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Abstract

Frequency domain semiparametric estimation of memory parameters belongs
to the standard toolkit of applied time series researchers. These methods are
based on a local approximation of the spectral density, which robustifies the es-
timation methods against misspecification, but induces a loss with respect to the
parametric setting, where the spectral density is known up to a finite number
of unknown parameters. In particular, standard semiparametric estimators have
convergence rates no better than T2/5, whereas the rate T2 is achievable un-
der parametric assumptions. Refinements of the local approximation have been
developed by means of bias-reducing techniques, implying that rates arbitrarily
close to the parametric one are achievable in the semiparametric setting. Two of
these approaches to cover more general settings (including non-stationarity) are
extended. A Monte Carlo experiment of finite sample performance is used to as-
sess whether the asymptotic advantages of the bias-reducing methods materialize
in better finite sample behaviour.
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1 Introduction

Semiparametric estimation of memory parameters has become very popular in the time
series literature from theoretical and empirical perspectives. These methods, unlike
the rival parametric approach, do not impose any parametric assumption on the short
run structure of the model. In particular, for a covariance stationary process with
spectral density given by f (\), the semiparametric approach is motivated by the local

approximation

FO)~GIA™, asA—0, (1)

where G is a positive finite constant, —1/2 < 6 < 1/2, and “~” denotes that the ratio
between the left and right sides of the relation tends to one as A — 0. Under (1),
f has a pole at A = 0 when § > 0. In view of (1), frequency domain approaches to
estimating J are dominant and two main alternative methods are distinguished: the log
periodogram approach, proposed by Geweke and Porter-Hudak (1983) and theoretically
justified by Robinson (1995a), and the local Whittle approach, proposed by Kiinsch
(1987) and analysed by Robinson (1995b). See Velasco (2006) for a complete review of
these semiparametric procedures and several extensions.

These seminal contributions have been extended in various directions. First, noting
that these estimation methods were initially designed to cover covariance stationary
processes (with 0 < 1/2), Velasco (1999a,b) generalized those results to time series with
possibly arbitrarily large memory by means of tapering. Other strategies to deal with the
d > 1/2 case include the exact local Whittle approach of Shimotsu and Phillips (2005),
which is based on fractional differences of the observed data (instead of the traditional
approach of “whitening” the periodogram) and permits the domain of ¢ to have (at
most) a 9/2 width. An alternative approach is the extended local Whittle estimator
of Abadir, Distaso and Giraitis (2007), which is based on the so-called fully extended
discrete Fourier transform and periodogram.

Second, a different strand of the literature has proposed variants of the standard
semiparametric methods to deal with perturbed fractional processes, where the observ-
able series is composed of a long memory process contaminated by an additive noise
term. These include Perron and Qu (2010), Frederiksen, Nielsen and Nielsen (2012),
McCloskey and Perron (2013) and Hou and Perron (2014), who extended earlier works
by Deo and Hurvich (2001), Hurvich and Ray (2003), Arteche (2004, 2006) and Hurvich,
Moulines and Soulier (2005).

Finally, a different type of extension focuses on obtaining estimators of ¢ with im-

proved properties. This is motivated by the fact that the standard semiparametric esti-



mators of memory parameters have convergence rates no better than 7%/ (see Giraitis,
Robinson and Samarov, 1997), where T" denotes sample size throughout. This bound to
the convergence rate reflects a natural loss with respect to the parametric setting, where
the rate T2 is achievable. It should also be noted that, depending on the smoothness
of f around frequency zero, these semiparametric estimators can have a substantially
slower rate than 7%/, In order to improve the rate of convergence of these semiparamet-
ric estimators, different bias-reducing techniques have been proposed in the literature,
which exploit the possible smoothness of f around frequency 0, and impose a richer
structure to the approximation (1). This includes Andrews and Guggenberger (2003),
Andrews and Sun (2004) (AS hereinafter), who extended the log periodogram and the
local Whittle approaches, respectively, by means of local polynomials. In a similar fash-
ion, Robinson and Henry (2003) (RH hereinafter) proposed a very general M-estimation
procedure, nesting both the log periodogram and local Whittle approaches, employing
higher-order kernels. Similar improvements can be achieved by a broadband approach
(instead of a local one), although this requires global smoothing conditions of f outside
frequency zero. This strategy was pursued by Moulines and Soulier (1999) and Hurvich
and Brodsky (2001).

Importantly, these bias-reducing procedures might lead to memory parameter esti-
mators enjoying convergence rates arbitrarily close to the parametric one. Given that
no parametric assumptions are needed, this is a remarkable result with potentially im-
portant implications for applied work. Thus, in order to decide whether the use of these
techniques should be encouraged in practice, a relevant question is to analyse if these
theoretical asymptotic advantages translate to a better finite sample behaviour. This
paper evaluates this issue by means of an extensive Monte Carlo experiment. Previ-
ous Monte Carlo analyses involving semiparametric memory estimation include Hauser
(1997), with particular emphasis on testing, and the very complete study of Nielsen and
Frederiksen (2005). This latter work includes some evidence of the behaviour of biased-
reducing techniques, in particular results for the simplest version of the estimators in
Andrews and Guggenberger (2003) and AS are given.

Building on these previous works, we here offer a richer evidence on the performance
of the bias-reducing approaches. In particular we focus on the RH and AS proposals,
which are inspired by the local Whittle principle. As it is well known, this approach
leads to more efficient estimators than the log-periodogram alternative, and, in addition,
unlike the broadband approaches, does not require global smoothness assumptions. Fur-
thermore, providing further evidence about the performance of higher order kernels in

the present setting appears to be particularly relevant because of this technique involves



local averaging with negative weights, which could have a severe distortive effect. In fact,
as will be seen, our study reflects some of the complications associated to the higher-
order kernels. Formally, this materializes in the presence of a component (denoted V,
by RH) in the denominator of the asymptotic bias and variance of the RH estimators
(see, e.g., equations (3.6), (3.7) in RH), which, depending on the order of the kernel (g),
could take values very close to zero (see Table 1 in RH). This might have a dramatic
effect on finite samples and our experiment sheds light on this potential problem, which
appears to be extremely serious for ¢ = 3. That is even the case for sample sizes which
are much larger than those typically employed in many empirical analyses.

Incidentally, our paper also makes some theoretical contributions with independent
interest. First, the properties of the bias-reducing techniques for memory estimation have
been just derived for generic covariance stationary and invertible processes. Given the
strong evidence of non-stationarity in many different contexts, this limits their practical
application. Thus, it seems desirable to extend these methods to cover the very relevant
non-stationary case as well. Although other possibilities could have been pursued, given
that our focus is not mainly theoretical, we found that the simplest strategy to extend
the bias-reducing estimators to the non-stationary setting is the use of tapering. This
technique can nicely deal with arbitrarily large memory parameters and, in addition,
it can remove time polynomials so these deterministic terms do not interfere in the
estimation. Specifically, the tapered estimators are invariant to polynomial time trends
if tapers with high enough order are employed. There is, however, a price to pay in the
form of a variance increase due to the correlation of the tapered periodogram ordinates
and likewise to the order of the taper.

A sensible alternative to tapering without incurring this variance increase is to de-
velop bias-reducing techniques within the exact local Whittle framework of Shimotsu
and Phillips (2005). This is a promising avenue for future research, but it should be
noted that, even in this setting, our results appear to be useful: the exact local Whittle
estimator assumes that the mean of the process is known and this is a serious drawback.
This problem has been solved by Shimotsu (2010), who proposed an extension of the
exact local Whittle approach to deal with the case of unknown mean and polynomial
time trend. In particular, Shimotsu (2010) proposes a two-step local Whittle estimator
which is efficient for any value of the integration order in the interval (—1/2,7/4). It
should be noted, however, that this estimator also relies on tapering in an indirect way;,
because this two-step estimation method is based on a consistent (with a certain rate)
first step estimator. This is precisely the tapered local Whittle estimator which we ex-

tend in the present paper. Thus, evaluating improved methods for first step estimation,



as we do in the present paper, appears to be a useful exercise even from the point of
view of exact local Whittle estimation.

As a second theoretical contribution, we deal with the issue of the rival definitions
of non-stationary fractionally integrated processes, namely the so-called Type I and II
(see, Robinson, 2005). In particular, we show that the properties of our biased-reducing
tapered estimators based on either Type I or Type II processes enjoy identical first order
asymptotic properties.

Our last theoretical contribution addresses with a difficulty associated to RH’s pro-
posal. Specifically, RH’s estimator does not in general correspond to a global minimum
of a suitable objective function, so consistency needs to be assumed. To circumvent
this problem, we propose a two-step estimator, which updates Velasco’s (1999a) local
Whittle tapered estimator.

Finally, note that our theoretical results appear to be of special importance in frac-
tional cointegration, a field which has recently attracted substantial attention from time
series researchers. Estimators of the cointegrating relation with optimal asymptotic
properties require, in general, the estimation of the memory parameters driving the
long-run behaviour of the series included in the model subject of study. As justified by
Hualde and Robinson (2006, 2010), these estimators should satisfy certain convergence
requirements, and the bias-reducing techniques serve this purpose.

The theoretical content of the paper is concentrated in Sections 2 and 3, which cover
the extensions of RH and AS, respectively. In Section 4 we present the finite sample
results which compare the standard versus the bias-reducing techniques. Due to space

restrictions, the proofs of the theoretical results are given in a Supplementary Appendix.

2 Tapered higher-order kernel local Whittle estima-

tion of memory parameters

We introduce some notation before moving on to our proposed estimators. We em-
phasize, throughout, the use of fractional processes, which have been stressed in the
literature to describe non-stationary (and indeed also stationary) processes. Here, de-
noting by u; a covariance stationary weak dependent process (with finite and bounded
away from zero spectral density at frequency zero), we say that a process v; is Type |

fractionally integrated of order ¢ if, setting r = [0 4+ 1/2], where [-] denotes integer part,

ve=AT{YL (> 00}, = AT = (6 =) up g, (2)
=0



where 1(+) is the indicator function, and we employ the difference operator A =1 — L,

where L is the lag operator, and formally, for any real o, a@ £ —1, -2, ..,

_ > ; I'(j+ «)
1—2)%=>"m()?, mila)=—7—"—,
with I' denoting the gamma function. Note that § —r < 1/2, so that v, is well defined in

mean square sense. Alternatively, the Type II fractionally integrated process has been
defined as

U =A {ul(t>0)} = ij (0) we—;. (3)

When r = 0, v; is covariance stationary, whereas v; is non-stationary for any value of
J, although asymptotically stationary when 6 < 1/2. When § > 1/2 (so r > 0 in the
Type I definition), v; and v; are purely non-stationary, and display in general different
asymptotic properties. In fact, it can be shown that both processes, properly normalized,
converge to different versions of the fractional Brownian motion (see Marinucci and
Robinson, 1999, for further details about these types of processes).

Within this framework, the bias-reduced versions of the local Whittle estimators just
cover v; in case r = 0, and therefore, as mentioned before, we will extend these methods
to cover the Type II definition and also situations where ¢ might be arbitrarily large.
First, the RH method employs higher-order kernels to obtain “improved” estimators
of memory parameters. Their M-estimation procedure is very general, so we focus on
extending a particular case. As anticipated, this extension is mainly based on the use
of tapering (see Velasco 1999a,b), which alleviates the problem of periodogram bias due
to the leakage from zero frequency when the process is nonstationary, and on a two-
step approach, which avoids assuming consistency. Before presenting our method, we

introduce some regularity conditions.

ASSUMPTION 1. The process u;, t = 0,+£1, ..., in (2), (3), has representation
u=b(L)&, b(z) =) b,
=0

where

(i)
()| #0, |2 <15

(it) b(e™) is s-times differentiable in some neighbourhoods of zero with derivative of



order s > 1 in Lip(n), 0 <n < 1;

(iii) E(&|Fi1) = 0, E(§ [Fio1) = 1, E(§|Fi-1) = ps, E(& [Fi1) = pa almost
surely, t = 0,=+1, ..., where us, p4, are finite constants and F; is the o-field of
events generated by &, s < t;

(iv) there exists a random variable £ such that E¢? < oo, and for all » > 0 and some
K >0, P(|&] > ) < KP([¢] > ).

Assumption 1 with s > 1 implies that Assumption 8 in Velasco (1999a) holds for
by, with f = min {s 4+ n,2}. As Velasco (1999a) acknowledges, he needs to use 8 > 1
in some of his theorems, as one cannot resort to the second moments of the tapered
periodogram (see (4) below) as is done in the non-tapered case. Given that we used
some of Velasco’s (1999a) results in the proofs of the propositions below, there is the
need to assume s > 1, n > 0.

Denoting the spectral density of u; by f, (), the smoothness condition given in (ii)
translates directly to f, (0). Defining h(\) = (2sin(\/2) )\*1)_26 fu(A), for any s for
which Assumption 1 is satisfied, setting ¢ = [s/2], this condition implies that

h(\) +Z

where hg = 0 and for ¢ > 1, h; represents the 2i-th derivative of h(\) at A = 0. As
established in RH, this result can be exploited by the use of a higher order kernel to

) as A — 0,

reduce asymptotic bias when ¢ > 2 (or equivalently s > 4), so we will concentrate on
this case. Note that if ¢ = 1, we are in the situation covered by Robinson (1995a,b)
and Velasco (1999a,b), where the maximum rate of convergence achievable is T%°. For
s = 1, following these references, our Assumption 1 permits the rate 70+m/(3+2n)
Defining a taper {gt}le of order p as in Velasco (1999a,b), and a sequence (;, the

discrete Fourier transform and periodogram of the tapered sequence ¢;(; are

T -1/2 p
= (271'th2> thge”*, ]? (\) = }wg (/\)|2. (4)

For integer ¢, we introduce a real function k, (u), ¢ > 2, 0 < u < 1, satisfying
ASSUMPTION 2. k,(u), 0 < u < 1 is a boundedly differentiable function such that
fol k, (u) du =1, and defining Uy, = fol (logu + 1) u*k, (u) du, we have U;, = 0, 0 < i <
q—1; Uy #0.



RH described k; (u) as a higher-order kernel and proposed a particular characteriza-

tion given by k¥ (u) = Zq Oozjuzj, for choices «; given in (5.4)-(5.6) of RH. Following
]:

RH, for an integer m to be described subsequently such that m/p is integer, for suitable

q > 2, k,; (u), we define for an arbitrary sequence 6,

m (G54 (0) Gl (€) = (G1y ()7)
(Gha(0))”

2mZ bqj/\iclp( i)
> kg ATy (X))

S5 () = and  HJ (¢) =

Y

where \; = 27j /T are the Fourier frequencies, >’ = PR

Z, kq,j lOg )‘j

bgj = kqjVas kqj = kq(j/m), ve; =logX; — SV ky
a.]

and
p Z’ c
G;a (C) = E l{i%j (log /\j)g /\? ]g (/\J) , g = O, 1, 2.

We now present our estimators of 6. Denote by d¢, gg, the tapered local Whittle
estimators based on processes v;, vy, respectively, which optimize over the interval © =
[V1, V3| the loss function of Velasco (1999a). Denoting by M the bandwidth employed
in the computation of o, gg and assuming

1 MY“25 (log M)?

M—l— T35 —0,as T"— o0, (5)

Velasco (1999a) established that &¢ is M'/?-consistent. We then define our estimators
SR, SRH of § based on v;, v;, respectively, as
() % (%)

(o) 2 ()
Note that defining gj (¢) = &3 "by; (1§ (\j) A — 1), Sra, drm would have identical

first order asymptotic properties to the zeroes of ¢ (c), ¢% (c), which are closest to dg,

S,
H

S

SRH = SG — and ’SRH = gG —

S

gg, respectively, which correspond to the gth-order kernel M-estimator proposed by RH
for the choices J =1, g (A\) = A, ¥ (2) = ¥1 (2). Thus these estimators are higher-order
kernel versions of the local Whittle estimators of Kiinsch (1987) and Robinson (1995b),

with corresponding loss functions Q¥ (¢), Q% (c), where

> kg A3 TY ()

> kg jlog A
C— Y
Z Kq.j

Z/ kq,j

@5 (0) = m (10g G (0) - Hand G le) =



assuming the estimators do not fall on the boundary of ©. Before presenting our re-
sults, we introduce an additional regularity condition related to the different bandwidths

employed in the estimation, namely M and m.

ASSUMPTION 3. Let M and m be power roots of T" such that (5) holds and, as T' — oo,

ml/2

M

-0 and m =0 (T*/UtD), (6)

The second condition in (6) (taken from RH) imposes the maximum rate at which the

bandwidth m can grow. Defining

T —2 T—p T 2
% 2 2
¢ = :/11—{20 (thl gt) Zk:o,p,2p,.. <Zt:1 9 €O (t/\k)> ’
1 1
V, = / (logu + 1)* k, (u) du and W, = / (logu +1)° k:g (u) du,
0 0

and denoting by 0% either Opy oOr gRH, we establish the following result.

PROPOSITION 1. Under Assumptions 1-3, § € (V1,Vsa), V1 > —1/2, p > max {1, Vs, + 1/2},
q > 2, then

m'/? (57%1{ —0)+ 5

2m)*1 Uyghy m21+1/? oW,
(2m)™ Ugghq m dN<0,p q). (7)

(2g)!fu (0)V, T2 4V2

Proposition 1 is justified in the Supplementary Appendix. Omne of the main im-
plications of (7) is that letting m grow at rate 74%/(44+1) the convergence rate of our
estimators is 72¢/(4+D) which can be arbitrarily close to the parametric rate T2 for ¢
(and thus s) large enough. Note also that for the suggested choice of m the bias term

in (7) has exact rate O (1), while (6) prevents this bias from dominating.

3 Tapered local polynomial Whittle estimation of

memory parameters

Similarly, we here propose an extension of the estimators in AS, obtaining similar
achievements to those in our extension of RH. Thus, Proposition 2 below shows that
similar results to those in AS apply to Type I or II fractional processes of arbitrarily large

memory. Following AS, we consider the tapered local polynomial Whittle log-likelihood



based on process (; (for the particular choice of polynomial order 2q)

P 2 o | 12 (%)
£, (c.G) = Z {log [GA% exp (=g (Aj,7))] + (Am))}’

2c
m. = GA; exp(
where r, (A;,7) = Zifﬂk)‘?k’ v = (11,..,7,), and different tapered versions of the
LPW-FOC estimators of (4, ¢), where ¢ is a ¢ x 1 vector with ith component given by

1 d2i
—w A2 log h (M) |>\:O .

— — / ~ ~ /
We denote these estimators by <5A5, ¢i45> , (5,45, qbf45> , depending on whether Q% (¢, G, 7)
or Q% q (¢, G,7) is used, respectively. Before presenting our results, we introduce a series

of further regularity conditions.
ASSUMPTION 4
m2q+% ms+n+%

T O and Torn =0(1),

as T — oo.
ASSUMPTION 5. ¢ belongs to the interior of a compact and convex set =.
Note that Assumptions 1, 4 and 5, imply that Assumptions 1-5 in AS hold with their

order of smoothness, given in our case by s+ 7, and with their polynomial order (2r in
their notation) given by 2¢. Note also that in AS’ notation o (\) = (1 — ei’\)"*‘sf;/2 (A)
in our framework, which satisfies part (c) of their Assumption 3. Denoting by ¢% ¢ either

04 OF gAS; and by ¢%g either ) Ag OF 5 As, respectively, we establish the following result.

PROPOSITION 2. Under Assumptions 1, 4, 5,0 € (V1,V3), V1 > —1/2, p > max {1, Vs, + 1/2},

we obtain

( m? (35 — 0)

1 — QO ur (q,8) = N (0,p00 1),
mzdiag(kfn,...,)\fg)(qs*AS_gb)) ¢ vr(a,8) = N (0,p2Q,")

where Q, v (q,s) are given in (4.4), (4.6) in AS.

Proposition 2 is justified in the Supplementary Appendix. This result is basically the
same as in AS simply taking into account the effect of tapering given by p®. Note that
Assumption 4 holds for a bandwidth m* which grows at rate 72%/(+2%) which given our
smoothness conditions, is not exactly the “optimal” bandwidth proposed by AS (say

m’, which grows at rate 72(+m/(+2(+m)) hut both are similar when s is large. We

10



found it more informative to propose a bandwidth depending on the number of existing
derivatives. Of course, the relevance of this choice is that should s be arbitrarily large,

1+2s

we obtain a rate of convergence T°/(12%) for our estimator of the order of integration

based on v; or Uy, which could be arbitrarily close to the parametric rate 7/2. Note also
SH1+1/2 P (s-)

that for our choice of bandwidth m*, the exact rate of vr (g, s) is (m*)
T-1/(+29) — (1) as T — co. Finally, note that m* is not allowed by (6) when s is odd
(although it is when s is even), and in this case the rate 7%/(1+29) is larger than 72¢/(4a+1)

(although both approximate as s increases).

4 Finite sample performance

We perform a Monte Carlo experiment in order to understand the extent to which the
bias-reducing techniques are worth employing in finite samples. The different estimators
are applied to an observable process x;, which is generated according to four different
mechanisms (denoted as Models I, II, III and IV). For the first three models, x; = v

(see (3)), for three different error input processes u; corresponding to
Uy = QU1 + €4,

where ¢, is a Gaussian independent and identically distributed process with E () = 0,
Var (g;) = 1, and ( takes three different values (0,0.5,0.9), which correspond to Models
I, II, III, respectively. The latter two models cover the autoregressive case, where a
richer approximation of the spectral density might be exploited in estimation to improve

results, so the bias-reducing techniques might offer advantages. For Model 1V,
Ty — ,17,5 -+ Wy,

where v, is generated as in Model I and w; is a Gaussian independent and identically
distributed process, independent of ¢, such that E (w;) = 0, Var (w;) = 1. This model
corresponds to a perturbed (or contaminated) fractionally integrated process. This
setting might again be favourable to the bias-reducing methods.

The memory parameter ¢ is allowed to take two different values, namely 6 = 0.3,1.3,
where x; is asymptotically stationary or purely nonstationary, respectively. We present
results for various sample sizes T' = 256, 1024, 3072, 9216. Some of these sample sizes
are larger than the typical ones employed in applications but, noting that the potential
advantages of the reducing-bias estimators are asymptotic, it is illustrative to evaluate

the behaviour of the different estimation techniques for large 7. The RH estimator was

11



computed using the kernel &} (u) described in Section 2 and for both RH and AS three
different bandwidth choices (mq, mg, m3) were employed. In all cases m; = 2m;_, j =
2,3, where for T' = 256, m; = 10, 16, 23, 30, for ¢ = 1, 2, 3, 4, respectively; for T" = 1024,
my = 25,50, 75,100, for ¢ = 1,2, 3, 4, respectively; for T = 3072, my; = 55,135, 215, 295;
finally, for T" = 9216, m; = 145,390, 635,880. As Assumption 3 indicates, larger ¢
implies that larger bandwidths can be used, and we accommodated this possibility in
our experiment.

RH and AS were computed as described in Sections 2, 3, respectively, with the
optimizing intervals being set as [—.5,2] in all cases. Throughout RH with ¢ = 1
will refer to Velasco’s (1999a) estimator (which, hereinafter, will be denoted as LW),
noting also that LW takes the role of the first-step estimator when computing RH for
q > 1. Whenever tapering is employed, we use the Zhurbenko taper with p = 2.
Other possibilities like the Parzen taper could have been used (see Alekseev, 1996, for
additional examples), but we believe that different taper choices would not alter our
results significantly. We present results for Monte Carlo bias, standard deviation (SD)
and coverage probabilities, all computed across 5000 replications.

Table 1 presents bias results for the untapered RH estimator in the stationary case.
The first noticeable feature is the extremely unsatisfactory behaviour of RH when ¢ = 3.
This very poor performance also occurs in other settings which cover tapered estimation
in stationary or nonstationary situations. In fact, our results indicate that the use of
this particular type of higher order kernel should be heavily discouraged. As already
mentioned, the reason for this disappointing behaviour of RH is the presence of V in
(7), which takes values V, = 1,0.4125,0.0089, —0.2066 for ¢ = 1,2, 3,4, respectively.
Thus for ¢ = 3, even larger sample sizes than the ones employed in this experiment are
needed for the asymptotic advantage to start being noticeable. Unless otherwise stated,

our comments below will not refer to this specific estimator.

12



Table 1. Bias, 6 = 0.3, RH, Untapered estimators
M 7\gm Lmi Lme 1mg 2,my 2,mg 2,m3 3,m; 3,me 3,mg 4,m 4,mye 4,ms
I 256 -.022 -.012 -008 -.262 -.063 .044 -.043 -104 -186 -.034 .036 .064
1024 -.009 -.003 -.003 .000 .034 020 -.145 -185 -.235 .061 .041 .012
3072 -.001 .000 .000 .023 .008 .002 -.193 -229 -249 .014 .005 .000
9216 -.002 -.001  .000 .001 .001 001 -.229 -225 -.224 -.002 .000 .001
1II 256  -.007 .054 160 -.258  .020 .206 074 .238 507 .039 .039  -.007
1024 -.001  .020 .074 .002 .031 112 -.034 159 .088 .065 .010 .029
3072 .000 .011  .041 015 .016 .089 -.08 .179 .762  .005 -.002 .032
9216  .003 .010 .033 .003 .016 082 -.087 .301 .897  .000 .001 .034
I 256 375 575 722 145 .H68 187 .691 .801 739 .305 .330 .608
1024 191 387 .098 .268 511 .716 147 980 1.06 110 331 .582
3072 113 271 .492 213 439 .657 .944 1.21 1.22 114 315 .b52
9216 .086 225 .442 195 407 .629 1.22 1.52 1.44 112 .293 .524
IV 256 -.082 -.087 -.099 -317 -.142 -054 -120 -.231 -299 -.072 -.027 -.015
1024 -.050 -.059 -.073 -.049 -.019 -051 -.215 -302 -370 .045 .006 -.047
3072 -.035 -.044 -.058 -.010 -.043 -.068 -.285 -346 -.426 -.005 -.034 -.056
9216 -.028 -.039 -.053 -.031 -.048 -.068 -.371 -413 -.416 -.028 -.040 -.056

According to Table 1, increasing g only manages to equal (or slightly improve) the
results for LW if T is very large for Models I and II (which represents the case of moderate
short memory dependence). Model III is a very adverse case for memory estimation,
because the short memory dependence is very strong. It is well known for this case that
the memory estimation tends to overestimate the true memory parameter and this is
indeed the case in our experiment, as bias is in general quite large, especially for the
largest bandwidth. Interestingly LW provides better results than RH for larger sample
sizes and worse for small T', which is counterintuitive. Finally, for Model IV, in general,
RH shows better behaviour than LW, especially for ¢ = 4 if T' is not very large.

Table 2 presents bias results for the AS estimator. First, while we observe that
increasing ¢ clearly reduces the bias for Model I, this improvement does not occur for
Model II, where bias either remains constant or worsens slightly. Here ¢ = 2 appears to
be the best choice. In the case of Model III, higher ¢ leads to poorer results, and the
results for Model IV are not very affected by g.
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Table 2. Bias, 6 = 0.3, AS, Untapered estimators
M 7\gm Lmi Lme 1mg 2,my 2,mg 2,m3 3,m; 3,me 3,mg 4,m 4,mye 4,ms
I 256 -.088 -.049 -021 -.043 -030 -.012 -068 -.041 -.016 -.047 -.030 -.006
1024 -.042 -.019 -.007r -.019 -.010 -.004 -.026 -.012 -.004 -.019 -.008 -.003
3072 -.013 -.006 -.002 -.004 -001 .000 -.006 -.002 .000 -.003 -.001 .000
9216 -.004 -.002 .000 -.001 .000 .001 -.002 -.001 .000 -.001 @ .000 .002
1II 256  -.087 -.043 .019 -.047 -028 .025 -.073 -.038 .023 -.048 -.025 .056
1024 -.038 -.017 .000 -.021 -.009 .011 -.026 -.010 .012 -.020 -.006 .019
3072 -.012 -.006 .001 -.005 -.001 .009 -.007 -.001 .013 -.005 .000 .019
9216 -.003  .000 .002 .000 .001 .008 .000 .001 .013 .000 .001 .019
I 256 .071 315 .543 .109 .336 .558 .096 .340 567 128 .362 .616
1024 .006 141 .352 .050 211 436 .057 237 467 .075 .256 .492
3072 .000 .075 236  .040 .168  .382  .057 210 437 074 234 468
9216  .005 .055 .190 .036 150 .360 .054 .196 424 .070 .222 .458
IV 256 -124 -096 -.088 -.078 -.079 -081 -.113 -091 -.085 -.08 -.081 -.082
1024 -.072 -.055 -.067 -.051 -.050 -.059 -.056 -.0b3 -.061 -.050 -.052 -.061
3072 -.037 -.035 -.042 -.031 -038 -.049 -.034 -.041 -.053 -.033 -.042 -.055
9216 -.023 -.028 -.036 -.025 -.034 -.046 -.028 -.037 -.050 -.028 -.038 -.052

Overall, comparing the different estimation methods, we conclude that, in general,
LW beats AS for Model I, especially for small 7', and both estimates are better than RH
(although for very large T the three methods give similar results). For Model II, except
for very small T, AS clearly improves RH and, in most cases, also LW. In Model III, AS
provides the smallest bias, with RH being better than LW if T is small and worse if T’
is large. Finally, the behaviour of AS is slightly better than LW in Model IV, and worse
than RH for moderate T

We also computed results for the tapered RH and AS estimators when 6 = 0.3,
although for space reasons we do not report the results here (results are available upon
request). Tapering is not necessary in this case, but in practice § is unknown, so its
use could be motivated by the (incorrect) belief that it falls within the non-stationary
region. Our results indicate that, in general, tapering increases the bias: this is more
evident for the AS, while Model II is the least affected scenario, especially when large
bandwidths are used.

We complete our interpretation of the bias results for the stationary case with a
brief description of the effect of the bandwidth choice m. First, the general pattern of
behaviour differs depending on the model for LW or RH. For Model I, an increase of m
reduces the bias, especially if T" is large. On the contrary, for Models II-IV, typically,
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the opposite happens, although there are exceptions, especially for small 7" and tapered
estimators. With respect to AS, bias reduces as m increases in Model I, although not
in all cases if 7" is small (more noticeably with tapering). There is no clear pattern for
Model IT , while bias clearly worsens as m increases in Model III. Finally, for Model IV,
bias increases as m increases for large T, with the opposite effect being evident for small
T. If tapering is employed, this bias increase is just observed for large T" and q.

Tables 3 and 4 present bias results for the non-stationary case 6 = 1.3 when tapering
is used. Overall, a similar picture to the previously described is observed. Regarding
RH, larger ¢ leads to bias improvements for large T" in Model I, with the asymptotic
theory operating here. However, RH only manages to slightly beat LW for very large T’
and small m. Similarly, in Model II, an increase of g reduces the bias for 7" large enough.
For example, if ¢ = 4 and T is large, RH outperforms LW for any bandwidth. In Model
ITI the order of the kernel just reduces the bias for small 7. Thus LW appears to be
preferable for large T', which, again, is counterintuitive. A similar result is observed for
Model IV: bias does not decrease while increasing g. In fact, it often increases, so, here,
LW is clearly better than RH.

Table 3. Bias, 0 = 1.3, RH, Tapered estimators
M 7\gm Limi Lme 1mg 2,my 2,mg 2,ms3 3,my 3,me 3,mg 4,m 4,mo 4,ms
I 256 .047 040 012 -499 -270 -.159 -398 -.249 -410 -.228 -221 -.175
1024  .159  .023 .010 -.286 -.070 .014 -.349 -373 -460 -284 .038 .054
3072 .066 .014 .006 -.036 .018 .018 -410 -422 -492 -055 .033 .016
9216  .026  .007  .004 .018 .009 .006 -.446 -462 -511 .014 .008  .005
II 256 .064 120 .200 -531 -199 .087 -379 .023 078 -211 -109 -.071
1024  .169 .051 092 -.260 .004 1250 -320 -.129 160  -.253  .064 .050
3072 .072  .027 .00 -.011 .024 .090 -.358 -.137 .293 -.026 .011  .036
9216 .030 .018 .037 .014 .019 081 -.388 -.048 481 .012 .005 .034
T 256 453 599 664  -259  .297 491 074 377 237 044 276 .480
1024 .390 .443 .614 115 498 .658 .203 b17 443 -187 362 .b74
3072 .195 297 505 251 452 .651 447 642 .632 080  .329 558
9216  .118 236 447 207 413 .630 .602 .682 .694 119  .300  .527
IV 256 037 .004 -.093 -480 -.296 -315 -394 -405 -.664 -.237 -298 -.397
1024 156 017 -021 -27 -091 -136 -.328 -.445 -566 -.282 -.076 -.183
3072 .066  .010 -.006 -.030 .031 .075 -409 -485 -.541 -.066 .027 -.041
9216  .027  .006 -.006 .020 .021 088 -.473 -518 -545 016  .022 .068

Regarding AS, bias is reduced by increasing ¢ in Model I, especially for large T". The
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improvement is not so clear for small 7. In Model II, an increase of ¢ does not have a
clear effect on the bias, but it depends on the values of T" and m. In Model III, there is
a clear increase in the bias when increasing ¢, whereas the results remain fairly stable
in Model IV. Finally, the bandwidth choice affects the bias in a similar way to that

described for the stationary case.

Table 4. Bias, d = 1.3, AS, Tapered estimators
M 7\gm Lmi 1mg 1mg 2,m; 2,me 2,mg 3,my 3,me 3,msg 4,my 4,my 4,ms
1 256 -.201 -.013 .024 -.106 .031 .041 .700 .005 031 -.097 .029 .039
1024 .530 .024 .020 .048 .032 .023 319 .023 .019 .040 .028 .021
3072 .210 .021 .015 112 .020 .013 .085 .015 .011 .078 .016 .011
9216  .067  .011 .008 .014 .009 .006 .027 .007 .005 .010 .007  .005
11 256 -.171  -.002 .074 -.082 .037 .087 .700 .010 078  -.068 .040 117
1024 529  .027r  .030 .043 .036 .039 319 .027 .037 .038 .032 .043
3072 .208 .020 .018 110 .020 .022 .082 .016 .025 .076 017 .029
9216  .068 .014 .011 017 .011 .014 .030 .009 .018 .014 .010 .021
I 256 -.020 .364 .b73 .053 .395 .b87 .700 .397 091 109 430 621
1024 560  .207 407 129 280 485 410 .300  .509 150  .323  .534
3072 227 110 .263 .164 .200 .402 158 .236 453 .168 .260 .502
9216  .076 .071 201 .054 162 .367 .088 .207 429 .089 232 AT7
IV 256 -.185 .003 027 -.094 .042 .049 .700 .018 041 -.077  .041 .035
1024 533 .026 .024 .045 .035 .029 323 .027 .027 .039  .031 .029
3072 211 .022 .263 A11 .022 402 .085 .018 453 .079 .020 .019
9216  .063 .011 .009 .014 .010 .010 .027 .009 .012 .011 .009 .012

To summarise, as regards bias behaviour, in Model I, LW show the best behaviour,
followed by AS. In Model II, in general, AS is the best method, followed by RH. AS is
again the preferred one in Model III, with RH being better than LW if T is small and
worse if T is large. Finally, LW improves AS, and both are better than RH in Model
IV.

Tables 5, 6 present the SD for the stationary case. First, for RH, as expected, larger T’
and/or m reduce SD. Interestingly, the minimum SD is almost always achieved by ¢ = 1
(the LW estimator), with the exception of Model III when T is large. When increasing
q from 2 to 4, for Model I, SD remain similar; for II, SD are in general reduced, except
for small T'; for III, SD increase for small T', but decrease if T" is large enough; finally,

there is not a clear pattern for IV.
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Table 5. SD, d = 0.3, RH, Untapered estimators

M 7\gm Lmi Lme 1mg 2,my 2,mg 2,m3 3,m; 3,me 3,mg 4,m 4,mye 4,ms
I 256 250 152 .096 494 492 423 .682 .685 .661 723 610 417
1024 129 .085 .056 443 284 144 .672 .665 .654 .440 .248 129
3072 077  .052  .036  .211 108 .060  .675  .664 .663 .178  .095  .062
9216  .046  .031 .022 074 047 .033 .658 .662 670 072 .047  .034
11 256 256 152 .099 479 429 .250 .693 710 637 .78 58T 327
1024 129  .083  .056 .386 174 .070 .708 710 552 386 150  .073
3072 .079  .052 .035 177 .068 .038 .7T13 681  .b27 137  .063  .037
9216 .045 .030 .021 .068 .037 .021 719 .632 431 .061 .034 .020
I 256 263 159 106 468 434 374 655 634 689 817  .672 428
1024 134 .089 .064 221 131 .096 .553 427 .443 218 120 .099
3072 079  .056  .041 078 054 .044 515 351 .300 .076  .053  .042
9216 .045 033 .025 .040 .029 .023 .449 .238 230 .040  .030 .024
IV 256 249 151 .097 485 501 439 .669 .638 638 707  .609  .426
1024 131 .083  .055 463 315 172 .649 .639 .595 480 289 146
3072 079  .052 .036 .230 .118  .069  .631 623  .b54 232 115 074
9216 .045 .031 .022 .080 .052 037 575 .bb7 583  .045 .056  .040
Table 6. SD, 6 = 0.3, AS, Untapered estimators
M 7\gm Lmi 1mg Lmg 2,m; 2,me 2,mg 3,my 3,me 3,msz 4,my 4,my 4,ms
I 256 .460 277 .164 462 272 162 441 .262 154 433 .255 137
1024 .232 141 .090 .196 119 077 182 112 073 176 .108  .069
3072 132 .085 .056 .099 064  .044  .090 .058 .040 .084  .055 .036
9216  .071 .048  .032 .052 .035 .025 047 .032 .022 .045 .031 .019
11 256 461 276 .166 .460 275 .164 439 .263 .158 433 .258 139
1024 233 139 .088 193 17 .076 180 110 .072 A71 107 - .070
3072 132 .085 .056 .099 .065 .043 .089 .058 .040 .084 .056  .039
9216  .071 .048 .034 .052 .036  .025 .047 .033 .023 .045 .031  .023
T 256 .502 287 174 .496 284 172 473 271 164 .460 .262 151
1024 234 144 097 197 123 .085 185 A17 0 .081 A76 0 113 .079
3072 132 .085 .059 .099 067  .049 .089 .061 .046  .085 .059  .044
9216  .072 .049 .034 .0563 .037 .029 .047 035 .027 .046 .033  .026
IV 256 451 277 .165 .455 271 162 433 .260 .156 431 .255 147
1024 236 .141 .091 195 120 .078 182 112 073 172 109 071
3072 132 .084  .056 .098 .065 .044  .089 .059 .040 .084 .056  .038
9216  .071  .048 .033 .052 .036  .025 .047 .033 .023 .044 .031 .021
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Focusing on AS, the general behaviour of the SD when m and/or T raise is similar:
SD decrease except for some cases. Additionally, an increase of ¢ also reduces the SD in
all cases.

Comparing the three estimation methods we reach the following conclusions. In
Model I, AS provides smaller SD than RH and, if T is sufficiently large, similar to those
of LW. In II, the smaller SD are obtained with LW, followed by AS. In III, if T is large,
RH has the smallest SD, while LW improves AS, especially if T" small. Finally, in IV,
AS beats RH, although LW provides results very similar to AS if T" is large (and better
if T is small).

Tables 7, 8 present corresponding results for the tapered estimates. As the theory
predicted, the main phenomenon here is the increase in SD for all cases, with a similar

picture being observed for the (unreported) stationary and non-stationary cases.

Table 7. SD, 0 = 1.3, RH, Tapered estimators
M 7\gm Lmi Lme 1mg 2,my 2,mg 2,ms3 3,m; 3,me 3,mg 4,m 4,my 4,ms
I 256 437 262 156 910 508 498 757 650  .600  .841  .727  .621
1024 .223 .136 .088 .580 .440 .332 .654 651 .625 679 410 277
3072 127 081 .055 371 223 115 .644 648 .607 475 188 133
9216  .069  .047  .032 .148 .078 .054  .642 .654 612 148 080  .064
II 256 438 255 156 908 463 444 748 640 .656 .85  .767  .57H
1024  .223 134  .086 572 334 136 .679 700 .650  .717 285 138
3072 127 081 .053 .320 127 .061 674 697 616  .403 112 .058
9216 .068  .046  .032 137 .059 .033 .695 .679 432 118 053 031
I 256 326 151 064 783 507 513 663 620 .661  .830  .665  .409
1024  .206 132 .072 434 221 105 .653 511 .635 755 .200 11
3072 128 .084  .060 .143 .084  .048 449 308 370 .191  .081  .063
9216 .070  .048  .036 .063 .043 034 296 .203 112 .061 043  .035
IV 256 446 262 160 922 .530 .b37 756 624 549 824 697 .719
1024 .222 132 087  .593 .490 b97 643 .081 438 656  .b48  .657
3072 126 .080 .04  .360 277 392  .626  .577 411 493 300  .550
9216  .069  .047  .032 .158 .095 .146 .646 .569 420 172 137 0 .305
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Table 8. SD, d = 1.3, AS, Tapered estimators
M 7\gm Lmi Lme 1mg 2,my 2,mg 2,m3 3,m; 3,me 3,mg 4,m 4,mye 4,ms
I 256 .834 .496 287 .801 481 282 .000 467 271 785 A57 234
1024 .269 241 145 341 .199 122 297 .186 115 .304 179 110
3072 225 136 .086  .162  .101 067 144 091 .061 .135 .08  .058
9216  .112 .072 .049 .079 .053 .037 .071 .048 .033 .066 .046 .031
1II 256 .832 A87 279 .802 478 277 .012 .462 .268 173 .460 .229
1024 .270 .236 144 .339 197 123 .290 184 116 297 177 111
3072 225 136 .087 .163  .101 066  .144 .091 .061 .135 .08  .058
9216  .112 .073 .050 .079 .054 .037 .071 .049 .033 .066 .046 .032
I 256 .793 401 182 .766 381 171 .000 370 164 .736 .354 102
1024 .248 234 142 .335 .196 122 .269 181 114 .296 177 107
3072 .225 135 .088 162 101 071 145 .092 .066 133 .088 .081
9216  .114 .075 .051 .082 .055 .041 .073 .051 .039 .069 .048 .054
IV 256 .823 .496 .290 .795 490 284 .007 475 271 .769 458 .242
1024 .265 .238 144 341 198 120 292 .185 114 .299 178 109
3072 223 135 .08 .159  .100 .071  .144 091 .066 .134  .087  .057
9216  .114 .074 .050 .081 .054 .037 .073 .049 .034 .068 .047  .032

In Table 9 we present the coverage probabilities corresponding to the RH estimator
for the non-stationary case (i.e. 6 = 1.3). As previously pointed out, RH estimator
should be heavily discouraged when ¢ = 3. Given the huge variance of the estimator for
this case, the 95% confidence interval is so wide that coverage probabilities always equal
to one. Focusing on the rest of kernel orders, Table 9 shows that, in general, an increase
of T raises the coverage probabilities, placing them close to 0.95 value. This happens
for all models, except for Model IIT when medium or large values of m are chosen. The
effects of increasing m are not, however, so clear: whereas it is clearly harmful for model
III, large and, especially, intermediate values of m lead to coverage probabilities closer
to 0.95 value for the rest of the models. Finally, comparing the behavior of the LW
and RH estimators, we observe that while the former outperforms the latter in models
I and IV, using higher order kernels seems to be more appropriate in autoregressive
cases (models II and III). The coverage probabilities for the stationary cases (with and
without tapering) were also computed for RH estimates, giving similar results. We do
not report these results here for the sake of space saving, but they are available upon

request.
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Table 9. Coverage probabilities, 6 = 1.3, RH, Tapered estimators

M 7\gm Lmi Lme 1mg 2,my 2,mg 2,m3 3,m; 3,me 3,mg 4,m 4,mye 4,ms
I 256 678 772 .854 .78 .736 .720 788 646  .641
1024  .676  .855 .890 .620 .756 784 .600  .762 778
3072 817 902 920 .763  .844  .866 655 836  .822
9216 887  .919  .933 .859 906 .897 840 898  .848
1II 256 672 724 543 561 813 771 784 588  .687
1024 .680 .838  .707  .626 .848 .850 066 838 932
3072 804  .887  .801 167 928  .832 705 946 973
9216  .885 906 .750 .881 .946 .b84 890 975 .955
I 256 336 065 .002 .755 .635 113 .842 480  .268
1024 291 .040  .000 171 135 .000 023 530 .003
3072 477 .028  .000  .661 .000  .000 913 .075  .000
9216  .500  .001 .000 .305 .000 .000 819  .000  .000
IV 256 .674 781 .789 591 .690 .550 791 .654  .584
1024 .692 867 .890 .609 .691 471 618 696  .446
3072 816 913 920 .79  .791 .558 642 719 307
9216 .883  .923  .931 .845 .855 .556 819 734 301
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To summarise, the overall performance of the bias-reducing techniques is somewhat
disappointing because, in many cases, these more sophisticated methods do not outper-
form the simpler LW alternative. More specifically, for Model I, LW is always the best
method, both in stationary or non-stationary settings. For Model II, AS is better than
LW for 6 = 0.3,1.3, while RH beats LW in few cases (just if 7" is small and § = 1.3).
For Model III, AS is again better than LW, and RH tends to outperform LW if T is
small. Finally, for Model IV, AS tends to be better than LW when § = 0.3, especially
if T is large. For the non-stationary case, RH beats LW just if T" is small, although,
overall, when § = 1.3 LW tends to be the best method. In any case, the performance of
the higher order kernel estimator RH is particularly worrying, as its general behaviour
is poor (and even extremely unsatisfactory for ¢ = 3). As already mentioned the role
of V, in (7) gives an advantage to the choice ¢ =1 (i.e., to LW), which, at least for the
sample sizes employed in the experiment, is not compensated by the faster convergence
rates which higher ¢’s permit. In fact, we provide additional evidence to illustrate the
problem suffered by the higher order kernel approach. In Table 10 we report the num-
ber of replications (out of 5000) which falls on the boundary of the optimizing interval

[—.5,2] for the 6 = 1.3 case (other cases present qualitatively identical results).
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Table 10. Replications outside the optimizing interval, 6 = 1.3, RH, Tapered estimators

M 7\gm Lmi Lme 1mg 2,my 2,mg 2,m3 3,m; 3,me 3,mg 4,m 4,mye 4,ms
I 256 4 0 0 1508 432 512 1036 879 659 1624 1170 905
1024 0 0 0 565 430 298 e 862 764 889 602 313
3072 0 0 0 302 116 6 809 836 703 595 94 21
9216 0 0 0 40 1 0 789 845 719 28 0 0
1II 256 2 0 0 1424 367 565 1033 1258 1438 1721 1540 761
1024 0 0 0 570 300 34 891 1271 1734 1119 296 11
3072 0 0 0 240 19 0 930 1254 2239 426 4 0
9216 0 0 0 31 0 0 983 1365 2705 5 0 0
I 256 1 0 0 928 1397 2967 1445 2859 2004 2160 2322 2133
1024 0 0 0 549 1009 2928 1861 3418 3430 1342 461 1344
3072 0 0 0 62 57 1646 2379 4267 4499 25 1 157
9216 0 0 0 0 0 240 3473 4929 4953 0 0 0
IV 256 8 0 0 1584 470 507 1030 663 379 1534 903 1018
1024 0 0 0 603 564 782 759 649 303 803 812 1121
3072 0 0 0 309 229 512 746 635 291 613 315 936
9216 0 0 0 47 4 60 831 609 306 50 24 419

Although results improve as T and m increase, the evidence is very worrying (espe-
cially for ¢ = 3). It should be noted that this problem hardly affects LW and it does not
affect AS at all, where none of the replications fell on the boundary of the optimizing

set.
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Supplementary Appendix
to

Local Whittle estimation of long memory: standard versus
bias-reducing techniques



This supplements “Local Whittle estimation of long memory: standard versus bias-
reducing techniques” by providing proofs of Propositions 1 and 2.

Proof of Proposition 1. First, we show the result for . Clearly
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m? (Spy — 0) = (50 o — 1 (00) ) m2—

Jun

m\»—A
[N

so (7) holds on showing

1 2 (2m)*1 Uyyhy m2at1/2
2 SP (§) — 7491 N (0, 4pd 1
SO S ety e e N AW, 81
m~'H? (0¢) —, 4V, >0 and (S.2)
m2 —0— = =0 : :
e HE (3c) !
First, we show (S.1). Now,
1 1 A

m~25P(§) = 2pEE, (S.4)

where

- '
- (%) > by (APIZ(A)—1) and B = %Z kg XI5 (A7)

noting that 3" b,; = 0. Then, we could set A = 37 | A; where

A1_27r< ) quj{E (\) = E (£ (0) IZ(M\)
=220 (1) qug{ﬂ’ E(20)}
A3_27T< ) quj{[p — fu (0) IZ (N;)

—E(fp()\') (A) = fu (0) IE (A )} and
= (£ ) S b {17 () N2 — 22k () 12 (0y) )
noting that E (If (};)) = 1/ (2r). We have

= () S s = 200 = (B) 503 Gy (0 3 g

(S.5)

N—



The first term on the right of (S.5) equals

1 4 , q - N2 7
(;) E WUHH— E 2 |m E by.; <E) —/(logu+1)u ky (u) du
0

=1 i=1
($.6)

Then noting that

g m>2i 1
Z (— < —< 0.75‘1,
T/ T (z)

=1

because m/T < 0.5, that by proceeding as in Lemma 5 of Velasco (1999a),

N2
p ! J i -
- E by.j (E) —/(logu+1)u2 kq (u)du= O (m™'logm),
0

and Assumption 2, then (S.6) is

1
m\ 2 hy\2 log m
— L) O .
(5) oo (2
This implies that

_(m > hyA\2 logm mt1t3 log T
/h—(p) (zq)!qu+O<m§ )+O< Totn , (S.7)

where by (6), the third term on the right of (S.7) is of smaller order than the first, while
the second is o (1).

For A, in view of the proof of Lemma 6 of Velasco (1999a), it is straightforward to
show that

%) > by {271 () = 1} = N (0,W,@),

just noting that, like in (S.6),

P (logm)*
EZbi’j:Wq—kO( > .

Next, according to some of our previous arguments and (A23) in Velasco (1999a),




Var (As) =o(1) and

= (£ ) 3 buih (A {% omI? (Aj)}
=0, (m_1/2 log® m + m®= P2 1og?/ m) =0, (1),

by the condition we set on the tapering order p.

Expanding B in a similar way to A, we get B = Z?:o B;, where

Qqu S Op S~y B (1 (o

B, :2”_?92 kg {E (12 A»)h(/\j)) ~E(f (0 (\))}
27rfu pz kg {17 () — E(IP ()}
27”92 gy {12 (0 — fu (0) 2 (Ny)

—E(fp(k) (A7) = fu (0) I¢ j))} and
kaq]{Jp YAZ —2mh (A) 12 (M)} -

In line with previous results
2 1
B =0 <<%) q) , By=0, (m’§> , B3=o0,(1) and
By, =0, <m_1 log m 4+ m® P log*/? m) )

whereas

S 1)+ 0 (7 togm)

to complete the proof of (S.1).
Next, we show (S.2), which holds if

m~'HP (§) —, 4V, > 0 and

m~" (H? (6¢) — H? (8)) = 0, (1).

Regarding (S.8), clearly,




where
Frye)=L Z ko (log > AZI(N), 9=0,1,2,3.

By the same decomposition as that in the treatment of B in (S.4), it is easy to show
that

1
EP(0) —=p fu (O)/O ky (u) (logw)? du, g =0,1,2,3, (S.10)

so that (S.8) follows immediately by Assumption 2.
Next, (S.9) holds if

> ko (log %)g ( 22 )\?5> I* (\)

for g = 0,1, 2. By the mean value theorem, the term inside the modulus in (S.11) equals

mfl

=0, (1), (S.11)

236 —0) > kyy (log ) log AN () (S.12)

where [0 — 6| < |6g — |. Then, noting that by Theorem 4 of Velasco (1999b), under
our conditions E |A?I? ();)| < K, (S.12) is bounded in probability by

Koo Y

1 1 1
2|6 6| < KM 2 (1OgT)3 TM 2 Z,jf2M 5'

log—’ log Aj| A,

Then, noting that T * = 0 (1), /572 * = O (m), the left of (S.11) is O, ((log T)* M~1/2) =

0p (1) by Assumption 3, to conclude the proof of (S.9).
Finally, we show (S.3). First, by the mean value theorem the left-hand side of (S.3)

1s -

1y (9)

m? (3¢ — 0) (1 _ Hpv(g@) 7 (S.13)

where ‘5 -0 | < !50 -0 | Applying the mean value theorem again, (S.13) equals

v (3
m3 (6 —9) (0¢ — 9) 1;1]5 532),

where Jj (¢) = dH} (¢) /dc and ‘3 - 5‘ < |6 — 8. After some tedious but straightfor-



ward manipulations, it can be shown that

Ffy (€) (B (€))” = 3F3y (&) Yy (¢) (Fiy (€))° +2 (Ffy (¢))" By ()
(£, ()"

Jy (c) = 8m

Then, by (S.2), (S.10) and a very simple extension of (S.11) to cover the treatment of
Fy, (3), it can be easily shown that J? <§> /H? (0¢) = O, (1), which implies that the
left of (S.3) is O, (m'2M ') = 0, (1) by Assumption 3, to complete the proof for d gy

Regarding SR u, we first show that gg is M/?-consistent. Following the proof strategy
of Robinson (1995) and Velasco (1999a), we set © = ©; U O, with

O1={c:0-1/24e<c<Vy} and Oy ={c:V; <ec<d—1/2+¢€},

for e € (0,1/4) (taking ©9 to be empty in case Vq > 0 —1/2+¢€). The main steps of the

proof consist of establishing

Gy (¢) = G5 (¢)

v

G (c)

sup
cEO

=0, (log™ " M), (S.14)

where

p " C p " c—
Gy (c) = Mz )\5 I (A;) and GP(c) = f.(0) v Z )\]?( 5)’

where throughout " = ij‘/ip ...

Pr (i(ngfS (c) < 0) —0as T — oo, (S.15)
where G (o) . §
S (¢) = log G%((S) —2(0—5)MZ log \j,
MY (Qog ) AR (12 () — I (A) =0, (1), k=012 (S.16)
and
M3y (logji— 423 log k) X2 (12 () = 12 (0y)) = 0, (1). (8.17)

We first show (S.14). Now

Gr(e)—Gl(c) &Y (&)" TN (I () — 2 ()

Gr (c) N fu (0) % Z” (ﬁ)

so that, by a similar reasoning to that in the proof of Theorem 5 of Velasco (1999a), the



left side of (S.14) is bounded by

(c—9)

. . —1+2¢
p "
Ko &5 (2) o) - o<k B (L) o) - o)

cEO
” ] —142¢
_ Op (Ml Z (M) j6r1> _ Op (M*QG) 7

according to the Theorem of Robinson (2005), since 6 —r < 1/2 and € < 1/4, to justify
(S.14). Next, we show (S.15). Setting z = exp (pM ' >>"log j), we have

-\ 2(c—9)
. - e P 1) 26
Pr (1({)155 (c) < O) =Pr (%ﬁfﬁ Z [(;) — 1] NI (N) < 0)
< Pr (ﬁ Sy - AP () < o) (S.18)
—_ M J ] v )/ — ) .

where

Velasco (1999a) shows (see p.115) that Pr (£ " [a; — 1] A7 (X;) < 0) = o (1), so that
(S.18) is 0 (1) by showing

L3 0= )X (2 05) = 2 () = 0, (1). (5.19)

According to the Theorem of Robinson (2005) the left side of (S.19) is bounded by

o\ —142€¢ -\ 2(V1-9)
1\ J S—r—1 J S—r—1 A e
s, (1) el () e

which noting that z asymptotically equals M /e is O (M=% + M~ + M~'log M) =
0(1) because § —r < 1/2. The proof of (S.16) is omitted as it almost identically follows
arguments to that for (S.17). Finally, in line with previous arguments, the expectation
of the absolute value of the left of (S.17) is bounded by

KM 3 log MY 57 = o(1),

to conclude the proof of M/2-consistency of .

Then, in line with previous arguments, the proof for gRH holds, showing that



m=2 (S7(8) = S2(9)) = 0, (1), (S.20)
m~' (H? (§) — HE (8)) = 0, (1) and (S.21)

Z' kq s (log %)g ( A A;%é) 12 ()

for g =0,1,2,3, where  — § = O, (M~/?). First, (S.20) follows if

m—l

m”2 Z b A2 (1P (M) — 12 (N))) = 0, (1) and (S.23)

m_lz kg A2 (P () — T2 (N))) = 0, (1). (S.24)

We just give the proof for (S.23), as that for (S.24) is significantly simpler. The expec-
tation of the absolute value of the left side of (S.23) is bounded by

Km™2 logTZ/ {E ()\?6 [wh (Aj) — wy (%’)\2) E (Aia [wp (A) + wp ()‘j)|2) }2 ’

which, by according to the Theorem of Robinson (2005) and results in Velasco (1999b)

is
1 / 1

O <m_§ logTZ j‘s_r_1> =0 (m‘§ logT (m’ "1 (8 >7r)+logml(§=7)+1(5 < r))) ,

which is o (1) by (6), since § —r < 1/2. Similarly, (S.21) holds because for g = 0,1, 2,

m™ Y g (log )" A3 (12 () = 12 ()
=0 (m'og®T (m* "1 (8 >r)+logml (§=7)+1(5 <)) =0(1),

by (6). Next, as in the discussion of (S.11), (S.22) holds if

m Y

which can be easily justified by previous arguments, to conclude the proof of the propo-

g 2 o, I 0) - O =000 529

sition.

Proof of Proposition 2. The proof for (SAS,Q_b;;s)/ follows from adapting Lemmae
2 and 3 in Andrews and Sun (2004) (AS hereinafter) to the tapered case. We initially
show that the equivalent of AS” Lemma 2 holds for our tapered Hessian and score vectors

(given by the tapered version of (4.2) in AS, noting that the summation now runs from



p,2p, ... to m). Defining

B:’;:(%) diag (1, Am)? oy (Am)??) , T2 = Z XX,

J=P:2p;..
—x, - = Z X, X; = (2logj, (0)%, ., (A)%) and
k D,2p,..
v .o . /
X; = (2logj, (j/m)?, ..., (j/m)™)",
we first show the equivalent of Lemma 2 (a), which in our case is

(B2) R (BEY Tt = Q, as T — oo,

In view of Lemma 5 of Velasco (1999a), it suffices to show that for the different choices

a(j) =logj, log?j, j*log j/mF, j*/m* for any finite k > 2,

@=L 3 ()=o), (5.26)

as m — oo. The left side of (S.26) can be written as m™! times
—pa (p) + / x)dr — Z / ) dz,
0 J=2p,3p;-.;

and (S.26) follows noting that

sup |a(j) —a(x)] < Kj 'logj, for a(j) = logj, log®j,

J—p<a<y

< K 'm™%log j, otherwise.
Next, the equivalent of AS’ Lemma 2(b) holds if
B~ (12 (0,0 (a)) = 2 (B || = 0, (1)

Here, apart from the obvious change of notation and changing m™* Z;n:l by pm 1 Z;n:p op..

the only critical point refers to the order of

i (M —2ml¢ (&‘)) , (S.27)

i=pap.. N Ji



where g¢; is given in (A.10) in AS. Following arguments given in Velasco (1999a) (c.f.
(A23)) and AS (c.f. (A.13)(i)) , it is straightforward to show that (S.27) is

O, <k1_(5+77)/21 (s+n<2)+loghl(s+n>2)+k P logz k + l{:5+’7+1T_(5+")> :
(S.28)
the rest of the proof following easily.

In line with previous arguments, the proof for our corresponding result to Lemma
2(c) and 2(d) follows straightforwardly, but the treatment for the corresponding proof
of Lemma 2(e) needs to be discussed in more detail. Following AS’ proof, concerning
the corresponding result for T} 7, the most delicate issue is to find an equivalent to the
bound in (A.21) in AS. Clearly, the equivalent to (A.29) in AS in our setting is A; + As,

where

A = Xk: {M — 9Tt (\) — F (M . (Aj)ﬂ L) g

s L () fo (N) 9j
= Y (o) - B @) (22 -1).

(c.f. (A.29) in AS), where f, (A) is the pseudo-spectral density function of the process
vg. Now, following the bounds given in the proof of Theorem 5 of Velasco (1999a) and
the proof of AS,

{ Z /\ S+77)+ Z Z +(i+7) 2p+T—1} )\Zﬁn)\;ﬂrn}'

J=p,2p,.. 1=2p,.. j=p,2p,..

First,

k i—p o 2(s+mn) k-p k—i
Z Z (i_j)—2p)\§+n)\§+n: (?> Z —2p Z ]s—i-n ]+2)s+77

i=2p,.. j=p,2p,.. i=p,2p,.. J=p,2p,..
< KT 2(s+n) p2(s+m)+1

Next,

. 5-‘,—7]

Z Z (i +5) P NN < KT Z Z

1=p,2p,.. j=p,2p,.. 1=p,2p,.. j=p,2p,..
< K72 Lpstntliog | 4 k:2+2(5+”‘p)} ,
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implying that
E (A%) -0 (T*2(S+”)k2(s+n)“) )

Next, as in (S.28),
E(A}) = O (K0 4 log? k + k>0 P log k + k=20t

and following the proof in AS (pp. 601-602), it is straightforward to show that

(s s+n
Tir =0, <m1 e m logm +m® H loghm + (72 > —orty:

Moreover, noting that following Velasco (1999a, p. 113)

Iy (\) _ ): i—1  2(0-p) ;
P(fg 1) =07+ )

it is straightforward to show that

Tr=0 (m_% log? m + m*® "% Jog m) =0p(1).

Next .
Tr=(£) > @z () -1)¢
J=p,2p,..
where
o= (n-2 3" %)
k=p,2p,..

for any arbitrary (¢ + 1) x 1 vector 7 # 0, ||7|| < co. The result
Tsr —a N (0,09,),

is straightforward in view of Lemma 6 in Velasco (1999a), just noting that in line with

previous arguments
m

P QJZ — 7'Q,m as T — oo,
m. L

and

G = Gl < 1711 | = K| < 57
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By the proof of AS, it is easy to show that

to finish the proof of our equivalent to Lemma 2. Finally, the proof of the equivalent to
Lemma 3 follows straightforwardly as in AS.
We next show the result for the estimator based on v;. First, taking into account

that, as T — oo, uniformly in j € {p,2p,...,m}

SUp exp (kg (Aj,7)) =1+0(1),

in view of the different steps in the proof of Lemma 2 of AS, the result follows on showing
1o .
m™2 Y logj 12 (N) — 12 (\)| X = 0, (1), (S.29)
J=D,2p,..

which implies that the corresponding of Lemmae 2(b), 2(c) and 2(e) follow using the

process vy instead of v, and

sup  m ST I2 () — 22 (0)| A log? j = o, (logm). (3.30)
C3|C*5|§log%m J=p,2p,..

for any finite X' > 0, which implies that the equivalent of Lemma 2(d) holds for v;.
First, (S.29) follows by almost identical arguments to those in the proof of (S.23). Next,
the left side of (S.30) is bounded by

KT mm og? m PORIACHEPhI PV

J=p;2p,-.

Noting that by Assumption 4, mIH/407—1 5 o0 as T — oo, T?5/1°8°m i dominated
by m2KA+1/49)/lee®m anq (S.30) follows by (S.29) just noting that

2K (141/4q) 2K (14+1/4q) 2K (1+1/4
m, log®m ! = exp (log (m logd m g >) = exp (#) —lasT — oo.
og m
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