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Abstract

In real life strategic interactions, decision-makers are likely to entertain doubts about
the degree of optimality of their play. To capture this feature of real choice-making, we
present here a model based on the doubts felt by an agent about how well is playing
a game. The doubts are coupled with (and mutually reinforced by) imperfect discrim-
ination capacity, which we model here by means of similarity relations. We assume
that each agent builds procedural preferences de�ned on the space of expected payo¤s-
strategy frequencies attached to his current strategy. These preferences, together with
an adaptive learning process lead to doubt-based selection dynamic systems. We in-
troduce the concepts of Mixed Strategy Doubt Equilibria, Mixed Strategy Doubt-Full
Equilibria and Mixed Strategy Doubtless Equilibria and show the theoretical and the
empirical relevance of these concepts.
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I. INTRODUCTION
In real life choice situations, decision-makers typically feel unsure about their

choices. Even experienced decision-makers often face doubts when making choices
in their domain of expertise. It is thus important to introduce this feature in the
formal models of individual or interactive choice. To this end, we build a model
of adaptive choices in which every agent is endowed with a doubt function. This
function is one of the primitives in the construction of agents�preferences.
When individuals make choices repeatedly, they obtain information about pay-

o¤s, but also about the fraction of others playing each strategy. If an agent ob-
serves that many other play a given strategy, it is natural for him to entertain less
doubts about whether that strategy is a �good�option. This kind of decreasing
doubts are not, as we shall see below, the only possible type of doubts. They
are, however, the most natural ones and a great deal of the paper is dedicated to
them. An additional feature of doubts, which we will also analyze in this paper,
is that they are also closely related to imperfect discrimination capacity (of real
numbers, such as strategy frequencies and expected payo¤s).1

Doubts with respect to an agents� current strategy will naturally lead to a
search for alternatives. In our model, the process of strategy switching takes into
account both payo¤s and strategy frequencies. In other words, before switching
to a new strategy players look around, observe what other agents are doing and
compare the level of �doubts�generated by the various alternatives.
We sketch now the main pieces of the adaptive system that allow an agent

with bounded cognitive capacities to work his way in a complex and continuously
changing environment..

1. Doubt functions. All the agents are endowed with a doubt function that
captures their uncertainties about the degree of optimality of the strategy
they are currently using.

2. Similarity relations. Doubts and imperfect discrimination capacities are
closely related. We model imperfect discrimination by means of (correlated)

1The work of Kahneman and Tversky has plenty of examples about how the human cognitive
system copes with such situations of limited capacity for discrimination. See, for instance,
Tversky (1977), Kahneman and Tversky (1979), Kahneman (2003) and the references therein.
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similarity relations. The doubt function plays a central role in de�ning these
similarity relations.

3. Preferences. Each agent uses the similarity relations to build, by means
of a choice procedure, a preference relation de�ned in the space of expected
payo¤s-strategy frequencies attached to the agent�s current strategy.2 The
preference relation will inform the agent about his preferred (or aspiration)
set. The resulting procedural preference relation presents thick indi¤erence
classes. The (inverse of) distance from the current vector of expected payo¤-
strategy frequency to the aspiration set (represented by the preferred set)
determines the agent�s degree of satisfaction with his current strategy.

4. Adjusting behavior. The agents�satis�cing behavior consists of choosing
and switching strategies to minimize the distance to the aspiration set. This
adjustment process will give rise to di¤erent doubt-based selection dynamic
systems depending on the type of doubt functions. As mentioned earlier, a
special role is given to the assumption that the doubts of an agent decrease
with the proportion of agents playing the same strategy as the agent�s cur-
rent one.

We, then, explore the properties of a doubt-based selection dynamic system for
constant-sum 2x2 games with a unique equilibrium in mixed strategies. We show
that the Mixed Strategy Nash Equilibrium is, under some conditions, a rest point
for the system. More speci�cally, let us assume the situation in which all agents
operate under the doubt-full or absent mode of play. We show that the system
converges to population frequencies close to the Mixed Strategy Nash Equilibrium
when all agents are in the doubt-full mode of play. The following interpretation
can be given to this result. Agents are aware that the proportions with which each
strategy is being played over time are not truly random. Thus, they experience
high levels of doubts out of a fear of being exploited by opponents. The high fear
and the doubts together with the adaptive choices lead the system to the Mixed
Strategy Nash Equilibrium. Once in equilibrium, payo¤s are equalized across
strategies but the doubt levels continue to be high and equal across strategies.
Thus, we show the equilibrium is an asymptotically stable point for the dynamical
system in the doubt-full mode of play. We also calculate the values of the doubt
parameter that would stabilize the Mixed Strategy Nash Equilibrium of 2x2 games,

2The choice procedure is similar in nature to those described in Rubinstein (1988), Aizpurúa
et al.(1993) and Uriarte (1999) (2007)).
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and illustrate this �nding with explicit calculations both for the �Penalty Kick
Game�of Palacios-Huerta and Volij (2007)3 and the "Matching Pennies Game".
The dynamics are rather di¤erent when agents have a very small level doubts

(even if they still decrease in the frequency of play). This is the doubtless or alert
mode of play, in which agents�doubts are very sensitive to strategy frequencies. In
this situation, only the Mixed Strategy Nash Equilibrium with uniform random-
ization is a rest point for the doubt-based dynamic system. However, in this case
any perturbation, however small, sends the system away from the equilibrium.
An interpretation for the result is that the extreme sensitivity to the �opinions�
of others, leads play to a situation where players imitate, whenever doubtful, the
current most fashionable action. This creates a tendency to diverge in population
behavior. In addition, the doubtless agents are quite satis�ed with their current
strategies and do not feel the need to experiment with new strategies to exploit
the di¤erences in payo¤s and strategy proportions. Hence, a low level of imitation
and strategy adjustment takes place, and the populations diverges very slowly to
a situation where initially popular strategies dominate.
There are also quite interesting intermediate cases, with strictly decreasing

doubts that are less extreme than the previous cases, in between the doubt-full
and doubtless modes of play. In this case, we �nd a kind of herding behavior,
which unlike the one in the doubtless mode, can be stable. The equilibrium of the
doubt-based dynamic system is not the Nash equilibrium and has the following
feature: the most popular strategy has smaller (expected) payo¤s. This is a
general characteristic of equilibria with decreasing doubt functions. But in the
doubt-full mode of play it is not so evident since the equilibrium is close to being
Nash, and in the doubtless mode, we have unstable dynamics. We believe that
this feature of equilibria of doubt-based selection dynamic system is a relevant
and robust testable implication for our model, and we provide some preliminary
evidence to support it.
Finally, we should mention as well the case of constant doubts. This means

that each agent�s hesitations and feelings of uncertainty are not a¤ected by the
fraction of fellow agents from his population playing the same strategy. Thus,
society does not have any direct in�uence on this type of agent. Then we show
that the adjusting behavior would lead us to a doubt-based selection dynamics

3This interesting paper shows how professional football (soccer) players transfer the skills
learnt in the �eld to the arti�cial setting of a laboratory and yet play close to the mixed strategy
Nash Equilibrium.
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that is closely related to the replicator dynamics.4

How does this work relate with the existing literature? Given the nature of
the paper, we think that it is in the realm of the experimental literature that
we should look into. Particularly, in the experiments where subjects are given
information about the performance of the other participants. In Tang (2001), for
instance, the participants in the experiment are given a precise information about
the proportion of subjects playing each strategy as well as the average payo¤s in
the two player populations. This experiment contradicts one of our result, the
one that says that the most popular strategy has smaller (expected) payo¤s. To
our defence, it should be said that it is not very realistic to provide such a precise
information, -which, in fact, is only known by the experiment maker-, to subjects
who are involved in the experiment. In fact, this kind of information would
eliminate the "doubts" that the involved subjects might feel, a feature that plays
a central role in the build-up of our model. In Binmore et al. (2001) a subject can
compare his peformance with the other subjects in the same population by sawing
their median payo¤. While holding the same critical stand as in the previous case,
and taking into account that the information now is about payo¤s, we note that
the spiral trajectory converging to equilibrium that these authors observe in the
experiment has a theoretical counterpart in the doubt-full case where the path to
equilibrium is shown to be a spiral (sink) as well.
Given the above limitations, we have looked for data coming from �eld ex-

periment and provide a supportive piece of evidence for our (doubt) equilibrium
condition.
To conclude, we think that this paper, by insisting on limited rationality based

on doubts related and imperfect perception, highlights the need of evidence from
fuzzier, that is, more realistic experimental environments.

II. NOTATION
Consider a noncooperative �nite gameG in normal form, withK = f1; 2; ::::; ng

denoting the set of players. For each player k 2 K , let Sk = f1; 2; ::::;mkg be her
�nite set of pure strategies, for some integer mk > 2 .
Imagine that there exist n large populations, one for each of the n player

positions in the game. Members of the n populations chosen at random -one
member from each player population- are repeatedly matched to play the game.

4This result is yet another rationalization for the replicator dynamics. Other foundations for
this dynamical system can be found in Binmore, Gale and Samuelson (1995), Weibull (1995),
Cabrales (2000) and Schlag (1998), among others.
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In what follows, we shall speak of players when referring to the game G and
we shall speak of agents when referring to the members of the populations. Each
agent is characterized by a pure strategy. From now on, we shall refer to the agent
ki as a member of the player population k 2 K who plays pure strategy i 2 Sk
. Let fki(t) 2 Fki = [0; 1] be the relative frequency of ki agents at time t, with
f(t) being the vector collecting such probabilities. Time index suppressed, �ki(f)
will denote agent ki�s expected payo¤ given the population state f . Without loss
of generality, we may assume that payo¤s are strictly positive and do not exceed

one; hence, �ki(f) 2 �ki = (0; 1]. Finally, �k(f) =
mkP
i=1

fki(f) �ki(f) is the average

payo¤ in player population k 2 K: To simplify notation, we shall denote �ki(f)
as �ki:

III. THE DOUBT-BASED SELECTION DYNAMICS
We will be dealing with boundedly rational players by assuming that they

have doubts about how well they are playing the underlying game. This idea is
formalized assuming that every agent of each player population is endowed with a
(primitive) function that we call the "doubt function". This function, denoted dki;
measures the doubts felt by agent ki about how optimal, or maybe, just how good
is his current strategy i 2 Sk , available to player population k 2 K = f1; 2; :::; ng,
as a response to the strategies that the rest of players are using. Agent ki relates
the doubts he is feeling with the proportion of individuals who are using the same
strategy as his current one (we show below that this is not necessarily a herding
behaviour). Therefore, dki(fki) measures how ambiguous agent ki feels about the
optimality of strategy i 2 Sk, given that the proportion of agents of his own
population currently playing that strategy is fki 2 Fki.
We shall assume in this section that the agents are endowed with a strictly

decreasing doubt function. That is, an agent�s doubts about how well is playing
gradually decrease when he observes (or is informed) that more and more agents
from his player population end up playing the same strategy as the one he is
currently using. In other words, society does have an in�uence upon this type of
agents. Formally,

Assumption 1 (The strictly decreasing doubt functions)
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Each agent ki is endowed with a di¤erentiable doubt function dki in the set

D =

�
dki : Fki ! [0; 1] : with bfki > efki ) dki( bfki) < dki( efki)

and dki(0) = 1; dki(1) = 0

�

Given a proportion fki 2 Fki , -known by the ki agent-, and the dki 2 D;
dki(fki) measures the doubts (about how well is playing the game) felt by the
agent ki when the proportion of agents in player population k playing strategy
i 2 Sk at time t is fki.

Remark 1:
To note that we are not dealing always with a kind of "herding model of

doubts", we highlight the following two types of doubt functions in D which are
relevant for the results of section IV:
1. Function d� 2 D� � D which, for every fki 2 (0; 1), d�(fki) is �close�to 0

(i.e., d�(fki) < � for all fki > �).
2. Function d1�� 2 D1�� � D which, for every fki 2 (0; 1), d1��(fki) is �very

close�to 1 (i.e., d1��(fki) > 1� � for all fki < 1� �).
When dki = d�, for su¢ ciently small �, we say that the agent ki is in the alert

or doubtless mode (denoted as d in �gure 1) and when dki = d1��, for su¢ ciently
small �, we say the agent is in the absent or doubt-full mode (denoted as d in
�gure 2 ).
When the doubt functions of D are in between these two extreme cases, then

we may say there is a kind of �herding e¤ect on doubts�, that grows stronger as
we move away from those cases.
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Figure 1: Doubt function of an agent in the alert or doubtless mode of play. His
doubts are almost 0 in the interval (0, 1).

1

1
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Doubt
level

Fki

d

Figure 2: Doubt function of an agent in the absent or doubt-full mode. His doubts are
almost 1 in the interval (0, 1).

1. Doubts and Imperfect Discrimination Modelled by (Correlated)
Similarity relations
In the present model, doubts are closely related to imperfect discrimination

capacity (in the present paper, of real numbers, such as strategy frequencies and
expected payo¤s). An environment shaped by uncertainty and doubts about the
correctness of the choices made is a very e¤ort demanding for the cognitive system
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of decision-makers. One way subjects cope with the ambiguous nature of this
situation is by simplifying its complexity; for instance, by grouping numbers in
intervals of similarity. Inside those intervals, whose size depend on threshold levels
that change continuously, values - of, say, expected payo¤s -, are not distinguished.
The work of Kahneman and Tversky has plenty of examples about how the human
cognitive system copes with such situations; see, for instance, Kahneman and
Tversky(1979) and Kahneman (2003) and the references therein.
We model subjects�imperfect discrimination by means of correlated similar-

ities. Correlated similarities are an extension of the similarity relations de�ned
by Rubinstein (1988) in the sense that, instead of being constant, they change
conditional on the value of certain relevant parameters, as it will be seen below.
More speci�cally, the dki function de�nes the correlated similarity relations that
will capture agent ki�s imperfect discrimination of expected payo¤s and strategy
frequencies. In the next lines it is sketched how this is done (a complete account is
given in Appendix 1). Let (�ki; fki) be the vector of expected payo¤-proportion
of agents of player population k attached to strategy i 2 Sk at time t.
(a) dki de�nes on the space of expected payo¤s, �ki, correlated similarities of

the di¤erence-type as follows: given fki, the similarity interval of �ki is:

[�ki � dki(fki); �ki + dki(fki)]
Thus, given fki, dki(fki) de�nes the threshold level on �ki. Payo¤s inside the
similarity interval are not discriminated by the agent. Thus, there is one similarity
relation on �ki, denoted S�[fki], for each fki 2 (0; 1).
(b) dki builds the �ki function, which is used to de�ne on Fki correlated simi-

larity relations of the ratio-type. This function is de�ned as follows: given dki and
a speci�c fki 2 (0; 1), then for all �ki > dki(fki)

�ki(�ki) =
�ki

�ki � dki(fki)
> 1

Thus, there is one �ki function for each fki 2 (0; 1), so that, given the values
of �ki;and fki attached to agent k�s strategy i, with �ki > dki(fki), the similarity
interval of fki is:

[fki=�ki(�ki), fki:�ki(�ki)]

SF [�ki; fki] denotes the correlated similarity on Fki, which means that there
is a correlated similarity for each fki 2 (0; 1) that depends on the value of �ki >
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dki(fki). The properties of the �ki function that should be kept in mind for the
remainder of the paper are the following:

2. Properties of the �ki function
1. Given dki and a proportion fki 2 (0; 1); @�ki(�ki)@�ki

< 0. This means that if the
payo¤s at stake increase, the similarity interval of fki shrinks; in other words, the
discrimination capacity on Fki = [0; 1] increases if the expected payo¤s increase.
This property generates the horizontal wedge-shape form of �gure 3.
2. Suppose now that, other things equal, fki increases (decreases); in other

words, since dki is strictly decreasing, suppose that the doubts of agent ki de-
creases(increases). Then, we would have a di¤erent �ki function such that, since
dki 2 D has not changed, the similarity intervals of fki will shrink (expand) for a
given �ki.

3. Procedural Preference Relation and Satis�cing Behaviour

We shall assume that each agent ki compares pairs of vectors in �ki � Fki
with the aid of the of the correlated similarity relations S�[fki] and SF [�ki; fki],
to decide which of the two is preferred. The choice procedure, which is similar in
nature to that of Rubinstein (1988), but a bit more sophisticated due to the use
of correlated similarity relations, gives rise to the preference relation depicted in
�gure 3. A detailed description of how the preference is built is given inAppendix
1.
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fki/ ki
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pki(f)+dki(fki)

U

L

U

U

L

L

pki(f)-dki(fki)

Figure 3: Preference relation derived from a choice procedure based on correlated
similarity relations with decreasing doubts.

We assume that every ki agent chooses strategies with the purpose of minimiz-
ing the distance to the aspiration set, which, here, is represented by the preferred
set relative to vector (�ki, fki), denoted as U = U� [U� [U� in �gure 3. In other
words, what this strategy choice behaviour is trying to do is to reduce the size of
the indi¤erence set �ki [(�ki, fki)]: the thinner is this set the closer is (�ki, fki) to
its corresponding upper contour set U .
Note that the above two properties of �ki are very handy for the function to be

a good measure of the variations in the size of the indi¤erence set, and, therefore,
a good measure of the distance to the aspiration set. Thus, the function �ki could
be thought of as an indicator of the degree of satisfaction of agent ki with his
current strategy. The smaller the value of �ki; the happier would feel the agent
with his current strategy. Hence, an agent chooses a strategy to reduce the doubt
level and/or increase the expected payo¤s.
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4. The Doubt-Based Selection Dynamics
Let

�ki � 1
�mk
i=1
�ki

=
�ki � 1
�k

denote the proportion of ki strategists who feel dissatis�ed with strategy i at time
t: Notice that if �ki increases this proportion increases .
We assume that time is divided into discrete periods of length � . In every

period, 1 � � is the probability that the agent does retain his current strategy;
thus, � is the probability that each agent does not retain his current strategy. We
make now the following assumption to build a selection dynamic model5

Assumption 2
When an agent feels dissatis�ed with his current strategy, he will choose a new

strategy with a probability that is equal to the proportion of agents playing that
strategy.

From Assumption 2, � (�ki�1)
�k

fki will denote the proportion of ki strategists
who will choose a new strategy (the out�ow), and, since a particular strategy is
chosen with a probability that is equal to the proportion of agents playing that
strategy, then �

Pmk

j=1
(�kj�1)
�k

fkjfki = � (�k�1)
�k

fki is the proportion of agents who

will choose strategy i (the in�ow), where �k =
Pmk

j=1 �kjfkj.
Therefore,

fki(t+ �) = fki(t)� �
(�ki � 1)
�k

fki + �
(�k � 1)
�k

fki

As � ! 0; in the limit we get the doubt-based selection dynamic equation:

�
fki = fki

�
�k � �ki
�k

�
:::::::::::::::::::::::::::::(1)

5For a justi�cation see, for example, Binmore et al. (1995).
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Remark 2: Doubts and Strategy Choice behaviour
Note that if �ki increases -because, other things equal, the doubts of agent ki

increase- the ratio of ki strategists who feel dissatis�ed with strategy i at time t,�
�ki�1
�k

�
, increases too, and therefore, the proportion of those agents prone to change

strategy will increase too. A similar e¤ect will occur if, given a level of doubts, �ki
decreases. This connection, between doubts and strategy choice behaviour, provides
an exact meaning to the notion of doubts in this model, that coincides with the
intuitive notion of doubts in a continuous decision-making context. A doubtful
agent would be one with a tendency to try new strategies.

To gain some intuition, let us see now equation (1) in a less compact way. Let
G be a two-population constant-sum game with SI = fU;Dg and SII = fL;Rg de-
noting player I and player II�s strategy sets, respectively. Let x denote the proba-
bility of playing U , y the probability of playing L and I = [(x�; 1� x�) ; (y�; 1� y�)]
the Mixed Strategy Nash Equilibrium, with x� > 0 and y� > 0:To avoid the use
of four di¤erent doubt parameters, we shall assume that the four doubt functions
are the same, with di¤erent domains obviously. That is, dki = d 2 D (where
k = I; II and i = U;D;L;R).
From (1), the doubt-based selection dynamics for G is represented by the fol-

lowing system:

�
x =

x (1� x)
�U (�D � dD) + �D (�U � dU)

(�UdD � �DdU) (0.1)

�
y =

y (1� y)
�L (�R � dR) + �R (�L � dL)

(�LdR � �RdL) (0.2)

Clearly, a stationary point for the doubt-based system (0.1)-(0.2), with x� > 0
and y� > 0, requires �UdD = �DdU and �LdR = �RdL. We call this point the
Mixed Strategy Doubt Equilibrium (MSDE).

Clearly, a stationary point for the doubt-based system (2)-(3), with x� > 0 and
y� > 0, requires �UdD = �DdU and �LdR = �RdL. We call this point the Mixed
Strategy Doubt Equilibrium (MSDE).

5. Mixed Strategy Nash Equilibrium (MSNE) and Mixed Strategy
Doubt Equilibrium (MSDE)

13



We should distinguish between the Mixed Strategy Nash Equilibrium (MSNE)
and the Mixed Strategy Doubt Equilibrium (MSDE) for the doubt-based dynamic
system (2)-(3).

1.In a MSNE the requirement is that all strategies in the support of the equi-
librium have equal payo¤s; that is:

�ki (f
�) = �kj (f

�) for all i; j with f �i > 0 and f
�
j > 0 and all k

2. From (2)-(3) we deduce that for a MSDE the requirement is:

�ki (f
�)

d (f �i )
=
�kj (f

�)

d
�
f �j
� for all i; j with f �i > 0 and f �j > 0 and all k

Note that in this case, the expected payo¤s to the strategies in the support of
the equilibrium need not necessarily be equal, as it is required in the MSNE. We
shall come back
to this later on.

IV. THE THEORETICALRELEVANCEOF THEDOUBT-BASED
SELECTION DYNAMICS
We shall present in this section how subjects with limited cognitive capacities

are capable of adapting to the changes of a complex environment, learn interac-
tively to become more skillful in their choices and, eventually, reach, under some
conditions, the socially optimal outcome predicted by the theory for rational play-
ers.

1. Relationship between a MSNE and a MSDE
Let us recall what game theorists say about a MSNE:
"The point of randomizing is to keep the other player(s) just indi¤erent between

the strategies that the other player is randomizing among. One randomizes to keep
one�s rivals guessing and not because of any direct bene�t to oneself." (Kreps 1990,
p 408).
The doubt-based model could capture that state of players�mutual guessing

that characterizes a MSNE. Let us keep in mind that we are dealing with games
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having a unique mixed equilibrium with full support. Consider Player I; how
would this player interpret di¤erent values of (his own probability) x, say 0:2
and 0:6 ? A rational Player I knows that Player II is randomizing to keep him
indi¤erent between the strategies he is randomizing among. Therefore, x = 0:2
and x = 0:6 will induce in Player I�s rational mind the same level of doubts as to
which is the best probability distribution, because both of them have the same
expected payo¤. But, for the same reason, Player I�s equilibrium strategy in the
game will induce the same level of doubts as 0:2 or 0:6. In other words, Player
I does not see, both strategically and in a preference sense, any real di¤erence
between di¤erent probability distributions in the open unit interval [0,1]. As a
consequence, he will have (nearly) equal level of doubts at any x in (0,1). The
same will happen to Player II.
Hence, we ask �rst, which are the level of doubts embedded in the players�

mutual guessing that characterizes the MSNE?. This is answered in Proposition
1 below, where we show that an MSNE is close to an MSDE with a high level of
doubts. With very low level of doubts the MSDE converges to the center of the
simplex.
The second issue to deal with is the following: how is the MSNE reached?

or,which is the equilibrating process that may lead to the MSNE? This will be
answered in Proposition 2 and 3 below.
We shall assume, without loss of generality, that dki(fki) = (1� fki)�. Assum-

ing that � 2 (0;1), we would obtain a large enough subclass of doubt functions
in the set D. The convex combinations of elements in this class belong to D
as well. Note, in particular, that this class contains the two extreme types of
doubt functions introduced in Remark 1: when � is very small, near zero, the
doubt parameter characterizing agent ki, denoted as 
 = 1

�
, is very high for any

fki 2 (0; 1). Then the function will have a graph looking like the one of �gure 2,
and we shall say now that the agent is in the absent or doubt-full mode of play.
When � is very high, the graph of dki is close to the axes, as in �gure 1, and so
the doubt parameter, 
 = 1

�
, is very small, for any fki 2 (0; 1). This is the agent

in the alert or doubtless mode of play. The results of section IV make use of these
two modes of play and therefore are not dependent of the mathematical form of
the doubt functions. On the other hand, with this class of doubt functions we can
make numerical calculations in the examples presented below.

Proposition 1
Let G be a two-population, two-strategy, constant-sum game with
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I = [(x�; 1� x�) ; (y�; 1� y�)], x� > 0, y� > 0, denoting its MSNE.

1. If players do not randomize uniformly, then the (Euclidean) distance between
an MSDE and MSNE converges to zero as � goes to zero if every agent plays
with a doubt function in the D� class. That is, if they play in a doubt-full
mode.

2. Let dki(fki) = (1� fki)� for all k; i: Then the (Euclidean) distance between
an MSDE and the central point of the simplex C = [(1=2; 1=2) ; (1=2; 1=2)]
converges to zero as � goes to in�nity. That is, if they play in a a doubtless
mode.

Proof: see Appendix II.

Remark 3
Note that in a Mixed Strategy Doubt-Full Equilibrium (MSDFE), the indif-

ference set will so thick that it will cover almost the whole space [0; 1]� [0; 1]. In
a Mixed Strategy Doubtless Equilibrium (MSDLE) the interior of the indi¤erence
set will be almost empty.
Even though every dki 2 D is strictly decreasing, the exact values of the mixed

strategy equilibrium, (x�; y�), with x� and y� > 0, do not matter since every ki
agent is endowed either with a doubt function in the absent mode or in the alert
mode. In particular, this means that Proposition 1 does not impose any restriction
on the equilibrium values that fki might take nor it does relate those probability
values with their corresponding expected payo¤values, �ki, k = I; II and i = 1; 2,
in a particular manner.

2. Learning to Play a Mixed Strategy Nash Equilibrium (MSNE)
The question that we have not answered yet is: how the players do learn to

coordinate in the MSNE?
We want now to defend the MSNE concept by some speci�c adjusting behav-

iour of our rationally bounded players. We know that a fully rational player must
avoid being guessed by the opponents and that to achieve this he will behave in
such a way so as to create a random sequence of choices. This suggests that a
doubtless mode of playing -that implies almost no strategy switching behaviour-
would be far from being an adjusting process leading to the Nash equilibrium.
It seems that, in an equilibrating process, what makes more sense is that play-
ers should behave in the doubt-full mode. In our deterministic dynamic model,
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permanent doubt-full agents will have a tendency to keep trying new strategies
and, thus, generating not a truly random sequences of choices, but individual
processes of trial-and-error adjustments which could �nd their way to the MSNE.
In Proposition 2 below we show that this is the case: if every agent behaves as
if he were constantly with a high level of doubts, the agents�adjusting behaviour
would lead them to the MSNE and endow the equilibrium with a strong stabil-
ity property. Proposition 3 shows that the doubtless mode of play has just the
opposite consequence.

Proposition 2
Let G be a two-population, two-strategy, constant-sum game with
I� � [(x�; 1� x�) ; (y�; 1� y�)], x� > 0 and y� > 0, denoting its Mixed Strategy

Nash Equilibrium. Then a point close to I� is asymptotically stable for the doubt-
based dynamic system (0.1)-(0.2) if every agent plays in the doubt-full or absent
mode of play.
Proof: see Appendix II.

Proposition 3
Let G be a two-population, two-strategy, constant-sum game with
I� � [(x�; 1� x�) ; (y�; 1� y�)],
x� > 0 and y� > 0, denoting its Mixed Strategy Nash Equilibrium. If every

agent is in the doubtless or alert mode of play (i.e. � is arbitrarily large) and
the initial conditions of the doubt-based dynamic system (0.1)-(0.2) are di¤erent
from [(1=2; 1=2) ; (1=2; 1=2)] ; then the system diverges to a corner of the simplex.
Proof: see Appendix II.

Remark 4
Proposition 3 implies that the Mixed Strategy Nash Equilibrium of a constant

sum game is unstable if all agents are in the doubtless mode of play.

One may then ask about why such modes of play of Proposition 2 and 3
would arise. Needless to say, doubts are a subjective feeling and hence it is
di¢ cult to ascertain the precise reason why they may arise in each particular
case. Proposition 2 suggests that the origin of high level of doubts lies in the
fact that every agent seems to be aware that the proportion with which each
available strategy is being played and the sequence that the agents, as a player
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population, are producing is not random. Thus, the high levels of doubts felt by
every member of each player population would arise from the fear of being guessed
and exploited by the opponent. As a consequence, since agents are very unhappy
with their current strategies (very high valued �ki) a high proportion of agents
will experiment with new strategies in the next period. The fear and the doubts
of the agents will continue to be high and, joint with the choices that exploit
the variations both in the payo¤s and in the strategy proportions, the adjusting
behaviour would lead the system to the Mixed Strategy Nash Equilibrium. Once
in the equilibrium, payo¤s are equalized across strategies and the doubt levels
continue to be very high and equal across strategies too. Thus, the doubt-full
mode of play endow the MSNE with strong stability properties
Proposition 3 suggests that agents seem to be too con�dent and satis�ed with

the pure strategies they are currently playing (they have very low valued �ki).
With almost no doubts, they would just produce small strategy choice changes,
not taking care of the randomness of their sequences. Thus, imitation is almost
non existent and the resulting dynamics is not sensitive enough to payo¤ and
strategy proportion changes, however small. These features would explain why
the dynamics do not converge to equilibrium from any initial point in the state
space di¤erent from the equilibrium itself.

V. EXAMPLES

Example 1: The Penalty Kick Game
Palacios-Huerta (2003) found that the equilibrium theory predictions are ob-

served in the professional players�behaviour: (i) their choices follow a random
process and (ii) that the probability that a goal will be scored must be the same
across each player�s strategies and equal to the equilibrium scoring probability
(that is, in the Mixed Strategy Nash Equilibrium each player is indi¤erent among
the available strategies). Palacios-Huerta and Volij (2007) extend this result by
observing that professional players are capable of transferring their skills from the
�eld to the laboratory, a completely unknown setting for them, and yet behave in
a way that is signi�cantly near the Nash equilibrium.
Palacios-Huerta and Volij (2007), from a sample of 2,717 penalty kicks collected

from European �rst division football (soccer) leagues during the period 1995-2004,
built the following two player (Player I: the kicker and Player II: goal keeper) two
strategy (Left, Right) game.
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( y) L R
( x)L 0.60, 0.40 0.95 , 0.05
R 0.90, 0.10 0.70, 0.30

where �I(i; j) denotes the kicker�s probability of scoring when he chooses i and
the goalkeeper chooses j, for i; j 2 fL;Rg :The Mixed Strategy Nash Equilibrium
of this game is: x� = 0:363 64; y� = 0:454 55:
Football matches are continuously played and players�game is based on the

study of the opponents in the �eld and watching their play on TV and in video-
tapes, so that their behaviour in the penalty kicks is collected and analyzed. Thus,
there is a history of play of each player and, hence, an interactive learning process.
Thus, a natural issue is to investigate the type of dynamic process that may lead
to the result found by Palacios-Huerta (2003). The doubt-based model seems to
be a suitable model for this task.

The doubt-based selection dynamic system (2)-(3) corresponding to this game
is the following:

�
x =

x(1� x)((0:95� 0:35y)x� � (0:2y + 0:7)(1� x)�)
2(0:95� 0:35y)(0:2y + 0:7)� (0:95� 0:35y)x� � (0:2y + 0:7)(1� x)�

�
y =

y(1� y)((0:1 + 0:3x)y� � (0:3� 0:25x)(1� y)�)
2(0:1 + 0:3x)(0:3� 0:25x)� (0:1 + 0:3x)y� � (0:3� 0:25x)(1� y)�

The vector �eld de�ning (2)-(3) is

F (x; y) = (
x(1� x)((0:95� 0:35y)x� � (0:2y + 0:7)(1� x)�)

2(0:95� 0:35y)(0:2y + 0:7)� (0:95� 0:35y)x� � (0:2y + 0:7)(1� x)� ;

y(1� y)((0:1 + 0:3x)y� � (0:3� 0:25x)(1� y)�)
2(0:1 + 0:3x)(0:3� 0:25x)� (0:1 + 0:3x)y� � (0:3� 0:25x)(1� y)� )

We compute �rst the derivativeDF (x; y) and then evaluateDF (x; y) at (0:363 64; 0:454 55)
to get the following Jacobian matrix:

DF (0:363 64; 0:454 55) =

�
�

1: 581 8�2�0:363 64�
0:146 29(�0:2�0:636 36��0:35�0:363 64�)

0:790 91�0:363 64�
0:592 880:25�0:545 45

�+0:3�0:454 55�
0:209 09�0:454 55�

�
0:418 18�2�0:454 55�

�
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It is easy to see that for values of � 2 (0; 0:231 88), all the eigenvalues of
DF (0:363 64; 0:454 55) have negative real parts and the associated determinants
are all positive. Thus, the equilibrium (0:363 64; 0:454 55) is a spiral sink, for
those values of �, and, therefore, it is asymptotically stable. This means that the
doubt functions of professional football (soccer) players are in a set which includes
one having a graph looking, approximately, like the one of �gure 4. The latter
would correspond to the player whose performance shows fewer level of doubts,

 = 1=0:231 88 = 4: 312 6, for any frequency level in (0; 1).

10.750.50.250

1

0.75

0.5

0.25

0

Figure 4. The graph of the doubt function d(fki) = (1� fki)0:231: The horizontal axis
measures the proportion fki of agents in population k playing the pure strategy i. The

vertical axis measures the doubt level associated to each fki.

Example 2: The Matching Pennies Game

( y) L R
( x) U 1, 0.5 0.5 , 1
D 0.5, 1 1, 0.5

The Mixed Strategy Nash equilibrium of this game is (1=2; 1=2), and the doubt-
based system (2)-(3) corresponding to the game is the following:

�
x =

x (1� x) (0:5 (1 + y)x� � (1� 0:5y) (1� x)�)
2 (0:5 + 0:25y � 0:25y2)� 0:5 (1 + y)x� � (1� 0:5y) (1� x)�

�
y =

y(1� y) ((1:0� 0:5x) y� � (0:5x+ 0:5) (1� y)�)
2 (0:5 + 0:25x� 0:25x2)� (1:0� 0:5x) y� � (0:5x+ 0:5) (1� y)�
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We show now the conditions that makes (1=2; 1=2) asymptotically stable in
the above system. More speci�cally, we show that (1=2; 1=2) is a spiral sink.

The vector �eld de�ning (8)-(9) is

F (x; y) = (
x (1� x) (0:5 (1 + y)x� � (1� 0:5y) (1� x)�)

2 (0:5 + 0:25y � 0:25y2)� 0:5 (1 + y)x� � (1� 0:5y) (1� x)� ;

y(1� y) ((1:0� 0:5x) y� � (0:5x+ 0:5) (1� y)�)
2 (0:5 + 0:25x� 0:25x2)� (1:0� 0:5x) y� � (0:5x+ 0:5) (1� y)� )

We compute �rst the derivativeDF (x; y) and then evaluateDF (x; y) at (1=2; 1=2)
to get the following matrix:

DF (1=2; 1=2) =

�
�

1: 5�2�0:5�
0:166 67
0:75�0:5�0:5

�

� 0:166 67
0:75�0:5�0:5

� �
1: 5�2�0:5�

�
We see that the elements jij(�) of the Jacobian matrix are three functions

whose signs depend on the value of the parameter �. Furthermore, these functions
are all multiplied by 1

0:75�0:5� , and 0:75 � 0:5
� = 0 when � = 0:415 04. Then it

is easy to see that only for values of � in (0; 0:415 04) all the eigenvalues of the
matrix DF (1=2; 1=2) have negative real parts. As in the previous example, the
equilibrium (1=2; 1=2) is a spiral sink.�

VI. TESTABLE IMPLICATIONSOFDOUBT-BASED SELECTION
DYNAMICS
Recall that in a Mixed Strategy Doubt Equilibrium (MSDE), the requirement

is that for all i; j with f �ki > 0 and f
�
kj > 0,

�ki (f
�)

d (f �ki)
=
�kj (f

�)

d
�
f �kj
�

To satisfy the MSDE condition, we may have the following cases:
1. Agents are in the absent or doubt-full mode of play: then, for all k, and

all i; j with f �ki > 0 and f �kj > 0, d (f �ki) = d
�
f �kj
� �= 1 and �ki (f �) = �kj (f

�).
Proposition 1, shows that this happens in the Mixed Strategy Nash Equilibria.
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1. 2. Agents are in the alert or doubtless mode of play: then, for all k, and all
i; j with f �ki > 0 and f

�
kj > 0, d (f

�
ki)
�= d

�
f �kj
� �= 0 and �ki (f �) �= �kj (f �).

3. Agents are neither in the absent or doubt-full mode of play nor in the alert
or doubtless mode of play: then, for all k and all i; j, with 0 < f �kj < f

�
ki < 1,

since the doubt functions are strictly decreasing, d (f �ki) < d
�
f �kj
�
, and thus,

in order to satisfy equilibrium condition we must have �ki (f �) < �kj (f �).

We mentioned in Remark 1 that it is in the third case when we would see
individual level of doubts induced by some kind of "herding e¤ect". Perhaps
this might explain why the MSDE is, in this case, clearly distinct from a Nash
equilibrium. In words, the equilibrium condition now says that the more frequent
strategies in a MSDE should have lower expected payo¤s.
Notice that this condition applies as well as to a pure decision problem than

to a non-trivial game situation. So a supportive piece of evidence for our equilib-
rium condition could come from consumer choice situations. Suppose that several
brands of a product are sold (say automobiles). For a particular category of
product (a family sedan, a pickup truck), su¢ ciently narrowly de�ned so that no
horizontal or vertical di¤erentiation of quality is possible, the presence of multi-
ple brands suggests according to standard theory that the consumer should be
(close to) indi¤erent between them (in our language �ki (f �) = �kj (f

�)). Our
model, on the other hand, suggests that the quality is lower for brands with
higher sales/market share. In our words, when f �ki > f�kj we should observe
�ki (f

�) < �kj (f
�). Table 0.1, compiles statistics of mechanical troubles of cars

compiled by the German Automobile Club for 2002 (measured by the number of
calls for towing-and-repairing to the Club per thousand vehicles of that kind sold
that year), as well as sales in February 2007. It is interesting to note that for the
three best kinds of car in all categories, there is a signi�cant correlation between
sales of a model and mechanical troubles (a correlation coe¢ cient of 0.65).6 This
is, of course, far from a proof of our result. The overall correlation coe¢ cient is
of rather uncertain sign,7 but we suspect this is not a stable situation and the
�worst� cars will eventually exit the market. But it strongly suggestive and it
points to an interesting testable implication from our model.
Our conclusions could also be tested in the experimental laboratory. However,

subjects in experiments usually do not have information about the proportion of

6The same computation by category gives a number in excess of 0.75 for each one.
7And there are, of course, lots of omitted important variables
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people using each strategy. For example, the only experiment from those surveyed
in chapter 3 of Camerer (2003) in which agents are given that information is the
one carried out by Tang (2001). In that experiment, and contrary to our predic-
tions, the most frequently played strategies have a higher ex-post average payo¤.
We suspect, though, that the highly precise (and, we would argue, unnatural) form
of the feedback given to subjects eliminates the �doubt�considerations that are
important in the build-up of our model. Curiously enough, in the experiment of
Tang (2001) only about a fourth of the subjects participating in that experiment
used repeatedly this information on frequencies of play.
We believe that more evidence, and hopefully, from �fuzzier�(more realistic)

environments would be useful to confront some predictions made in this work.

VII. CONSTANT DOUBT-BASED SELECTION DYNAMICS
The individual choice model that we are going to use in this section is de-

rived from a choice procedure introduced by Aizpurúa, Ichiishi, Nieto and Uriarte
(1993), (referred to as AINU from now on), in the space of simple lotteries. We
consider now the case when the level of doubts felt is constant, for any value of
fki 2 Fki. This means that society has no in�uence upon the doubt level of the
agents. Formally,

Assumption 4 (The Constant Doubt Function):
For all k 2 K; i 2 Sk and fki 2 Fki, the function dki : Fki ! [0; 1] is constant;

i.e.

dki(fki) = �k 2 (0; 1)

We assume that the constant level of doubts �k felt by agent ki induces thresh-
old levels in both expected payo¤s and strategy frequencies and that these thresh-
old levels are described by means of similarity relations.
As in the previous case, it is by means of Assumption 4 about the doubt

function that we may de�ne a similarity relation on �ki = (0; 1] and correlated
similarity relations on Fki = [0; 1]. Suppose that (�ki; fki) is the vector of expected
payo¤-strategy proportion attached to strategy i at time t.
The similarity relation on �ki; denoted S�ki; is assumed to be of the di¤erence

type and it is de�ned as follows
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�kiS�ki�
0
ki , j�ki � �0kij � �k

On Fki, we de�ne now the correlated similarity relations as follows. First, for
all �ki(f) > "k > 0 we build the function �ki : �ki ! (1;1] as follows,

�ki(�ki) =
�ki

�ki � �k
> 1

Then, we can establish the following similarity relation (of the ratio-type) between
fki and other proportions in Fki, such as f 0ki, given �ki.

fkiSFki(�ki)f
0
ki ,

1

�ki(�ki)
5 fki
f 0ki

5 �ki(�ki)

We call SFki(�ki) a correlated similarity relation because the similarity on
Fki depends on the level of expected payo¤ �ki at period t. For values of �ki 5 �k
the function �ki is not de�ned and we assume that in that case that SFki(�ki) is
the degenerate similarity relation (see Rubinstein (1988)).

Remark 5.
The threshold level in the frequency space is inversely related to expected

payo¤s: @�ki(�ki)
@�ki

< 0. This means that as the expected payo¤s at stake increases,
the discrimination on the frequency space Fki increases (generating the horizontal
wedge type shape of �gure 5).

The Procedural Preference Relation

As in the previous case, we assume that agents use both S�and SF (�ki) to
build a decision procedure (see Appendix 1) that helps them to de�ne at each
period of time their preferences on the product space �ki�Fki . The result of this
procedure is the preference relation depicted in Figure 5, where the darker part is
vector (�ki; fki)0s indi¤erence set and U = Ua [ Ub [ Uc and L = La [ Lb [ Lc are
the upper and lower contour sets, respectively. We assume that the preferred set
U represents agent ki�s aspiration set.
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pki(f)- kk

Figure 5. It is depicted the procedural preference %kiwhen doubts are constant.

Assumption 2. Every agent in a given player position is able to observe the
relative frequency of every strategy available to that position. When an agent
feels dissatis�ed with his current strategy, he will choose a new strategy with a
probability that is equal to the proportion of agents playing that strategy.

We proceed as in the previous case and thinking of �ki(�ki) as a "measure"
of the distance to the aspiration set or, equivalently, of agent ki�s degree of sat-
isfaction with strategy i (for simplicity we shall write �ki instead of �ki(�ki)), we
de�ne the following ratio

�ki � 1
�mk
i=1
�ki

=
�ki � 1
�k
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We take it as the proportion of ki strategists who feel dissatis�ed with strategy
i. Note that, everything equal, this function increases with �ki. Hence, an increase
in �ki, due to a decrease in the expected payo¤s �ki, will increase the proportion
of dissatis�ed ki strategists.
As before, � (�ki�1)

�k
fki denotes the proportion of ki strategists who will choose

a new strategy at time t (the out�ow). Since a particular strategy is chosen with
a probability that is equal to the proportion of agents playing that strategy, then
�
Pmk

j=1

(�kj�1)
�k

fkjfki = � (�k�1)
�k

fki denotes the proportion of agents who choose

strategy i ; i.e. the in�ow (where �k =
Pmk

j=1 �kjfkj is the average perception in
player population k at time t ).
Therefore

fki(t+ �) = fki(t)� �
[�ki � 1]
�k

fki + �

�
�k � 1

�
�k

fki:

As � ! 0; in the limit we have

�
fki = fki

�
�k � �ki
�k

�
:::::::::::::::::::::::::::::::::::::::::::::::(4)

Proposition 4
(a)If for all player position k 2 K = f1; 2; :::; ng ; the strategy set Sk consists

of two elements, i.e. if mk = 2 then, equation (1) is just the standard Replicator
Dynamics (RD) multiplied by a positive function (i.e. is aggregate monotonic).
(b) If mk > 2; then we obtain a selection dynamics that approximates the RD,

but preserves only the positive sign of the RD (i.e. is weakly payo¤ positive).

Proof: see Appendix II.
Appendix I:
We explain �rst the procedural preferences based on doubts that are strictly

decreasing. The choice procedure is an extension of the one introduced, in the
context of simple lotteries, by Uriarte (1999) which, then was used to build a
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model of evolutionary drift in Uriarte (2007). The constant doubt case is much
more simple and would not need additional explanations.
Let (�ki; fki) be the vector of expected payo¤-proportion of agents of player

population k attached to strategy i 2 Sk at time t.
(b) dki builds the �ki function, which is used to de�ne on Fki correlated simi-

larity relations of the ratio-type. This function is de�ned as follows: given dki and
a speci�c fki 2 (0; 1), then for all �ki > dki(fki)

�ki(�ki) =
�ki

�ki � dki(fki)
> 1

Thus, there is one �ki function for each fki 2 (0; 1), so that, given �ki;and fki
attached to agent k�s strategy i, with �ki > dki(fki), the similarity interval of fki
is:

[fki=�ki(�ki), fki:�ki(�ki)]

The correlated similarity relation on Fki, denoted SF [�ki; fki], changes with
the value of fki and,- by the property 1of the �ki function, below-, with the value
of �ki.
Decreasing Doubts-Based Correlated Similarity Relations.
Given a pair of vectors, (�ki(f); fki) and (�ki(f); fki) in �ki � Fki; with fki ,

fki 2 (0; 1); we de�ne similarity relations on �ki and Fki in the following way. To
simplify notation, we write �ki(f) and �ki(f) as �ki and �ki, respectively.
(i) On the space of expected payo¤s, �ki, the doubt function dki de�nes cor-

related similarities of the di¤erence-type as follows: given fki we say that �ki is
similar to �ki; ( formally written as �kiS�[fki]�ki ), if and only if j�ki � �kij 5
dki(fki) , where j:j stands for absolute value. Thus, there is one similarity relation
on �ki, for each fki 2 (0; 1)
Then the similarity interval of �ki, given fki is:

[�ki � dki(fki); �ki + dki(fki)]
Note that dki(fki); the doubt level felt by

P
agent ki given the proportion

fki; becomes the threshold level in the de�nition of this type of similarity relation.
By Assumption 1, if fki increases, the threshold, dki(fki); decreases and so the
similarity intervals of �ki shrink (giving rise to the vertical cone-shaped form
in �gure 3):This means that when fki increases, the discrimination capacity on
the space of expected payo¤s to strategy i, �ki, increases (probably because the
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accumulated experience with strategy i has increased due to the increased number
of agents from population k currently playing strategy i). . When fki = 0; the
whole set �ki is similar to �ki and when fki = 1 only �ki is similar to itself.
(ii) On the strategy frequency space, Fki, dki de�nes correlated similarity

relations of the ratio-type as follows. First, we de�ne the �ki function: given dki
and a speci�c fki 2 (0; 1), then for all �ki > dki(fki)

�ki(�ki) =
�ki

�ki � dki(fki)
> 1

Thus, there is one �ki function for each fki 2 (0; 1).
Now we may de�ne on Fki correlated similarity relations of the ratio-type, as

follows: given �ki and fki , we say that fki is similar to fki;( formally written as,
fkiSF [�ki, fki]fki ), if and only if 1=�ki 5 fki=fki 5 �ki. The similarity intervals
are of the following type:

[fki=�ki(�ki), fki:�ki(�ki)]

These similarity intervals shrink as expected payo¤s go from �ki > dki(fki) to 1,
giving rise to the horizontal �wedge-shaped�part of �gure 3. This means that
perception increases if the payo¤s at stake increase.
The Procedural Preference on �ki � Fki
We shall assume that each agent ki compares pairs of alternatives in �ki�Fki

with the aid of the above pair of correlated similarity relations, S� and SF; to
decide which of the two is preferred. Thus, the agent may de�ne his procedural
preference %kion �ki � Fki and know his aspiration set U at each t ( which we
identify with the upper contour set of the vector (�ki; fki) at t ). That is, given
a pair of vectors (�ki; fki) and (�ki; fki) in �ki � Fki , the vector (�ki; fki) will
be declared to be preferred to (�ki; fki), i.e. (�ki; fki) �ki (�ki; fki); whenever the
agent ki perceives that one of the following three conditions is met. Note that
since (�ki; fki) is to be preferred, the conditional similarity relation S� on �ki
given fki and the conditional similarity relation SF on Fki given �ki and fki are
to be used.
Condition � : �ki > �ki, and no �kiS�[fki]�ki; while fkiSF [�ki; fki]fki:
In words, �ki is bigger than �ki and, given fki , �ki is perceived to be not

similar to �ki ; while , fki is perceived to be similar to fki. U� in �gure 3 is the
area implied by this condition.
Condition � : fki > fki and no fkiSF [�ki; fki]fki;while �kiS�[fki]�ki:
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In words, fki is bigger than fki and, given �ki and fki; fki is perceived to be
not similar to fki; while, given fki; �ki is perceived to be similar to �ki:U� in
Figure 3 is the area implied by this condition.
Condition � : �ki > �ki and no �kiS�ki[fki]�ki; fki > fki and
no fkiSF [�ki; fki]fki.
That is, vector (�ki; fki) is strictly bigger than (�ki; fki) and no similarity is

perceived in both instances. U� in �gure 3 is the area implied by this condition.
Whenever both expected payo¤s and strategy proportions are perceived to be

similar, then the two vectors will be declared indi¤erent ; i.e. when �kiS�[fki]�ki,
�kiS�[fki]�ki, fkiSF [�ki; fki]fki and fkiSF [�ki; fki]fki, then (�ki; fki) �ki (�ki; fki).
When none of these four situations takes place, then the two vectors would be
non-comparable (see �gure 3).

Appendix II : Proof of Propositions
Let

( y) L R
(x)U a11, b11 a12 , b12
D a21, b21 a22, b22

denote the 2� 2 constant-sum game G, and I� � [(x�; 1� x�) ; (y�; 1� y�)] ;with
x� > 0 and y� > 0, the Mixed strategy Nash Equilibrium of G. We may assume,
without loss of generality, that a11 > a21, then b11 < b21, a12 < a22, and b22 < b21.
Recall that payo¤s are normalized so that they take values on (0; 1]. The doubt-
based selection dynamics are represented by the following system (0.1)-(0.2):

�
x =

x (1� x)
�U (�D � dD) + �D (�U � dU)

(�UdD � �DdU)

=
x (1� x)

�U (�D � dD) + �D (�U � dU)
((a11y + a12(1� y))(x)� � (a21y + a22(1� y))(1� x)�)

� G1(x; y)F1(x; y)

�
y =

y (1� y)
�L (�R � dR) + �R (�L � dL)

(�LdR � �RdL)

=
y (1� y)

�L (�R � dR) + �R (�L � dL)
((b11x+ b21(1� x))(y)� � (b12x+ b22(1� x))(1� y)�)

� G2(x; y)F2(x; y)
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Proof of Proposition 1:

1. We must �rst show that a Mixed Strategy Nash Equilibrium (MSNE) con-
verges to Mixed Strategy Doubt-Full Equilibrium (MSDFE) as � converges
to 0 in dki = d1�� 2 D1�� � D (see Remark 1). Note that, by construction
of the �ki function, the denominators of the system (2)-(3) are positive
and that we are considering mixed equilibria with full support; thus, in the
MSNE both x� and y� belong to (0; 1).

Suppose that we are in the MSNE, (x�; y�), of G. Then, the strategies
available to each player get the same expected payo¤. That is, a11y� +
a12 (1� y�) = a21y�+a22 (1� y�) and b11x�+b21 (1� x�) = b12x�+b22 (1� x�) :
An interior rest point of (0.1)-(0.2), satis�es:

(a11y + a12 (1� y)) dD (1� x)� (a21y + a22 (1� y)) dU (x) = 0

(b11x+ b21 (1� x)) dR (1� y)� (b12x+ b22 (1� x)) dL (y) = 0

Then, if di 2 D1�� for i 2 fU;D;L;Rg; then

lim
�!0

dU (x)

dD (1� x)
= lim

�!0

dL (y)

dR (1� y)
= 1, for all (x; y) 2 (0; 1)� (0; 1)

Since for (x�; y�), we have a11y� + a12 (1� y�) = a21y
� + a22 (1� y�) and

b11x
� + b21 (1� x�) = b12x� + b22 (1� x�), then

lim
�!0

(a11y
� + a12 (1� y�)) dD (1� x�)

(a21y� + a22 (1� y�)) dU (x�)
= lim

�!0

(b11x
� + b21 (1� x�)) dR (1� y�)

(b12x� + b22 (1� x�)) dL (y�)
= 1

This, plus continuity, establishes the result.

2. We show that for all (x0; y0) 2 (0; 1) � (0; 1) ; with (x0; y0) 6= (1=2; 1=2);
there exists an �0 large enought that the rest point of (0.1)-(0.2) cannot be
[(x0; 1� x0) ; (y0; 1� y0)] for any � � �0 and then the result follows.
An interior rest point of (0.1)-(0.2) must satisfy:

(a11y + a12 (1� y)) dD (1� x)� (a21y + a22 (1� y)) dU (x) = 0

(b11x+ b21 (1� x)) dR (1� y)� (b12x+ b22 (1� x)) dL (y) = 0
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For interior rest points, this implies that

(a11y + a12 (1� y))
dD (1� x)
dU (x)

� (a21y + a22 (1� y)) = 0

(b11x+ b21 (1� x))
dR (1� y)
dL (y)

� (b12x+ b22 (1� x)) = 0

But since

dD (1� x)
dU (x)

=

�
x

1� x

��
;
dR (1� y)
dL (y)

=

�
y

1� y

��
Then if x0 > 1=2; there exists an �0 big enough that for all � � �0�

x0

1� x0

��
>
(a21y

0 + a22 (1� y0))
(a11y0 + a12 (1� y0))

and thus

(a11y
0 + a12 (1� y0))

�
x0

1� x0

��
� (a21y0 + a22 (1� y0)) > 0

If x0 < 1=2; there exists an �0 big enough that for all � � �0�
x0

1� x0

��
<
(a21y

0 + a22 (1� y0))
(a11y0 + a12 (1� y0))

and thus

(a11y
0 + a12 (1� y0))

�
x0

1� x0

��
� (a21y0 + a22 (1� y0)) < 0

The argument is equivalent for y0.�
Proof of Proposition 2
Let us take into account that in an interior stationary state, I� � [(x�; 1� x�) ; (y�; 1� y�)] ;

F1(x
�; y�) = 0 and F2(x�; y�) = 0 in (2)-(3), where

F1(x; y) = (a11y + a12(1� y))(x)� � (a21y + a22(1� y))(1� x)�

F2(x; y) = (b11x+ b21(1� x))(y)� � (b12x+ b22(1� x))(1� y)�
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and

@F1(x; y)

@x
= �(x��1 (a12(1� y) + a11y) + (a22(1� y) + a21y) (1� x)��1)

@F1(x; y)

@y
= x� (a11 � a12) + (a22 � a21) (1� x)�

@F2(x; y)

@x
= y� (b11 � b21) + (b22 � b12) (1� y)�

@F2(x; y)

@y
= �(y��1 (b21(1� x) + b11x) + (b22(1� x) + b12x) (1� y)��1)

On the other hand, the Jacobian of the dynamic system J(x; y) evaluated at
the steady state (x�; y�) is:

J(x�; y�) =

24 G1(x�; y�) @F1(x;y)@x

���
I�

G1(x
�; y�) @F1(x;y)

@y

���
I�

G2(x
�; y�) @F2(x;y)

@x

���
I�

G2(x
�; y�) @F2(x;y)

@y

���
I�

35
Noting in equilibrium that �UdD = �DdU and �LdR � �RdL; that is,

(a11y
� + a12(1� y�))(x�)� = (a21y

� + a22(1� y�))(1� x�)�

(b11x
� + b21(1� x�))(y�)� = (b12x

� + b22(1� x�))(1� y�)�

Hence,

G1(x
�; y�) =

x�(1� x�)
2(a11y� + a12(1� y�))(a21y� + a22(1� y�)� (x�)�)

G2(x
�; y�) =

y�(1� y�)
2(b11x� + b21(1� x�))(b12x� + b22(1� x�)� (y�)�)

Thus, the elements of the Jacobian matrix are the following:
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j11 = G1(x
�; y�)

@F1(x; y)

@x

����
I�

=
x�(1� x�)�((x�)��1 (a12(1� y�) + a11y�) + (a22(1� y�) + a21y�) (1� x�)��1)

2(a11y� + a12(1� y�))(a21y� + a22(1� y�)� (x�)�)

=
�((a12(1� y�) + a11y�)

2(a11y� + a12(1� y�))(a21y� + a22(1� y�)� (x�)�)
=

�

2(a21y� + a22(1� y�)� (x�)�)

j12 = G1(x
�; y�)

@F1(x; y)

@y

����
I�
=
x�(1� x�)((x�)� (a11 � a12) + (a22 � a21) (1� x�)�)
2(a11y� + a12(1� y�))(a21y� + a22(1� y�)� (x�)�)

j21 = G2(x
�; y�)

@F2(x; y)

@y

����
I�
=
y�(1� y�)((y�)� (b11 � b21) + (b22 � b12) (1� y�)�)
2(b11x� + b21(1� x�))(b12x� + b22(1� x�)� (y�)�)

j22 = G2(x
�; y�)

@F2(x; y)

@y

����
I�

=
y�(1� y�)�((y�)��1 (b21(1� x�) + b11x�) + (b22(1� x�) + b12x�) (1� y�)��1)

2(b11x� + b21(1� x�))(b12x� + b22(1� x�)� (y�)�)

=
� (b11x

� + b21(1� x�))
2(b11x� + b21(1� x�))(b12x� + b22(1� x�)� (y�)�)

=
�

2(b12x� + b22(1� x�)� (y�)�)

Hence, the J(x�; y�) matrix is

J(x�; y�) =

"
�

2(a21y�+a22(1�y�)�(x�)�)
x�(1�x�)((x�)�(a11�a12)+(a22�a21)(1�x�)�)
2(a11y�+a12(1�y�))(a21y�+a22(1�y�)�(x�)�)

y�(1�y�)((y�)�(b11�b21)+(b22�b12)(1�y�)�)
2(b11x�+b21(1�x�))(b12x�+b22(1�x�)�(y�)�)

�
2(b12x�+b22(1�x�)�(y�)�)

#
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Recall that the real part of the eigenvalues of J(x�; y�) only depends on the
sum of the diagonal terms (the trace of the matrix):

Trace of J(x�; y�) = G1(x
�; y�)

@F1(x; y)

@x

����
I�
+G2(x

�; y�)
@F2(x; y)

@y

����
I�

=
�

2(a21y� + a22(1� y�)� (x�)�)
+

�

2(b12x� + b22(1� x�)� (y�)�)

=
�

2

�
1

a21y� + a22(1� y�)� (x�)�
+

1

b12x� + b22(1� x�)� (y�)�

�
As the doubt parameter � approaches 0, the value of the level of doubts d(1�

x�) = (x�)� and d(1 � y�) = (y�)� approaches 1. When � is nearly 0, written as
� �= 0, agents are playing in the absent or doubt-full mode and we can think of
(x�)� and (y�)� as a constant number very close to 1 (or, rounding up, just 1 ).
Hence, we can rewrite the Trace of J(x�; y�) as follows:

Trace of J(x�; y�) =
�

2

�
1

a21y� + a22(1� y�)� 1
+

1

b12x� + b22(1� x�)� 1

�
Note that the expected values �D = a21y

� + a22(1 � y�) and �R = b12x
� +

b22(1�x�), the denominators of the trace, are smaller than 1 because payo¤s take
values in (0; 1] and we are considering interior mixed equilibria. Thus, j11 < 0
and j22 < 0 and so the sign of the trace is negative

sign

�
G1(x

�; y�)
@F1(x; y)

@x

����
I�
+G2(x

�; y�)
@F2(x; y)

@y

����
I�

�
< 0

Without loss of generality, we may assume that a11 > a21, then b11 < b21,
a12 < a22, and b22 < b21. Then, when the agents are playing in the absent or
doubt-full mode the sign of

j21 � j12 =

�
y�(1� y�)((y�)� (b11 � b21) + (b22 � b12) (1� y�)�)
2(b11x� + b21(1� x�))(b12x� + b22(1� x�)� (y�)�)

�
�
�
x�(1� x�)((x�)� (a11 � a12) + (a22 � a21) (1� x�)�)
2(a11y� + a12(1� y�))(a21y� + a22(1� y�)� (x�)�)

�
=

�
y�(1� y�)((b22 � b21) + (b11 � b12))

2(b11x� + b21(1� x�))(b12x� + b22(1� x�)� 1)

�
�
�

x�(1� x�)((a11 � a21) + (a22 � a12))
2(a11y� + a12(1� y�))(a21y� + a22(1� y�)� 1)

�
< 0
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is negative. Hence, the determinant associated to J(x�; y�) is Det J(x�; y�) =
j11� j22�j21�j12 and its sign is positive. Therefore, when every agent is in the ab-
sent or doubt-full mode of play, the mixed equilibrium I� � [(x�; 1� x�) ; (y�; 1� y�)]
is a sink and therefore is an asymptotically stable equilibrium.�
Proof of Proposition 3
In the doubtless or alert mode of play, � is very high. Therefore, since

�
x =

x (1� x)
�U (�D � dD) + �D (�U � dU)

((a11y + a12(1� y))(x)� � (a21y + a22(1� y))(1� x)�)

�
y =

y (1� y)
�L (�R � dR) + �R (�L � dL)

((b11x+ b21(1� x))(y)� � (b12x+ b22(1� x))(1� y)�)

for � large enough

sign
h
�
x
i
= sign [(a11y + a12(1� y))(x)� � (a21y + a22(1� y))(1� x)�] = sign [x� 1=2]

as we have seen in part 2 of Proposition 1 above. Thus, if x(0) > 1=2; then
limt!1 x(t) = 1; whereas if x(0) < 1=2; then limt!1 x(t) = 0: The analysis is
equivalent for y; thus establishing the result.�
Proof Proposition 4:
(a) Let Sk = f1; 2g be player population k�s strategy set. Without loss of

generality, let us refer to the dynamics of strategy 1: Then, by equation (1), we
have

�
fk1 = fk1�k � �k1�k (0.3)

=
�k

�k1(�k2 � �k) + �k2(�k1 � �k)
fk1(�k1 � �k)

=
�k
D(f)

fki[�ki � �k]

where D(f) � �k1(�k2 � �k) + �k2(�k1 � �k) > 0.
By equation (0.3), the growth rates

�
fki
fki

equal payo¤ di¤erences [�ki � �k]
multiplied by a (Lipschitz) continuous, positive function �k

D(f)
. This concludes

the proof. (Note that, given �k; a payo¤ di¤erence [�ki � �k] will have stronger
dynamic e¤ect if D(f) is low than if it is high; if �k decreases, the dynamic e¤ect
of [�ki � �k] decreases).
(b) Easy.�
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Table 0.1: Quality and sales by category. Source: ADAC 2002

Model Mechanical problems Sales
Small cars

Fiat Punto 34,5 1176
Renault Clio 32,7 1506
Seat Ibiza/ Cordoba 28,3 1399
Opel Corsa 17,9 4983
VW Polo 16,2 4437
Ford Fiesta 15,9 2906

Medium-sized cars
Renault Mégane 46,2 1508
Ford Escort 27,8 2933
Opel Astra 16,7 5207
VW Golf/Vento/Bora 16,2 11072
Audi A3/S3 15,1 4052
Toyota Corolla 9.8 2236

Large cars
Volvo S40/V40 27,7 811
BMW 3 17,8 6043
Mercedes C 17,5 2848
VW Passat 16,1 7500
Audi A4/S4 14,0 5267
Mazda 626 10,2 754
Toyota Carina/Avensis 7,6 1025
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