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Supersolid formation in a dipolar condensate by roton instability
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We characterize the role of roton instability in the formation of a supersolid state of an elongated dipolar
condensate, following a quench of the contact interactions across the superfluid-supersolid transition, as observed
in recent experiments. We perform dynamical simulations by means of the extended Gross-Pitaevskii equa-
tion including quantum corrections, for different final values of the s-wave scattering length. The corresponding
excitation spectrum is computed using an effective one-dimensional description, which provides a reasonably
accurate prediction for the growth rate of the most unstable mode observed in the simulations. To analyze the
behavior of the system, we employ the inverse participation ratio, which conveniently characterizes the different
degree of localization in the superfluid and supersolid phases. By means of a suitable effective ansatz for the
density, we derive a simple yet effective expression for the formation time of the supersolid. This expression
provides valuable insights regarding its scaling behavior with respect to the s-wave scattering length.
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I. INTRODUCTION

Ultracold dipolar gases, characterized by significant mag-
netic or electric dipole moments, have emerged as a fascinat-
ing area of research in the field of cold atoms and quantum
gases. Unlike traditional Bose-Einstein condensates (BECs),
with only short-range contact interactions, dipolar conden-
sates exhibit also long-range, anisotropic interactions (see,
e.g., Refs. [1–3]). Notably, their excitation spectrum is charac-
terized by a rotonic mode [4–9], which may become unstable
[10,11] and lead to exotic and complex behavior, including
the formation of droplets [12] and supersolids [13–16], among
others [17–19].

In particular, in recent years an intense research activity
has been directed towards unraveling the properties of the
supersolid phase of dipolar gases, both from the experimental
[20–33] and theoretical point of view [34–47]. Proposed in
the past century [48,49], supersolids are an exciting phase of
matter combining a superfluid nature [50,51] with the trans-
lational symmetry-breaking characteristic of solid structures
[52–55]. Notably, the supersolid (SS) phase of matter can
be achieved through both a classical transition from a gas
to a supersolid [30] and a quantum transition from an un-
modulated superfluid (SF) to a supersolid. Experimentally and
theoretically both discontinuous [13,14,22,56–58] and contin-
uous [27,59] features have been observed, reminiscent of the
first-order and second-order transitions predicted in the ther-
modynamic limit in two dimensions (2D) and one dimension,
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respectively. Interestingly, the effective dimensionality of the
system can be controlled by tuning the transverse confinement
and the atom number, as experimentally observed by Biagioni
et al. [31] and theoretically discussed in Ref. [44].

A remarkable feature of this transition is that whereas one
can relax an initial SS state onto a SF state by crossing the
transition almost adiabatically, in the opposite direction the
supersolid requires a finite time to form [14,26,31,44]. This
corresponds to the time required for intrinsic fluctuations—
associated to the roton instability—to grow up and break the
translational invariance of the system. This distinctive rotonic
spectrum of a dipolar superfluid was recently observed and
characterized in the groundbreaking experiment by Chomaz
et al. in Ref. [7].

Here, we provide a theoretical characterization of the
role of this instability in the dynamics of formation of
a supersolid in a quasi-one-dimensional (quasi-1D) dipolar
condensate, by considering a typical configuration of the
experiment in Ref. [31]. In particular, we focus on the sce-
nario in which the system crosses the SF-SS phase transition
by undergoing a quench of the contact interactions which,
for quasi-1D systems, can still provide a smooth connection
between an unmodulated BEC and a supersolid array [44]
(unlike what occurs in 2D [32]). We perform a systematic
analysis by means of numerical simulations of the extended
Gross-Pitaevskii equation, considering various amplitudes of
the interaction quench. The corresponding roton spectrum
is computed by means of the one-dimensional theory pro-
posed by Blakie et al. [36], which provides a simplified yet
accurate characterization of the simulation outcomes. Specifi-
cally, we investigate the evolution of the system by analyzing
the inverse participation ratio (IPR), a valuable measure for
characterizing the varying degrees of localization in the super-
fluid and supersolid phases. By employing an effective ansatz
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for the density, we derive a simple expression containing a
minimal set of fitting parameters, that provides a reliable
description of the IPR behavior in the regime dominated by
the growth of the roton mode. These results are then used to
discuss the general features that determine the formation time
of the supersolid and its scaling behavior with respect to the
s-wave scattering length.

The paper is organized as follows. In Sec. II, we provide
an overview of the system under consideration and briefly
summarize the relevant formulas defining the extended Gross-
Pitaevskii theory for dipolar condensates. In Sec. III, we
discuss the general protocol employed to induce the interac-
tion quench across the SF-SS phase transition, presenting the
general phenomenology observed through numerical simula-
tions. In Sec. IV we briefly review the 1D effective theory of
Ref. [36] used to study the excitation spectrum of an elongated
dipolar condensate. The latter is computed for our specific
case in Sec. V, where it is used to characterize systemati-
cally the role of the roton instability in the formation of the
supersolid. There, we also explore the implications of this
instability on the scaling behavior of the supersolid formation
time with respect to the s-wave scattering length. Finally, we
present a summary of our findings and concluding remarks in
Sec. VI.

II. SYSTEM

In the following analysis, we consider the quasi-1D con-
figuration investigated in the experiment of Ref. [31] and
theoretically analyzed in Ref. [44]. It consists of a dipolar
condensate, at zero temperature, composed by N = 3 × 104

magnetic atoms of 162Dy—with tunable s-wave scattering
length as and dipolar length add = 130a0 (a0 being the Bohr
radius)—trapped by a harmonic potential with frequencies
(ωx, ωy, ωz ) = 2π × (15, 101, 94) Hz. While the choice of
these parameters is motivated by their experimental feasibility
in a specific case, it is worth noting that the following analysis
is conceptually general, which enables its extension to other
scenarios.

This system can be described in terms of an extended
Gross-Pitaevskii (GP) theory including dipolar interactions
[60] and the Lee-Huang-Yang (LHY) correction accounting
for quantum fluctuations, within the local density approx-
imation [61–63]. The energy functional can be written as
E = EGP + Edd + ELHY with

EGP =
∫ [

h̄2

2m
|∇ψ (r)|2 + V (r)n(r) + g

2
n2(r)

]
dr ,

Edd = Cdd

2

∫∫
n(r)Vdd (r − r′)n(r′)drdr′ , (1)

ELHY = 2

5
γLHY

∫
n5/2(r)dr ,

where EGP = Ek + Eho + Eint is the standard GP energy
functional including the kinetic, potential, and contact in-
teraction terms, V (r) = (m/2)

∑
α=x,y,z ω2

αr2
α is the harmonic

trapping potential, n(r) = |ψ (r)|2 represents the conden-
sate density (normalized to the total number of atoms
N), g = 4π h̄2as/m is the contact interaction strength, Vdd

(r) = (1 − 3 cos2 θ )/(4πr3) the interparticle dipole-dipole
potential, Cdd ≡ μ0μ

2 its strength, μ the modulus of the
dipole moment μ, r the distance between the dipoles, and θ

the angle between the vector r and the dipole axis, cos θ = μ ·
r/(μr). As in Refs. [31,44], we consider the magnetic dipoles
to be aligned along the z direction by a magnetic field B. The
LHY coefficient is γLHY = 128

√
π h̄2a5/2

s /(3m)(1 + 3ε2
dd/2),

with εdd = μ0μ
2N/(3g).

As discussed in Refs. [31,44], the equilibrium configura-
tion of the system corresponds to either a conventional SF
state or a SS state. The transition from one phase to the other
can be induced by tuning the s-wave scattering length as.
For the present values of the number of atoms and trapping
frequencies, the critical point is located at ac

s � 94.4a0 and
the transition has a continuous character [31,44].

III. PROTOCOL

In order to study the formation of a supersolid, we adopt
the following approach. The system is initially prepared in
an equilibrium configuration within the SF phase, at a(in)

s =
ac

s + 1.5 a0. For the sake of simplicity, this value is kept fixed
throughout this work. Then, the condensate is quenched in the
SS phase by a sudden change of the contact scattering length,
to a final value a( f i)

s = ac
s − δas. In the present study, δas is

varied in the range [1.0, 6.5]a0.
The dynamics of the system following the quench is ob-

tained by solving the GP equation [51]

ih̄∂tψ = δE [ψ,ψ∗]/δψ∗, (2)

where the energy functional E [ψ,ψ∗] is the one in Eq. (1)
[64]. To uncover the physics involved in the formation
process, we simplify the analysis by excluding dissipation
mechanisms and particle losses, which are not essential for
the present discussion.

A useful quantity for characterizing the formation process
of the supersolid is represented by the IPR, which measures
the degree of localization (high IPR) or spread (low IPR) of
a certain quantum state. For a continuous system, it can be
defined as IPR = ∫ |ψ |4dr. In the present case, it turns out
to be proportional to the contact interaction energy Eint [see
Eq. (1)],

IPR ∝ Eint(t ) = g

2

∫
n2(r, t )dr. (3)

In order to facilitate the ongoing discussion, it is convenient
to normalize the above expression as

Ēint(t ) ≡ Eint(t )/Eint(0), (4)

which is also equivalent to normalizing the inverse partici-
pation ratio to its initial value at t = 0. The behavior of this
quantity as a function of the time t elapsed after the quench is
shown in Fig. 1(a), for different values of δas. It is noteworthy
that all the cases presented exhibit the same qualitative behav-
ior, which is exemplified in Fig. 1(b) for the case δas = 2.0 a0.

Just after the quench, the system retains its initial charac-
ter of a SF condensate for a certain period of time, during
which it undergoes mostly breathing-like oscillations. These
oscillations exhibit a consistent pattern among the different
values of δas, as indicated by the blue arrows in Fig. 1(a).
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(a)

(b)

FIG. 1. (a) Behavior of Ēint(t ) during the evolution after the
quench, for different values of δas ranging from 1 a0 to 3 a0. The
red dots correspond to the values Ē∗

int at which the exponential
growth saturates; the blue arrows the oscillations maxima before
the formation of the SS pattern. The horizontal lines indicate the
equilibrium value of ĒSS

int of the SS ground state at the same value of
δas (same line type). (b) The case with δas = 2 a0 in detail. Density
plots (color scale weighted by each density distribution) show the SF
configuration and the SS configuration corresponding to the blue and
red dots, respectively.

After some time, the supersolid structure emerges, following
a sudden increase of Ēint. As we shall see later on, this is a
typical signature of an underlying formation process driven
by the roton instability, namely, the exponential growth of the
corresponding mode, which becomes unstable. In Sec. IV, we
will provide a detailed quantitative analysis and characteriza-
tion of this behavior.

It should be emphasized that the SS state generated by
this mechanism can display significant deviations from the
supersolid ground state at the same value of as, due to
the highly out-of-equilibrium nature of both the quench
and the formation process (see also the discussion in
Refs. [7,16,17]). In addition, since dissipation processes are
not included in the present analysis, the system remains in
such a highly excited state even long after the formation of
the supersolid. However, it is worth noticing that for suf-
ficiently low values of δas [up to δas = 2 a0, for the cases
shown in Fig. 1(a)], the value Ē∗

int at which the instability
saturates almost coincides with the equilibrium value ĒSS

int for
the ground state, indicated by horizontal lines in the figure.
This is no longer the case at higher values of δas, for which
IPR saturation takes place at lower values than IPR for the SS
ground state, Ē∗

int < ĒSS
int . This effect becomes more prominent

by increasing δas, owing to the increase of nonlinear effects by
moving deeper into the SS phase (having started in all cases
in the same initial configuration).

In Fig. 1(b), the time frame during which the system ex-
hibits instability is illustrated as a (blue) shaded area between
two consecutive oscillation maxima represented by blue and
red dots. The density distributions of the corresponding states
are shown in the insets. The first one corresponds to a state that
can be still associated with the SF phase, despite displaying

a weak density modulation. The other clearly corresponds to
a well-formed SS state. Considering the above scenario, the
time it takes for the supersolid to form from the instant of
the quench, denoted as τSS and named formation time in what
follows, can be therefore conveniently defined by referring to
the position of the red dot(s), as illustrated in the same figure.
Figure 1(a) shows that this formation time gets reduced by
increasing δas.

IV. EFFECTIVE 1D DESCRIPTION

To gain a quantitative understanding of the superfluid for-
mation process, we will employ the effective 1D model for an
elongated dipolar condensate described in Ref. [36], simpli-
fying the subsequent analysis. Owing to the strong transverse
confinement of the present configuration, ωx/ωy,z ≈ 0.15, and
the small asymmetry between the transverse trapping frequen-
cies, ωy/ωz ≈ 1 (see Sec. II), this approximation is expected
to be reasonably accurate.

In summary, this approach consists of factorizing the
condensate wave function as ψ (r) = ϕ(x)χ (y, z), where the
transverse wave function χ (y, z) is conveniently taken as a
Gaussian,

χ (y, z) = (
√

π l )−1e−(ηy2+z2 )/2ηl2
, (5)

with l = √
lylz, ly (lz) being the 1/e half width of the trans-

verse density along the y axis (z axis), and η = ly/lz the
transverse anisotropy of the density distribution. From a
Gaussian fit of the transverse profile of the initial SF density
distribution we obtain ly � 0.82μm and lz � 2.19μm [65].

Integrating out the transverse directions, one obtains
an effective 1D GP model where the contact interac-
tion strength and the LHY coefficient get renormalized
as g1D = g/(2π lylz ), γ

(1D)
LHY = γ⊥γLHY, with γ⊥ = 2/5π3/2l3.

The dipole-dipole effective interaction potential can be con-
veniently approximated in momentum space by

Ṽ (1D)
dd (q) = 1

1 + η

μ0μ
2
Dy

2π lylz

[
q2eq2

Ei(−q2) + 2 − η

3

]
, (6)

with q ≡ η1/4lk/
√

2 and k representing the momentum com-
ponent relative to the x axis.

The description can be further simplified by consider-
ing small deviations from uniformity, with linear density
n0. The longitudinal wave function can be expressed as
ϕ(x, t ) = √

n0 + δϕ(x, t ), with the latter term representing a
small perturbation over the initial state ϕ0 = √

n0. The col-
lective excitations of the condensate are then described by
the associated Bogoliubov–de Gennes equations, see, e.g.,
Refs. [7,11,36,60]. By looking for solutions of the form
δϕ(x, t ) ∝ u(x)e−iωt + v∗(x)eiωt and considering that for a
uniform system the excitations are plane waves of momentum
h̄k, namely, uk (x) = Uke−ikx and vk (x) = Vke−ikx, one finally
obtains the following expression for the excitation energies
[36]:

h̄ωk = ±
√√√√ h̄2k2

2m

(
h̄2k2

2m
+ 2n0Ṽ (k) + 3γ

(1D)
LHY n3/2

0

)
, (7)
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FIG. 2. Imaginary part of ωk , as a function of the s-wave scat-
tering length as and of the excitation momenta k. The vertical (red)
dashed line indicates the critical value of the scattering length, ac

s =
94.4a0. The black area corresponds to Im[ωk (as )] = 0. The (yellow)
dot-dashed line represents the position of the roton mode, which
disappears at ac

s , where it is replaced by the most unstable mode
(black dot-dashed line). The whole line is indicated as kR(as ).

where Ṽ (k) denotes the Fourier transform of the interaction
potential, see Eq. (6),

Ṽ (k) = g1D + Ṽ (1D)
dd (η1/4lk/

√
2). (8)

The above spectrum is characterized by a roton excitation
(that is, a local minimum in the excitation dispersion relation)
that softens to zero energy and becomes dynamically unstable
when the s-wave scattering length is tuned below a certain
critical value ac

s [7,36].

V. STABILITY ANALYSIS

The quasi-1D effective formulation presented above allows
a straightforward stability analysis of our system after the
quench. In order to do so, we need to establish a criterion to
account for the nonuniformity of the system. In particular, we
use the fact that for a continuous transition, the critical point
for the SF-SS transition is expected to coincide with the roton
instability, see Refs. [39,47]. Specifically, by defining n(x) ≡∫

n(r)dydz, we set n0 = cn(0), where c is chosen to reproduce
the critical value of the s-wave scattering length ac

s = 94.4a0

obtained from numerical simulations (see Sec. III). We find
c � 0.5.

In Fig. 2 we show the imaginary part of the positive branch
of the frequency ωk as a function of the s-wave scattering
length as and of the excitation momenta k. We recall that
the presence of imaginary frequencies in the spectrum is
associated with exponentially growing modes that make the
system modulationally unstable, if they are initially populated.
In the figure, the vertical (red) dashed line corresponds to the
critical value of the scattering length, ac

s = 94.4a0. Above ac
s

the spectrum is purely real, corresponding to a stable SF state.
Below ac

s the frequency of some modes becomes imaginary, as
indicated by the colored area. This unstable region broadens
by decreasing the value of as. The dot-dashed line corresponds
to the position of the most unstable mode, for as < ac

s , which
connects to that of the roton mode, for as > ac

s . We indicate

its position as kR(as). It is also worth noting that the LHY
correction in Eq. (7) has a negligible contribution to the spec-
trum in Fig. 2 for the parameter values at hand.

Supersolid formation

Now that we have determined the properties of the ex-
citation spectrum, we can revisit the dynamical behavior of
the condensate after the quench, discussed in Sec. III, and
examine the formation of the supersolid in terms of the emer-
gence of exponentially growing modes. In particular, in order
to capture the essential features of the exponential growth of
the roton mode, we make use of the following ansatz for the
density, n(x, t ) � n0 + nR(t ) cos(kRx), with nR(t ) = ηRe2t/τR ,
where ηR represents the initial population of the roton mode,
and τ−1

R ≡ Im[ωkR ]. Such ansatz is phenomenological, pro-
viding a first approximation towards the nonhomogeneous
density distribution. Then, the normalized inverse participa-
tion ratio in Eqs. (3) and (4) can be approximated as

Ēint(t ) � 1

Ln2
0

∫
n(x, t )2dx

= 1 + β1
ηR

n0
e2t/τR + β2

η2
R

n2
0

e4t/τR , (9)

where L is the total length of the system and the parameters
β1 and β2 are numerical factors that depend on the geometry
of the system. Typically, in a uniform system, their determi-
nation is straightforward. However, in the present case, we
treat them as free parameters to accommodate the inherent
nonuniformity of the system. Based on Eq. (9), we introduce
the following expression for fitting the numerical data,

f (t ) ≡ 1 + 2γ Ae2t/τ + A2e4t/τ , (10)

where we have conveniently reabsorbed the term ηR/n0 into
the definition of A, namely, A ≡ √

β2ηR/n0, γ = β1/(2
√

β2).
The above expression will be used for discussing the scaling
behavior of the instability. It depends on the three independent
parameters: A, γ , and τ . In this respect, it is important to
mention that while τ is an intrinsic property of the system,
determined by Eq. (7), A depends through ηR/n0 on the initial
population of the unstable modes, namely, on the preparation
of the initial state, whereas γ is just a numerical factor. To
illustrate the instability behavior, in Fig. 3 we consider the
case δas = 5 a0, as an example. In Fig. 3(a), the evolution of
Ēint(t ) (see also Fig. 1) is compared with the fitting function
f (t ) in Eq. (10). The fit is restricted to the shaded area, where
the instability becomes manifest [66]. Obviously, the simpli-
fied model in Eq. (10) cannot describe the initial fluctuations
in the SF phase, that stem from the nonuniform nature of the
actual system, nor the collective oscillations of the SS state,
which clearly fall outside the regime of linear excitation of
the initial state. However, it provides a clear explanation of
the two different regimes observed after the quench, before
the formation of the supersolid. The initial regime, in which
the condensate retains its SF character, corresponds to the
one in which the population of the unstable modes remains
negligible, namely, f (t ) � 1. Then, an evident exponential
behavior emerges, leading to the formation of the supersolid,
at t = τSS. At this point, the system has already left the linear
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FIG. 3. Time evolution of the system after a quench with δas =
5 a0. (a) Plot of Ēint(t ) (thick line) along with the fitting function in
Eq. (10) (thin red line). The gray area indicates the range in which
the fit has been applied (see text). (b) Density plot of the momentum
distribution along the x direction as a function of time. The horizontal
(green) dashed line corresponds to the nominal most unstable modes
at ±kR, see Fig. 2. Side peaks at integer multiples of the former are
also visible (notice that the plot is in logarithmic scale).

excitation regime, and Eq. (10) no longer applies. From τSS

on, the dynamics of the system once again become predomi-
nantly driven by nonlinear effects, with quantum fluctuations
being instrumental for stabilizing the system.

The growth of unstable modes is clearly visible in Fig. 3(b),
where we show a density plot representing the time evolution
of the momentum distribution along the x direction (see also
Ref. [7]). The horizontal (green) dashed lines correspond to
the nominally most unstable mode in Fig. 2, namely, the roton
excitations at ±kR. Notably, it is in good agreement with the
result of the numerical simulation (see also Ref. [7,13]). The
same analysis can be repeated for the other values of δas

considered in Sec. III. In Fig. 4 we compare the inverse growth
rate extracted from the fit, τfit, with the value τR = Im[ωkR ]−1

corresponding to the most unstable mode in Fig. 2. We also
show, as a light shaded area, how τR changes by varying the
linear density n0. As one may expect, the instability mecha-
nism is more effective for larger densities. This observation is
consistent with the results of the GP simulations, which show
that the formation of the SS pattern first occurs at the center of
the condensate, where the density is highest, and subsequently
spreads outward toward the lower density region in the tail.
Overall, the agreement between the model predictions and
the numerical data is remarkably good, indicating that the
model captures the essential physics of the system despite
the inherent simplifications leading to Eq. (7), such as the
assumption of uniformity.

In Fig. 4 we also show the total formation time τSS, as
red squares. Interestingly, τSS displays a scaling behavior as
a function of δas that closely resembles that of τR, namely,
τSS � ατR(δas) (notice the log scale of the vertical axis), with
α being a proportionality factor. In the present case we find
α � 6.5, see the black dotted line in the figure. Actually, the

FIG. 4. Plot of the different characteristic times τ entering the
formation of the supersolid. τfit is the inverse growth rate of the
instability extracted from a fit of Ēint(t ) as in Fig. 3, to be compared
with τR obtained from the stability analysis in Fig. 2. The light shaded
area represents the variation of the latter upon a variation of ±5% of
the linear density n0. τSS is the formation time of the SS state defined
in Fig. 1. The black dotted line corresponds to ατR(δas ), with α � 6.5
(see text).

figure shows that there must also be a slight correction to the
scaling, namely, α = αδas . This can be explained as follows.
From the simplified model in Eq. (10) it is straightforward to
express the supersolid formation time as

τSS = τR

2

[
ln

(√
Ē∗

int − 1 + γ 2 − γ

)
+ ln

(
n0√
βηR

)]
. (11)

This result confirms that the scaling of τSS as a function of
δas is indeed mostly determined by the behavior of τR(δas),
with the other parameters providing logarithmic corrections.
Regarding the initial population ηR of the unstable modes, it
is worth noting that—given a certain realization of the initial
state (and of its momentum distribution)—it may slightly de-
pend on as due to the varying position of the roton momentum
kR(as) (see Fig. 3). Although we do not include temperature
in our considerations, we signal that if there is an increase in
the initial population at the roton mode because of thermal
excitation, then the formation time of the supersolid would be
shortened with respect to the T = 0 prediction, as has been
observed in experiments [14,31,44]. It is also important to
remark that the logarithmic terms, though they only provide
a correction to the scaling, are essential for fixing the value
of the proportionality constant αδas . In particular, we find that
the major contribution comes from the term ln(n0/ηR) in the
range of values of δas considered here.

VI. CONCLUSIONS

We have characterized the role of the roton instability in
the formation of a supersolid state of an elongated dipolar
condensate across a continuous superfluid-supersolid transi-
tion, as experimentally reported by Biagioni et al. [31] and
theoretically investigated in Ref. [44]. By means of numerical
simulations based on the extended Gross-Pitaevskii equation,
we have systematically analyzed the dynamic behavior of the
system after a quench of the contact interactions considering
various amplitudes δas of the interaction quench. We have
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also computed the corresponding excitation spectrum by using
the effective one-dimensional approach of Blakie et al. [36],
finding that the calculated growth rates of the unstable roton
modes provide an accurate characterization of the behavior
observed in the simulations.

Our main finding is that the scaling behavior of the for-
mation time τSS of a supersolid state as a function of δas is
mostly determined by the scaling of the inverse growth rate
of the roton mode, namely, τSS(δas) � αδasτR(δas), with αδas

being a proportionality factor fixed by the initial population of
the (most) unstable mode. Remarkably, this implies that the
supersolid formation time τSS is determined by the properties
of the initial state rather than by the energy difference between
the initial superfluid state and the final supersolid state, as it
was speculated in Refs. [14,44]. The present analysis—which

admits a straightforward extension also to other cases besides
a quench (e.g., by means of a time rescaling as discussed in
Ref. [7])—offers a deeper insight into the formation dynamics
of the supersolid structures in dipolar condensates, thereby
providing a valuable framework for future experiments and
theoretical studies.
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