let us denote
C =

∑
σ∈Σn d(σ, σ∗) · p1(σ) and compare it with

∑
σ∈Σn d(σ, σ∗) · pS1 (σ). Using Equation (5.26) for P1,

∑
σ∈Σn

d(σ, σ∗) · pS1 (σ) =
∑

σ∈Σn\{σ∗}

d(σ, σ∗) · pS1 (σ)

(5.26)
=

∑
σ∈Σn\{σ∗}

d(σ, σ∗) · p1(σ) (1− p1(σ∗)) = C (1− p1(σ∗)) < C. (5.29)

This implies that the left-hand side of Equation (5.17) decreases in two consecutive iterations. Hence, as the
function g defined in Equation (5.19) is a strictly decreasing function over θ, the spread parameter increases
after one iteration of the algorithm. So, θ2 is a higher value than θ1.

Using the same reasoning for any iteration, we can observe that at each iteration p(σ∗) increases, whereas
for all σ 6= σ∗ p(σ) decreases. Moreover,

∑
σ∈Σn

d(σ, σ∗) · pSj (σ) = C (1− p1(σ∗)) (1− p2(σ∗)) · · · (1− pj(σ∗)) < C (1− p1(σ∗))
j −→
j→∞

0. (5.30)

Consequently, θ tends to infinity when the number of iterations increases.

Therefore, after applying our modeling departing from a uniform distribution to a needle in a haystack
function, the algorithm converges to a Mallows model with central permutation σ∗ and spread parameter θ
which tends to infinity. Hence, the distribution in the limit is the degenerate distribution centered at σ∗. 2
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5.4.2 P0 a Mallows probability distribution with central permutation σ∗ and spread parameter
θ0

This case is the same as the one in Section 5.4.1 after the first iteration. Hence, the algorithm converges to
a degenerate distribution centered at σ∗.

5.4.3 P0 a Mallows probability distribution with central permutation σ0, where
d(σ∗, σ0) = d∗ ≥ 1, and spread parameter θ0

Due to the difficulty of this case in comparison with the previous ones, the analysis of the convergence
behavior of the algorithm is made from a new point of view. In this section, our objectives are to study the
possible fixed points of the algorithm and to analyze the behavior of our dynamical system. A probability
distribution is a fixed point of the algorithm if, after one iteration, the algorithm does not estimate a different
probability distribution: that is to say, G(P ) = P . Consequently, the algorithm will always estimate the same
probability distribution.

In Section 5.4.3, the following proof idea is used:

i) In Section 5.4.3.1, the fixed points of the algorithm are calculated.

• First, it is proved that any degenerate distribution is a fixed point.

• Then, non-degenerate fixed points are calculated.

ii) In Section 5.4.3.2, the attraction of the fixed points is studied.

iii) Finally, in Section 5.4.3.3, the performance of the algorithm is analyzed for different initial probability
distributions P0.

5.4.3.1 Computation of the fixed points

For our first aim of Section 5.4.3, let us calculate the fixed points of our dynamical system G. First, let us
realize that any degenerate distribution is a fixed point of the discrete dynamical system G. The selection
probability departing from 1σk is:

pS(σ) =

{
1, if σ = σk
0, otherwise. (5.31)

Therefore, the probabilities of the solutions after the selection operator keep the same values of 1σk , that is,
PS = 1σk = P . Hence, bearing in mind that in Section 5.2.4 it has been assumed that the estimated model
from a degenerate distribution is the same degenerate distribution, G(1σk) = 1σk is obtained.

However, the degenerate distributions are not the only fixed points of the discrete dynamical system G. By
definition of G, any Mallows probability distribution for which the algorithm learns the same distribution
is a fixed point; in other words, after the selection operator, if the algorithm estimates the same central
permutation and spread parameter as in the previous distribution, then the Mallows probability distribution
is a fixed point. In Lemma 11, a formal result of this idea is presented, showing which two equations are
sufficient to achieve a fixed Mallows probability distribution.
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Lemma 11. Let P be a Mallows probability distribution with central permutation σ0 and spread parameter
θ0 <∞. If for all σ 6= σ0,

∑
π∈Σn

d(π, σ0)pS(π) <
∑
π∈Σn

d(π, σ)pS(π) (5.32)

and ∑
π∈Σn

d(π, σ0)pS(π) =
∑
π∈Σn

d(π, σ0)p(π). (5.33)

are fulfilled, then G(P ) = P .

Proof. By the maximum likelihood estimator of the parameters of the Mallows model, Inequality (5.32)
ensures σ̂0 = σ0. In order to prove that θ̂ = θ0, considering by hypothesis that P is a Mallows model and by
Equations (5.17) and (5.33),

∑
π∈Σn

d(π, σ0)pS(π) =
∑
π∈Σn

d(π, σ0)p(π) =
n− 1

eθ0 − 1
−
n−1∑
i=1

n− i+ 1

e(n−i+1)θ0 − 1
. (5.34)

2

Inequality (5.32) ensures σ̂0 = σ0 and Equation (5.33) obtains θ̂ = θ0. Inequality (5.32) and Equation (5.33)
can be written consecutively: for all σ 6= σ0,

∑
π∈Σn

d(π, σ)pS(π)
σ̂0=σ0

>
∑
π∈Σn

d(π, σ0)pS(π)
θ̂=θ0=

∑
π∈Σn

d(π, σ0)p(π). (5.35)

Lemma 11 presents a sufficient situation to achieve fixed points of the algorithm. Unfortunately, Lemma 11
does not present “the necessary condition” because of one very particular case: when G(P ) = P , it cannot be
ensured that σ0 obtains the minimum value at Inequality (5.32) (perhaps there are more permutations which
obtain the minimum value), even if θ̂ = θ0. In the case that σ0 is the unique solution of Inequality (5.32),
then Lemma 11 would present the necessary condition to be a fixed point. To avoid these specific scenarios
and the equality case in Inequality (5.32), which represent zero Lebesgue measure sets, from now on we
will consider that σ0 is the estimated central permutation. In practice, the EDA can be designed to have a
preference criteria for ties.

Based on Lemma 11, our next objective is to observe the sufficient conditions to achieve fixed points of the
algorithm when f is a needle in a haystack function. First, it is studied when θ̂ = θ0, and then whether or
not σ̂0 = σ0 is satisfied. Let us study Equation (5.33).
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π∈Σn

d(π, σ0)pS(π) =
∑
π∈Σn

d(π, σ0)p(π)

(5.26)⇐⇒ p(σ∗) · d(σ∗, σ0) + (1− p(σ∗))
∑
π∈Σn

d(π, σ0)p(π) =
∑
π∈Σn

d(π, σ0)p(π)

⇐⇒ p(σ∗) · d(σ∗, σ0) = p(σ∗)
∑
π∈Σn

d(π, σ0)p(π)

⇐⇒ d(σ∗, σ0) =
∑
π∈Σn

d(π, σ0)p(π). (5.36)

From Equation (5.36) we can deduce that MM(σ0, θ0) is not a fixed point if d(σ∗, σ0) ≥ D/2. This is due to the
fact that the right-hand side of Equation (5.17) tends to 0 when θ tends to infinity and the supreme possible
value of

∑
π∈Σn d(π, σ)p(π) is D/2. Consequently, MM(σ0, θ0) is not a fixed point if d(σ∗, σ0) ≥ D/2. Note

that this also means that if we start with P0 ∼ MM(σ0, θ0) such that d(σ∗, σ0) ≥ D/2, then the algorithm
can only converge to a solution σ unequal to σ0 such that d(σ∗, σ) < D/2.

Let us observe whether σ̂0 = σ0 is fulfilled when θ̂ = θ0 and d(σ∗, σ0) < D/2 (considering the case that the
estimated central permutation is unique):

σ̂0 = σ0 ⇐⇒
∑
π∈Σn

d(π, σ)pS(π) >
∑
π∈Σn

d(π, σ0)pS(π),∀σ 6= σ0. (5.37)

The right-hand side of the equation is simplified by Equation (5.36):

∑
π∈Σn

d(π, σ)pS(π) > d(σ∗, σ0),∀σ 6= σ0. (5.38)

By the definition of the selection probability (Equation (5.26)),

p(σ∗)d(σ∗, σ) + (1− p(σ∗))
∑
π∈Σn

d(π, σ)p(π) > d(σ∗, σ0),∀σ 6= σ0. (5.39)

Solving for the summation in the left-hand side of the inequality,∑
π∈Σn

d(π, σ)p(π) >
d(σ∗, σ0)− p(σ∗)d(σ∗, σ)

1− p(σ∗)
,∀σ 6= σ0. (5.40)

The value of the right-hand side of Inequality (5.40) can vary according to d(σ∗, σ). In order to avoid
repeating the same proof for different values of d(σ∗, σ), let us consider the maximum possible value of the
right-hand side of Inequality (5.40), which is the worst possible case, and prove it. Substituting the expression
d(σ∗, σ0)− p(σ∗)d(σ∗, σ) by d(σ∗, σ0), we obtain the following inequality:

∑
π∈Σn

d(π, σ)p(π) >
d(σ∗, σ0)

1− p(σ∗)
. (5.41)

On the left-hand side of Inequality (5.41), the sum depends on σ. In order to prove for all σ 6= σ0, let us
take the smallest possible value. Considering that P is a Mallows model centered at σ0, the probabilities are
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ordered according to their distance to σ0. So, from the set Σn\{σ0}, any solution σ at distance 1 from σ0
has the lowest value

∑
π∈Σn d(π, σ)p(π), because d(π, σ) = d(π, σ0)± 1. Rewriting the previous equation for

a solution σ at distance 1 from σ0,∑
π∈Σn

d(π, σ)p(π) =
∑
π∈Σn

d(π, σ0)p(π) +
∑
π∈Σn

d(π,σ0)<d(π,σ)

p(π)−
∑
π∈Σn

d(π,σ0)>d(π,σ)

p(π) >
d(σ∗, σ0)

1− p(σ∗)

(5.36)⇐⇒ d(σ∗, σ0) +
∑
π∈Σn

d(π,σ0)<d(π,σ)

p(π)−
∑
π∈Σn

d(π,σ0)>d(π,σ)

p(π) >
d(σ∗, σ0)

1− p(σ∗)

⇐⇒
∑
π∈Σn

d(π,σ0)<d(π,σ)

p(π)−
∑
π∈Σn

d(π,σ0)>d(π,σ)

p(π) >
p(σ∗)d(σ∗, σ0)

1− p(σ∗)
. (5.42)

In order to simplify the previous equation, let us introduce some new notation and definitions.

Definition 17. For any σ in Σn and d = 0, . . . , D, let us denote

mn(d) = |{π ∈ Σn : d(π, σ) = d}|. (5.43)

The sequence A008302 in The On-Line Encyclopedia of Integer Sequences (OEIS) [87] shows the first values
and some properties of mn(d) numbers.

Definition 18. For any σ and τ in Σn such that d(σ, τ) = 1, and d = 0, . . . , D, let us denote

Dd = {π ∈ Σn : d(π, σ) = d and d(π, τ) = d+ 1} (5.44)

and m1
n(d) = |Dd|.

The sequence of non-negative numbers m1
n(d) has been added in OEIS [87] (sequence A307429) and several

properties have been explained in Appendix C. To rewrite Inequality (5.42), Properties (ii), (iii) and (iv) from
Appendix C have been used. These enunciate thatmn(d) = m1

n(d) +m1
n(d− 1),m1

n(d) = m1
n(D − d− 1) and

that m1
n(d) > m1

n(d− 1) when d ∈ {0, . . . , dmax}, where dmax = (D/2)−1 when D is even and dmax = bD/2c
when D is odd. Remembering that ϕ(θ) =

∑
σ∈Σn e

−θd(σ,σ0) is the normalization constant for the Mallows
probability distribution, Inequality (5.42) can be rewritten in the following way (let us denote d(σ∗, σ0) = d∗):
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π∈Σn

d(π,σ0)<d(π,σ)

p(π)−
∑
π∈Σn

d(π,σ0)>d(π,σ)

p(π) >
p(σ∗)d(σ∗, σ0)

1− p(σ∗)

⇐⇒
∑
π∈Σn

d(π,σ0)<d(π,σ)

e−θ̂d(π,σ0)

ϕ(θ̂)
−

∑
π∈Σn

d(π,σ0)>d(π,σ)

e−θ̂d(π,σ0)

ϕ(θ̂)
>
e−d

∗θ̂

ϕ(θ̂)
· ϕ(θ̂) · d∗

ϕ(θ̂)− e−d∗θ̂

⇐⇒ (ϕ(θ̂)− e−d
∗θ̂)

 ∑
π∈Σn

d(π,σ0)<d(π,σ)

e−θ̂d(π,σ0) −
∑
π∈Σn

d(π,σ0)>d(π,σ)

e−θ̂d(π,σ0)

 > d∗ · ϕ(θ̂) · e−d
∗θ̂

⇐⇒ (ϕ(θ̂)− e−d
∗θ̂)

D∑
i=0

(
m1
n(i)−m1

n(i− 1)
)
e−iθ̂ > d∗ · ϕ(θ̂) · e−d

∗θ̂ =

D∑
i=0

d∗ ·mn(i) · e−(d
∗+i)θ̂

⇐⇒ ϕ(θ̂)

D∑
i=0

(
m1
n(i)−m1

n(i− 1)
)
e−iθ̂ >

D∑
i=0

(
m1
n(i)−m1

n(i− 1) + d∗ ·mn(i)
)
e−(d

∗+i)θ̂

⇐⇒
D∑
i=0

D∑
j=0

mn(i) ·
(
m1
n(j)−m1

n(j − 1)
)
e−(i+j)θ̂ >

D∑
i=0

(
(d∗ + 1)m1

n(i) + (d∗ − 1)m1
n(i− 1)

)
e−(d

∗+i)θ̂.

(5.45)

The proof of Inequality (5.45) is shown in Appendix D. Therefore, the learned central permutation from P ∼
MM(σ0, θ̂) is σ0. To sum up, P ∼MM(σ0, θ0) is a fixed point if d(σ∗, σ0) < D/2 and θ0 fulfills Equation (5.36).

5.4.3.2 Attraction of the fixed points

In Section 5.4.3.1, all the fixed points of the algorithm, degenerates and non-degenerates, have been studied.
Let us define a fixed point of the dynamical system attractive (attractor in [95]) if any Mallows model P near
the fixed point will converge to it: that is to say, any P that has the same central estimator as the fixed point
and a spread parameter value θ “close” to θ̂ (in the limit sense) will converge to the fixed point. In addition,
from the study of the fixed points, several observations have been derived.

For example, from Equation (5.36), the attraction of the non-degenerate fixed points is totally deduced. Let
us denote by θ̂d∗ the minimum spread parameter values which fulfill Equation (5.36) according to d(σ∗, σ0).
In Equation (5.33),

∑
π∈Σn d(π, σ0)pS(π) and

∑
π∈Σn d(π, σ0)p(π) are compared to observe when the es-

timated spread parameter value remains the same value. Let us denote by θ̂ the spread parameter value
which fulfills Equation (5.33). However,

∑
π∈Σn d(π, σ0)pS(π) and

∑
π∈Σn d(π, σ0)p(π) can be compared for

any other spread parameter value θ0. For example, when θ0 < θ̂d∗ , d(σ∗, σ0) <
∑
π∈Σn d(π, σ0)p(π) and∑

π∈Σn d(π, σ0)pS(π) <
∑
π∈Σn d(π, σ0)p(π), and consequently the learned spread parameter is greater than

θ0; and when θ0 > θ̂d∗ , then the learned spread parameter decreases. This observation shows us that the
non-degenerate fixed points are attractive.

Another observation is that for sufficiently large θ0 we obtain d(σ∗, σ0) >
∑
π∈Σn d(π, σ0)p(π) and, conse-

quently,
∑
π∈Σn d(π, σ0)pS(π) >

∑
π∈Σn d(π, σ0)p(π), which implies that θ̂0 < θ0. Hence, all the degenerate
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fixed points centered at σ 6= σ∗ are not attractive. Consequently, the algorithm ends in a non-degenerate
fixed point centered at σ 6= σ∗ or in the degenerate distribution centered at σ∗.

Moreover, Equation (5.37) shows us the condition to estimate σ0 as the central permutation. Hence, there
exists a spread parameter value θ̃d∗ (dependent on d(σ∗, σ0) < D/2) such that if θ0 < θ̃d∗ , then the estimated
central permutation is not σ0. If θ0 = θ̃d∗ , then the algorithm can estimate more than one central permutation
and its behavior will depend on the estimated central permutation. However, we will not focus on those exact
Mallows models because they represent a zero Lebesgue measure set. In Figure 5.1, the first values of θ̂ which
fulfill Equation (5.36) and θ̃d∗ are displayed for n = 4, 5, 6 and 7 and their respective d∗ values, showing
the proved result. The Y axis is plotted in logaritmic scale to recognize all the lines. In addition, for a fixed
value n, it can be verified that when d increases, due to the fact the right-hand side of Equation (5.36) is a
decreasing function, Equation (5.36) is fulfilled for a lower θ̂d value.

0 1 2 3 4 5 6 7 8 9 10 11

0.001

0.01

0.1

1

d

θ

θ̂d (n = 4)

θ̂d (n = 5)

θ̂d (n = 6)

θ̂d (n = 7)

θ̃d (n = 4)

θ̃d (n = 5)

θ̃d (n = 6)

θ̃d (n = 7)

Fig. 5.1: Spread parameter values in which Equation (5.36) (continuous lines) and Equation (5.37) (dashed
lines) are fulfilled. Each line represents the value n (n = 4, 5, 6, 7) and each point depends on d (d =
1, . . . , dD/2e − 1).

5.4.3.3 Convergence behavior of the algorithm

After analyzing the attraction of the fixed points, the next step is to study the evolution of the estimated
Mallows models; that is, when the algorithm estimates a new central permutation which is different from σ0,
is it possible to limit the number of scenarios of the algorithm in advance? Can we know which fixed point
is the convergence point of the algorithm in any situation?

In many cases it is shown to which fixed point the algorithm converges. The main result that is given about
the convergence point of the algorithm is Lemma 12. Lemma 12 demonstrates that the algorithm estimates
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a central permutation which must be in a set of solutions dependent on σ∗ and σ0. In addition, for any σ0,
there exists a spread parameter value θ̃(σ0) such that if θ0 < θ̃(σ0), then the algorithm estimates a new
central permutation different from σ0.

In order to prove Lemma 12, let us consider Definition 19.

Definition 19. Let Σn be the search space with metric d(·, ·). Let σ and π be two solutions of Σn. Then, the
segment from σ to π, C(σ, π), is the set with the permutations τ ∈ Σn such that σ, π and τ fulfill the equality
in the triangle inequality.

C(σ, π) = {τ ∈ Σn : d(σ, τ) + d(τ, π) = d(σ, π)}. (5.46)

Let us call τ ∈ C(σ, π) a solution between σ and π. Hence, C(σ, π) is the set that includes all the permutations
between σ and π. Let us call the segment from σ to π unique when |C(σ, π)| = d(σ, π) + 1.

Two swaps are disjoint if the intersection of the sets of elements exchanged by each swap is empty.

Lemma 12. Let d(·, ·) be the Kendall tau distance and f an objective function such that its maximal solution
is σ∗ and for any σ, π ∈ Σn, d(σ, σ∗) > d(π, σ∗) if and only if f(σ) ≤ f(π). Let P0 be a Mallows model with
central permutation σ0, where d(σ∗, σ0) ≥ 1, and spread parameter θ0. Then, the operator G always estimates
a solution τ ∈ C(σ∗, σ0) as the central permutation of the learned Mallows model.

Before presenting the proof of Lemma 12, let us consider some preliminary ideas about our permutation space
Σn and how the solutions can be organized and classified according to their description and the Kendall tau
distance d. To do so, let us study the Cayley graph described by (Σn, d) metric space.

Let us denote by CG(V,E) the Cayley graph in which V = Σn and

E = {(σ, π) ∈ Σn ×Σn | d(σ, π) = 1}. (5.47)

This graph has been studied in [37, 104]. Lemma 2.4 of [37] shows that there are two kinds of cycles formed
in CG(Σn, E). Because d distance has the right invariance property, without loss of generality, let us simplify
the notation and explain the two possible cycles formed by the adjacent swaps using the identity permutation
I as the reference solution. Let us denote by [i] the adjacent transposition that exchanges the elements of the
positions i and i+ 1 (i = 1, . . . , n− 1). For example, [i] ◦ I represents the solution such that elements of the
positions i and i+ 1 from I are swapped ([i] ◦ I = (1 · · · i+ 1 i · · ·n)). Analogously, let us consider a second
adjacent transposition [j].

• If [j]◦ [i]◦ I = [i]◦ [j]◦ I, then there is a unique 4-cycle in CG(Σn, E) passing through I, [i]◦ I and [j]◦ I.
Moreover, the 4-cycle is formed by the following solutions:

{I, [i] ◦ I, [j] ◦ [i] ◦ I, [j] ◦ I}. (5.48)

• If [j] ◦ [i] ◦ I 6= [i] ◦ [j] ◦ I, then [i] ◦ [j] ◦ [i] ◦ I = [j] ◦ [i] ◦ [j] ◦ I and there is a unique 6-cycle in CG(Σn, E)
passing through I, [i] ◦ I and [j] ◦ I. Moreover, the 6-cycle is formed by the following solutions:

{I, [i] ◦ I, [j] ◦ [i] ◦ I, [i] ◦ [j] ◦ [i] ◦ I, [i] ◦ [j] ◦ I, [j] ◦ I}. (5.49)
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By the definition of the generation of the cycles, the distances among the solutions of the same cycle are
minimal. That is to say, the distance between two solutions of the same cycle is the number of edges between
both solutions in the cycle.

The next observation is that considering any 4-cycle, a partition of Σn in 4 sets can be defined.

{π1, π2 = [i] ◦ π1, π3 = [j] ◦ π1, π4 = [j] ◦ [i] ◦ π1}. (5.50)

Without loss of generality, let us comment the particular case π1 = I, and the same arguments can be applied
for any other cycle. If π1 = I, then π2 = (· · · i + 1 i · · · j j + 1 · · · ); π3 = (· · · i i + 1 · · · j + 1 j · · · ); and
π4 = (· · · i+1 i · · · j+1 j · · · ). In order to simplify the notation, the solutions of the 4-cycle can be classified
according to the relative positions of the couple i and i + 1 and the couple j and j + 1. So, a partition
{S1, S2, S3, S4} of Σn is defined as follows:

S1 = {σ ∈ Σn | σ(i) < σ(i+ 1) ∧ σ(j) < σ(j + 1)};
S2 = {σ ∈ Σn | σ(i) > σ(i+ 1) ∧ σ(j) < σ(j + 1)};
S3 = {σ ∈ Σn | σ(i) < σ(i+ 1) ∧ σ(j) > σ(j + 1)};
S4 = {σ ∈ Σn | σ(i) > σ(i+ 1) ∧ σ(j) > σ(j + 1)}.

(5.51)

It is evident that the partition is well-defined. Moreover, among these 4 sets, for each pair of sets a bijection
can be described:

S1 −→ S2 −→ S3 −→ S4

πS1 7−→ πS2 7−→ πS3 7−→ πS4

(5.52)

such that


πS1(i) = πS2(i+ 1) = πS3(i) = πS4(i+ 1)
πS1(i+ 1) = πS2(i) = πS3(i+ 1) = πS4(i)
πS1

(j) = πS2
(j) = πS3

(j + 1) = πS4
(j + 1)

πS1
(j + 1) = πS2

(j + 1) = πS3
(j) = πS4

(j)
πS1

(k) = πS2
(k) = πS3

(k) = πS4
(k), for any k 6= i, i+ 1, j, j + 1.

(5.53)

An important property of this defined partition is that if σ ∈ S1, then d(π1, σ) < d(π2, σ) = d(π3, σ) < d(π4, σ)
is fulfilled and analogously with the solutions of the sets S2, S3 and S4.

The previous idea can be repeated with two non-disjoint adjacent swaps, forming a 6-cycle and defining a
partition of Σn in 6 sets, and for any cycle. In addition, we can extend the idea by using just one adjacent
swap. In this last case, we can define a partition of Σn in two sets and a bijection between the sets, according
to the relative position of the two elements permuted by the swap. This property is the main argument of
the proof of Lemma 12.

Once we know how the solutions are organized in the metric space (Σn, d), Lemma 12 is proved by induction
as follows. For any solution τ /∈ C(σ∗, σ0), there exists another solution ρ1 ∈ Σn such that ρ1 is “closer” to
σ∗ and σ0 than τ and fulfills the following inequality:

∑
π∈Σn

d(π, τ)pS(π) >
∑
π∈Σn

d(π, ρ1)pS(π). (5.54)
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In this way, the argument can be applied for all the solutions not included in C(σ∗, σ0) and, therefore, for
any solution τ /∈ C(σ∗, σ0), there is a solution ρ ∈ C(σ∗, σ0) such that ρ fulfills Inequality (5.54) with regard
to τ .

Proof. For any τ /∈ C(σ∗, σ0), there are two possible cases: (1) there is a solution ρ1 such that d(τ, ρ1) = 1,
d(τ, σ∗) = d(ρ1, σ

∗) + 1 and d(τ, σ0) = d(ρ1, σ0) + 1 and (2) there is no such solution ρ1.

In the first case, if i and j are the elements swapped in the adjacent transposition between τ and ρ1, it means
that any solution of C(σ∗, σ0) keeps the same relative order between the elements i and j as ρ1 does. So,

∑
π∈Σn

d(π, τ)pS(π) >
∑
π∈Σn

d(π, ρ1)pS(π)

⇐⇒
∑
π∈Σn

d(π, ρ1)pS(π) +
∑
π∈Σn

d(π,τ)>d(π,ρ1)

pS(π)−
∑
π∈Σn

d(π,τ)<d(π,ρ1)

pS(π) >
∑
π∈Σn

d(π, ρ1)pS(π)

⇐⇒
∑
π∈Σn

d(π,τ)>d(π,ρ1)

pS(π)−
∑
π∈Σn

d(π,τ)<d(π,ρ1)

pS(π) > 0. (5.55)

Let us consider the following bijection:

Sτ = {σ ∈ Σn | d(σ, τ) < d(σ, ρ1)} −→ Sρ = {σ ∈ Σn | d(σ, τ) > d(σ, ρ1)}
στ 7−→ σρ

(5.56)

such that στ (i) = σρ(j), στ (j) = σρ(i) and στ (k) = σρ(k), for any k 6= i, j. According to the relative position
of i and j, σρ is closer to σ∗ and σ0 than στ and therefore, pS(σρ) > pS(στ ) is achieved. Consequently,
Inequality (5.55) is obtained.

In the second case, let us suppose that there are no swaps from τ that decrease the distance to σ∗ and σ0
at the same time. First, let us consider an adjacent swap [i] from τ that reduces the distance to σ∗. Let us
denote ρ′ = [i] ◦ τ . Therefore, similar to the first case, a bijection can be defined according to the relative
position of the elements in the positions i and i+ 1 in τ . Analogously, let us consider a second swap [j] from
τ that reduces the distance to σ0, denote ρ′′ = [j] ◦ τ and define a bijection for the elements positioned at j
and j+ 1 in τ . The transpositions [i] and [j] define a unique cycle passing through τ . Moreover, by definition
of the swaps and the segment C(σ∗, σ0) and the bijections defined in (5.52), this situation can only happen
when the swaps (i i + 1) and (j j + 1) are not disjoint, which implies that the formed cycle has length 6.
Besides, this cycle also implies that if we denote by ρτ the furthest solution of the cycle from τ , then ρτ
is closer to σ∗ and σ0 at the same time than τ . Figure 5.2 presents the unique possible scenario. Hence,
d(σ∗, ρτ ) + d(ρτ , σ0) < d(σ∗, τ) + d(τ, σ0).

Let us rewrite the sum
∑
π∈Σn d(π, τ)pS(π):
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[i+ 1] ◦ τ
[i] ◦ [i+ 1] ◦ τ

[i] ◦ [i+ 1] ◦ [i] ◦ τ

[i+ 1] ◦ [i] ◦ τ
[i] ◦ τ

τ

ρ′′

ρτ

ρ′

Fig. 5.2: Example of the generated 6-cycle over τ with two non-disjoint adjacent swaps.

∑
π∈Σn

d(π, τ)pS(π) =
∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,ρ′)<d(π,ρ′′)

d(π, τ)pS(π) +
∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,ρ′)=d(π,ρ′′)

d(π, τ)pS(π)

+
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,ρ′)>d(π,ρ′′)

d(π, τ)pS(π) +
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,ρ′)=d(π,ρ′′)

d(π, τ)pS(π).

(5.57)

We distribute the sums in two groups, depending on whether or not d(π, ρ′) = d(π, ρ′′).


∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,ρ′)=d(π,ρ′′)

d(π, τ)pS(π) +
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,ρ′)=d(π,ρ′′)

d(π, τ)pS(π)

+

+


∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,τ)<d(π,ρ′′)

d(π, τ)pS(π) +
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,τ)>d(π,ρ′′)

d(π, τ)pS(π)

 . (5.58)

To prove that the first square brackets sum is a positive value, for a solution π ∈ Σn, if d(π, ρ′) = d(π, ρ′′) <
d(π, τ), then d(π, ρτ ) < d(π, τ). So, if we denote by (i i+ 1 i+ 2) the set of elements which are permuted in
the 6-cycle, we define the following bijection:

Sτ = {σ ∈ Σn | d(σ, ρτ )− d(σ, τ) = 3} −→ Sρ = {σ ∈ Σn | d(σ, τ)− d(σ, ρτ ) = 3}
στ 7−→ σρ

(5.59)
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such that στ (i) = σρ(i + 2), στ (i + 2) = σρ(i) and στ (k) = σρ(k), for any k 6= i, i + 2. Therefore, a
correspondence between both sets is shown, and by the definition of the sets, pS(σρ) > pS(στ ) is obtained
for all στ ∈ Sτ .

For the second square bracket, if d(π, ρ′) < d(π, τ) < d(π, ρ′′), then d(π, τ) = d(π, ρ′) + 1 = d(π, ρ′′)− 1, and
if d(π, ρ′) > d(π, τ) > d(π, ρ′′), then d(π, τ) = d(π, ρ′) − 1 = d(π, ρ′′) + 1. So, the second square bracket of
(5.58) can be rewritten in the following way:

∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,τ)<d(π,ρ′′)

d(π, τ)pS(π) +
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,τ)>d(π,ρ′′)

d(π, τ)pS(π)

=
∑
π∈Σn

d(π,ρ′)6=d(π,ρ′′)

d(π, ρ′)pS(π) +
∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,τ)<d(π,ρ′′)

pS(π)−
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,τ)>d(π,ρ′′)

pS(π)

=
∑
π∈Σn

d(π,ρ′)6=d(π,ρ′′)

d(π, ρ′′)pS(π)−
∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,τ)<d(π,ρ′′)

pS(π) +
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,τ)>d(π,ρ′′)

pS(π). (5.60)

Therefore, depending on θ0, it can be ensured that

∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,τ)<d(π,ρ′′)

pS(π)−
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,τ)>d(π,ρ′′)

pS(π) > 0 or −
∑
π∈Σn

d(π,ρ′)<d(π,τ)
d(π,τ)<d(π,ρ′′)

pS(π) +
∑
π∈Σn

d(π,ρ′)>d(π,τ)
d(π,τ)>d(π,ρ′′)

pS(π) > 0. (5.61)

Consequently, there is a solution ρ1 ∈ {ρ′, ρ′′} such that

∑
π∈Σn

d(π, τ)pS(π) >
∑
π∈Σn

d(π, ρ1)pS(π). (5.62)

So, for τ /∈ C(σ∗, σ0), there exists a solution ρ1 ∈ Σn such that d(ρ1, τ) = 1 and ρ1 fulfills Inequality (5.54).
If ρ1 /∈ C(σ∗, σ0), then by the same arguments, there exists another solution ρ2 ∈ Σn such that d(ρ1, ρ2) = 1
and ρ2 fulfills Inequality (5.54) with regard to ρ1, and so on. Because τ /∈ C(σ∗, σ0), at least one induction
step must fulfill the first situation explained in this proof (fulfilling Inequality (5.55)). Consequently, ρi is a
solution from C(σ∗, σ0) such that it is a better estimator than ρ1, . . . , ρi−1 and τ . 2

Lemma 12 shows us that the algorithm estimates central permutations from the set C(σ∗, σ0). Bear in mind
that during the proof of Lemma 12, the particular expression of f has not been used. Therefore, for our
particular case, we can deduce Corollary 8.

Corollary 8. Let f be a needle in a haystack function centered at σ∗ and P0 a Mallows model with central
permutation σ0, where d(σ∗, σ0) = d∗ ≥ 1, and spread parameter θ0. Then, the operator G always estimates
a solution τ ∈ C(σ∗, σ0) as the central permutation of the learned Mallows model.
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Proof. When f is a needle in a haystack function, then f(σ) < f(σ∗) for any σ 6= σ∗. Hence, the conditions
of Lemma 12 are fulfilled. 2

To summarize, the operator G ends in a non-degenerate fixed point or in the degenerate distribution centered
at σ∗. The non-degenerate fixed points are centered at solutions σ such that d(σ∗, σ) < D/2. In addition,
when the algorithm estimates a different solution of σ0, the learned central estimator is a solution from
C(σ∗, σ0)\{σ0}.

All the results of Sections 5.4.1,5.4.2 and 5.4.3 are briefly shown in Table 5.1. In the first column, the section
is shown. In the second and third columns, the initial parameters of P0 (σ0 and θ0) are described. Finally, in
the last column, the explanations of the performance of the algorithm for each situation can be found.

Table 5.1: Classification of the behaviors of the EDA. f : Needle in a haystack(σ∗) and P0 ∼ MM(σ0, θ0),
where D = n(n− 1)/2.

Section Initial σ0 Initial θ0 Performance

5.4.1 σ ∈ Σn
θ0 = 0

(P0 uniform) The algorithm converges to the degenerate distribution centered
at σ∗.

5.4.2 σ∗ θ0 > 0 The algorithm converges to the degenerate distribution centered
at σ∗.

5.4.3 σ ∈ Σn s.t.
0 < d(σ∗, σ) < D/2

θ0 > 0 There exists a spread parameter value θ̃d in which
minτ∈Σn

∑
π∈Σn d(π, τ)pS(π) =

∑
π∈Σn d(π, σ)pS(π) =∑

π∈Σn d(π, σ0)pS(π) for a particular σ ∈ C(σ∗, σ0)\{σ0},
by Corollary 8.
• If θ0 < θ̃d, then σ̂0 6= σ0. So, the algorithm estimates a new cen-
tral permutation σ′ ∈ C(σ∗, σ0)\{σ0} and the convergence behav-
ior of the operator G is the same as the case when P0 ∼MM(σ′, θ̂).
• If θ0 = θ̃d, then σ̂0 ∈ C(σ∗, σ0). According to the estimated
central permutation, if σ̂0 6= σ0, it behaves as the case θ0 < θ̃d;
otherwise, it behaves as the case θ0 > θ̃d.
• If θ0 > θ̃d, then the algorithm converges to the fixed point
MM(σ0, θ̂d) such that θ̂d is the spread parameter value where∑
π∈Σn d(π, σ0)pS(π) =

∑
π∈Σn d(π, σ0)p(π) = d(σ∗, σ0).

5.4.3 σ ∈ Σn s.t.
d(σ∗, σ) ≥ D/2 θ0 > 0 If σ̂0 = σ0, then θ̂ < θ0, and the algorithm will be at the

same situation as the beginning with a lower spread parame-
ter. Otherwise, the algorithm estimates a new central estimator
σ′ ∈ C(σ∗, σ0)\{σ0}. Consequently, the operator G cannot con-
verge to any solution σ ∈ Σn such that d(σ∗, σ) ≥ D/2.
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5.5 Limiting behavior for a Mallows model function

In this section, the function f to optimize is a Mallows probability distribution with central permutation σ∗
and spread parameter θ∗ > 0, without loss of generality. The Mallows model has been studied as an example
of a unimodal objective function with different quality of solutions according to their distance to the central
permutation. The objective of this section is to analyze the relation among the learned Mallows probability
distributions by our dynamical system and the objective function. For that reason, we believe that it is a
motivating starting point to study unimodal functions. In Section 5.5.1, the initial probability distribution
P0 is a uniform distribution and the procedure of the algorithm at each iteration is analyzed. In Section 5.5.2,
P0 is a Mallows probability distribution centered at σ 6= σ∗. In this scenario, the fixed points of the algorithm
and the convergence behavior of the algorithm are studied, in a similar way as in Section 5.4.3.

5.5.1 P0 a uniform initial probability distribution

In this section, it is proved that when the initial probability distribution and the fitness functions are Mallows
models centered at the same solution, the algorithm converges to the degenerate distribution centered at the
optimum. The obtained result is summarized in the following lemma.

Lemma 13. Let f be a Mallows model centered at σ∗ and spread parameter θ∗ and P0 a Mallows model
with central permutation σ∗ and spread parameter θ0 ≥ 0. Then, the proposed EDA always converges to the
degenerate distribution centered at σ∗.

Proof. For this particular scenario, we have studied how the algorithm performs at each iteration, analogous
to Section 5.4.1. Let us start the demonstration from the case that P0 is a uniform distribution. First, in
order to calculate P1 = G(P0), let us calculate PS0 .

Bear in mind that the 2-tournament does not consider the exact function values of the solutions. In other
words, by the definition of the Mallows probability distribution, a solution is selected more often if it is
closer to σ∗, and to study the selection between two solutions, their distances to σ∗ are compared. With this
property in mind, we can rewrite Equation (5.13) in the following way: for any iteration of the algorithm i,

pSi (σ) = 2
∑
π∈Σn

d(σ,σ∗)<d(π,σ∗)

pi(σ)pi(π) +
∑
π∈Σn

d(σ,σ∗)=d(π,σ∗)

pi(σ)pi(π). (5.63)

The next step is to estimate the central permutation and spread parameter from PS0 to learn P1. First, to
estimate σ0, let us order the solutions increasingly according to their distance from σ∗. Remember that two
solutions have the same probability to be selected if they are at the same distance from σ∗. For any σ ∈ Σn,

∑
π∈Σn

d(π, σ) · pS0 (π) =

D∑
d=0

pS0 (σ̃d)
∑
π∈Σn

d(π,σ∗)=d

d(π, σ)

 , (5.64)

where σ̃d denotes a solution at distance d from σ∗: d(σ̃d, σ
∗) = d.



84 5 A mathematical analysis of EDAs with distance-based exponential models

By Equation (5.63), pS0 (σ̃0) > pS0 (σ̃1) > · · · > pSi (σ̃D). So, by Equation (5.16), the maximum likelihood
estimator of σ0 must minimize

∑
π∈Σn d(π, σ̂0) · pS0 (π), knowing that the selection probabilities are ordered

according to their distance to σ∗ (the lower the distance from σ∗ to π, the higher the value pS(π) is). For
that reason, the maximum likelihood estimator of σ0 is σ∗, and consequently, P1 follows a Mallows model
with central permutation σ∗ and a positive spread parameter θ1, as a consequence of Lemma 9.

The previous arguments can be used for any iteration. Hence, Pi is a Mallows model with central permutation
σ∗ and spread parameter θi > 0, for any i ∈ N. In order to see the evolution of the algorithm and the
convergence behavior, let us prove that θi increases at each iteration. To this end, the difference between the
values of the left-hand side of Equation (5.17) in two consecutive iterations are analyzed:

∑
π∈Σn d(π, σ∗) ·

pSi (π) and
∑
π∈Σn d(π, σ∗)·pSi+1(π). By the same arguments used in Section 5.4.1, the equality

∑
π∈Σn d(π, σ∗)·

pSi (π) =
∑
π∈Σn d(π, σ∗) · pi+1(π) is obtained. Let us use the sequence mn(0),mn(1), . . . ,mn(D) given in

Definition 17 and simplify the notation of the probabilities. By definition of the selection operator, for any
σ ∈ Σn such that d(σ, σ∗) = d, pS(σ) can be rewritten in the following way:

pS(σ) = p(σ)

(
2

(
1−

d−1∑
i=0

mn(i)p(σ̃i)

)
−mn(d)p(σ̃d)

)
. (5.65)

Hence,

∑
π∈Σn

d(π, σ∗)·pS(π) =
∑
π∈Σn

d(π, σ∗)·p(π)+

D∑
d=1

mn(d)·d·p(σ̃d)

(
1− 2

d−1∑
i=0

mn(i)p(σ̃i)−mn(d)p(σ̃d)

)
, (5.66)

Let us define the function h:

h(θ) =

D∑
d=1

mn(d) · d · p(σ̃d)

(
1− 2

d−1∑
i=0

mn(i)p(σ̃i)−mn(d)p(σ̃d)

)
. (5.67)

For any θ ≥ 0, h(θ) is a negative value (see proof in Proposition 7 of Appendix D). Consequently,

∑
π∈Σn

d(π, σ∗) · pS(π) <
∑
π∈Σn

d(π, σ∗) · p(π), (5.68)

and due to the fact that the function g defined in Equation (5.19) is a strictly decreasing function over θ, we
obtain θi+1 > θi.

Therefore, after applying our modeling, departing from a uniform distribution, to a function defined as a
Mallows model, the algorithm converges to the degenerate distribution centered at σ∗. 2

5.5.2 P0 a Mallows probability distribution with central permutation σ0, where
d(σ∗, σ0) = d∗ ≥ 1, and spread parameter θ0

The algorithm can experience many different behaviors depending on σ∗ and σ0. However, there are groups
of different central permutations σ0 such that the algorithm behaves analogously. The analogy of the analysis
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with different central permutations can be obtained by means of symmetry among the solutions of Σn. Due
to the difficulty of studying all of them, we have worked in a similar way as in Section 5.4.3. In Section 5.5.2,
the following proof idea is used:

i) In Section 5.5.2.1, the fixed points and their attraction are calculated.

• First, it is observed that any degenerate distribution is a fixed point.

• Then, the equations such that any non-degenerate fixed point must fulfill are calculated.

ii) In Section 5.5.2.2, the convergence behavior of the algorithm is explained and an example is shown.

A summary of all the results obtained in Section 5.5 is shown in Table 5.2 at the end of this section.

5.5.2.1 Fixed points of the algorithm and their attraction

The case n = 2 will not be explained because of its simplicity. From now on, let us suppose that n ≥ 3 and
study the fixed points of our discrete dynamical system G. As in Section 5.4.3.1, knowing that any degenerate
distribution is a fixed point of the discrete dynamical system G, let us focus on the non-degenerate fixed
points.

For any Mallows probability distribution P , G(P ) = P if and only if the estimated central permutation and
spread parameter are the same as those of P . So, if Equation (5.35) is fulfilled, then P is a non-degenerate
fixed point. Let us study the equality of Equation (5.35). We say that P is a candidate fixed point if it satisfies
Equation (5.33). Note that if P is a candidate fixed point, then θ̂ = θ.

∑
π∈Σn

d(π, σ0)pS(π) =
∑
π∈Σn

d(π, σ0)p(π)

(5.63)⇐⇒
∑
π∈Σn

d(π, σ0)p(π)

 ∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

2p(τ) +
∑
τ∈Σn

d(τ,σ∗)=d(π,σ∗)

p(τ)

 =
∑
π∈Σn

d(π, σ0)p(π)

⇐⇒
∑
π∈Σn

d(π, σ0)p(π)

 ∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

p(τ)

 =
∑
π∈Σn

d(π, σ0)p(π)

 ∑
τ∈Σn

d(τ,σ∗)<d(π,σ∗)

p(τ)


⇐⇒

∑
π∈Σn

∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

p(π)p(τ) [d(π, σ0)− d(τ, σ0)] = 0

⇐⇒
∑
π∈Σn

∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

e−θ(d(π,σ0)+d(τ,σ0)) [d(π, σ0)− d(τ, σ0)] = 0. (5.69)

As can be observed, Equation (5.69) shows the first condition for a Mallows probability distribution P
centered at σ0 to be a fixed point. Equation (5.69) has at least one solution θ (depending on n, σ∗ and
σ0, it may have more than one). One way to calculate the number of candidate fixed points centered at σ0
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is to count the number of roots in Equation (5.69) by Sturm’s theorem [99]. The exponential polynomial
in θ ∈ [0,+∞) can be transformed into a polynomial defined in (0, 1] (transforming e−θ = x) in order to
apply Sturm’s theorem. Moreover, the roots can be numerically solved to find the values of θ in which P ∼
MM(σ0, θ) are candidate fixed points.

Moreover, for any pair of permutations π, τ (w.l.o.g., d(τ, σ∗) > d(π, σ∗)), if we choose the pair of permutations
I ′π, I ′τ where I ′ = (n n− 1 · · · 1), the following similarities can be observed:

{
d(τ, σ∗) > d(π, σ∗)⇐⇒ D − d(I ′τ, σ∗) > D − d(I ′π, σ∗)⇐⇒ d(I ′τ, σ∗) < d(I ′π, σ∗)
d(π, σ0)− d(τ, σ0) = D − d(I ′π, σ0)−D + d(I ′τ, σ0) = d(I ′τ, σ0)− d(I ′π, σ0).

(5.70)

Hence,

e−θ(d(π,σ0)+d(τ,σ0)) [d(π, σ0)− d(τ, σ0)] = e−2Dθeθ(d(I
′τ,σ0)+d(I

′π,σ0)) [d(I ′τ, σ0)− d(I ′π, σ0)] . (5.71)

Therefore, for any σ0 ∈ Σn, let us define the function H as follows:

H(σ0, θ) =

2D−1∑
i=1

Hie
−iθ =

∑
π∈Σn

∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

e−θ(d(π,σ0)+d(τ,σ0)) [d(π, σ0)− d(τ, σ0)] . (5.72)

By Equation (5.71), Hi = H2D−i. In addition, H(σ0, θ) = −H(I ′σ0, θ) for any σ0 ∈ Σn and θ. Consequently,
H(σ0, θ̂) = 0 if and only if H(I ′σ0, θ̂) = 0. So, if P is a candidate fixed point with central permutation σ0
and spread parameter θ̂, then a Mallows probability distribution with central permutation I ′σ0 and spread
parameter θ̂ is a candidate fixed point as well.

In addition, from the previous observation, it has been equivalently shown that

∑
π∈Σn

d(π, σ0)pS(π) <
∑
π∈Σn

d(π, σ0)p(π)⇐⇒
∑
π∈Σn

∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

e−θ(d(π,σ0)+d(τ,σ0)) [d(π, σ0)− d(τ, σ0)] < 0

(5.73)
and analogous for the opposite inequality. So, when θ tends to infinity, the highest exponential coefficient of
H(σ0, θ) determines if the value is positive or not.

Considering all the observations of Equation (5.69) and Inequality (5.73), in comparison with the results
from Sections 5.4.3.1 and 5.4.3.2, some new scenarios have been observed. The first one is that for a fixed
permutation σ0, there can be more than one candidate fixed point. Hence, the algorithm can converge to more
than one probability distribution centered at σ0. Moreover, from Equation (5.72), similarities between σ0 and
I ′σ0 have been observed. Secondly, information about the attraction of the fixed points has been analyzed,
even if the candidate fixed points are fixed points or not. From Inequality (5.73) whether or not if the
degenerate distribution centered at σ0 is an attractive fixed point can be studied. Furthermore, knowing the
attraction of the degenerate distribution, the attraction of all the candidate fixed points is completely defined.
Reordering all the candidate fixed points centered at σ0 according to their spread parameters, they alternate
their attraction in order not to obtain two consecutive candidate fixed points with the same attraction.
Consequently, the last objective is to observe when a candidate fixed point is a fixed point.
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To study if a candidate fixed point is a fixed point, it is necessary to observe if the estimated central
permutation σ̂0 from a candidate fixed point P centered at σ0 is exactly σ0. So as to obtain the same central
permutation, the inequality of Equation (5.35) must be fulfilled at the solution θ̂ of Equation (5.69) (assuming
the uniqueness of the central permutation). Hence, for all σ 6= σ0,

∑
π∈Σn

d(π, σ)pS(π) >
∑
π∈Σn

d(π, σ0)p(π)

⇐⇒
∑
π∈Σn

d(π, σ)p(π)

1 +
∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

p(τ)−
∑
τ∈Σn

d(τ,σ∗)<d(π,σ∗)

p(τ)

 >
∑
π∈Σn

d(π, σ0)p(π)

⇐⇒
∑
π∈Σn

∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

p(π)p(τ) [d(π, σ)− d(τ, σ)] >
∑
π∈Σn

p(π) [d(π, σ0)− d(π, σ)]

⇐⇒
∑
π∈Σn

∑
τ∈Σn

d(τ,σ∗)>d(π,σ∗)

p(π)p(τ) [d(τ, σ)− d(π, σ)] <
∑
π∈Σn

p(π) [d(π, σ)− d(π, σ0)] . (5.74)

Inequality (5.74) shows us the condition to estimate σ0 as the learned central permutation. Even though
it can be completely separated according to their dependence to the distance from σ∗, a general solution
cannot be observed (without knowing the particular values of the probabilities and distances) which tells
us in advance if Inequality (5.74) is fulfilled or not. Actually, some experimental results show that there are
candidate fixed points which do not fulfill Inequality (5.74).

In Figure 5.3, an example of the attraction of the fixed points is shown for n = 5. The X axis shows σ0,
numerically indexed according to their distance to σ∗, and the Y axis represents the values of θ0 which fulfill
Equation (5.69). Therefore, each dot represents a candidate fixed point. The yellow or gray color of the dot
represents the attraction of the fixed point if it is a fixed point, whereas the point is orange if it does not
fulfill Inequality (5.74). For any central permutation σ0, the degenerate fixed points have been illustrated.

To summarize, Inequality (5.74) ensures exactly which candidates are the fixed points of our dynamical
system.

5.5.2.2 Convergence behavior of the algorithm

Before introducing the convergence behavior of the algorithm, let us state Corollary 9, deduced from
Lemma 12.

Corollary 9. Let f be a Mallows model centered at σ∗ and spread parameter θ∗ and P0 a Mallows model
with central permutation σ0, where d(σ∗, σ0) = d∗ ≥ 1, and spread parameter θ0. Then, the operator G always
estimates a solution τ ∈ C(σ∗, σ0) as the central permutation of the learned Mallows model.

Proof. When f is a Mallows model centered at σ∗ and spread parameter θ∗ > 0, for any σ, π ∈ Σn, f(σ) >
f(π) if and only if d(σ, σ∗) < d(π, σ∗). Hence, the conditions of Lemma 12 are fulfilled. 2
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Fig. 5.3: Candidate fixed points of our algorithm (σ and θ values such that MM(σ, θ) fulfills Equation (5.69))
and their attraction (n = 5). The X axis differentiate all the permutations of Σ5. The Y axis shows the spread
parameter values.

Once we have Corollary 9 and we know the fixed points and their attraction, the behavior of the algorithm
is totally defined and it can be summarized in the following way:

• For any P0 ∼ MM(σ0, θ0), there exists a spread parameter value θ′(σ0) dependent on σ0 such that if
θ0 < θ′(σ0), then Inequality (5.74) is not fulfilled for all σ. In that case, by Corollary 9, the estimated
central permutation after one iteration of the algorithm is a solution from C(σ∗, σ0)\{σ0}.

• If θ0 > θ′(σ0), then the algorithm estimates σ0 as the central permutation of the learned Mallows model.
Let us classify the different possible behaviors according to the number of fixed points centered at σ0:

– If there are no non-degenerate solutions centered at σ0 (there are no solutions for Equation (5.69)),
then the only fixed point centered at σ0 is the degenerate distribution 1σ0 . In this case, if 1σ0 is
attractive, the algorithm converges to it; otherwise, the estimated spread parameter decreases until
an iteration when θ̂ < θ′(σ0) and, therefore, the estimated central permutation is not σ0 anymore,
returning back to the previous situation.

– If there are i ≥ 1 non-degenerate fixed points centered at σ0, then there exist i spread parameter
values θ̃i which solve Equation (5.69) and fulfill Inequality (5.74). Hence, θ′(σ0) and θ̃j for j = 1, . . . , i
divide the interval (θ′(σ0),+∞) in i+ 1 intervals.

Let us denote by (θ′(σ0), θ̃1), (θ̃1, θ̃2), . . . , (θ̃i−1, θ̃i) and (θ̃i,+∞) the i + 1 formed intervals; Pk the
non-degenerate fixed point centered at σ0 and spread parameter θ̃k, for k = 1, . . . , i; and 1σ0

the
degenerate fixed point centered at σ0. There are two possible situations, depending on whether 1σ0

is attractive or not.

If 1σ0
is attractive, then Pi is not attractive and when θ0 ∈ (θ̃i,+∞), the algorithm converges to 1σ0

.
Moreover, because of the non-attraction of Pi and by the same argument, Pi−1 is attractive and Pi−2
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is not attractive, Pi−3 is attractive and Pi−4 is not attractive, and so on. Hence, if θ0 ∈ (θ̃i−2, θ̃i), the
algorithm converges to Pi−1; if θ0 ∈ (θ̃i−4, θ̃i−2), the algorithm converges to Pi−3; and so on.

Additionally, if 1σ0 is not attractive, then Pi is attractive and Pi−1 is not attractive, and when
θ0 ∈ (θ̃i−1,+∞), the algorithm converges to Pi. Moreover, Pi−2 is attractive and Pi−3 is not attractive,
and when θ0 ∈ (θ̃i−3, θ̃i−1), the algorithm converges to Pi−2. And so on.

Observe that when P1 is not attractive and θ0 ∈ (θ′(σ0), θ̃1), the algorithm estimates lower spread
parameters until θ̂0 < θ′(σ0). In this case, the algorithm estimates a new central permutation from
C(σ∗, σ0)\{σ0}.

Figure 5.4 is presented in order to show a visualization of the possible situations. The horizontal
line represents the possible θ0 value. In each interval, a blue arrow tells us if the estimated spread
parameter is higher or lower, and the attraction of each fixed point can be observed. There are four
possible cases, depending on the parity of i and the attraction of 1σ0 . In the first two cases, i is an
odd number, and in the first and fourth cases, 1σ0 is an attractive fixed point.

θ0

θ0

i odd
(a)

(b)

∞

∞

0

0

θ′(σ0)
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P∞
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Fig. 5.4: Representation of all the possible scenarios in which the convergence behavior of the algorithm
is represented. The cases are divided in 4, according to the parity of the value i and the attraction of the
degenerate distribution 1σ0 .

• If θ0 = θ′(σ0), then the algorithm can randomly estimate σ0 or another σ ∈ C(σ∗, σ0) as the new central
permutation. In the former case, if the fixed point with the lowest spread parameter centered at σ0 is
attractive, the algorithm will converge to it. Otherwise, the algorithm learns a probability distribution
centered at σ0 and spread parameter θ̂ < θ0, and it behaves analogous as to the case θ0 < θ̂0. In the
latter case, the algorithm estimates a new central permutation σ and spread parameter θ̂, and it will be
analogous as P0 ∼ MM(σ, θ̂).

Let us present an example in order to illustrate the behavior described above.

Example 14. Let us consider n = 5, f a Mallows model centered at σ∗ = I and P0 a Mallows probability
distribution with central permutation σ0 = (21543) and spread parameter θ0. To observe the behavior of the
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algorithm, let us calculate the candidate fixed points by Equation (5.69) and the minimum spread parameter
value θ′(σ0) that allows the estimation of σ0 as the learned central permutation, by Inequality (5.74).

In this particular case, there is only one solution which fulfills Equation (5.69): θ̃ ≈ 1.2519. Moreover,
Inequality (5.74) shows that the equality is obtained when θ′(σ0) ≈ 0.2770. Therefore, a Mallows probability
distribution centered at σ0 with spread parameter value θ̃ is a fixed point of our mathematical modeling. In
addition, if θ0 > θ̃, then θ̂ < θ0. This last observation implies that the degenerate distribution centered at
σ0 is not attractive, and consequently, MM(σ0, θ̃) is an attractive fixed point. Knowing the attraction of the
fixed points, the value of θ0 determines the behavior of the algorithm.

– If θ0 < θ′(σ0), then σ̂0 ∈ C(σ∗, σ0)\{σ0}. Hence, after one iteration, the algorithm restarts the process
with a new central permutation and spread parameter. For example, if θ0 = 0.2760, then the learned
Mallows model after one iteration of the algorithm is MM((12453), 0.4016); and if θ0 = 0.2700, then the
learned Mallows model is MM(σ∗, 0.3994).

– If θ0 > θ′(σ0), then the algorithm converges to MM(σ0, θ̃) distribution.

– If θ0 = θ′(σ0), then the algorithm estimates either σ0 or σ̂0 ∈ C(σ∗, σ0)\{σ0}. In the first case, the algo-
rithm converges to MM(σ0, θ̃), whereas in the second case, the algorithm estimates MM((12453), 0.4023)
probability distribution after one iteration.

For any σ0, the same test would be repeated. All the results of Sections 5.5.1 and 5.5.2 are briefly shown in
Table 5.2, mentioning the initial parameters of P0 and explaining the performance of the algorithm.
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Table 5.2: Classification of the behaviors of the EDA. f ∼ MM(σ∗, θ∗) and P0 ∼ MM(σ0, θ0)

Section Initial σ0 Initial θ0 Performance

5.5.1 σ ∈ Σn
θ0 = 0

(P0 uniform) The algorithm converges to the degenerate distribution centered at σ∗.

5.5.1 σ∗ θ0 > 0 The algorithm converges to the degenerate distribution centered at σ∗.

5.5.2 σ ∈ Σn s.t.
d(σ∗, σ) > 0

θ0 < θ′(σ0) Inequality (5.74) is not fulfilled. Hence, by Corollary 9, the algorithm
estimates a new central permutation σ′ ∈ C(σ∗, σ0)\{σ0}. Hence, the
convergence behavior of the algorithm is the same as the case when
P0 ∼ MM(σ′, θ̂).

5.5.2 σ ∈ Σn s.t.
d(σ∗, σ) > 0

θ0 > θ′(σ0) The algorithm estimates σ0 as the learned central permutation of
the Mallows model. According to the number of solutions in Equa-
tion (5.69), there are several possible convergence behaviors of the al-
gorithm:
• If Equation (5.69) has no solution, then the algorithm converges to
σ0 if θ̂ > θ0. Otherwise, after some iterations, the algorithm estimates
a new central permutation from the segment C(σ∗, σ0). Therefore, the
convergence behavior of the algorithm is the same as the case when
P0 ∼ MM(σ′, θ′), being θ′ the estimated spread parameter when σ̂0 =
σ′ is obtained.
• If Equation (5.69) has at least one solution, then θ0 is in an interval
between two fixed points or θ′(σ0) < θ0 < θ̃1. In the first situation,
at least one of the fixed points is attractive and the algorithm con-
verges to it. In the second situation, if the fixed point with the lowest
spread parameter is attractive, the algorithm converges to it; otherwise,
the algorithm estimates a new central permutation from the segment
C(σ∗, σ0) after some iterations, and it behaves in the same way as in
the case P0 ∼ MM(σ′, θ′).

5.5.2 σ ∈ Σn s.t.
d(σ∗, σ) > 0

θ0 = θ′(σ0) The algorithm can estimate σ0 or σ ∈ C(σ∗, σ0)\{σ0} which fulfills
Inequality (5.74) (this election is random). In the former case, the
algorithm behaves as the previous case; and in the latter case, the
algorithm behaves as in case θ0 < θ′(σ0).

5.6 Conclusions

We have presented a mathematical modeling to study an EDA based on Mallows models using discrete dy-
namical systems based on the expectations. Under this framework, we have studied the convergence behavior
of the algorithm for several objective functions and initial probability distributions. Two different approaches
have been followed to study the convergence behavior. For the simplest cases, the computation of one it-
eration of the algorithm has allowed to prove the limit behavior, whereas for the most complex cases, the
fixed points of the algorithm and their attraction have been analyzed. Overall, for the latter, a wide range of
possible ending probability distributions and trajectories for the algorithm have been observed, which, given
its practical success [17], were by no means anticipated.
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The main results can be summarized as follows. When the function to optimize is constant, all Mallows
probability distributions are fixed points. When the function to optimize is a needle in a haystack function
centered at σ∗ and the initial probability distribution is a Mallows distribution centered at σ0, the algorithm
converges to the degenerate distribution centered at σ∗ or to a non-degenerate Mallows distribution centered
at a permutation σ in the segment between σ∗ and σ0 such that the distance between σ and σ∗ is lower than(
n
2

)
/2 and a spread parameter which fulfills the condition to be a (attractive) fixed point. Finally, when the

function to optimize is a Mallows model centered at σ∗ and the initial probability distribution is a Mallows
distribution centered at σ0, the algorithm converges to any Mallows distribution centered at a permutation
in the segment between σ∗ and σ0, which is an attractive fixed point. The attraction of all the fixed points
provides information in relation to the possible trajectories of the algorithm. In any case, the relation between
the initial probability distribution and the objective function completely determines the convergence behavior
of the algorithm. Because of that, a classification of the convergence behavior of the algorithm regarding the
parameters of the Mallows model is shown.



Part III

General conclusions, Future Work and Publications
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General conclusions

The idilic goal of the algorithm selection (the meta-algorithmic technique) is to find an association that,
given a particular fitness function, returns the most efficient algorithm to solve it. However, it is necessary
to understand in advance the main features of the fitness functions and algorithms to create associations
among them, without running all the algorithms in the studied COPs (or COP instances). Partial advances
in this direction have been produced in the literature such as analyzing the theoretical complexity of binary-
based EDAs to know in which COP instances the algorithms obtain the optimal solution efficiently, creating
surrogate models for black-box optimization and studying the number of different instances that each COP
can generate.

In this thesis, we worked on the study of binary-based COPs and permutation-based EDAs so as to present
new theoretical results which improve their understanding. In the study of binary-based COPs, we considered
the Walsh transform to represent the problems. This transformation can be applied to any binary-based COPs.
In this way, independently of the specific definition of the COP (UBQP, Max-Cut Problem, and so on), they
are represented in a similar space. Moreover, the Walsh transform has been considered to present several new
results about pseudo-Boolean functions.

In the first part of the thesis, we have studied pseudo-Boolean functions. We have analyzed the instances
generated by several specific binary-based COPs in particular and the rankings of the solutions generated by
them and by pseudo-Boolean functions of degree m ≤ n (where n is the size of the search space) in general
using the Walsh transform and the Walsh decomposition. First, we have overviewed the main definition and
properties of the Walsh coefficients. We observed that the Walsh transform shows the interaction among all
the binary variables and that it identifies additive decomposable functions and additively separable functions.
Moreover, because of the fact that the Walsh basis is orthogonal, the exact Walsh coefficients of an additively
decomposable/separable function is the sum of the Walsh coefficients of its subfunctions. Therefore, the non-
null Walsh coefficient associated to the largest set of binary variables determines the degree of the fitness
function and there is no necessity to analyze any fitness function that can be described as a sum of subfuctions.

We have calculated the Walsh coefficients of the UBQP, the Max-Cut Problem and the NPP and we have
shown how the common properties among the problems are represented in the Walsh coefficients. We ob-
served that most of the Walsh coefficients of the mentioned problems are null values and the non-null Walsh
coefficients follow several patterns. Specifically, when the fitness function is an UBQP instance, all the Walsh
coefficients associated to more than two variables are zero, whereas the Walsh coefficient associated to the
empty set is dependent on the rest of non-null Walsh coefficients; when the fitness function is a Max-Cut
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instance, any Walsh coefficient associated to just one variable or more than two variables is zero, and the
Walsh coefficient associated to the empty set is a sum of the coefficients associated to two variables; and
when the fitness function is a NPP instance, it can be re-written as an equivalent fitness function whose set
of non-null Walsh coefficients is the same as a Max-Cut instance. From these results, the similarities and
differences known in the literature have been checked: the NPP can be redefined as a Max-Cut Problem, and
the Max-Cut Problem is a particular case of the UBQP. Besides calculating the Walsh decomposition of the
mentioned problems, we have also studied the opposite direction: given a Walsh polynomial, we present the
exact conditions to determine if there exists an instance of one of the three studied problems whose Walsh
decomposition is the given one.

Secondly, we have studied the meaning of the null Walsh coefficients over pseudo-Boolean functions of degree
m ≤ n and its implications. For this study, we have analyzed pseudo-Boolean functions as ranking of solutions
and as ranking generators. Bearing that in mind, we have defined partitions of the solutions (based on the
definition of the Walsh functions) according to the number of null bits of each solution over a subset of binary
variables s: even and odd solutions. These definitions allowed us to present the conditions that any pseudo-
Boolean function of degree m < n satisfies and, consequently, a characterization of m-degree pseudo-Boolean
functions: a pseudo-Boolean function is of degree m ≤ n if and only if: 1) for any subset of binary variables s
such that |s| > m, the sum of the fitness function values of all the even solutions and the sum of the fitness
function values of all the odd solutions (defined by s) is the same; and 2) there exists a subset of m binary
variables s such that the sum of the fitness function values of all the even solutions and the sum of the fitness
function values of all the odd solutions (defined by s) is not the same.

In addition, the sets of even and odd solutions have been considered to introduce several new definitions:
the word of a ranking defined by s and Dyck Words. From these definitions, we have provided a novel and
easy-to-compute procedure to check when a ranking cannot be generated by an m-degree pseudo-Boolean
function: if the word of a ranking defined by a subset s is a Dyck Word, then the ranking is impossible to
be generated by a pseudo-Boolean function of degree m < |s|. Moreover, we have presented a conjecture
about the sufficient condition of a ranking to be generated by a (n− 1)-degree pseudo-Boolean function and
two observations about the conjecture. Assuming that the conjecture is true, we have calculated the exact
number of rankings generated by (n − 1)-degree pseudo-Boolean functions. Nevertheless, when m < n − 1,
it has been proved that the presented analysis of the words of a ranking is not sufficient to check when a
ranking can be generated by an m-degree pseudo-Boolean function.

To finish the first part of the thesis, we have presented several experiments about the rankings of solutions
that can be generated by the UBQP and the NPP. We have verified that sampling coefficients uniformly at
random generates “biased fitness functions” (in terms of the frequency of the ranking produced), and we have
extracted features and characteristics of the rankings of solutions generated by this process. Particularly,
for the NPP, when n = 3 it has been observed and demonstrated that generating instances by sampling
integer values uniformly at random and sampling instances (rankings) of the problem uniformly at random
are equivalent. However, in the cases of the UBQP for n = 3 and the NPP for n ∈ {4, 5}, the generated
samples are biased (i.e., the previous equivalence is not true).

In the second part of the thesis, we have focused on the theoretical analysis of EDAs designed for permutation-
based COPs. Specifically, we have studied the convergence behavior of the Mallows-EDA. To do so, a math-
ematical modeling based on dynamical systems has been presented. Even if our proposed mathematical
modeling has been used to study Mallows-EDA, our framework allows the reproducibility of the presented
study to different distance-based exponential models and different fitness functions (beyond the ones studied
in this thesis). Our proposed deterministic dynamical system studies the expected probability distribution
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generated after one iteration of the algorithm. The dynamical system is composed of the 2-tournament selector
operator and an approximation step based on the maximum likelihood estimation method.

Next, we have considered the presented framework to calculate the convergence behavior of the algorithm
for several fitness functions. The studied fitness functions are the constant function, the needle in a haystack
and the Mallows model, and the initial probability distributions have been the uniform distribution and
the Mallows distribution (in total, six scenarios have been analyzed). In the most simple scenarios, the
computation of one iteration of the algorithm has allowed us to find the limit behavior. For the most complex
scenarios, to determine the limit behavior of the algorithm, the fixed points of the dynamical system and
their attraction have been analyzed. The nature of the fixed points (for instance, when they are attracting
points) provides information in relation to the possible trajectories of the algorithm.

Overall, the obtained results have been unexpected. When the function to optimize is constant, all Mallows
probability distributions are fixed points. When the function to optimize is a needle in a haystack or a
Mallows model and the initial probability distribution is the uniform distribution, the algorithm converges
to a degenerate distribution centered at the optimal solution. Finally, when the function to optimize is a
needle in a haystack or a Mallows model and the initial probability distribution is a Mallows model, then the
algorithm can converge to a degenerate distribution (not necessarily centered at the optimal solution) or to a
non-degenerate probability distribution. In any case, the relation between the initial probability distribution
and the objective function completely determines the convergence behavior of the algorithm. Because of that,
a classification of the convergence behavior of the algorithm regarding the parameters of the Mallows model
has been given. As far as we know, the presented analysis has been the first theoretical analysis given in the
literature for permutation-based EDAs, and it has shown the obstacles in achieving high quality theoretical
results and the dissimilarities in comparison to the existing results in the literature for binary EDAs. Given
its practical success, the results were by no means anticipated.
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Future Work

This thesis has presented several contributions in three subfields related to COPs: (1) to analyze binary-based
COPs in a “common framework”, (2) to better comprehend permutation-based algorithms and (3) to approach
the idilic goal of defining an association function such that, given a COP (instance), the “oracle” returns the
most efficient algorithm to solve it. For each presented contribution, several extensions and research lines on
theoretical and practical questions have been raised and they could be tackled as future work.

i) Extensions of the results provided.

a) Computation of the Walsh decomposition of new binary-based COPs.

In Chapter 2, we have computed the Walsh decomposition of the UBQP, the Max-Cut Problem
and the NPP. Still, there is much work to do. For example, among all the binary-based COPs, the
limitations generated by constrained binary-based COPs on the Walsh coefficients remains unclear
and the challenge is how to incorporate the constraints of the problems in the Walsh decomposition to
analyze it efficiently. For example, if we consider the use of slack variables and/or penalty coefficients
to reformulate constrained problems such as unconstrained problems (several examples can be found
in [15]), then the new parameters have an influence in the Walsh coefficients and there is a possibility
that these new Walsh coefficients can “eclipse” the rest of coefficients, which makes it difficult to
present an accurate analysis.

b) Study and compare the artificial instances of the UBQP and the NPP.

In Chapter 4, we have generated artificial instances of the UBQP and NPP by sampling coefficients
uniformly at random. Knowing that the NPP can be described as a particular case of the UBQP, it
remains to take into account the rankings generated by the NPP and to compare the hypervolume of
the sampling region of each ranking with respect to the NPP and the UBQP. In addition, the cases
n > 3 for the UBQP and n > 5 for the NPP need to be explored, and the generation of instances of
other binary-based COPs remain as future work.

c) Prove Conjecture 1.

In Chapter 3, we have presented a conjecture that remains to be proved. In Appendix A two ideas
to prove Conjecture 1 are shown. However, in both ideas, the proof of the final step is missing.

d) Analyze Dyck Words of pseudo-Boolean functions of degree m < n− 1.
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In Example 10 (Chapter 3), we have shown that analyzing Dyck Words is not sufficient to deter-
mine the exact degree of a pseudo-Boolean function without exhaustively analyzing the system of
inequalities defined by the ranking. Moreover, in Example 12, we present an example of the differ-
ences between Lemma 8 and Corollary 5. Consequently, the sufficient conditions of a ranking to be
generated by an m-degree pseudo-Boolean function (m < n− 1) have yet to be presented.

ii) Further analyses based on the obtained results.

a) Analyze equivalent binary-based COPs and their influence in the Walsh decomposition.

A future challenge is the analysis of equivalent COPs and their influence in the Walsh decomposition.
As mentioned in Chapter 2, for the NPP, we can directly study the fitness-function f or its equivalent
(in terms of the generated ranking of solutions) f2. For the function f , all the Walsh coefficients
associated to an even number of variables are non-null, whereas for the function f2 there are n(n−
1)/2 + 1 non-null Walsh coefficients at most (which are the Walsh coefficients associated to zero or
two variables). Therefore, two equivalent fitness functions can differ in the set of non-null Walsh
coefficients. Considering that, it is intriguing to know how equivalent functions are represented in
the Walsh decomposition and which is the minimum set of non-null Walsh coefficients to generate a
specific ranking of solutions.

b) Obtain a better comprehension of the rankings of solutions.

It would be ideal to search for new “patterns” of the rankings of solutions or to find a different
grouping of the instances (not only the symmetries observed in Chapter 4) in order to solve them
efficiently. For example, in [96], the authors employ a dimension reduction technique over a subset of
features to display the instances in a two dimensional space and to separate easy and hard instances.
A similar procedure based on the words of a ranking could be interesting.

c) Generate a fast computation procedure of the words of a ranking.

An algorithm which efficiently computes the words of a ranking and checks if there is a Dyck Word
would be interesting for calculating the minimum degree of the pseudo-Boolean function which gen-
erates a specific ranking. The algorithm would also allow us to compare the analysis of the words
with the resolution of the system of inequalities defined by the ranking to check which method is
more efficient (or in which cases) and to consider it for the generation of surrogate models.

d) Search for practical applications of the characterization of pseudo-Boolean functions.

It would be interesting to continue the presented characterization of pseudo-Boolean functions and to
relate it with the studies presented in the literature in the novel fields such as Quantum Annealing [23,
90] and linear extensions of posets [13, 16, 59].

e) Study permutation-based EDAs with finite populations.

The proposed mathematical framework in Chapter 5 to study permutation-based EDAs and the
convergence behavior about Mallows-EDA considers infinite populations. Even though the behavior
of the presented algorithm with a finite population can be different from that predicted from the
expectations, the variety of resulted convergence situations observed in the presented modeling shows
the complexity of predicting the limit distributions of finite-population EDAs.

For a first comparison between the algorithm with finite and infinite populations, an EDA with
Mallows model using finite populations and the Borda count [36] to estimate the central permutation
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σ0 could be applied and their performance contrasted. In addition, it is really intriguing to observe if
other permutation-based EDAs or distance-based models achieve better convergence results and not
many non-desirable solutions.

f) Transfer the obtained theoretical results into practice.

In the studied mathematical modeling of the Mallows-EDA (Chapter 5), it has been observed that the
central permutation of the initial probability distribution determines which probability distributions
can be learnt by the algorithm at each iteration. Then, for practical purposes, we propose a careful
choice of the initial population. For example, a logical proposal is to generate individuals that are as
far as possible from each other, expanding the initial search of the optimal solution. This proposal can
be compared with the initialization presented in [17, 109], in which the authors apply a preliminary
step so as to guide the algorithm to find the optimal solution.

g) Compute the runtime analysis of Mallows-EDA.

In Chapter 5, we have analyzed the convergence behavior of Mallows-EDA. If we are interested in the
runtime analysis of the algorithm, it is important to take into account some knowledge that emerges
from our analysis.

A first proposal of a runtime analysis is the following one. We have observed that the estimated
spread parameter value at each iteration of the algorithm can be very critical. When the estimated
spread parameter value change is big, the algorithm presents several scenarios in which the learned
probability distributions can be significantly different among them (because the estimated central
permutation is different in each case, for example) and the probability of sampling the optimal
solution depends on it. On the contrary, when the estimated spread parameter value change is small,
if the central permutation is not the optimal solution, the probability of reaching it will exponentially
decrease with the spread parameter value. This observation may allow us to estimate the number of
iterations required by the algorithm to converge to a model and when the researchers should modify
the algorithm to escape from the expected tendency of the algorithm.

Another analysis we propose is, starting from different initial probability distributions, to check if
there exists a number of iterations that ensures the probability to sample the optimal solution is higher
than a value and to track the probability at each iteration. If the mentioned analysis is realized, we
could connect its results with the presented results in the literature for binary EDAs and observe the
similarities and differences between them.
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Publications

The research work carried out during this thesis has produced the following contributions:

8.1 Referred Journals

• I. Unanue, M. Merino, J.A. Lozano. A mathematical analysis of EDAs with distance-based exponential
models. Memetic Computing, 2022, vol. 14, n. 3, p. 305-334. DOI: 10.1007/s12293-022-00371-y.

• I. Unanue, M. Merino, J.A. Lozano. Characterization of rankings generated by pseudo-boolean functions.
Submitted to Swarm and Evolutionary Computation, 2023.

8.2 International Conference Communications

• I. Unanue, M. Merino, J.A. Lozano. A mathematical analysis of EDAs with distance-based exponen-
tial models. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp.
429–430 (2019). DOI: 10.1145/3319619.3321969. ISBN: 978-1-4503-6748-6.

• I. Unanue, M. Merino, J.A. Lozano. A general framework based on Walsh decomposition for combina-
torial optimization problems. Proceedings of 2021 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2021. DOI: 10.1109/CEC45853.2021.9504699. ISBN: 978-1-7281-8394-7.

• I. Unanue, M. Merino, J.A. Lozano. The natural bias of artificial instances. Accepted in: 2023 IEEE
Congress on Evolutionary Computation (CEC). [Best Student Paper Award]

8.3 National Conference Communications

• I. Unanue, M. Merino, J.A. Lozano. Mathematical modeling and analysis of combinatorial optimization
problems. In XIX Conference of the Spanish Association for Artificial Intelligence (CAEPIA), 2021.
ISBN: 978-84-09-30514-8. [Finalist of the category Best Thesis Project]
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8.4 International Stay

• 3 months research stay as a visitor in 2022 (May-July) in BONUS Research Group, Inria-Lille Nord
Europe, supervised by the team leader Professor Bilel Derbel.
https://www.inria.fr/en/centre-inria-lille-nord-europe

8.5 Contribution to OEIS

• I. Unanue, M. Merino, J. A. Lozano. Sequence A307429 in The On-Line Encyclopedia of Integer Se-
quences (2019), published electronically at http://oeis.org/A307429.

8.6 Awards

• Nominated for Best Thesis Project in XIX Conference of the Spanish Association for Artificial Intelligence
(CAEPIA).

• Best Student Paper Award in 2023 IEEE Congress on Evolutionary Computation (CEC)

https://www.inria.fr/en/centre-inria-lille-nord-europe
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Appendices

A Observations about Conjecture 1

In this appendix, we present two observations about Conjecture 1 (presented in Chapter 3). In Section A.1,
we explain the influence of the coefficients of the 2-degree pseudo-Boolean functions to generate rankings of
solutions. In Section A.2, we analyze the words of the rankings to study which the feasible rankings are. We
believe that these observations could be helpful to prove Conjecture 1 without an exhaustive verification.

A.1 Analysis of the coefficients of 2-degree pseudo-Boolean functions

Let us consider that the proof of Conjecture 1 could be done by induction. Let us consider the case n = 3 and
f a pseudo-Boolean function of degree m = 2. Let us analyze the coefficients of f ({a1, a2, a3, a12, a13, a23})
and their influence to generate rankings of solutions. For a better comprehension of the argument below,
Figure A.1 shows the geometric relations between coefficients, solutions, their parity and fitness function
values. Note that the 3-dimensional representation could be extended for larger dimensions. The fitness
function values of the 8 solutions are the following:

x f(x)
111 a1 + a2 + a3 + a12 + a13 + a23
110 a2 + a3 + a23
101 a1 + a3 + a13
100 a3
011 a1 + a2 + a12
010 a2
001 a1
000 0

(A.1)

In Figure A.1a, we present a cube whose vertexes are all the fitness function values of the solutions and in
which two vertexes are connected if the Hamming distance between the solutions is 1; that is to say, if two
solutions differ in 1 bit, their fitness function values are connected. In Figure A.1b, we show the parity of
each solution (considered in Figure A.1a). We observe that, according to the parity of zeros, the graph is a
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bigraph (perfectly balanced according to the partition {E ,O}). Our analysis will focus on the reorderings of
the fitness function values (Figure A.1a) and their implications on the generated words (Figure A.1b).

Let us divide the set of coefficients in two groups: the set of coefficients that depend on a single bit, {a1, a2, a3};
and the set of coefficients that depend on two bits, {a12, a13, a23}. The analysis starts from the rankings that
can be generated with the former group of bits, and then we add the coefficients of the latter group to
generate and to study all the rankings generated by pseudo-Boolean functions of degree 2. For each added
coefficient, we observe which new rankings are generated and we check if their words are not Dyck Words.

In Figure A.1c, we show the coefficients a1, a2, a3 that influence in the fitness function values of Figure A.1a.
The study of Figure A.1c is analogous to the study of pseudo-Boolean functions of degree 1 (a12 = a13 =
a23 = 0). From this figure, several observations can be made:

a) According to each edge, if we define a relative order between two values (if two adjacent vertex values
are compared and an inequality is fixed), then the same relative order must be kept for all its parallel
edges. The formal definition is the following one: for any ai and s ⊆ {aj , ak}, if ai > 0 (ai < 0), then
ai +

∑
a∈s a >

∑
a∈s a (ai +

∑
a∈s a <

∑
a∈s a). This implies that several relative orderings between even

and odd solutions are completely connected to other even and odd solutions (the number of connected
relative orderings depends on the cardinality of s). Furthermore, if we want to swap two adjacent solutions
in a ranking (reverse a relative order), all the solutions that are dependent on the same relative order
must be swapped in the ranking at the same time.

In Figure A.1c, we have colored the edges in such a way that the edges of the same color are parallel and
therefore they must keep the same fixed relative order.

b) For any values of the coefficients a1, a2, a3, if a vertex of the cube (Figure A.1c) is the maximum value,
then the opposite vertex (the vertex at Hamming distance 3) is the minimum value.

Therefore, if we consider the parity of Figure A.1b, there are only four possible words generated for 1-degree
pseudo-Boolean functions: EOOOEEEO, EOOEOEEO, OEEEOOOE and OEEOEOOE. In any case,
the generated word is not a Dyck Word. In addition, this scenario proves that the number of different rankings
that can be generated by 1-degree pseudo-Boolean functions is 96 (12 possible rankings starting from each
vertex).

From this scenario, to prove Conjecture 1 for n = 3 without an exhaustive verification, it remains to be
proved that for any coefficient values a12, a13, a23, the addition of these coefficients to any ranking generated
by a pseudo-Boolean function of degree 1 does not generate a Dyck Word. To do so, the new words generated
by adding the remaining coefficients one by one are analyzed.

The influence of the coefficients aij is analogous to the formal definition of the relative orders defined by the
coefficients ai, aj . For example, for k 6= i, j, if ai > ai+aj+aij (ai < ai+aj+aij), then ai+ak > ai+aj+ak+aij
(ai + ak < ai + aj + ak + aij).

The first case is to consider any 1-degree pseudo-Boolean function f and to add a coefficient aij : g(x) =
f(x) + aijxixj . In this scenario, the fitness function values of g that differ from f are g(111) (specifically,
g(111) = f(111) +aij) and g(x) such that xi = xj = xk + 1 = 1 (specifically, g(x) = f(x) +aij). Particularly,
the “critical” values in which the addition of the coefficient aij changes the ranking of solutions are −ai, −aj ,
−ai− aj , ak − ai, ak − aj and ak − ai− aj . For the first values, aij causes two swaps in the ranking, whereas
the last value implies one swap. It can be observed that all the rankings generated by g have no Dyck Words.
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The next step (and the most difficult one) is to consider any 1-degree pseudo-Boolean function f and to add
two coefficients aij , aik: g(x) = f(x) + aijxixj + aikxixk. The difficulty of this case, in comparison to the
previous case, is that there exist some adjacent swaps in the rankings that are influenced by the sum aij +aik
and consequently by the value g(111). So, some relative orders might be lost. The final step is to add the
three coefficients {a12, a13, a23} and combine the previous analyses. This combination would prove that the
rankings whose word is not a Dyck Word can be generated by a 2-degree pseudo-Boolean function.

f(000)

f(001)

f(010)

f(011)

f(100)

f(101)

f(110)

f(111)

(a)

O

E

E

O

E

O

O

E

(b)

0

a1

a2

a1 + a2

a3

a1 + a3

a2 + a3

a1 + a2 + a3

(c)

Fig. A.1: Graphical representation for the case n = 3. (a) Fitness function values and edges defined by the
Hamming distance; (b) Parity of the solutions; (c) Exact fitness function values when m = 1.

A.2 Construction of rankings without Dyck Words

Let n = 3. Let f be a 2-degree pseudo-Boolean function defined by
∑2
i=1

(
3
i

)
= 6 real coefficients and

f(111) =
∑
x∈O f(x) −

∑
x∈E\{111} f(x). By definition, a ranking r without the solution 111 can always be

generated by an appropriate selection of the coefficients (each fitness function value apart from 0 is defined
with an independent coefficient that allows the solution to be fixed in the desired position):

x f(x)
111 f(110) + f(101) + f(011)− f(100)− f(010)− f(001)
110 f(100) + f(010) + a23
101 f(100) + f(001) + a13
100 a3
011 f(010) + f(001) + a12
010 a2
001 a1
000 0

(A.2)

Moreover, because multiplying all the coefficients by any positive real value keeps the ranking invariant, each
ranking can be generated by infinite possible selections of the coefficients. Furthermore, it can be ensured
that the difference between the fitness function values of two adjacent solutions (with respect to the ranking)
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to be higher or lower than a real value. Let us denote r∗ as the ranking r without the solution 111 and W ∗
as the word generated by r∗. Proposition 2 is proved if and only if, for any r∗, by an appropriate selection
of the coefficients, the solution 111 can be inserted at any position that generates a ranking r whose word is
not a Dyck Word.

Starting from the word W ∗ of a ranking r∗, first we observe in which positions of r∗ the insertion of the
solution 111 generates a ranking r such that W is not a Dyck Word. Specifically, the study of the sequence
∆1, . . . ,∆7 in W ∗ allows us to know the exact positions where the solution 111 can be inserted to generate
r. For any W ∗, there are four possible scenarios.

(a) If ∆i < 0, for all i ∈ {1, . . . , 7}, then inserting the solution 111 at the top of the ranking r∗ and defining
r, the word W is not a Dyck Word.

(b) If W ∗ = [O E O E O E O]T , then inserting the solution 111 at any position except for the top and
the bottom of the ranking r∗ generates a ranking r such that W is not a Dyck Word.

(c) If W ∗ 6= [O E O E O E O]T and there exists an integer i such that ∆i = −1 and ∆i+1 = 0, then
inserting the solution 111 at any position j ≤ i+ 2 of the ranking r∗ generates a ranking r such that W
is not a Dyck Word.

(d) If there exists at least one value i ∈ {1, . . . , 5} such that ∆i = 1, ∆i+1 = 0 and ∆i+2 = −1, then inserting
the solution 111 at any position j ≥ i + 2 of the ranking r∗ generates a ranking r whose word is not a
Dyck Word.

In Figure A.2, one example of each of the mentioned scenarios is displayed. In Figure A.2a, the ∆i values of
r∗ are negative values, and inserting the solution 111 at the top of the ranking, we generate r whose word is
not a Dyck Word. In Figure A.2b, inserting the solution 111 in the fifth position we generate r such that W
is not a Dyck Word. In Figure A.2c, ∆3 = −1 and ∆4 = 0, so inserting the solution 111 in the fifth position
we generate r whose word is not a Dyck Word. Finally, in Figure A.2d, ∆1 = 1, ∆2 = 0 and ∆3 = −1, which
implies that inserting the solution 111 in the fourth position, the word of the generated ranking r is not a
Dyck Word.

Consequently, for any r∗, there always exists a position to insert 111 and to generate a ranking r whose word
is not a Dyck Word. In addition, if inserting the solution 111 at the top or at the bottom of the ranking r∗
generates a ranking r such that W is not a Dyck Word, then the solution 111 can be inserted at any position
of the ranking r∗ and will generate a ranking without a Dyck Word.

Finally, it remains to be explained why the solution 111 can be inserted in the desired position to generate
the ranking r (such thatW is not a Dyck Word): that is to say, why the ranking r is possible to be generated.
As previously mentioned, the facts that multiplying the coefficients keeps the same ranking and that we
can ensure a minimum distance between two adjacent values allow us to increase or decrease some specific
coefficients without changing r∗ and to increase or decrease the value f(111).
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(a) EOOEOOEE (b) OEOEEOEO (c) OOEEEOOE (d) EOOEOEOE

Fig. A.2: Posible r∗ scenarios and how to generate a ranking r without a Dyck Word.

B Study of Equation (5.17) and g(θ)

In this appendix, several observations and properties about the right-hand side of Equation (5.17) (presented
in Chapter 5) are studied and commented.

Proposition 3.

g∗(θ) =
n− 1

eθ − 1
−
n−1∑
i=1

n− i+ 1

e(n−i+1)θ − 1
=

1

eθ − 1

(
n− 1−

n−1∑
i=1

n− i+ 1

e(n−i)θ + e(n−i−1)θ + · · ·+ 1

)
(B.3)

is a continuous function defined in R\{0}. Moreover,

lim
θ→0

g∗(θ) =
1

2

(
n

2

)
. (B.4)

Proof. First of all, the function g∗ is not defined when θ = 0. Moreover, the continuity of the function is
trivial (combination of scalar and exponential functions and the denominator is never zero).

Let us show limθ→0 g
∗(θ) =

(
n
2

)
/2. Let us prove the limit by means of L’Hôpital’s rule.

lim
θ→0

(
n− 1

eθ − 1
−
n−1∑
i=1

n− i+ 1

e(n−i+1)θ − 1

)
= lim
θ→0

(
1

eθ − 1

(
n− 1−

n−1∑
i=1

n− i+ 1

e(n−i)θ + e(n−i−1)θ + · · ·+ 1

))
L’Hôpital

= lim
θ→0

1

eθ

(
n−1∑
i=1

(n− i+ 1) · ((n− i)e(n−i)θ + · · ·+ eθ)

(e(n−i)θ + e(n−i−1)θ + · · ·+ 1)2

)

=

n−1∑
i=1

(n− i) + (n− i− 1) + · · ·+ 1

n− i+ 1
=

n−1∑
i=1

n− i
2

=
1

2

(
n

2

)
.

(B.5)

2
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Therefore, we have a function which is defined in R\{0} and has a limit when θ tends to 0. So, the extension
of the right-hand side of Equation (5.17) can be defined in the following way:

g(θ) =

{
g∗(θ), if θ 6= 0
1
2

(
n
2

)
, if θ = 0.

(B.6)

Proposition 4. g(θ) is a continuous decreasing function, g(θ) + g(−θ) =
(
n
2

)
and

lim
θ→+∞

g(θ) = 0. (B.7)

Proof. By definition of g(θ) and Proposition 3, it is trivial to observe that g(θ) is a continuous function.
Moreover, for any value θ 6= 0,

g′(θ) =
(1− n)eθ

(eθ − 1)2
+

n−1∑
i=1

(
(n− i+ 1)2(e(n−i+1)θ)

(e(n−i+1)θ − 1)2

)
. (B.8)

To prove g′(θ) is always a negative value (θ 6= 0), we will prove the following inequality:

− eθ

(eθ − 1)2
+

(n− i+ 1)2(e(n−i+1)θ)

(e(n−i+1)θ − 1)2
< 0 , ∀i = 1, . . . , n− 1. (B.9)

Developing the expression,

eθ
(
e(n−i)θ + e(n−i−1)θ + · · ·+ 1

)2
− (n− i+ 1)2(e(n−i+1)θ) > 0 , ∀i = 1, . . . , n− 1

⇐⇒
∑

k1+k2+···+kn−i+1=2

(
2

k1, k2, . . . , kn−i+1

)
(e(n−i)θ)k1(e(n−i−1)θ)k2 · · · 1kn−i+1 − (n− i+ 1)2(e(n−i)θ) > 0 , ∀i = 1, . . . , n− 1

⇐⇒1 + 2eθ + · · ·+ (n− i)e(n−i−1)θ − (n− i+ 1)(n− i)e(n−i)θ + (n− i)e(n−i+1)θ + · · ·+ e2(n−i)θ > 0 , ∀i = 1, . . . , n− 1.
(B.10)

and this is always true (bear in mind that the exponential function is always positive). A direct way to see
that the previous inequality holds is considering the next inequality:

ekθ + e(2(n−i)−k)θ − 2e(n−i)θ > 0 , ∀k = 0, . . . , n− i− 1

⇐⇒ 1 + e(2(n−i−k))θ > 2e(n−i−k)θ , ∀k = 0, . . . , n− i− 1

⇐⇒ e−(n−i−k)θ + e(n−i−k)θ

2
= cosh(n− i− k) > 1 , ∀k = 0, . . . , n− i− 1.

(B.11)

In Proposition 6 (v), a similar result is mentioned.

Now let us prove that g(θ) + g(−θ) =
(
n
2

)
. By definition of g(θ), the case θ = 0 is trivial, so let us calculate

for the rest of values.
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g(θ) + g(−θ) = n− 1

(
1

eθ − 1
+

1

e−θ − 1

)
−
n−1∑
i=1

(n− i+ 1)

(
1

e(n−i+1)θ − 1
+

1

e−(n−i+1)θ − 1

)

= n− 1(−1)−
n−1∑
i=1

(n− i+ 1)(−1)

= 1− n+

n−1∑
i=1

(n− i+ 1) =

n−1∑
i=1

(n− i) =
n(n− 1)

2
=

(
n

2

)
. (B.12)

Finally, the limit limθ→+∞ g(θ) = 0 is trivial. 2

C Sequence m1
n(d)

In this appendix, several properties of the sequence m1
n(d) defined in Definition 18 (presented in Chapter 5)

are shown, where n ∈ N and d = 0, . . . , D = n(n− 1)/2. The first values are shown in Table C.1.

Table C.1: Number of permutations of Σn at Kendall tau distance d of permutation σ and at Kendall tau
distance d+ 1 of permutation τ , where d(σ, τ) = 1, for n = 1, . . . , 6.

n m1
n(0), . . . ,m1

n(D)
1 1
2 1, 0
3 1, 1, 1, 0
4 1, 2, 3, 3, 2, 1, 0
5 1, 3, 6, 9, 11, 11, 9, 6, 3, 1, 0
6 1, 4, 10, 19, 30, 41, 49, 52, 49, 41, 30, 19, 10, 4, 1, 0

Proposition 5. For a fixed n ∈ N, the sequence (m1
n(0), ...,m1

n(D)) satisfies the following properties:

(i) For any distance d ∈ {0, . . . , D},

m1
n(d) =

d∑
i=0

(−1)d−imn(i). (C.13)

(ii) For any distance d ∈ {0, . . . , D},

mn(d) = m1
n(d) +m1

n(d− 1). (C.14)

(iii) For any distance d ∈ {0, . . . , D},
m1
n(d) = m1

n(D − d− 1). (C.15)

(iv) For any distance d ∈ {0, . . . , D} and n > 3,
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• If D is even, let us define d1max = (D/2)− 1 and d2max = D/2. Then,

{
m1
n(d) < m1

n(d+ 1) when d = 0, . . . , d1max
m1
n(d) > m1

n(d+ 1) when d = d2max, . . . , D − 1.
(C.16)

• If D is odd, let us define dmax = bD/2c. Then,

{
m1
n(d) < m1

n(d+ 1) when d = 0, . . . , dmax − 1
m1
n(d) > m1

n(d+ 1) when d = dmax, . . . , D − 1.
(C.17)

(v) For any distance d ∈ {0, . . . , D} and n 6= 1,

m1
n(d) =

d∑
k=0

n−1∑
j=0

mn−1(k − j) · (−1)d−k. (C.18)

(vi) For any distance d ∈ {0, . . . , D},

m1
n(d) ≤ m1

n(d− 1) +m1
n(d+ 1). (C.19)

Proof. Properties (i) − (v) can be easily derived from Definition 18 and the characteristics of the sequence
mn(d). Finally, let us prove Property (vi), which states that m1

n(i) < m1
n(i − 1) + m1

n(i + 1). There exist
three cases:

a) If m1
n(i) ≤ m1

n(i− 1), the inequality is trivial.

b) If m1
n(i) ≤ m1

n(i+ 1), the inequality is trivial.

c) If m1
n(i) > m1

n(i − 1) and m1
n(i) > m1

n(i + 1), then m1
n(i) is a single maximum (Note that this case

appears the first time when n = 6).

In this particular case,D is an odd number,m1
n(i) = m1

n(bD/2c) is the maximum value,m1
n(i+1) = m1

n(i−1);
and mn(bD/2c) and mn(dD/2e) are the maximum values.

We present the properties and observations used to prove the last situation:

(a) For any n ≥ 6, the maximum distance between two permutations in Σn is D(n) = n(n − 1)/2. So the
difference between the maximum values for two permutations in Σn and Σn−1 is D(n) − D(n − 1) =
n(n− 1)/2− (n− 1)(n− 2)/2 = n− 1.

(b) Using the previous property and the sequence mn(i), we can deduce the following observations:

• If mn(i) is the first maximum value for any fixed integer n ≥ 6, then mn−1(i − b(n − 1)/2c) is the
(first) maximum value.

• If mn(i) is the maximum value, then mn−1(i) is located in the descending part of the sequence, that
is, mn−1(i− 1) > mn−1(i) > mn−1(i+ 1).

• Similarly, if mn(i) is the maximum value, then mn−1(i − n) is located in the ascending part of the
sequence, that is, mn−1(i− n− 1) < mn−1(i− n) < mn−1(i− n+ 1).
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(c) For any integer values n and i, mn(i) ≤ mn(i+ 1) +mn(i− 1).

Once we bear the previous observations in mind, let us use Property (v).

m1
n(i) =

i∑
k=0

mn(k) · (−1)i−k
(n6=1)

=

i∑
k=0

n−1∑
j=0

mn−1(k − j) · (−1)i−k. (C.20)

• If n− 1 ≥ i:

m1
n(i)

(C.20)
=

{∑i/2
j=0mn−1(2j), if i is even∑(i−1)/2
j=0 mn−1(2j + 1), if i is odd.

(C.21)

• If n− 1 < i,

m1
n(i)

(C.20)
=


∑i/2
j=0mn−1(2j)−

∑(i−n−1)/2
k=0 mn−1(2k + 1), if i is even and n is odd∑n−1

j=0 mn−1(i− j) +
∑(i−n−2)/2
k=0 mn−1(2k + 1)−

∑(i−1)/2
l=0 mn−1(2l), if i is odd and n is odd∑n−1

j=0 mn−1(i− j) +
∑(i−n−2)/2
k=0 mn−1(2k + 1)−

∑(i−2)/2
l=0 mn−1(2l + 1), if i is even and n is even∑(i−1)/2

j=0 mn−1(2j + 1)−
∑(i−n−1)/2
k=0 mn−1(2k + 1) =

∑(i−1)/2

j=(i−n+1)/2mn−1(2j + 1), if i is odd and n is even.
(C.22)

In order to extend the sums, let us denote by “ (even)
··· ” and “ (odd)

··· ” the coefficients with even and odd indexes,
respectively.

When n ≥ 6, there are four possible cases depending on the n and i integer parity values (Equations (C.23)
— (C.26)).

Let n be an odd number and i an even number.

2m1
n(i− 1)−m1

n(i) = 3

[
mn−1(1) +

(odd)
· · · +mn−1(i− n− 2)

]
+mn−1(i− n)

+ 2 (mn−1(i− n) + · · ·+mn−1(i− 1))− 3

[
mn−1(0) +

(even)
· · · +mn−1(i− 2)

]
−mn−1(i)

= 3mn−1(i− n− 2) +mn−1(i− n) + [−mn−1(i− n− 1) +mn−1(i− n)] +

+ [mn−1(i− n)−mn−1(i− n+ 1) +mn−1(i− n+ 2)] + · · ·+

+ [mn−1(i− 3)−mn−1(i− 2) +mn−1(i− 1)] + [mn−1(i− 1)−mn−1(i)]
(b) and (c)

> 0.
(C.23)

Let n and i be odd numbers.
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2m1
n(i− 1)−m1

n(i) = 3

[
mn−1(0) +

(even)
· · · +mn−1(i− 1)

]
− 3

[
mn−1(1) +

(odd)
· · · +mn−1(i− n− 1)

]
− [mn−1(i− n+ 1) + · · ·+mn−1(i)]

= 3mn−1(i− n) + [−mn−1(i− n+ 1) +mn−1(i− n+ 2)]

+ [mn−1(i− n+ 2)−mn−1(i− n+ 3) +mn−1(i− n+ 4)] + · · ·+

+ [mn−1(i− 3)−mn−1(i− 2) +mn−1(i− 1)] + [mn−1(i− 1)−mn−1(i)]
(b) and (c)

> 0.
(C.24)

Let n and i be even numbers.

2m1
n(i− 1)−m1

n(i) = 3

[
mn−1(i− n+ 1) +

(odd)
· · · +mn−1(i− 1)

]
− [mn−1(i− n+ 1) + · · ·+mn−1(i)]

= mn−1(i− n+ 1) + [mn−1(i− n+ 1)−mn−1(i− n+ 2) +mn−1(i− n+ 3)] + · · ·+

+ [mn−1(i− 3)−mn−1(i− 2) +mn−1(i− 1)] + [mn−1(i− 1)−mn−1(i)]
(b) and (c)

> 0.
(C.25)

Let n be an even number and i an odd number.

2m1
n(i− 1)−m1

n(i) = 2 [mn−1(i− n) + · · ·+mn−1(i− 1)] +mn−1(i− n)−

− 3

[
mn−1(i− n) +

(odd)
· · · +mn−1(i− 2)

]
−mn−1(i)

= [mn−1(i− 1)−mn−1(i)] + [mn−1(i− 3)−mn−1(i− 2) +mn−1(i− 1)] + · · ·+

+ [mn−1(i− n+ 1)−mn−1(i− n+ 2) +mn−1(i− n+ 3)] +mn−1(i− n+ 1)
(b) and (c)

> 0.
(C.26)

In all cases, the result is proved. 2

D Exponential polynomials

In this appendix, all the properties used in Chapter 5 about the exponential polynomials are shown. Through-
out this thesis, the exponential polynomials have integer coefficients and the base used is e. For a fixed value
n, the exponential polynomials can be denoted in the following way:

Pol(θ) =

2D∑
i=0

aie
−iθ, (D.27)
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where D is the maximum Kendall tau distance. The highest value i used in this thesis is 2D, which is the
maximum possible sum of two Kendall tau distance values. By definition, Pol(0) =

∑2D
i=0 ai, and when θ

tends to infinity, Pol(θ) tends to a0.

Proposition 6. The following results are true:

(i) If ai > 0, ∀i = 0, . . . , 2D, then Pol(θ) is a positive decreasing function.

(ii) If ai ≥ 0, i = 0, · · · , j, and ai ≤ 0, i = j + 1, · · · , 2D, where at least there exists one positive coefficient
and one negative, and

∑j
i=0 |ai| <

∑2D
i=j+1 |ai|, then there exists a positive value θ such that Pol(θ) = 0.

Analogous with the inverse order.

(iii) Let ai ≥ 0, ∀i = 0, . . . , j1, j2, . . . , 2D (j1 < j2−1), and ai < 0, ∀i = j1 +1, . . . , j2−1, where at least there
exists one positive coefficient and one negative. If

∑j1
i=0 |ai| ≥

∑j2−1
i=j1+1 |ai| and

∑j2−1
i=j1+1 |ai| ≤

∑2D
i=j2
|ai|,

then there are no positive roots. Analogous to the opposite order.

(iv) If ai = −a2D−i, ∀i = 0, . . . , 2D, then aD = 0 and Pol(0) = 0. In addition, there are no θ positive roots
(corollary of Property (iii)).

(v) Let ai > 0, ∀i = 0, . . . , D − 1, D + 1, . . . , 2D, ai = a2D−i and
∑2D
i=0 ai = 0. Then, Pol(0) = 0 and there

are no θ positive roots.

Proof. All the properties can be easily proved due to the definition of the exponential function. For Prop-
erty (v), the argument used in Inequality (B.11) is used. 2

D.1 Proving Inequality (5.45)

Proof. To prove Inequality (5.45) at θ̂ value, let us analyze the following functions (for a fixed n ∈ N such
that n ≥ 3):

f1(θ) =

D∑
i=0

D∑
j=0

mn(i) ·
(
m1
n(j)−m1

n(j − 1)
)
e−(i+j)θ;

f2(θ) =

D∑
i=0

(
(d∗ + 1)m1

n(i) + (d∗ − 1)m1
n(i− 1)

)
e−(d

∗+i)θ. (D.28)

f1(θ) is an exponential function which fulfills Property (iv) from the exponential polynomials, whereas f2(θ)
fulfills Property (i). An example of f1(θ)− f2(θ) is displayed for n = 5 and d = 1, . . . , 4 in Figure D.3.

In order to prove Inequality (5.45), we have used the following result. At θ0 = θ̂:

d(σ∗, σ0) =
∑
π∈Σn

d(π, σ0)p(π) = ϕ−1(θ̂)

D∑
i=0

mn(i) · i · e−iθ̂ = −ϕ−1(θ̂) · ϕ′(θ̂)

⇐⇒ d(σ∗, σ0) · ϕ(θ̂) = −ϕ′(θ̂)⇐⇒
D∑
i=0

(d∗ − i) ·mn(i) · e−iθ̂ = 0. (D.29)
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Fig. D.3: The function f1(θ)− f2(θ), for n = 5 and d = 1, . . . , 4.

Hence, let us define a new function:

f3(θ) =

D∑
i=0

(d∗ − i) ·mn(i) · e−iθ. (D.30)

f3(θ) is an exponential polynomial which fulfills Property (ii) due to the fact that d∗ < D/2, and therefore∑d∗−1
i=0 |ai| <

∑D
i=d∗+1 |ai|.

After defining the functions fi for i = 1, 2, 3, let us define Fc(θ) in the following way:

Fc(θ) = f1(θ)− f2(θ)− c · e−Dθ · f3(θ), (D.31)

where c is a real positive value. Let us denote Fc(θ) =
∑2D
i=0 b

c
ie
−iθ.

When c = 0, Fc(θ) is the function associated to Inequality (5.45). At the interval [0,+∞), F0(θ) starts at
−d∗ · n!, and when θ tends to infinity, F0(θ) tends to 1. Moreover, by Property (ii), it can be ensured that
the equation F0(θ) = 0 is fulfilled once at θ = θ′.

We wanted to prove Inequality (5.45): that is to say, F0(θ̂) > 0. By definition of Fc(θ), this is equivalent to
proving that Fc(θ̂) > 0, for some value c. To prove this, we will choose an appropriate value c which ensures
that Fc(θ) is a positive value for any θ ∈ [0,+∞). First, notice that when c tends to infinity, Fc(0) tends
to +∞. Then, we can ensure for c > M , being M the smallest positive number such that

∑2D
i=0 b

M
i = 0 is

fulfilled, that Fc(0) > 0 and when θ tends to infinity, Fc(θ) tends to 1 because bc0 = 1. Finally, an option to
prove that Fc is a positive function for a particular c is to observe that, for a suitable value c, Fc(θ) fulfills
Property (iii). This can be ensured because of the inequality

∑d∗−1
i=0 ai < −

∑D
i=d∗+1 ai which f3(θ) fulfills.

Consequently, Fc(θ) > 0 for any θ ∈ [0,+∞). Particularly, Fc(θ̂) > 0 which implies, by definition of Fc(θ),
that Inequality (5.45) is fulfilled. 2
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D.2 The function h is a negative function.

Proposition 7. For any θ ≥ 0, let us denote

h(θ) =

D∑
d=1

mn(d) · d · p(σ̃d)

(
1− 2

d−1∑
i=0

mn(i)p(σ̃i)−mn(d)p(σ̃d)

)
(D.32)

the difference value between
∑
π∈Σn d(π, σ∗)pS(π) and

∑
π∈Σn d(π, σ∗)p(π). Then, h(θ) is a negative value.

Proof.

h(θ) < 0⇐⇒
D∑
d=1

mn(d) · d · e
−dθ

ϕ(θ)
·

(
1− 2

d−1∑
i=0

mn(i)
e−iθ

ϕ(θ)
−mn(d)

e−dθ

ϕ(θ)

)
< 0

⇐⇒
D∑
d=1

mn(d) · d · e−dθ · ϕ(θ) <

D∑
d=1

mn(d) · d · e−dθ ·

(
2

d−1∑
i=0

mn(i)e−iθ +mn(d)e−dθ

)
. (D.33)

The proof is based on developing the sum in two non-positive exponential polynomials with non-negative
coefficients and comparing those coefficients one-by-one. On the one hand, let us denote by ai the coefficient
of e−iθ in the left-hand side of Inequality (D.33).

2D∑
i=1

aie
−iθ = ϕ(θ)

(
D∑
d=1

d ·mn(d) · e−dθ
)
, (D.34)

where

ai :=

D∑
j=1

D∑
k=0

j ·mn(j) ·mn(k) · δi,j+k (D.35)

and δi,j+k is the Kronecker delta:

δi,j+k =

{
1, if j + k = i
0, otherwise. (D.36)

On the other hand, let us denote by bi the coefficient of e−iθ in the right-hand side of Inequality (D.33).

2D∑
i=1

bie
−iθ =

D∑
d=1

mn(d) · d · e−dθ ·

(
2

d−1∑
i=0

mn(i)e−iθ +mn(d)e−dθ

)
, (D.37)

where

bi :=

D∑
j=0

D∑
k=0

βj,k ·mn(j) ·mn(k) · δi,j+k (D.38)
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and

βj,k =

{
2j, if j ≥ k
2k, if j < k.

(D.39)

To prove Inequality (D.33), let us demonstrate that ai ≤ bi,∀i = 1, . . . , 2D, and ai < bi for at least one index
i. For any i, note that if i 6= j + k, there is no coefficient. Otherwise, when j > k, then 2j > i; when j = k,
the coefficient of the summation is the same, and when k > j, then 2k > i. Therefore, it is demonstrated that

h(θ) =
1

ϕ2(θ)

2D∑
i=1

(ai − bi)e−iθ < 0. (D.40)

2


	Introduction
	Optimization Problems
	How to solve COPs
	Evolutionary Algorithms
	Estimation of Distribution Algorithms
	Which heuristic is the most appropriate to solve a COP?
	The Walsh decomposition
	Fitness function as ranking of solutions
	Instance generation
	Main motivations of the thesis
	Outlook of the dissertation

	Part I Analysis of COP instances and pseudo-Boolean functions
	A general framework based on Walsh decomposition
	Introduction
	Walsh functions
	Walsh coefficients of the UBQP
	Particular cases of UBQP
	Discussion
	Conclusions

	Characterization of rankings generated by pseudo-Boolean functions
	Introduction
	Preliminaries
	Studying the rankings generated by pseudo-Boolean functions
	Characterization of pseudo-Boolean functions of degree m<n
	Study of pseudo-Boolean functions of degree m=n-1
	Study of pseudo-Boolean functions of degree m<n-1

	Conclusions

	Generation and study of artificial instances
	Introduction
	Experimental analysis of the rankings of the UBQP
	Experimental analysis of the rankings of the NPP
	Cases n {3,4}
	Case n=5

	Conclusions


	Part II Study of EDAs
	A mathematical analysis of EDAs with distance-based exponential models
	Introduction
	EDA based on Mallows models
	Notation
	EDAs based on expectations
	Mallows model
	Mathematical modeling

	Limiting behavior for a constant function
	Limiting behavior for a needle in a haystack function
	P0 a uniform initial probability distribution
	P0 a Mallows probability distribution with central permutation * and spread parameter 0
	P0 a Mallows probability distribution with central permutation 0, where d(*,0)=d* 1, and spread parameter 0

	Limiting behavior for a Mallows model function
	P0 a uniform initial probability distribution
	P0 a Mallows probability distribution with central permutation 0, where d(*,0)=d* 1, and spread parameter 0

	Conclusions


	Part III General conclusions, Future Work and Publications
	General conclusions
	Future Work
	Publications
	Referred Journals
	International Conference Communications
	National Conference Communications
	International Stay
	Contribution to OEIS
	Awards

	References
	Appendices
	Observations about Conjecture 1
	Analysis of the coefficients of 2-degree pseudo-Boolean functions
	Construction of rankings without Dyck Words

	Study of Equation (5.17) and g()
	Sequence mn1(d)
	Exponential polynomials
	Proving Inequality (5.45)
	The function h is a negative function.




