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Abstract

In this paper we study the e¤ects of institutional constraints on stability,
e¢ ciency and network formation. More precisely, an exogenous �societal cover�
consisting of a collection of possibly overlapping subsets that covers the whole set
of players and such that no set in this collection is contained in another speci�es
the social organization in di¤erent groups or �societies�. It is assumed that a
player may initiate links only with players that belong to at least one society
that s/he also belongs to, thus restricting the feasible strategies and networks.
In this way only the players in the possibly empty �societal core�, i.e., those
that belong to all societies, may initiate links with all individuals. In this setting
the part of the current network within each connected component of the cover is
assumed to be common knowledge to all players in that component. Based on
this two-ingredient model, network and societal cover, we examine the impact of
societal constraints on stable/e¢ cient architectures and on dynamics.
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1 Introduction

In recent years the study of the economics of networks has attracted considerable
attention from researchers and become one of the hottest topics of economic research1.
The economics of networks is, in Goyal�s words, �an ambitious research program which
combines aspects of markets (e.g., prices and competition) along with explicit patterns
of connections between individual entities to explain economic phenomena� (Goyal,
2007, p. 6).
Several seminal papers study the stability and e¢ ciency of networks providing the

basic models. In the simplest model links are formed unilaterally (Goyal (1993), Bala
(1996)). In this setting Bala and Goyal (2000a) study Nash stability and provide a
dynamic model. A model where links are formed on the basis of bilateral agreements is
studied by Jackson and Wolinsky (1996), who introduce the notion of pairwise stability.
In these seminal papers it is assumed that there is homogeneity across players and
also that the current network is common knowledge to all node-players. Galeotti et
al. (2006) consider heterogeneous players, while Bloch and Dutta (2009) consider
endogenous link strength. The common knowledge assumption may be unrealistic in
many cases, and indeed is dropped by McBride (2006), who studies the e¤ects of limited
perception, namely, assuming that each node-player perceives the current network only
up to a certain distance from the node.
In the seminal models networks provide a means for the �ow of information or other

bene�ts through the links, but the current network is assumed to be common knowledge
to all players, who may unrestrictedly initiate links with any other players. In some
cases this may be an unrealistic assumption, and in general the larger the network is
the more unrealistic it will be. It seems more realistic to assume that because they
belong to the same group (family, club, professional association, department, etc.)
individuals may have a clear idea of the connections within such smaller groups and
initiate links only within the groups they belong to. Moreover, an individual may
belong to more than one of these groups, sharing common knowledge of the links
connecting members of each group. In a way this is an unorthodox approach if, as put
by Goyal, �the theoretical research on network e¤ects (..) is motivated by the idea that,
within the same group [in italics], individuals will have di¤erent connections and that
this di¤erence in connections will have a bearing on their behavior.�(Goyal, 2007, p.
7). Nevertheless, this is the approach adopted here, and it is worth remarking that
the orthodox single-group assumption is in fact a particular case of the more general
setting adopted here. In particular, this allows Bala and Goyal�s (2000a) �two-way
�ow�basic model, on which we concentrate in this paper, to be integrated into a wider
model which sheds new light on various conclusions of their model, showing which
prevail and up to which point, and which do not in this wider setting.
Based on this idea, in this paper we focus on the e¤ects of institutional and/or in-

1Some recent books surveying this literature are Goyal (2007), Jackson (2008) and Vega-Redondo
(2007).
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formational constraints on stability, e¢ ciency and network formation. More precisely,
an exogenous �societal cover�speci�es social organization in di¤erent groups or �so-
cieties�. A societal cover is a collection of possibly overlapping subsets of the set of
players or �societies�that covers the whole set (i.e., each player belongs to at least one
set in this collection) such that no set in this collection is contained in another. It is
assumed that a player may initiate links only with players that belong to one or more
of the societies that s/he also belongs to, thus restricting her/his feasible strategies,
and as a consequence the feasible networks. Note that in this scenario only the players
in the possibly empty �societal core�, i.e., those that belong to all societies, may have
direct access to all individuals. It is also assumed that only the part of the current
network within each �component�(in a sense to be speci�ed later) of the societal cover
is common knowledge to all players in that �component�. Note also that this model
collapses to Bala and Goyal�s (2000a) unrestricted setting for the particular case of the
trivial societal cover consisting of a single society including all players.
Based on this two-ingredient model -network and societal cover- we examine the

impact of the societal constraints, which are interpreted in general terms as institutional
constraints, on stable/e¢ cient architectures and on dynamics.
For any given societal cover we constrain our attention to the admissible networks

(i.e., those consistent with the cover) and �rst extend Bala and Goyal�s (2000a) notion
of a Nash network as those admissible networks where no player has an incentive to
change her/his strategy, i.e., her/his choice of admissible links. We then extend their
characterization of Nash networks as those among the admissible networks which are
minimally connected. In this way the set of such Nash networks is a subset of the set of
Bala and Goyal�s unrestricted Nash networks. Then Bala and Goyal�s (2000a) notion
of strict Nash network is also naturally extended to this setting. Now a strict Nash
network is a network consistent with the societal cover where no player may initiate
and/or delete any admissible link(s) without loss. By contrast with Nash networks,
things turn out to be much more complicated with strict Nash networks. In Bala and
Goyal�s setting the center-sponsored star is the only (non empty) architecture of strict
Nash networks, while in our setting the center-sponsored architecture is feasible only
when the societal core, i.e. the set of players belonging to all societies, is not empty.
Moreover, even when the center-sponsored star architecture is feasible it is not the only
possible architecture of strict Nash networks. A variety of architectures of strict Nash
networks appear for any non single-society cover, and the more complex the societal
cover the greater this variety is. Nevertheless, some patterns are common to these
architectures. Moreover, a full characterization of all strict Nash networks for a societal
cover is provided by means of a condition that encapsulates synthetically the essence of
the architecture of these networks, embodying an implicit form of hierarchical principle.
The main features of their architectures, where stars continue to play a prominent role,
are studied. Particular attention is paid to the role of players who belong to more than
one society, by means of whom di¤erent but overlapping societies can be connected.
It turns out that strict Nash networks incorporate a clear hierarchical structure: They
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are either oriented trees (also called �arborescences� in graph theory) or a sort of
�grafted�oriented trees or arborescences. The latter are possible only when there are
�hinge-players�, i.e., players who are the unique common member of two societies.
Finally we extend Bala and Goyal�s dynamic model, where starting from any initial

network each player with some positive probability plays a best response or random-
izes across them when there is more than one, otherwise the player exhibits inertia,
i.e., keeps his/her links unchanged. In this way a Markov chain on the state space
of all networks is de�ned. In Bala and Goyal�s setting, the absorbing states are pre-
cisely the strict Nash networks and they prove that starting from any network the
dynamic process converges to a strict Nash network (i.e., the empty network or a
center-sponsored star) with probability 1. While when adapted to our setting the best
response dynamic model does not necessarily lead to strict Nash networks. The reason
is that in our more complex setting this dynamic process may lead to the formation
of stable �incomplete�strict Nash networks that cannot be part of the same �general�
strict Nash network. Thus the same logic that in their setting leads to the absorbing
strict Nash networks, may lead in ours to stable �incomplete�strict Nash incompatible
networks that block the converging process. Thus, in a way, institutional constraints
may hinder the way towards strict Nash networks. Nevertheless, best response dy-
namics lead to something very close to a strict Nash network that we call �quasi strict
Nash networks�, if not to a strict Nash network. These constitute absorbing sets of
minimally connected networks, closed with respect to best response dynamics, and
fully connected by those dynamics in the sense that any network in one of these sets is
reachable from any other in the same set by best response dynamics. Thus, with prob-
ability 1, best response dynamics would lead either to a strict Nash network (whenever
the set of quasi strict Nash networks reached is a singleton) or one of these sets of
quasi strict Nash networks where the best response dynamics would oscillate for ever.
Nevertheless this is not a serious drawback because stability is reached in terms of
payo¤s as it is proved they all quasi strict Nash networks within each of these sets
yield the same payo¤s to all players.
The rest of the paper is organized as follows. In section 2 the basic model is

speci�ed along with the necessary notation and terminology. Section 3 studies stability
and e¢ ciency under institutional constraints. In section 4 Bala and Goyal�s dynamic
model is extended to this setting. Finally, section 5 summarizes the main conclusions
and points out some lines of further research.

2 The model

Let N = f1; 2; ::; ng denote the set of nodes or players. Players may initiate or delete
links with other players. By gij 2 f0; 1g we denote the existence (gij = 1) or not
(gij = 0) of a link connecting i and j initiated by i. Vector gi = (gij)j2Nni 2 f0; 1gNni
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speci�es2 the set of links initiated by i and will be referred to as an (unrestricted)
strategy of player i. Gi := f0; 1gNni denotes the set of i�s (unrestricted) strategies and
GN = G1 � G2 � :: � Gn the set of (unrestricted) strategy pro�les. An unrestricted
strategy pro�le g univocally determines a directed network3 that we identify with g

g = f(i; j) 2 N �N : gij = 1g:

Given an network g, and M � N we denote by g jM the network that results by
restricting g to M , more precisely

g jM := f(i; j) 2M �M : gij = 1g:

We now consider the following situation. An exogenous �societal cover�speci�es a
set of possibly overlapping �societies�that represent a social constraint in the following
sense: Each player in N can initiate links with any other player as long as they belong
to the same society. Formally, we have the following

De�nition 1 A �societal cover� of N is a collection of subsets of N (called �soci-
eties�), K � 2N , such that: (i)

S
A2K

A = N; and (ii) for all A;B 2 K (A 6= B),

A * B:

Condition (i) ensures that every player belongs to at least one society; while con-
dition (ii) precludes super�uous societies: if A � B; A would be super�uous given the
interpretation of societies.
The following notation and terminology is useful. We denote by Ki the set of

societies that i belongs to, and by N(Ki) the set of nodes that i may directly access,
that is:

Ki := fA 2 K : i 2 Ag
and

N(Ki) :=
[
A2Ki

A:

Two nodes i; j have identical a¢ liation if they belong to the same societies, i.e.,
Ki = Kj. Two nodes i; j have the same reach if N(Ki) = N(Kj). Note that identical
a¢ liation implies the same reach, but the converse is not true.

Example: If N = f1; 2; 3; 4; 5; 6; 7; 8; 9g and

K := ff1; 2; 3; 4; 5; 6g; f4; 5; 6; 7; 8; 9g; f1; 2; 4; 5; 7; 8g; f2; 3; 5; 6; 8; 9gg;

then 2 and 4 have the same reach: N(K2) = N(K4) = N , but di¤erent a¢ liations as
K2 6= K4:

K2 = ff1; 2; 3; 4; 5; 6g; f1; 2; 4; 5; 7; 8g; f2; 3; 5; 6; 8; 9gg
2We always drop the brackets �f::g�in expresions such as Nnfig:
3In graph theory this is called a �digraph�without loops, i.e., edges connecting a node with itself

(see, for instance, Tutte (1984)).
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and
K4 = ff1; 2; 3; 4; 5; 6g; f1; 2; 4; 5; 7; 8g; f4; 5; 6; 7; 8; 9gg:

The following terminology is used. A component C of a societal cover K is a subset
C � K such that (i) for all A;B 2 C there exist A1; ::; Ak 2 K s.t. A1 = A and B = Ak,
and Ai \Ai+1 6= ? for i = 1; ::; k� 1, and (ii) for all B 2 KnC; B \ ([A2CA) = ?. The
subset [A2CA of N covered by a component C is denoted by N(C). For each i, Ci(K)
denotes the component of K that contains Ki. A societal cover is connected if it has a
unique component. The societal core of a societal cover is the set of nodes that belong
to all societies

core(K) :=
\
A2K

A:

This set may be empty. Note that only the players in the societal core may have direct
access to all individuals in N .
Let K be a societal cover of N , if K0 � K we say that K0 is a subcover of K if K0 is

a societal cover of N(K0) := [A2K0A s.t. for all A 2 K; A � N(K0) implies A 2 K0. In
particular, a component of a a societal cover K is a (connected) subcover of K.
The following de�nition constrains the structure of a network so as to be consistent

with a given societal cover of N by ruling out links connecting individuals who are not
members of at least one society in common.

De�nition 2 A network g is consistent with a societal cover K (or is a K-network) if
for every link gij = 1 there exists some A 2 K s.t. i; j 2 A (i.e., Ki \ Kj 6= ?).

A vector gi = (gij)j2N(Ki)ni 2 f0; 1gN(Ki)ni speci�es a set of K-feasible links initiated
by i and is referred to as a K-admissible strategy of player i, as we assume i�s capacity
to choose which links to initiate in N(Ki). Gi(K) := f0; 1gN(Ki)ni denotes the set of i�s
K-admissible strategies and GK = G1(K)�G2(K)� ::�Gn(K) the set of K-admissible
strategy pro�les. A K-admissible strategy pro�le g univocally determines a K-network
that we identify with g.
Observe that this setting is not narrower than Bala and Goyal�s standard one. It

is in fact more general as the standard (i.e., unrestricted) notions of network, strategy
and strategy pro�le correspond to the particular case of the simplest societal cover
K = fNg, where a single society includes all players and all links are feasible.
Given a network g, we denote �gij := maxfgij; gjig. In this way a nondirected

network �g is de�ned4. �g represents the communication provided by network g, which
is independent of who initiated the existing links according to the assumptions of the
model. We denote by N(g) the set of non isolated nodes, that is,

N(g) := fi 2 N : �gij 6= 0 for some j 2 Ng:

We say that there is a path from i to j in g if there exist players j1; ::; jk, s.t. i = j1,
j = jk, and for all l = 1; ::; k � 1, �gjljl+1 = 1, and we say that such a path is i-oriented

4In graph theory terms, �g is the �underlying graph�of digraph g (see, e.g., Tutte, 1984).
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if for all l = 1; ::; k � 1, gjljl+1 = 1. A path (directed or not) is K-feasible if all its
links are K-feasible. The set of players with whom i initiated a link is denoted by
Nd(i; g), and the set of players connected with i by a path (union fig) by N(i; g), and
their cardinalities by �di (g) := #Nd(i; g) and �i(g) := #N(i; g). Note that if g is a
K-network then Nd(i; g) � N(Ki) and N(i; g) � [A2Ci(K)A. We say that a network g
is an arborescence or an oriented tree if there is a node i0 such that for any other node
there is a unique i0-oriented path connecting it with the node root i0.
It is assumed that each node contains valuable information and a link allows that

information to �ow in both directions without decay independently of who initiates it,
so that each node receives the information from all nodes with which it is connected
by a path. Let vij > 0 be the payo¤ that player i derives from connecting directly
(by a link) or indirectly (by a path) with player j, and cij > 0 the cost for player i of
initiating a link with j. Thus the payo¤ of player i in g is

�i(g) =
X

j2N(i;g)

vij �
X

j2Nd(i;g)

cij:

If we assume costs and bene�ts to be homogeneous across players (i.e., vij = v and
cij = c; for all i; j) and v > c, connections with new nodes are always pro�table and5

�i(g) = v�i(g)� c�di (g):

A K-network is e¢ cient if it maximizes the aggregate payo¤ under the constraint
of K-feasible payo¤s, that is, those that can be obtained by means of K-networks. As
a term of comparison we sometimes consider standard unrestricted e¢ ciency to which
we refer as e¢ cient networks.
A component of a network g is a set C(g) � N such that any two players in C(g)

are connected by a path, and no player in N n C(g) is connected by a path with a
player in C(g). We say g is connected if N is the unique component of g. A network
is minimal if for all i; j s.t. gij = 1, the number of components of g is smaller than the
number of components of g� gij, where g� gij is the network that results by replacing
gij = 1 by gij = 0 in g (similarly, when gij = 0 we write g+1ij to represent the network
that results by replacing gij = 0 by gij = 1 in g).

Remark: Note the relationship between the notions of connected component of a so-
cietal cover K of N and connected component of a K-network: a connected component
of a K-network is always covered by a connected component of the societal cover K.
We denote by g�i the network where all links initiated by i are deleted, and by

(g�i; g
0
i) the strategy pro�le and network that results by replacing gi by g

0
i in g. In

particular, (g�i; gi) = g.

5Although the results presented here can easily be extended with some slight modi�cations to the
case where payo¤s are, as in Bala and Goyal (2000a), given by a function �(�i(g); �

d
i (g)), where

�(x; y) is strictly increasing in x and strictly decreasing in y, we prefer this simpler assumption about
payo¤s so as to make the statements of the basic results simpler.
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We next discuss some notions of stability of networks consistent with a given societal
cover K.

3 Stability and e¢ ciency

The following de�nitions are natural extensions of the notions of Nash stability and
strict Nash stability due to Bala and Goyal (2000a) for a network in a scenario where:
(i) a societal cover K allows only for links connecting individuals belonging to the same
society, and (ii) all players in a same component C of K, i.e., in N(C), have common
knowledge of the part of the current network connecting individuals of N(C). The
common knowledge assumption restricted to players in the same component of the cover
can be justi�ed by assuming that information about the current network propagates
between overlapping societies. Note that this scenario yields the unconstrained and
common-knowledge environment of Bala and Goyal (2000a) for the particular case of
the trivial societal cover: K = fNg.

De�nition 3 A Nash K-network is a K-network g that is stable under K-admissible
strategies, that is, for all i 2 N :

�i(g) � �i(g�i; g0i) for all g0i 2 Gi(K): (1)

When (1) holds we say that gi is a best (admissible) response of i to g�i. Thus, in a
Nash K-network every player is playing a best K-admissible response to those played
by the others. Note that for K = fNg a Nash K-network is a Nash network in the
standard setting.
The stability notion can be re�ned in the strict sense by extending Bala and Goyal�s

strict Nash networks.

De�nition 4 A strict Nash K-network is a Nash K-network such that for all i 2 N :

�i(g) > �i(g�i; g
0
i) for all g0i 2 Gi(K) (g0i 6= gi): (2)

Thus (2) means that in a strict Nash K-network every player is playing her/his
unique best (admissible) response to those played by the others. Also note that for
K = fNg a strict Nash K-network is a Nash network in the standard setting.
Given the constraints on information, strategies and feasible networks that a societal

cover imposes, the set of playersN(C) in each component C of the cover, where subcover
C prescribes what links are feasible, form an entirely �separate world�: No link with
NnN(C) is possible and no information about it reaches N(C). In particular we have
the following straightforward result.

Proposition 1 A K-network g is a Nash (strict Nash) K-network if and only if g jN(C)
is a Nash (strict Nash) C-network for each component C of K.
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Remark: Note also that although societies consisting of a single individual are in-
cluded in the model, such trivial societies are of no interest in this setting. Moreover,
the only connected societal cover K that contains a society A s.t. #A = 1 is K = fAg.
Therefore, in view of Proposition 1 and the preceding remark, in what follows

we constrain our attention to connected societal covers and we always assume that
all societies have at least two individuals, unless otherwise speci�ed. The following
proposition extends Bala and Goyal�s result to this setting.

Proposition 2 Given a connected societal cover K of N , a K-network g is a Nash
K-network if and only if it is minimally connected.

Proof. Let K be a connected societal cover of N , and g a K-network. Assume g is
not connected. Then there exist two nodes i; j 2 N not connected by a path in g. As
cover K is connected, there exists a �nite sequence of nodes x1; ::; xm, such that x1 = i,
xm = j and for each k = 1; ::;m�1, there is some A 2 K s.t. xk; xk+1 2 A. Then for at
least two consecutive nodes among these m nodes, say xk and xk+1, there is no path in
g connecting them. But then it is pro�table for either of these two nodes to initiate a
link with the other. Thus g must be connected. If it were not minimal there would be
some redundant link that could be eliminated and that would bene�t the player that
did so, and consequently g is not a Nash K-network.
Reciprocally, assume that g is minimally connected. Let i be any player and g0i

be any strategy g0i 2 Gi(K) (g0i 6= gi). We show that �i(g) � �i(g�i; g
0
i). A new

strategy g0i 6= gi means deleting some links and initiating new ones. If g is minimally
connected, then each deletion means disconnecting i with a set of nodes, and if there
is more than one deletion any two of these sets of nodes disconnected from i must
also be disconnected from each other (otherwise a deleted link would be redundant).
Thus the number of links initiated should be at least equal to the number deleted,
otherwise the payo¤ would decrease. But then i�s payo¤ for (g�i; g0i) cannot be greater
than for g. Therefore if g is minimally connected no player has an incentive to make
any K-admissible change.
In Bala and Goyal (2000a) the following result is established (in our terminology

and under the assumptions about costs and bene�ts made here6): A network is e¢ -
cient if and only if it is minimally connected, and Nash networks are those minimally
connected. In view of this, we have the following

Corollary 1 When the societal cover K is connected the following conditions are equiv-
alent for a network g:
(i) g is a Nash K-network.
(ii) g is a K-consistent Nash network.
(iii) g is an e¢ cient K-network.

6In fact, given their weaker assumptions on the payo¤s (see footnote 5), the empty network may
also be Nash stable in their setting.
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Figure 1: Nash networks and Nash K-networks.

Therefore, for any given set of nodes N and any societal cover K, the set of Nash
K-networks is a subset of the set of standard unrestricted Nash networks. In Figure
1 two minimally connected networks are represented7: (a) is a Nash K-network, while
(b) is not a Nash K-network because one link connects two nodes that do not belong
to the same society.
We now focus on strict Nash K-networks. �Stars�of di¤erent types play an impor-

tant role in network stability in di¤erent contexts (see, Bala and Goyal (2000a, 2006),
Jackson and Wolinsky (1996), Bloch and Dutta (2009)), and, as we show below, they
are also important in connection with strict Nash K-networks. In this context the
following variant of the notion of center-sponsored star proves useful.

De�nition 5 A set of players M � N (#M � 2) is said to be connected by a center-
sponsored star s in a network g if g jM= s and there is a node i 2M s.t. Nd(i; g) =Mni
and gjk = 0 for all j 2Mni and all k 2Mnj.

Note that according to this de�nition (i) a center-sponsored star does not necessarily
connect all players in N ; (ii) its center i can be linked from other nodes di¤erent from
those in the star; and (iii) the nodes in the periphery, i.e., those j in M s.t. gij = 1
can be connected with other nodes that do not belong to the star.
Re-stated in terms of the current setting, notation and terminology, and adapted to

it, Bala and Goyal (2000a) establish the following result: The only strict Nash networks
are those consisting of a single center-sponsored star that connects all players8.
As we show below, the societal cover diversi�es the stable/e¢ cient networks as strict

Nash K-networks are not necessarily center-sponsored stars. A variety of constellations
of linked stars emerges as possible strict Nash K-networks depending on the structure
of the societal cover; moreover, in general, several architectures appear as strict Nash
for a given societal cover. Our next goal is to identify and characterize these networks.

7As in all �gures, nodes are represented by dots (without labels unless conveninet for the purpose of
the illustration), links by segments between them, and a �lled circle indicates the node that initiated
it.

8Given their weaker assumptions on the payo¤s (see footnote 5), the empty network may also be
strict Nash in their setting.

9



In the characterization of strict Nash K-networks the following binary relation on
N associated with a network g plays an important role. Let

g! be the transitive closure
of the binary relation Lg de�ned by

i Lg j , (i = j or gij = 1)

That is to say, i
g! j if i = j or there exists an i-oriented path from i to j. This

relation is obviously transitive, but in general, for an arbitrary network g, is not com-
plete, antisymmetric or acyclic9. But if g is minimally connected, then

g! is certainly
antisymmetric and acyclic (otherwise at least one link would be redundant). Thus, in
view of Proposition 2, we have the following

Lemma 1 For any Nash K-network g, the binary relation g! is a partial order on N .

For any Nash K-network g, we use the following terminology. We say that i is a
predecessor of j (or that j is a successor of i) in g if i 6= j and i g! j. We say that a
node is terminal in g if it has no successors, and we say that a node is maximal in g if
it has no predecessors.
The following theorem characterizes strict NashK-networks by means of a condition

that captures synthetically the essence of these networks, embodying an implicit form
of hierarchical principle in their architecture: In such networks every player initiates
links with every node within his/her reach unless it is connected (directly or indirectly)
with any of his/her predecessors. Formally, we have the following result.

Theorem 1 A network g is a strict Nash K-network if and only if g is a minimally
connected K-network such that for each node i, and all j 6= i within i�s reach (i.e., all
j 2 N(Ki)=i), gij = 1 unless j is a predecessor of i or there exists a k predecessor of i
such that j 2 N(k; g).

Proof. Necessity ()): Obviously, a K-network g that is a strict Nash K-network is
also a Nash K-network, and by Proposition 2, necessarily minimally connected, and by
Lemma 1,

g! is a partial order. Now let i be a node in g and assume gij = 0; for some
j 2 N(Ki)=i that is not a predecessor of i and for which there is no k predecessor of i
such that j 2 N(k; g). As g is minimally connected, there must be a path connecting i
and j, that then does not contain any predecessor of i. In particular, on that path the
�rst link must be a link initiated by i. But then i can delete that link and initiate a link
with j without altering i�s payo¤, and consequently g is not a strict Nash K-network.
Su¢ ciency ((): Assume that g is a minimally connected K-network. By Propo-

sition 2, g is a Nash K-network. Let i be any node and any g0i 2 Gi(K) s.t. g0i 6= gi.
We show that �i(g) > �i(g�i; g

0
i) if the condition in the theorem holds. Reasoning

9A binary relation R on a set X is antisymmetric if, for all x; y 2 X, xRy and yRx, implies a = b;
and R is said to be acyclic if there is no �nite chain x1; x2; ::; xn in X s.t. xkRk+1 for k = 1; ::; n� 1,
and x1Rxn, unless xk = xk+1 for k = 1; ::; n� 1.
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as in Proposition 2, as g is minimally connected, g0i 6= gi involves deleting some links
and initiating an at least equal number of new links for (g�i; g0i) to be also minimally
connected, otherwise i�s payo¤s would be smaller in (g�i; g0i), but in fact the number
of links deleted and that of those newly initiated by i should be the same for the same
reason. Let link ii0 be one of the former (i.e., gii0 = 1 and g0ii0 = 0) and let ij be one of
the latter (i.e., gij = 0 and g0ij = 1). If the condition in the theorem holds, either j is
a predecessor of i in g or there exists a k predecessor of i in g such that j 2 N(k; g).
But this implies a cycle in (g�i; g0i). The reason is this: Evidently adding link g

0
ij = 1

to g means a cycle in g � gii0 + 1ij, but it must be proved that this cycle is contained
in (g�i; g0i). This is so because no link in the path in g connecting i and j can have
been initiated by i (this would imply a cycle in g, which is assumed to be minimally
connected). Therefore, no matter what other links in gi are deleted in g0i, the cycle is
entirely contained in (g�i; g0i). The same can be said about all new links in g

0
i w.r.t. gi,

all new links are redundant in (g�i; g0i). Therefore necessarily �i(g) > �i(g�i; g
0
i):

This characterization allows in particular for a constructive proof of existence of
strict Nash K-networks for any societal cover K: Start at any node i0 and initiate links
with all nodes in N(Ki0), then extend the network by initiating new links from those
nodes, always respecting the characterizing condition. In fact we have the following
result:

Proposition 3 For any connected societal cover K and any node i0 2 N there exists
an oriented tree g rooted at i0 that is a strict Nash K-network.

Proof. Iterate the following procedure:
- Step 0: Initially let i0 be any player in N , and g0 the K-network that results by

i0 initiating links with all players in N(Ki0).
- Step from k to k+1: If gk is the current K-network resulting form step k, take any

terminal node, say ik+1, in gk, for which the set of nodes in N(Kik+1)=ik+1 which are not
predecessors of ik+1 in gk and there is no l predecessor of ik+1 such that ik+1 2 N(l; gk)
is not empty, and let ik+1 initiate links with all those players. If no such node exists,
stop; otherwise, let gk+1 be the K-network that results by adding to gk all these links
initiated by ik+1.
It is clear that if K is connected this iterated process must stop in a �nite number of

steps and the resulting network will be an oriented tree rooted in i0 that forms a strict
Nash K-network connecting all players in N . If K were not connected the same iterated
procedure could be applied within each component of the cover and by Proposition 2
a strict Nash K-network would result.
As a corollary of Theorem 1, the following propositions establish some prominent

features of the architecture of strict Nash K-networks that help to form a clearer idea
about these networks, which we later illustrate with some examples. The �rst shows
the role of stars in strict Nash K-networks.

Proposition 4 In a strict Nash K-network g:

11



(i) There must be an i 2 N who is the center of a center-sponsored star that links
with all players in N(Ki); that is, s.t. Nd(i; g) = N(Ki)=i; and no other player in N
initiated a link with i.
(ii) For each society A 2 K, either no link connects two nodes of that society or all
or some of the members of that society are connected by center-sponsored stars and no
other link exists connecting a pair of nodes in A.

Proof. (i) By Lemma 1, given that g is minimally connected,
g! is a partial order

and necessarily exists at least one maximal element, i.e., with no predecessor. Let i0
be a maximal element. As i0 is maximal, by Theorem 1, necessarily Nd(i0; g)[ fi0g =
N(Ki0):
(ii) Let A be a society in the cover K. Assume that for some i; j 2 A, gij = 1. It

is enough to show that the only other link that may exist connecting any k 2 Anfi; jg
with i or j is a link initiated by i. Assume that gkj = 1. Then k can delete the link
with j and initiate one with i and have the same payo¤. Assume that gjk = 1. Then
i can delete the link with j and initiate one with k and have the same payo¤. Finally,
assume that gki = 1. Then k can delete the link with i and initiate one with j and
have the same payo¤. Thus the only remaining possibility of a link connecting any
k 2 Anfi; jg with i or j is a link gik = 1.
As an immediate corollary of part (i), we have the following conclusion that yields

Bala and Goyal�s result as a particular case.

Corollary 2 There exists a center-sponsored star that is a strict Nash K-network if
and only if the societal core is not empty and the center belongs to it.

Observe the similarity of the proof of part (ii) with Bala and Goyal�s proof of their
result, and its di¤erences: Minimal connectedness and strict �Nash-ness�do not entail
that all nodes are connected by a single star. Now the possibility of other center-
sponsored stars within a society is left open, and even the possibility of some nodes
being left outside these stars (but linked through nodes belonging to societies other
than A).
Thus we have in short that in a strict Nash K-network g within each society either

no pair of nodes is connected by a link or some center-sponsored stars connect some of
the nodes in that society. But there is at least one center-sponsored star whose center
connects all nodes of all societies to which the center belongs. The question now is:
How do these stars interconnect in g? Evidently through overlapping societies. The
following proposition answers this question more precisely by establishing the possible
connections through overlapping societies: Stars �hand in hand�, i.e., interconnected
through a free-rider player, are possible only if a single player belongs to both societies.
Otherwise, if more than one player belongs to both societies, a player interconnecting
them necessarily initiates link(s) with players of one or both societies.

Proposition 5 Let A;B be two overlapping societies in a societal cover K with i 2
A\B, and g a strict Nash K-network. If for some j 2 An (A\B) and k 2 B n (A\B)
it is

_
gij =

_
gik = 1, then gji = gki = 1 is possible only if A \B = fig.
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Proof. Assume that i 2 A\B and for some j 2 An (A\B) and some k 2 B n (A\B),
gji = gki = 1. If fig  A \ B take i0 2 A \ B, i 6= i0. If i and i0 were linked then j (or
k) could delete the link with i and initiate a link with i0 without loss. Thus we should
have �gii0 = 0. As g is minimally connected either there exists a path connecting i0 and
j and not containing k, or there exists a path connecting i0 and k and not containing
j. In the �rst case k can delete the link with i and initiate a link with i0, and in the
second j can delete the link with i and initiate a link with i0. In both cases this is
without loss for the player deleting the link, therefore proving that g is not a strict
Nash K-network.
The examples in Figure 2 illustrate the characterization and its corollaries and

convey the logic of strict Nash K-networks. Of course, the characterizing condition
holds in all cases, as the reader may check. Examples (a) and (b) represent societal
covers with a nonempty core where a center-sponsored star is one of the possible
architectures of strict Nash K-networks: (d) and (c) represent other strict Nash K-
networks for the same covers. In examples (a), (b) and (d) a single center-sponsored
star covers (partially) each society, while two center-sponsored stars cover society A3
in (c) and society A5 in (e), and in both cases no other link exists between pairs of
individuals. In all cases a maximal node exists (represented by a white circle ���),
but there may exist more than one, as in examples (e), (f) and (g), which illustrate
Proposition 5: Stars connecting �hand in hand�by means of a �free rider�node are
possible when a single player belongs to both societies. We have in fact the following
conclusion: When no pair of societies in the societal cover K share a single player a
strict Nash K-network is an oriented tree, as is proved by the following

Theorem 2 Let K be a connected societal cover of N , then if for all A;B 2 K, #(A\
B) 6= 1, then a strict Nash K-network is a K-network which necessarily forms an
arborescence or oriented tree.

Proof. There is a unique path connecting any maximal node with each node. Assume
that there are two maximal nodes i0 and i1. Then there is a path connecting i0 and i1,
but then there must exist three nodes on that path i, j and k such that gij = gkj = 1.
Now if the intersection of any two societies in K is either empty or contains more than
a single player, by Proposition 5, this is impossible. Therefore there can be only one
maximal node connected with any other node by a unique path and consequently g is
an oriented tree.
But note that, as examples (f) and (g) in Figure 2 show, when there are two or more

societies to which a single player belongs it is possible �to start�at di¤erent nodes at
the same time, i.e., several maximal nodes may exist. In such cases an oriented tree
does not result. In this case two or more �grafted�oriented trees may emerge, so that
any node is connected by an oriented tree with at least one but possibly more maximal
nodes.
Finally, in the spirit of the �community detection� problem (see, e.g., Jackson,

2009), we address an issue reciprocal to that considered so far: Given a network g, can
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Figure 2: Strict Nash K-networks.
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it be interpreted as a strict Nash K-network for any particular societal cover K? Given
the multiplicity of strict Nash K-networks for a societal cover K, it is easy to see that
this question admits many answers: In general, an oriented tree (or several grafted
trees) can be seen as a strict Nash K-network for di¤erent societal covers. Restricting
attention to oriented trees, the following associated covers are worth noting. Let g be
an oriented tree rooted at i0. The generational cover, consisting of a minimal number
of societies, each consisting of all nodes at the same distance from the root that are
not terminal along with their �o¤spring�; the family cover where each node forms a
society with its o¤spring; and the trivial binary cover where any two directly linked
nodes form a society. For all the three societal covers the oriented tree g is a strict
Nash K-network, and for the latter two it is the only one with maximal node i0.

4 Dynamics

We now apply Bala and Goyal�s (2000a) dynamic model adapted to this setting.
Namely, starting from any initial K-network g each player i with some positive proba-
bility responds with a K-admissible best response10 to g�i or randomizes across them
when there is more than one, otherwise player i exhibits inertia, i.e., keeps his/her
links unchanged. In this way a Markov chain on the state space of all K-networks
is de�ned. In Bala and Goyal�s setting, i.e., for K = fNg, the absorbing states are
precisely the strict Nash networks and they prove that starting from any network the
dynamic process converges to a strict Nash network (i.e., the empty network or a
center-sponsored star) with probability 1. The following example shows that this may
not be the case for the same dynamic model in the context of K-networks.
Example: In Figure 3 (a) players in A1 have no best response but keep their strategies,
while player 1 is indi¤erent between initiating a link with 2 or 3 or 4, and consequently
the best response dynamic process would oscillate forever. Similarly, in Figure 3 (b)
all players in A1 and players in A3 keep their strategies, while player 1 is indi¤erent
between initiating a link with 2 or 3, and consequently the best response dynamic
process would oscillate forever among these two networks. Note that in both examples
the set of K-networks among which the best response dynamics oscillates are minimally
connected and yield the same payo¤s to all players.
The example shows an interesting di¤erence with respect to Bala and Goyal�s set-

ting. It is not di¢ cult to show that Bala and Goyal�s best response dynamics lead
to a Nash K-network (i.e., K-minimally connected)11. The problem appears when
one tries to extend the rest of their proof in search of a strict Nash K-network. The
reason is that in their single-society setting, starting from any network g that is not

10Note that if g is a Nash K-network any strategy g0i of player i such that �i(g) = �i(g�i; g0i), is a
best response to g�i.
11The proof is similar to that of Lemma 4.1 in Bala and Goyal (2000a), now just taking into account

and respecting K-feasibilty.
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Figure 3: Dynamic deadlock towards a strict Nash K-network.

strict Nash one can show that with a positive probability a strict Nash network may
be reached by a �nite sequence of best responses. In our more complex setting, K-
admissible best response dynamics lead to the formation of architectures consisting of
interconnected center-sponsored stars, but it might happen that these interconnected
center-sponsored stars that appear in di¤erent parts of the K-network as the dynamic
process runs cannot be part of the same strict Nash K-network, thus blocking the pos-
sibility of transition to an absorbing state. Note that in Bala and Goyal�s setting with
a single-society cover this last situation never occurs. Then, the same logic that in their
setting leads to the absorbing strict Nash networks, in ours may lead to the formation
of interconnected center-sponsored stars incompatible in any strict Nash K-network
that block the converging process. Nevertheless, we have a similar result if we replace
strict Nash K-networks, not longer absorbing states, by the following sets:

De�nition 6 Let K be a connected societal cover of N ; a quasi strict Nash K-set is a
set Q of minimally connected K-networks that is closed under best response dynamics,
and veri�es full reachability by best response dynamics; and a quasi strict Nash K-
network is a network that belongs to a quasi strict Nash K-set.

By �full reachability�under best response dynamics we mean that any network in
one of these sets is reachable from any other in the same set by best response dynamics.
Example (a) in Figure 3 shows a three-element quasi strict Nash K-set, and example

(b) a two-element quasi strict Nash K-set. Note that a strict Nash K-network is just a
singleton quasi strict Nash K-set. We then have the following result:

Theorem 3 Starting from any K-network g, best response dynamics reach a quasi
strict Nash K-set with probability 1.

Proof. Let BR be the binary relation in the set GK of all K-networks de�ned by
gBRg0 if g0 is one of the possible results of a best response move from g, and let BR�

be the transitive closure of this relation, i.e., gBR�g0 if it is possible to reach g0 from
g by a �nite sequence of best response moves. We now denote by H� its associated
equivalence relation, that is,

gH�g0 , gBR�g0 & g0BR�g:
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This relation establishes a partition of the set of all K-networks into equivalence
classes, so that in each class any network is reachable by a sequence of best response
moves from any other in the same class. And note that a binary relation BR can be
de�ned on the quotient set GK=H� (i.e., the set of equivalence classes):

[g]BR[g0], gBR�g0.

Note that BR is a well de�ned binary relation that is re�exive, antisymmetric and
transitive, i.e., BR is a partial order in the quotient set. As the quotient set is �nite,
minimal classes must exist, i.e., classes [g] s.t. [g]BR[g0] implies [g] = [g0]: Now note
that the Markov chain on K-networks de�ned by the best response dynamics can be
extended to a Markov chain on GK=H�: For any two di¤erent related classes, i.e.,
[g]; [g0] s.t. [g]BR[g0] there is a positive probability of reaching the latter from the
former. Thus, there is a positive probability of reaching a minimal class where the
process will stay forever. Now a minimal class is just a set of K-networks closed w.r.t.
best response dynamics and such that any network in this set is reachable by a sequence
of best response moves from any other in this set.
Thus, the absorbing sets of the best response dynamic process are the quasi strict

NashK-sets, that have been introduced in De�nition 6 in best response dynamics terms,
but it seems desirable a characterization of these sets, or of the quasi strict Nash K-
networks that form them, in terms independent of dynamics. With this purpose the
following de�nition is convenient.

De�nition 7 Let g be a minimally connected K-network, and let s � g be a center-
sponsored star with center i, then we say that s is K-irreversible if for any other center-
sponsored star s0 � g with center j 6= i such that N(Ki)\N(Kj) 6= ?, if s00 = s[ s0 all
nodes in N(s00) \ (N(Ki) \N(Kj)) are linked by i or all by j.

That is, a center-sponsored star s, that is part of a minimally connected K-network
is K-irreversible if for any other center-sponsored star s0 whose center�s reach intersects
with that of s, all nodes in s [ s0 within the reach of both centers are linked from
either the center of s or the center of s0. If this happens, spoke nodes have no best
response and there is no possibility of miscoordination between the centers. Then, the
only feasible best responses of the nodes (if at all any does exist) in s consists of the
center replacing some spoke nodes with the same number of other nodes within its
reach. In that case the center of the star cannot change, nor the number of nodes that
form the star, and we say that the star is K-irreversible. Observe that in Figure 3,
both examples consist of minimally connected K-networks formed by interconnected
K-irreversible center-soponsored stars. We have in fact the following characterization.

Theorem 4 A K-network g is a quasi strict Nash K-network if and only if it is a mini-
mally connected K-network consisting of interconnected K-irreversible center-sponsored
stars.
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Proof. Necessity ()): By de�nition, a quasi strict Nash K-network g is a minimally
connected K-network. Now let g be a K-network not consisting of interconnected
center-sponsored stars. Then best response dynamics lead with probability 1 to a K-
network formed by interconnected center-sponsored stars12. Now let g be a K-network
consisting of interconnected center-sponsored stars, and let s; s0 � g be two center-
sponsored stars with centers i and j such that N(Ki) \N(Kj) 6= ? and not all nodes
in N(s00) \ (N(Ki) \N(Kj)) are linked by i neither by j, where s00 = s [ s0. In that
case both i and j have a best response among the K-feasible moves in s00 and they
can therefore miscoordinate. Then there is a positive probability of transition to a
K-network where either i or j initiate links with all nodes in N(s00)\ (N(Ki) \N(Kj)).
Applying this to every such pairs s and s0 in sequence, the process leads to a K-network
consisting of interconnected center-sponsored stars that are K-irreversible, reaching
thus an equivalence class di¤erent from [g], and consequently g is not a quasi strict
Nash K-network.
Su¢ ciency ((): Assume that g is a minimally connected K-network consisting of

interconnected K-irreversible center-sponsored stars. Since for every center-sponsored
stars s; s0 � g with centers i and j such that N(Ki) \ N(Kj) 6= ?, all the nodes in
N(s00)\ (N(Ki) \N(Kj)), where s00 = s[ s0, are linked either from i or j, the only K-
feasible best response (if any does exist) that nodes in s00 may have are those where just
only one of the centers, say i, deletes some links with nodes in N(s00)\(N(Ki) \N(Kj))
and replaces each of them by a link with another node in N(s00) \ (N(Ki) \N(Kj))
or in some N(s00)\ (N(Ki) \N(Kk)) ; where k is the center of a center-sponsored star
t � g; while all other nodes in s00 have no best response, not even center j. Since this
happens for every such pairs s and s0, then miscoordination cannot occur and g is a
quasi strict Nash K-network.
As a corollary, we have the following result that shows that when an absorbing quasi

strict Nash K-set is reached, in spite of the possibly perpetual oscillation, stability is
essentially reached given that all networks in the same quasi strict Nash K-set yield
the same payo¤s to all players.

Corollary 3 If Q is a quasi strict Nash K-set, for all g; g0 2 Q and all i 2 N ,
�i(g) = �i(g

0).

Proof. Let Q be a quasi strict Nash K-set and g 2 Q. As g is a minimally connected
K-network that consists of interconnected K-irreversible center-sponsored stars, whose
centers are �xed, any K-admissible best response move (if any does exist) can only
involve some center(s) changing some links keeping the network minimally connected.
Therefore the payo¤s must remain unchanged for all players.

12The proof is similar to that of Theorem 4.1 in Bala and Goyal (2000a), just respecting K-feasibilty.
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5 Concluding remarks

We have studied the impact of institutional constraints as modeled by a societal cover
in Bala and Goyal�s (2000a) benchmark two-way �ow model, by extending their model
in a natural way. The notion of societal cover seems suitable for capturing in a formal
and tractable way many factual constraints that are to be observed in real world
situations to which we refer generically as �institutional�. Such constraints emerge due
to social (cultural, economic, geographic, etc.) reasons and cannot be ignored in many
contexts. In this paper we characterize and study in some detail the structure of stable
and e¢ cient networks under these constraints by extending Bala and Goyal�s approach
and results. In a nutshell, the conclusions are these: Center-sponsored star (when
feasible) is no longer the only stable (in the strict Nash sense) architecture, but center-
sponsored stars continue to be the basic building blocks of stable networks. Moreover,
the architecture of such stable networks embodies a formal hierarchical principle that
yields oriented trees13 or �grafted�oriented trees adapted to the constraints imposed
by the cover. Finally, simple best response dynamics �work� basically well in this
more complicated setting: They may fail to reach a strict Nash network if incompatible
irreversible center-sponsored stars form, but a stable con�guration of payo¤s associated
with an absorbing quasi strict Nash set is sure to be reached.
The interesting results obtained with this approach suggest several lines of further

research. In fact, this paper is the �rst step of a research project to explore the
e¤ects of institutional constraints as modeled here. In a second paper, continuation
of this one, we address the e¤ects of further restricting information, assuming that
individuals in each society have common knowledge only of the part of the current
network that connects individuals in that society. Other lines of research that can be
suggested are the following: Given the multiplicity of strict Nash networks in the setting
considered, it may be interesting to study possible selection/re�nement among them,
perhaps combined with the introduction of decay or non full reliability14. Another line
of work is the study of the e¤ects of heterogeneity in this setting. It may also be worth
trying an extension of the one-way �ow model of Bala and Goyal (2000a) similar to
the one achieved here for the two-way �ow model. Finally, it could be interesting to
see the impact of institutional constraints as modeled here on Jackson and Wolinsky�s
(1996) model based on pairwise stability.
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