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/ Perturbation Theory Model of Reactivity and Enantioselectivity of 
Palladium-catalyzed Heck-Heck cascade reactions 

C. Blázquez-Barbadillo,a E. Aranzamendi,a E. Coya,a E. Lete,a N. Sotomayora and H. González-Díaza,b* 

Enantioselective intramolecular Heck-Heck cascade reactions have emerged as an excellent tool for the construction of 
polycyclic frameworks, such as Lycorane alkaloids, Xestoquinone and analogues. However, it is particularly difficult to 
rationalize the effect of simultaneous changes in both the structure of many molecular entities and experimental 
conditions (temperature, time, solvent, ligand, catalyst loading, etc.) on reactivity and enantioselectivity. In this work, a 
computational model to predict the enantiomeric excess and the yield of Heck-Heck cascade reactions has been 
developed. The model combines Perturbation Theory (PT) and Quantitative Structure-Reactivity Relationships (QSRR) 
ideas for the prediction of two different outputs with the same equation (% ee and % yield). This model predicted 520 
experimental outcomes with a correlation coefficient R = 0.89, standard error of estimates SEE = 1.19 %, and a cross-
validation correlation coefficient q2 = 0.79. The use of the model has been illustrated with a case of study, the Heck-Heck 
cascade reaction of a 2,3-dialkenyl pyrrole using Pd(dba)2 and (R)-BINAP. For the first time, a 2000-points simulation in a 
ternary phase diagrams shows the effect of the concentration of the catalyst, the base, and ligand on the 
enantioselectivity of this reaction. The QSRR model also predicts trends in structural outcomes, such halides vs. triflates, or 
the ligand structure. Therefore, the model opens the door to the design of new chiral ligands and helps to find trends to 
improve the experimental results in enantioselective polyene cyclisations. 

Introduction 

Mizoroki-Heck reaction1 is one of the most important 

palladium(0)-catalyzed C-C bond-forming reactions, which has 

allowed the preparation of complex organic molecules. In 

particular, asymmetric Heck reaction2 is a highly efficient 

method for obtaining optically active molecules with tertiary 

and quaternary stereocentres. In this context, the use of Heck-

Heck cascade reactions3 is a powerful synthetic strategy for 

rapidly increasing structural and stereochemical complexity. In 

this case, the σ-alkylpalladium intermediate, resulting from the 

migratory insertion of the arylpalladium to the alkene, may 

undergo an insertion with an alkene in inter- or intramolecular 

way, so carbopalladation is repeated one or several times prior 

to -hydride elimination. This class of polyene cyclisation 

reactions has expanded the synthetic utility of enantioselective 

intramolecular Heck reaction, allowing the construction of 

polycyclic frameworks in a one-pot operation. For example, a 

6-exo Mizoroki-Heck reaction on adequately dialkenyl

substituted substrates can generate a quaternary

stereocentre, giving rise to the -alkylpalladium intermediate

that undergoes a 6-endo insertion to give the polycyclic system

(Scheme 1). In this regard, we have recently reported that the

Lycorane tetracyclic framework of Amaryllidaceae alkaloids

can be formed in one-pot through an enantioselective

palladium-catalyzed intramolecular Heck-Heck cascade 

process, starting from halogenated 2,3-dialkenyl 

(hetero)arylmethylpyrroles.4 It should be pointed out that it 

has been possible to control the selectivity and switch the 

reaction to the alkene, avoiding competition with direct 

arylation, which could arise with this type of substrates as we 

have demonstrated earlier.5 

A similar strategy had been previously applied by Keay and co-

workers in the total synthesis of marine natural product, (+)-

Xestoquinone using aryl triflates as coupling partners.6 The 

method was extended to the corresponding aryl halides by 

Shibasaki.7 

Scheme 1 General scheme of a Heck-Heck cascade reaction 

The cyclisation of these aryl polyene triflates has been studied 

theoretically using a density functional theory (DFT) model, 

which demonstrated that the main factor controlling the 

exo/endo selectivity, at both thermodynamic and kinetic 

levels, was the relative stability of the cyclic systems resulting 

from the migratory step. The DFT calculations also showed 

that the furan ring of the substrate can play an important role 

in the control of the exo/endo selectivity of the first insertion 

reaction rather than in the enantioselectivity.8 

Although computational chemistry has indeed helped to 

understand the mechanism of these palladium-catalyzed cross 
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coupling reactions,9 it is still difficult to rationalize how the 

different parameters of a Heck reaction affect its 

stereochemical outcome.10 Thus, one of the underlying 

challenges in asymmetric catalysis is the selection or the 

design of the adequate catalyst (or ligand) and experimental 

conditions, without engaging in a long term empirical 

investigation. Therefore, we sought to develop computational 

chemistry methods for the prediction of the enantioselectivity 

and the yield for these cascade reactions. 

The development of new computational models to predict 

reactivity has become an important goal.11 Sigman12 and co-

workers have demonstrated that Quantitative Structure-

Reactivity Relationship (QSRR) models can be applied in 

asymmetric catalytic reactions. They have evaluated 

steric/enantioselection relationships in different types of 

reactions using physical parameters, such as Charton13 and 

Sterimol14 values. Subsequently, methodologies based on 

QSRR modelling have been applied to predict 

enantioselectivity of different types of reactions, e.g. 

asymmetric copper-catalyzed cyclopropanation of alkenes15 or 

Henry reaction.16

QSRR models use molecular descriptors (numerical parameters 

of chemical structure) as input to predict chemical reactivity 

parameters (output). Many of these QSRR models using Linear 

Free Energy Relationships (LFER) have been reported in this 

area.17 The classic Hammett’s method predicts reactivity 

constants εi using as inputs different LFER potentials iµk of type 

k for the i-th experiment.18 Hansch extended the LFER method 

using an extra-thermodynamic approach. Thus, other input 

parameters or functions, such as molecular refractivities (MR), 

were used.19 The QSRR method is also flexible for the selection 

of different output functions f(εi) of the original reactivity 

constant.20 Examples of Hansch’s QSRR models based on the 

LFER method are shown in Equations 1 and 2. 
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2
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On the other hand, Perturbation Theory (PT) ideas, such as the 

Møller and Plesset (MP) perturbation theory,21 could be used 

to predict chemical reactivity. For instance, Elm and 

Jørgensen22 used MP2 and other QM methods to study gas 

phase hydrogen abstraction reaction kinetics of short chained 

oxygenated hydrocarbons. Jaufeerally et al.23 studied the 

isomerisation and decomposition reactions of 

telluroformaldehyde analogues using MP2. Sakaki24 carried out 

one MP2 study of the catalytic hydrogenation of 2,2,2-

trifluoroacetophenone using a Ge(II)-hydride compound, in 

comparison with a Rh(I)-hydride complex, and predicted the 

full catalytic cycle by Ge(II)-hydride.  

In this context, we have combined PT and QSRR ideas to obtain 

multi-output PT-QSRR models of complex molecular systems, 

such as nanoparticles, biosystems, and asymmetric catalytic 

reactions.25 The main advantage of multi-output PT-QSRR 

models is to use a single equation to predict more than one 

output parameter [e.g. enantiomeric excess ee (%) or reaction 

yield Yld (%)] for complex systems. Besides, these models 

quantify multiple external/internal reaction factors with low 

computational cost. Both aspects have been illustrated in the 

model we have developed to predict the enantioselectivity of 

intramolecular carbolithiation reactions.25a,b Herein, we 

describe the first multi-output PT-QSRR model to correlate and 

predict the enantioselectivity and the yield of the above 

mentioned type of Heck-Heck cascade reactions, using both 

our previous experimental work4 and the literature data6,7 for 

related substrates. The model is expected to become a useful 

tool for the design of new chiral ligands for Heck-Heck cascade 

reaction, as well as for finding trends to improve the 

experimental results. 

Methods 
General workflow 

The general workflow used to seek the QSRR model for this 

problem is shown in Figure 1. The first step was the 

compilation of a large dataset of Heck-Heck cascade reactions 

from the literature.4,6 Then, the dataset was organized as a 

rectangular array of raw data, in which the columns are the 

different important variables for the reaction, while the rows 

are the different reactions. For the same reaction, a new row 

was added if at least one parameter changed (different 

experimental conditions, e.g. temperature, time, 

concentrations, etc. (see Electronic Supplementary 

Information). 

Fig. 1 General workflow 

The second step was the calculation of the molecular 

descriptors Vk(mq) used to quantify the chemical structure of 

all the molecules involved in the reaction (see next section). 

The third step was the calculation of the functions <pεij> and γq 

and the products γq·Vk(mq) for each class of molecule. This 

calculation is simple to carry out in one Excel calculation sheet 

using average and multiplication operations. The last step was 

the processing of the data obtained to find the QSRR model 

using statistical analysis software (see next sections).  

Calculation of molecular descriptors 



The values of the following structural variables were calculated 

with the software DRAGON:26 V1(sub) = Hy(sub), V2(sub) = 

TPSANO(sub), V3(prod) = logP(prod), V4(base) = logP(base), 

V5(lig) = TPSAtot(lig), V6(solv) = D(solv). These final input 

variables were selected both with variable selection strategy 

(forward stepwise) and expert knowledge. The values of Hy, 

TPSANO, logP, and D for the other molecules were also 

calculated, but not all were selected after variable selection 

strategies. The structure of the molecules was uploaded to the 

software DRAGON as SMILE codes,27 which were obtained 

using ChemOffice28 software suite. In our case, the values of 

logP of the five molecular entities involved in our reaction 

(ligand, solvent, substrate, base and product) were calculated.  

Theoretical details of the PT-QSRR  models 

Gonzalez-Díaz et al.25a have previously formulated a general-

purpose Perturbation Theory (PT) method for multiple-

boundary Chemoinformatic problems. In this work, we have 

adapted this method to predict the yield and enantioselectivity 

in Heck-Heck cascade reactions. The PT-QSRR model proposed 

here is the following additive equation: 
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The output variable pεij(%)new measures two types of 

properties, yield Yld (%) and enantiomeric excess ee (%). This 

variable takes the values 1εij(%)new = Yld(%) when p = 1, and 
2εij(%)new = *ee(%) when p = 2. The value *ee(%) = δ·ee(%) is the 

enantiomeric excess of product multiplied by δ0 = 1 when 

referred to the ee of (R) enantiomer or by δ0 = -1 when 

referred to the ee of (S) enantiomer. There are two types of 

input variables: <pεij(%)> and γk·Vk(mq). The first type (<pεij(%)>) 

is the expected value of the yield or enantiomeric excess in the 

boundary reaction conditions. The second type [γk·Vk(mq)] is 

related to the structural properties of each molecule involved 

in the reaction (V1-6). These variables are directly multiplied by 

their corresponding factor (γ1-6), which quantify non-structural 

parameters, such as temperature, concentration, etc. A 

Multivariate Linear Regression (MLR) analysis was performed 

with the software STATISTICA,29 combining forward stepwise 

with standard procedures of variable selections. MLR allowed 

us to seek the model calculating the coefficients of variables 

and statistical parameters (see next sections), as well as 

observed, predicted, residuals, and deleted residuals of all 

reactions (see Electronic Supplementary Information). 

Dataset of Heck-Heck cascade reaction 

For this work, a large dataset of enantioselective palladium-

catalyzed Heck-Heck cascade reactions was collected, including 

the polyene cyclisation reactions developed in our group4 and 

related reactions reported previously in the literature by Keay 

and co-workers.6 Figure 2 shows the structures of selected 

chiral ligands used.  

Fig. 2 Selected ligands for the Heck-Heck cascade reactions. 

Scheme 2 Enantioselective Heck-Heck cascade reaction of 2,3-dialkenyl N-

benzylpyrroles. 

A summary of the results obtained by our group, and included 

in the data set, on the  asymmetric Heck-Heck cascade 

reaction of halogenated 2,3-dialkenyl (hetero)arylmethyl-

pyrroles is shown in Scheme 2.4 The benchmark reaction was 

the polyene cyclisation of N-(2-iodo-4,5-dimethoxybenzyl)-2-

(prop-1-en-2-yl)-3-vinyl-1H-pyrrole catalysed by Pd(OAc)2 using 

(R)-BINAP as ligand. After the optimization of experimental 

conditions (base, additives, solvent, temperature), it was 

found that the choice of the PMP as base and CH3CN as solvent 

was crucial to lead the sequence to completion, avoiding 

hydride transfer. After screening of the chiral ligands, (R)-

BINAP was shown to be the most efficient phosphane ligand. 

The reaction was then extended to a series of substrates with 



different substitution patterns on the aromatic ring, and also 

to heteroaromatic rings. This procedure allows a rapid and 

efficient access to a wide variety (16 examples) of 

enantiomerically enriched C-11b substituted Lycorane 

analogues. 

On the other hand, Keay et al.6 had previously applied this 

type of asymmetric cascade reactions to dialkenyl furans with 

a tethered naphthoyl triflate using Pd2(dba)3 as catalyst and (S) 

or (R)-BINAP as chiral ligands in the presence of PMP as base 

and toluene as solvent, obtaining the corresponding polycyclic 

ketones in moderate to good enantiomeric excesses (Scheme 

3). The procedure was improved either by tuning the 

experimental conditions (base, solvent)6c or by changing the 

chiral ligands (Figure 2).6d-f Naphthoyl bromides can also be 

used instead of the corresponding triflates.7 All these reactions 

have also been included in the dataset.  

Thus, the new dataset combining our group´s work and 

literature data includes 27 different substrates, 2 different 

palladium sources, 23 ligands, and 12 solvents. Besides, entries 

for reactions experimentally carried out with a ligand of a 

given configuration have been duplicated for the enantiomeric 

ligand, assuming that the product of opposite configuration 

should be obtained in the same yield and the same 

enantiomeric excess, but opposite in sign. In electronic 

supplementary information (Tables S1 and S2), a detailed list 

of all reactions, with reactants, conditions, references, 

molecular descriptors, etc. is given. 

Scheme 3 Enantioselective Heck-Heck cascade reactions developed by Keay´s group. 

Results and Discussion 
PT-QSRR theoretical model for Heck-Heck reactions 

Once the dataset of enantioselective palladium-catalyzed 

Heck-Heck cascade reactions was collected, we focus on the 

creation of a general QSRR model to predict the 

enantioselectivity and yield of these and related reactions. As 

stated above, although DFT calculations had been used to 

explain the regioselectivity in the Heck-Heck cascade process 

developed by Keay’s group,8 the enantioselectivity is a still a 

remaining challenge. To our knowledge, there are no general 

models to predict the effect of structural changes and 

experimental conditions (temperature, solvent, etc.) over 

enantioselectivity. Therefore, we sought to develop a general 

QSRR model for the prediction of the enantioselectivity and 

yield for these Heck-Heck cascade reactions under many 

different experimental conditions. The new QSRR model 

reported here allows both a computational screening of very 

large series of reactions with different substrates and a 

scanning of temperature, reaction time, solvent or dipole 

moment, as well as concentration of catalyst, base, and ligand. 

Therefore, this QSRR model could help to select the best 

catalysts, ligands and experimental conditions, without 

engaging in a long term empirical investigation. 

The general picture considered as starting point for this theory 

is the following. Let be a set of molecules (mq) that play 

different roles (q) in a Heck-Heck cascade reaction. The specific 

roles considered in this work are: q = 1 and q = 2 => substrate, 

q = 3 => product, q = 4 => base, q = 5 => ligand, q = 6 => 

solvent. Consider also that these molecules undergo one Heck-

Heck cascade reaction in the reaction media under a set of 

boundary conditions or factors fn ≡ (f1, f2, f3… fn). These factors 

may quantify information about chemical symmetry, physical 

variables, and/or operational boundary conditions or factors 

that apply to all the reactions in the dataset. In fact, the 

problem involves two consecutive intramolecular Heck-Heck 

reactions, which take place in one pot; given that the structure 

of the substrate changes (transformed into a product), but the 

catalyst and chiral ligand are recovered. We constructed two 

sets of functions γq and Vk(mq) to quantify all the information 

related to the structure of all the molecules involved and the 

external factors. The external factors have been taken into 

consideration into the γk functions (Table 1).  

Table 1 The formula and definition of fq and γq 

  Factors    Structural Variables (Vk) 

k 
γq 

fj 
No structural 

factor 
Vk 

(mq) 
DRAGON 
symbol 

Name of 
iVk(q) 

- - - e0 
Independent 

term 

1 1 

Expected 
value of 

yield(%) or 
ee(%) 

1 V1(s) 
Hy 

(sub) 
Hydrophobi

city 

2 V2(s) 
TPSANO 
(sub) 

Topological 
polar 

surface area 

3 V3(p) 
logP 

(prod) 

4 γ4 = f1·f2 
γ 4 = 

<pεij>·B(%) 

<pεij> and 
amount of 

base 
V4(b) 

logP 
(base) 

5 γ5 = f1·f3·f4 
γ5 = 

=<pεij>·L(%)·
Pd(%) 

<pεij> and 
amount of 

Palladium and 
ligand 

V5(l) 
TPSAtot 

(lig) 

Topological 
polar 

surface area 

6 γ6 = f1·f5·f6 f6 = <pεij>·T·t 

<pεij> and 
temperature 
and time of 
the reaction 

V6(v) µ(solv) 
Dipolar 

moment 
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We included a total of six factors f1 = <pεij>, f2 = B(%), f3 = L(%), 

f4 = Pd(%), f5 = T(K), and f6 = t(h). These functions of type γq 

quantify information about all the factors fn. The values γq 

have been calculated as a product γq = f1·f2…fmax of all the 

factors (fn) considered to affect the molecules of class qth. In 

the case of the substrate and the product, we used γ1 = γ2 = γ3 

= f1 = <pεij>. However, in the case of the base γ4 = f1·f2 = 

<pεij>·B(%), because it is important to take into account the 

amount of base in the reaction media. In the same way, we 

used a similar formula for the ligands γ5 = f1·f3·f4 =

<pεij>·L(%)·Pd(%). Finally, the time t(h) and the temperature of 

the reaction T(K) were included in the solvent term γ6 = f1·f5·f6 

= <pεij>·T·t. The factor f1 is one of the most important factors, 

because it quantifies the chirality of the ligand and the 

product. Thus, when f1< 0 the configuration of the ligand is (S) 

and when f1>0 its configuration is (R) (see Table 1). It should be 

highlighted that f1 multiplies all the variables of the designed 

equation. Consequently, when f1 = <pεij> changes its sign, the 

value of the predicted *ee(%) also changes. In this way, it is 

possible to predict the configuration of the new product 

depending on the sign of 2εij = *ee(%). The formulae of fq and γq 

for all classes of molecules appear in Table 1. 

In our general hypothesis the functions γq and Vk(mq) for each 

class of molecule mq can be combined to construct a QSRR 

model for Heck-Heck cascade reactions. Thus, different 

schemes (multiplicative, additive, perturbation like, non-linear) 

can be used in the construction of the QSRR functions. As it is 

not known what kind of model would perform better, different 

initial models (H0 hypothesis) were selected and tested. Here 

we selected one additive-perturbation model that uses as 

starting point the expected value of efficiency of the reaction 

<pεij> and adds successive perturbation terms or corrections. 

The equation for a simple linear multiplicative-additive PT-

QSRR scheme is the following:  
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PT-QSRR model using a dataset of Heck-Heck cascade reactions 

The best PT-QSRR model found with this algorithm is shown in 

Equation 7. Table 2 shows the values of training and error 

level.  
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Table 2 Values of training and error level 

Variable b Std.Err. t(750) p-level 

e0 0.020653 1.192266 0.01732 0.986186 

<e> 5.658742 1.519959 3.72296 0.000219 

γ1·V1(sub) 7.115341 2.033165 3.49964 0.000507 

γ2·V2(sub) -0.026377 0.005896 -4.47372 0.000009 

γ3·V3(prod) 0.427418 0.079480 5.37765 0.000000 

γ4·V4(base) 0.032456 0.009861 3.29137 0.001066 

γ5·V5(lig) 0.000020 0.000008 2.32867 0.020269 

γ6·V6(solv) -0.000017 0.000006 -2.86564 0.004335 

This model includes seven variables and the statistical 

parameters are n, R, R2, SEE, F, p, and q2.  The parameter n = 

520 is the number of cases in the dataset (the reactions carried 

out in our group4 combined with the literature reactions6). On 

the other hand, R is the multivariate linear correlation 

coefficient; which measures the association between two 

variables, while R2 measures the proportion variability of the 

data explained by the model (in this case 79%). The Standard 

Error of Estimates (SEE) has a value of 1.19%. The p-level < 

0.05 comes from the Fisher test and shows that correlation 

parameter (R) is significant in this case. The model was 

validated using Jack-knife cross-validation that is based on 

Leave-One-Out (LOO) procedure.29 The q2 value is the cross 

validation coefficient, which measures the quality of the 

validation in this procedure. Notably, q2 = R2 = 0.79, which may 

be indicative of a good predictive value of the model. The 

statistical parameters of each variable of the model are shown 

in Table 3. 

The multiplying coefficients ak are expected to measure the 

contribution of the structural (Vk) and non-structural factors 

(γk) to the reaction. For instance, the model has two variables 

to quantify the effect of the substrate γ1·V1(sub) and 

γ2·V2(sub). Nevertheless, the term γ1·V1(sub) has a high 

positive contribution (coefficient a1 = 7.1), but also a relatively 

high error 2.03. On the other hand, the term γ2·V2(sub) has a 

lower negative contribution (coefficient a2 = -0.02), but also a 

relatively lower error 0.006. 

However, the existence of co-linearity among variables may 

hide the real contribution of a given effect.27 In Table 3 we 

depict the correlation matrices for all the variables used before 

and after pre-multiplication by the γk. In fact, we should not 

forget that f1 = <pεij(%)>, expected yield or enantiomeric 

excess, multiplies all the variables of the equation. To explain 

this, it is important to see that both variables γ1·V1(sub) and 

γ2·V2(sub) (Table 3) are co-linear (r = -0.86). Then, we can 

conclude that both variables are correlated and may be hiding 



the real contribution of the substrate. However, it was not 

possible to eliminate one of the variables due to the lack of 

linear correlation (in terms of R).  

Table 3 Correlation matrix for input terms. 

Variable 
<pεij> 
(%) 

V1 
(sub) 

V2 
(sub) 

V5 
(lig) 

V4 
(base) 

V3 
(prod) 

V6 
(solv) 

<pεij>(%) 1.00 0.08 0.08 0.02 0.01 -0.02 -0.08 

V1(sub) 1.00 0.97 0.38 0.18 -0.50 -0.76 

V2(sub) 1.00 0.33 0.18 -0.31 -0.76 

V5(lig) 1.00 0.06 -0.28 -0.37 

V4(base) 1.00 -0.05 -0.02 

V3(prod) 1.00 0.31 

V6(solv) 1.00 

Variable 
<pεij> 
(%) 

V1 
(sub) 

V2 
(sub) 

V5 
(lig) 

V4 
(base) 

V3 
(prod) 

V6 
(solv) 

<pεij>(%) 1.00 -0.99 0.92 0.84 0.90 0.99 0.57 

V1(sub) 1.00 -0.86 -0.87 -0.85 -0.99 -0.65 

V2(sub) 1.00 0.64 0.97 0.88 0.26 

V5(lig) 1.00 0.65 0.84 0.64 

V4(base) 1.00 0.87 0.25 

V3(prod) 1.00 0.62 

V6(solv) 1.00 

Experimental study and simulation of a case of study 

In this section, the use of our model through one practical case 

of study is illustrated. First, the case is presented, including the 

experimental results of one unpublished reaction. Next, the 

model is used to carry out a simulation of the general space of 

reaction. Last, the model is used to predict the specific 

susceptibility of the reaction to changes on the substrates 

and/or ligands of the catalyst. 

We selected the reaction of the substrate depicted in Scheme 

4 with Pd(dba)2 in the presence of (R)-BINAP. The details of the 

experimental conditions, spectroscopic characterisation of the 

product, and the determination of the yield and enantiomeric 

excess (Chiral Stationary Phase HPLC) for this reaction are 

given in the Electronic Supplementary Information. This 

specific reaction, which had not been previously published, 

was included in the dataset due to its promising experimental 

results. The change of the catalyst from Pd(OAc)2 to Pd(dba)2, 

using ethanol as solvent instead of acetonitrile, has allowed to 

increase the ee to 70% with 66 % yield. These values are 

interesting but susceptible of improvement, being desirables 

values over 90%. In addition, the model makes a good 

prediction of these values for this reaction [Yld(%) = 53.9 and 

ee(%) = 79.1] taking into account the complexity of the 

problem and the error of the experimental method. For these 

reasons, this reaction is a good candidate for a computational 

simulation study. 

Scheme 4 Enantioselective Heck-Heck cascade reaction of 2,3-dialkenyl pyrrole using 

Pd(dba)2 and (R)-BINAP. 

Firstly, we focused on the computational simulation of the 

effect of the concentration of the catalyst, ligand, and base on 

reactivity and enantioselectivity of the Heck-Heck cascade 

reaction shown on Scheme 4, using ternary phase diagrams. A 

2000-data-points simulation was carried out. These 2000 

different data points are theoretical entries (reactions) with 

the same substrate, catalyst, ligand, base, solvent, and 

product. It means, that we substituted in the model above 

2000 different entries with the same values of the molecular 

descriptors V1(sub), V2(sub), V5(lig), V4(base), V3(prod), and 

V6(solv). However, each entry has a different set of values of 

the concentrations of catalyst, ligand or base. Thus, these 

values were varied at random in the ranges Base (eq.) = 1-10 

eq., Pd(dba)2 = 1-10 mol%, and Ligand (mol%) = 1-30 mol%. In 

this way, above 2000 values of ee(%) and Yld(%) were 

predicted by the model. Then, these values were plotted in a 

ternary diagram to visualize the results more clearly. Ternary 

diagrams have been often used to study the composition of 

complex systems in physical chemistry, materials, and 

Nanosciences. As a result, the computational models may be 

difficult to obtain and often apply to specific systems.30 In 

addition, there are not many models of general use to predict 

ternary diagrams with different components. Recently, 

Messina et al.31 published a general model for self-aggregating 

systems. However, ternary diagrams are less common in 

organic synthesis. We decided to use ternary phase diagrams 

here because these reactions have three different components 

(catalyst, ligand, and base) with variable concentration. In this 

type of plot, the ratios of the three variables Base (eq.), 

Pd(dba)2 (mol%), and Ligand (mol%) have to sum to a constant, 

usually 1.0 or 100%. Consequently, we transformed the 

original variables into adimensional proportions as follows: 
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To our knowledge, this model is the first computational model 

able to predict the enantioselectivity of a Heck-Heck cascade 

reaction using a ternary diagram of phases. A visual inspection 

of the diagram shows two different phases in the ternary plot 

(Figure 3). The model predicts one enantioselectivity phase in 

the centre-to-top area of the diagram. These results show a 

similar tendency with essentially the same phases even when 

the magnitude in the increment of the yield is lower. According 

to the ternary diagram predicted by the model, the 

enantioselectivity phase encircles certain lower-upper limits. 

These limits are, approximately, the following: 2.5 – 7.5 mol% 

of the Pd(dba)2 catalyst, 2.5 – 7.5 eq. of base and 7.5 – 20 

mol% of ligand. 



Fig. 3 Ternary diagram of phases for the enantioselectivity of the Heck-Heck 

cascade reaction studied here. White dashes represent data points predicted by 

the model. 

Next, we focused on the computational study of the effect of 

the structure of the ligand and the substrate over the ee(%). 

Specifically, we were interested on the comparison of different 

ligands vs. different substrates when the halides used in our 

experimental work4 were changed by the corresponding 

triflates. In the latter case, the values of ee(%) for a total of n = 

19 ligands x 17 substrates = x reactions were calculated. In 

Figure 4, the results of this study are shown using an image 

with gradient colour, which is related to higher (green) or 

lower (red) ee (%), in order to obtain the best visual result. 

According to the model, the nature of the substrate (halide vs. 

triflates) has an important influence on the ee (%) achieved. 

Best results would be expected with halides under these 

experimental conditions. Interestingly, the screening revealed 

that the best ee (%) would be obtained employing chiral 

ligands as (R)-BINAP (L01 and related bidentate phosphane 

ligands with a binaphthyl unit and an oxygenated substituent 

in the ortho position to the phosphorus (i.e. L11, R = OPiv), as 

well as the bipyridine L17, for all the substrates (see ESI for the 

structures and numbering of all ligands and substrates). 

Besides, the predictions indicated that high enantioselectivities 

would be obtained for the reaction of 2,3-dialkenyl N-(o-

iodobenzylpyrroles with almost all catalyst if there is a fluorine 

in para to the iodine atom (S14). 

Fig. 4 Predicted ee (%) for the reactions of the 2,3-dialkenyl pyrroles (upper part: 

triflates, lower part: iodides) using Pd(dba)2 in ethanol with different chiral ligands (see 

ESI for the structures and numbering of all ligands and substrates). 

It should be pointed out that this QSRR model is very easy to 

apply to new reactions. The users only have to calculate the 

structural variables of their new substrates, ligands, products, 

etc. with the software DRAGON and substitute these values in 

the equation, setting the desired values of time of reaction, 

temperature etc. desired. The calculation is simple to make, 

even in one Excel sheet. In this sense, the general application 

of the model is very easy. 

Conclusions 

In this work we developed a new computational method for 

predicting the enantioselectivity and the yield of 

enantioselective Heck-Heck cascade reactions of adequately 

functionalized 2,3-dialkenylpyrroles and 3,4-dialkenylfurans. 

The model combines Perturbation Theory (PT) and 

Quantitative Structure-Reactivity Relationships (QSRR) ideas to 

predict two different outputs with the same equation [ee (%) 



and  yield (%)]. Besides, the use of ternary phase diagrams 

shows the computational simulation of the effect of the 

concentration of the catalyst, ligand, and base, on 

enantioselectivity of these reactions. The QSRR model also 

predicts trends in structural outcomes, such the effect of the 

use of halides vs. the triflates, or the ligand structure. Thus, 

best ee would be expected with bidentate phosphane ligands 

with a binaphthyl unit and an oxygenated substituent in the 

ortho position to the phosphorus atom. Therefore, the 

developed theoretical model is expected to be useful as a 

reference to choose the adequate catalyst or experimental 

conditions for this type of enantioselective polyene cyclisation 

reactions 
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