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Abstract

Frequency domain semiparametric estimation of memory parameters belongs

to the standard toolkit of applied time series researchers. These methods are

based on a local approximation of the spectral density, which robustifies the es-

timation methods against misspecification, but induces a loss with respect to the

parametric setting, where the spectral density is known up to a finite number

of unknown parameters. In particular, standard semiparametric estimators have

convergence rates no better than T 2/5, whereas the rate T 1/2 is achievable un-

der parametric assumptions. Refinements of the local approximation have been

developed by means of bias-reducing techniques, implying that rates arbitrarily

close to the parametric one are achievable in the semiparametric setting. Two of

these approaches to cover more general settings (including non-stationarity) are

extended. A Monte Carlo experiment of finite sample performance is used to as-

sess whether the asymptotic advantages of the bias-reducing methods materialize

in better finite sample behaviour.
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1 Introduction

Semiparametric estimation of memory parameters has become very popular in the time

series literature from theoretical and empirical perspectives. These methods, unlike

the rival parametric approach, do not impose any parametric assumption on the short

run structure of the model. In particular, for a covariance stationary process with

spectral density given by f (λ), the semiparametric approach is motivated by the local

approximation

f (λ) ∼ G |λ|−2δ , as λ→ 0, (1)

where G is a positive finite constant, −1/2 < δ < 1/2, and “∼” denotes that the ratio

between the left and right sides of the relation tends to one as λ → 0. Under (1),

f has a pole at λ = 0 when δ > 0. In view of (1), frequency domain approaches to

estimating δ are dominant and two main alternative methods are distinguished: the log

periodogram approach, proposed by Geweke and Porter-Hudak (1983) and theoretically

justified by Robinson (1995a), and the local Whittle approach, proposed by Künsch

(1987) and analysed by Robinson (1995b). See Velasco (2006) for a complete review of

these semiparametric procedures and several extensions.

These seminal contributions have been extended in various directions. First, noting

that these estimation methods were initially designed to cover covariance stationary

processes (with δ < 1/2), Velasco (1999a,b) generalized those results to time series with

possibly arbitrarily large memory by means of tapering. Other strategies to deal with the

δ ≥ 1/2 case include the exact local Whittle approach of Shimotsu and Phillips (2005),

which is based on fractional differences of the observed data (instead of the traditional

approach of “whitening” the periodogram) and permits the domain of δ to have (at

most) a 9/2 width. An alternative approach is the extended local Whittle estimator

of Abadir, Distaso and Giraitis (2007), which is based on the so-called fully extended

discrete Fourier transform and periodogram.

Second, a different strand of the literature has proposed variants of the standard

semiparametric methods to deal with perturbed fractional processes, where the observ-

able series is composed of a long memory process contaminated by an additive noise

term. These include Perron and Qu (2010), Frederiksen, Nielsen and Nielsen (2012),

McCloskey and Perron (2013) and Hou and Perron (2014), who extended earlier works

by Deo and Hurvich (2001), Hurvich and Ray (2003), Arteche (2004, 2006) and Hurvich,

Moulines and Soulier (2005).

Finally, a different type of extension focuses on obtaining estimators of δ with im-

proved properties. This is motivated by the fact that the standard semiparametric esti-
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mators of memory parameters have convergence rates no better than T 2/5 (see Giraitis,

Robinson and Samarov, 1997), where T denotes sample size throughout. This bound to

the convergence rate reflects a natural loss with respect to the parametric setting, where

the rate T 1/2 is achievable. It should also be noted that, depending on the smoothness

of f around frequency zero, these semiparametric estimators can have a substantially

slower rate than T 2/5. In order to improve the rate of convergence of these semiparamet-

ric estimators, different bias-reducing techniques have been proposed in the literature,

which exploit the possible smoothness of f around frequency 0, and impose a richer

structure to the approximation (1). This includes Andrews and Guggenberger (2003),

Andrews and Sun (2004) (AS hereinafter), who extended the log periodogram and the

local Whittle approaches, respectively, by means of local polynomials. In a similar fash-

ion, Robinson and Henry (2003) (RH hereinafter) proposed a very general M-estimation

procedure, nesting both the log periodogram and local Whittle approaches, employing

higher-order kernels. Similar improvements can be achieved by a broadband approach

(instead of a local one), although this requires global smoothing conditions of f outside

frequency zero. This strategy was pursued by Moulines and Soulier (1999) and Hurvich

and Brodsky (2001).

Importantly, these bias-reducing procedures might lead to memory parameter esti-

mators enjoying convergence rates arbitrarily close to the parametric one. Given that

no parametric assumptions are needed, this is a remarkable result with potentially im-

portant implications for applied work. Thus, in order to decide whether the use of these

techniques should be encouraged in practice, a relevant question is to analyse if these

theoretical asymptotic advantages translate to a better finite sample behaviour. This

paper evaluates this issue by means of an extensive Monte Carlo experiment. Previ-

ous Monte Carlo analyses involving semiparametric memory estimation include Hauser

(1997), with particular emphasis on testing, and the very complete study of Nielsen and

Frederiksen (2005). This latter work includes some evidence of the behaviour of biased-

reducing techniques, in particular results for the simplest version of the estimators in

Andrews and Guggenberger (2003) and AS are given.

Building on these previous works, we here offer a richer evidence on the performance

of the bias-reducing approaches. In particular we focus on the RH and AS proposals,

which are inspired by the local Whittle principle. As it is well known, this approach

leads to more efficient estimators than the log-periodogram alternative, and, in addition,

unlike the broadband approaches, does not require global smoothness assumptions. Fur-

thermore, providing further evidence about the performance of higher order kernels in

the present setting appears to be particularly relevant because of this technique involves
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local averaging with negative weights, which could have a severe distortive effect. In fact,

as will be seen, our study reflects some of the complications associated to the higher-

order kernels. Formally, this materializes in the presence of a component (denoted Vq

by RH) in the denominator of the asymptotic bias and variance of the RH estimators

(see, e.g., equations (3.6), (3.7) in RH), which, depending on the order of the kernel (q),

could take values very close to zero (see Table 1 in RH). This might have a dramatic

effect on finite samples and our experiment sheds light on this potential problem, which

appears to be extremely serious for q = 3. That is even the case for sample sizes which

are much larger than those typically employed in many empirical analyses.

Incidentally, our paper also makes some theoretical contributions with independent

interest. First, the properties of the bias-reducing techniques for memory estimation have

been just derived for generic covariance stationary and invertible processes. Given the

strong evidence of non-stationarity in many different contexts, this limits their practical

application. Thus, it seems desirable to extend these methods to cover the very relevant

non-stationary case as well. Although other possibilities could have been pursued, given

that our focus is not mainly theoretical, we found that the simplest strategy to extend

the bias-reducing estimators to the non-stationary setting is the use of tapering. This

technique can nicely deal with arbitrarily large memory parameters and, in addition,

it can remove time polynomials so these deterministic terms do not interfere in the

estimation. Specifically, the tapered estimators are invariant to polynomial time trends

if tapers with high enough order are employed. There is, however, a price to pay in the

form of a variance increase due to the correlation of the tapered periodogram ordinates

and likewise to the order of the taper.

A sensible alternative to tapering without incurring this variance increase is to de-

velop bias-reducing techniques within the exact local Whittle framework of Shimotsu

and Phillips (2005). This is a promising avenue for future research, but it should be

noted that, even in this setting, our results appear to be useful: the exact local Whittle

estimator assumes that the mean of the process is known and this is a serious drawback.

This problem has been solved by Shimotsu (2010), who proposed an extension of the

exact local Whittle approach to deal with the case of unknown mean and polynomial

time trend. In particular, Shimotsu (2010) proposes a two-step local Whittle estimator

which is efficient for any value of the integration order in the interval (−1/2, 7/4). It

should be noted, however, that this estimator also relies on tapering in an indirect way,

because this two-step estimation method is based on a consistent (with a certain rate)

first step estimator. This is precisely the tapered local Whittle estimator which we ex-

tend in the present paper. Thus, evaluating improved methods for first step estimation,
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as we do in the present paper, appears to be a useful exercise even from the point of

view of exact local Whittle estimation.

As a second theoretical contribution, we deal with the issue of the rival definitions

of non-stationary fractionally integrated processes, namely the so-called Type I and II

(see, Robinson, 2005). In particular, we show that the properties of our biased-reducing

tapered estimators based on either Type I or Type II processes enjoy identical first order

asymptotic properties.

Our last theoretical contribution addresses with a difficulty associated to RH’s pro-

posal. Specifically, RH’s estimator does not in general correspond to a global minimum

of a suitable objective function, so consistency needs to be assumed. To circumvent

this problem, we propose a two-step estimator, which updates Velasco’s (1999a) local

Whittle tapered estimator.

Finally, note that our theoretical results appear to be of special importance in frac-

tional cointegration, a field which has recently attracted substantial attention from time

series researchers. Estimators of the cointegrating relation with optimal asymptotic

properties require, in general, the estimation of the memory parameters driving the

long-run behaviour of the series included in the model subject of study. As justified by

Hualde and Robinson (2006, 2010), these estimators should satisfy certain convergence

requirements, and the bias-reducing techniques serve this purpose.

The theoretical content of the paper is concentrated in Sections 2 and 3, which cover

the extensions of RH and AS, respectively. In Section 4 we present the finite sample

results which compare the standard versus the bias-reducing techniques. Due to space

restrictions, the proofs of the theoretical results are given in a Supplementary Appendix.

2 Tapered higher-order kernel local Whittle estima-

tion of memory parameters

We introduce some notation before moving on to our proposed estimators. We em-

phasize, throughout, the use of fractional processes, which have been stressed in the

literature to describe non-stationary (and indeed also stationary) processes. Here, de-

noting by ut a covariance stationary weak dependent process (with finite and bounded

away from zero spectral density at frequency zero), we say that a process vt is Type I

fractionally integrated of order δ if, setting r = [δ + 1/2], where [·] denotes integer part,

vt = ∆−r {ψt1 (t > 0))} , ψt = ∆r−δut =
∞∑
j=0

πj (δ − r)ut−j, (2)
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where 1(·) is the indicator function, and we employ the difference operator ∆ = 1− L,

where L is the lag operator, and formally, for any real α, α ̸= −1,−2, ..,

(1− z)−α =
∞∑
j=0

πj(α)z
j, πj(α) =

Γ(j + α)

Γ(α)Γ(j + 1)
,

with Γ denoting the gamma function. Note that δ−r < 1/2, so that ψt is well defined in

mean square sense. Alternatively, the Type II fractionally integrated process has been

defined as

ṽt = ∆−δ {ut1 (t > 0))} =
t−1∑
j=0

πj (δ)ut−j. (3)

When r = 0, vt is covariance stationary, whereas ṽt is non-stationary for any value of

δ, although asymptotically stationary when δ < 1/2. When δ ≥ 1/2 (so r > 0 in the

Type I definition), vt and ṽt are purely non-stationary, and display in general different

asymptotic properties. In fact, it can be shown that both processes, properly normalized,

converge to different versions of the fractional Brownian motion (see Marinucci and

Robinson, 1999, for further details about these types of processes).

Within this framework, the bias-reduced versions of the local Whittle estimators just

cover vt in case r = 0, and therefore, as mentioned before, we will extend these methods

to cover the Type II definition and also situations where δ might be arbitrarily large.

First, the RH method employs higher-order kernels to obtain “improved” estimators

of memory parameters. Their M-estimation procedure is very general, so we focus on

extending a particular case. As anticipated, this extension is mainly based on the use

of tapering (see Velasco 1999a,b), which alleviates the problem of periodogram bias due

to the leakage from zero frequency when the process is nonstationary, and on a two-

step approach, which avoids assuming consistency. Before presenting our method, we

introduce some regularity conditions.

ASSUMPTION 1. The process ut, t = 0,±1, ..., in (2), (3), has representation

ut = b (L) ξt, b (z) =
∞∑
j=0

bjz
j,

where

(i)

|b (z)| ̸= 0, |z| ≤ 1;

(ii) b
(
eiλ
)
is s-times differentiable in some neighbourhoods of zero with derivative of
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order s ≥ 1 in Lip (η), 0 < η ≤ 1;

(iii) E (ξt |Ft−1 ) = 0, E (ξ2t |Ft−1 ) = 1, E (ξ3t |Ft−1 ) = µ3, E (ξ4t |Ft−1 ) = µ4 almost

surely, t = 0,±1, ..., where µ3, µ4, are finite constants and Ft is the σ-field of

events generated by ξs, s ≤ t;

(iv) there exists a random variable ξ such that Eξ2 < ∞, and for all κ > 0 and some

K > 0, P (|ξt| > κ) ≤ KP (|ξ| > κ) .

Assumption 1 with s ≥ 1 implies that Assumption 8 in Velasco (1999a) holds for

ψt, with β = min {s+ η, 2}. As Velasco (1999a) acknowledges, he needs to use β > 1

in some of his theorems, as one cannot resort to the second moments of the tapered

periodogram (see (4) below) as is done in the non-tapered case. Given that we used

some of Velasco’s (1999a) results in the proofs of the propositions below, there is the

need to assume s ≥ 1, η > 0.

Denoting the spectral density of ut by fu (λ), the smoothness condition given in (ii)

translates directly to fu (0). Defining h (λ) = (2 sin (λ/2)λ−1)
−2δ

fu (λ), for any s for

which Assumption 1 is satisfied, setting q = [s/2], this condition implies that

h (λ) = fu (0) +

q∑
i=0

hiλ
2i

(2i)!
+O

(
λs+η

)
as λ→ 0,

where h0 = 0 and for i ≥ 1, hi represents the 2i-th derivative of h (λ) at λ = 0. As

established in RH, this result can be exploited by the use of a higher order kernel to

reduce asymptotic bias when q ≥ 2 (or equivalently s ≥ 4), so we will concentrate on

this case. Note that if q = 1, we are in the situation covered by Robinson (1995a,b)

and Velasco (1999a,b), where the maximum rate of convergence achievable is T 2/5. For

s = 1, following these references, our Assumption 1 permits the rate T (1+η)/(3+2η).

Defining a taper {gt}Tt=1 of order p as in Velasco (1999a,b), and a sequence ζt, the

discrete Fourier transform and periodogram of the tapered sequence gtζt are

wp
ζ (λ) =

(
2π

T∑
t=1

g2t

)−1/2 T∑
t=1

gtζte
itλ, Ipζ (λ) =

∣∣wp
ζ (λ)

∣∣2 . (4)

For integer q, we introduce a real function kq (u), q ≥ 2, 0 ≤ u ≤ 1, satisfying

ASSUMPTION 2. kq (u), 0 ≤ u ≤ 1 is a boundedly differentiable function such that∫ 1

0
kq (u) du = 1, and defining Uiq =

∫ 1

0
(log u+ 1)u2ikq (u) du, we have Uiq = 0, 0 ≤ i ≤

q − 1; Uqq ̸= 0.
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RH described kq (u) as a higher-order kernel and proposed a particular characteriza-

tion given by k∗q (u) =
∑q

j=0
αju

2j, for choices αj given in (5.4)-(5.6) of RH. Following

RH, for an integer m to be described subsequently such that m/p is integer, for suitable

q ≥ 2, kq (u), we define for an arbitrary sequence θt

Sp
θ (c) =

2m
∑′ bq,jλ

2c
j I

p
θ (λj)∑′ kq,jλ2cj I

p
θ (λj)

and Hp
θ (c) =

4m
(
Gp

2,θ (c)G
p
0,θ (c)−

(
Gp

1,θ (c)
)2)(

Gp
0,θ (c)

)2 ,

where λj = 2πj/T are the Fourier frequencies,
∑′ =

∑m
j=p,2p,...,

bq,j = kq,jνq,j, kq,j = kq (j/m) , νq,j = log λj −
∑′ kq,j log λj∑′ kq,j

and

Gp
g,θ (c) =

p

m

∑′
kq,j (log λj)

g λ2cj I
p
θ (λj) , g = 0, 1, 2.

We now present our estimators of δ. Denote by δG, δ̃G, the tapered local Whittle

estimators based on processes vt, ṽt, respectively, which optimize over the interval Θ =

[▽1,▽2] the loss function of Velasco (1999a). Denoting by M the bandwidth employed

in the computation of δG, δ̃G and assuming

1

M
+
M1+2β (logM)2

T 2β
→ 0, as T → ∞, (5)

Velasco (1999a) established that δG is M1/2-consistent. We then define our estimators

δRH , δ̃RH of δ based on vt, ṽt, respectively, as

δRH = δG −
Sp
v

(
δG
)

Hp
v

(
δG
) and δ̃RH = δ̃G −

Sp
ṽ

(
δ̃G

)
Hp

ṽ

(
δ̃G

) .
Note that defining qpθ (c) = p

m

∑′ bq,j
(
Ipθ (λj)λ

2c
j − 1

)
, δRH , δ̃RH would have identical

first order asymptotic properties to the zeroes of qpv (c), q
p
ṽ (c), which are closest to δG,

δ̃G, respectively, which correspond to the qth-order kernel M-estimator proposed by RH

for the choices J = 1, g (λ) = λ, ψ (z) = ψ1 (z). Thus these estimators are higher-order

kernel versions of the local Whittle estimators of Künsch (1987) and Robinson (1995b),

with corresponding loss functions Qp
v (c), Q

p
ṽ (c), where

Qp
θ (c) = m

(
logGp

θ (c)− 2c

∑′ kq,j log λj∑′ kq,j

)
and Gp

θ (c) =

∑′ kq,jλ
2c
j I

p
θ (λj)∑′ kq,j

,
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assuming the estimators do not fall on the boundary of Θ. Before presenting our re-

sults, we introduce an additional regularity condition related to the different bandwidths

employed in the estimation, namely M and m.

ASSUMPTION 3. LetM andm be power roots of T such that (5) holds and, as T → ∞,

m1/2

M
→ 0 and m = O

(
T 4q/(4q+1)

)
. (6)

The second condition in (6) (taken from RH) imposes the maximum rate at which the

bandwidth m can grow. Defining

Φ = lim
T→∞

(∑T

t=1
g2t

)−2∑T−p

k=0,p,2p,..

(∑T

t=1
g2t cos (tλk)

)2
,

Vq =

∫ 1

0

(log u+ 1)2 kq (u) du and Wq =

∫ 1

0

(log u+ 1)2 k2q (u) du,

and denoting by δ∗RH either δRH or δ̃RH , we establish the following result.

PROPOSITION 1. Under Assumptions 1-3, δ ∈ (▽1,▽2), ▽1 > −1/2, p > max {1,▽2, δ + 1/2},
q ≥ 2, then

m1/2 (δ∗RH − δ) +
(2π)2q Uqqhq

2 (2q)!fu (0)Vq

m2q+1/2

T 2q
→d N

(
0,
pΦWq

4V 2
q

)
. (7)

Proposition 1 is justified in the Supplementary Appendix. One of the main im-

plications of (7) is that letting m grow at rate T 4q/(4q+1), the convergence rate of our

estimators is T 2q/(4q+1), which can be arbitrarily close to the parametric rate T 1/2 for q

(and thus s) large enough. Note also that for the suggested choice of m the bias term

in (7) has exact rate O (1), while (6) prevents this bias from dominating.

3 Tapered local polynomial Whittle estimation of

memory parameters

Similarly, we here propose an extension of the estimators in AS, obtaining similar

achievements to those in our extension of RH. Thus, Proposition 2 below shows that

similar results to those in AS apply to Type I or II fractional processes of arbitrarily large

memory. Following AS, we consider the tapered local polynomial Whittle log-likelihood
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based on process ζt (for the particular choice of polynomial order 2q)

Qp
ζ,q (c,G, γ) =

p

m

m∑
j=p,2p,..

{
log
[
Gλ−2c

j exp (−κq (λj, γ))
]
+

Ipζ (λj)

Gλ−2c
j exp (−κq (λj, γ))

}
,

where κq (λj, γ) =
∑q

k=1
γkλ

2k
j , γ = (γ1, ..., γq)

′, and different tapered versions of the

LPW-FOC estimators of (δ, ϕ), where ϕ is a q × 1 vector with ith component given by

− 1

(2i)!

d2i

dλ2i
log h (λ)|λ=0 .

We denote these estimators by
(
δAS, ϕ

′
AS

)′
,
(
δ̃AS, ϕ̃

′
AS

)′
, depending on whetherQp

v,q (c,G, γ)

or Qp
ṽ,q (c,G, γ) is used, respectively. Before presenting our results, we introduce a series

of further regularity conditions.

ASSUMPTION 4

m2q+ 1
2

T 2q
→ ∞ and

ms+η+ 1
2

T s+η
= O (1) ,

as T → ∞.

ASSUMPTION 5. ϕ belongs to the interior of a compact and convex set Ξ.

Note that Assumptions 1, 4 and 5, imply that Assumptions 1-5 in AS hold with their

order of smoothness, given in our case by s+ η, and with their polynomial order (2r in

their notation) given by 2q. Note also that in AS’ notation α (λ) = (1− eiλ)r−δf
1/2
u (λ)

in our framework, which satisfies part (c) of their Assumption 3. Denoting by δ∗AS either

δAS or δ̃AS, and by ϕ∗
AS either ϕAS or ϕ̃AS, respectively, we establish the following result.

PROPOSITION 2. Under Assumptions 1, 4, 5, δ ∈ (▽1,▽2), ▽1 > −1/2, p > max {1,▽2, δ + 1/2},
we obtain(

m
1
2 (δ∗AS − δ)

m
1
2diag (λ2m, ..., λ

2q
m) (ϕ∗

AS − ϕ)

)
− Ω−1

q νT (q, s) →d N
(
0, pΦΩ−1

q

)
,

where Ωq, νT (q, s) are given in (4.4), (4.6) in AS.

Proposition 2 is justified in the Supplementary Appendix. This result is basically the

same as in AS simply taking into account the effect of tapering given by pΦ. Note that

Assumption 4 holds for a bandwidth m∗ which grows at rate T 2s/(1+2s), which given our

smoothness conditions, is not exactly the “optimal” bandwidth proposed by AS (say

m′, which grows at rate T 2(s+η)/(1+2(s+η))), but both are similar when s is large. We
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found it more informative to propose a bandwidth depending on the number of existing

derivatives. Of course, the relevance of this choice is that should s be arbitrarily large,

we obtain a rate of convergence T s/(1+2s) for our estimator of the order of integration

based on vt or ṽt, which could be arbitrarily close to the parametric rate T 1/2. Note also

that for our choice of bandwidth m∗, the exact rate of νT (q, s) is (m∗)s+η+1/2 T−(s+η) =

T−η/(1+2s) = o (1) as T → ∞. Finally, note that m∗ is not allowed by (6) when s is odd

(although it is when s is even), and in this case the rate T s/(1+2s) is larger than T 2q/(4q+1)

(although both approximate as s increases).

4 Finite sample performance

We perform a Monte Carlo experiment in order to understand the extent to which the

bias-reducing techniques are worth employing in finite samples. The different estimators

are applied to an observable process xt, which is generated according to four different

mechanisms (denoted as Models I, II, III and IV). For the first three models, xt = ṽt

(see (3)), for three different error input processes ut corresponding to

ut = ζut−1 + εt,

where εt is a Gaussian independent and identically distributed process with E (εt) = 0,

V ar (εt) = 1, and ζ takes three different values (0, 0.5, 0.9), which correspond to Models

I, II, III, respectively. The latter two models cover the autoregressive case, where a

richer approximation of the spectral density might be exploited in estimation to improve

results, so the bias-reducing techniques might offer advantages. For Model IV,

xt = ṽt + wt,

where ṽt is generated as in Model I and wt is a Gaussian independent and identically

distributed process, independent of εt, such that E (wt) = 0, V ar (wt) = 1. This model

corresponds to a perturbed (or contaminated) fractionally integrated process. This

setting might again be favourable to the bias-reducing methods.

The memory parameter δ is allowed to take two different values, namely δ = 0.3, 1.3,

where xt is asymptotically stationary or purely nonstationary, respectively. We present

results for various sample sizes T = 256, 1024, 3072, 9216. Some of these sample sizes

are larger than the typical ones employed in applications but, noting that the potential

advantages of the reducing-bias estimators are asymptotic, it is illustrative to evaluate

the behaviour of the different estimation techniques for large T . The RH estimator was
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computed using the kernel k∗q (u) described in Section 2 and for both RH and AS three

different bandwidth choices (m1,m2,m3) were employed. In all cases mj = 2mj−1, j =

2, 3, where for T = 256, m1 = 10, 16, 23, 30, for q = 1, 2, 3, 4, respectively; for T = 1024,

m1 = 25, 50, 75, 100, for q = 1, 2, 3, 4, respectively; for T = 3072, m1 = 55, 135, 215, 295;

finally, for T = 9216, m1 = 145, 390, 635, 880. As Assumption 3 indicates, larger q

implies that larger bandwidths can be used, and we accommodated this possibility in

our experiment.

RH and AS were computed as described in Sections 2, 3, respectively, with the

optimizing intervals being set as [−.5, 2] in all cases. Throughout RH with q = 1

will refer to Velasco’s (1999a) estimator (which, hereinafter, will be denoted as LW),

noting also that LW takes the role of the first-step estimator when computing RH for

q > 1. Whenever tapering is employed, we use the Zhurbenko taper with p = 2.

Other possibilities like the Parzen taper could have been used (see Alekseev, 1996, for

additional examples), but we believe that different taper choices would not alter our

results significantly. We present results for Monte Carlo bias, standard deviation (SD)

and coverage probabilities, all computed across 5000 replications.

Table 1 presents bias results for the untapered RH estimator in the stationary case.

The first noticeable feature is the extremely unsatisfactory behaviour of RH when q = 3.

This very poor performance also occurs in other settings which cover tapered estimation

in stationary or nonstationary situations. In fact, our results indicate that the use of

this particular type of higher order kernel should be heavily discouraged. As already

mentioned, the reason for this disappointing behaviour of RH is the presence of Vq in

(7), which takes values Vq = 1, 0.4125, 0.0089,−0.2066 for q = 1, 2, 3, 4, respectively.

Thus for q = 3, even larger sample sizes than the ones employed in this experiment are

needed for the asymptotic advantage to start being noticeable. Unless otherwise stated,

our comments below will not refer to this specific estimator.
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Table 1. Bias, δ = 0.3, RH, Untapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 -.022 -.012 -.008 -.262 -.063 .044 -.043 -.104 -.186 -.034 .036 .064

1024 -.009 -.003 -.003 .000 .034 .020 -.145 -.185 -.235 .061 .041 .012

3072 -.001 .000 .000 .023 .008 .002 -.193 -.229 -.249 .014 .005 .000

9216 -.002 -.001 .000 .001 .001 .001 -.229 -.225 -.224 -.002 .000 .001

II 256 -.007 .054 .160 -.258 .020 .206 .074 .238 .507 .039 .039 -.007

1024 -.001 .020 .074 .002 .031 .112 -.034 .159 .588 .065 .010 .029

3072 .000 .011 .041 .015 .016 .089 -.086 .179 .762 .005 -.002 .032

9216 .003 .010 .033 .003 .016 .082 -.087 .301 .897 .000 .001 .034

III 256 .375 .575 .722 .145 .568 .787 .691 .801 .739 .305 .330 .608

1024 .191 .387 .598 .268 .511 .716 .747 .980 1.06 .110 .331 .582

3072 .113 .271 .492 .213 .439 .657 .944 1.21 1.22 .114 .315 .552

9216 .086 .225 .442 .195 .407 .629 1.22 1.52 1.44 .112 .293 .524

IV 256 -.082 -.087 -.099 -.317 -.142 -.054 -.120 -.231 -.299 -.072 -.027 -.015

1024 -.050 -.059 -.073 -.049 -.019 -.051 -.215 -.302 -.370 .045 .006 -.047

3072 -.035 -.044 -.058 -.010 -.043 -.068 -.285 -.346 -.426 -.005 -.034 -.056

9216 -.028 -.039 -.053 -.031 -.048 -.068 -.371 -.413 -.416 -.028 -.040 -.056

According to Table 1, increasing q only manages to equal (or slightly improve) the

results for LW if T is very large for Models I and II (which represents the case of moderate

short memory dependence). Model III is a very adverse case for memory estimation,

because the short memory dependence is very strong. It is well known for this case that

the memory estimation tends to overestimate the true memory parameter and this is

indeed the case in our experiment, as bias is in general quite large, especially for the

largest bandwidth. Interestingly LW provides better results than RH for larger sample

sizes and worse for small T , which is counterintuitive. Finally, for Model IV, in general,

RH shows better behaviour than LW, especially for q = 4 if T is not very large.

Table 2 presents bias results for the AS estimator. First, while we observe that

increasing q clearly reduces the bias for Model I, this improvement does not occur for

Model II, where bias either remains constant or worsens slightly. Here q = 2 appears to

be the best choice. In the case of Model III, higher q leads to poorer results, and the

results for Model IV are not very affected by q.
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Table 2. Bias, δ = 0.3, AS, Untapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 -.088 -.049 -.021 -.043 -.030 -.012 -.068 -.041 -.016 -.047 -.030 -.006

1024 -.042 -.019 -.007 -.019 -.010 -.004 -.026 -.012 -.004 -.019 -.008 -.003

3072 -.013 -.005 -.002 -.004 -.001 .000 -.006 -.002 .000 -.003 -.001 .000

9216 -.004 -.002 .000 -.001 .000 .001 -.002 -.001 .000 -.001 .000 .002

II 256 -.087 -.043 .019 -.047 -.028 .025 -.073 -.038 .023 -.048 -.025 .056

1024 -.038 -.017 .000 -.021 -.009 .011 -.026 -.010 .012 -.020 -.006 .019

3072 -.012 -.006 .001 -.005 -.001 .009 -.007 -.001 .013 -.005 .000 .019

9216 -.003 .000 .002 .000 .001 .008 .000 .001 .013 .000 .001 .019

III 256 .071 .315 .543 .109 .336 .558 .096 .340 .567 .128 .362 .616

1024 .006 .141 .352 .050 .211 .436 .057 .237 .467 .075 .256 .492

3072 .000 .075 .236 .040 .168 .382 .057 .210 .437 .074 .234 .468

9216 .005 .055 .190 .036 .150 .360 .054 .196 .424 .070 .222 .458

IV 256 -.124 -.096 -.088 -.078 -.079 -.081 -.113 -.091 -.085 -.085 -.081 -.082

1024 -.072 -.055 -.057 -.051 -.050 -.059 -.056 -.053 -.061 -.050 -.052 -.061

3072 -.037 -.035 -.042 -.031 -.038 -.049 -.034 -.041 -.053 -.033 -.042 -.055

9216 -.023 -.028 -.036 -.025 -.034 -.046 -.028 -.037 -.050 -.028 -.038 -.052

Overall, comparing the different estimation methods, we conclude that, in general,

LW beats AS for Model I, especially for small T , and both estimates are better than RH

(although for very large T the three methods give similar results). For Model II, except

for very small T , AS clearly improves RH and, in most cases, also LW. In Model III, AS

provides the smallest bias, with RH being better than LW if T is small and worse if T

is large. Finally, the behaviour of AS is slightly better than LW in Model IV, and worse

than RH for moderate T.

We also computed results for the tapered RH and AS estimators when δ = 0.3,

although for space reasons we do not report the results here (results are available upon

request). Tapering is not necessary in this case, but in practice δ is unknown, so its

use could be motivated by the (incorrect) belief that it falls within the non-stationary

region. Our results indicate that, in general, tapering increases the bias: this is more

evident for the AS, while Model II is the least affected scenario, especially when large

bandwidths are used.

We complete our interpretation of the bias results for the stationary case with a

brief description of the effect of the bandwidth choice m. First, the general pattern of

behaviour differs depending on the model for LW or RH. For Model I, an increase of m

reduces the bias, especially if T is large. On the contrary, for Models II-IV, typically,
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the opposite happens, although there are exceptions, especially for small T and tapered

estimators. With respect to AS, bias reduces as m increases in Model I, although not

in all cases if T is small (more noticeably with tapering). There is no clear pattern for

Model II , while bias clearly worsens as m increases in Model III. Finally, for Model IV,

bias increases as m increases for large T , with the opposite effect being evident for small

T . If tapering is employed, this bias increase is just observed for large T and q.

Tables 3 and 4 present bias results for the non-stationary case δ = 1.3 when tapering

is used. Overall, a similar picture to the previously described is observed. Regarding

RH, larger q leads to bias improvements for large T in Model I, with the asymptotic

theory operating here. However, RH only manages to slightly beat LW for very large T

and small m. Similarly, in Model II, an increase of q reduces the bias for T large enough.

For example, if q = 4 and T is large, RH outperforms LW for any bandwidth. In Model

III the order of the kernel just reduces the bias for small T . Thus LW appears to be

preferable for large T , which, again, is counterintuitive. A similar result is observed for

Model IV: bias does not decrease while increasing q. In fact, it often increases, so, here,

LW is clearly better than RH.

Table 3. Bias, δ = 1.3, RH, Tapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 .047 .040 .012 -.499 -.270 -.159 -.398 -.249 -.410 -.228 -.221 -.175

1024 .159 .023 .010 -.286 -.070 .014 -.349 -.373 -.460 -.284 .038 .054

3072 .066 .014 .006 -.036 .018 .018 -.410 -.422 -.492 -.055 .033 .016

9216 .026 .007 .004 .018 .009 .006 -.446 -.462 -.511 .014 .008 .005

II 256 .064 .120 .200 -.531 -.199 .087 -.379 .023 .078 -.211 -.109 -.071

1024 .169 .051 .092 -.260 .004 .125 -.320 -.129 .160 -.253 .064 .050

3072 .072 .027 .050 -.011 .024 .090 -.358 -.137 .293 -.026 .011 .036

9216 .030 .018 .037 .014 .019 .081 -.388 -.048 .481 .012 .005 .034

III 256 .453 .599 .664 -.259 .297 .491 .074 .377 .237 .044 .276 .480

1024 .390 .443 .614 .115 .498 .658 .203 .517 .443 -.187 .362 .574

3072 .195 .297 .505 .251 .452 .651 .447 .642 .632 .080 .329 .558

9216 .118 .236 .447 .207 .413 .630 .602 .682 .694 .119 .300 .527

IV 256 .037 .004 -.093 -.480 -.296 -.315 -.394 -.405 -.664 -.237 -.298 -.397

1024 .156 .017 -.021 -.276 -.091 -.136 -.328 -.445 -.566 -.282 -.076 -.183

3072 .066 .010 -.006 -.030 .031 .075 -.409 -.485 -.541 -.066 .027 -.041

9216 .027 .006 -.006 .020 .021 .088 -.473 -.518 -.545 .016 .022 .068

Regarding AS, bias is reduced by increasing q in Model I, especially for large T . The
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improvement is not so clear for small T . In Model II, an increase of q does not have a

clear effect on the bias, but it depends on the values of T and m. In Model III, there is

a clear increase in the bias when increasing q, whereas the results remain fairly stable

in Model IV. Finally, the bandwidth choice affects the bias in a similar way to that

described for the stationary case.

Table 4. Bias, δ = 1.3, AS, Tapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 -.201 -.013 .024 -.106 .031 .041 .700 .005 .031 -.097 .029 .039

1024 .530 .024 .020 .048 .032 .023 .319 .023 .019 .040 .028 .021

3072 .210 .021 .015 .112 .020 .013 .085 .015 .011 .078 .016 .011

9216 .067 .011 .008 .014 .009 .006 .027 .007 .005 .010 .007 .005

II 256 -.171 -.002 .074 -.082 .037 .087 .700 .010 .078 -.068 .040 .117

1024 .529 .027 .030 .043 .036 .039 .319 .027 .037 .038 .032 .043

3072 .208 .020 .018 .110 .020 .022 .082 .016 .025 .076 .017 .029

9216 .068 .014 .011 .017 .011 .014 .030 .009 .018 .014 .010 .021

III 256 -.020 .364 .573 .053 .395 .587 .700 .397 .591 .109 .430 .621

1024 .560 .207 .407 .129 .280 .485 .410 .300 .509 .150 .323 .534

3072 .227 .110 .263 .164 .200 .402 .158 .236 .453 .168 .260 .502

9216 .076 .071 .201 .054 .162 .367 .088 .207 .429 .089 .232 .477

IV 256 -.185 .003 .027 -.094 .042 .049 .700 .018 .041 -.077 .041 .035

1024 .533 .026 .024 .045 .035 .029 .323 .027 .027 .039 .031 .029

3072 .211 .022 .263 .111 .022 .402 .085 .018 .453 .079 .020 .019

9216 .063 .011 .009 .014 .010 .010 .027 .009 .012 .011 .009 .012

To summarise, as regards bias behaviour, in Model I, LW show the best behaviour,

followed by AS. In Model II, in general, AS is the best method, followed by RH. AS is

again the preferred one in Model III, with RH being better than LW if T is small and

worse if T is large. Finally, LW improves AS, and both are better than RH in Model

IV.

Tables 5, 6 present the SD for the stationary case. First, for RH, as expected, larger T

and/or m reduce SD. Interestingly, the minimum SD is almost always achieved by q = 1

(the LW estimator), with the exception of Model III when T is large. When increasing

q from 2 to 4, for Model I, SD remain similar; for II, SD are in general reduced, except

for small T ; for III, SD increase for small T , but decrease if T is large enough; finally,

there is not a clear pattern for IV.

16



Table 5. SD, δ = 0.3, RH, Untapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 .250 .152 .096 .494 .492 .423 .682 .685 .661 .723 .610 .417

1024 .129 .085 .056 .443 .284 .144 .672 .665 .654 .440 .248 .129

3072 .077 .052 .036 .211 .108 .060 .675 .664 .663 .178 .095 .062

9216 .046 .031 .022 .074 .047 .033 .658 .662 .670 .072 .047 .034

II 256 .256 .152 .099 .479 .429 .250 .693 .710 .637 .758 .587 .327

1024 .129 .083 .056 .386 .174 .070 .708 .710 .552 .386 .150 .073

3072 .079 .052 .035 .177 .068 .038 .713 .681 .527 .137 .063 .037

9216 .045 .030 .021 .068 .037 .021 .719 .632 .431 .061 .034 .020

III 256 .263 .159 .106 .468 .434 .374 .655 .634 .689 .817 .672 .428

1024 .134 .089 .064 .221 .131 .096 .553 .427 .443 .218 .120 .099

3072 .079 .056 .041 .078 .054 .044 .515 .351 .300 .076 .053 .042

9216 .045 .033 .025 .040 .029 .023 .449 .238 .230 .040 .030 .024

IV 256 .249 .151 .097 .485 .501 .439 .669 .638 .638 .707 .609 .426

1024 .131 .083 .055 .463 .315 .172 .649 .639 .595 .480 .289 .146

3072 .079 .052 .036 .230 .118 .069 .631 .623 .554 .232 .115 .074

9216 .045 .031 .022 .080 .052 .037 .575 .557 .583 .045 .056 .040

Table 6. SD, δ = 0.3, AS, Untapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 .460 .277 .164 .462 .272 .162 .441 .262 .154 .433 .255 .137

1024 .232 .141 .090 .196 .119 .077 .182 .112 .073 .176 .108 .069

3072 .132 .085 .056 .099 .064 .044 .090 .058 .040 .084 .055 .036

9216 .071 .048 .032 .052 .035 .025 .047 .032 .022 .045 .031 .019

II 256 .461 .276 .166 .460 .275 .164 .439 .263 .158 .433 .258 .139

1024 .233 .139 .088 .193 .117 .076 .180 .110 .072 .171 .107 .070

3072 .132 .085 .056 .099 .065 .043 .089 .058 .040 .084 .056 .039

9216 .071 .048 .034 .052 .036 .025 .047 .033 .023 .045 .031 .023

III 256 .502 .287 .174 .496 .284 .172 .473 .271 .164 .460 .262 .151

1024 .234 .144 .097 .197 .123 .085 .185 .117 .081 .176 .113 .079

3072 .132 .085 .059 .099 .067 .049 .089 .061 .046 .085 .059 .044

9216 .072 .049 .034 .053 .037 .029 .047 .035 .027 .046 .033 .026

IV 256 .451 .277 .165 .455 .271 .162 .433 .260 .156 .431 .255 .147

1024 .236 .141 .091 .195 .120 .078 .182 .112 .073 .172 .109 .071

3072 .132 .084 .056 .098 .065 .044 .089 .059 .040 .084 .056 .038

9216 .071 .048 .033 .052 .036 .025 .047 .033 .023 .044 .031 .021
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Focusing on AS, the general behaviour of the SD when m and/or T raise is similar:

SD decrease except for some cases. Additionally, an increase of q also reduces the SD in

all cases.

Comparing the three estimation methods we reach the following conclusions. In

Model I, AS provides smaller SD than RH and, if T is sufficiently large, similar to those

of LW. In II, the smaller SD are obtained with LW, followed by AS. In III, if T is large,

RH has the smallest SD, while LW improves AS, especially if T small. Finally, in IV,

AS beats RH, although LW provides results very similar to AS if T is large (and better

if T is small).

Tables 7, 8 present corresponding results for the tapered estimates. As the theory

predicted, the main phenomenon here is the increase in SD for all cases, with a similar

picture being observed for the (unreported) stationary and non-stationary cases.

Table 7. SD, δ = 1.3, RH, Tapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 .437 .262 .156 .910 .508 .498 .757 .650 .600 .841 .727 .621

1024 .223 .136 .088 .580 .440 .332 .654 .651 .625 .679 .410 .277

3072 .127 .081 .055 .371 .223 .115 .644 .648 .607 .475 .188 .133

9216 .069 .047 .032 .148 .078 .054 .642 .654 .612 .148 .080 .064

II 256 .438 .255 .156 .908 .463 .444 .748 .640 .656 .855 .767 .575

1024 .223 .134 .086 .572 .334 .136 .679 .700 .650 .717 .285 .138

3072 .127 .081 .053 .320 .127 .061 .674 .697 .616 .403 .112 .058

9216 .068 .046 .032 .137 .059 .033 .695 .679 .432 .118 .053 .031

III 256 .326 .151 .064 .783 .507 .513 .663 .620 .661 .830 .665 .409

1024 .206 .132 .072 .434 .221 .105 .653 .511 .635 .755 .200 .111

3072 .128 .084 .060 .143 .084 .048 .449 .308 .370 .191 .081 .063

9216 .070 .048 .036 .063 .043 .034 .296 .203 .112 .061 .043 .035

IV 256 .446 .262 .160 .922 .530 .537 .756 .624 .549 .824 .697 .719

1024 .222 .132 .087 .593 .490 .597 .643 .581 .438 .656 .548 .657

3072 .126 .080 .054 .360 .277 .392 .626 .577 .411 .493 .300 .550

9216 .069 .047 .032 .158 .095 .146 .646 .569 .420 .172 .137 .305
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Table 8. SD, δ = 1.3, AS, Tapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 .834 .496 .287 .801 .481 .282 .000 .467 .271 .785 .457 .234

1024 .269 .241 .145 .341 .199 .122 .297 .186 .115 .304 .179 .110

3072 .225 .136 .086 .162 .101 .067 .144 .091 .061 .135 .086 .058

9216 .112 .072 .049 .079 .053 .037 .071 .048 .033 .066 .046 .031

II 256 .832 .487 .279 .802 .478 .277 .012 .462 .268 .773 .460 .229

1024 .270 .236 .144 .339 .197 .123 .290 .184 .116 .297 .177 .111

3072 .225 .136 .087 .163 .101 .066 .144 .091 .061 .135 .086 .058

9216 .112 .073 .050 .079 .054 .037 .071 .049 .033 .066 .046 .032

III 256 .793 .401 .182 .766 .381 .171 .000 .370 .164 .736 .354 .102

1024 .248 .234 .142 .335 .196 .122 .269 .181 .114 .296 .177 .107

3072 .225 .135 .088 .162 .101 .071 .145 .092 .066 .133 .088 .081

9216 .114 .075 .051 .082 .055 .041 .073 .051 .039 .069 .048 .054

IV 256 .823 .496 .290 .795 .490 .284 .007 .475 .271 .769 .458 .242

1024 .265 .238 .144 .341 .198 .120 .292 .185 .114 .299 .178 .109

3072 .223 .135 .088 .159 .100 .071 .144 .091 .066 .134 .087 .057

9216 .114 .074 .050 .081 .054 .037 .073 .049 .034 .068 .047 .032

In Table 9 we present the coverage probabilities corresponding to the RH estimator

for the non-stationary case (i.e. δ = 1.3). As previously pointed out, RH estimator

should be heavily discouraged when q = 3. Given the huge variance of the estimator for

this case, the 95% confidence interval is so wide that coverage probabilities always equal

to one. Focusing on the rest of kernel orders, Table 9 shows that, in general, an increase

of T raises the coverage probabilities, placing them close to 0.95 value. This happens

for all models, except for Model III when medium or large values of m are chosen. The

effects of increasing m are not, however, so clear: whereas it is clearly harmful for model

III, large and, especially, intermediate values of m lead to coverage probabilities closer

to 0.95 value for the rest of the models. Finally, comparing the behavior of the LW

and RH estimators, we observe that while the former outperforms the latter in models

I and IV, using higher order kernels seems to be more appropriate in autoregressive

cases (models II and III). The coverage probabilities for the stationary cases (with and

without tapering) were also computed for RH estimates, giving similar results. We do

not report these results here for the sake of space saving, but they are available upon

request.
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Table 9. Coverage probabilities, δ = 1.3, RH, Tapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 .678 .772 .854 .578 .736 .720 1 1 1 .788 .646 .641

1024 .676 .855 .890 .620 .756 .784 1 1 1 .600 .762 .778

3072 .817 .902 .920 .763 .844 .866 1 1 1 .655 .836 .822

9216 .887 .919 .933 .859 .906 .897 1 1 1 .840 .898 .848

II 256 .672 .724 .543 .561 .813 .771 1 1 1 .784 .588 .687

1024 .680 .838 .707 .626 .848 .850 1 1 1 .566 .838 .932

3072 .804 .887 .801 .767 .928 .832 1 1 1 .705 .946 .973

9216 .885 .906 .750 .881 .946 .584 1 1 1 .890 .975 .955

III 256 .336 .065 .002 .755 .635 .113 1 1 1 .842 .480 .268

1024 .291 .040 .000 .771 .135 .000 1 1 1 .523 .530 .003

3072 .477 .028 .000 .661 .000 .000 1 1 1 .913 .075 .000

9216 .500 .001 .000 .305 .000 .000 1 1 1 .819 .000 .000

IV 256 .674 .781 .789 .591 .690 .550 1 1 1 .791 .654 .584

1024 .692 .867 .890 .609 .691 .471 1 1 1 .618 .696 .446

3072 .816 .913 .920 .759 .791 .558 1 1 1 .642 .719 .307

9216 .883 .923 .931 .845 .855 .556 1 1 1 .819 .734 .301

To summarise, the overall performance of the bias-reducing techniques is somewhat

disappointing because, in many cases, these more sophisticated methods do not outper-

form the simpler LW alternative. More specifically, for Model I, LW is always the best

method, both in stationary or non-stationary settings. For Model II, AS is better than

LW for δ = 0.3, 1.3, while RH beats LW in few cases (just if T is small and δ = 1.3).

For Model III, AS is again better than LW, and RH tends to outperform LW if T is

small. Finally, for Model IV, AS tends to be better than LW when δ = 0.3, especially

if T is large. For the non-stationary case, RH beats LW just if T is small, although,

overall, when δ = 1.3 LW tends to be the best method. In any case, the performance of

the higher order kernel estimator RH is particularly worrying, as its general behaviour

is poor (and even extremely unsatisfactory for q = 3). As already mentioned the role

of Vq in (7) gives an advantage to the choice q = 1 (i.e., to LW), which, at least for the

sample sizes employed in the experiment, is not compensated by the faster convergence

rates which higher q’s permit. In fact, we provide additional evidence to illustrate the

problem suffered by the higher order kernel approach. In Table 10 we report the num-

ber of replications (out of 5000) which falls on the boundary of the optimizing interval

[−.5, 2] for the δ = 1.3 case (other cases present qualitatively identical results).

20



Table 10. Replications outside the optimizing interval, δ = 1.3, RH, Tapered estimators

M T\q,m 1,m1 1,m2 1,m3 2,m1 2,m2 2,m3 3,m1 3,m2 3,m3 4,m1 4,m2 4,m3

I 256 4 0 0 1508 432 512 1036 879 659 1624 1170 905

1024 0 0 0 565 430 298 774 862 764 889 602 313

3072 0 0 0 302 116 6 809 836 703 595 94 21

9216 0 0 0 40 1 0 789 845 719 28 0 0

II 256 2 0 0 1424 367 565 1033 1258 1438 1721 1540 761

1024 0 0 0 570 300 34 891 1271 1734 1119 296 11

3072 0 0 0 240 19 0 930 1254 2239 426 4 0

9216 0 0 0 31 0 0 983 1365 2705 5 0 0

III 256 1 0 0 928 1397 2967 1445 2859 2004 2160 2322 2133

1024 0 0 0 549 1009 2928 1861 3418 3430 1342 461 1344

3072 0 0 0 62 57 1646 2379 4267 4499 25 1 157

9216 0 0 0 0 0 240 3473 4929 4953 0 0 0

IV 256 8 0 0 1584 470 507 1030 663 379 1534 903 1018

1024 0 0 0 603 564 782 759 649 303 803 812 1121

3072 0 0 0 309 229 512 746 635 291 613 315 936

9216 0 0 0 47 4 60 831 609 306 50 24 419

Although results improve as T and m increase, the evidence is very worrying (espe-

cially for q = 3). It should be noted that this problem hardly affects LW and it does not

affect AS at all, where none of the replications fell on the boundary of the optimizing

set.
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Supplementary Appendix

to

Local Whittle estimation of long memory: standard versus
bias-reducing techniques

1



This supplements “Local Whittle estimation of long memory: standard versus bias-

reducing techniques” by providing proofs of Propositions 1 and 2.

Proof of Proposition 1. First, we show the result for δRH . Clearly

m
1
2

(
δRH − δ

)
= m

1
2

(
δG − δ −

Sp
v

(
δG
)
− Sp

v (δ)

Hp
v

(
δG
) )

−m
1
2
Sp
v (δ)

Hp
v

(
δG
) ,

so (7) holds on showing

m− 1
2Sp

v (δ)−
2 (2π)2q Uqqhq
(2q)!fu (0)

m2q+1/2

T 2q
→d N (0, 4pΦWq) , (S.1)

m−1Hp
v

(
δG
)
→p 4Vq > 0 and (S.2)

m
1
2

(
δG − δ −

Sp
v

(
δG
)
− Sp

v (δ)

Hp
v

(
δG
) )

= op (1) . (S.3)

First, we show (S.1). Now,

m− 1
2Sp

v (δ) = 2p
1
2
A

B
, (S.4)

where

A =
( p
m

) 1
2
∑′

bq,j
(
λ2δj I

p
v (λj)− 1

)
and B =

p

m

∑′
kq,jλ

2δ
j I

p
v (λj) ,

noting that
∑′ bq,j = 0. Then, we could set A =

∑4
i=1Ai where

A1 = 2π
( p
m

) 1
2
∑′

bq,j
{
E
(
Ipξ (λj)h (λj)

)
− E

(
fu (0) I

p
ξ (λj)

)}
,

A2 = 2πfu (0)
( p
m

) 1
2
∑′

bq,j
{
Ipξ (λj)− E

(
Ipξ (λj)

)}
,

A3 = 2π
( p
m

) 1
2
∑′

bq,j
{
Ipξ (λj)h (λj)− fu (0) I

p
ξ (λj)

−E
(
Ipξ (λj)h (λj)− fu (0) I

p
ξ (λj)

)}
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A4 =
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m

) 1
2
∑′

bq,j
{
Ipv (λj)λ

2δ
j − 2πh (λj) I

p
ξ (λj)

}
,

noting that E
(
Ipξ (λj)

)
= 1/ (2π). We have

A1 =
( p
m

) 1
2
∑′

bq,j (h (λj)− fu (0)) =
( p
m

) 1
2
∑′

bq,j

q∑
i=1

hiλ
2i
j

(2i)!
+O

(
m− 1

2

∑′
|bq,j|λs+η

j

)
.

(S.5)
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The first term on the right of (S.5) equals

(
m

p

) 1
2


q∑

i=1

hiλ
2i
m

(2i)!
Uiq +

q∑
i=1

hiλ
2i
m

(2i)!

 p
m

∑′
bq,j

(
j

m

)2i

−
1∫

0

(log u+ 1)u2ikq (u) du

 .

(S.6)

Then noting that
q∑

i=1

(m
T

)2i
≤ 1

1−
(
m
T

)2 ≤ 0.75−1,

because m/T ≤ 0.5, that by proceeding as in Lemma 5 of Velasco (1999a),

p

m

∑′
bq,j

(
j

m

)2i

−
1∫

0

(log u+ 1)u2ikq (u) du = O
(
m−1 logm

)
,

and Assumption 2, then (S.6) is

(
m

p

) 1
2 hqλ

2q
m

(2q)!
Uqq +O

(
logm

m
1
2

)
.

This implies that

A1 =

(
m

p

) 1
2 hqλ

2q
m

(2q)!
Uqq +O

(
logm

m
1
2

)
+O

(
ms+η+ 1

2 log T

T s+η

)
, (S.7)

where by (6), the third term on the right of (S.7) is of smaller order than the first, while

the second is o (1).

For A2, in view of the proof of Lemma 6 of Velasco (1999a), it is straightforward to

show that ( p
m

) 1
2
∑′

bq,j
{
2πIpξ (λj)− 1

}
→d N (0,WqΦ) ,

just noting that, like in (S.6),

p

m

∑′
b2q,j = Wq +O

(
(logm)2

m

)
.

Next, according to some of our previous arguments and (A23) in Velasco (1999a),
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V ar (A3) = o (1) and

A4 =
( p
m

) 1
2
∑′

bq,jh (λj)

{
Ipv (λj)

h (λj)λ
−2δ
j

− 2πIpξ (λj)

}
= Op

(
m−1/2 log2m+mδ−p+1/2 log3/2m

)
= op (1) ,

by the condition we set on the tapering order p.

Expanding B in a similar way to A, we get B =
∑4

i=0Bi, where

B0 =
2πfu (0) p

m

∑′
kq,jE

(
Ipξ (λj)

)
,

B1 =
2πp

m

∑′
kq,j
{
E
(
Ipξ (λj)h (λj)

)
− E

(
fu (0) I

p
ξ (λj)

)}
,

B2 =
2πfu (0) p

m

∑′
kq,j
{
Ipξ (λj)− E

(
Ipξ (λj)

)}
,

B3 =
2πp

m

∑′
kq,j
{
Ipξ (λj)h (λj)− fu (0) I

p
ξ (λj)

−E
(
Ipξ (λj)h (λj)− fu (0) I

p
ξ (λj)

)}
and

B4 =
p

m

∑′
kq,j
{
Ipv (λj)λ

2δ
j − 2πh (λj) I

p
ξ (λj)

}
.

In line with previous results

B1 = O

((m
T

)2q)
, B2 = Op

(
m− 1

2

)
, B3 = op (1) and

B4 = Op

(
m−1 logm+mδ−p log1/2m

)
,

whereas

B0 =
fu (0) p

m

∑′
kq,j = fu (0) +O

(
m−1 logm

)
,

to complete the proof of (S.1).

Next, we show (S.2), which holds if

m−1Hp
v (δ) →p 4Vq > 0 and (S.8)

m−1
(
Hp

v

(
δG
)
−Hp

v (δ)
)
= op (1) . (S.9)

Regarding (S.8), clearly,

m−1Hp
v (δ) =

4
(
F p
2,v (δ)F

p
0,v (δ)−

(
F p
1,v (δ)

)2)(
F p
0,v (δ)

)2 ,
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where

F p
g,θ (c) =

p

m

∑′
kq,j

(
log

j

m

)g

λ2cj I
p
θ (λj) , g = 0, 1, 2, 3.

By the same decomposition as that in the treatment of B in (S.4), it is easy to show

that

F p
g,v (δ) →p fu (0)

∫ 1

0

kq (u) (log u)
g du, g = 0, 1, 2, 3, (S.10)

so that (S.8) follows immediately by Assumption 2.

Next, (S.9) holds if

m−1

∣∣∣∣∑′
kq,j

(
log

j

m

)g (
λ2δGj − λ2δj

)
Ipv (λj)

∣∣∣∣ = op (1) , (S.11)

for g = 0, 1, 2. By the mean value theorem, the term inside the modulus in (S.11) equals

2
(
δG − δ

)∑′
kq,j

(
log

j

m

)g

log λjλ
2(δ−δ)
j λ2δj I

p
v (λj) , (S.12)

where
∣∣δ − δ

∣∣ ≤ ∣∣δG − δ
∣∣. Then, noting that by Theorem 4 of Velasco (1999b), under

our conditions E
∣∣λ2δj Ipv (λj)∣∣ ≤ K, (S.12) is bounded in probability by

K
∣∣δG − δ

∣∣∑′
∣∣∣∣log j

m

∣∣∣∣g |log λj|λ−2|δ−δ|
j ≤ KM− 1

2 (log T )3 TM− 1
2
∑′

j−2M− 1
2 .

Then, noting that TM− 1
2 = O (1),

∑′ j−2M− 1
2 = O (m), the left of (S.11) isOp

(
(log T )3M−1/2

)
=

op (1) by Assumption 3, to conclude the proof of (S.9).

Finally, we show (S.3). First, by the mean value theorem the left-hand side of (S.3)

is
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2

(
δG − δ

)(
1−

Hp
v

(
δ
)

Hp
v

(
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)) , (S.13)

where
∣∣δ − δ

∣∣ ≤ ∣∣δG − δ
∣∣. Applying the mean value theorem again, (S.13) equals

m
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) (
δG − δ

) Jp
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(
δ
)

Hp
v

(
δG
) ,

where Jp
θ (c) = dHp

θ (c) /dc and
∣∣∣δ − δ

∣∣∣ ≤ ∣∣δG − δ
∣∣. After some tedious but straightfor-
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ward manipulations, it can be shown that

Jp
θ (c) = 8m

F p
3,θ (c)

(
F p
0,θ (c)

)3 − 3F p
2,θ (c)F

p
1,θ (c)

(
F p
0,θ (c)

)2
+ 2

(
F p
1,θ (c)
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F p
0,θ (c)(

F p
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)4 .

Then, by (S.2), (S.10) and a very simple extension of (S.11) to cover the treatment of

F p
3,v

(
δ
)
, it can be easily shown that Jp

v

(
δ
)
/Hp

v

(
δG
)
= Op (1), which implies that the

left of (S.3) is Op

(
m1/2M−1

)
= op (1) by Assumption 3, to complete the proof for δRH .

Regarding δ̃RH , we first show that δ̃G isM1/2-consistent. Following the proof strategy

of Robinson (1995) and Velasco (1999a), we set Θ = Θ1 ∪Θ2, with

Θ1 = {c : δ − 1/2 + ϵ ≤ c ≤ ▽2} and Θ2 = {c : ▽1 ≤ c < δ − 1/2 + ϵ} ,

for ϵ ∈ (0, 1/4) (taking Θ2 to be empty in case ▽1 ≥ δ− 1/2+ ϵ). The main steps of the

proof consist of establishing

sup
c∈Θ1

∣∣∣∣Gp
v (c)−Gp

ṽ (c)

Gp (c)

∣∣∣∣ = op
(
log−10M

)
, (S.14)

where

Gp
θ (c) =

p

M

∑′′
λ2cj I

p
θ (λj) and Gp (c) = fu (0)

p

M
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λ
2(c−δ)
j ,

where throughout
∑′′ =

∑M
j=p,2p,..,
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(
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S (c) ≤ 0
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→ 0 as T → ∞, (S.15)

where

S (c) = log
Gp

ṽ (c)

Gp
ṽ (δ)

− 2 (c− δ)
p

M

∑′′
log λj,

M−1
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(log j)k λ2δj (Ipv (λj)− Ipṽ (λj)) = op (1) , k = 0, 1, 2, (S.16)

and

M− 1
2

∑′′ (
log j − p

M

∑′′
log k

)
λ2δj (Ipv (λj)− Ipṽ (λj)) = op (1) . (S.17)

We first show (S.14). Now

Gp
v (c)−Gp

ṽ (c)

Gp (c)
=

p
M

∑′′ ( j
M

)2(c−δ)
λ2δj (Ipv (λj)− Ipṽ (λj))

fu (0)
p
M

∑′′ ( j
M

)2(c−δ)
,

so that, by a similar reasoning to that in the proof of Theorem 5 of Velasco (1999a), the
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left side of (S.14) is bounded by

K sup
c∈Θ1

p

M

∑′′
(
j

M

)2(c−δ)

λ2δj |Ipv (λj)− Ipṽ (λj)| ≤ K
p

M

∑′′
(
j

M

)−1+2ϵ

λ2δj |Ipv (λj)− Ipṽ (λj)|

= Op

(
M−1

∑′′
(
j

M

)−1+2ϵ

jδ−r−1

)
= Op

(
M−2ϵ

)
,

according to the Theorem of Robinson (2005), since δ − r < 1/2 and ϵ < 1/4, to justify

(S.14). Next, we show (S.15). Setting z = exp
(
pM−1

∑′′ log j
)
, we have

Pr

(
inf
Θ2

S (c) ≤ 0

)
= Pr

(
inf
Θ2

p

M

∑′′
[(

j

z

)2(c−δ)

− 1

]
λ2δj I

p
ṽ (λj) ≤ 0

)
≤ Pr

( p
M

∑′′
[aj − 1]λ2δj I

p
ṽ (λj) ≤ 0

)
, (S.18)

where

aj =

{ (
j
z

)−1+2ϵ
, 1 ≤ j ≤ z,(

j
z

)2(▽1−δ)
, z < j ≤M.

Velasco (1999a) shows (see p.115) that Pr
(

p
M

∑′′ [aj − 1]λ2δj I
p
v (λj) ≤ 0

)
= o (1), so that

(S.18) is o (1) by showing

p

M

∑′′
(aj − 1)λ2δj (Ipṽ (λj)− Ipv (λj)) = op (1) . (S.19)

According to the Theorem of Robinson (2005) the left side of (S.19) is bounded by

KM−1
∑z

j=p,2p,..

(
j

z

)−1+2ϵ

jδ−r−1+KM−1
∑M

j=z+p,z+2p,..

(
j

z

)2(▽1−δ)

jδ−r−1+KM−1
∑′′

jδ−r−1,

which noting that z asymptotically equals M/e is O
(
M−2ϵ +M−1+δ−r +M−1 logM

)
=

o (1) because δ− r < 1/2. The proof of (S.16) is omitted as it almost identically follows

arguments to that for (S.17). Finally, in line with previous arguments, the expectation

of the absolute value of the left of (S.17) is bounded by

KM− 1
2 logM

∑′′
jδ−r−1 = o (1) ,

to conclude the proof of M1/2-consistency of δ̃G.

Then, in line with previous arguments, the proof for δ̃RH holds, showing that
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m− 1
2 (Sp

v (δ)− Sp
ṽ (δ)) = op (1) , (S.20)

m−1 (Hp
v (δ)−Hp

ṽ (δ)) = op (1) and (S.21)

m−1

∣∣∣∣∑′
kq,j

(
log

j

m

)g (
λ2δ̂j − λ2δj

)
Ipṽ (λj)

∣∣∣∣ = op (1) , (S.22)

for g = 0, 1, 2, 3, where δ̂ − δ = Op

(
M−1/2

)
. First, (S.20) follows if

m− 1
2

∑′
bq,jλ

2δ
j (Ipv (λj)− Ipṽ (λj)) = op (1) and (S.23)

m−1
∑′

kq,jλ
2δ
j (Ipv (λj)− Ipṽ (λj)) = op (1) . (S.24)

We just give the proof for (S.23), as that for (S.24) is significantly simpler. The expec-

tation of the absolute value of the left side of (S.23) is bounded by

Km− 1
2 log T

∑′ {
E
(
λ2δj |wp

v (λj)− wp
ṽ (λj)|

2
)
E
(
λ2δj |wp

v (λj) + wp
ṽ (λj)|

2
)} 1

2
,

which, by according to the Theorem of Robinson (2005) and results in Velasco (1999b)

is

O
(
m− 1

2 log T
∑′

jδ−r−1
)
= O

(
m− 1

2 log T
(
mδ−r1 (δ > r) + logm1 (δ = r) + 1 (δ < r)

))
,

which is o (1) by (6), since δ − r < 1/2. Similarly, (S.21) holds because for g = 0, 1, 2,

m−1
∑′

kq,j (log λj)
g λ2δj (Ipv (λj)− Ipṽ (λj))

= O
(
m−1 log2 T

(
mδ−r1 (δ > r) + logm1 (δ = r) + 1 (δ < r)

))
= o (1) ,

by (6). Next, as in the discussion of (S.11), (S.22) holds if

m−1
∑′

∣∣∣∣log j

m

∣∣∣∣g |log λj|λ−2|δ̂−δ|
j λ2δj |Ipv (λj)− Ipṽ (λj)| = op (1) , (S.25)

which can be easily justified by previous arguments, to conclude the proof of the propo-

sition.

Proof of Proposition 2. The proof for
(
δAS, ϕ

′
AS

)′
follows from adapting Lemmae

2 and 3 in Andrews and Sun (2004) (AS hereinafter) to the tapered case. We initially

show that the equivalent of AS’ Lemma 2 holds for our tapered Hessian and score vectors

(given by the tapered version of (4.2) in AS, noting that the summation now runs from
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p, 2p, ... to m). Defining

Bp
T =

(
m

p

) 1
2

diag
(
1, (λm)

2 , ..., (λm)
2q) , Jp

T =
m∑

j=p,2p,..

X̂jX̂
′
j,

X̂j = Xj −
p

m

m∑
k=p,2p,..

Xk, Xj =
(
2 log j, (λj)

2 , ..., (λj)
2q)′ and

X̃j =
(
2 log j, (j/m)2 , ..., (j/m)2q

)′
,

we first show the equivalent of Lemma 2 (a), which in our case is

(Bp
T )

−1 Jp
T (Bp

T )
−1 → Ωq as T → ∞.

In view of Lemma 5 of Velasco (1999a), it suffices to show that for the different choices

a (j) = log j, log2 j, jk log j/mk, jk/mk for any finite k ≥ 2,

1

m

m∫
0

a (x) dx− p

m

m∑
j=p,2p,..

a (j) = o (1) , (S.26)

as m→ ∞. The left side of (S.26) can be written as m−1 times

−pa (p) +
p∫

0

a (x) dx−
m∑

j=2p,3p,..

j∫
j−p

(a (j)− a (x)) dx,

and (S.26) follows noting that

sup
j−p≤x≤j

|a (j)− a (x)| ≤ Kj−1 log j, for a (j) = log j, log2 j,

≤ Kjk−1m−k log j, otherwise.

Next, the equivalent of AS’ Lemma 2(b) holds if∥∥∥(Bp
T )

−1 (Hp
T (δ, ϕ (q))− Jp

T ) (B
p
T )

−1
∥∥∥ = op (1) .

Here, apart from the obvious change of notation and changingm−1
∑m

j=1 by pm
−1
∑m

j=p,2p,..,

the only critical point refers to the order of

k∑
j=p,2p,..

(
Ipv (λj)

gj
− 2πIpξ (λj)

)
, (S.27)
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where gj is given in (A.10) in AS. Following arguments given in Velasco (1999a) (c.f.

(A23)) and AS (c.f. (A.13)(i)) , it is straightforward to show that (S.27) is

Op

(
k1−(s+η)/21 (s+ η < 2) + log k1 (s+ η ≥ 2) + kδ−p+1 log

1
2 k + ks+η+1T−(s+η)

)
,

(S.28)

the rest of the proof following easily.

In line with previous arguments, the proof for our corresponding result to Lemma

2(c) and 2(d) follows straightforwardly, but the treatment for the corresponding proof

of Lemma 2(e) needs to be discussed in more detail. Following AS’ proof, concerning

the corresponding result for T1,T , the most delicate issue is to find an equivalent to the

bound in (A.21) in AS. Clearly, the equivalent to (A.29) in AS in our setting is A1+A2,

where

A1 =
k∑

j=p,2p,..

[
Ipv (λj)

fv (λj)
− 2πIpξ (λj)− E

(
Ipv (λj)

fv (λj)
− 2πIpξ (λj)

)]
fv (λj)

gj
and

A2 = 2π
k∑

j=p,2p,..

(
Ipξ (λj)− E

(
Ipξ (λj)

))(fv (λj)
gj

− 1

)
,

(c.f. (A.29) in AS), where fv (λ) is the pseudo-spectral density function of the process

vt. Now, following the bounds given in the proof of Theorem 5 of Velasco (1999a) and

the proof of AS,

E
(
A2

2

)
≤ K

{
k∑

j=p,2p,..

λ
2(s+η)
j +

k∑
i=2p,..

i−p∑
j=p,2p,..

[
(i− j)−2p + (i+ j)−2p + T−1

]
λs+η
i λs+η

j

}
.

First,

k∑
i=2p,..

i−p∑
j=p,2p,..

(i− j)−2p λs+η
i λs+η

j =

(
2π

T

)2(s+η) k−p∑
i=p,2p,..

i−2p

k−i∑
j=p,2p,..

js+η (j + i)s+η

≤ KT−2(s+η)k2(s+η)+1.

Next,

k∑
i=p,2p,..

i−p∑
j=p,2p,..

(i+ j)−2p λs+η
i λs+η

j ≤ KT−2(s+η)

k∑
i=p,2p,..

i−p∑
j=p,2p,..

(ij)s+η

j2p

≤ KT−2(s+η)
{
ks+η+1 log k + k2+2(s+η−p)

}
,
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implying that

E
(
A2

2

)
= O

(
T−2(s+η)k2(s+η)+1

)
.

Next, as in (S.28),

E
(
A2

1

)
= O

(
k2−(s+η) + log2 k + k2(δ−p+1) log k + k2(s+η+1)T−2(s+η)

)
,

and following the proof in AS (pp. 601-602), it is straightforward to show that

T1,T = Op

(
m

1−(s+η)
2 +m− 1

2 logm+mδ−p+ 1
2 log

1
2 m+

(m
T

)s+η
)

= op (1) .

Moreover, noting that following Velasco (1999a, p. 113)

E

(
Ipv (λj)

fv (λj)
− 1

)
= O

(
j−1 + j2(δ−p) log j

)
,

it is straightforward to show that

T2,T = O
(
m− 1

2 log2m+m2(δ−p)+ 1
2 log2m

)
= op (1) .

Next

T3,T =
( p
m

) 1
2

m∑
j=p,2p,..

(
2πIpξ (λj)− 1

)
ζj,

where

ζj = τ ′

(
X̃j −

p

m

m∑
k=p,2p,..

X̃k

)
,

for any arbitrary (q + 1)× 1 vector τ ̸= 0, ∥τ∥ <∞. The result

T3,T →d N (0,ΦΩq) ,

is straightforward in view of Lemma 6 in Velasco (1999a), just noting that in line with

previous arguments
p

m

m∑
j=p,2p,..

ζ2j → τ ′Ωqτ as T → ∞,

and

|ζj − ζj+p| ≤ ∥τ∥
∥∥∥X̃j − X̃j+p

∥∥∥ ≤ Kj−1.
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By the proof of AS, it is easy to show that

T4,T =
( p
m

) 1
2

m∑
j=p,2p,..

(
fv (λj)

gj
− 1

)(
X̃j −

p

m

m∑
k=p,2p,..

X̃k

)
= −νT (q, s) + o (1) ,

to finish the proof of our equivalent to Lemma 2. Finally, the proof of the equivalent to

Lemma 3 follows straightforwardly as in AS.

We next show the result for the estimator based on ṽt. First, taking into account

that, as T → ∞, uniformly in j ∈ {p, 2p, ...,m}

sup
γ∈Ξ

exp ((κq (λj, γ))) = 1 + o (1) ,

in view of the different steps in the proof of Lemma 2 of AS, the result follows on showing

m− 1
2

m∑
j=p,2p,..

log j |Ipṽ (λj)− Ipv (λj)|λ2δj = op (1) , (S.29)

which implies that the corresponding of Lemmae 2(b), 2(c) and 2(e) follow using the

process ṽt instead of vt, and

sup
c:|c−δ|≤ K

log5 m

m−1

m∑
j=p,2p,..

|Ipṽ (λj)− Ipv (λj)|λ2cj log2 j = op
(
log−2m

)
, (S.30)

for any finite K > 0, which implies that the equivalent of Lemma 2(d) holds for ṽt.

First, (S.29) follows by almost identical arguments to those in the proof of (S.23). Next,

the left side of (S.30) is bounded by

KT
2K

log5 mm−1 log2m
m∑

j=p,2p,..

|Ipṽ (λj)− Ipv (λj)|λ2δj .

Noting that by Assumption 4, m(1+1/4q)T−1 → ∞ as T → ∞, T 2K/ log5 m is dominated

by m2K(1+1/4q)/ log5 m, and (S.30) follows by (S.29) just noting that

m
2K(1+1/4q)

log5 m = exp

(
log

(
m

2K(1+1/4q)

log5 m

))
= exp

(
2K (1 + 1/4q)

log4m

)
→ 1 as T → ∞.
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