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On the Validity and Reliability of coastal quality change estimates: 10 

Evidence from Norway 11 

 12 

Abstract: Coastal managers are faced with the challenge of managing sites to maintain 13 

or improve their quality. The quality of each coastal site is characterized by site 14 

attributes that visitors care about. Since coastal managers face financial constraints, it 15 

is useful to know which are the site attributes with the highest implicit value for visitors 16 

and thus determine the change in attributes that yields the most benefits. However, 17 

estimates of implicit value of site attributes should be both valid and reliable to be 18 

informative for coastal managers. If coastal sites present similar characteristics, the 19 

data can suffer from lack of variation that can lead to unreliable estimated implicit 20 

values. We first present our strategy relying on simulation that confirms that our 21 

estimates are unbiased, but only a subset of these is reliable. We then apply the discrete 22 

choice model to explain recreational beach site choice by using two alternative models 23 

with a view to increase precision of our estimates. We uncover preference 24 

heterogeneity by relying on observable group characteristics. We illustrate the policy-25 

relevance of our approach by providing welfare estimates for three scenarios currently 26 

being considered by Norwegian beach managers.  27 

JEL Codes: Q50 28 

Keywords: site choice model; beach recreation; Norway; random utility model  29 



3 
 

1. Introduction 30 

Managers of recreational sites are responsible for improving and maintaining the quality 31 

of sites over which they have jurisdiction towards enhancing visitors’ experiences. To this 32 

end, they should consider increasing the quality of these sites if the benefits of their 33 

improvement exceed the costs of implementing those changes. However, the recreational 34 

benefits of changes in the quality of coastal sites are not evident. For recreational sites, no 35 

market prices exist and information predicting how visitation changes given policy scenarios 36 

is scarce, requiring economists to rely on non-market valuation methods to estimate benefits 37 

and costs. This is due to the public good nature of recreational sites, being non-excludable 38 

and non-rival. Our goal is to apply non-market valuation methods to estimate the implicit 39 

values of different attributes and identify which attributes have the greatest impact on 40 

recreationists’ welfare. Managers of recreational sites can thus identify which changes in site 41 

attributes people care most about, which is especially useful if managers face restricted 42 

financial resources.  43 

The use of the travel cost method (TCM) applied to recreation is an example of the 44 

valuation of non-market goods and services especially tailored to estimate recreation values. 45 

The TCM is a revealed preference method wherein the price to recreate at a site is the travel 46 

cost incurred to reach that site (Parsons, 2017). While the analysis of recreational choices has 47 

both a participation and a site choice component, we focus on site choice, wherein discrete 48 

choice models are often used. Analyzing site selection rather than participation frequency has 49 

some advantages: it allows for substitution across sites and we may estimate the implicit 50 

values of site attributes in a more straightforward manner (Parsons, 2017; Phaneuf and 51 

Requate, 2017).  52 

However, a challenge arises when operationalizing a discrete choice model of site 53 

choice. That is, if lack of variation and high correlation of the explanatory variables (site 54 
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attributes) are present in the data, the estimation of some model parameters is highly 55 

imprecise or, in extreme cases, not possible due to identification issues. While estimates can 56 

remain unbiased when ignoring lack of variation and high correlation, estimated implicit 57 

value of attributes may be unreliable and resulting policy implications are misleading. 58 

Our data is characterized by high correlation and lack of variation in the attribute matrix. 59 

These phenomena are common when handling RP or observed data (Adamowicz et al., 1994; 60 

Ben-Akiva et al., 2002; Earnhart, 2002), especially if the environmental goods available are 61 

rather homogenous. Two strategies have been proposed to solve the problem of identification 62 

in RP data: either combining RP with SP data to break the multicollinearity (von Haefen and 63 

Phaneuf, 2008), or ensuring proper identification by using Murdock (2006)’s two-stage 64 

strategy. However, nor do we have access to SP data, nor variation in the data to obtain 65 

sufficiently precise estimations by the Murdock (2006)’s strategy. Instead, we use simulation 66 

to investigate the identification of the parameters of our model prior to estimation. We do 67 

this in four steps. In the first step, we define hypothetical population parameters based on a 68 

priori information. In the second step, we compute hypothetical utilities of all sites and for 69 

each respondent using parameter values defined in the first step, actual beach attributes and 70 

simulated idiosyncratic error terms. The highest utility of each respondent represents the 71 

hypothetical choice. In the third step, we use the hypothetical choices to estimate a choice 72 

model and save the estimated parameters. The steps 2 and 3 are repeated sufficiently high 73 

number of times and the saved estimations are used to obtain the empirical distributions of 74 

the estimators of the model parameters. In the last, fourth step the hypothetical population 75 

parameters from the first step are compared to the obtained empirical distributions. The above 76 

described simulation exercise can be used to analyze the effect of the functional form of the 77 

respondent utilities on the identification of the parameters and precision of their estimations. 78 

After both simulation and estimation, we show how we can improve precision of our 79 

estimates without compromising validity.  80 
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To the best of our knowledge, this is the first paper that tackles unbiasedness and 81 

precision in RP data by simulating data. The proposed solution to the identification problem 82 

expands the toolkit of practitioners that wish to investigate whether their welfare estimates 83 

are both valid and reliable.  84 

Accounting for preference heterogeneity is also relevant in the context of recreational 85 

choices. We opt for controlling for observable preference heterogeneity through the 86 

introduction of interaction effects in the model.  87 

The remainder of this paper is structured as follows. Section 2 describes the survey 88 

design process and data. Section 3 describes the identification strategy. Section 4 presents 89 

the results. Section 5 presents welfare change measures from three scenarios currently being 90 

considered by Norwegian coastal managers. Section 6 concludes.  91 

2. Data  92 

Our case study pertains to the Jæren beaches in Norway. The Jæren beaches are located 93 

on the west-southern coast of Norway in the county of Rogaland and are some of the most 94 

visited natural attractions in the country with at least 600.000 visitors per year (Sveen, 2018). 95 

The vast majority of these visits are day trips, making beach recreation in Jæren a pertinent 96 

case for the application of the TCM. To the best of our knowledge, this is the first study to 97 

apply a site choice model to recreational choices in Norway.  98 

Along the Jæren coast there are thirteen popular beaches and other less known sites 99 

(Sveen, 2018). These beaches are located in a 70-kilometer stretch from Tungenes in the 100 

North to Ogna in the South (see Figure 1). The area is classified as a nature conservation area 101 

since 1977 due to its geological, botanical, zoological and cultural heritage value. The 102 

beaches have white sand, dunes and many rare species and vegetation systems. The coast 103 

provides areas for birds to find shelter and nest. 104 
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Figure 1. Map of the study area: the Jæren coast and its beaches 105 

 106 
To collect data on beach visitation, we conducted an off-site survey during October and 107 

November of 2018 using a web panel from a survey company (Norstat). Whereas most TCM 108 

data are collected on-site (e.g., Bin et al., 2007), we sampled residents in the Rogaland county 109 

of Norway and collected 982 responses, resulting in a response rate of 25.9%. 110 

2.1. Survey Design 111 

Survey design started in January 2017. Students carried out three pilot studies: one in 112 

Easter 2017 (Bui and Sæland, 2017) and two in Easter 2018 (Gilje, 2018; Kleppe and Jensen, 113 

2018). Sampling for the pilot studies was done on-site at four beaches. We were able to 114 

identify the attributes visitors care most about, the activity engaged in by respondents, and 115 

obtain the first estimates of consumer surplus. 116 

We based the design of the survey on nine previous state-of-the-art studies that resulted 117 

in a site choice model application (e.g. Bin et al., 2007; Bujosa et al., 2015; Chen, 2013; 118 

Hicks and Strand, 2000; Leggett et al., 2014; Lew and Larson, 2008; Matthews et al., 2018; 119 
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Parsons et al., 1999; Yeh et al., 2006). Three national environmental economics experts 120 

commented on the design of the survey, specifically to reduce recall bias. We consulted 121 

coastal managers, namely from Jæren Friluftsråd and Fylkesmannen i Rogaland, who helped 122 

expand the list of beach names, and identify coastal threats and relevant policy scenarios.  123 

In order to gather data to design the questionnaire, we conducted one focus group in 124 

March 2018. The eight participants, who were employees at the university, were not informed 125 

about the topic of the discussion before the meeting. The focus group included a discussion 126 

concerning motivations for choosing a particular location, identification of the coastal threats, 127 

and ranking of beach attributes.  128 

To test the survey, we conducted six personal interviews in September 2018. We first 129 

asked participants to fill out the survey without assistance. We then asked them some 130 

debriefing questions about general comprehension of the survey and various aspects related 131 

to their last visit (e.g., the relevance of overnight trips and identification of appropriate 132 

substitute sites).  133 

2.2. Survey Data Description 134 

Our dataset comprises 982 respondents who are residents of the Rogaland county in 135 

Norway. Nearly all respondents (98.3%) reported knowing or having heard of at least one of 136 

the beaches in Jæren. On average, respondents took 29 minutes to respond to the survey and 137 

a median time of 16 minutes. 138 

To ensure that our sample is representative of the Rogaland population, we compare key 139 

statistics of the population with the sample means in Table 1. Respondents were randomly 140 

selected, which implies that every member of our population of interest (residents of the 141 

Rogaland county) has the same probability of being selected to answer the survey. 142 

Respondents were also not informed about the topic of the survey prior to answering it. We 143 

conclude that the sample is representative, as most sample means are not statistically different 144 
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from the population means (see Table 1)1. Respondents were on average older and more 145 

educated than the population, as is common in Internet-based surveys (e.g., Lindhjem, 2011). 146 

We replace missing data on income with the population’s mean income, adjusted for the 147 

number of household members.  148 

 149 

Table 1. Comparison of Descriptive Statistics between Population of county residents and 150 

Respondent Sample (N = 965) 151 

 Respondent 

Sample 

Population 

(county) 

Continuous Variables Mean Mean 

Household Gross Income (NOK per year) 808 333 874 400 

Household Size 2.56 2.32 

Age 47.28 37.62 

Dummy Variables Proportion Proportion 

Education 

Attainment 

Primary school 4.49%  25.70% 

High school 36.15% 39.20% 

Vocational or university 

education 

59.36% 35.10% 

Gender (% of women) 54.30% 49.20% 

Source: SSB (Statistics Norway) for population means for the year 2016. As of 12/06/2019: 1 Euro = NOK 9.7710; 1 USD 152 
= NOK 8.6318 (Source: https://www.bloomberg.com/markets/currencies) 153 

Our survey elicits both the respondent’s general visitation pattern, and detailed 154 

information on the last beach visit during the summer season of 2018. Around 68% of the 155 

                                                
1 Although respondents are on average 10 years older than the population, this is because we excluded people 
under 18 years of age from answering the survey. When excluding people under 18 years of age, the average 
age is 47.94 according to Statistics Norway (SSB), which is in line with the sample mean (47.28). 
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sample reported having at least one visit to the Jæren beaches in the summer season of 2018. 156 

Therefore, the final sample size to analyze the choice of the last beach visited consists of 657 157 

respondents. The thirteen main beaches represent 89.6% of the visitation. The most visited 158 

beaches are Sola (32.7%) and Ølberg (15.1%), followed by Bore, Orre, and Hellestø (see 159 

Figure 2). Norwegians use beaches differently from traditional beach users: the intention 160 

upon visiting for the majority of the respondents is to go on walks or to relax. 161 

Figure 2. Distribution of last visited beach reported along the twenty Jæren beaches 162 

 163 

The respondent’s travel cost represents the various costs incurred to visit the beach. The 164 

calculation of the travel cost is conditional on the mode of transportation, which we elicited 165 

for each respondent. The majority of respondents traveled by diesel car (40%) and by petrol 166 

car (34%). The remainder traveled by electric car (7%), hybrid car (9%), bicycle (3.8%), 167 

public transportation (2.4%) and on foot (3.2%).  168 

The travel cost 𝐶"# to beach 𝑗 of group 𝑖 is given by: 169 

𝐶"# = '𝑝)𝑑"# + 𝑓" + 2𝑝#𝑔" + 𝑤"𝑡"#1 ∗ 𝛿". (1) 170 

where 𝑝) denotes the per kilometer cost of travel, and 𝑑"# the round-trip distance traveled in 171 

kilometers. Therefore, for groups traveling by car, 𝑝)𝑑"# is the roundtrip distance traveled 172 

39

21
5

47

17

33

99

16

55

12 11 5

26 27

1

34

3 5 3 3 6

0

50

100

150

200

250

Bore
So

la
Orre

Sa
nde

Vist
e

Ølberg
Vigdel

Hell
est

ø
Se

le

Refn
es

Nærla
nd

Bru
san

d
Ogna

Sk
eie

Hå g
am

le 
pres

teg
ård Vik

Kvass
heim

Obres
tad Reg

e

Rev
e H

av
n



10 
 

times the money cost (in Norwegian kroner) per kilometer. We measure the distance traveled 173 

between the respondent’s zip code and the beach’s parking lot coordinates using the google 174 

maps API tool.  175 

Groups traveling by diesel, petrol or hybrid cars also incur a toll fee, denoted by 𝑓, of 20 176 

NOK. For groups traveling by bus or train, we multiply the ticket price, denoted by 𝑝# (35 177 

and 70 NOK, respectively) by the group size 𝑔" irrespective of the distance traveled.  178 

The round-trip travel time spent (in hours) 𝑡"# was calculated using the google maps API 179 

tool, and it is conditional on the group’s mode of transportation. If groups are free to choose 180 

the number of hours worked at a given wage rate, then the opportunity cost of time, 𝑤", 181 

simplifies to the group’s wage rate (Freeman et al., 2014). 𝑤" is assumed to be one third of 182 

the group’s net hourly wage rate, given an average of 1950 hours of work per year. We adjust 183 

for multiple-purpose trips following the method proposed by Yeh et al. (2006), and thus 184 

weigh the travel cost variable with the term 𝛿", which denotes the percentage of the travel 185 

reported to have been spent in that beach.  186 

We collected data on fifteen beach attributes: number of parking spaces, dummy for area 187 

being protected for birds, water quality index, beach length and width, presence of rocks, 188 

dunes, marina, trash boxes, bike paths nearby and camping possibilities, number of toilets, 189 

public access points to beach and food amenities (bars, restaurants and kiosks), and 190 

congestion.2 These attributes are summarized in Table 2. Many of the attributes we collected 191 

are common in the site choice modeling literature, such as beach length and parking (Bujosa 192 

et al., 2015; Hilger, 2006; Lew and Larson, 2008; Massey and Parsons, 2007), beach width 193 

(Bin et al., 2007), level of congestion (Cushman et al., 2004), and water quality (Hicks and 194 

                                                
2 We have more attributes than the average in site choice models applied to beach recreation (average of 9.69 
attributes in 39 studies). The number of attributes in past studies ranges from 2 (Chen and Lupi, 2013; Hicks 
and Strand, 2000; Whitehead et al., 2008a) to 30 (Pendleton et al., 2012) 
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Strand, 2000). The problem related with the matrix describing beach attributes is the focus 195 

of the next Section.  196 

Table 2. Beach Attributes’ Description (name, description, data source, average, standard 197 

deviation, minimum and maximum attribute level for all 20 sites) 198 
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Parking 
Spaces 

Number of public 
parking spaces 

available 

Coastal Managers 
(Jæren 

Friluftsråd) 123.45 107.08 0 360 
Congestio

n 
Average number of 

daily visits (i.e. 
density) divided by 
beach length and 
width (in meters) 

Own calculation 

0.03 0.14 0 0.58 
Water 

Quality 
Water Quality score 

(from 1 to 5) 
Vann-nett portal 

3.8 0.4 3 4 
Bird 

Protected Bird Protection area 
Fylkesmannen i 

Rogaland 0.35 0.48 0 1 
Length Length of the beach 

(in meters) 
Spatial data 

(Google maps 
satellite images) 805.45 836.91 0 2810 

Width Width of the beach 
(in meters) 

Spatial data 
(Google maps 

satellite images) 32.07 17.62 0 68 
Rocks Dummy: 1 if the 

beach has rocks or 
cobblestones; 0 if 
only white sand 

Spatial data 
(Google maps 

satellite images) 
0.4 0.49 0 1 

Dunes Dummy: 1 if the 
beach has dunes; 0 

otherwise 

Coastal Managers 
(Fylkesmannen i 

Rogaland) 0.6 0.49 0 1 
Toilets Number of toilets Coastal Managers 

(Jæren 
Friluftsråd)  1.7 1.38 0 4 

Food 
Amenities 

Number of 
restaurants, bars and 

kiosks nearby 

Coastal Managers 
(Jæren 

Friluftsråd) & 
Visitor Reviews 
(Trip Advisor) 0.75 0.89 0 3 
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Bike Path Dummy: 1 if the 
beach has bike path 

nearby; 0 if 
otherwise 

Spatial data 
(Google maps 

satellite images) 
0.15 0.36 0 1 

Marina Dummy: 1 if the 
beach has a marina 

or boating dock 
nearby; 0 otherwise  

Spatial data 
(Google maps 

satellite images) 
0.35 0.48 0 1 

Camping Dummy: 1 if the 
beach has camping 

facilities; 0 
otherwise 

Spatial data 
(Google maps 

satellite images) 
0.2 0.4 0 1 

Trash 
boxes 

Dummy: 1 if the 
beach has Trash 

boxes; 0 otherwise 

Coastal Managers 
(Jæren 

Friluftsråd) 0.5 0.5 0 1 
Public 
Access Number of main 

public access points 

Spatial data 
(Google maps 

satellite images) 1.45 0.67 1 3 
 199 

3. Identification Strategy 200 

We use discrete choice modeling to analyze recreational data (e.g., English et al., 2018). 201 

Our theoretical framework is the Random Utility Model (RUM), which is laid down in Haab 202 

and McConnell (2002), Parsons (2017), Phaneuf and Requate (2017), and Freeman et al. 203 

(2014). The underlying idea behind the RUM framework is that a visitor should choose to 204 

visit the site that gives the highest utility when facing a choice set of recreational sites.  205 

We analyze a single choice occasion (i.e., last visited beach by each respondent) using 206 

the conditional logit model. Utility is a function of travel cost 𝐶#"	and 𝐾 beach attributes 𝑞#7 , 207 

which are the same across respondents but differ for each beach (e.g., length of the beach, 208 

water quality, or presence of dunes). Utility is expected to increase with desirable beach 209 

attributes (e.g., water quality), and decrease with undesirable beach attributes (e.g., unclean 210 

beaches). Each of the 𝑗 beaches corresponds to a bundle of beach attributes (𝑞#7), as well as 211 

a cost of travel 𝐶"# associated with getting there. The basic setting of the RUM in our case is: 212 

𝑈"# = 𝑉"# + 𝜀"# = 𝐴𝑆𝐶# +	𝛽>𝐶#" + ∑ 𝛽@A𝑞#7
B
7CD + 𝜀"# ,                                  (2) 213 
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where the individual’s (𝑖) utility 𝑈"#  of visiting beach 𝑗 is decomposed into an unobservable 214 

error term 𝜀"# and an observable component 𝑉"#  (indirect utility) that depends linearly on an 215 

alternative specific constant, travel cost and beach attributes. 216 

The parameters 𝛽> and 𝛽@A  represent the marginal utility of money and the 𝑘FG beach 217 

quality, respectively. We can calculate the marginal Willingness to Pay (WTP) for attribute 218 

𝑞7 as: 219 

𝑊𝑇𝑃7 = −
𝛽𝑞𝑘
LM
.  (3) 220 

Linearity in parameters in the functional form of the indirect utility function (2) is a 221 

relatively standard approach in the discrete choice modelling literature. This functional form 222 

also needs to ensure proper identification of the parameters of interest, which pertains to the 223 

unambiguous determination of the coefficients of the model (Lancsar and Louviere, 2008). 224 

The identification of the parameters is closely related to the variation in the matrix of 225 

attributes (right hand side matrix in equation (2)).  226 

While in SP data the variation of the attribute data is generated by the experimental 227 

design, in RP studies data on attributes are often collected objectively by researchers based 228 

on direct observation or existing data (Adamowicz et al., 1997). As a result, many attributes 229 

with RP data either do not have enough variation (e.g., an attribute taking the same value 230 

across beaches) or suffer from high collinearity (e.g., highly or perfectly correlation between 231 

two or more attributes). Our data are a prime example of this, as it suffers from both lack of 232 

variation and high collinearity. For example, lack of variation is present in the water quality 233 

variable: although the scale ranges from 1 to 5 (very bad to very good quality, respectively), 234 

the observed water quality along the study site only takes the value 3 (moderate) or 4 (good 235 

quality). High multicollinearity is also present in our data. For example, the correlation 236 

coefficient between the attribute levels for camping and food amenities is relatively high 237 

(0.72). Multicollinearity and lack of variation can complicate the precise estimation of 238 
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parameters of interest. In such a case, including all attributes to explain site choice can result 239 

in estimated coefficients having counter-intuitive signs and/or being statistically 240 

(in)significant. This is because these data issues cause flat regions in the log-likelihood 241 

function that is maximized in the estimation process of our discrete choice model. The 242 

numerical optimization methods applied in the maximum likelihood estimation process can 243 

easily end up in those flat regions that do not generally represent the global maximum of the 244 

maximized function. Alternatively, if the maximized solution happens to be the global 245 

maximum, a possible flatness of the function can lead to high standard errors and imprecise 246 

estimation. Welfare analysis conducted with such estimated parameters can easily yield 247 

seemingly statistically insignificant welfare measures, when in fact the scenarios considered 248 

increase or decrease welfare.  249 

Problems with RP data is one of the main motivations of combining RP and SP data (von 250 

Haefen and Phaneuf, 2008; Whitehead et al., 2008b). Some studies, such as Adamowicz et 251 

al. (1994), Ben-Akiva et al. (2002), and Earnhart (2002), combine data sources to reduce the 252 

collinearity present in the attribute levels and thus allow for the strong identification of 253 

attribute coefficients. 254 

If SP data is not available, Murdock (2006) proposes a two-stage strategy to ensure 255 

unbiased parameters of attributes with RP data. In the first stage, a discrete choice model is 256 

estimated given travel costs, any interaction of individual and attributes characteristics, and 257 

a full set of alternative specific constants. These constants should absorb and isolate the 258 

impact of time-invariant site-specific attributes (including those unobserved by the analyst). 259 

In a second stage, the estimates of these constants of the first stage become the dependent 260 

variable in an ordinary least squares regression and the observed site attributes are the 261 

explanatory variables. The number of observations in this second-stage is equal to the number 262 

of available sites. Some site choice model applications already apply this strategy (e.g., 263 
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Timmins and Murdock, 2007). However, this strategy may not yield reliable estimates if the 264 

number of observations in the second stage is low. 265 

Another strategy to reduce collinearity is to use factor or principal component analysis. 266 

Both these methods establish a correlational structure among the observed variables by 267 

creating latent variables called “factors” or “loadings” that can explain beach choice instead 268 

of beach attributes (Basilevsky, 1994). However, factor analysis and principal component 269 

analysis are not viable solutions in our case because the ultimate goal of our analysis is to 270 

inform coastal managers about the relative value of attributes, rather than the relative value 271 

of latent constructs which coastal managers cannot change.   272 

Instead, we use simulation to investigate the reliability and validity of 𝛽@A  and 𝛽> 273 

estimates prior to estimation. In the remainder of this section, we describe the simulation 274 

strategy employed. The simulation approach is summarized in Figure 3.  275 

Figure 3 – Summary of identification strategy (Steps 1 through 4) for each specification 276 

 277 

In Step 1, we define hypothetical population values of parameters 𝛽@A  and 𝛽> based on 278 

preliminary estimates. The assumed values of the parameters are assumed to be the values 279 

from employing Murdock’s strategy (reported in the first column of Table 3). If a particular 280 

specification does not include a specific attribute, we set the assumed value of its parameter 281 

to zero.  282 

Table 3. Assumed Parameters and Results from Pre-testing for Beach Attributes 283 

  Importance of attributes 

Draw from error distribution 500 times 

Step 3: Estimate 
Conditional 

Logit model to 

obtain 𝛽>O  and 𝛽@O 

Step 1: Define 
hypothetical 

population parameters 
𝛽> and 𝛽@ from 𝜀"# 

distribution 

Step 4: 
Compare   𝛽> 

and 𝛽@ with the 
distributions of 
𝛽>O  and 𝛽@O 

Step 2: 
Generate set 
of errors and 
compute 𝑈"#  
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Name of 
Variable 

Assumed 
Parameter Value 

Focus Group 
(relative importance) 

Pilot Studies Surveys 
(score from 1 to 5) 

Travel Cost -0.008 Very important 3.18 
Parking Spaces 0.003 Very important 4.17 

Congestion -4.477 Somewhat important  2.88 
Water Quality -0.774 Somewhat important   
Bird Protected 0.282 Somewhat important  3.67 

(Pristine nature and 
wildlife) 

Rocks -1.476 Not Important 
Dunes -0.125 Somewhat important  
Length -0.0001 Somewhat important   
Width 0.002 Somewhat important   
Toilets 0.038 Very important 2.63 

Food Amenities 0.541 Somewhat important  1.51 
Bike Path 1.020 Not Important  

Marina 0.686 Not Important  
Camping 0.194 Not Important  

Trash boxes -0.053   
Public Access 0.393   
 284 

In the second step, we compute the hypothetical utilities 𝑈"#  of all sites 𝑗 and for each 285 

respondent 𝑖 according to:  286 

𝑈"# = −𝛽>𝐶"# + 𝜷@Q 𝒒# +	𝜀"# ,	 (5) 287 

where 𝒒# is a vector representing various combinations of beach attributes, 𝜷@ is the 288 

corresponding vector of parameters and 𝜀"# is the idiosyncratic error assumed to be identically 289 

and independently Gumbel distributed. The hypothetical choice of each individual is set by 290 

the highest utility.  291 

These hypothetical choices are used in the third step to estimate a conditional logit model 292 

and the estimated parameters are saved for posterior analysis. The steps 2 and 3 are repeated 293 

500 times and estimations of each iteration are used to obtain the empirical distributions of 294 

the model parameters. We check if the assumed hypothetical parameter value falls inside of 295 

the 2.5th and 97.5th percentiles of the empirical distribution. If it does, we conclude that the 296 

specification yields unbiased, hence valid, parameter estimates. We also analyze the 297 
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precision, i.e. reliability, of the estimated coefficients by analyzing the spread of the 298 

distributions of the model parameters.  299 

Including all 15 attributes and 19 alternative specific constants to explain beach choice 300 

is not possible due to the existence of perfect multicollinearity. We look, therefore for a 301 

combination of attributes that allows for correct identification and precise estimation of all 302 

model parameters. First, we omit the alternative specific constants from the utility function. 303 

While it may seem a restrictive assumption, estimating the value of beach attributes is our 304 

primary focus. Second, we keep specifications that include four of the attributes found to be 305 

relevant in the pre-testing phase of the survey. The results of the focus group and pilot surveys 306 

were consistent in terms of which attributes were the most relevant for visitors (see Table 3). 307 

These are distance from home, clean beaches, parking and toilet facilities, and pristine nature 308 

(Kleppe and Jensen, 2018). Hence, we include number of parking spaces, toilet facilities, 309 

whether the beach is bird protected and presence of dunes (as an indication of pristine nature) 310 

to explain beach choice. These two restrictions narrow down the number of possible 311 

specifications to 2047 (i.e. all possible combinations of remaining 11 attributes). In Section 312 

4.1, we illustrate the usefulness of our simulation approach by investigating the precision and 313 

unbiasedness of parameter estimates in different alternative specifications.   314 

We also simulate whether the variation of the attribute levels in our sample is sufficient 315 

to identify parameters in more complex models such as mixed logit or latent class model that 316 

allow modeling of unobserved preference heterogeneity. The results indicate that the 317 

variation of the attribute levels in our dataset is not sufficient to retrieve the additional 318 

parameters in these more complex models. That is why we opt for adding flexibility to our 319 

conditional logit model by interacting the attribute coefficients with the observed group 320 

characteristics. 321 

4. Results 322 
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4.1. Simulation Results 323 

Before estimation, we used the above described simulation strategy to analyze the 324 

precision and unbiasedness of the parameters of interest. The aim is to understand the 325 

usefulness of the parameters to be estimated for coastal managers, which should be both valid 326 

and reliable.  327 

We first use our simulation strategy to infer on validity of the parameters. We implement 328 

the four steps described in Figure 3 to find out whether different specifications of the indirect 329 

utility function yield unbiased estimates. If the data generation process is correctly specified, 330 

we conclude that including all attributes to explain site choice yields unbiased parameters. 331 

An example how this is done visually is shown in Figure 4a and 4b below. These histograms 332 

are the outcome of our simulation for the specification with all 15 attributes plus travel cost. 333 

These present the empirical distribution of the estimator of a specific parameter based on the 334 

500 hypothetical utilities. We then compare the distributions with the assumed parameter 335 

value represented by a vertical line. If the assumed parameter value falls within the 0.025 and 336 

0.975 percentiles of the estimated parameters’ distributions, we conclude that the model is 337 

able to retrieve the parameter values from the underlying data generation process. As can be 338 

easily seen in Figures 4a and 4b this is the case for all attributes. Moreover. we check whether 339 

the specification with all 15 attributes is able to retrieve the assumed parameter values with 340 

different underlying data generation processes, that is different specifications of the utility 341 

function that includes less attributes.3 Since it does, we conclude that using all 15 attributes 342 

to explain site choice provides unbiased, hence valid parameter estimates, despite data 343 

suffering from high collinearity and lack of variation.4  344 

                                                
3 We would like to note that this specification may still suffer from omitted variable bias if we fail to account 
for additional attribute that are relevant to explain site choice.  
4 As pointed out by a referee, the simulation outcome is sensitive to the assumed hypothetical population 
parameters (see Step 1 in Figure 3). It is important to highlight that the set of assumed true values for the 
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The problem is that the precision of the estimated parameters is very low. As seen in 345 

Figures 4a and 4b, the empirical distributions of the estimated parameters have a large spread. 346 

For eleven out of fifteen attributes, such as parking spaces and being bird protected, the 347 

empirical distributions are very wide and include zero between the 0.025 and 0.975 348 

percentiles that indicate that the attributes can easily be non-significant in the estimation 349 

based on real data. Hence, for our sample size, there is not enough variation in the data to 350 

provide a precise estimate. This implies that estimated parameters and respective welfare 351 

changes are likely to be statistically insignificant. On the other hand, coastal managers might 352 

have tacit knowledge indicating that true values are different from zero, thus decreasing 353 

credibility of the research.   354 

                                                
parameters used in our simulation was based on values obtained from the Murdock's approach, while yields 
unbiased estimates. We conduct a robustness check by choosing different combinations of hypothetical 
population parameters and run additional simulations. More specifically we change these values to plausible 
ones given the estimates obtained from Murdock’s approach. It is true that the simulation exercise will be always 
incomplete as there is an infinite number of combinations of the assumed true values. Nonetheless, our 
additional simulations based on variation of these values offer a relatively high degree of robustness of our 
results.  
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Figure 4a. Assumed parameter value (vertical line) and empirical distribution of the 16 355 

parameters for specification including all 15 attributes  356 

  357 
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Figure 4b. Assumed parameter value (vertical line) and empirical distribution of the 16 358 

parameters for specification including all 15 attributes 359 

  360 
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We may improve precision by choosing a specification that omits some of the attributes 361 

that are highly correlated. However, omitting attributes might lead to omitted variable bias, 362 

which puts the validity of the results into question. Again, we use the simulation exercise to 363 

identify a specification that does not suffer from omitted variable bias even if the underlying 364 

data generation process includes the omitted variables, but that decreases the spread of the 365 

empirical distributions of model parameters. We set the assumed parameter values to be those 366 

shown in Table 3, irrespective of whether the parameter will be accounted for or not in the 367 

specification. We find that only 38 specifications out of 2047 possible combinations do not 368 

suffer from omitted variable bias from omitting some of these 15 attributes. To improve 369 

precision, we want to omit as many attributes as possible while preserving unbiasedness, so 370 

we choose the specification with 10 attributes. This specification includes parking spaces, 371 

congestion, water quality, bird protected, rocks, dunes, toilets, food amenities, bike path and 372 

marina. The results of the simulation exercise are shown in Figures 5a and 5b. In black, we 373 

show the distribution of estimated parameters of the 15-attribute specification and in the 374 

dashed line that of the 10-attribute specification. For the 10-attribute specification, the 375 

assumed parameter values (the vertical line) fall within the 2.5th and 97.5th percentiles of the 376 

empirical distributions. Across attributes, the distributions are narrower for the 10-attribute 377 

specification, rather than the 15-atttribute specification but the bias due to the omission of 378 

some attributes is negligible. This is what we mean by gains in precision by choosing a subset 379 

of attributes. This is the model we use for comparison purposes in Section 4.2.   380 
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Figure 5a. Assumed parameter value (vertical line) and empirical distribution of the 16 381 

parameters for specification including all 15 attributes (in black) and specification with 10 382 

attributes (in grey dashed line) 383 

  384 
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Figure 5b. Assumed parameter value (vertical line) and empirical distribution of the 16 385 

parameters for specification including all 15 attributes (in black) and specification with 10 386 

attributes (grey dashed line) 387 

 388 

4.2. Estimation Results 389 

We analyze the choice of the last visited beach in the 2018 summer season along the 390 

Jæren coast. These choices are conditional on individual and site-specific travel costs, and 391 

site-specific attributes. We have twenty beaches along Jæren that respondents reported as 392 

their last visited beach.  393 

We first report in Table 4 the estimated coefficients of three distinct models. The first 394 

model we report is Murdock (2006)’s strategy, which should yield unbiased estimates. We 395 

then report a specification wherein we include all 15 attributes as explanatory variables. This 396 

is the specification chosen if the researcher wants to include all available data (attributes) but 397 

does not address high multicollinearity and lack of variation in the matrix of attributes. We 398 

finally report estimated coefficients using the specification we identify using simulation in 399 
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Section 3 (with 10 attributes), which minimizes omitted variable bia but improves precision 400 

of the estimates.  401 

Table 4. Estimation Results for the Conditional Logit Model with all attributes, Murdock’s 402 

2-stage strategy and Conditional Logit model with 10 attributes 403 

 Murdock’s Strategy Conditional Logit 
Model with all (15) 

attributes 

Conditional Logit 
Model with 10 

attributes based on 
our identification 

strategy 
Travel Cost -0.008*** 

(0.001) 
-0.008*** 

(0.001) 
-0.008*** 

(0.001) 
Parking Spaces 0.003 

(0.004) 
0.005** 
(0.002) 

0.004** 
(0.001) 

Congestion -4.477 
(3.466) 

-5.702*** 
(1.171) 

-4.720*** 
(0.690) 

Water Quality -0.774 
(1.431) 

-0.324 
(0.637) 

-0.714** 
(0.253) 

Bird Protected 0.282 
(0.769) 

0.744* 
(0.343) 

0.487** 
(0.150) 

Length -0.0001 
(0.001) 

-0.0001 
(0.0002)  

Width 0.002 
(0.021) 

0.006 
(0.010)  

Rocks -1.476* 
(0.670) 

-1.660*** 
(0.264) 

-1.600*** 
(0.19) 

Dunes -0.125 
(0.921) 

-0.319 
(0.356) 

0.129 
(0.186) 

Toilets 0.038 
(0.434) 

-0.071 
(0.183) 

-0.136 
(0.105) 

Food Amenities 0.541 
(0.747) 

0.098 
(0.331) 

0.490*** 
(0.092) 

Bike Path 1.020 
(1.242) 

2.202*** 
(0.306) 

1.645*** 
(0.174) 

Marina 0.686 
(0.957) 

0.545 
(0.470) 

0.355 
(0.284) 

Camping 0.194 
(2.049) 

1.140 
(0.825)  

Trash Boxes -0.053 
(1.929) 

0.313 
(0.290)  

Public Access 0.393 
(1.015) 

-0.290 
(0.326)  

Number of 
Attributes 

15 15 10 
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Number of 
observations 

657 (first-stage) 
20 (second-stage) 

657 657 

Log-likelihood -1418 (first-stage) -1434 -1437 
AIC 2875 (first-stage) 2900 2897 
BIC 2965 (first-stage) 2972 2946 

 

Note: *** denotes statistical significance at the 0.1% level, ** at the 1% level, and * at the 5% level. 404 

Murdock (2006)’s strategy yields unbiased estimates, but only the coefficients associated 405 

with travel cost and rocks are statistically significant at the 5% significance level. All other 406 

coefficients have implausible high standard errors.  407 

In the second column, we report the parameter estimates for the 15-attribute model. 408 

These parameters are unbiased if there are not any remaining attributes that drive site choice 409 

and are correlated with any of the 15-attributes (e.g., clean beaches). The point estimates of 410 

this model (and of the 10-attribute model) are relatively close to the estimates obtained by 411 

Murdock’s strategy. The precision of these estimates improves slightly, with the coefficients 412 

associated with parking spaces, bird protected and bike path becoming statistically 413 

significant.  414 

In the third column, we report the parameter estimates for the 10-attribute model. There 415 

are additional gains in precision, with the coefficients associated with food amenities and 416 

water quality becoming statistically significant at the 5% level, and bird protected being 417 

statistically significant at the 1% level. Our 10-attribute model also exhibits better fit when 418 

comparing the AIC and BIC than the 15-attribute model. In conclusion, the estimation results 419 

confirm the simulation result, to wit, precision improves when using the 10-attribute 420 

specification.  421 

The estimates obtained conform to result of previous studies. Across all models, the 422 

travel cost variable is negative and statistically significant, thus exhibiting negative price 423 

sensitivity (Bishop and Boyle, 2019). Like previous studies (Bestard, 2014; Lew and Larson, 424 

2008; Parsons and Stefanova, 2009), we find that parking (i.e., number of parking spaces) is 425 
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considered an amenity and hence increases the probability of visitation. Our 10-attribute 426 

model indicates that good water quality is a disamenity, but this is likely to be due to lack of 427 

variation, as water quality is generally perceived by previous studies to be an amenity (Hilger 428 

and Hanemann, 2006). Our results indicate that areas protected for birds are perceived to be 429 

amenities, which conforms to previous findings that protected areas are amenities to visitors 430 

(Du Preez et al., 2011). The opposite is true for the presence of rocks: our results conform to 431 

previous findings by Lew and Larson (2005) in San Diego beaches that the presence of rocks 432 

decreases the probability of visitation.  433 

We are aware of the limitations associated with including congestion as an explanatory 434 

variable. The well-known challenge of including congestion is endogeneity: the same 435 

unobserved factors that drive the site choice of the individual also influence congestion at 436 

each site (Hindsley et al., 2007). Most authors account for the endogenous nature of 437 

congestion using an instrumental variables approach (e.g., Boxall et al., 2005; Timmins and 438 

Murdock, 2007) in the two-stage model proposed by Murdock (2006). We include congestion 439 

without the use of instrumental variables as the collected data do not allow for more complex 440 

model estimation and loss of efficiency, generally related to instrumental variable approach.  441 

As expected, congestion is perceived as a disamenity for visitors.  442 

Using our 15- and 10-attribute models, we focus on preference heterogeneity by 443 

accounting for observed characteristics of the individuals. Common variables that can 444 

explain preference heterogeneity include gender, age, group size, number of children in the 445 

group, and income. However, the beach choice is the result of a group based decision process, 446 

rather than an individual decision. Group characteristics are more likely to explain better 447 

beach choice rather than individual characteristics. Indeed, when interacting beach attributes 448 

with several individual characteristics (i.e., age, gender, membership to an environmental or 449 

touristic organization, and perceived knowledge about coastal fauna and flora), we do find 450 

that group characteristics explain beach choice better than individual characteristics (see 451 
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Appendix 1 for measures of fit of various models). Kaoru (1995) also find evidence that 452 

group composition influences recreational decisions.  453 

Given data availability, we use group size to disentangle the observed preference 454 

heterogeneity. The median group had two people, while the average group consisted of 3.13 455 

visitors. Additional variables to uncover preference heterogeneity include the activity 456 

engaged in by the group (e.g., sunbathing, running, fishing, walking, and relaxing) or number 457 

of children. However, the fit of these specifications is inferior to those of the specifications 458 

using group size (see Appendix 1).  459 

We estimate two conditional logit models with group size interactions (results are 460 

reported in Table 5). The above-mentioned conclusions regarding improvements in precision 461 

persist: standard errors using the 10-attribute model are lower than the 15-attribute model. 462 

As predicted, travel cost has a negative impact on utility, and hence on the probability of 463 

visitation.5 At the mean, less congestion, absence of rocks and bike path are welfare-464 

enhancing and significant. In the 10-attribute model, bird protection status and food amenity 465 

facilities are also welfare-enhancing and significant. Adding the interaction effects improves 466 

the fit of the model when compared with the model omitting any interactions (BIC decreases 467 

from 2946 to 2932; see Appendix 1 for details). 468 

 469 

Table 5. Estimation Results for the Conditional Logit Model with group size interactions 470 

 15-attribute Conditional Logit 
Model 

10-attribute Conditional Logit 
Model 

                                                
5 We do sensitivity analysis on the travel cost variable by: 1) not adjusting for multiple-purpose trips (Yeh et 
al., 2006) hence assuming that δ is one for all respondents; 2) using the self-reported departure coordinates to 
calculate distances and times instead of the postal code; 3) using a different percentage (50%) of the wage rate 
as the opportunity cost of time. While the coefficients of all attributes (except travel cost) remain unchanged, 
the fit of the models deteriorate in all of the sensitivity analyzes. Therefore, we choose to keep the adjustment 
for multiple purpose trips as proposed by Yeh et al. (2006), the postal codes as the departure coordinates, and 
33% of the wage rate as the opportunity cost of time. 
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Dep. Var.: 
Beach Choice 

Mean Effect Interaction effects 
with group size 

Mean Effect Interaction effects 
with group size 

Travel Cost -0.011*** 
(0.001) 

0.0002*** 
(0.00002) 

-0.011*** 
(0.001) 

0.0001*** 
(0.00001) 

Parking Spaces 0.005 
(0.004) 

0.0002 
(0.001) 

0.001 
(0.002) 

0.001 
(0.0004) 

Congestion -5.479*** 
(1.324) 

-0.136 
(0.346) 

-4.687*** 
(0.853) 

-0.163 
(0.231) 

Water Quality -0.539 
(1.184) 

0.107 
(0.430) 

-0.392 
(0.321) 

-0.107 
(0.067) 

Bird Protected 0.909 
(0.621) 

-0.029 
(0.226) 

1.036*** 
(0.242) 

-0.177** 
(0.066) 

Length 0.0001 
(0.0003) 

0.0001 
(0.0001)   

Width 0.024 
(0.018) 

-0.007 
(0.006)   

Rocks -1.309*** 
(0.414) 

-0.122 
(0.122) 

-1.497*** 
(0.270) 

-0.040 
(0.066) 

Dunes -0.678 
(0.636) 

0.109 
(0.225) 

0.212 
(0.286) 

-0.052 
(0.082) 

Toilets -0.048 
(0.357) 

0.011 
(0.128) 

0.055 
(0.164) 

-0.052 
(0.047) 

Food 
Amenities 

0.435 
(0.611) 

-0.122 
(0.212) 

0.589*** 
(0.136) 

-0.013 
(0.036) 

Bike Path 2.442*** 
(0.508) 

-0.137 
(0.154) 

1.920*** 
(0.284) 

-0.132 
(0.080) 

Marina 0.440 
(0.944) 

0.047 
(0.350) 

0.740 
(0.419) 

-0.138 
(0.105) 

Camping 0.200 
(1.576) 

0.411 
(0.567)   

Trash Boxes 0.361 
(0.434) 

-0.040 
(0.125)   

Public Access -0.658 
(0.481) 

0.191 
(0.127)   

Number of 
observations 

657 657 

Log-likelihood -1386.7 -1394.8 
AIC 2838 2834 

 
BIC 2981 2932 

Note: *** denotes statistical significance at the 0.1% level, ** at the 1% level, and * at the 5% level. 471 

 472 

Preferences differ given group size in what concerns the travel costs and bird protected 473 

status. Preference heterogeneity regarding the travel cost variable is fairly intuitive: the larger 474 

the group, the more the group shares the costs of travel, and thus they are less sensitive to the 475 
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travel cost variable. This result conforms to the findings in Kaoru (1995). Larger groups also 476 

value less bird protected beaches (in the 10-attribute model).  477 

Given the preference heterogeneity regarding some beach attributes, the marginal WTP 478 

for each attribute should vary across groups’ size. Three of the most common group 479 

compositions in our sample are one, two and four-person groups. To highlight the differences, 480 

we estimate marginal WTP for each attribute for 1-person and a 4-person group both for the 481 

15- and 10- attribute model.  482 

Table 6 reports the estimated marginal WTPs per visit. The standard errors of the WTPs 483 

are computed by the delta method. 484 

 485 

Table 6. Marginal WTP (in NOK and per group) for beach attributes in Jæren beaches 486 

 15-attribute Conditional logit model 10-attribute Conditional logit model 

 1-person 4-person group 1-person 4-person group 

Parking 

Spaces 

0.43 

(0.24) 

0.38 

(0.24) 

0.14 

(0.13) 

0.36** 

(0.13) 

Congestion -498.35*** 

(113.85) 

-557.26*** 

(113.85) 

-435.65*** 

(72.09) 

-499.60*** 

(72.09) 

Water 

Quality 

-38.36 

(75.86) 

-10.28 

(75.86) 

-44.90 

(25.87) 

-76.93** 

(25.87) 

Bird 

Protected 

78.10 

(40.52) 

73.41 

(40.52) 

77.21*** 

(18.05) 

30.84 

(18.05) 

Length 0.003 

(0.02) 

-0.02 

(0.02) 
  

Width 1.52 

(1.16) 

-0.41 

(1.16) 
  

Rocks -127.08*** 

(30.96) 

-166.48*** 

(30.96) 

-138.14*** 

(23.51) 

-155.29*** 

(23.51) 

Dunes -50.51 

(41.65) 

-22.50 

(41.65) 

14.35 

(20.83) 

0.21 

(20.83) 
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Toilets -3.27 

(22.76) 

-0.23 

(22.76) 

0.26 

(11.79) 

-14.29 

(11.79) 

Food 

Amenities 

27.79 

(39.84) 

-4.98 

(39.84) 

51.76*** 

(10.24) 

50.20*** 

(10.24) 

Bike Path 204.64*** 

(40.86) 

175.43*** 

(40.86) 

160.61*** 

(25.15) 

130.30*** 

(25.15) 

Marina 43.17 

(59.24) 

57.95 

(59.24) 

54.07 

(31.74) 

17.55 

(31.74) 

Camping 204.64 

(100.96) 

170.63 

(100.96) 
  

Trash Boxes 28.53 

(31.49) 

18.70 

(31.49) 
  

Public 

Access 

-41.40 

(35.96) 

9.94 

(35.96) 
  

Note: *** denotes statistical significance at the 0.1% level, ** at the 1% level, and * at the 5% level. As of 12/06/2019: 1 487 
Euro = NOK 9.7710; 1 USD = NOK 8.6318 (Source: https://www.bloomberg.com/markets/currencies) 488 

 489 

The same conclusions regarding precision are made when analyzing WTP estimates. The 490 

WTP is statistically insignificant for many attributes in the 15-attribute model. WTP 491 

estimates are statistically significant only for the case of congestion, presence of rocks and 492 

bike path. For example, one person is willing to pay 127.08 NOK to visit a beach without 493 

rocks. WTP are not statistically different for 1-person or a 4-person group. The 10-attribute 494 

model reveals that some groups have a statistically significant WTP to obtain a marginal 495 

increase in additional attributes: parking spaces, bird protected and food amenities. This 496 

model also highlights WTP differences across different group sizes in what concerns bird 497 

protected areas and parking. While one person is willing to pay 77 NOK to visit a bird 498 

protected beach but not willing to pay to have access to more parking spaces, a 4-person 499 

group is not willing to pay for the bird protection status but is willing to pay 0.36 NOK per 500 

visit for an additional parking space.  501 

 502 
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5. Policy Implications 503 

We illustrate the change in welfare from three beach management scenarios. First, we 504 

consider the improvement of parking and toilet facilities. These were undertaken in 2018 in 505 

one of the most popular beaches, but during the time of surveying, these were not open to the 506 

public (Personal Communication, Jæren Friluftsråd). Further improvements are expected in 507 

another beach by 2022 (Schibevaag, 2016). We estimate of the benefits of improving 508 

facilities, consisting of 154 additional parking spaces in Bore and 20 additional parking 509 

spaces in Brusand beach, as well as adding an extra toilet in both Bore and Brusand beaches 510 

(Schibevaag, 2016). We expect a slight welfare gain in this scenario.  511 

Second, the Jæren area is under several threats, including the wear-and-tear of beach 512 

dunes. This threat is especially relevant, not only for visitors but for the coastal environment. 513 

In six of the 20 beach sites, it is recommended to avoid walking on dunes since these are 514 

damaged (Fylkesmannen i Rogaland, 2018). The second scenario simulates the change in CV 515 

in case these six sites were to lose their dunes. We expect a welfare loss.  516 

Third, available public transportation to and from the Jæren beaches is of poor quality. 517 

One coastal manager (Fylkesmannen i Rogaland) is currently considering the creation of a 518 

free bus route during the summer season from the two main cities (Stavanger and Sandnes). 519 

We simulate the welfare change from such a bus route to the five most visited beaches. We 520 

assume that visitors change from their elicited mode of transportation to this new bus route 521 

only if their group’s travel cost is lower by choosing this bus route.6 Hence, this change is 522 

                                                
6 One referee pointed out that groups might have strong preferences towards the mode of transportation. For 
example, we expect that larger groups with more children would still not opt for using a free bus due to the 
convenience of travelling by car even if their travel costs are reduced. Hence, the assumption of groups changing 
their mode of transportation may not hold for some specific groups. In such a case, the number of people that 
would change mode of transportation would be overstated and the resulting welfare estimates of introduction 
of a free bus would be biased upwards. However, we do find that smaller groups with less children would use 
the free bus using the travel cost reduction assumption. We find that the average group size is smaller (albeit 
not statistically different) for the groups that take the free bus (2.5 people), rather than the groups that do not 
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through decreased travel costs for some of the visitors. We expect a welfare gain from this 523 

scenario. 524 

Table 7 presents the mean and median CV given the three scenarios. To compute these 525 

CV estimates, we use the 10-attribute model with group size interactions. Estimates for the 526 

annual flow of benefits were obtained by assuming a lower bound number of annual visitors 527 

to Jæren of 600 000 (Sveen, 2018) and the mean group size from our sample of 3.12. This 528 

results in an estimate of 192 307 groups of visitors per year in the region.   529 

Table 7. Compensating Variation in NOK (per group and per visit) for three policy scenarios 530 

Mean CV in NOK (per group and per visit) Mean Median Median Annual 

Flow of 

Benefits 

Scenario 1: Increase in number of facilities (i.e., 

toilets and parking spaces) in two beaches (Bore 

and Brusand) 

+2.73 +63.87 525 thousand 

NOK 

Scenario 2: Loss of dunes in six beaches where 

dunes are currently damaged 

-4.66 +34.70 -896 thousand 

NOK 

Scenario 3: New bus route from main nearby 

cities to the five most popular beaches 

+0.64 +10.02 123 thousand 

NOK 

 531 

As expected, Scenarios 1 and 3 yield median welfare gains for visitors of 2.73 NOK and 532 

0.64 NOK per group and per visit, respectively.7 The loss of beach dunes in Scenario 2 533 

generates a welfare loss for visitors at the mean (4.66 NOK per group and per visit), but not 534 

                                                
take it (3.3. people). Likewise, the groups that change for the free bus have on average less children (0.34) than 
the groups that do not take the free bus (0.74 children). Therefore, we recognize the potential bias in the 
estimated welfare gain, but the resulting group composition gives credibility to the robustness of the assumption. 
7 The number of groups that would change from their elicited mode of transportation to the new bus route is 
simulated to be 144 out of the 657 responses. For these 144 groups, the travel cost variable decreases, hence the 
welfare gain in this scenario. While we would also expect that the number of total visits would increase given 
a new bus route, this model only predicts changes across visitation sites and is not able to predict changes in 
the number of visits. To this end, a repeated site choice model or a count model would be more appropriate.  
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at the median. Recreational value changes per year amount to -896 thousand to 525 million 535 

NOK across different scenarios.  536 

6. Conclusions 537 

The quality of coastal areas may change over time, namely due to pressure from human 538 

activities. Coastal managers may intervene by improving facilities or restricting access to 539 

sites. These interventions change the recreationist’s probability of visiting each site, and it is 540 

useful for coastal managers to know how recreational values change when introducing new 541 

measures. The application of a site choice model allows us to estimate welfare changes in the 542 

face of different scenarios and willingness to pay (WTP) for coastal attributes. 543 

However, to be useful for coastal managers, WTP estimates should be both reliable and 544 

valid. Ensuring the validity of estimates means these should be unbiased, while reliability 545 

concerns improving precision, i.e. minimizing the variation of the error term rather than its 546 

bias. If a WTP for a given attribute has an implausibly high standard error, changes in the 547 

underlying attribute will appear to yield statistically insignificant, hence unreliable, changes 548 

in welfare.  549 

The underlying cause of a study’s unreliability may be the data itself, namely, due to 550 

high collinearity and lack of variation. We propose using simulation to investigate 551 

identification issues prior to estimation and find to a functional form for the utility function 552 

that reduces the multicollinearity in the data by avoiding highly correlated explanatory 553 

variables while avoiding omitted variable bias. The proposed solution to the identification 554 

problem expands the toolkit of practitioners that wish to explain observed choices among 555 

similar goods with few alternatives (e.g., less than 30).  556 

We apply our model to recreational choices in cold-water beaches on the southwestern 557 

coast of Norway. Our study is the first site choice model applied to Norway, and the third 558 

beach study-site in Europe wherein a site choice model is applied. We first illustrate the gains 559 
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in terms of precision by comparing alternative ways of modelling site choice. We then 560 

estimate a conditional logit model by accounting for interactions between beach attributes 561 

and group size. We conclude that we may improve precision of our coastal attribute 562 

parameters by omitting some of the highly correlated variables, as long as we can minimize 563 

omitted variable bias from doing so.  564 

We find that visitors care most about shorter distances (i.e., lower travel cost), less 565 

congestion, bird protection status, absence of rocks, food amenities and bike paths. When 566 

estimating WTP for attributes, we find that different groups have distinct preferences. 567 

Smaller groups prefer more pristine beaches (i.e., with bird protection status) and larger 568 

groups prefer more parking spaces. Changes in quantity or quality of these attributes will 569 

impact the welfare of groups differently. 570 

We analyze three scenarios involving changes in beach quality: improvements in parking 571 

and toilet facilities in two beaches, dune deterioration and creation of a new bus route. The 572 

first and third scenarios involve an improvement in beach quality and a decrease in travel 573 

costs, respectively, and thus are welfare-enhancing. On the other hand, the loss of sand dunes 574 

results in a loss in welfare, highlighting the critical role of dunes for the experience of these 575 

visitors. We also show that the annual flow of recreational benefits is substantial, i.e. in the 576 

order of 100 to 800 thousands of Norwegian kroner per year. Managers of recreational sites 577 

should take into consideration these intrinsic values when improving and maintaining the 578 

quality of coastal sites. 579 
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APPENDICES 728 

 729 

Appendix 1 – Measures of Fit (AIC, BIC, AIC3 and CAIC) of 10-attribute 730 

Conditional Logit models with Interactions 731 

 Interactions Considered AIC BIC AIC3 CAIC 

 None 2897 2946 2908 2957 

G
ro

up
 C

ha
ra

ct
er

ist
ic

s 

Group Size 2834 2932 2856 2954 

Number of Children 2883 2982 2905 3004 

Group Size & Number of 

Children 2809 2958 2842 2991 

Purpose of Trip 2905 3152 2960 3207 

In
di

vi
du

al
 C

ha
ra

ct
er

ist
ic

s  

Age of Respondent 2888 2987 2910 3009 

Membership in Tourist 

Association 2899 2997 2921 3019 

Membership in Environmental 

Association 2910 3008 2932 3030 

Knowledge of local fauna and 

flora 2866 2965 2888 2987 
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