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Abstract

In practical scenarios, it is common to learn from a sequence of related problems (tasks).
Such tasks are usually time-dependent in the sense that consecutive tasks are often
significantly more similar. Time-dependency is common in multiple applications such
as load forecasting, spam main filtering, and face emotion recognition. For instance, in
the problem of load forecasting, the consumption patterns in consecutive time periods
are significantly more similar since human habits and weather factors change gradually
over time. Learning from a sequence tasks holds promise to enable accurate performance
even with few samples per task by leveraging information from different tasks. However,
harnessing the benefits of learning from a sequence of tasks is challenging since tasks
are characterized by different underlying distributions.

Most existing techniques are designed for situations where the tasks’ similarities
do not depend on their order in the sequence. Existing techniques designed for time-
dependent tasks adapt to changes between consecutive tasks accounting for a scalar
rate of change by using a carefully chosen parameter such as a learning rate or a weight
factor. However, the tasks’ changes are commonly multidimensional, i.e., the time-
dependency often varies across different statistical characteristics describing the tasks.
For instance, in the problem of load forecasting, the statistical characteristics related
to weather factors often change differently from those related to generation.

In this dissertation, we establish methodologies for supervised learning from a se-
quence of time-dependent tasks that effectively exploit information from all tasks,
provide multidimensional adaptation to tasks’ changes, and provide computable tight
performance guarantees. We develop methods for supervised learning settings where
tasks arrive over time including techniques for supervised classification under concept
drift (SCD) and techniques for continual learning (CL). In addition, we present tech-
niques for load forecasting that can adapt to time changes in consumption patterns
and assess intrinsic uncertainties in load demand. The numerical results show that the
proposed methodologies can significantly improve the performance of existing methods
using multiple benchmark datasets. This dissertation makes theoretical contributions
leading to efficient algorithms for multiple machine learning scenarios that provide com-
putable performance guarantees and superior performance than state-of-the-art tech-
niques.
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Chapter 0

Introduction

In practical scenarios, it is often of interest to learn from a sequence of problems (tasks).
Such scenarios include multi-source domain adaptation (MDA) (e.g., [1,2]), multi-task
learning (MTL) (e.g., [3, 4]), supervised classification under concept drift (SCD) (e.g.,
[5, 6]), and continual learning (CL) (e.g., [7, 8]). For instance, MDA has been used to
learn to recognize diseases in medical data using medical images from different patients
[9], and MTL has been used to learn to recognize facial emotions using images taken
from multiple facial expressions [10].

Learning from a sequence of tasks can increase the performance of each task using
information from all the tasks in the sequence [7,8,11]. Such transfer of information can
enable accurate classification even in cases with reduced sample sizes, thus significantly
increasing the effective sample size (ESS) of each task. However, exploiting the benefits
of learning from a sequence of tasks is challenging since tasks are characterized by
different underlying distributions [12–16].

Tasks in a sequence are usually time-dependent in the sense that consecutive tasks
often have a higher similarity. Time-dependency is common in multiple applications
including load forecasting [17], spam mail filtering [18], portraits classification [19], and
credit card fraud detection [20]. For instance, in the problem of classification of portraits
from different time periods [19]; the similarity between consecutive tasks (portraits of
consecutive time periods) is significantly higher (see Figure 1).

0.1 Learning from a sequence of tasks

This section briefly describes machine learning scenarios for supervised learning from
a sequence of tasks. Such scenarios can be classified as batch learning scenarios and
online learning scenarios. Batch learning uses a pool of training samples to obtain
classification rules and includes MDA and MTL; while online learning uses training
samples that arrive over time to obtain classification rules at each time step and includes
online adaptive learning and CL.

MDA learns the last task in the sequence (target domain) using information from

1
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Figure 1: Tasks in a sequence are characterized by different underlying distributions and
consecutive tasks are often more similar. The proposed learning methodology obtains
an uncertainty set Ui for each task that can include the underlying distribution pi.

different tasks (source domains) [1, 2, 21–29], while MTL simultaneously learns the
sequence of tasks using information from all the tasks in the sequence [3,4,30–37]. For
instance, MDA can be used to classify portraits of men and women from the 80’s using
portrait photographs from the 60’s and 70’s (source tasks), while MTL can be used
to classify portraits from the 60’s, 70’s, and 80’s using portrait photographs from such
time periods. MDA is common in multiple applications such as sentiment classification
[38], webpage tagging [39], and face recognition [40]; and MTL is common in multiple
application such as face emotion recognition [10], object recognition [41], and animals
classification [42].

In online adaptive learning and CL, sample sets corresponding with different tasks
arrive over time. Online adaptive learning learns at each time step the last task using
information from preceding tasks [5, 6, 43–48], while CL learns at each time step the
sequence of tasks using information from all observed tasks [7, 8, 11, 14–16, 49–53]. For
instance, online adaptive learning and CL can be used to classify portraits of men
and women over time. Online adaptive learning can be used to classify at the 80’s
portraits from the 80’s using portrait photographs up to the 70’s, and CL can be used
to classify at the 80’s portraits from the 60’s, 70’s, and 80’s using portraits photographs
from such time periods. Online adaptive learning is common in multiple applications
including regression problems such as load forecasting [17] and weather prediction [44]
and classification problems (classification in these settings in commonly referred to as
SCD) such as spam mail filtering [18] and credit card fraud detection [20]; and CL is
common in multiples applications such as robotics [54] and human activity recognition
[55].

0.2 Existing methods

In this section, we briefly review methods that have been used for MDA, SCD, MTL,
and CL.
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Techniques developed for MDA learn the target task by using information from
source tasks [1,2,21–29]. Ensemble approaches use a weighted combination of informa-
tion (e.g., samples and classification rules) from source tasks [1,24,25], and distribution
alignment approaches learn the target task by using feature representations that align
source and target distributions [26–29]. For instance, Muandet et al. [27] learn the
target task by obtaining task invariant features that are shared across all tasks.

Techniques developed for MTL learn the whole sequence of tasks by using informa-
tion from all the tasks [3, 4, 30–37]. Soft parameter sharing approaches learn specific
layers for each task [32, 33], while hard parameter sharing approaches learn common
hidden layers across all tasks [34–36]. For instance, Long et al. [35] learn five common
convolutional layers of AlexNet [56] across all tasks.

Techniques developed for SCD learn at each time step the last task in the sequence
by using information from the most recent tasks [5,6,43–48]. Sliding window approaches
use a set of stored samples from the most recent preceding tasks [57,58], while learning
rate approaches slightly change the classification rule for the preceding task using the
samples from the most recent task [46, 48]. For instance, Shen et al. [48] utilize a
time-varying combination of rules obtained with different learning rates.

Techniques developed for CL learn at each time step the whole sequence of observed
tasks by using information from all the tasks [7,8,11,14–16,49–53]. Dynamic architec-
ture approaches learn shared parameters using samples from all the tasks together with
task-specific parameters using samples from the corresponding task [14, 51]; and re-
play approaches learn parameters using a pool of stored samples from all the preceding
tasks together with the samples from the last task [11,16,59]. For instance, Lopez-Paz
and Ranzato [11] solve at each time step an optimization problem with constraints
determined by samples from preceding tasks.

Existing techniques for MDA, MTL, and CL are designed for situations where the
tasks’ similarities do not depend on their order in the sequence and cannot capture
the usual time-dependency. In the current literature, only techniques for SCD [46–
48, 57, 60–63] and the work for CL presented in [64] are designed for time-dependent
tasks. Such methods adapt to changes between consecutive tasks accounting for a
scalar rate of change by using a carefully chosen parameter such as a learning rate or a
weight factor. However, the tasks’ changes cannot be adequately addressed accounting
only for a scalar rate of change. Such inadequacy is due to the fact that changes are
commonly multidimensional, i.e., different statistical characteristics describing the tasks
often change in a different manner.

Existing techniques do not provide computable performance guarantees in time-
dependent environments. Techniques for MDA can provide non-computable perfor-
mance guarantees in terms of distribution discrepancies between the source tasks and
the target task [1, 65–67], while current techniques for MTL can provide computable
performance guarantees based on the PAC-Bayes theory but are not designed for time-
dependent tasks [68–70]. In addition, techniques for SCD can provide non-computable
performance guarantees for time-dependent tasks in terms of discrepancies between con-
secutive distributions [71, 72]; while in the current literature of CL, only [64] provides



CHAPTER 0. INTRODUCTION 4

performance guarantees for time-dependent tasks based on PAC-Bayes theory but are
non-computable in practice.

0.3 Contributions

This section describes the technical contributions, summarizes the results, and provides
an outline of the dissertation.

In this dissertation, we establish methodologies for supervised learning from a se-
quence of time-dependent tasks that effectively exploit information from all tasks, pro-
vide multidimensional adaptation to tasks’ changes, and provide computable tight per-
formance guarantees. We develop methods for supervised learning settings where tasks
arrive over time including techniques for SCD and techniques for CL. In addition, we
present techniques for load forecasting that can adapt to time changes in consump-
tion patterns and assess intrinsic uncertainties in load demand. The numerical results
show that the proposed techniques can significantly improve the performance of existing
methods using multiple benchmark datasets. This dissertation makes theoretical con-
tributions leading to efficient algorithms for multiple machine learning scenarios that
provide computable performance guarantees and superior performance than state-of-the
art techniques.

The proposed learning methodologies for classification sequentially obtain rules with
the smallest worst-case expected loss over distributions in an uncertainty set. Such
techniques efficiently leverage information from all tasks in the sequence and can harness
changes in tasks’ distributions by using a sequence of uncertainty sets that can contain
the true underlying distributions (see Figure 1). The experimental results assess the
performance of the proposed methodologies in comparison with existing techniques and
the reliability of the presented bounds.

The contributions of this thesis are organized in 4 chapters corresponding to 4 pa-
pers: “Minimax classification under concept drift with multidimensional adaptation
and performance guarantees,” published in the International Conference on Machine
Learning, 2022; “Probabilisitic Load Forecasting Based on Online Adaptive Learning,”
published in IEEE Transactions on Power Systems, 2021; “Minimax forward and back-
ward learning of evolving tasks with performance guarantees,” submitted to Advances
in Neural Information Processing Systems, 2023; and “Learning in time-dependent en-
vironments based on minimax classification,” to be submitted to Journal of Machine
Learning Research. The paper “Probabilisitic Load Forecasting Based on Online Adap-
tive Learning” achieved the Best Applied Contribution in the Statistics Field awarded
by the Spanish Society of Statistics and Operations Research-BBVA Foundation in
2022. In addition, the methods developed for minimax classification under concept
drift have resulted in a patent application submitted in 2021. In the following, we
discuss the four chapters in deeper detail.
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Figure 2: The proposed methodology increases the ESS leveraging information from all
the tasks and provides multidimensional adaptation to task changes.

0.3.1 Learning time-dependent tasks

Chapter 1 establishes a learning methodology for time-dependent environments based
on minimax risk classifiers (MRCs). The proposed methodology includes multiple ma-
chine learning scenarios, provides multidimensional adaptation to tasks’ changes, and
provides computable performance guarantees. First, we describe a general problem for-
mulation for learning from a sequence of tasks that includes batch learning scenarios
such as MDA and MTL as well as for online learning scenarios such as SCD and CL.
For these settings, we develop learning techniques that account for multidimensional
adaptation to time-dependent tasks by estimating multiple statistical characteristics
of the varying underlying distribution. Such multidimensional adaptation can harness
the change in each statistical characteristic describing the tasks. In the numerical re-
sults, we show the performance improvement of multidimensional adaptation to tasks’
changes. Figure 2b shows the classification error of the proposed methodology and a
state-of-the-art technique increasing the variance of the change between consecutive
tasks. Such figure shows that the proposed methodology better account for multidi-
mensional tasks’ changes than state-of-the-art techniques.

The proposed methodology provides computable performance guarantees in time-
dependent environments and we analytically characterize the ESS increase leveraging
information from all the tasks in the sequence. Figure 2a shows the ESS increase of
the 10-th task using information from the preceding tasks (tasks from 1 to 10), using
information from 13 tasks (tasks from 1 to 13), and from 20 tasks (tasks from 1 to 20).
Such figure shows that the ESS increases with the number of tasks, especially the ESS
significantly increases when nd decreases between 1 and 1/j2.

We describe in detail the efficient implementation of the proposed methodology for
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Table 1: Classification error of the proposed methodology in comparison with the state-
of-the-art techniques for CL.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR

n 10 100 10 100 10 100 10 100 10 100 10 100

GEM 43.53 23.45 39.09 13.78 69.78 53.60 12.20 12.10 45.28 32.02 56.60 8.60

MER 38.62 19.37 27.25 12.71 47.58 30.26 12.13 12.13 36.34 34.54 20.53 7.40

ELLA 46.36 42.98 48.75 47.11 67.15 67.35 19.10 17.79 48.13 47.96 61.15 60.43

EWC 48.94 37.17 45.75 30.68 50.03 41.17 12.13 12.13 47.05 39.93 62.73 38.53

MRCs 14.18 9.42 14.48 8.68 33.81 24.53 10.32 10.32 37.02 21.04 8.22 4.06
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Figure 3: Results on real-world datas shows the evolution of accumulated mistake
bounds.

batch learning scenarios such as MDA and MTL as well as for online learning scenarios
such as SCD and CL. Using benchmark datasets, the experimental results quantify the
performance improvement of the proposed methodology (MRCs) in multiple scenarios
in comparison with existing techniques using n = 10 and n = 100 samples per task (see
Table 1).

0.3.2 Minimax classification under concept drift

In Chapter 2, we present adaptive minimax risk classifiers (AMRCs) for supervised
classification under concept drift. In the addressed setting, instance-label pairs arrive
over time and each instance-label pair is sampled from a time-varying underlying dis-
tribution. Learning methods use at each time step the most recent instance-label and
the classification rule at previous time to update the classification rule.

The proposed techniques account for multidimensional time changes by means of a



CHAPTER 0. INTRODUCTION 7

Forward n = 100
Forward and backward n = 10

Forward n = 10

Forward and backward n = 100

C
la

ss
ifi

ca
ti

on
er

ro
r/

si
n

gl
e-

ta
sk

10 30 50 70

0.8

0.6

1

Number of tasks k

(a) Classification error per number of tasks.

C
la

ss
ifi

ca
ti

on
er

ro
r

Forward k = 10
Single-task

Forward and backward k = 10
Forward k = 100
Forward and backward k = 100

Sample size n
10 30 50 70 90

0.1

0.2

0.3

(b) Classification error per sample size.

Figure 4: Forward and backward learning can sharply boost performance and ESS as
tasks arrive.

multivariate and high-order tracking of the time-varying underlying distribution. We
propose tracking techniques that model the detailed evolution of the statistical charac-
teristics of the time-varying underlying distribution using partially-observed dynamical
systems. In addition, we propose techniques to learn AMRCs using an efficient sub-
gradient method that utilizes warm-starts and maintains local approximations of the
objective function. Chapter 2 describes the implementation of the proposed tracking
and learning techniques.

Differently from existing techniques, AMRCs can provide computable tight perfor-
mance guarantees. Specifically, the proposed techniques provide performance guaran-
tees for AMRCs in terms of instantaneous bounds for error probabilities and bounds for
accumulated mistakes. Figure 3 shows the reliability of the presented bounds. Specifi-
cally, Figure 3a shows that the instantaneous bounds can offer tight upper bounds for
the error probability at each time, and Figure 3b provides comparisons of AMRC accu-
mulated mistakes with state-of-the-art techniques and the accumulated mistake bound.
As can be seen in such figure, the accumulated mistake bounds obtained at AMRC
learning can offer accurate estimates for the classification error.

0.3.3 Minimax classification for continual learning

As a third contribution, Chapter 3 presents continual learning methods based on min-
imax risk classifiers (CL-MRCs). We propose learning techniques that can effectively
incorporate information from the ever-increasing sequence of tasks and provide perfor-
mance guarantees for forward and backward learning.

The proposed techniques effectively exploit forward and backward learning and ac-
count for time-dependent tasks. Specifically, we propose forward learning techniques
that recursively use the information from preceding tasks to learn the last task in the
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Figure 5: Performance comparison between APLF method and conventional techniques.

sequence, and we propose forward and backward learning techniques that use the infor-
mation from the last task to improve performance of the sequence of tasks. Figure 4a
shows the classification error of CL-MRC method divided by the classification error
of single-task learning for different number of tasks with n = 10 and n = 100 sample
sizes. Such figure shows that forward and backward learning can significantly improve
the performance of CL-MRCs as tasks arrive. In addition, Figure 4b shows the classi-
fication error of CL-MRCs method for different sample sizes with k = 10 and k = 100
tasks. Such figures show that the methods proposed can effectively exploit backward
learning that results in enhanced classification error in all the experimental results using
multiple datasets, different sample sizes, and number of tasks.

The proposed techniques provide performance guarantees for forward and backward
learning. To the best of our knowledge, the proposed techniques provide the first
performance guarantees for CL that show positive backward transfer. In particular,
the bounds for forward and backward learning are significantly lower than those for
forward learning. In addition, we analytically characterize the increase in effective
sample size provided by forward and backward learning in terms of the tasks’ expected
quadratic change and the number of tasks.

0.3.4 Adaptive probabilistic load forecasting

Chapter 4 presents techniques for adaptive probabilistic load forecasting (APLF) that
can harness changes in consumption patterns and assess load uncertainties. Load fore-
casting is crucial for multiple energy management tasks such as scheduling generation
capacity, planning supply and demand, and minimizing energy trade costs. Such rel-
evance has increased even more in recent years due to the integration of renewable
energies, electric cars, and microgrids. Conventional load forecasting techniques obtain
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single-value load forecasts by exploiting consumption patterns of past load demand.
However, such techniques cannot assess intrinsic uncertainties in load demand, and
cannot capture dynamic changes in consumption patterns. To address these problems,
Chapter 4 presents a method for probabilistic load forecasting based on the adaptive
online learning of hidden Markov model (HMM). We propose learning and forecasting
techniques with theoretical guarantees, and experimentally assess their performance in
multiple scenarios. In particular, we develop adaptive online learning techniques that
update model parameters recursively, and sequential prediction techniques that obtain
probabilistic forecasts using the most recent parameters.

The performance of the method is evaluated using multiple datasets corresponding
with regions that have different sizes and display assorted time-varying consumption
patterns. The results show that the proposed method can significantly improve the
performance of existing techniques for a wide range of scenarios. Figure 5a provides
comparisons of the presented APLF with 5 representative existing techniques. Such
figure shows the empirical cumulative distribution functions (CDFs) of the absolute
value of prediction errors. Figure 5a shows that the proposed APLF method achieves
high accuracies in comparison with existing techniques and shows that high errors occur
with low probability for APLF method. For instance, the error of APLF method is less
than 0.8 GW with probability 0.8, while the 5 other methods reach errors of around
1.3 GW with such probability.

Figure 5b provides quantification of the probabilistic performance of different meth-
ods. Such figure shows the correspondence between the calibration C(q) of probabilistic
forecasts and the quantile q. This calibration plot shows that Gaussian process (GP)
and quantile regression (QR) tend to obtain forecast quantiles higher than the true
quantiles, while APLF obtains more unbiased probabilistic forecasts. In particular, the
true load is higher than the 50 quantile forecast load with probability very near 50%
for APLF.

0.4 Background

This section briefly recalls the problem formulation and learning approaches for super-
vised classification and describes MRCs and HMMs.

Supervised classification Supervised classification uses training samples to deter-
mine classification rules that assign labels to instances. We denote by X and Y the sets
of instances and labels, respectively; both sets are taken to be finite with Y represented
by {1, 2, ..., |Y|}. We denote by T(X ,Y) the set of all classification rules (both ran-
domized and deterministic) and we denote by h(y|x) the probability with which rule
h ∈ T(X ,Y) assigns label y ∈ Y to instance x ∈ X (h(y|x) ∈ {0, 1} for determin-
istic classification rules). In addition, we denote by ∆(X × Y) the set of probability
distributions on X × Y and by ℓ(h, p) the expected 0-1 loss of the classification rule
h ∈ T(X ,Y) with respect to distribution p ∈ ∆(X × Y). If p∗ ∈ ∆(X × Y) is the
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underlying distribution of the instance-label pairs, then ℓ(h, p∗) is the error probability
of rule h denoted in the following as R(h).

Samples are usually represented as real vectors by using a feature mapping Φ :
X ×Y → R

m. The most common way to define such feature mapping is using multiple
features over instances together with one-hot encodings of labels as follows (see e.g., [73])

Φ(x, y) = ey ⊗Ψ(x) =
[
1{y = 1}Ψ(x)T,1{y = 2}Ψ(x)T, ...,1{y = |Y|}Ψ(x)T

]T
(1)

where the map Ψ : X → R
d represents instances as real vectors. For instance, such

map can be given by random Fourier features (RFF), that is

Ψ(x) =
[

cos(uT
1 x), cos(uT

2 x), ..., cos(uT
Dx), sin(uT

1 x), sin(uT
2 x), ..., sin(uT

Dx)
]T

for D random Gaussian vectors u1,u2, ...,uD ∼ N(0, γI) with covariance given by the
scaling parameter γ (see e.g., [48, 74, 75]).

Learning approaches The classification methodologies presented are based on ro-
bust risk minimization (RRM) instead of empirical risk minimization (ERM) since
training samples corresponding to different tasks follow different distributions. Meth-
ods based on ERM approach for supervised classification aims to minimize the empiri-
cal expected loss of training samples, while methods based on RRM approach aims to
minimize the worst-case expected loss with respect to an uncertainty set of distribu-
tions. In addition, methods based on ERM cannot provide performance guarantees in
time-dependent environments since training samples follow a time-varying underlying
distribution. For the methods presented, we utilize MRCs that learn classification rules
by minimizing the worst-case expected loss against an uncertainty set and can pro-
vide performance guarantees. Such techniques are especially suitable for SCD because
MRCs are based on expectation estimates and do not require to use training samples
from the same underlying distribution.

Minimax risk classifiers MRCs learn classification rules by minimizing the worst-
case error probability over distributions in an uncertainty set [76–78]. Such techniques
are especially suitable for learning in time-dependent environments because MRCs de-
termine the uncertainty sets by expectation estimates and do not require to use samples
from the same underlying distribution.

MRCs learn classification rules over uncertainty sets determined by expectation
estimates of a feature mapping Φ : X × Y → R

m as

U = {p ∈ ∆(X × Y) : |Ep{Φ(x, y)} − τ | � λ} (2)

where τ denotes the vector of expectation estimates corresponding with the feature
mapping Φ and λ � 0 is a confidence vector that accounts for inaccuracies in the
estimate.
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Given the uncertainty set U , MRC rules are solutions of the optimization problem

R(U) = min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) (3)

where R(U) denotes the minimax risk and ℓ(h, p) denotes the expected loss of classi-
fication rule h for distribution p. In the following, we utilize the 0-1-loss so that the
expected loss with respect to the underlying distribution is the error probability of the
classification rule that is denoted by R(h).

The MRC rule h assigns label ŷ ∈ Y to instance x ∈ X with probability

h(ŷ|x) =

{(
Φ(x, ŷ)Tµ∗ − ϕ(µ∗)

)
+
/cx if cx 6= 0

1/|Y| if cx = 0
(4)

with

ϕ(µ∗) = max
x∈X ,C⊆Y

(∑

y∈C

Φ(x, y)Tµ∗ − 1
)
/|C| (5)

cx =
∑

y∈Y

(
Φ(x, y)Tµ∗ − ϕ(µ∗)

)
+
.

The vector parameters µ∗ is the solution of the convex optimization problem

min
µ

1− τTµ + ϕ(µ) + λT |µ| (6)

given by the Fenchel-Lagrange dual of (3) [76,78]. The label that maximizes the prob-
ability in (4) is given by ŷ ∈ arg maxy∈Y Φ(x, y)Tµ∗. The deterministic classification
rule hd that assigns such label ŷ to instance x will be referred in the following as
deterministic MRC.

MRCs for standard supervised classification obtain classification rules leveraging
information only from a sample set D = {(xi, yi)}ni=1 of size n. Such methods obtain
the mean and confidence vectors that determine the uncertainty set given by (2) as

τ =
1

n

n∑

i=1

Φ (xi, yi) , λ = λ0

√
s, s =

σ2

n
(7)

with σ2 an estimate of Varp{Φ(x, y)}, e.g., the sample variance of the n samples. The
vector s describes the mean squared errors (MSEs) of the mean vector components and
directly gives the confidence vector λ as shown in (7).

In standard supervised classification, MRCs provide bounds for the error probability
R(h) with respect to the minimax risk R(U) and the smallest minimax risk, denoted by
R∞, as described in [76, 78]. The smallest minimax risk corresponds with uncertainty
sets given by the true expectation of the feature mapping and can converge to the Bayes
risk increasing the number of components of the feature mapping [78]. If the mean
vector of expectation estimates is obtained as in (7), then the performance bounds of
MRCs are of the usual order O(1/

√
n) where n is the sample size. Such performance

bounds of MRCs also ensure generalization for deterministic MRCs because R(hd) ≤
2R(h) since 1− hd(y|x) ≤ 2(1− h(y|x)) for any x ∈ X , y ∈ Y .
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o1 o2 ot−1 ot

s1 s2 st−1 st

Figure 6: Hidden Markov model for sequences {st}t≥1 and {ot}t≥1.

Hidden Markov model The methodologies presented are based on HMM also
known as state-space models. Specifically, we model the relationship between states
{st}t≥1 and observations {ot}t≥1 as a HMM. Such models allow to predict hidden
states from past states and observations, and are determined by conditional distribu-
tions that represents the relationship between two following states and between each
state and observations (see Figure 6). We model the sequence of states and obser-
vations as a non-homogeneous HMM so that both conditional distributions change in
time. Such dynamic modelling allows to adapt to changes in the underlying distribu-
tion. In the classification methodologies proposed, the states are expectations of each
task and the observations are sample averages; while in the regression method, the
states are load demands at each time step an the observations are variables related to
load demand such as weather factors.





Chapter 1

Learning Time-dependent Tasks

1.1 Introduction

Learning a sequence of classification problems (tasks) is often of interest in multiple ma-
chine learning scenarios including MDA (e.g., [1,2]), MTL (e.g., [3,4]), SCD (e.g., [5,6]),
and CL (e.g., [7, 8]). In such a sequence, it is common that tasks are time-dependent
in the sense that consecutive tasks often have a higher similarity. An example of such
evolving tasks is the classification of portraits from different time periods [19]; in that
case, the similarity between consecutive tasks (portraits of consecutive time periods) is
significantly higher. Learning a sequence of tasks holds promise to significantly improve
performance by leveraging information from different tasks. Such transfer of informa-
tion can enable accurate classification even in cases with reduced sample sizes, thus
significantly increasing the ESS of each task. However, exploiting the benefits of trans-
ferring information is challenging since tasks are characterized by different underlying
distributions [12–16].

This chapter presents a learning methodology for time-dependent environments
that includes multiple machine learning scenarios, account for multidimensional tasks’
changes, and provides computable performance guarantees. Specifically, the main con-
tributions of this chapter are as follows.

• We establish a learning methodology for classification in time-dependent environ-
ments based on MRCs. Such methodology includes multiple scenarios such as
MDA, SCD, MTL, and CL.

• We develop learning techniques that account for multidimensional adaptation
to time-dependent tasks by estimating multiple statistical characteristics of the
varying underlying distribution.

• We show that the proposed methodology can provide computable tight perfor-
mance guarantees in time-dependent environments and also show the ESS increase
of each task using information from other tasks.

13
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• Using benchmark datasets, numerical results quantify the performance improve-
ment of the proposed methodology in multiple scenarios and the reliability of the
performance guarantees.

The rest of this chapter is organized as follows. Section 1.2 briefly describes the
problem formulation and MRCs. Section 1.3 presents the learning methodology for clas-
sification in time-dependent environments and describes the performance guarantees.
Sections 1.4 and 1.5 propose sequential techniques for efficient learning the proposed
methods and analytically characterize the ESS increase, respectively. We describe the
implementation in scenarios under time-dependent environments in Section 1.6. Then,
Section 1.7 includes numerical results.

Notation Calligraphic letters represent sets; bold lowercase letters represent vectors;
bold uppercase letters represent matrices; I and I{·} denote the identity matrix and the
indicator function, respectively; (·)+ denotes the positive part of its argument; sign(·)
denotes the vector given by the signs of the argument components; ei denotes the i-th
vector in a standard basis, ‖ · ‖1 and ‖ · ‖∞ denote the 1-norm and the infinity norm of
its argument, respectively; � and � denote vector inequalities; and Ep{ · } and Varp{·}
denote the expectation and the variance of its argument with respect to distribution
p. For a vector v, v(i) and vT denote the i-th component and the transpose of v,
respectively. In addition, non-linear operators acting on vectors of the same dimension
denote component-wise operations. For instance, |v| and v2 denote the vector formed
by the absolute value and the square of each component, respectively.

1.2 Problem Formulation

This section describes the problem formulation.
In supervised classification from a sequence of tasks, sample sets

D1, D2, . . . , Dk correspond with different classification tasks characterized by under-
lying distributions p1, p2, . . . , pk. Learning methods aim to obtain classification rules
{hj}i≤j≤k for a sequence of tasks with small expected losses {ℓ(hj, pj)}i≤j≤k for 1 ≤ i ≤
k. Such settings are common in machine learning paradigms including batch learning
scenarios such as MDA and MTL and online learning scenarios such as SCD and CL.
MDA uses j sample sets D1, D2, . . . , Dj corresponding with different classification tasks
(source domains) to obtain a classification rule for the k-th task (target domain); while
MTL uses k sample sets D1, D2, . . . , Dk corresponding with different tasks to obtain
classification rules for the k tasks in the sequence. In SCD, sample sets D1, D2, . . . cor-
responding with different tasks arrive over time and SCD uses, at each step k, sample
set Dk−1 and the classification rule at previous time to obtain a classification rule for
the k-th task; while in CL, sample sets D1, D2, . . . corresponding with different tasks
arrive over time and CL uses, at each step k, sample set Dk and information acquired
from sample sets D1, D2, . . . , Dk−1 to obtain classification rules for the k tasks in the
sequence.
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Figure 1.1: Multidimensional time-dependence between consecutive tasks.

Most existing techniques for learning from a sequence of tasks are designed for tasks
sampled i.i.d. from a task environment, that is the tasks’ distributions

pj are independent and identically distributed for j = 1, 2, . . . . (i.i.d.-A)

In the following, we propose techniques designed for time-dependent tasks, that is
consecutive tasks are significantly more similar. Specifically, we assume that the changes
between consecutive tasks satisfy

pj − pj−1 are independent and zero-mean for j = 2, 3, . . . . (TD-A)

Section 1.3 below assesses that the TD-A assumption can better account for the usual
higher similarities between consecutive tasks than the i.i.d.-A assumption using real-
world datasets.

1.3 Learning in time-dependent environments

This section assesses the time-dependent assumption in Section 1.2, presents the method-
ology for learning in time-dependent environments, and describes the performance guar-
antees of the proposed methodology.

1.3.1 Time-dependent tasks

This section describes the main aspects of time-dependent tasks and the inadequacy of
conventional methods in time-dependent environments. In particular, we analyze the
similarities among underlying distributions of time-dependent tasks pj, for j = 1, 2, . . .,
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by assessing the similarities among the corresponding vectors formed by the expec-
tations of a feature mapping. For each j-th task, such mean vector, denoted by
τ∞
j = Epj{Φ(x, y)}, represents the statistical characteristics of the underlying distribu-

tion pj as measured by the feature mapping Φ : X × Y → R
m.

For a sequence of time-dependent tasks, the similarities between two tasks depend on
their distance in the sequence and the similarities between pj+t and pj are often higher
for small t. In particular, consecutive tasks are significantly more similar. Figure 1.1a
shows the averaged partial autocorrelation of the mean vector components +/- their
standard deviations for different lags using “Airlines” and “UTKFaces” datasets (see
dataset characteristics in Table 1.1 of Section 1.7). “Airlines” dataset is divided in
segments of samples corresponding to consecutive times where each task corresponds to
each of those segments, and “UTKFaces” dataset is composed by tasks corresponding
to the classification of face images of a specific age. Figure 1.1a displays that the
correlation of the sequence of mean vectors decreases as the lags increase with a highest
value for lag 1, that is, the correlation between mean vectors τ∞

j+t and τ∞
j decreases

with t and is significantly higher for consecutive tasks (t = 1).
The TD-A assumption in Section 1.2 can better describe similarities among tasks in

time-dependent environments than the conventional i.i.d.-A assumption. For instance,
for any j-th task, the TD-A assumption implies that pj+t − pj is a zero-mean random
variable with variance that decreases with t since Var{pj+t − pj} =

∑t
i=1Var{pj+i −

pj+i−1}, while i.i.d.-A would imply that pj+t − pj is a zero-mean random variable with
variance that does not depend on t since Var{pj+t− pj} = Var{pj+1− pj} = 2Var{p1}
for any t and j. The better adequacy of the TD-A assumption for time-dependent
tasks is also reflected in the partial autocorrelations of Figure 1.1a. Note that if the
tasks’ distributions satisfy i.i.d.-A, then the partial autocorrelations of the mean vector
components would be zero at any lag; while if the tasks’ distributions satisfy TD-A,
then the partial autocorrelations of the mean vector components are larger than zero at
lag 1. Differently from i.i.d.-A, TD-A can capture the usual higher similarities between
consecutive tasks.

The similarities among tasks are often multidimensional and different statistical
characteristics of the underlying distribution change in a different manner. Figure 1.1b
shows mean vector components for different tasks using “Airlines” dataset. Such fig-
ure illustrates a clearly different change in each mean vector component that reflects
multidimensional tasks’ changes. Existing methods for time-dependent tasks account
for a scalar rate of change that cannot capture the multidimensional tasks’ changes. In
the following, we propose techniques that account for the change in each component
in the mean vector by using a vector dj that assesses the expected quadratic change
E{w2

j} = E{(τ∞
j − τ∞

j−1)
2} between each component in the mean vector.

1.3.2 Learning methodology

Figure 1.2 depicts the flow diagram for the proposed methodology for learning in time-
dependent environments that obtains MRC rules for each task. The proposed method-
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Figure 1.2: Diagram for the proposed methodology.

ology provides multidimensional adaptation to tasks’ changes, provides computable
performance guarantees, and includes multiple machine learning scenarios.

The learning methodology proposed obtains, for each j-th task, an uncertainty set
Uk
j leveraging information from k tasks and accounting for the expected quadratic

change between consecutive tasks. Specifically, each uncertainty set Uk
j is determined

as in (2) by mean and confidence vectors that are obtained using those vectors for
consecutive tasks and the expected quadratic change between consecutive mean vectors
dj and dj+1. Section 1.4 below describes techniques that recursively obtain mean and
MSE vectors for each task. Then, we obtain for each j-th task the classification rule hk

j

and the minimax risk R(Uk
j ) using the uncertainty set Uk

j . Each classification rule hk
j

and the minimax risk R(Uk
j ) are determined by classifier parameters that are obtained

solving the convex optimization problem (6). Section 2.4 describes techniques to solve
the convex optimization problem in (6) based on conventional methods [79, 80].

The learning methodology adapts to time-dependent tasks by accounting for the
change between consecutive tasks, and accounts for multidimensional changes by es-
timating over time multiple statistical characteristics of the underlying distribution.
Section 1.4 below describes techniques that estimate the evolution over tasks of each
mean vector component accounting for the expected quadratic change between consec-
utive mean vector components.

The proposed learning methodology provides computable tight performance guaran-
tees by assessing the minimax risk. Section 1.3.3 shows computable tight performance
guarantees for error probabilities of each task in terms of the minimax risks R(Uk

j ) ob-
tained at learning. In addition, the proposed techniques boost the ESS of each task by
effectively leveraging information from other tasks in the sequence. Section 1.5 below
analytically characterizes the ESS increase provided by the proposed methodology in
terms of the expected quadratic change and the number of tasks.

The proposed methodology can be used in multiple machine learning paradigms.
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Section 1.6 below shows the implementation of the proposed methodology in batch
learning scenarios including MDA and MTL and online learning scenarios including
SCD and CL. The proposed methodology enables to obtain classification rules in online
and batch learning scenarios and effectively use information from all the tasks in the
sequence to obtain a classification rule or a sequence of classification rules.

1.3.3 Performance guarantees

The proposed methodology provides computable tight performance guarantees for the
error probability of each j-th task leveraging information from k tasks. Let R(hk

j )
denote the error probability of the classification rule hk

j determined by the parameter
µk

j . Then, using the bounds of [78] in the addressed setting, we have that

R(hk
j ) ≤ R(Uk

j ) +
(
|τ∞

j − τ k
j | − λk

j

)T ∣∣µk
j

∣∣ (1.1)

where R(Uk
j ) and Uk

j denote the minimax risk and the uncertainty set given as in (2)

by mean and confidence vectors τ k
j and λk

j .
The above inequality provides computable tight bounds for error probabilities given

by the minimax risk. Specifically, the minimax risk R(Uk
j ) directly provides a bound

if the error in the mean vector estimate is not underestimated, i.e., λk
j � |τ∞

j − τ k
j |.

In other cases, the minimax risk R(Uk
j ) still provides approximate bounds as long as

the underestimation of the mean vector estimate is not substantial. Section 1.7 shows
that the presented bounds can provide tight performance guarantees for the proposed
methodology in practice.

Computable tight performance guarantees are essential to estimate the classification
error of tasks with limited sample sizes because in these cases the classification error
cannot be reliably estimated using cross-validation methods [81, 82]. As described in
Section 1.1, most conventional techniques for learning from a sequence of tasks do not
provide performance guarantees since tasks are characterized by different underlying dis-
tributions. Certain techniques designed for time-dependent tasks provide performance
guarantees but cannot be computed in practice [64, 71, 72]; while existing techniques
that provide computable performance guarantees are not designed for time-dependent
tasks [68–70]. The proposed methodology provides computable tight bounds for error
probabilities in time-dependent environments that allow to assess the performance of
each task.

Certain techniques for SCD and [64] for CL can provide performance guarantees in
time-dependent environments for error probabilities of each task with respect to empir-
ical risks (generalization bounds) [64,71,72]. Such bounds are non-computable in prac-
tice because are given in terms of the discrepancy and the Kullback-Leibler divergence
between consecutive distributions which are not possible to accurately estimate from
data. Certain techniques for MDA can provide performance guarantees [1,65–67] but are
not designed for time-dependent tasks and are non-computable in practice and because
are given in terms of distribution discrepancies between the source tasks (domains) and
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the target task. Certain techniques for MTL and CL can provide computable perfor-
mance guarantees with respect to empirical multitask error based on PAC-Bayes theory
(PAC-Bayes generalization bounds) [68–70,83,84]. Such techniques provide bounds that
can be computed in practice but are not designed for time-dependent tasks.

1.4 Determining uncertainty sets from sample sets

in time-dependent environments

This section presents techniques to obtain for each task an uncertainty set accounting
for the evolution of the tasks’ distribution and leveraging information from all tasks.

The proposed techniques recursively obtain uncertainty sets for each task leveraging
information from all the tasks in the sequence and accounting for time-dependent tasks.
Specifically, we recursively obtain mean and MSE vectors using those for consecutive
tasks and the expected quadratic change between consecutive tasks. Once mean and
MSE vectors are obtained, we take the confidence vector of each task from the MSE
vector as in (7).

For a sequence of k tasks, the proposed techniques first obtain for each j-th task
with j = {1, 2, . . . , k} the mean vector τ j

j together with the MSE vector sjj that leverage

information up to the j-th task using those for the previous task τ
j−1
j−1, s

j−1
j−1 as

τ
j
j = τ

j−1
j−1 + η

j
j

(
τ j − τ

j−1
j−1

)
(1.2)

s
j
j = η

j
jsj (1.3)

η
j
j =

s
j−1
j−1 + dj

sj + s
j−1
j−1 + dj

(1.4)

for j = 2, 3, . . . , k with τ j, sj given by (7), τ 1
1 = τ 1, and s11 = s1. Mean and MSE

vectors τ
j
j , s

j
j are obtained leveraging information from sample sets D1, D2, . . . , Dj.

Specifically, for each j-th task, those vectors are obtained by acquiring information
from sample set Dj through mean and MSE vectors τ j, sj and retaining information
from sample sets D1, D2, . . . , Dj−1 through mean and MSE vectors τ

j−1
j−1, s

j−1
j−1. The

proposed methodology allows to obtain mean and MSE for the j-th task with samples
up to the (j − 1)-th task (i.e., |Dj| = 0) from those for the previous task τ

j−2
j−1, s

j−2
j−1 as

τ
j−1
j = τ

j−2
j−1 + η

j−1
j

(
τ j−1 − τ

j−2
j−1

)
(1.5)

s
j−1
j = η

j−1
j sj−1 + dj (1.6)

η
j−1
j =

s
j−2
j−1

sj−1 + s
j−2
j−1

(1.7)

for j = 3, 4, . . . k with τ j, sj given by (7), τ 1
2 = τ 1, and s12 = d2. Mean and MSE vec-

tors τ
j−1
j , sj−1

j are obtained leveraging information from sample sets D1, D2, . . . , Dj−1.
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Specifically, for each j-th task, those vectors are obtained by acquiring information from
sample set Dj−1 through mean and MSE vectors τ j−1, sj−1 and retaining information
from sample sets D1, D2, . . . , Dj−2 through mean and MSE vectors τ

j−2
j−1, s

j−2
j−1. The

above recursions include settings where information from each j-th tasks arrives after
obtaining mean and MSE vectors τ

j−1
j , sj−1

j as in SCD. Such mean and MSE vectors

can also be obtained from mean and MSE vectors τ
j−1
j−1, s

j−1
j−1 given by (1.2), (1.3) as

τ
j−1
j = τ

j−1
j−1, s

j−1
j = s

j−1
j−1 + dj.

The proposed techniques obtain for each j-th task the mean vector estimate τ k
j

together with the MSE vector skj that leverage information from the k tasks as

τ k
j = τ k

j+1 + ηk
j

(
τ
j
j − τ k

j+1

)
(1.8)

skj = skj+1 + ηk
j (sjj − 2skj+1 + ηk

js
k
j+1) (1.9)

ηk
j =

dj+1

s
j
j + dj+1

(1.10)

for j = 1, 2, . . . , k − 1 with τ
j
j, s

j
j given by (1.2)-(1.3). Mean and MSE vectors τ k

j and

skj are obtained leveraging information from sample sets D1, D2, . . . , Dk. Specifically,
for each j-th task, those vectors are obtained acquiring information from sample sets
Dj+1, Dj+2, . . . , Dk through mean and MSE vectors τ k

j+1, s
k
j+1 and retaining information

from sample sets D1, D2, . . . , Dj through mean and MSE vectors τ
j
j, s

j
j.

The above recursions adapt to multidimensional tasks’ changes by accounting for the
change between consecutive mean vector components. Specifically, for i = 1, 2, . . . , m,
the i-th component of the mean vector estimate is updated by using the corresponding
component of the expected quadratic change, the estimate for the consecutive task,
and the most recent sample average. Such update accounts for the specific evolution of
each i-th component of the mean vector through the recursions in equations (1.5), (1.2),
and (1.8) and gain vectors in equations (1.7), (1.4), and (1.10). In particular, updates for
mean vector components with a low gain slightly change the estimate for the consecutive
task (previous task in (1.2), (1.5) and next task in (1.8)), while those updates for
components and tasks with a high gain increase the relevance of the information of the
corresponding task (sample average in (1.2), (1.5) and mean vector estimate in (1.8)).

The result below shows that the mean vectors obtained above are the estimates of
the mean vector τ∞

j for any j with minimum MSE.

Theorem 1. Let σ2
j and dj in recursions (1.2)-(1.10) be such that σ2

j = Varpj{Φ (x, y)}
and dj = E{w2

j} = E{(τ∞
j − τ∞

j−1)
2}. If the tasks’ distributions satisfy (TD-A), then

we have that

1. τ
j
j given by (1.2) is the unbiased linear estimator of the mean vector τ∞

j based on

D1, D2, . . . , Dj that has the minimum MSE and s
j
j given by (1.3) is its MSE. In

particular, if |Dj | = 0, then τ
j−1
j given by (1.5) is the unbiased linear estimator

of the mean vector τ∞
j based on D1, D2, . . . , Dj−1 that has the minimum MSE

and s
j−1
j given by (1.6) is its MSE.
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2. τ k
j given by (1.8) is the unbiased linear estimator of the mean vector τ∞

j based
on D1, D2, . . . , Dj , . . . , Dk that has the minimum MSE and and skj given by (1.9)
is its MSE.

Proof. See Appendix A.1.

The above theorem shows that equations in (1.2)-(1.10) enable to recursively obtain,
for each j-th task, mean vector estimate as well as its MSE vectors leveraging all the
information from the k tasks in the sequence.

The vector dj assesses the expected quadratic change between consecutive tasks
E{w2

j} = E{(τ∞
j − τ∞

j−1)
2}. Such expectation estimate can be obtained as the sample

average of the most recent samples as

dj =
1

W

W∑

l=1

(
τ jl − τ jl−1

)2
(1.11)

where j0, j1, . . . , jW are the W + 1 closest indexes to j and sample average τ j is given
by (7). In addition, vector σ2

j can be estimated as the sample variance of Dj .

1.5 Effective sample sizes

This section analytically characterizes the ESS increase leveraging information from all
the tasks in the sequence. The ESS commonly quantifies the performance improvement
of an algorithm in terms of the number of samples the baseline method would require
to achieve the same performance. The ESS shows the improvement of leveraging infor-
mation from other tasks in the sequence in comparison with learning each task as in
standard supervised classification (single task learning).

In standard supervised classification, MRCs provide bounds for the minimax risk
for each j-th task with respect to the smallest minimax corresponding with the op-
timal minimax rules. Such rules correspond with uncertainty sets given by the true
expectation of the feature mapping Φ, that is

U∞
j = {p ∈ ∆(X × Y) : Ep{Φ(x, y)} = τ t}.

The minimum worst-case error probability over distributions in U∞
j is given by

R∞
j = min

µ
1− τ∞

j
Tµ + ϕ(µ) = 1− τ∞

j
Tµ∞

j + ϕ(µ∞
j )

corresponding with the rule given by parameters µ∞
j . Such classification rule is referred

to as optimal minimax rule becase for any uncertainty set U∞
j given by (2) that contains

the underlying distribution, we have that U∞
j ⊆ Uk

j and hence R∞
j ≤ R(Uj). This

optimal minimax rule could only be obtained by an exact estimation of the mean vector
that in turn would require an infinite amount of samples per task and can converge to
the Bayes risk increasing the number of components of the feature mapping [78].
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The following result provides bounds for the minimax risk for each j-th task with
respect to the smallest minimax risk using mean and MSE vectors τ

j
j, s

j
j obtained as

in (1.2) and (1.3).

Theorem 2. Let M and κ be such that M ≥ ‖Φ(x, y)‖∞ ∀ (x, y) ∈ X × Y and

κ ≥ max
i=1,2,...,m,
j=1,2,...,k




σ
(

Φ
(i)
j

)

σ
(i)
j

,
σ
(
w

(i)
j

)

√
d
(i)
j





where Φ
(i)
j denotes the r.v. given by the i-th component of the feature mapping for

samples from the j-th task, σ(z) denotes the sub-Gaussian parameter of a r.v. z, i.e.,
E{et(z−E{z})} ≤ eσ(z)

2t2/2 ∀t. Then, with probability at least 1− δ, we have that

R(U j
j ) ≤ R∞

j +
M(κ + 1)

√
2 log(2m/δ)√
nj
j

∥∥µ∞
j

∥∥
1

(1.12)

with

nj
j ≥ nj + nj−1

j−1

‖σ2
j‖∞

‖σ2
j‖∞ + ‖dj‖∞nj−1

j−1

(1.13)

for j = 2, 3, . . . k and n1
1 = n1.

Proof. See Appendix A.2.

The excess risk in inequality (1.12) decreases as O(
√
nj
j), while such difference

would decrease as O(
√
nj) using only the information from the j-th task as in standard

supervised classification. Therefore, nj
j in (1.12) is the ESS of the proposed methodology

leveraging information from j tasks. The ESS of each task nj
j is given by the ESS for

the preceding task nj−1
j−1, the sample size nj−1, and the expected quadratic change dj . In

particular, if the expected quadratic change dj is small, the ESS is given by the sample
size, while if dj is small, the ESS is given by the sum of the sample size and the ESS
of the previous task.

The ESS in Theorem 2 above increases with the number of tasks and decreases with
the expected quadratic change dj between consecutive distributions. The coefficient κ
in (1.12) can be taken to be small as long as the values used for σj and

√
dj are not

much lower than the sub-Gaussian parameters of Φj and wj, respectively. In particular,

κ is smaller than the maximum of M/minj,i{σ(i)
j } and 2M/minj,i{

√
d
(i)
j } with M ≥

‖Φ(x, y)‖∞ for any x ∈ X , y ∈ Y due to the bound for the sub-Gaussian parameter of
bounded random variables (see e.g., Section 2.1.2 in [85]).

Theorem 2 shows the ESS in terms of the ESS of the previous task. The following
result allows to directly quantify the ESS in terms of the sample size and the expected
quadratic change.
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Theorem 3. Let d, σj, and n be such that d ≥ ‖dj‖∞, ‖σ2
j‖∞ ≤ 1, and n ≤ nj for

j = 1, 2, . . . , k. Then, we have that the ESS in (1.12) satisfies

nj
j ≥ n

(
1 +

(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α

)
with α =

2√
1 + 4

nd
− 1

. (1.14)

In particular, if nd < 1
j2

, then we have that nj
j ≥ n

(
1 + j−1

3

)
for j > 1.

Proof. See Appendix A.3.

The above theorem characterizes the increase in ESS for each j-th task provided
by the proposed methodology leveraging information from the j − 1 previous tasks in
terms of the tasks’ expected quadratic change. Such increase grows monotonically with
the number of tasks j − 1 as shown in (1.14) and becomes proportional to j − 1 when
the expected quadratic change is smaller than 1/(j2n).

Analogously to bounds in Theorems 2 and 3, the proposed methodology also in-
creases the ESS of each task using mean and MSE vectors τ j−1

j , sj−1
j obtained as in (1.5)

and (1.6). The proposed methodology satisfies inequality (1.12) with R(U j−1
j ) and nj−1

j

instead of R(U j
j ) and nj

j with

nj−1
j ≥ (nj−1 + nj−2

j−1)
‖σ2

j−1‖∞
‖σ2

j−1‖∞ + ‖dj‖∞(nj−1 + nj−2
j−1)

for j = 2, 3, . . . , k and n0
1 = 0. Taking d, σj , and n as in Theorem 3, the ESS above

satisfies

nj−1
j ≥ n

(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α
with α =

2√
1 + 4

nd
− 1

(1.15)

for any j = 1, 2, . . . , k (see Appendices A.4 and A.5).
Learning techniques commonly adapt to time-dependent environments using sliding

windows of previous tasks [6, 57, 58, 62, 86, 87]. Large window size values adapt to
gradual changes in the tasks’ distributions, while small window size values adapt to
abrupt changes in the tasks’ distributions. Techniques based on sliding windows obtain
classification rules for each task using the W̄ most recent sample sets with W̄ the
window size value. If the mean vector is obtained for each j-th task as the sample
average of the W̄ sample sets Dj−W̄ , Dj−W̄+1, . . . , Dj−1, then the MSE is given by

s
j−1
j,W̄

=

j∑

i=j−W̄+1

(i− j + W̄ )2

W̄ 2
di +

j−1∑

i=j−W̄

si

W̄ 2

and the ESS satisfies

nj−1
j,W̄
≥ n

6W̄

(W̄ + 1)(2W̄ + 1)nd + 6
(1.16)

with 1 ≤ W̄ ≤ j − 1 and σj, d, and n as in Theorem 3.
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Figure 1.3: ESS of the proposed methodol-
ogy in comparison with ESS of sliding win-
dows.

Analogously to the ESS of the pro-
posed methodology in (1.14), the ESS of
each task using sliding windows increases
with the sample size n and decreases with
the expected quadratic change d. Fig-
ure 1.3 illustrates the increase in ESS
with respect to the sample size due to
the proposed methodology in compari-
son with techniques sliding windows tech-
niques. Specifically, such figure shows the
ESS of the proposed methods with k = 50
tasks and the ESS using sliding windows
in (1.16) with W̄ = 5, 25, and 45. The
ESS significantly increases when nd de-
creases between 1 and 1/k2 for the pro-
posed methodology and between 1 and
1/W̄ 2 using sliding windows.

The following result provides bounds
for the minimax risk for each j-th task
with respect to the smallest risk leveraging information from all the tasks in the se-
quence.

Theorem 4. Let M,nj
j , and κ be as in Theorem 2 for any j ∈ {1, 2, ..., k}. Then, with

probability at least 1− δ, we have that

R(Uk
j ) ≤ R∞

j +
M(κ + 1)

√
2 log(2m/δ)√
nk
j

∥∥µ∞
j

∥∥
1

(1.17)

with

nk
j ≥

(
‖σ2

j‖∞ + nj
j‖dj+1‖∞

)2
nk
j+1

‖σ2
j‖2∞ + ‖dj+1‖∞(‖σ2

j‖∞ + nj
j‖dj+1‖∞)nk

j+1

for j < k.

Proof. See Appendix A.6.

Theorem 4 provides performance guarantees leveraging information from all the
tasks in the sequences. The ESS of each task nk

j is given by the ESS nj
j of the j-th

task obtained leveraging information from the j previous tasks and the ESS nk
j+1 of the

(j + 1)-th task leveraging information from the k tasks. Such ESS nk
j is significantly

greater than that obtained using information only from preceding tasks nj
j because

nk
j+1 ≥ nj

j . In particular, if dj+1 is large, the ESS is given by nj
j, while if dj+1 is small,

the ESS is given by nk
j+1.
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Figure 1.4: ESS increase provided by the proposed methodology in comparison with
ESS of sliding windows.

Theorem 4 shows the increase in ESS in terms of the ESS of consecutive tasks. The
following result allows to directly quantify the ESS in terms of the sample size and the
expected quadratic change.

Theorem 5. Let d, σj, and n be such that d ≥ ‖dj‖∞, ‖σ2
j‖∞ ≤ 1, and n ≤ nj for

j = 1, 2, . . . , k. For any j ∈ {1, 2, . . . , k}, we have that the ESS in (1.17) satisfies

nk
j ≥ n

(
1 +

(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α
+

(1 + α)2(k−j)+1 − 1− α

α(1 + α)2(k−j)+1 + α

)
(1.18)

with α = 2√
1+ 4

nd
−1

. In particular, if nd < 1
j2

, we have that nk
j ≥ nj

j + n j(k−j)
j+2(k−j)

≥

n
(

1 + j−1
3

+ j(k−j)
j+2(k−j)

)
for j > 1 with nj

j given by (1.15).

Proof. See Appendix A.7.

The above theorem characterizes the increase in ESS provided the proposed method-
ology in terms of the tasks’ expected quadratic change. Such increase grows monoton-
ically with the number of previous tasks j and with the number of tasks k − j after j.
In addition, it becomes proportional to the total number of tasks k when the expected
quadratic change is smaller than 1/(j2n) and j ≥ k/2.

Techniques based on sliding windows can adapt to changes in the distribution lever-
aging information from all the tasks in the sequence. If the mean and confidence
vectors are obtained for each j-th task with j ∈ {1, 2, . . . , k} as the sample average
of the W̄ closest sample sets Dj−W̄+Ŵ+1, Dj−W̄+Ŵ+2, . . . , Dj, . . . , Dj+Wl−Ŵ then, the
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MSE is given by

sk
j,W̄ ,Ŵ

=

j∑

i=j−Ŵ+2

(i− j + Ŵ − 1)2

W̄ 2
di

+

j+W̄−Ŵ∑

i=j+1

(j + W̄ − Ŵ + 1− i)2

W̄ 2
di +

j+W̄−Ŵ∑

i=j−Ŵ+1

si

W̄ 2

and the ESS satisfies nk
j,W̄ ,Ŵ

≥ n 6W̄

(6Ŵ 2+2W̄ 2+3W̄+1−6ŴW̄−6Ŵ )nd+6
with 1 ≤ Ŵ ≤ W̄ ≤ k

and σj , d, and n as in Theorem 3.
Figure 1.4 illustrates the increase in ESS with respect to the sample size due to the

proposed methods in comparison with sliding windows. Specifically, such figure shows
the ESS of the proposed methods and the ESS of the sliding windows in (1.16) using
centered windows with W̄ = 5, 50, and 95.

1.6 Implementation in scenarios under time-dependent

environments

This section describes the implementation and the computational and memory com-
plexity of the proposed methodology in batch learning scenarios including MDA and
MTL and online learning scenarios including SCD and CL.

1.6.1 Batch learning scenarios

In MDA, learning methods use k sample sets corresponding with different tasks (source
domains) to obtain a classification rule for the k-th task (target domain) with |Dk| > 0
[21–23] or |Dk| = 0 [1,9,88–90]. Algorithm 1 details the implementation of the proposed
methodology for MDA that obtains mean and MSE vectors τ k

k and skk as in (1.2)-(1.3)
if |Dk| > 0 and mean and MSE vectors τ k−1

k and sk−1
k as in (1.5)-(1.6) if |Dk| = 0.

Then, we take the confidence vector as in (7) and obtain the classifier parameter and
the minimax risk for the k-th task solving (6) (see Alg. 8 in Section 2.4). Algorithm 1
has computational complexity O(km + n(2|Y| − 1)Km) and memory complexity O(m)
where m is the length of the feature mapping, n is the sample size, and K is the number
of iterations of the optimization step.

In MTL, learning methods use k sample sets corresponding with different tasks to
obtain classification rules {hk

j}1≤j≤k for the k tasks [3, 4, 30, 31]. Algorithm 2 details
the implementation of the proposed methodology for MTL that first obtains mean and
MSE vectors {τ k

j}1≤j≤k and {skj}1≤j≤k as in (1.8)-(1.9). Then, we take the confidence

vectors {λk
j}1≤j≤k as in (7) and obtain the classifier parameters {µk

j}1≤j≤k and the
minimax risks {R(Uk

j )}1≤j≤k for the k tasks in the sequence solving (6) (see Alg. 8).
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Algorithm 1 MDA

Input: D1, D2, . . . , Dk

Output: µk
k, R(Uk

k ) if |Dk| > 0 and µk−1
k , R(Uk−1

k ) if |Dk| = 0.
if |Dk| > 0 then

for j = 1, 2, ..., k − 1 do
Obtain mean and MSE vectors τ

j
j , s

j
j as in (1.2)-(1.3)

Take confidence vector λk
k as

√
skk

Obtain classifier parameter and minimax risk µk
k and R(Uk

k ) solving (6)
else

for j = 1, 2, ..., k − 1 do
Obtain mean and MSE vectors τ

j−1
j , sj−1

j as in (1.5)-(1.6)

Take confidence vector λk−1
k as

√
sk−1
k

Obtain classifier parameter and minimax risk µk−1
k and R(Uk−1

k ) solving (6)

Algorithm 2 has computational complexity O(mk + n(2|Y| − 1)Kmk) and memory
complexity O(mk + k).

Algorithm 2 MTL

Input: D1, D2, . . . , Dk

Output: {µk
j}1≤j≤k, and {R(Uk

j )}1≤j≤k

for j = 1, 2, ..., k do
Obtain mean and MSE vectors τ

j
j, s

j
j as in (1.2)-(1.3)

for j = k − 1, k − 2, ..., 1 do
Obtain mean and MSE vectors τ k

j , s
k
j as in (1.8)-(1.9)

Take confidence vector λk
j as

√
skj

Obtain classifier parameter and minimax risk µk
j and R(Uk

j ) solving (6)

1.6.2 Online learning scenarios

In SCD, sample sets corresponding with different tasks arrive over time and learning
methods use for each k-th task the most recent sample set Dk−1 to obtain the clas-
sification rule hk−1

k [43–45]. Algorithm 3 details the implementation of the proposed
methodology for SCD that first obtains mean and MSE vectors τ k−1

k and sk−1
k that are

updated as in (1.5)-(1.6) from those for the previous task τ k−2
k−1 and sk−2

k−1 together with

sample set Dk−1. Then, we take the confidence vector λk−1
k as in (7) and obtain the clas-

sifier parameter µk−1
k and the minimax risk R(Uk−1

k ) for the k-th task solving (6) (see
Alg. 8). Algorithm 3 has at each step k computational complexity O(m+n(2|Y|−1)Km)
and memory complexity O(m).
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Algorithm 3 SCD at step k

Input: Dk−1, τ
k−2
k−1, s

k−2
k−1, and µk−2

k−1

Output: τ k−1
k , sk−1

k ,µk−1
k , and R(Uk−1

k )
Obtain mean and MSE vectors τ k−1

k , sk−1
k as in (1.5)-(1.6)

Take confidence vector λk−1
k as

√
sk−1
k

Obtain classifier parameter and minimax risk µk−1
k and R(Uk−1

k ) solving (6)

In CL, sample sets corresponding with different tasks arrive over time and learning
methods use at each step k the sample set Dk to obtain classification rules {hk

j}1≤j≤k

for the sequence of tasks [11, 15, 16]. Algorithm 4 details the implementation of the
proposed methodology for CL that obtains at each step k mean and MSE vectors
{τ k

j}k−b≤j≤k and {skj}k−b≤j≤k as in (1.8)-(1.9) for b backward steps. Then, we take

confidence vectors {λk
j}k−b≤j≤k as in (7) and obtain classification rules {hk

j}k−b≤j≤k and
minimax risks {R(Uk

j )}k−b≤j≤k solving (6) (see Alg. 8). Algorithm 4 has at each step

k computational complexity O((b + 1)mk + bn(2|Y| − 1)Km) and memory complexity
O((b+ k)m+n(2|Y|− 1)mb). The number of backward steps b = k− j can be taken to
be rather small since the benefits of learning from succeeding tasks are achieved using
only b = 3 backward steps in most of the situations.

Algorithm 4 CL at step k

Input: Dk, τ
k−1
k−1, s

k−1
k−1, τ j , sj ,µ

j
j for k − b ≤ j < k

Output: µk
j for k − b + 1 ≤ j ≤ k, τ k, sk, τ

j
j , s

j
j

Obtain mean and MSE vectors τ k
k, s

k
k using (1.2)-(1.3)

Take confidence vector λk
k =

√
skk

Obtain classifier parameter µk
k and minimax risk R(Uk

k ) solving (6)
for j = k − 1, k − 2, . . . , k − b do

Obtain mean and MSE vectors τ k
j , s

k
j using (1.8)-(1.10)

Take confidence vector λk
j as

√
skj

Obtain classifier parameter µk
j and minimax risk R(Uk

j ) solving (6)

In the following, we extend the CL scenario described above to situations in which
a new sample set can correspond with a previously learned task. A sample set D
corresponding with a t-th task for t ∈ {1, 2, . . . , k} can arrive at any time step. Since
the t-th task is a previously learned task, we first update the sample average and MSE
vector τ t and st given by (7) of the t-th task using the new sample set; secondly,
we update mean and MSE vectors τ

j
j and s

j
j as in (1.2)-(1.3) for each j-th task with

j ∈ {t, t+ 1, . . . , k}; then, we update mean and MSE vectors τ k
j and skj as in (1.8)-(1.9)

for each j-th task with j ∈ {1, 2, . . . , k}. Such mean and MSE vectors are the mean and
MSE vectors obtained as in Section 1.4 using all samples corresponding with the t-th
task at time step t. Then, taking σ2

j = Varpj{Φ (x, y)} and dj = E{w2
j}, the updated
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Table 1.1: Dataset characteristics.

Dataset Type Samples |Y| Tasks Reference
Rotating hyperplane Synthetic 30,000 2 100 [91]
BAF Tabular 1,000,000 2 3,333 [92]
Elec2 Tabular 45,312 2 151 [57, 93]
Airlines Tabular 539,383 2 1,797 [58, 93]
USPS Tabular 2,930 2 9 [94]
Spam Tabular 6,213 2 20 [95]
Power supply Tabular 29,928 2 99 [6]
Yearbook Images 37,921 2 10 [19]
ImageNet Noise Images 12,000 2 10 [96, 97]
DomainNet Images 6,256 4 6 [98]
UTKFace Images 23,500 2 94 [99]
Rotated MNIST Images 70,000 2 60 http://yann.lecun.com/exdb/mnist/

CLEAR Images 10,490 3 10 [100]

mean estimate τ k
j is the unbiased linear estimator that has the minimum MSE, and the

updated skj is its MSE.

1.7 Numerical results

This section evaluates the performance of the proposed methods in comparison with the
presented performance guarantees and the state-of-the-art. In the first set of numerical
results, we show the reliability of the performance guarantees; in the second set of
numerical results, we show the improvement of the multidimensional adaptation; in the
third set of numerical results, we show the performance in the batch learning scenarios
MDA and MTL; and in the fourth set of numerical results, we show the performance
in the online learning scenarios SCD and CL.

We utilize 13 public datasets with characteristics given in Table 1.1. The tabular
datasets are divided in segments of 300 samples corresponding to consecutive times
where each task corresponds to each of those segments; while the rest of the datasets
are composed by time-dependent tasks (images with characteristics/quality/realism
that change over time). The samples in each task are randomly splitted in 100 sam-
ples for test and the rest of samples for training and the samples used for training in
the experiments are randomly sampled from each group of training samples in each
repetition.

The results for the proposed methods are obtained using a feature mapping defined
by multiple features over instances together with one-hot encodings of labels as (1).
Such map is given by RFF with 200 Gaussian vectors and covariance matrix given by
the scalar 10 for the tabular datasets [48, 74, 75], by the pixel values for the “Rotated
MNIST” dataset, and by the last layer of the ResNet18 pre-trained network for the rest
of image datasets [15, 101–103]. The confidence vector λ in equation (7) is estimated
using λ0 = 0.7 and vector dj in equation (1.11) is estimated using W = 2. We use

http://yann.lecun.com/exdb/mnist/
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Figure 1.5: Results on synthetic data show the evolution over tasks of performance
bounds and error probabilities.

the same hyper-parameters for all the results in this section for fair comparison with
the state-of-the-art and to show that the methodology presented do not heavily rely on
their values.

In the first set of numerical results we show the reliability of the presented bounds
for error probabilities using the synthetic data since the error probability cannot be
computed using real-world datasets. These numerical results are obtained averaging
the classification errors and the bounds achieved with 10000 random instantiations of
data samples in the synthetic data. Such data comprises a rotating hyperplane in 2
dimensional space where each coefficient of the hyperplane rotates 5 degrees between
consecutive tasks.

Figures 1.5a and 1.5b show the averaged bounds for error probabilities corresponding
to inequality (1.1) and the minimax risk in comparison with the true error probabilities.
Figure 1.5a shows bounds for error probabilities of each j-th task R(hj−1

j ) obtained
leveraging information from sample sets D1, D2, . . . , Dj−1 (MDA and SCD scenarios)
and Figure 1.5b shows bounds for error probabilities of each j-th task R(hk

j ) obtained
leveraging information from sample sets D1, D2, . . . , Dk (MTL and CL scenarios). Such
figures show that the bounds R(U j−1

j ) and R(Uk
j ) can offer, for each j-th task, tight

upper bounds for error probabilities R(hj−1
j ) and R(hk

j ), respectively.
In the second set of numerical results we show the improvement of multidimen-

sional adaptation using the synthetic data since the tasks’ changes are unknown in
real-world datasets. These numerical results are obtained averaging the classifica-
tion errors achieved with 100 random instantiations of data samples in the synthetic
data with n = 100 samples per task. Such data comprises a rotating hyperplane in
5 dimensional space where each coefficient of the hyperplane changes between con-
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Figure 1.6: Results on synthetic data show the multidimensional adaptation to tasks’
changes of the proposed methodology.

secutive tasks. Specifically, for each j-th task, we obtain the coefficients of the hy-
perplane wj by adding a Gaussian random variable to the coefficients of the previ-
ous task as wj = wj−1 + N(0, σ2

wI) for multidimensional (multi.) changes and as
wj = wj−1+1N(0, σ2

w) for unidimensional (uni.) changes where σ2
w denotes the variance

of the change between consecutive hyperplanes. The results of the proposed methodol-
ogy are compared with state-of-the-art techniques: Condor [104] that leverages infor-
mation from previous tasks and gradient episodic memory (GEM) [11] that leverages
information from all the tasks in the sequence.

Figures 1.6a and 1.6b show the classification error of the proposed methodology and
state-of-the-art techniques increasing the variance of the change between consecutive
tasks. Such figures show the performance improvement due to the multidimensional
adaptation in comparison with state-of-the-art techniques leveraging information from
previous tasks (MDA and SCD scenarios) and from all the tasks in the sequence (MTL
and CL scenarios). Figure 1.6 shows that the proposed methodology better account for
multidimensional tasks’ changes than state-of-the-art techniques.

In the third set of numerical results we show the relationship among classification
error, number of tasks, and sample size in batch learning scenarios using real-world
datasets. These numerical results are obtained averaging, for each number of tasks
and sample size, the classification errors achieved with 10 random instantiations of
data samples in ”Yearbook” dataset. The performance improvement of the proposed
methodology is compared with relevant baselines for learning from a sequence of tasks:
joint learning (also known as offline learning) [97, 105] and single-task learning (also
known as independent learning) [49]. Joint learning and single-task learning obtain
classification rules as in standard supervised classification using the samples from all
the tasks and using samples only from the corresponding task, respectively.
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Figure 1.7: Results on “Yearbook” dataset show the relationship among classification
error, number of tasks, and sample size for MDA.

Figures 1.7a and 1.7b show the classification error for MDA for different sample
sizes and number of tasks. Such figures show that the proposed learning methodology
achieves significantly better results than joint learning and single-task learning. In
particular, Figure 1.7a shows that the proposed methodology for k = 3 using n = 20
samples per task achieves similar results than joint learning for k = 7 using n =
20 samples per tasks and than single task learning using n = 30 samples per task.
In addition, Figure 1.7b shows that the proposed methodology increases performance
increasing the number of tasks using n = 20 and n = 50 samples per task, while the
performance of single task learning remains constant increasing the number of tasks
and the performance of joint learning decreases using n = 50 samples per task.

Figures 1.8a and 1.8b show the classification error for MTL for different sample
sizes and number of tasks. Such figures show that the proposed learning methodology
achieves significantly better results than joint learning and single-task learning. In
particular, Figure 1.8a shows that the proposed methodology for k = using n = 40
samples per task achieves similar results that joint learning for k = 7 using n = 40
samples per task and than single task learning using n = 70 samples per task. In
addition, Figure 1.8b shows that the proposed methodology can improve performance
as tasks arrive. The methods proposed can effectively adapt to tasks’ changes that
results in enhanced classification error.

In the fourth set of numerical results, we compare the performance of the pro-
posed methdology for online learning scenarios with the state-of-the-art techniques for
n = 10 and n = 100 samples per task. These numerical results are obtained computing
the average classification error over all the tasks in 100 random instantiations of data
samples. The proposed methodology is compared with 3 state-of-the-art SCD tech-
niques: Condor [104], DriftSurf [6], and accuracy updated ensemble (AUE) [45]; and 4
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Figure 1.8: Results on “Yearbook” dataset show the relationship among classification
error, number of tasks, and sample size for MTL.

Table 1.2: Classification error of the proposed methodology in comparison with the
state-of-the-art techniques SCD.

Dataset BAF Elec2 Airlines USPS Spam Power supply

n 10 100 10 100 10 100 10 100 10 100 10 100

Condor 1.11 1.12 38.90 40.10 43.32 43.42 48.52 48.01 24.72 26.25 34.3 33.00

Drift Surf 1.08 0.96 42.90 43.66 44.41 45.66 38.00 38.00 33.68 32.17 46.0 43.30

AUE 1.06 1.05 42.38 43.34 44.54 45.74 43.60 38.80 27.38 29.70 46.0 43.00

MRCs 0.59 0.59 38.83 38.29 39.07 38.74 40.61 34.66 26.23 20.80 40.26 28.99

state-of-the-art CL techniques: GEM [11], meta-experience replay (MER) [49], efficient
continual learning algorithm (ELLA) [7], and elastic weight consolidation (EWC) [14].
The hyper-parameters in these methods are set to the default values provided by the
authors.

Tables 1.2 and 1.3 show the classification error of the state-of-the-art techniques
using the 12 real-world datasets described above. Such tables show that the proposed
methodology for SCD and CL offers an overall improved performance compared to
existing techniques. The proposed methodology can significantly improve performance
in time-dependent environments with respect to the state-of-the-art.

Figure 1.9 shows the performance improvement receiving samples of the j = 3-th
task at step k = 7. These numerical results are obtained averaging the classification
errors for CL scenarios achieved with 100 random instantiations of data samples in
”Yearbook” dataset. Figure 1.9 shows that receiving samples from a previously learned
task not only improves performance of the corresponding task but also of all the tasks
in the sequence. Figure 1.9 also shows the positive backward transfer of the proposed
methodology for CL.
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Table 1.3: Classification error of the proposed methodology in comparison with the
state-of-the-art techniques for CL.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR

n 10 100 10 100 10 100 10 100 10 100 10 100

GEM 43.53 23.45 39.09 13.78 69.78 53.60 12.20 12.10 45.28 32.02 56.60 8.60

MER 38.62 19.37 27.25 12.71 47.58 30.26 12.13 12.13 36.34 34.54 20.53 7.40

ELLA 46.36 42.98 48.75 47.11 67.15 67.35 19.10 17.79 48.13 47.96 61.15 60.43

EWC 48.94 37.17 45.75 30.68 50.03 41.17 12.13 12.13 47.05 39.93 62.73 38.53

MRCs 14.18 9.42 14.48 8.68 33.81 24.53 10.32 10.32 37.02 21.04 8.22 4.06

replacemen

Task j = 2

Task j = 3

Task j = 4

C
la

ss
ifi

ca
ti

on
er

ro
r

Task
3 5 7 9 11

0.13

0.11

0.09

0.07

0.05

T
as

k

Step Classification
error

10

10

10

30

0

15

20

25

1
1

2

2

3

3

4

4

5

5

5

6

6

7

7

8

8

9

9 11

29.3 23.5 22.5 21.921.9 21.9 21.4 21.521.5 21.5

12.3 6.7 6.2 6.1 6.1 5.9 5.95.9 5.9

12.0 8.7 8.7 8.7 6.4 6.46.4 6.4

13.2 12.3 12 11.2 11.1 11.011.0

16.5 16.2 15.7 15.5 15.3 15.3

30.1 29.4 28.7 28.7 28.6

22.9 21.4 21.1

16 15.6

7.6

Figure 1.9: Results on “Yearbook” dataset show the classification error for CL receiving
samples of the j-th task at step k with j = 3, k = 7.

1.8 Conclusion

This chapter proposes a learning methodology for time-dependent environments that in-
cludes multiple machine learning scenarios, accounts for multidimensional tasks’ changes,
and provides computable performance guarantees. The proposed methodology accounts
for multidimensional adaptation to changes between consecutive tasks by estimating
multiple statistical characteristics of the underlying distribution. In addition, we an-
alytically characterize the increase in ESS achieved by the proposed methodology in
terms of the expected quadratic change and the number of tasks. The numerical re-
sults assess the reliability of the performance guarantees presented and show the per-
formance improvement in multiple machine learning scenarios using multiple datasets,
sample sizes, and number of tasks. The proposed methodology can improve performance
in a wide range of scenarios using efficient algorithms for learning in time-dependent
environments.





Chapter 2

Minimax Classification under
concept drift

2.1 Introduction

The statistical characteristics describing the underlying distribution of instance-label
pairs often change with time in practical scenarios of supervised classification [17,106].
Such concept drift is common in multiple applications including electricity price predic-
tion [107], spam mail filtering [18], and credit card fraud detection [20]. For instance,
in the problem of predicting electricity price increases/decreases, the statistical char-
acteristics related to electricity demand, generation, and price often change over time
due to varying habits and weather. Supervised classification in those scenarios is com-
monly referred to as learning under concept drift (e.g., [91,107]), learning in a drifting
(dynamic) scenario (e.g., [48, 72]), and online adaptive learning (e.g., [5, 108]).

Supervised classification techniques adapt to concept drift by updating classification
rules as new instance-label pairs arrive. Conventional learning techniques account for
a scalar rate of change by means of a carefully chosen parameter such as a learning
rate [46, 47], forgetting factor [62, 63], or window size [57, 58]. Specifically, a slow/fast
rate of change is tackled by using a low/high learning rate, forgetting factor, or window
size. More sophisticated techniques account for a time-varying scalar rate of change by
adjusting the learning rates [48], the forgetting factors [63], or the window sizes [57] over
time. In particular, techniques based on dynamic regret minimization utilize a time-
varying combination of rules obtained with different learning rates [5, 48]. However, in
common scenarios, the concept drift cannot be adequately addressed accounting only
for a scalar rate of change. Such inadequacy is due to the fact that time changes are
commonly multidimensional, i.e., different statistical characteristics of instance-label
pairs often change in a different manner (see Fig. 2.1). For instance, in the problem of
predicting electricity price increases/decreases, the statistical characteristics related to
demand often change differently from those related to generation.

Conventional techniques based on statistical learning and empirical risk minimiza-

35
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Figure 2.1. From time t1 to time t2, the statistical characteristic corresponding with class 1
(τ1 and τ2) significantly change, while those corresponding with class 2 (τ3 and τ4) do not
change. AMRCs account for such multidimensional time changes by tightly tracking the time-
varying underlying distribution.

tion do not provide performance guarantees under concept drift since instance-label
pairs follow a time-varying underlying distribution. Techniques based on online learn-
ing and regret minimization provide performance guarantees for accumulated mistakes
in terms of dynamic regret bounds [5, 47, 61, 108]. Furthermore, techniques based on
statistical learning for the drifting scenario provide performance guarantees for the
instantaneous error probability at specific times in terms of discrepancies between con-
secutive distributions [71,72]. However, the existing techniques offer qualitative bounds
but not computable tight performance guarantees.

This chapter presents adaptive minimax risk classifiers (AMRCs) that account for
multidimensional time changes and provide tight performance guarantees. Specifically,
the main contributions presented in the chapter are as follows:

• We develop the learning methodology of AMRCs that provides multidimensional
adaptation by estimating multiple statistical characteristics of the time-varying
underlying distribution.

• We show that AMRCs can provide computable tight performance guarantees
under concept drift in terms of instantaneous error probabilities and accumulated
mistakes.

• We propose techniques to track the time-varying underlying distribution using
dynamical systems that model multivariate and high-order changes in statistical
characteristics.
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• We propose techniques to learn AMRCs using an efficient subgradient method
that utilizes warm-starts and maintains local approximations of the objective
function.

• Using multiple benchmark datasets, we quantify the classification improvement
of AMRCs in comparison with the state-of-the-art and numerically assess the
reliability of the performance guarantees presented.

The rest of the chapter is organized as follows. Section 2.2 briefly describes the prob-
lem formulation and presents the learning methodology of AMRCs together with their
performance guarantees. We propose sequential techniques for tracking and efficienct
learning in Sections 2.3 and 2.4. Section 2.5 assesses the proposed methods using syn-
thetic and benchmark datasets.

Notations: calligraphic letters represent sets; bold lowercase letters represent vectors;
bold capital letters represent matrices; I denotes the identity matrix; 1{·} denotes the
indicator function; sgn(·) denotes the sign function; ‖ · ‖1 and ‖ · ‖∞ denote the 1-norm
and the infinity norm of its argument; ⊗ denotes the Kronecker product; ( . )+ denotes
the positive part of its argument; [ · ]T denotes the transpose of its argument; � and �
denote vector inequalities; Ep{ · } denotes the expectation of its argument with respect
to distribution p; and ei denotes a vector with one on the i-th component and zeros in
the remaining components.

2.2 Methodology of adaptive MRCs

This section briefly describes the problem formulation and presents the learning method-
ology of AMRCs. Then, we describe how AMRCs provide multidimensional adaptation
and tight performance guarantees.

xt−1 yt−1

ŷt−1

Optimization
Alg. 8

Tracking

Prediction

Performance
guarantees

Alg. 8

Learning
Alg. 5

Alg. 6ht−1

R(Ut−1) R(Ut)

ht

UtUt−1

τ̂ t−1 τ̂ t

λt−1 λt

µtµt−1

Alg. 9

Figure 2.2. Diagram for the methodology of
AMRCs.

In supervised classification under
concept drift, samples arrive over time
and the instance-label pair (xt, yt) at
time t is a sample from an underly-
ing distribution pt ∈ ∆(X × Y) that
changes over time. Learning methods
use each new pair to update the previ-
ous classification rule. Specifically, at
each time t, these techniques predict
a label ŷt corresponding with a new
instance xt using the rule ht at time
t, then they obtain updated rule ht+1

when the true label yt is provided.
Figure 2.2 depicts the methodology

of AMRCs that sequentially update
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minimax risk classifier (MRC) rules as
new instance-label pairs arrive, and Algorithms 5 and 6 specify the learning and predic-
tion stages of AMRCs. At learning, AMRCs adapt to multidimensional time changes
by tightly tracking the time-varying underlying distribution (see Alg. 7); optimize the
classifier parameters by using an efficient subgradient method (see Alg. 8); and obtain
performance guarantees by using the minimax risk (see Alg. 8 and Section 2.2.2).

The tracking step updates at each time the uncertainty set Ut using the uncertainty
set at previous time Ut−1. Specifically, the uncertainty set Ut is determined by the mean
and confidence vectors τ t and λt that are updated from those at time t − 1 together
with the instance-label pair (xt−1, yt−1). The optimization step updates at each time the
classification rule ht and obtains the minimax risk R(Ut) using the updated uncertainty
set Ut together with the rule at previous time ht−1. Specifically, the classification rule ht

is determined by parameter µt that is obtained from the updated mean and confidence
vectors τ t and λt together with parameter µt−1.

Algorithm 5 Learning AMRCs

Input: (xt−1, yt−1), τ t−1,λt−1, and µt−1

Output: τ t,λt, µt, and R(Ut)
Update τ t and λt using (xt−1, yt−1), τ t−1, and λt−1 (see Alg. 7)
Update µt and obtain R(Ut) solving (6) using τ t,λt, and µt−1 (see Alg. 8)

Algorithm 6 Prediction with AMRCs

Input: xt and µt

Output: ŷt for AMRC ht or for deterministic AMRC hd
t

cx ←
∑

y∈Y

(
Φ(xt, y)Tµt − ϕ(µt)

)
+

if cx = 0 then
for y ∈ Y do

ht(y|xt)← 1/|Y|
else
for y ∈ Y do

ht(y|xt)←
(
Φ(xt, y)Tµt − ϕ(µt)

)
+
/cx

Draw ŷt from distribution ht(y|xt) or obtain ŷt from arg maxy∈Y ht(y|xt)

2.2.1 Multidimensional adaptation to time changes

The proposed learning methodology can provide multidimensional adaptation to time
changes because AMRCs estimate multiple statistical characteristics of the time-varying
underlying distribution.

The proposed AMRCs estimate the evolution over time of the vector formed by
the expectations of the feature mapping. At each time t, such mean vector τ∞

t =
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Ept{Φ(x, y)} ∈ R
m represents the statistical characteristics of the underlying distri-

bution pt as measured by the feature map Φ : X × Y → R
m. AMRCs account for

situations in which different characteristics change in a different manner by estimating
the evolution of each component in the mean vector.

For a feature mapping Φ given by one-hot encodings of labels as in (1), each of the
m = |Y|d components of the mean vector represents one conditional expectation. For
i = 1, 2, ..., m, the i-th component Φi(x, y) has associated a label j = 1, 2, ..., |Y| and
an instance feature Ψr for r = 1, 2, ..., d, since

Φi(x, y) = 1{y = j}Ψr(x)

with i = (d−1)j + r. Then, the i-th component of the mean vector τ∞
t corresponding

to the j-th label and the r-th instance feature is given by

τ∞t,i = Ept{Φi(x, y)} = pt(y = j)Ept{Ψr(x)|y = j}

where pt(y = j) denotes the probability of label y = j. The i-th component of the
mean vector describes the probability of the j-th label together with the expected
value of the r-th instance feature when the label takes its j-th value. In Section 2.3 we
propose techniques for estimating each of the mean vector components accounting for
multivariate and high-order time changes.

2.2.2 Performance guarantees

The proposed learning methodology can provide performance guarantees under concept
drift because AMRCs minimize the worst-case error probability over distributions in a
time-varying uncertainty set.

The proposed AMRCs provide performance guarantees in terms of the minimax risks
obtained at learning and also with respect to the smallest minimax risks corresponding
with the optimal minimax rules. Such rules correspond with uncertainty sets given by
the true expectation of the feature mapping Φ, that is

U∞
t = {p ∈ ∆(X × Y) : Ep{Φ(x, y)} = τ t}. (2.1)

The minimum worst-case error probability over distributions in U∞
t is given by

R∞
t = min

µ
1− τT

t µ + ϕ(µ) = 1− τT
t µ

∞
t + ϕ(µ∞

t ) (2.2)

corresponding with the AMRC given by parameters µ∞
t . Such classification rule is

referred to as optimal minimax rule because for any uncertainty set Ut given by (2) that
contains the underlying distribution, we have that U∞

t ⊆ Ut and hence R∞
t ≤ R(Ut).

This optimal minimax rule could only be obtained by an exact estimation of the mean
vector that in turn would require an infinite amount of instance-label pairs at each
time.

The following result shows performance guarantees for AMRCs both in terms of
instantaneous bounds for error probabilities and bounds for accumulated mistakes.
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Theorem 6. For t = 1, 2, ..., T , let Ut be the uncertainty set given by τ = τ t and
λ = λt in (2), and ŷt be a label provided by an AMRC ht for Ut given by parameter
µt. Then, we have that

R(ht) ≤ R(Ut) + αt ≤ R∞
t + βt (2.3)

and with probability at least 1− δ

T∑

t=1

1 {ŷt 6= yt} ≤
T∑

t=1

R(Ut) +
T∑

t=1

αt +

√
2T log

1

δ
(2.4)

≤
T∑

t=1

R∞
t +

T∑

t=1

βt +

√
2T log

1

δ

where αt and βt can be taken as

αt = ‖|τ∞
t − τ t| − λt‖∞ ‖µt‖1

βt = (‖τ∞
t − τ t‖∞ + ‖λt‖∞) ‖µ∞

t − µt‖1
for any λt � 0, and as

αt = 0, βt = 2 ‖λt‖∞ ‖µ∞
t ‖1

for λt � |τ∞
t − τ t|.

Proof. See B.1.

Inequalities in (2.3) and (2.4) bound the instantaneous error probability and the
accumulated mistakes of AMRCs, respectively. Inequalities in (2.3) are obtained as a
generalization of bounds in [76, 77] to the addressed setting, while inequalities in (2.4)
are obtained using the Azuma’s inequality for the martingale difference 1{ŷt 6= yt} −
R(ht). Note that the above inequalities also ensure generalization for deterministic
AMRCs because R(hd

t ) ≤ 2R(ht) since 1−hd
t (y|x) ≤ 2(1−ht(y|x)) for any x ∈ X , y ∈ Y .

Existing methods based on statistical learning for the drifting scenario provide
bounds for instantaneous error probabilities with respect to empirical risks (gener-
alization bound) [71, 72], while existing methods based on online learning and regret
minimization provide bounds for accumulated mistakes with respect to that of compara-
tor sequences (dynamic regret bound) [5, 47, 61, 108]. Theorem 6 for AMRC methods
provides bounds for instantaneous error probabilities and accumulated mistakes with
respect to the smallest minimax risk R∞

t corresponding to the optimal minimax rule
(second inequalities in (2.3) and (2.4)).

The proposed AMRCs not only provide qualitative bounds but also computable
tight performance guarantees given by the minimax risk obtained at learning. How-
ever, existing methods provide bounds in terms of quantities that are not computable
at learning such as discrepancies between consecutive distributions [71, 72] and com-
parators’ path-length [5, 108]. Theorem 6 for AMRC methods provides computable
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tight bounds for instantaneous error probabilities and accumulated mistakes (first in-
equalities in (2.3) and (2.4), respectively) that are given by the minimax risk obtained
by solving optimization (6) at learning. Specifically, the minimax risk R(Ut) directly
provides such bounds if the error in the mean vector estimate is not underestimated,
i.e., λt � |τ∞

t − τ t|. In other cases, R(Ut) still provides approximate bounds as long as
the underestimation |τ∞

t − τ t| −λt is not substantial. In Section 2.5 we show that the
presented bounds can provide tight performance guarantees for AMRCs in practice.

2.3 Tracking the time-varying underlying distribu-

tion

This section describes the proposed algorithms for tightly tracking the time-varying
underlying distribution. Such algorithms utilize methods that are commonly used for
target tracking and describe target trajectories using kinematic models (see e.g., [109]).

In what follows, we present techniques that estimate each component of the mean
vector τ∞

t at time t from instance-label pairs obtained up to time t− 1. As described
in Section 2.2.1, for i = 1, 2, ..., m, we denote by τt,i the i-th component of the mean
vector that corresponds with the j-th label and the r-th instance feature, that is,

τ∞t,i = pt(y = j)Ept{Ψr(x)|y = j}

with i = (d−1)j + r for j = 1, 2, ..., |Y| and r = 1, 2, ..., d. Then, the estimation of each
component of the mean vector is obtained from the estimation of the corresponding
label probability and instance feature conditional expectation. In particular, the j-th
label probability for j = 1, 2, ..., |Y| is estimated using the W latest labels as

p̂t(y = j) =
1

W

t−1∑

i=t−W

1{yi = j}. (2.5)

The above conditional expectation denoted by γ∞
t,i = Ept{Ψr(x)|y = j} for i = 1, 2, ..., m

is recursively estimated as described in the following.
We assume that γ∞

t,i is k times differentiable with respect to time and denote by
η∞
t,i ∈ R

k+1 the vector composed by γ∞
t,i and its successive derivatives up to order k. As

is usually done for target tracking [109], we model the evolution of such state vector
η∞
t,i using the partially-observed linear dynamical system

η∞
t,i = Htη

∞
t−1,i + wt,i

Φi(xt, yt) = γ∞
t,i + vt,i, if yt = j

(2.6)

with transition matrix Ht = I+
∑k

s=1 ∆s
tUs/s! where Us is the (k+ 1)× (k + 1) matrix

with ones on the s-th upper diagonal and zeros in the rest of components, ∆t is the time
increment at t, j = 1, 2, ..., |Y|, and i = (d − 1)j + r for r = 1, 2, ..., d. The variables
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wt,i and vt,i represent uncorrelated noise processes with mean zero and variance Qt,i

and r2t,i, respectively. Such variances can be estimated online using methods such as
those proposed in [110, 111]. Dynamical systems as that given by (2.6) are known in
target tracking as kinematic state models and can be derived using the k-th order Taylor
expansion of γt,i (see B.2 for a detailed derivation).

The result below allows to recursively obtain state vector estimates ηt,i with min-
imum mean squared error (MSE) together with their MSE matrices Σt,i, for i =
1, 2, ..., m. Then, the first components of such vector and matrix provide the estimate
and confidence for the conditional expectations γ∞

t,i for i = 1, 2, ..., m.

Theorem 7. If the evolution of the state vector η∞
t,i is given by the dynamical system

in (2.6), then the linear estimator of η∞
t,i based on (x1, y1), (x2, y2), ..., (xt−1, yt−1) that

has the minimum MSE is given by the recursion

ηt,i = Htηt−1,i − (γt−1,i − Φi(xt−1, yt−1))kt,i (2.7)

Σt,i = HtΣt−1,iH
T
t + Qt,i − kt,ie

T
1Σt−1,iH

T
t (2.8)

where

kt,i = 1{yt−1 = j} HtΣt−1,ie1
eT1Σt−1,ie1 + r2t−1,i

. (2.9)

In addition, Σt,i is the MSE matrix of such estimator ηt,i.

Proof. The unbiased linear estimator with minimum MSE for a dynamical system such
as (2.6) is given by the Kalman filter recursions (see e.g., [112]). Then, equations (2.7)
and (2.8) are obtained after some algebra from the Kalman recursions for predicted
state vector and predicted MSE.

The above theorem enables to tightly track the time-varying underlying distribution.
Specifically, Theorem 7 allows to recursively obtain mean vector estimates τ t as well as
its confidence vectors λt every time a new instance-label pair is received. Such vectors
are obtained from the estimated label probabilities in equation (2.5) together with the
estimated state vector and its MSE in recursions (2.7) and (2.8) as follows

τt,i =p̂t(y = j) eT1 ηt,i = p̂t(y = j) γt,i (2.10)

λ2
t,i =p̂t(y = j)(1− p̂t(y = j))eT1Σt,ie1

+ p̂t(y = j)2eT1Σt,ie1 + γ2
t,ip̂t(y = j)(1− p̂t(y = j))

=p̂t(y = j)
(
γ2
t,i(1− p̂t(y = j)) + eT1Σt,ie1

)
(2.11)

with i = (d− 1)j + r for j = 1, 2, ..., |Y|, r = 1, 2, ..., d.
The proposed techniques account for multivariate and high-order changes in sta-

tistical characteristics since the dynamical systems used model the detailed evolution
of each component in the mean vector. Specifically, for t = 1, 2, ... and i = 1, 2..., m,
the i-th component of the mean vector estimate is updated at time t by using the
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corresponding dynamical model in (2.6), the estimate at previous time, and the most
recent instance-label pair. Such update accounts for the specific evolution at time t
of the i-th component of the mean vector through the recursion in equation (2.7) and
gain vector kt,i in equation (2.9). In particular, updates for mean vector components
and times with a low gain slightly change the estimate at previous time, while those
updates for components and times with a high gain increase the relevance of the most
recent instance-label pair.

Algorithm 7 details the proposed procedure to track the time-varying underlying
distribution. Such algorithm has computational complexity O(mk3) and memory com-
plexity O(mk2) where m = |Y|d is the length of the feature mapping and k is the order
of the dynamical system in (2.6). In Section 2.5, we use dynamical systems with orders
k = 0, 1, 2 which are known in target tracking as zero-order derivative models, white
noise acceleration models, and Wiener process acceleration models, respectively.

Algorithm 7 Tracking of the time-varying underlying distribution

Input: (xt−1, yt−1),ηt−1,i,Σt−1,i, p̂t(y = j),Qt,i, and

rt,i for j = 1, 2, ..., |Y| and i = 1, 2, ..., m

Output: τ t,λt, ηt,i, and Σt,i for i = 1, 2, ..., m

for i = 1, 2, ..., m do

Obtain state vector ηt,i using (2.7) and MSE Σt,i using (2.8)

Obtain the i-th component of mean vector estimate τt,i

using (2.10) and confidence vector λt,i using (2.11)

2.4 Efficient learning of AMRCs

This section describes the proposed algorithms that obtain AMRCs’ parameters and
minimax risks at each time. First, we describe the accelerated subgradient method
(ASM) that solves the convex optimization problem (6) using Nesterov extrapolation
strategy [79, 80]. Then, we propose efficient algorithms that use a warm-start for the
ASM iterations and maintain a local approximation of the polyhedral function ϕ(·)
in (5).

In what follows, we present techniques that efficiently obtain the classifier parameter
µt and minimax risk R(Ut) at time t from the classifier parameter µt−1 and the updated
mean vector estimate τ t and confidence vector λt. The ASM algorithm applied to
optimization (6) obtains classifier parameters using the iterations for l = 1, 2, ..., K

µ̄
(l+1)
t = µ

(l)
t + al

(
τ t − ∂ϕ(µ

(l)
t )− λt ⊙ sign(µ

(l)
t )
)

µ
(l+1)
t = µ̄

(l+1)
t + θl+1(θ

−1
l − 1)

(
µ

(l)
t − µ̄

(l)
t

)
(2.12)



CHAPTER 2. CONCEPT DRIFT ADAPTATION 44

where µ
(l)
t is the l-th iterate for µt, θl = 2/(l + 1) and al = 1/(l + 1)3/2 are step sizes,

and ∂ϕ(µ
(l)
t ) denotes a subgradient of ϕ(·) at µ

(l)
t .

The proposed algorithm reduces the number of ASM iterations by using a warm-
start that initializes the parameters µt in (2.12) with the solution obtained at previous
time µt−1. In addition, the ASM iterations are efficiently computed by maintaining a
local approximation of the polyhedral function ϕ(·) in (5). Such function is given by
the pointwise maximum of linear functions indexed by pairs of instances and labels’
subsets x ∈ X , C ⊆ Y . So that, if I is the set of such pairs we have that ϕ(µ) in (5)
becomes

ϕ(µ) = max
i∈I

{
fTi µ− hi

}
(2.13)

with fi =
∑

y∈CΦ(x, y)/|C| ∈ R
m and hi = 1/|C| for index i that corresponds to pair

(x, C). We use local approximations of (2.13) given by indices corresponding with the N
most recent subgradients of ϕ(·). Specifically, if R ⊆ R

m we have that for any µ ∈ R,

ϕ(µ) = max
i∈JR

{
fTi µ− hi

}

with

JR = {i ∈ I : ∃ µ ∈ Rwithϕ(µ) = fTi µ− hi}
= {i ∈ I : ∃ µ ∈ Rwith fi ∈ ∂ϕ(µ)}.

Then, if JR = {i1, i2, ..., iN}, we have that for any µ ∈ R, ϕ(µ) = max{Fµ − h} with
F = [fi1 , fi2 , ..., fiN ]T and h = [hi1 , hi2 , ..., hiN ]T.

Algorithm 8 details the proposed procedure to learn the classifier parameters µt to-
gether with the minimax risk R(Ut) that provides the performance guarantees. Such al-
gorithm has computational complexity O(NKm+m2) and memory complexity O(Nm)
where m = |Y|d is the length of the feature mapping, N is the number of subgradients,
and K is the number of iterations for ASM in (2.12). Note that the complexity of
Algorithms 7 and 8 does not depend on the number of instance-label pairs and time
steps. Therefore, the proposed algorithms are applicable to large-scale datasets and
have constant complexity per time step.

2.5 Numerical results

This section evaluates the performance of AMRCs in comparison with the presented
performance guarantees and the state-of-the-art. In the first set of numerical results, we
use a synthetic dataset, while in the second set and the third set of numerical results,
we use multiple benchmark datasets. The implementation of the proposed AMRCs
is publicly available in Python and Matlab languages.1 In addition, the appendices
provide the detailed description of the benchmark datasets, additional implementation
details, and supplementary numerical results.

1https://github.com/MachineLearningBCAM/AMRC-for-concept-drift-ICML-2022

https://github.com/MachineLearningBCAM/AMRC-for-concept-drift-ICML-2022
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Algorithm 8 Optimization for AMRC params. and minimax risk

Input: τ t, λt, µt−1, xt−1, F, and h

Output: µt, R(Ut), Fnew, and hnew

for C ⊆ Y , C 6= ∅ do
F,h← append rows

∑
y∈C Φ(xt−1, y)T/|C|, 1/|C| to F,h

µ
(1)
t ← µt−1, µ̄

(1)
t ← µt−1

for l = 1, 2, ..., K do

al ← 1/(l + 1)3/2, θl ← 2/(l + 1), θl+1 ← 2/(l + 2)

fTi ← row of F such that fTi µ
(l)
t − hi = max {Fµ(l)

t − h}
µ̄

(l+1)
t ← µ

(l)
t + al

(
τ t − fi − λt ⊙ sign(µ

(l)
t )
)

µ
(l+1)
t ← µ̄

(l+1)
t + θl+1(θ

−1
l − 1)

(
µ

(l)
t − µ̄

(l)
t

)

Fnew,hnew ← append rows fTi , hi to Fnew,hnew

µt ← µ
(K+1)
t

R(Ut)← 1− τT
t µt + max{Fµt − h}+ λT

t |µt|
Fnew,hnew ← take the N most recent fi, hi from Fnew, hnew

We utilize a type of synthetic dataset that has been often used as benchmark for
supervised classification under concept drift [113, 114]. At each time t, we generate
a label yt ∈ {1, 2} according to a Bernoulli distribution with parameter 1/2 and an
instance given by

xt =
[
4 cos

(
π
(

(cos(ωt)− 3)/2 + yt

))
+ ǫ1,

4 sin
(
π
(

(cos(ωt)− 3)/2 + yt

))
+ ǫ2

]T

with ǫ1, ǫ2 ∼ N(0, 2) and ω = 0.1. We use a sinusoidal argument for cosines and
sines so that the dataset is even more challenging. The class-conditional underlying
distributions pt(xt|yt = 1) and pt(xt|yt = 2) are Gaussian with means that move with
varying velocity and direction in a circle centered at the origin. Specifically, the speed
of such means has periodicity π/ω with maxima at times t = ((n − 1)π + π/2)/ω and
minima at times t = nπ/ω, for n ∈ N. In addition, the direction of movement changes
with the same periodicity at times when the velocity is minimum.

AMRCs are compared with the state-of-the-art using 12 datasets that have been
often used as benchmarks for supervised classification under concept drift [63, 74, 75,
107, 113]: “Weather”, “Elec2”, “Airlines”, “German”, “Chess”, “Usenet1”, “Usenet2”,
“Email Spam”, “Credit card”, “Smart grid stability”, “Shuttle”, and “Poker”. The last
2 datasets are multi-class problems and the rest are binary. These datasets are further
described in Table 2.1 that shows the number of instance-label pairs, the dimensionality
of instances, and the number of labels. Three of such datasets are large-scale (“Airlines”,
“Credit card”, and “Poker”), four of them are medium-sized datasets (“Weather”,
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Table 2.1. Datasets information show number of instances, dimensionality of instances, and
number of labels.

Dataset Time Steps Dim. of instances |Y|
Weather 18,159 8 2

Elec2 1,148 4 2

Airlines 539,383 7 2

German 1,000 24 2

Chess 503 8 2

Usenet 1 1,500 99 2

Usenet 2 1,500 99 2

Email 1,498 913 2

C. card 284,806 30 2

S. Grid 60,000 13 2

Shuttle 100,001 9 4

Poker 829,201 10 10

“Phishing”, “Smart grid stability”, and “Shuttle”), and the rest are short-sized datasets
(“Elec2”, “German”, “Chess”, “Usenet1”, “Usenet2”, and “Email”). For instance, the
“Airlines” dataset used contains 539,383 instances with flight arrival and departure
information and aims to predict if a flight will be delayed or not; the “Weather” dataset
used contains 18,159 instances with daily measurements of weather factors and aims
to predict if it will rain or not; and the “Elec2” dataset used contains 1,148 instances
with twice-daily measurements (12am and 12pm) of factors that affect load demand and
price and aims to predict if the price will be higher or not. The benchmark datasets can
be obtained from UCI repository and from the Massive On-line Analysis library [93].

The results for AMRCs are obtained using the feature mapping described in equa-
tion (1) of Section 1.2. Specifically, for the synthetic dataset we use the linear map
Ψ(x) = x and for the benchmark datasets we use random Fourier featuress (RFFs)
with D = 200 as given by (??). The scaling parameter γ is calculated using a two-stage
five-fold cross validation. Specifically, at the first stage, the values for the scaling factor
are selected from 2i for i = {−6,−3, 0, 3, 6}. At the second stage, if γ0 = 2i where i is
the best parameter obtained at the first stage, then the values for the scaling param-
eters are selected from γ02

i, i = {−2,−1, 0, 1, 2}. The final value is γ = γ02
i where

i is the best parameter obtained at second stage. In addition, we use the recursive
approach presented in [111] to obtain the variances Qt,i and r2t,i of noise processes wt,i

and vt,i, in (2.6); we obtain the probability of the labels using (2.5) with W = 200;
and the ASM in (2.12) is implemented with N = 100 and K = 2000. AMRCs are
compared with 10 state-of-the-art techniques: AdaRaker [48], randomized budget per-
ceptron (RBP) [61], Projectron, Projectron ++ [46], naive online regularized risk mini-
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of error for AMRC of order k = 1.

Figure 2.3. Results on synthetic data show the evolution in time of instantaneous bounds and
probabilities of error.

mization algorithm (NORMA) [47], Nyström online gradient descent (NOGD), Fourier
online gradient descent (FOGD) [74], λ - perceptron [63], dynamic weighted major-
ity (DWM) [91], and Forgetron [94]. The results of the 9 methods that use kernels
utilize a scaling parameter calculated with a two-stage five-fold cross validation.

In the first set of numerical results we show the reliability of the presented instan-
taneous bounds using the synthetic data since the error probability in each time step
cannot be computed using real-world datasets. In order to quantify the error probabil-
ity at each time, we use 10,000 Monte Carlo simulations. Figures 2.3 and 2.4a show the
averaged instantaneous bounds of error probabilities corresponding to first inequality
in (2.3) for αt = 0 in comparison with the true error probabilities R(ht) at each time.
Such figure shows that the instantaneous bounds given by R(Ut) can offer tight upper
bounds for the error probability at each time. In addition, Figure 2.4b shows the ac-
cumulated mistakes per time step of AMRCs of order k = 0, 1, and 2. As can be seen
in such figure, an increased order can result in an improved overall performance at the
expenses of worse initial performance.

In the second set of numerical results we use benchmark datasets to quantify AMRCs
performance with respect to the state-of-the-art, the improvement due to multidimen-
sional adaptation, and the reliability of the presented mistake bounds. Table 2.2 shows
the classification error of AMRCs of order k = 1 and the 10 state-of-the-art techniques
for the 12 benchmark datasets described above.2 The table shows that AMRCs and
deterministic AMRCs (Det. AMRC) achieve the best performance in 3 and 9 datasets,
respectively, and are competitive in all datasets. In addition, Table 2.3 shows the av-
eraged running time in milliseconds of AMRCs and the 10 state-of-the-art techniques

2Bold numbers indicate the top result and N/As indicates that the classification method cannot be
used with non-binary datasets.
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(b). Results on synthetic data show the evolu-
tion in time of accumulated mistakes per num-
ber of steps.

for the 12 benchmark datasets. Such table shows the running time of AMRCs using
K = 500 and K = 2000 iterations in the ASM in Section 2.4, and Table 2.4 shows
the classification error of AMRCs with K = 500 and K = 2000. The running time of
AMRCs is of the order of tens of milliseconds per time step similarly to state-of-the-art
techniques.

Table 2.2 shows that AMRCs offer an overall improved performance compared to
the state-of-the-art along the benchmark datasets. In order to more clearly assess the
performance improvement due to the multidimensional adaptation, we also implement
a simple version of deterministic AMRCs that only account for a scalar rate of change
(Unidim. AMRCs). Such AMRCs are obtained by using, for all the components i =
1, 2, ..., m, the same gain in (2.7) and (2.8) that is taken as the average of the gains
in (2.9). As shown in the table, the presented multidimensional adaptation can enable
significant performance improvements in most datasets.

Figures 2.5a and 2.5b provide more detailed comparisons using the 3 techniques
that have the top average rank (Det. AMRC, AMRC, and DWM) in “German” and
“Usenet1” datasets. In addition, Figures 2.5a and 2.5b show the accumulated mistakes
per number of steps

∑T
t=1 1 {ŷt 6= yt} /T at each time in comparison with the accumu-

lated mistake bounds per number of steps corresponding to the first inequality in (2.4)
for δ = 0.05 and αt = 0. As can be seen in such figure, the accumulated mistake bounds
in (2.4) obtained at AMRC learning can offer accurate estimates for the classification
error. These results together with those in Figure 2.3b show that the proposed methods
can provide tight performance guarantees both in terms of instantaneous bounds for
error probabilities and also in terms of bounds for accumulated mistakes.
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Table 2.2. Classification error in % of AMRCs in comparison with state-of-the-art techniques.

Algorithm Weather Elec2 Airlines German Chess Usenet1 Usenet2 Email C. card S. Grid Shuttle Poker Ave. rank

AdaRaker 34.8 49.5 42.7 41.0 46.6 50.0 49.0 45.7 0.33 46.5 N/A N/A 10.9

RBP 34.3 39.6 42.7 40.5 36.5 44.9 48.3 45.3 0.33 38.6 N/A N/A 8.0

Projectron 30.7 36.8 41.8 40.0 35.1 49.1 47.7 48.2 0.33 34.4 64.7 22.6 6.2

Projectron ++ 32.0 48.1 41.9 42.2 43.4 47.2 45.2 48.1 0.33 35.8 64.9 23.4 8.3

NORMA 35.5 43.2 40.7 39.7 39.4 36.0 32.8 34.6 0.18 38.8 N/A N/A 6.6

NOGD 38.2 48.2 39.1 37.1 39.0 34.6 33.4 36.1 0.44 38.7 69.3 23.4 7.4

FOGD 32.0 44.9 41.1 37.6 38.3 45.9 47.0 44.9 0.33 36.0 64.9 22.9 6.4

λ-perceptron 31.4 40.4 44.5 42.9 41.6 44.5 31.4 46.8 0.18 35.8 N/A N/A 7.3

DWM 30.0 36.3 37.8 41.2 35.2 36.3 28.8 39.5 0.80 36.3 16.9 22.0 4.8

Forgetron 32.0 46.0 42.0 40.1 33.1 46.8 47.2 41.7 0.33 45.5 64.4 25.6 7.3

Unidim. AMRC 31.3 40.1 44.5 30.3 38.3 46.3 33.3 48.4 0.18 36.2 70.4 39.4 7.2

AMRC 32.3 35.8 38.9 30.3 27.7 35.7 30.9 43.7 0.17 35.8 15.2 21.9 3.0

Det. AMRC 30.0 33.9 39.4 30.0 33.4 32.0 29.9 33.9 0.17 34.4 10.6 21.9 1.5

Table 2.3. Averaged running times per
time step in milliseconds of AMRC in com-
parison with state-of-the-art techniques.

Algorithm Mean
RBP 9.2
Proj. 9.0
P. ++ 9.1
NORMA 6.8
A.Raker 10.1
NOGD 4.6
FOGD 1.9
λ-per. 12.2
DWM 6.6
Forg. 6.9
AMRC K = 500 14.4
AMRC K = 2000 51.9

Table 2.4. Classification error in % of
AMRC with K = 500 and K = 2000 iter-
ations in ASM.

Dataset
AMRC

K = 500 K = 2000
Weather 32.4 32.3
Elec2 35.9 35.8
Airlines 39.2 38.9
German 30.4 30.3
Chess 28.8 27.7
Usenet1 36.8 35.7
Usenet2 30.6 30.9
Email 43.0 43.7
C. card 2.53 0.17
S. grid 36.3 35.8
Shuttle 44.6 15.2
Poker 30.4 21.9
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Figure 2.5: Results on real-world datas shows the evolution of accumulated mistake
bounds.

2.6 Conclusion

The chapter proposes the methodology of adaptive minimax risk classifiers (AMRCs)
with multidimensional adaptation and performance guarantees. AMRCs learn classifi-
cation rules estimating multiple statistical characteristics of the time-varying underlying
distribution. In addition, AMRCs provide both qualitative and computable tight per-
formance guarantees. The chapter also proposes algorithms to track the time-varying
underlying distribution accounting for multivariate and high-order time changes, and
algorithms to efficiently update classification rules as new instance-label pairs arrive.
The numerical results assess the performance improvement of AMRCs with respect to
the state-of-the-art using benchmark datasets. The proposed methodology enables to
more fully exploit data with characteristics that change over time and can provide more
informative performance guarantees under concept drift.





Chapter 3

Minimax Classification for
Continual Learning

3.1 Introduction

In practical scenarios, classification problems (tasks) often have limited sample sizes and
arrive sequentially over time. Continual learning (CL) (also known as lifelong learning)
can boost the effective sample size (ESS) of each task by leveraging information from
preceding and succeeding tasks (forward and backward learning) [7,8,11]. The general
goal of such approaches is to replicate the humans’ ability to continually improve the
performance of each task exploiting information acquired from other tasks.

The development of CL techniques is hindered by the continuous arrival of samples
from tasks characterized by different underlying distributions. In particular, backward
learning (also known as reverse transfer) is often prone to a so-called catastrophic for-
getting in which a task’s performance gets worse while trying to repeatedly incorporate
information from the succeeding tasks [14–16]. More generally, CL methods face a
so-called stability-plasticity dilemma: the excessive usage of information from different
tasks can result in a performance decrease while a moderate usage does not fully exploit
the potential of CL [115, 116].

Most of CL techniques are designed for tasks sampled i.i.d. from a task environ-
ment [50, 117, 118], and current methods cannot capture the usual higher similarities
between consecutive tasks. For a sequence of tasks that arrive over time, it is com-
mon that the tasks are time-dependent and consecutive tasks are significantly more
similar. For instance, if each task corresponds to the classification of portraits from a
specific time period [19], the similarity between tasks is markedly higher for consecu-
tive tasks (see Figure 3.1). In the current literature of CL, only [64] considers scenarios
with time-dependent tasks and analyzes the feasibility of transferring information from
the preceding tasks. On the other hand, methods designed for concept drift adapta-
tion [6, 104, 119] account for time-dependent underlying distributions but only aim to
learn the last task in the sequence.
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Forward learningSingle-task learning Forward and backward learning
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Figure 3.1: For tasks that arrive over time, consecutive tasks are often more similar.
Forward and backward learning can exploit such similarities and extract information
from preceding and succeding tasks.

This chapter presents continual learning methods based on minimax risk classi-
fiers (CL-MRCs). The proposed techniques effectively exploit forward and backward
learning and account for time-dependent tasks. Specifically, the main contributions
presented in the chapter are as follows.

• The presented CL-MRCs minimize the worst-case error probabilities over uncer-
tainty sets obtained using information from all the tasks.

• We propose learning techniques that can effectively incorporate information from
the ever-increasing sequence of tasks and provide performance guarantees for for-
ward and backward learning.

• We analytically characterize the increase in ESS provided by forward and back-
ward learning in terms of the expected quadratic change between consecutive
tasks.

• We numerically quantify the performance improvement provided by the presented
learning techniques in comparison with existing methods using multiple datasets,
different sample sizes, and number of tasks.

Notations Calligraphic letters represent sets; ‖ · ‖1 and ‖ · ‖∞ denote the 1-norm
and the infinity norm of its argument, respectively; � and � denote vector inequalities;
I{·} denotes the indicator function; and Ep{ · } and Varp{·} denote the expectation and
the variance of its argument with respect to distribution p. For a vector v, v(i) and
vT denote the i-th component and the transpose of v. Non-linear operators acting on
vectors denote component-wise operations. For instance, |v| and v2 denote the vector
formed by the absolute value and the square of each component, respectively.
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3.2 Problem formulation

In CL, sample sets D1, D2, . . . arrive over time steps 1, 2, . . . corresponding with different
classification tasks characterized by underlying distributions p1, p2, . . .. At each time
step k, CL methods aim to obtain classification rules h1, h2, . . . , hk with small expected
losses ℓ(h1, p1), ℓ(h2, p2), . . . , ℓ(hk, pk) for the current sequence of k tasks. For instance,
overall performance is usually assessed by the averaged error 1

k

∑k
i=1 ℓ(hi, pi). As de-

picted in Figure 3.1, for each j-th task with j ∈ {1, 2, . . . , k}, CL methods obtain the
classification rule hj leveraging information obtained from sample sets D1, D2, . . . , Dj

(forward learning) and from sample sets Dj+1, Dj+2, . . . , Dk (backward learning).
As described in Section 1.2, most existing CL techniques are designed for tasks char-

acterized by distributions p1, p2, . . . such that the tasks’ distributions satisfy (i.i.d.-A).
In the following, we propose CL techniques designed for time-dependent tasks that
are characterized by distributions p1, p2, . . . such that the tasks’ distributions sat-
isfy (TD-A).

3.3 Forward learning with performance guarantees

This section presents the recursions that allow to obtain mean and mean squared error
(MSE) vectors for each task retaining information from preceding tasks. In addition,
it characterizes the increase in ESS provided by forward learning in terms of the tasks’
expected quadratic change and the number of tasks.

3.3.1 Forward learning

The proposed techniques for forward learning account for time-dependent tasks and
obtain classification rules for each task leveraging information from preceding tasks.
Let τ⇀

j and s⇀j denote the mean and MSE vectors for forward learning corresponding
to the j-th task for j ∈ {1, 2, . . . , k}. The following recursions allow to obtain τ⇀

j and
s⇀j for each j-th task using those vectors for the preceding task τ⇀

j−1, s
⇀
j−1 as

τ⇀
j = τ j +

sj

s⇀j−1 + sj + d2
j

(
τ⇀
j−1 − τ j

)
(3.1)

s⇀j =

(
1

sj
+

1

s⇀j−1 + d2
j

)−1

(3.2)

with τ j and sj given by (7) and τ⇀
1 = τ 1 and s⇀1 = s1.

The vector d2
j assesses the expected quadratic change between consecutive tasks. In

the following, the change between consecutive tasks is described by wj = τ∞
j − τ∞

j−1

for any j ∈ {2, 3, . . . , k}, where τ∞
j = Epj{Φ(x, y)} is the expectation of the feature

mapping with respect to the underlying distribution. If pj − pj−1 are independent and
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zero-mean for j = 2, 3, . . ., then vectors wj are also independent and zero-mean for any
feature mapping.

Taking d2
i = E{w2

i } = E{(τ∞
i − τ∞

i−1)
2} and σ2

i = Varpi{Φ (x, y)} for any i, the
recursion in (3.1) provides the unbiased linear estimator of the mean vector τ∞

j based
on D1, D2, . . . , Dj that has the minimum MSE, while the recursion in (3.2) provides its
MSE (see Appendix A.1 for a detailed derivation). Vectors σ2

i and d2
i can be estimated

online using the sample sets. In particular, σ2
i can be estimated as the sample variance,

while d2
i can be estimated using sample averages as

d2
i =

1

W

W∑

l=1

(τ il − τ il−1
)2 (3.3)

where i0, i1, . . . , iW are the W + 1 closest indexes to i in {1, 2, . . . , k}.
Recursions (3.1)-(3.2) obtain mean and MSE vectors for the j-th task by acquiring

information from the j-th sample set Dj and retaining information from preceding
tasks. Specifically, recursion (3.1) obtains the mean vector τ⇀

j by adding a correction
to the sample average τ j. This correction is proportional to the difference between τ j

and τ⇀
j−1 with a proportionality constant that depends on the MSE vectors sj , s

⇀
j−1 and

the expected quadratic change d2
j . In particular, if sj ≪ s⇀j−1 + d2

j , the mean vector is

given by the sample average as in single-task learning, and if sj ≫ s⇀j−1 +d2
j , the mean

vector is given by that of the preceding task. Note that for forward learning, at each
step k, only the vectors for the last task τ⇀

k and s⇀k need to be obtained from those of
the (k − 1)-th task. The vectors for the remaining j-th tasks with j ∈ {1, 2, . . . , k − 1}
stay the same as at step k − 1 (see also Fig. 3.2 and Alg. 9 below).

3.3.2 Performance guarantees and effective sample sizes

The following result provides bounds for the minimax risk for each task with respect to
the smallest minimax risk. For each j-th task, we denote by R∞

j the smallest minimax
risk and by µ∞

j the classifier parameter that determines the optimal minimax rule,
as described in Section 0.4. In addition, we denote by R(U⇀

j ) the minimax risk over
uncertainty set U⇀

j determined as in (2) using the mean and confidence vectors τ⇀
j and

λ⇀
j =

√
s⇀j provided by (3.1) and (3.2).

Theorem 8. Let M and κ be such that M ≥ ‖Φ(x, y)‖∞ ∀(x, y) ∈ X × Y and

κ ≥
σ
(

Φ
(i)
j

)

σ
(i)
j

, κ ≥
σ
(
w

(i)
j

)

d
(i)
j

for j = 1, 2, . . . , k and i = 1, 2, . . . , m, where Φ
(i)
j denotes the r.v. given by the i-th

component of the feature mapping of samples from the j-th task, and σ(z) denotes the
sub-Gaussian parameter of a r.v. z. For any j ∈ {1, 2, . . . , k}, with probability at least
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1− δ we have that

R(U⇀
j ) ≤ R∞

j +
M(κ + 1)

√
2 log (2m/δ)√
n⇀
j

∥∥µ∞
j

∥∥
1

(3.4)

with n⇀
1 = n1 and n⇀

j ≥ nj + n⇀
j−1

‖σ2
j‖∞

‖σ2
j‖∞+n⇀

j−1‖d
2
j‖∞

for j ≥ 2.

Proof. See Appendix A.4.

The excess risk in inequality (3.4) decreases asO(1/
√
n⇀
j ) using the forward learning

methods proposed, while such difference would decrease as O(1/
√
nj) using only the

information of the j-th task. Therefore, n⇀
j in (3.4) is the ESS of the proposed CL-MRC

method with forward learning. The ESS of each task is obtained by adding a fraction
of the ESS for the preceding task to the sample size. In particular, if d2

j is large, the

ESS is given by the sample size, while if d2
j is small, the ESS is given by the sum of the

sample size and the ESS of the preceding task.
Other existing methods provide comparable performance bounds [64, 72]. Such

bounds decrease with the number of tasks and increase with the change between con-
secutive distributions. Specifically, bounds in Proposition 1 of [72] and in Theorem
7 of [64] are proportional to the discrepancy and to the Kullback-Leibler divergence
between consecutive distributions. The bound in Theorem 8 above decreases with the
number of tasks and increases with the expected quadratic change d2

j between con-
secutive distributions. Note that the coefficient κ in (3.4) can be taken to be small
as long as the values used for σj and dj are not much lower than the sub-Gaussian
parameters of Φj and wj, respectively. In particular, κ is smaller than the maximum of

M/minj,i{σ(i)
j } and 2M/minj,i{d(i)j } due to the bound for the sub-Gaussian parameter

of bounded random variables (see e.g., Section 2.1.2 in [85]).
Theorem 8 shows the increase in ESS in terms of the ESS of the preceding task.

The following result allows to directly quantify the ESS in terms of the sample size and
the expected quadratic change.

Theorem 9. Let d, σj and n be such that d2 ≥ ‖d2
j‖∞, ‖σ2

j‖∞ ≤ 1, and n ≤ nj for
j = 1, 2, . . . , k. For any j ∈ {1, 2, . . . , k}, we have that the ESS in (3.4) can be taken
so that it satisfies

n⇀
j ≥ n

(
1 +

(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α

)
(3.5)

with α = 2√
1+ 4

nd2
−1

. In particular, for j ≥ 2, we have that

n⇀
j ≥ n

(
1 +

j − 1

3

)
if nd2 <

1

j2

n⇀
j ≥ n

(
1 +

1

5
√
nd2

)
if

1

j2
≤ nd2 < 1

n⇀
j ≥ n

(
1 +

1

3nd2

)
if nd2 ≥ 1.



CHAPTER 3. CONTINUAL LEARNING 56

Proof. See Appendix A.5.

The above theorem characterizes the increase in ESS provided by forward learning
in terms of the tasks’ expected quadratic change. Such increase grows monotonically
with the number of preceding tasks j as shown in (3.5) and becomes proportional to j
when the expected quadratic change is smaller than 1/(j2n). Figure 3.3 below further
illustrates the increase in ESS with respect to the sample size (n⇀

j /n) due forward
learning in comparison with forward and backward learning.

3.4 Forward and backward learning with performance

guarantees

This section presents the recursions that allow to obtain mean and MSE vectors for
each task retaining information from preceding tasks and acquiring information from
succeeding tasks. In addition, it characterizes the increase in ESS provided by forward
and backward learning in terms of the tasks’ expected quadratic change and the number
of tasks.

Backward learning is more challenging than forward learning since, for each task,
the sequence of succeeding tasks is ever-increasing due to the continuous arrival of
tasks, while the sequence of preceding tasks is always the same. The repeated usage of
information from the succeeding tasks can result in a so-called catastrophic forgetting
in which the tasks’ performance gets worse over time. The techniques proposed below
for backward learning effectively increase the ESS over time by carefully accounting for
the new information at each step.

3.4.1 Forward and backward learning

The proposed techniques for forward and backward learning account for time-dependent
tasks and obtain classification rules for each task leveraging information from preceding
and succeeding tasks. From preceding tasks, we obtain the forward mean and MSE
vectors τ⇀

j , s⇀j using recursions (3.1)-(3.2), while from succeeding tasks, we obtain the
backward mean and MSE vectors τ↽k

j , s↽k
j using recursions (3.1)-(3.2) in retrodiction.

Specifically, vectors τ↽k
j and s↽k

j are obtained using the same recursion as for τ⇀
j and

s⇀j in (3.1)-(3.2) with s↽k
j+1,d

2
j+1, and τ↽k

j+1 instead of s⇀j−1,d
2
j , and τ⇀

j−1.
Let τ⇋k

j and s⇋k
j denote the mean and MSE vectors for forward and backward

learning corresponding to the j-th task for j ∈ {1, 2, . . . , k}. The following recursions
allow to obtain, at each step k, the mean and MSE vectors τ⇋k

j and s⇋k
j for each j-th

task using those vectors for forward learning τ⇀
j , s⇀j and backward learning τ↽k

j+1, s
↽k
j+1
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as

τ⇋k
j = τ⇀

j +
s⇀j

s⇀j + s↽k
j+1 + d2

j+1

(
τ↽k
j+1 − τ⇀

j

)
(3.6)

s⇋k
j =

(
1

s⇀j
+

1

s↽k
j+1 + d2

j+1

)−1

(3.7)

with τ↽k
k = τ k, s

↽k
k = sk and τ⇋k

k = τ⇀
k , s⇋k

k = s⇀k . Analogously to the case of
forward learning in Section 3.3.1, taking d2

i = E{w2
i } and σ2

i = Varpi{Φ (x, y)} for any
i, the recursion in (3.6) provides the unbiased linear estimator of the mean vector τ∞

j

based on D1, D2, . . . , Dj and Dj+1, Dj+2, . . . , Dk that has the minimum MSE, while the
recursion in (3.7) provides its MSE (see Appendix A.1 for a detailed derivation).

Recursions (3.6)-(3.7) obtain at step k the mean and MSE vectors for the j-th
task by retaining information from preceding tasks and acquiring information from
succeeding tasks. Specifically, recursion (3.6) obtains the mean vector τ⇋k

j by adding
a correction to the mean vector of the corresponding task τ⇀

j obtained for forward
learning. This correction is proportional to the difference between τ⇀

j and τ↽k
j+1 with a

proportionality constant that depends on the MSE vectors s⇀j , s↽k
j+1 and the expected

quadratic change d2
j+1. In particular, if s⇀j ≪ s↽k

j+1 + d2
j+1, the mean vector is given by

that of the corresponding task for forward learning, and if s⇀j ≫ s↽k
j+1 +d2

j+1, the mean
vector is given by that of the succeeding task for backward learning.

3.4.2 Implementation

This section describes the implementation of the proposed CL-MRCs with forward and
backward learning and its computational and memory complexities.

Figure 3.2 depicts the flow diagram for the proposed CL-MRC methodology. The
proposed techniques carefully avoid the repeated usage of the same information from
the sequence of succeeding tasks.

τ j−1 τ j τ j+1τ⇋k
j

τ⇀
j−1 τ⇀

j τ⇀
j+1

τ↽k
j+1τ↽k

j−1 τ↽k
j

τ
⇋j
j−1

Figure 3.2: Diagram for CL-MRC method-
ology.

At each step k, new backward mean
vectors τ↽k

j+1 for j = k− 1, k− 2, .., k− b
are obtained for b backward steps, then
the forward and backward mean vectors
τ⇋k
j given by (3.6) are obtained from the

forward mean vectors τ⇀
j and the back-

ward mean vectors τ↽k
j+1. In particular,

τ⇀
j provides the information from the pre-

ceding tasks 1, 2, . . . , j, while τ↽k
j+1 pro-

vides the information from the succeeding
tasks j + 1, j + 2, . . . , k.

Algorithm 9 details the implementa-
tion of the proposed CL-MRCs at each
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step. For k steps, CL-MRCs have compu-
tational complexity O((b + 1)Kmk) and memory complexity O((b + k)m) where K is
the number of iterations used for the convex optimization problem (6), m is the length
of the feature vector, and b is the number of backward steps. In particular, if b = 0,
CL-MRC carries out only forward learning. The complexity of forward and backward
learning increases proportionally to the number of backward steps that can be taken to
be rather small, as shown in the following. Even more efficient implementations can be
obtained using Rauch-Tung-Striebel recursions (see e.g., Section 7.2 in [120]) that can
obtain τ⇋k

j from τ⇋k
j+1 as shown in equations (1.8)-(1.9) in Section 1.4.

Algorithm 9 CL-MRC at step k

Input: Dk from new task and τ j , sj , τ
⇀
j , s⇀j for k − b ≤ j < k from previous b− 1

steps

Output: µj for k − b ≤ j ≤ k, τ k, sk, τ
⇀
k , s⇀k

Obtain sample average and MSE vectors τ↽k
k = τ k, s

↽k
k = sk using the sample set

Dk ⊲ Single-task

Estimate the tasks’ expected quadratic change d2
k using (3.3)

Obtain the forward mean and MSE vectors τ⇀
k , s⇀k using (3.1)-(3.2) ⊲ Forward

Take λ⇀
k =

√
s⇀k and obtain classifier parameter µk solving the optimization prob-

lem (6)

for j = k − 1, k − 2, . . . , k − b do

Estimate the tasks’ expected quadratic change d2
j using (3.3)

Obtain backward mean and MSE vectors τ↽k
j+1, s

↽k
j+1 using (3.1)-(3.2) in retrodic-

tion ⊲

Backward

Obtain mean and MSE vectors τ⇋k
j , s⇋k

j using (3.6)-(3.7) ⊲ Forward and

backward

Take λ⇋k
j =

√
s⇋k
j and obtain classifier parameters µj solving the optimization

problem (6)

3.4.3 Performance guarantees and effective sample sizes

The following result provides bounds for the minimax risk for each task with respect
to the smallest minimax risk. For each j-th task and step k, we denote by R(U⇋k

j )
the minimax risk over uncertainty set U⇋k

j determined as in (2) using the mean and

confidence vector τ⇋k
j and λ⇋k

j =
√
s⇋k
j provided by (3.6) and (3.7).
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Theorem 10. Let M , κ, and n⇀
j be as in Theorem 8. For any j ∈ {1, 2, . . . , k}, with

probability at least 1− δ we have that

R(U⇋k
j ) ≤ R∞

j +
M(κ + 1)

√
2 log (2m/δ)√
n⇋k
j

∥∥µ∞
j

∥∥
1

(3.8)

with n⇋k
k = n⇀

k and

n⇋k
j ≥ n⇀

j + n↽k
j+1

‖σ2
j‖∞

‖σ2
j‖∞ + n↽k

j+1‖d2
j+1‖∞

for j ≤ k − 1, where the backward ESSs satisfy n↽k
k = nk and

n↽k
j ≥ nj + n↽k

j+1

‖σ2
j‖∞

‖σ2
j‖∞ + n↽k

j+1‖d2
j+1‖∞

.

Proof. See Appendix C.1.

To the best of our knowledge, Theorem 10 provides the first performance guarantees
for CL that show positive backward transfer. In particular, the bounds for forward and
backward learning provided by inequality (3.8) are significantly lower than those for
forward learning in Theorem 8. The ESS of each task is obtained by adding a fraction
of the ESS for the succeeding task to the ESS of the corresponding task using forward
learning. In particular, if d2

j is large, the ESS is given by that with forward learning,

while if d2
j is small, the ESS is given by the sum of the ESS using forward learning and

the ESS of the succeeding task.
Theorem 10 shows the increase in ESS in terms of the ESS with forward learning

and the ESS of the succeeding task. The following result allows to directly quantify the
ESS in terms of the sample size and the expected quadratic change.

Theorem 11. Let d, σj and n be such that d2 ≥ ‖d2
j‖∞, ‖σ2

j‖∞ ≤ 1, and n ≤ nj for
j = 1, 2, . . . , k. For any j ∈ {1, 2, . . . , k}, we have that the ESS in (3.8) can be taken
so that it satisfies

n⇋k
j ≥n

(
1 +

(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α
+

(1 + α)2(k−j)+1 − 1− α

α(1 + α)2(k−j)+1 + α

)
(3.9)

with α = 2√
1+ 4

nd2
−1

. In particular, for j ≥ 2, we have that

n⇋k
j ≥ n⇀

j + n
j(k − j)

j + 2(k − j)
≥ n

(
1 +

j − 1

3
+

j(k − j)

j + 2(k − j)

)
if nd2 <

1

j2

n⇋k
j ≥ n⇀

j +
1

5

√
n

d2
≥ n

(
1 +

2

5
√
nd2

)
if

1

j2
≤nd2 < 1

n⇋k
j ≥ n⇀

j +
1

3d2
≥ n

(
1 +

2

3nd2

)
if nd2 ≥ 1.
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Table 3.1: Datasets characteristics.

Dataset Classes Samples Tasks
Yearbook 2 37,921 126

ImageNet Noise 2 12,000 10
DomainNet 4 6,256 6
UTKFace 2 23,500 94

Rotated MNIST 2 70,000 60
CLEAR 3 10,490 10

Proof. See Appendix C.2.

The above theorem characterizes the increase in ESS provided by forward and back-
ward learning in terms of the tasks’ expected quadratic change.
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n⇋110
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nd2

Figure 3.3: ESS increase provided by for-
ward and backward learning.

Such increase grows monotonically
with the number of preceding tasks j and
with the number of succeeding tasks k−j
as shown in (3.9). In addition, it be-
comes proportional to the total number
of tasks k when the expected quadratic
change is smaller than 1/(j2n) and j ≥
k/2. Figure 3.3 further illustrates the in-
crease in ESS with respect to the sam-
ple size (n⇋k

j /n) due to forward and back-
ward learning in comparison with forward
learning. Such figure displays the three
intervals that are discussed in Theorems 9
and 11. In particular, the ESS signifi-
cantly increases when nd2 decreases be-
tween 1 and 1/j2. Note also that in most
of the situations, the benefits of back-
ward learning are achieved using only b =
k − j = 3 backward steps.

3.5 Numerical results

In the first set of numerical results, we compare the classification performance of
CL-MRCs with existing techniques using multiple datasets; in the second set of nu-
merical results, we show the performance improvement of the presented CL-MRCs due
forward and backward learning; and in the third set of additional results, we show the
classification error and the running time of CL-MRCs for different hyper-parameter
values.

The proposed method is evaluated using 6 public datasets: “Yearbook” [19], “Ima-
geNet noise” [97], “UTKFaces” [99], “Rotated MNIST” [121], “DomainNet” [98], and
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“CLEAR” [100]. These datasets are composed by time-dependent tasks (images with
characteristics/quality/realism that change over time). The last two datasets are multi-
class problems and the rest are binary. The summary of used datasets is provided in
Table 3.1 that shows the number of classes, the number of samples, and the number of
tasks. In the following, we further describe the tasks and the time-dependency of each
dataset used.

• The “Yearbook” dataset contains portraits’ photographs over time and the goal
is to predict males and females. Each task corresponds to portraits from one year
from 1905 to 2013.

• The “ImageNet noise” dataset contains images with increasing noise over tasks
and the goal is to predict if an image is a bird or a snake. The sequence of tasks
corresponds to the noise factors [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6] [97].

• The “DomainNet” dataset contains six different domains with decreasing realism
and the goal is to predict if an image is an airplane, bus, ambulance, or police car.
The sequence of tasks corresponds to the six domains: real, painting, infograph,
clipart, sketch, and quickdraw.

• The “UTKFaces” dataset contains face images in the wild with increasing age
and the goal is to predict males and females. The sequence of tasks corresponds
to face images with different ages from 0 to 116 years.

• The “Rotated MNIST” dataset contains rotated images with increasing angles
over tasks and the goal is to predict if the number in an image is greater than 5
or not. Each j-th task corresponds to a rotation angle randomly selected from[
180(j−1)

k
, 180j

k

]
degrees where j ∈ {1, 2, . . . , k} and k is the number of tasks.

• The “CLEAR” dataset contains images with a natural temporal evolution of
visual concepts in the real world and the goal is to predict if an image is soccer,
hockey, or racing. Each task corresponds to one year from 2004 to 2014.

The samples in each task are randomly splitted in 100 samples for test and the rest
of the samples for training. The samples used for training in the numerical results are
randomly sampled from each group of training samples in each repetition.

For all methods, instances are represented by pixel values in ”Rotated MNIST”
dataset, and by the last layer of the ResNet18 pre-trained network [102] in the re-
maining datasets. The proposed CL-MRC method is compared with 4 CL techniques:
gradient episodic memory (GEM) [11], meta-experience replay (MER) [49], efficient
continual learning algorithm (ELLA) [7], and elastic weight consolidation (EWC) [14].
The hyper-parameters in all methods are set to the default values provided by the au-
thors. CL-MRCs are implemented using b = 3 backward steps, the confidence vector
is obtained using λ0 = 1 in (7), the expected quadratic change d2

j is estimated using
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Table 3.2: Classification error and standard deviation of the proposed CL-MRC method
in comparison with the existing techniques.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR

n 10 100 10 100 10 100 10 100 10 100 10 100

GEM .18 ± .03 .17 ± .03 .39 ± .08 .13 ± .07 .69 ± .05 .53 ± .10 .12 ± .00 .12 ± .00 .36 ± .06 .28 ± .02 .57 ± .10 .09 ± .02

MER .16 ± .03 .10 ± .01 .17 ± .03 .10 ± .01 .38 ± .04 .26 ± .04 .17 ± .09 .11 ± .01 .37 ± .09 .45 ± .10 .10 ± .03 .05 ± .02

ELLA .45 ± .09 .43 ± .10 .48 ± .05 .47 ± .04 .67 ± .05 .67 ± .05 .19 ± .12 .17 ± .11 .48 ± .05 .47 ± .05 .61 ± .06 .60 ± .05

EWC .47 ± .05 .27 ± .06 .47 ± .04 .46 ± .06 .75 ± .04 .74 ± .05 .12 ± .00 .12 ± .00 .48 ± .01 .40 ± .01 .65 ± .03 .62 ± .04

CL-MRC .13 ± .04 .08 ± .02 .15 ± .03 .09 ± .01 .34 ± .06 .28 ± .01 .10 ± .01 .10 ± .00 .36 ± .01 .21 ± .00 .09 ± .03 .05 ± .02

W = 2 in (3.3), and the classifier parameters are obtained using an accelerated subgra-
dient method based on Nesterov approach as described in Section 2.4. The subgradient
method is implemented using K = 2000 iterations and a warm-start that initializes the
classifier parameters in (2.12) with the solution obtained for the closest task. We use
the same hyper-parameters for all the results in this section for fair comparison with
existing methods and to show that the techniques presented do not require a careful
fine-tuning. In the following, among other additional results, we study the change in
classification error and processing time achieved by varying the number b of backward
steps.

In the first set of numerical results, we compare the performance of the proposed
CL-MRCs with the state-of-the-art techniques for n = 10 and n = 100 samples per
task. These numerical results are obtained computing the average classification error
over all the tasks in 50 random instantiations of data samples. As can be observed
in Table 3.2, CL-MRCs can significantly improve performance in time-dependent tasks
with respect to existing methods.

In the second set of numerical results, we analyze the contribution of forward and
backward learning to the final performance of CL-MRCs. In particular, we show the
relationship among classification error, number of tasks, and sample size for single-task,
forward, and forward and backward learning. These numerical results are obtained
averaging, for each number of tasks and sample size, the classification errors achieved
with 10 random instantiations of data samples in ”Yearbook” dataset. Figure 3.4a
shows the classification error of CL-MRC method divided by the classification error
of single-task learning for different number of tasks with n = 10 and n = 100 sample
sizes. Such figure shows that forward and backward learning can significantly improve
performance as tasks arrive. In addition, Figure 3.4b shows the classification error of
CL-MRC method for different sample sizes with k = 10 and k = 100 tasks. Such figure
shows that forward and backward learning for k = 100 tasks using n = 10 samples
achieves significantly better results than single-task learning using n = 100 samples. In
particular, the methods proposed can effectively exploit backward learning that results
in enhanced classification error in all the experimental results.

Figure 3.5 shows the classification error of CL-MRCs per step and task with single-
task learning, forward learning, and forward and backward learning using the “Year-
book” dataset. Such figure shows that forward and backward learning can improve
performance of preceding tasks, while forward learning and single task learning main-
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Figure 3.4: Forward and backward learning can sharply boost performance and ESS as
tasks arrive.
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Figure 3.5: Forward and backward learning can improve performance of preceding tasks.

tain the same performance over time.
In the third set of additional results, we further assess the change in classification

error and the running time of CL-MRCs varying the hyper-parameters. Table 3.3
shows the classification error of CL-MRCs varying the values of hyper-parameter for
the window size W and the number of backward steps b. As shown in the table, the
proposed CL-MRCs do not require a careful fine-tuning of hyper-parameters and similar
performances are obtained by using different values. In addition, Table 3.4 shows the
mean running time per task in seconds of CL-MRCs for b = 1, 2, . . . , 5 backward steps
in comparison with the state-of-the-art techniques. Such table shows that the methods
proposed for backward learning do not require a significant increase in complexity. In
addition, Table 3.4 shows that the running time of the proposed method is similar to
that of other state-of-the-art methods.
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Table 3.3: Classification error of the proposed CL-MRC method varying W and b.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR

n 10 100 10 100 10 100 10 100 10 100 10 100

W = 2 .13 .08 .15 .09 .34 .28 .10 .10 .36 .21 .09 .05

W = 4 .13 .09 .15 .09 .32 .27 .10 .10 .35 .21 .09 .05

W = 6 .13 .09 .15 .09 .33 .28 .10 .10 .36 .21 .09 .06

b = 1 .14 .10 .15 .09 .36 .29 .10 .10 .36 .22 .10 .05

b = 2 .14 .09 .15 .09 .35 .28 .10 .10 .36 .22 .09 .05

b = 3 .13 .08 .15 .09 .34 .28 .10 .10 .36 .21 .09 .05

b = 4 .13 .08 .15 .08 .34 .28 .10 .10 .36 .21 .09 .05

b = 5 .13 .08 .15 .08 .34 .28 .10 .10 .36 .21 .08 .05

Table 3.4: Running time in seconds of CL-MRC method in comparison with the state-
of-the-art techniques.

Dataset Yearbook ImageNet noise DomainNet UTKFaces Rotated MNIST CLEAR

n 10 100 10 100 10 100 10 100 10 100 10 100

ELLA 0.066 0.070 0.073 0.073 0.054 0.065 0.059 0.062 0.176 0.198 0.077 0.073

GEM 0.098 0.476 0.010 0.037 0.005 0.020 0.056 0.310 0.180 1.094 0.009 0.034

MER 0.166 3.726 0.079 1.052 0.066 0.900 0.127 3.458 0.211 4.092 0.074 1.063

EWC 0.358 3.031 0.032 0.252 0.018 0.155 0.245 2.246 0.587 5.296 0.031 0.248

CL-MRC b = 1 0.094 0.324 0.259 0.490 0.518 8.463 0.108 0.348 0.135 0.471 0.235 1.310

CL-MRC b = 2 0.105 0.397 0.261 0.531 0.543 8.983 0.115 0.401 0.165 0.599 0.252 1.406

CL-MRC b = 3 0.133 0.487 0.284 0.561 0.542 9.514 0.133 0.488 0.209 0.737 0.255 1.469

CL-MRC b = 4 0.167 0.582 0.304 0.585 0.559 9.699 0.156 0.573 0.249 0.877 0.271 1.595

CL-MRC b = 5 0.184 0.664 0.438 0.601 0.571 9.921 0.190 0.664 0.288 1.010 0.360 1.693

3.6 Conclusion

This chapter proposes CL-MRCs that effectively perform forward and backward learn-
ing and account for time-dependent tasks. CL-MRCs carefully avoid the repeated
usage of the same information from the ever-increasing sequence of succeeding tasks.
In addition, this chapter analytically characterizes the increase in ESS achieved by the
proposed forward and backward learning techniques in terms of the tasks’ expected
quadratic change and number of tasks. The numerical results assess the performance
improvement of CL-MRC methodology with respect to existing methods using multiple
datasets, sample sizes, and number of tasks. The proposed methodology for CL with
time-dependent tasks can lead to techniques that further approach the humans’ ability
to learn from few examples and to continuously improve on tasks that arrive over time.





Chapter 4

Probabilistic Load Forecasting
Based on Adaptive Online Learning

4.1 Introduction

Load forecasting is crucial for multiple energy management tasks such as schedul-
ing generation capacity, planning supply and demand, and minimizing energy trade
costs [122, 123]. The importance of load forecasting is growing significantly in recent
years due to the increasing development of power systems and smart grids [123]. In
addition, accurate load forecasting has a beneficial impact in environment and economy
by reducing energy waste and purchase [124].

Forecasting methods are enabled by exploiting consumption patterns related to
multiple factors such as past loads, hours of day, days of week, holidays, and temper-
atures [123–128]. Accurate forecasting is hindered by intrinsic uncertainties in load
demand and dynamic changes in consumption patterns [129, 130]. These problems are
becoming more relevant in recent years due to the integration of renewable energies, elec-
tric cars, and microgrids [131–135]. Uncertainties in load demand cannot be assessed
by methods that obtain single-value forecasts, and dynamic changes in consumption
patterns cannot be captured by methods based on offline learning of static models. On
the other hand, probabilistic forecasts can evaluate load uncertainty and are essential
for optimal stochastic decision making (e.g., unit commitment [136]) [137] while on-
line learning is necessary to harness dynamic changes in consumption patterns [138].
Figure 4.1 illustrates how changes in consumption patterns affect the performance of
methods based on offline and online learning. The top figure shows the two-peak con-
sumption pattern that both methods learn on day t0, and the middle figure shows how
both methods accurately forecast until a flatter pattern emerges on day t0 + 3d. Then,
methods based on offline learning cannot adapt to the new pattern, while methods
based on online learning correctly adapt to such change.

Most conventional techniques for load forecasting obtain single-value forecasts based
on offline learning. Such techniques can be classified in three main groups: techniques

65
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Figure 4.1: The offline learning method cannot capture the change from two-peak to
flatter pattern on day t0+3d, while the online learning method can harness such change.

based on statistical methods (e.g., linear regression (LR) [128], autoregressive mov-
ing average (ARMA) [139, 140], autoregressive integrated moving average (ARIMA)
[141], and seasonal autoregressive integrated moving average (SARIMA) [142, 143]);
techniques based on machine learning methods (e.g., deep learning [144], neural net-
works [145], and support vector machines (SVMs) [128,146]); and techniques based on
weighted combinations of several forecasts [147–149]. Existing techniques that obtain
probabilistic forecasts are based on offline learning, while those based on online learn-
ing obtain single-value forecasts. Current probabilistic methods are based on Gaussian
process (GP) [150] and quantile regression (QR) [151, 152]. Current online learning
methods adapt to dynamic changes in consumption patterns by adjusting offline learn-
ing algorithms. In particular, such methods retrain regularly the models of conventional
techniques such as ARMA [153], update the weights in combined forecasts [154], or up-
date the smoothing functions in additive models [155].

In this chapter we present techniques for adaptive probabilistic load forecasting
(APLF) that can harness changes in consumption patterns and assess load uncertainties.
Specifically, the main contributions are as follows:

• We model the data using hidden Markov models (HMMs) and develop online
learning techniques for APLF that update HMM parameters recursively.

• We develop sequential prediction techniques for APLF that obtain probabilistic
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forecasts using the most recent HMM parameters.

• We describe in detail the efficient implementation of the steps for online learning
and probabilistic prediction in APLF method.

• We quantify the performance improvement provided by the method presented in
comparison with existing load forecasting techniques under multiple scenarios.

The rest of this chapter is organized as follows. Section 4.2 describes the problem of
load forecasting and introduces the performance metrics. In Section 4.3, we present the
theoretical results for APLF learning and prediction. Section 4.4 compares the proce-
dures of offline learning and online learning, and describes in detail the implementation
of APLF. The performance of APLF and existing techniques is compared in Section
4.5 under multiple scenarios. Finally, Section 4.6 draws the conclusions.

Notations N (x;µ, σ) denotes the Gaussian density function of the variable x with
mean µ and standard deviation σ; p (x|y) denotes the probability of variable x given
variable y; p(x, y) denotes the joint probability of variables x and y; 1{·} denotes the
indicator function; bold lowercase letters represent vectors; bold capital letters represent
matrices; IK denotes the K ×K identity matrix; 0K denotes the zero vector of length
K; [ · ] denotes vectors; and [ · ]T and E{·} denote the transpose and expectation of its
argument.

4.2 Problem formulation

Load forecasting methods estimate future loads given past loads and factors that affect
future loads such as hours of day, days of week, and weather forecasts. Forecasting
techniques determine a prediction function that assigns instance vectors x (predictors)
to target vectors y (responses).

Instance vectors x are composed by past loads and observations related to future
loads (e.g., weather forecasts), and target vectors y are composed by future loads. We
denote load by s and load forecast by ŝ, with st and ŝt being the load and the load
forecast at time t. In addition, for each time t, we denote by rt the observations vector
at time t that can include data such as weather forecasts wt. Then, for a prediction
horizon L (e.g., 24 hours, 30 minutes) and prediction times t + 1, t + 2, ..., t + L,

the instance vector is given by x =
[
st−m, ..., st, r

T
t+1, ..., r

T
t+L

]T
, the target vector

is given by y = [st+1, st+2, ..., st+L]T, and the vector of load forecasts is given by
ŷ = [ŝt+1, ŝt+2, ..., ŝt+L]T. Furthermore, each time t is categorized by a calendar
variable c(t) ∈ {1, 2, ..., C} that describes time factors affecting load demand such as
hour of day, day of week, month of year, and holiday. The calendar variable is used
to model separately loads corresponding with each calendar type c(t) ∈ {1, 2, ..., C}
as described in Section 4.3. Conventional techniques such as LR [128] and SVMs [146]
use instance vectors composed by past loads, observations, and calendar variables.
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The proposed APLF method uses instance vectors composed by one past load and
observations.

Forecasting methods determine prediction functions using training samples formed
by pairs of vectors x and y. Offline learning algorithms determine a static prediction
function f using training samples obtained up to time t0, (x1,y1), (x2,y2), ..., (xt0 ,yt0),
while online learning algorithms determine prediction functions ft using all available
training samples at t ≥ t0, (x1,y1), (x2,y2), ..., (xt,yt). Therefore, the static prediction
function f cannot adapt to changes in consumption patterns that occur after time t0,
while prediction functions ft can adapt to patterns’ changes using the latest information
(see Figure 4.1).

Performance of forecasting algorithms is evaluated in terms of accuracy using the
absolute value of prediction errors:

e = |s− ŝ| (4.1)

while probabilistic performance can be evaluated using metrics such as pinball losses
[156] and calibration [157]. Overall prediction errors are commonly quantified using
root mean square error (RMSE) given by

RMSE =
√
E
{
|s− ŝ|2

}

and mean average percentage error (MAPE) given by

MAPE = 100 · E
{ |s− ŝ|

s

}
.

The pinball loss of the q-th quantile forecast ŝ(q) is given by

L
(
s, ŝ(q)

)
=

{
q
(
s− ŝ(q)

)
if s ≥ ŝ(q)

(1− q)
(
ŝ(q) − s

)
if s < ŝ(q)

and the overall pinball loss is commonly quantified by the average over all quantiles.
The calibration of the q-th quantile forecast ŝ(q) is given by

C(q) = E
{
1s≤ŝ(q)

}

and quantifies the probability with which the load is smaller than the quantile forecast
ŝ(q). Finally, the expected calibration error (ECE) is given by

ECE = E {|q − C(q)|}

and quantifies the overall calibration error of probabilistic forecasts.
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Figure 4.2: Hidden Markov model for sequences {st}t≥1 and {rt}t≥1 characterized by
conditional distributions p (st|st−1) and p (rt|st).

4.3 Models and theoretical results

This section first describes the HMM that models loads and observations, we then
develop the techniques for online learning and probabilistic forecasting.

We model the relationship between the loads {st}t≥1 and observations {rt}t≥1 using
HMMs also known as state-space models [158, 159]. Such models allow to predict
hidden states from past states and observations, and are determined by the conditional
distribution p (st|st−1) that represents the relationship between two following loads,
and the conditional distribution p (rt|st) that represents the relationship between each
load and observations vector (see Figure 4.2). We model the sequence of loads and
observations as a non-homogeneous HMM so that both conditional distributions change
in time. Such dynamic modelling allows to adapt to changes in consumption patterns.

The conditional distributions p (st|st−1) and p (rt|st) are modeled using Gaussian
distributions with mean uTη and standard deviation σ, where u is a known feature
vector and parameters η, σ are different for each calendar type c(t) ∈ {1, 2, ..., C}.
For each c = c(t), we denote by uT

s ηs,c and σs,c the mean and standard deviation that
determine the conditional distribution of load at time t given load at time t− 1 that is

p (st|st−1) = N
(
st;u

T
s ηs,c, σs,c

)
(4.2)

with ηs,c ∈ R
2, σs,c ∈ R, and uT

s = [1, st−1]
T. In addition, for each c = c(t), we denote

by uT
r ηr,c and σr,c the mean and standard deviation that determine the conditional

distribution of load at time t given observations at time t. Hence, assuming there is no
prior knowledge available for the loads, we have that

p (rt|st) ∝ p (st|rt) = N
(
st;u

T
r ηr,c, σr,c

)
(4.3)

with ηr,c ∈ R
R, σr,c ∈ R, and ur = ur (rt) ∈ R

R. The proposed method can consider
general functions ur(·) and observations rt. In cases where the observations vector is
high dimensional, APLF method can use a function ur(·) that reduces the dimensional-
ity of observations. For instance, if r ∈ R

N , ur(r) ∈ R
R can be the result of applying a

dimensionality reduction method such as principal component analysis (PCA). In the
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experimental results of Section 4.5, we use a simple function ur(·) that returns binary
vectors and encodes weather shifts.

Using the above models, at each time t the HMM describing the sequences of loads
and observations is characterized by parameters

Θ = {ηs,c, σs,c,ηr,c, σr,c : c = 1, 2, ..., C} (4.4)

where ηs,c, σs,c characterize the conditional distribution p(st|st−1) and ηr,c, σr,c charac-
terize the conditional distribution p(rt|st) for times t with calendar type c = c(t).

The parameters for each calendar type and conditional distribution can be obtained
by maximizing the weighted log-likelihood of all the loads obtained at times with the
same calendar type. Specifically, if st1 , st2 , ..., stn are loads obtained at times with
calendar type c ∈ {1, 2, ..., C}, i.e., c = c(t1) = c(t2) = ... = c(tn), and ut1 ,ut2 , ...,utn

are the corresponding feature vectors for parameters ηs,c, σs,c as given in (4.2) or for
parameters ηr,c, σr,c as given in (4.3), the exponentially weighted log-likelihood of loads
up to time ti, for i = 1, 2, ..., n, is given by

Li (η, σ) =

i∑

j=1

λi−j logN(stj ;u
T
tj
η, σ) (4.5)

where weights λi−j, j = 1, 2, ..., i, allow to increase the influence of the most recent
data using a parameter λ ∈ (0, 1) that is commonly known as forgetting factor. The
maximization of (4.5) is a convex optimization problem since Li(η, σ) is a concave
function because Gaussian distributions are log-concave and λi−j > 0 for any i, j. In
addition, the maximum of (4.5) is unique as long as its Hessian is negative definite
which happens for any i ≥ i0 such that

Hi0 =

i0∑

j=1

λi0−jutju
T
tj

(4.6)

is a non-singular matrix.
The next Theorem shows that the maximization of the weighted log-likelihood in

(4.5) can be solved recursively using parameters given by

ηi = ηi−1 +
Pi−1uti

λ + uT
tiPi−1uti

(
sti − uT

ti
ηi−1

)
(4.7)

σi =

√√√√σ2
i−1 −

1

γi

(
σ2
i−1 −

λ
(
sti − uT

tiηi−1

)2

λ + uT
tiPi−1uti

)
(4.8)

with

Pi =
1

λ

(
Pi−1 −

Pi−1utiu
T
ti
Pi−1

λ + uT
tiPi−1uti

)
(4.9)

γi = 1 + λγi−1. (4.10)
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Theorem 12. Let i0 be an integer such that the matrix Hi0 given by (4.6) is non-
singular, and η∗

i ∈ R
K , σ∗

i ∈ R be parameters that maximize the weighted log-likelihood
given by (4.5) with N(stj ;u

T
tj
η∗
i , σ

∗
i ) ≤M for any j ≤ i ≤ n.

If parameters ηi ∈ R
K , σi ∈ R are given by the recursions in (4.7)-(4.10) for i > 0

with η0 = 0K , any σ0, P0 = IK , and γ0 = 0. Then, we have that

Li (η∗
i , σ

∗
i )− Li (ηi, σi) ≤ πM2 ‖η∗

i ‖2 λi (4.11)

for any i ≥ i0.
In addition, if parameters ηi ∈ R

K , σi ∈ R are given by the recursions in (4.7)-(4.10)
for i > i0 with

ηi0 = Pi0

(
i0∑

j=1

λi0−jstjutj

)
(4.12)

σi0 =

√√√√ 1

γi0

(
i0∑

j=1

λi0−js2tj −
i0∑

j=1

λi0−jstju
T
tjηi0

)
(4.13)

Pi0 = (Hi0)
−1 (4.14)

γi0 =

i0∑

j=1

λi0−j . (4.15)

Then, we have that ηi = η∗
i and σi = σ∗

i for any i ≥ i0.

Proof. See appendix D.1.

The first part of the above result shows that parameters given by the recursions (4.7)-
(4.10) for i > 0 with η0 = 0K , any σ0, P0 = IK , and γ0 = 0, approximately maximize
the weighted log-likelihood. In addition, the log-likelihood difference with respect to the
maximum given by (4.11) decreases exponentially fast with the number of iterations
i since λ ∈ (0, 1). The second part shows that parameters given by the recursions
(4.7)-(4.10) for i ≥ i0 with ηi0 , σi0 given by (4.12)-(4.15), maximize the weighted log-
likelihood for any i ≥ i0. Note that the parameters are updated in recursions (4.7)-
(4.10) by adding a correction to the previous parameters ηi−1 and σi−1. Such correction
is proportional to the fitting error of the previous parameter sti − uT

ti
ηi−1 so that

parameters are updated depending how well they fit the most recent data.
Recursion (4.7) for parameters describing means is similar to that used for the

recursive minimization of weighted least squares [160]. The main technical novelty in
Theorem 12 lies in recursion (4.8) for parameters describing standard deviations, and
inequality (4.11) describing the near-optimality of parameters initialized with η0 = 0K ,
any σ0, P0 = IK , and γ0 = 0. Existing techniques for least squares only allow to
recursively obtain parameters describing means, while Theorem 12 allows to recursively
obtain parameters describing both means and standard deviations. Such generalization
is of practical relevance since it allows to obtain probabilistic models determined by
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time-changing means and standard deviations. In addition, existing techniques address
the possible singularity of matrix (4.6) during the initial steps by adding a regularization
term in (4.5), but such approach cannot be used to obtain standard deviations. The
bound in (4.11) guarantees that parameters given by recursions (4.7)-(4.10) are close
to be optimal when initialized with η0 = 0K , any σ0, P0 = IK and γ0 = 0, and are
optimal when initialized as given by (4.12)-(4.15).

The above Theorem enables the adaptive online learning of parameters Θ described
in (4.4). As detailed in Section 4.4, Theorem 12 allows to update parameters ηs,c, σs,c

and ηr,c, σr,c using the recursions (4.7) and (4.8) every time new loads and observations
are obtained corresponding with calendar type c. Such parameters are updated using
their previous values and the states variables given by (4.9) and (4.10). In the following,
we denote Ps,c and γs,c (resp. Pr,c and γr,c) the state variables required to update
parameters ηs,c and σs,c (resp. ηr,c and σr,c) for c = 1, 2, ..., C, and we denote by Γ the
list composed by those state variables, that is

Γ = {Ps,c, γs,c,Pr,c, γr,c : c = 1, 2, ..., C}. (4.16)

In addition, we denote λs (resp. λr) the forgetting factor required to update parameters
ηs,c and σs,c (resp. ηr,c and σr,c), for c = 1, 2, ..., C.

The previous result describes how to update HMM parameters using the most re-
cent data, the next result shows how to obtain probabilistic forecasts using the HMM
characterized by parameters Θ.

Theorem 13. If {st, rt}t≥1 is an HMM characterized by parameters Θ as described in
(4.4). Then, for i = 1, 2, ..., L

p (st+i|st, rt+1, ..., rt+i) = N (st+i; ŝt+i, êt+i) (4.17)

where means ŝt+1, ŝt+2, ..., ŝt+L and standard deviations êt+1, êt+2, ..., êt+L can be com-
puted by the following recursions

c = c (t + i) , ûs = [1, ŝt+i−1]
T,ur = ur (rt+i)

ŝt+i =
ûT
s ηs,cσ

2
r,c + uT

r ηr,c

(
σ2
s,c +

(
vTηs,c

)2
ê2t+i−1

)

σ2
r,c + σ2

s,c +
(
vTηs,c

)2
ê2t+i−1

(4.18)

êt+i =

√√√√√
σ2
r,c

(
σ2
s,c +

(
vTηs,c

)2
ê2t+i−1

)

σ2
r,c + σ2

s,c +
(
vTηs,c

)2
ê2t+i−1

(4.19)

for v = [0, 1]T, ŝt = st, êt = 0, and i = 1, 2, ..., L.

Proof. See appendix D.2.
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Figure 4.3: APLF method obtains load forecasts together with reliable uncertainty
assessments of load demand.

The above Theorem enables to recursively obtain probabilistic load forecasts N (st+i; ŝt+i, êt+i),
for i = 1, 2, ..., L that allow to quantify the probability of forecast intervals (see Fig-
ure 4.3). As detailed in Section 4.4, Theorem 13 allows to obtain load forecasts ŝt+i

together with estimates of their accuracy êt+i for each i = 1, 2, ..., L. Such forecasts are
obtained using the recursions (4.18) and (4.19) with the most recent parameters every
time new instance vectors x are obtained. Specifically, for each i = 1, 2, ..., L, the prob-
abilistic forecast at time t + i, N (st+i; ŝt+i, êt+i), is obtained using 1) the probabilistic
forecast N (st+i−1; ŝt+i−1, êt+i−1) at previous time t + i − 1; 2) observations vector rt+i

at time t+ i; and 3) parameters ηs,c, σs,c and ηr,c, σr,c corresponding with calendar type
at time t + i, c = c(t + i).

The results in this section provide theoretical guarantees for the learning and pre-
diction steps of APLF method. The next section describes APLF in comparison with
approaches based on offline learning, and details the implementation steps for learning
and prediction using APLF.

4.4 Implementation

Offline learning methods obtain one model, while online learning methods obtain a
sequence of models. In particular, APLF method learns a model every time a new
sample is obtained. Figure 4.4 describes the block diagrams for load forecasting based
on offline learning and based on APLF method.
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ŷt0+1 ŷt0+2

(a) Offline learning algorithms use t0 training samples to train the model that is later used
to obtain all forecasts.
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(b) APLF method updates the model every time a new sample is obtained. Then, the model
used for forecasting adapts to the most recent data.

Figure 4.4: Block diagrams for offline learning algorithms and APLF method.

Load forecasting methods based on offline learning train a model using a set of
samples. Later, such methods predict the load for each new instance vector using
the learned model. At learning, t0 training samples are used to obtain the model
following different approaches. For instance, ARMA algorithm calculates parameters
for the autoregressive, moving average, and error terms [139], while techniques based on
machine learning calculate parameters determining a regression function [128,146,161].
At prediction, the learned model and the instance vector xt are used to obtain load
forecasts ŷt at time t, for t > t0. The model used in the prediction step is the same for
all times t, and the actual loads yt for t > t0 are only used to quantify the prediction
error (see Figure 4.4a).

Load forecasting methods based on online learning train models regularly using the
most recent samples. Later, such methods predict for each new instance vector using
the latest learned model. At learning, training samples and possibly the previous model
are used to obtain a new model following different approaches. For instance, the method
proposed in [153] recalculates parameters of the ARMA algorithm, the method proposed
in [154] recalculates the weights in combined forecasts, and the method proposed in [155]
updates the smoothing functions in additive models. At prediction, the latest learned
model and the instance vector xt are used to obtain load forecasts ŷt at time t.

APLF is a forecasting method based on online learning that updates model pa-
rameters using recursions in Theorem 12 and obtain probabilistic forecasts as given
by Theorem 13. At learning, APLF obtains the new model using the instance vec-
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tor xt, the actual loads yt, and the previous model. At prediction, APLF uses the
latest model to obtain load forecasts ŷt = [ŝt+1, ŝt+2, ..., ŝt+L]T and estimated errors
êt = [êt+1, êt+2, ..., êt+L]T that determine probabilistic forecasts as given in (4.17). The
model used in the prediction step adapts at each time t to the most recent data, and
the actual loads yt are not only used to quantify the error, but also to update the model
(see Figure 4.4b).

Algorithm 10 and Algorithm 11 detail the efficient implementation of the learning
and prediction steps of APLF. The corresponding source code in Python and Matlab
languages is publicly available on the web https://github.com/MachineLearningBCAM/

Load-forecasting-IEEE-TPWRS-2020. The running times of Algorithm 10 and Al-
gorithm 11 are amenable for real-time implementation with very low latency since
APLF has memory complexity O(CR2), the learning step has computational complex-
ity O(LR3), and the prediction step has computational complexity O(LR). Note that
the values of R are small in practice, for instance we use R = 3, L = 24, and C = 48
in the numerical results of Section 4.5. Algorithm 10 follows recursions given in Theo-
rem 12 for parameters Θ and state variables Γ described in (4.4) and (4.16), respectively.
Specifically, such algorithm updates parameters ηs,c, σs,c and ηr,c, σr,c as well as state
variables Ps,c, γs,c and Pr,c, γr,c using instances and actual loads with calendar type
c. Algorithm 11 follows recursions given in Theorem 13 using the parameters Θ de-
scribed in (4.4) and the new instance vector. Specifically, such algorithm obtains L load
forecasts and L estimates of their accuracy using the latest parameters ηs,c, σs,c and
ηr,c, σr,c and the corresponding instance vector. Note that the proposed method can
predict at any time of the day and use general prediction horizons L. In addition, these
prediction times and horizons can change from one day to another just by modifying
the corresponding inputs in Algorithm 11.

Algorithm 10 Learning step for APLF

Input: Θ,Γ, λs, λr,xt =
[
st, r

T
t+1, r

T
t+2, ..., r

T
t+L

]T
,yt = [st+1, st+2, ..., st+L]

T
, t

Output: Θ,Γ

for i = 1, 2, ..., L do

c← c (t+ i), us ← [1, st+i−1]
T, ur ← ur (rt+i)

for j = s, r do

Pj,c ← 1
λj

(
Pj,c −

Pj,cuju
T
j Pj,c

λj+uT
j Pj,cuj

)

γj,c ← 1 + λjγj,c

σj,c ←
√

σ2
j,c − 1

γj,c

(
σ2
j,c −

λj(st+i−uT
j ηj,c)

2

λj+uT
j Pj,cuj

)

ηj,c ← ηj,c +
Pj,cuj

λj+uT
j Pj,cuj

(
st+i − uT

j ηj,c

)

https://github.com/MachineLearningBCAM/Load-forecasting-IEEE-TPWRS-2020
https://github.com/MachineLearningBCAM/Load-forecasting-IEEE-TPWRS-2020
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Algorithm 11 Prediction step for APLF

Input: Θ,xt =
[
st, r

T
t+1, r

T
t+2, ..., r

T
t+L

]T
, t

Output: ŷt = [ŝt+1, ŝt+2, ..., ŝt+L]
T
, êt = [êt+1, êt+2, ..., êt+L]

T
, N(st+i; ŝt+i, êt+i), i =

1, 2, ..., L
ŝt ← st
êt = 0
for i = 1, 2, ..., L do

c← c (t+ i), ûs ← [1, ŝt+i−1]
T, ur ← ur (rt+i)

Obtain load forecast ŝt+i using equation (4.18)
Obtain prediction error êt+i using equation (4.19)

Table 4.1: RMSE and MAPE of prediction errors for APLF and 11 state-of-the-art
techniques on 7 datasets.

Method

Large-size region Medium-size region Small-size region

Belgium New Engld. GEFCom12 GEFCom2014 Dayton 400 builds. 100 builds.

[GW] [%] [GW] [%] [MW] [%] [MW] [%] [GW] [%] [kW] [%] [kW] [%]

LR 1.47 11.8 1.73 8.0 5.48 20.6 0.30 15.0 0.46 15.5 0.06 9.1 0.07 14.3

SARIMA 0.81 5.5 1.22 5.4 3.42 11.6 0.25 12.0 0.22 7.7 0.05 9.9 0.07 16.5

QR 1.05 9.2 1.17 5.6 5.46 25.5 0.29 14.7 0.20 7.1 0.08 17.6 0.12 26.8

GP 0.52 4.0 0.89 4.2 2.50 8.5 0.24 10.6 0.19 6.3 0.04 6.8 0.05 11.2

SVM 0.69 4.7 1.11 5.5 3.28 12.2 0.24 12.3 0.17 5.7 0.04 8.0 0.05 11.4

DRN 1.74 13.0 0.52 2.3 2.17 7.6 0.27 19.5 0.31 11.3 0.04 7.0 0.07 14.7

AR 0.66 5.1 1.28 5.6 3.94 16.2 0.30 18.5 0.38 13.6 0.04 8.9 0.07 16.9

ARNFS 1.08 9.4 1.95 10.9 4.41 17.4 0.33 18.4 0.31 14.1 0.04 8.1 0.05 11.4

ARRFFS 1.18 10.3 2.05 11.2 4.54 17.2 0.34 17.7 0.28 10.3 0.08 17.5 0.10 23.4

SFDA 1.14 8.9 1.41 10.2 5.04 16.8 0.35 14.5 0.39 21.8 0.06 13.0 0.08 18.6

AFF 0.95 6.7 1.23 5.8 2.91 10.7 0.25 15.2 0.26 9.6 0.05 10.2 0.07 14.6

APLF 0.33 2.3 0.86 3.9 2.15 8.1 0.20 9.6 0.16 5.5 0.03 6.3 0.05 11.0

4.5 Numerical results

This section first describes the datasets used for the experimentation, and then com-
pares the performance of APLF method with respect to that of existing techniques. The
first set of numerical results quantifies the prediction errors, while the second set of nu-
merical results evaluates the performance of probabilistic load forecasts and analyzes
the relationship between training size and prediction error.

Seven publicly available datasets are selected for numerical experimentation. The
datasets correspond with regions that have different sizes and display different con-
sumption patterns that change over time. Such changes can be observed in Figure 4.5
that shows load demand per hour of day and day of year during 2004 and 2005 in Day-
ton (US). This figure shows that consumption patterns change significantly not only
for different seasons but also between consecutive weeks and between consecutive years.
Therefore, methods based on static models often obtain inferior accuracies since they
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Figure 4.6: Load demand presents different consumption patterns and variability in the
three regions with different sizes.

cannot adapt to dynamic changes in consumption patterns.
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Figure 4.5: Consumption patterns can sig-
nificantly change in two consecutive years.

We group the seven datasets by size
of the region: large, medium, and small.
Two datasets belong to large-size regions:
load demand in Belgium from 2017-2019
made available by Elia group, and load
demand in New England from 2003-2014
made available by ISO-NE organization.
Three datasets belong to medium-size re-
gions: Global Energy Forecasting Compe-
tition 2012 (GEFCom2012) dataset from
2004-2007 [162], Global Energy Forecast-
ing Competition 2014 (GEFCom2014)
dataset from 2005-2011 [156], and load
demand in Dayton from 2004-2016 made
available by PJM interconnection. Fi-
nally, two datasets belong to small-size re-
gions that correspond with load demand
for 400 and 100 buildings in New South Wales from 2013 and are made available by
the Australian Government as part of the project Smart Grid Smart Cities.

In the numerical results, training for offline learning algorithms is done using training
sizes depending on the length of datasets. Two years of data are used for training in New
England and GEFCom2012 datasets; one year of data are used for training in Belgium,
GEFCom2014, and Dayton datasets; and 3/4 of a year of data are used for training in
400 and 100 buildings datasets. Prediction for all algorithms is done using the rest of
the data as follows. At 11 a.m. of each day, all forecasting methods obtain future loads
for a prediction horizon of L = 24 hours hence, every vector of load forecasts is formed
by forecasts obtained from 1 to L hours ahead.

APLF results are obtained using the following implementation details. The instance

vector composed by past loads and observations is given by x =
[
st, r

T
t+1, ..., r

T
t+L

]T
. The
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Figure 4.7: CDFs of prediction errors provide detailed performance comparison between
APLF method and conventional techniques in three regions with different sizes.

observations vector rt contains the temperature wt at time t and the mean of past tem-

peratures w̄c(t) at calendar type c(t), i.e., rt =
[
wt, w̄c(t)

]T
. The observations vector rt is

represented by the feature vector ur (rt) for a function ur(·) that encodes temperature
shifts. Specifically, such function determines the vector ur (rt) = [1, α1, α2]

T, where α1

(resp. α2) takes value 1 if the temperature is above (resp. below) certain thresholds
and takes value 0 otherwise, that is

α1, α2 =





1, 0 if wt − w̄c(t) > W1 and
wt > W2 or wt < W3

0, 1 if wt − w̄c(t) < −W1 and
wt > W2 or wt < W3

0, 0 otherwise

where we take threshold values W1 = 20◦F , W2 = 80◦F , and W3 = 20◦F for all datasets.
The calendar information c(t) specifies the type of hour: c(t) from 1 to 24 indicates the
hour of day of weekdays, and c(t) from 25 to 48 indicates the hour of day of weekends and
holidays, i.e., c (t) ∈ {1, ..., C} with C = 48. Then, APLF method obtains parameters
ηs,c, σs,c and ηr,c, σr,c for C = 48 calendar types as given by Algorithm 10 initialized
with η0 = 0K , any σ0, P0 = IK , and γ0 = 0. Such parameters are updated by taking
forgetting factors as λs = 0.2 and λr = 0.7 for any calendar type and for all datasets.1

Forgetting factors (λs, λr) and threshold values (W1,W2,W3) are the hyper-parameters
of APLF method. Hyper-parameters’ values can be selected by using various methods
such as cross-validation over a grid of possible values. For simplicity, we select values
for hyper-parameters by inspection over one dataset and then we use the same values
in all datasets. The numerical results corroborate the robustness of APLF method to
the choice of hyper-parameters since we use the same hyper-parameters’ values in all
numerical results and with significantly different datasets.

1Possible numerical instabilities of state matrices P in Algorithm 10 are addressed by their reini-
tialization in case their trace becomes larger than 10 similarly to methods based on recursive least
squares [163].
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Table 4.2: Pinball loss and ECE for APLF and 2 state-of-the-art techniques on 7
datasets.

Region
QR GP APLF

Pinball loss ECE Pinball loss ECE Pinball loss ECE

Belgium 0.34 [GW] 0.08 0.14 [GW] 0.19 0.11 [GW] 0.07

New England 0.70 [GW] 0.07 0.24 [GW] 0.09 0.22 [GW] 0.07

GEFCom12 1.03 [MW] 0.06 0.78 [MW] 0.14 0.77 [MW] 0.12

GEFCom14 0.06 [MW] 0.60 0.05 [MW] 0.15 0.06 [MW] 0.19

Dayton 0.09 [GW] 0.06 0.04 [GW] 0.12 0.04 [GW] 0.05

400 buildings 0.02 [kW] 0.10 0.01 [kW] 0.05 0.01 [kW] 0.07

100 buildings 0.03 [kW] 0.08 0.01 [kW] 0.03 0.01 [kW] 0.08

APLF method is compared with 11 state-of-the-art techniques based on statistical
methods, machine learning, and weighted combination of several forecasts. Three tech-
niques are based on statistical methods: LR [128], SARIMA [142], and QR [151]; six
techniques are based on machine learning: GP [150], SVM [146], deep residual network
(DRN) [144], and three versions of AR-NARX method [128] based on linear regression
(AR) [128], fixed size least squares SVM using the Nyström method (ARNFS) [161], and
fixed size least squares SVM using Random Features (ARRFFS) [164]; finally, two tech-
niques are based on weighted combination of several forecasts: secondary forecasting
based on deviation analysis (SFDA) [148] and adaptive forgetting factor (AFF) [155].

In the first set of numerical results we quantify the prediction error of APLF in
comparison with the 11 existing techniques for the 7 datasets. RMSE and MAPE
assessing overall prediction errors are given in Table 4.1. Such table shows that existing
techniques such as DRN and QR can achieve high accuracies in certain large-size regions
using sizeable training datasets (e.g., New England dataset), however such techniques
become inaccurate in other datasets such as those corresponding with small-size regions
and smaller training datasets (e.g., 100 buildings dataset). Table 4.1 also shows that the
online learning method AFF achieves higher accuracies than multiple offline learning
algorithms such as LR, ARRFFS, and SFDA. Figures 4.6 and 4.7 provide more detailed
comparisons using 5 representative existing techniques (AR, SARIMA, QR, SVM, and
AFF) in comparison with proposed APLF in 3 datasets that correspond with regions
of assorted sizes. Figure 4.6 shows two days of load demand and load forecasts in the
three regions while Figure 4.7 shows the empirical cumulative distribution functions
(CDFs) of the absolute value of prediction errors. Table 4.1, and Figures 4.6 and 4.7
show that the proposed APLF method achieves high accuracies in comparison with
existing techniques in every dataset studied. In particular, Figure 4.7 shows that high
errors occur with low probability for APLF method. For instance, in New England
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Figure 4.8: Calibration plots describe the reliability of probabilistic forecasts of APLF
method in comparison with state-of-the-art probabilistic techniques in three regions
with different sizes.

dataset, the error of APLF method is less than 0.8 GW with probability 0.8, while the
5 other methods reach errors of around 1.3 GW with such probability.

In the second set of numerical results we quantify the probabilistic performance
of APLF in comparison with QR [151] and GP [150] and we study the relationship
between training size and prediction error. Pinball loss and ECE assessing probabilistic
forecasts are given in Table 4.2. Such table shows that APLF achieves high performance
in terms of both pinball loss and ECE, while GP sometimes achieves poor results in
terms of ECE and QR achieves poor results in terms of pinball loss. Figures 4.9a and
4.8 provide more detailled quantification of the probabilistic performance of different
methods. Figure 4.9a shows the empirical CDFs of pinball losses of APLF method, QR,
GP, and the benchmark for the GEFCom2014 dataset [156]. These CDFs show that the
probability of high pinball losses is significantly lower for APLF method. In particular,
the CDFs in Figure 4.9a show that APLF and GP have a similar median pinball loss of
around 0.04 MW. However, APLF has pinball losses less than 0.08 MW with probability
0.8, while GP reaches pinball losses of 0.16 MW with such probability. Figure 4.8
shows the correspondence between the calibration C(q) of probabilistic forecasts and
the quantile q for the datasets used in Figures 4.6 and 4.7. These calibration plots
show that GP and QR tend to obtain forecast quantiles higher than the true quantiles,
while APLF obtains more unbiased probabilistic forecasts. In particular, the true load
is higher than the 50 quantile forecast load with probability very near 50 % for APLF.
In addition, Figure 4.8 shows that APLF obtains improved calibrations especially in
the lower quantiles.

Finally, Figure 4.9b shows the RMSE obtained by APLF method and the 5 exist-
ing techniques shown in Figures 4.6 and 4.7 for different sizes of training sets using
GEFCom2012 dataset. These results are obtained computing RMSEs 20 times for each
size of training set. The samples used for training in these numerical results are differ-
ent at each experiment and testing sets always contain two years of data. As can be
observed from Figure 4.9b, the accuracy of online learning algorithms does not signifi-
cantly change with the length of the training dataset, while offline learning algorithms



CHAPTER 4. ADAPTIVE PROBABILISTIC LOAD FORECASTING 81

Pinball losses [MW]

C
D

F

QR
GP
Benchmark

APLF
0
0

0.2

0.4

0.6

0.8

1

0.04 0.08 0.12 0.16 0.20

(a) CDFs of pinball losses compare the prob-
abilistic performance of APLF method with
state-of-the-art probabilistic techniques.

R
M

S
E

[M
W

]

t0 [Days]

APLF

SVM
QR
SARIMA
AR

AFF

2

3.5

5

6.5

8

100 200 300

(b) The length of the training dataset does
not affect the accuracy of online learning al-
gorithms but significantly affects the accu-
racy of offline learning algorithms.

Figure 4.9: Results of the proposed APLF method in comparison with state-of-the-art
techniques.

require large training datasets to achieve accurate results.
APLF method achieves remarkable results both in terms of single-value and proba-

bilistic forecasts, and adapts to different consumption patterns in every region studied
even where variability in load demand is more significant. Numerical results confirm
that APLF better captures dynamic changes in consumption patterns than existing
methods.

4.6 Conclusion

This chapter proposes techniques for adaptive probabilistic load forecasting (APLF)
that can adapt to changes in consumption patterns and assess load uncertainties. We
developed online learning techniques that update model parameters using a simple
recursive algorithm, and prediction techniques that obtain probabilistic forecasts us-
ing the most recent parameters. In addition, we described the theoretical guarantees
and efficient implementation of the online learning and probabilistic prediction steps
for APLF. This chapter also compared the accuracy of the proposed APLF with ex-
isting techniques in multiple datasets. These datasets represent challenging scenarios
with different sizes and different consumption patterns that change over time. The
experimental results show the performance improvement of APLF method in terms of
prediction errors and probabilistic forecasts. The proposed method can improve fore-
casting performance in a wide range of scenarios using efficient and flexible algorithms
for adaptive online learning.





Chapter 5

Conclusions and future work

This section first briefly draws the conclusions of this dissertation and then, we describe
the future extensions.

5.1 Conclusions

This dissertation proposes a learning methodology for time-dependent environments,
techniques for supervised classification under concept drift (SCD), techniques for con-
tinual learning (CL), and learning and forecasting techniques for load forecasting. The
proposed methodologies account for multidimensional tasks’ changes, efficiently exploit
information from different tasks in the sequence, and provide computable performance
guarantees. In addition, the dissertation analytically characterizes the increase in effec-
tive sample size (ESS) achieved by the proposed methodology in terms of the expected
quadratic change and the number of tasks. The numerical results assess the reliability
of the performance guarantees presented and show the performance improvement in
multiple machine learning scenarios using different datasets, sample sizes, and number
of tasks.

Chapter 2 further describes the proposed methodology for SCD. Specifically, Chap-
ter 2 proposes the methodology of adaptive minimax risk classifiers (AMRCs) that
estimate multiple statistical characteristics of the time-varying underlying distribution
and provide both qualitative and computable tight performance guarantees. The nu-
merical results assess the performance improvement of AMRCs with respect to the
state-of-the-art using benchmark datasets. The proposed methodology enables to more
fully exploit data with characteristics that change over time and can provide more
informative performance guarantees under concept drift.

Chapter 3 further describes the proposed methodology for CL. Specifically, Chap-
ter 3 proposes continual learning methods based on minimax risk classifiers (CL-MRCs)
that carefully avoid the repeated usage of the same information from the ever-increasing
sequence of succeeding tasks and account for time-dependent tasks. In addition, we
analytically characterize the increase in ESS achieved by the proposed forward and
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backward learning techniques that show the positive backward transfer achieved by the
proposed techniques. The numerical results assess the performance improvement of
CL-MRC methodology with respect to existing methods using multiple datasets, sam-
ple sizes, and number of tasks. The proposed methodology for CL with time-dependent
tasks can lead to techniques that further approach the humans’ ability to learn from
few examples and to continuously improve on tasks that arrive over time.

Chapter 4 proposes techniques for adaptive probabilistic load forecasting (APLF)
that can adapt to changes in consumption patterns and assess load uncertainties. We
developed online learning techniques that update model parameters using a simple
recursive algorithm, and prediction techniques that obtain probabilistic forecasts using
the most recent parameters. In addition, we described the theoretical guarantees and
efficient implementation of the online learning and probabilistic prediction steps for
APLF. The experimental results show the performance improvement of APLF method
in terms of prediction errors and probabilistic forecasts. The proposed method can
improve forecasting performance in a wide range of scenarios using efficient and flexible
algorithms for adaptive online learning.

5.2 Future work

In this dissertation, we propose learning techniques for supervised classification setting
in which the data available are time-dependent. This work can be extended to learning
scenarios where data are weak classifier predictions and the weak classifiers arrive over
time. Classification in those scenarios is commonly referred to as weak supervision or
weak classification.

Supervised classification requires a large set of labeled data to learn classification
rules. In many applications, getting labeled data is expensive and the limited amount
of labeled data is not enough to learn accurate models. Weak supervision learns by
efficiently combining the prediction of unlabeled data given by a set of weak classifiers
obtained from related tasks.

The development of weak classification techniques is hindered by the quality and the
quantity of weak classifiers. To address this problems, the first works on weak supervi-
sion commonly assume that the weak classifiers make errors independently with respect
to the classification task of interest. However, in weak supervision the weak classifiers
may not be independent. For instance, if we want to classify dogs in animal images
and a weak classifier predicts 4-legged animals as dog and a weak classifier predicts
terrestrial animals as dog; then using these weak classifiers a cat will be classified as a
dog. Therefore, the weak classifiers have non-independent errors.

In weak supervision, let {h1, h2, . . . , hN} be an ensemble of N weak classifiers and
X = {x1, x2, . . . , xn} be a set of n unlabelled instances. Each classification rule in
the ensemble hj assigns label yi ∈ Y to instance xi ∈ X with probability hj(yi|xi)
for any j = 1, 2, . . . , N and i = 1, 2, . . . , n. In addition, let Φj(xi, yi) be such that
Φj(xi, yi) = 1 − hj(yi|xi) and ej be an estimate of the error probability of the weak
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classifier hj for j = 1, 2, . . . , N . Learning methods aim to obtain a classification rule
h with small expected loss ℓ(h, p) using the ensemble of weak classifiers and the set of
instances.

As future work, we are going to develop learning techniques based on minimax risk
classifiers (MRCs) that obtain probabilistic predictions using weak classifier predictions.
In addition, the developed techniques will be able to incorporate new weak classifiers
over time that will allow us to obtain more accurate predictions without access to
the ground truth. We also want to obtain confidence of our probabilistic predictions,
prove the consistency of the methods developed, and show the relationship with the
consistency of the state-of-the-art methods.





Appendix A

Learning in Time-dependent
Environments based on Minimax
Classification

A.1 Derivation of recursions (1.5)-(1.6), (1.2)-(1.3), and

(1.8)-(1.9)

This section shows how recursions (1.5), (1.6), recursions (1.2), (1.3), and recursions (1.8), (1.9)
are obtained using those for filtering in linear dynamical systems.

The mean vectors evolve over tasks through the linear dynamical system

τ∞
j = τ∞

j−1 + wj (A.1)

where vectors wj for j ∈ {2, 3, . . . , k} are independent and zero-mean. In addition,
each state variable τ∞

j is observed at each step j through τ j that is the sample average
of i.i.d. samples from pj , so that we have

τ j = τ∞
j + vj (A.2)

where vj for j ∈ {1, 2, . . . , k} are independent and zero mean, and independent of wj

for j ∈ {1, 2, . . . , k}. Therefore, equations (A.1) and (A.2) above describe a linear dy-
namical system (state-space model with white noise processes) [120,165]. For such sys-
tems, the Kalman filter recursions provide the unbiased linear estimator with minimum
MSE based on samples corresponding to preceding steps D1, D2, . . . , Dj , and fixed-lag
smoother recursions provide the unbiased linear estimator with minimum MSE based
on samples corresponding to preceding and succeeding steps D1, D2, . . . , Dk [120, 165].
Then, equations (1.5), (1.6), equations (1.2), (1.3), and equations (1.8), (1.9) are ob-
tained after some algebra from the Kalman filter recursions and fixed-lag smoother
recursions.
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A.2 Proof of Theorem 2

Proof. To obtain bound in (1.12) we first prove that the mean vector estimate and the
MSE vector given by (1.2) and (1.3), respectively, satisfy

P

{
|τ∞j (i) − τ jj

(i)| ≤ κ

√
2sjj

(i)
log

(
2m

δ

)}
≥ (1− δ) (A.3)

for any component i = 1, 2, . . . , m. Then, we prove that ‖
√

s
j
j‖∞ ≤ M/

√
nj
j for

j ∈ {1, 2, . . . , k}, where the ESSs satisfy n1
1 = n1 and nj

j ≥ nj +nj−1
j−1

‖σ2
j‖∞

‖σ2
j‖∞+nj−1

j−1‖d
2
j‖∞

for

j ≥ 2.
To obtain inequality (A.3), we prove by induction that each component i = 1, 2, . . . , m

of the error in the mean vector estimate zjj
(i)

= τ∞j
(i) − τ jj

(i)
is sub-Gaussian with pa-

rameter ηjj
(i) ≤ κ

√
sjj

(i)
. Firstly, for j = 1, we have that

z11
(i)

= τ∞1
(i) − τ 11

(i)
= τ∞1

(i) − τ
(i)
1 .

Since the bounded random variable Φ
(i)
1 is sub-Gaussian with parameter σ(Φ

(i)
1 ), then

the error in the mean vector estimate z11
(i)

is sub-Gaussian with parameter that satisfies

(
η11

(i)
)2

=
σ
(

Φ
(i)
1

)2

n1
≤ κ2σ2

1
(i)

n1
= κ2s

(i)
1 .

If zj−1
j−1

(i)
= τ∞j−1

(i) − τ j−1
j−1

(i)
is sub-Gaussian with parameter ηj−1

j−1

(i) ≤ κ

√
sj−1
j−1

(i)
for

any i = 1, 2, . . . , m, then using the recursions (1.2) and (1.3) we have that

zjj
(i)

= τ∞j
(i) − τ jj

(i)

= τ∞j−1
(i) + w

(i)
j − τ

(i)
j −

s
(i)
j

sj−1
j−1

(i)
+ s

(i)
j + d2j

(i)

(
τ j−1
j−1

(i) − τ
(i)
j

)

= τ∞j−1
(i) + w

(i)
j − τ j−1

j−1

(i)
+


1−

s
(i)
j

sj−1
j−1

(i)
+ s

(i)
j + d2j

(i)



(
τ j−1
j−1

(i) − τ
(i)
j

)

= τ∞j−1
(i) + w

(i)
j − τ j−1

j−1

(i) −
sjj

(i)

s
(i)
j

(
τ
(i)
j − τ j−1

j−1

(i)
)

since wj = τ∞
j − τ∞

j−1. If vj = τ j − τ∞
j , the error in the mean vector estimate is given
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by

zjj
(i)

= τ∞j−1
(i) + w

(i)
j − τ j−1

j−1

(i) −
sjj

(i)

s
(i)
j
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where w
(i)
j and v

(i)
j are sub-Gaussian with parameter σ(w

(i)
j ) and σ

(
Φ

(i)
j

)
/
√
nj, respec-

tively. Therefore, we have that zjj
(i)

is sub-Gaussian with parameter ηjj
(i)

that satisfies
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(i)
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
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(i)
j




2 (
ηj−1
j−1

(i)
)2

(A.4)
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j−1
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tion of κ, we have that
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+
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=
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s
(i)
j


κ2sjj

(i)
+ κ2

(
sjj

(i)
)2

s
(i)
j

where (A.6) is obtained using (3.2).
The inequality in (A.3) is obtained using the union bound together with the Cher-

noff bound (concentration inequality) [85] for the random variables zjj
(i)

that are sub-

Gaussian with parameter ηjj
(i)

.
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Now, we prove by induction that, for any j, ‖
√

s
j
j‖∞ ≤ M/

√
nj
j where the ESSs
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1 = n1 and nj

j ≥ nj + nj−1
j−1

‖σ2
j‖∞

‖σ2
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definition of sjj in equation (3.2), we have that for any component i
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.
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by using the recursion (3.2) and the induction hypothesis. Then, vector s
j
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∥∥∥∥
√
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. (A.7)

The inequality in (3.4) is obtained because the minimax risk is bounded by the
smallest minimax risk as shown in [76–78] so that

R(U j
j ) ≤ R∞

j +
(
‖τ∞

j − τ
j
j‖∞ + ‖λj

j‖∞
) ∥∥µ∞

j

∥∥
1

(A.8)

that leads to (3.4) using (A.3), (A.7), and the fact that 1 ≤
√

2 log
(
2m
δ

)
.

A.3 Proof of Theorem 3

Proof. To obtain bound in (1.14), we proceed by induction. For j = 1, using the
expression for the ESS in (1.13), we have that

n1
1 = n1 ≥ n.
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If (1.14) holds for the (j − 1)-task, then for the j-th task, we have that

nj
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= n

(
1 +

(1 + α)2j−1 − 1− α

α(1 + α)2j−2 + α(α + 1) + α2(1 + α)2j−2 − α2

)

where (A.9) is obtained because nd2 = α2

α+1
since α = nd2

2

(√
1 + 4
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)

.

Now, we obtain bounds for the ESS depending on the value of nd2. In the following,
the constant φ represents the golden ratio φ = 1.618 . . ..

1. If nd2 < 1
j2
⇒
√
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√
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then we have that nj
j satisfies
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above expression is monotonically increasing for α and α ≥ 1, we have that
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A.4 Proof of bounds for mean and mean squared

error (MSE) vectors obtained as in (1.5)-(1.6)

Proof. To obtain bound in (1.12) with R(U j−1
j ) and nj−1

j instead of R(U j
j ) and nj

j, we
first prove that the mean vector estimate and the MSE vector given by (1.5) and (1.6),
respectively, satisfy
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for any component i = 1, 2, . . . , m and that ‖
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To obtain inequality (A.10), we prove by induction that each component i =

1, 2, . . . , m of the error in the mean vector estimate zj−1
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Φ

(i)
j

)
/
√
nj , re-

spectively. Therefore, we have that zj−1
j

(i)
is sub-Gaussian with parameter ηj−1

j

(i)
that

satisfies

(
ηj−1
j

(i)
)2

=


1−

nj−1s
j−2
j−1

(i)

nj−1s
j−2
j−1

(i)
+ σ2

j−1
(i)




2 (
ηj−2
j−1

(i)
)2

(A.13)

+ σ
(
w

(i)
j

)2
+


 nj−1s

j−2
j−1

(i)

nj−1s
j−2
j−1

(i)
+ σ2

j−1
(i)




2
σ
(

Φ
(i)
j−1

)2

nj−1

since z
j−2
j−1, wj, and vj are independent. Using that ηj−2

j−1

(i) ≤ κ

√
sj−2
j−1

(i)
and the defini-

tion of κ, we have that

(
ηj−1
j

(i)
)2
≤


1−

nj−1s
j−2
j−1

(i)

nj−1s
j−2
j−1

(i)
+ σ2

j−1
(i)




2

κ2sj−2
j−1

(i)
+ κ2d2j

(i)
(A.14)

+


 nj−1s

j−2
j−1

(i)

nj−1s
j−2
j−1

(i)
+ σ2

j−1
(i)




2

κ2
σ2
j−1

(i)

nj−1

≤


1−

sj−2
j−1

(i)

sj−2
j−1

(i)
+ sj−1

(i)


 κ2(sj−1

j

(i) − d2j
(i)

) + κ2d2j
(i)

(A.15)

+


 sj−2

j−1

(i)

sj−2
j−1

(i)
+ s

(i)
j−1




2

κ2s
(i)
j−1

≤κ2sj−1
j

(i)
+

sj−2
j−1

(i)

sj−2
j−1

(i)
+ s

(i)
j−1

κ2


d2j

(i)
+

sj−2
j−1

(i)

sj−2
j−1

(i)
+ s

(i)
j−1

s
(i)
j−1 − sj−1

j

(i)


 (A.16)

where (A.16) is obtained using (1.6).
The inequality in (A.10) is obtained using the union bound together with the Cher-

noff bound (concentration inequality) [85] for the random variables zj−1
j

(i)
that are

sub-Gaussian with parameter ηj−1
j

(i)
.

Now, we prove by induction that, for any k, ‖
√

s
j−1
j ‖∞ ≤ M/

√
nj−1
j where the

ESSs satisfy n1
2 = ‖σ2

1‖∞/‖d2‖∞ and

nj−1
j ≥ (nj−1 + nj−2

j−1)
‖σ2

j−1‖∞
(nj−1 + nj−2

j−1)‖dj‖∞ + ‖σ2
j−1‖∞
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for j ≥ 3. For j = 2, using the definition of sj−1
j in equation (1.6), we have that for

any component i
(
s12

(i)
)−1

=
1

d
(i)
2

≥ n1
2

M2
.

Then, vector s12 satisfies

‖
√

s12‖∞ ≤
M√
n1
2

.

If ‖
√
s
j−2
j−1‖∞ ≤M/

√
nj−2
j−1, then we have that for any component i

(
sj−1
j

(i)
)−1

=
1(

1− sj−2
j−1

(i)

s
(i)
j−1+sj−2

j−1

(i)

)
sj−2
j−1

(i)
+ d2j

(i)
≥ 1

s
(i)
j−1

s
(i)
j−1+

M

n
j−2
j−1

M

nj−2
j−1

+ d2j
(i)

=
1

Ms
(i)
j−1

s
(i)
j−1n

j−2
j−1+M

+ d2j
(i)

=
1

Mσ2
j−1

(i)

nj−1

σ2
j−1

(i)

nj−1
nj−2
j−1+M

+ d2j
(i)

=
σ2
j−1

(i)
nj−2
j−1 + Mnk−1

Mσ2
k−1

(i)
+ (σ2

j−1
(i)
nj−2
j−1 + Mnj−1)d2j

(i)

≥
nj−2
j−1 + nj−1

M + (nj−2
j−1 + nj−1)d2j

(i)

by using the recursion (1.6) and the induction hypothesis. Then, vector s
j−1
j satisfies

∥∥∥∥
√

s
j−1
j

∥∥∥∥
∞

≤ M√
(nj−1 + nj−2

j−1)
‖σ2

j−1‖∞

(nj−1+nj−2
j−1)‖dj‖∞+‖σ2

j−1‖∞

≤ M√
nj−1
j

with nj−1
j ≥ (nj−1 + nj−2

j−1)
‖σ2

j−1‖∞

(nj−1+nj−2
j−1)‖dj‖∞+‖σ2

j−1‖∞
.

The inequality in (1.12) with R(U j−1
j ) and nj−1

j instead of R(U j
j ) and nj

j is obtained
because the minimax risk is bounded by the smallest minimax risk as shown in [76–78]
so that we have (A.8) that leads to (1.12) with R(U j−1

j ) and nj−1
j instead of R(U j

j ) and

nj
j using (A.3), (A.7), and the fact that 1 ≤

√
2 log

(
2m
δ

)
.

A.5 Proof of Theorem 3

Proof. To obtain bound in (1.14), we proceed by induction. For j = 1, using the
expression for the ESS in (1.12), we have that

n0
1 = 0
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If (1.14) holds for the (j − 1)-task, then for the j-th task, we have that

nj−1
j ≥ (nj−1 + nj−2

j−1)
‖σ2

j−1‖∞
‖σ2

j−1‖∞ + ‖dj‖∞(nj−1 + nj−2
j−1)

≥
n + nj−2

j−1

(n + nj−2
j−1)d

2 + 1

where the second inequality is obtained because nj−1 ≥ n, ‖σ2
j‖∞ ≤ 1, and ‖dj‖∞ ≤ d.

Using that nj−2
j−1 ≥ n (1+α)2j−3−1−α

α(1+α)2j−3+α
, the ESS of the j-th task satisfies

nj−1
j ≥ n

(1 + α)2j−2 − 1

((1 + α)2j−2 − 1)nd2 + α(1 + α)2j−3 + α

= n
(1 + α)2j−1 − 1− α

α2(1 + α)2j−2 − α2 + α(1 + α)2j−2 + α(α + 1)
(A.17)

= n
(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α

where (A.17) is obtained because nd = α2

α+1
since α = nd

2

(√
1 + 4

nd
+ 1
)

.

A.6 Proof of Theorem 4

Proof. To obtain bound in (1.17) we first prove that the mean vector estimate and the
MSE vector given by (1.8) and (1.9), respectively, satisfy

P

{
|τ∞k (i) − τkj

(i)| ≤ κ

√
2skj

(i)
log

(
2m

δ

)}
≥ (1− δ) (A.18)

for any component i = 1, 2, . . . , m. Then, we prove that ‖skj‖∞ ≤ M/
√

nk
j for j ∈

{1, 2, . . . , k}, where the ESSs satisfy

nk
j ≥

(
‖σ2

j‖∞ + nj
jd

(i)
j+1

)2
nk
j+1

‖σ2
j‖2∞ + d

(i)
j+1(‖σ2

j‖∞ + nj
jd

(i)
j+1)n

k
j+1

To obtain inequality (A.18), we prove by induction that each component i =

1, 2, . . . , m of the error in the mean vector estimate zkj
(i)

= τ∞j
(i)− τkj

(i)
is sub-Gaussian

with parameter ηkj
(i) ≤ κ

√
skj

(i)
. Firstly, for j = k, using the proof of Theorem 2 in

Appendix A.2 we have that zkk
(i)

= τ∞k
(i) − τkk

(i)
is sub-Gaussian with parameter that

satisfies ηkk
(i) ≤ κ2skk

(i)
. If zkj+1

(i)
= τ∞j+1

(i) − τkj+1
(i)

is sub-Gaussian with parameter

ηkj+1
(i) ≤ κ2skj+1

(i)
for any i = 1, 2, . . . , m, then uthe error in the forward and backward
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mean vector estimate is given by

zkj
(i)

= τ∞j
(i) − τkj

(i)

= τ∞j
(i) − τkj+1

(i) −
d
(i)
j+1

sjj
(i)

+ d
(i)
j+1

(
τ jj

(i) − τkj+1

(i)
)

where the second equality is obtained using the recursion for τkj
(i)

in (1.8). Adding and

subtracting
d
(i)
j+1

sjj
(i)

+d
(i)
j+1

τ∞j
(i), we have that

zkj
(i)

= τ∞j
(i) − τkj+1

(i) −
d
(i)
j+1

sjj
(i)

+ d
(i)
j+1

(
τ∞j

(i) − τ∞j
(i) + τ jj

(i) − τkj+1

(i)
)

= τ∞j
(i) − τkj+1

(i) −
d
(i)
j+1

sjj
(i)

+ d
(i)
j+1

(
τ∞j

(i) − zjj
(i) − τkj+1

(i)
)

= zkj+1

(i) − w
(i)
j+1 −

d
(i)
j+1

sjj
(i)

+ d
(i)
j+1

(
τ∞j

(i) − zjj
(i) − τkj+1

(i)
)

= zkj+1

(i) − w
(i)
j+1 −

d
(i)
j+1

sjj
(i)

+ d
(i)
j+1

(
τ∞j+1

(i) − w
(i)
j+1 − zjj

(i) − τkj+1

(i)
)

= zkj+1

(i) − w
(i)
j+1 −

d
(i)
j+1

sjj
(i)

+ d
(i)
j+1

(
zkj+1

(i) − w
(i)
j+1 − zjj

(i)
)

(A.19)

since wj = τ∞
j − τ∞

j−1 and zjj
(i)

= τ∞j
(i) − τ jj

(i)
where zjj

(i)
, zkj+1

(i)
, and w

(i)
j+1 are sub-

Gaussian with parameters ηjj
(i) ≤ κ

√
sjj

(i)
, ηkj+1

(i) ≤ κ
√
skj+1

(i)
, and σ(w

(i)
j ) ≤ κ

√
d
(i)
j ,

respectively. Since zj
j, z

k
j+1 and wj+1 are independent, we have that zkj

(i)
given by (A.19)
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is sub-Gaussian with parameter that satisfies

(
ηkj

(i)
)2

=


1−

d
(i)
j+1

sjj
(i)

+ d
(i)
j+1




2

ηkj+1

(i)
+


 d

(i)
j+1

sjj
(i)

+ d
(i)
j+1

− 1




2

σ
(
w

(i)
j+1

)2

+


 d

(i)
j+1

sjj
(i)

+ d
(i)
j+1




2

ηjj
(i)

≤


1−

d
(i)
j+1

sjj
(i)

+ d
(i)
j+1




2

κ2skj+1

(i)
+


 d

(i)
j+1

sjj
(i)

+ d
(i)
j+1

− 1




2

κ2d
(i)
j+1

+


 d

(i)
j+1

sjj
(i)

+ d
(i)
j+1




2

κ2skj
(i)

Using (1.10) we have that the sub-Gaussian parameter satisfies

(
ηkj

(i)
)2

=
(

1− ηkj
(i)
)2

κ2skj+1

(i)
+


 −s(i)j+1

sjj
(i)

+ d
(i)
j+1




2

κ2d
(i)
j+1

+


 d

(i)
j+1

sjj
(i)

+ d
(i)
j+1




2

κ2skj
(i)

=κ2skj+1

(i)
+ κ2ηkj

(i)
(
−2 + ηkj

(i)
)
skj+1

(i)
+ ηkj

(i)
(

1− ηkj
(i)
)
κ2sjj

(i)

+ ηkj
(i)
(

1− ηkj
(i)
)
κ2d

(i)
j+1

=κ2skj+1

(i)
+ κ2ηkj

(i)
((
−2 + ηkj

(i)
)
skj+1

(i)
+ sjj

(i)
)

= κ2skj
(i)

The inequality in (A.18) is obtained using the union bound together with the Cher-

noff bound (concentration inequality) [85] for the random variables zkj
(i)

that are sub-

Gaussian with parameter ηkj
(i)

.

Now, we prove by induction that, for any j, ‖
√

skj‖ ≤ M/
√

nk
j where the ESSs

satisfy nk
j ≥

(‖σ2
j‖∞+nj

j‖dj+1‖∞)
2
nk
j+1

‖σ2
j‖

2
∞+‖dj+1‖∞(‖σ2

j‖∞+nj
j‖dj+1‖∞)nk

j+1

. Firstly, for j = k, using the proof of

Theorem 2 in Appendix A.2, we have that ‖
√
skk‖ ≤M/

√
nk
k. If ‖

√
skj+1‖ ≤ M/

√
nk
j+1,
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then we that for every component i

skj
(i)

= skj+1

(i)
+ ηkj

(i)
(sjj

(i) − 2skj+1

(i)
+ ηkj

(i)
skj+1

(i)
)

=
(

1− ηkj
(i)
)2

skj+1

(i)
+ ηkj

(i)
sjj

(i)

=


 sjj

(i)

sjj
(i)

+ d
(i)
j+1




2

skj+1

(i)
+

d
(i)
j+1

sjj
(i)

+ d
(i)
j+1

sjj
(i)

(A.20)

where the first inequality is obtained using the recursion for skj in (1.9) and (A.20) is
obtained using the gain vector in (1.10). Using that (A.20) is monotonically increasing

for sjj
(i)

, we have that

skj
(i) ≤




M2

nj
j

M2

nj
j

+ d
(i)
j+1




2

M2

nk
j+1

+
d
(i)
j+1

M2

nj
j

+ d
(i)
j+1

M2

nj
j

=

(
M2

M2 + nj
jd

(i)
j+1

)2
M2

nk
j+1

+
d
(i)
j+1

M2 + nj
jd

(i)
j+1

M2

=
M2

M2 + nj
jd

(i)
j+1

(
M4

M2 + nj
jd

(i)
j+1

1

nk
j+1

+ d
(i)
j+1

)

=
M2

M2 + nj
jd

(i)
j+1

(
M4 + d

(i)
j+1(M

2 + nj
jd

(i)
j+1)n

k
j+1

(M2 + nj
jd

(i)
j+1)n

k
j+1

)

by using the induction hypothesis and ‖
√
s
j
j‖ ≤ M/

√
nj
j (proof of Theorem 2 in Ap-

pendix A.2). Then, we obtain

‖
√
skj‖∞ ≤

M√
(‖σ2

j‖∞+nj
j‖dj+1‖∞)

2
nk
j+1

‖σ2
j
‖2∞+‖dj+1‖∞(‖σ2

j
‖∞+nj

j
‖dj+1‖∞)nk

j+1

. (A.21)

The inequality in (1.17) is obtained because the minimax risk is bounded by the
smallest minimax risk as shown in [76–78] so that

R(Uk
j ) ≤ R∞

j +
(
‖τ∞

j − τ k
j‖∞ + ‖λk

j‖∞
) ∥∥µ∞

j

∥∥
1

that leads to (1.17) using (A.18), (A.21), and the fact that 1 ≤
√

2 log
(
2m
δ

)
.

A.7 Proof of Theorem 5

Proof. The above recursions in (1.8)-(1.9) in Section 1.4 provide the same mean vector
estimate as the recursions in (3.6)-(3.7) in Section 3.4.1 since they are obtained using
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the Rauch-Tung-Striebel smoother recursions instead of fixed-lag smoother recursions.
Hence, the ESS in (1.17) is the same as the ESS in (3.8). We obtain bound in (1.18)
using the ESS in (3.8) (see Appendix C.2).





Appendix B

Minimax classification under
concept drift

B.1 Proof of Theorem 6.

Proof. For the first bound in (2.3), we have that

R(ht) ≤ max
p∈U∞

t

ℓ(ht, p)

since R(ht) = ℓ(ht, pt) and pt ∈ U∞
t by definition of U∞

t . Then, the maximization

max
p∈U∞

t

ℓ(ht, p)

is obtained by using a slight reformulation of the optimization problem in the Theorem 2
in [76]. Specifically, with the notation in this chapter such optimization problem is

min
µ,ν

−τT
t µ− ν

s. t. Φ(x, y)Tµ + ν ≤ ht(y|x)− 1
for any (x, y) ∈ X × Y

In addition, the constraint of the above optimization problem can be rewritten as

Φ(x, y)Tµ + ν ≤ ht(y|x)− 1, ∀x, y ⇔ ν ≤ ht(y|x)− 1− Φ(x, y)Tµ, ∀x, y
⇔ ν ≤ − max

x∈X ,y∈Y
{Φ(x, y)Tµ− ht(y|x) + 1}.

Then, minimizing −ν, we obtain the optimization problem

max
p∈U∞

t

ℓ(ht, p) = min
µ

1− τT
t µ + max

x∈X ,y∈Y

{
Φ(x, y)Tµ− ht(y|x)

}

99
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that results in

max
p∈U∞

t

ℓ(ht, p) = min
µ

1− τT
t µ + max

x∈X ,y∈Y

{
Φ(x, y)Tµ− ht(y|x)

}

≤ 1− τT
t µt + max

x∈X ,y∈Y

{
Φ(x, y)Tµt − ht(y|x)

}

≤ 1− τT
t µt + ϕ(µt)

where the last inequality is due to the definition of ht and ϕ(·) in (4) and (5), respec-
tively. Then, we have that

R(ht) ≤ 1− τT
t µt + ϕ(µt)

= 1− τT
t µt + ϕ(µt) + τ̂

T
t µt − τ̂

T
t µt + λT

t |µt| − λT
t |µt|

= R(Ut)− τT
t µt + τ̂

T
t µt − λT

t |µt| (B.1)

that leads to the first bound in (2.3) for αt = ‖|τ t − τ̂ t| − λt‖∞ ‖µt‖1 using Hölder’s
inequality. In addition, the minimax risk given by the optimization problem (6) satisfies

R(Ut) = min
µ

1− τ̂
T
t µ + ϕ(µ) + λT

t |µ| ≤ 1− τ̂
T
t µ

∞
t + ϕ(µ∞

t ) + λT
t |µ∞

t |

= R∞
t + (τ t − τ̂ t)

Tµ∞
t + λT

t |µ∞
t | (B.2)

that together with (B.1) leads to the second bound in (2.3) for βt = (‖τ t − τ̂ t‖∞ +
‖λt‖∞) ‖µ∞

t − µt‖ since

R(ht) ≤ R(Ut)− τT
t µt + τ̂

T
t µt − λT

t |µt|
≤ R∞

t + (τ t − τ̂ t)
T(µ∞

t − µt) + λT
t (|µ∞

t | − |µt|)
≤ R∞

t + (τ t − τ̂ t)
T(µ∞

t − µt) + λT
t |µ∞

t − µt| (B.3)

≤ R∞
t + (‖τ t − τ̂ t‖∞ + ‖λt‖∞) ‖µ∞

t − µt‖1
where (B.3) is obtained using the reverse triangle inequality since λt is positive.

For the first bound in (2.3) in the case that λt � |τ t − τ̂ t|, we have that R(ht) ≤
R(Ut) because pt ∈ Ut by definition of Ut. Then, the minimax risk given by the optimiza-
tion problem (6) satisfies (B.2) that leads to (2.3) for αt = 0 and βt = 2 ‖λt‖∞ ‖µ∞

t ‖1
since λt � |τ t − τ̂ t|.

For the result in (2.4), let (x1, y1), (x2, y2), ..., (xT , yT ) be a sequence of instance-label
pairs. If

Vt = 1 {ŷt 6= yt} − R(ht)

we have that the sequence V1, V2, ... is a martingale difference with respect to (x1, y1), (x2, y2), ...
because

E[Vt|(x1, y1), (x2, y2), ..., (xt−1, yt−1)] = 0

for any t. Then, using the Azuma’s inequality [73], since |Vt| ≤ 1 for any t, we have
that

T∑

t=1

Vt ≤
√

2T log
1

δ
(B.4)
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with probability at least 1−δ. Then, the result is obtained using bound in (2.3) because
with probability at least 1− δ we have that

T∑

t=1

1 {ŷt 6= yt} ≤
T∑

t=1

R(ht) +

√
2T log

1

δ

using (B.4) and the definition of Vt.

B.2 Derivarion of the dynamical system

Dynamical systems as that given by (2.6) can be derived using the k-th order Taylor
expansion of the conditional expectations γt,i = Ept{Ψr(x)|y = j} with i = (d− 1)j + r
for j = 1, 2, ..., |Y| and r = 1, 2, ..., d. The Taylor expansions of γt,i and its successive
derivatives up to order k are given by

γt,i ≈ γt−1,i + ∆tγ
′
t−1,i +

∆2
t

2
γ′′
t−1,i + ... +

∆k
t

k!
γ
k)
t−1,i

γ′
t,i ≈ γ′

t−1,i + ∆tγ
′′
t−1,i + ... +

∆k−1
t

(k − 1)!
γ
k)
t−1,i

...

γ
k)
t,i ≈ γ

k)
t−1,i

where ∆t is the time increment at t and γ
k)
t,i denotes the k-th derivative of γt,i. The

above equations lead to

ηt,i ≈




1 ∆t
∆2

t

2
...

∆k
t

k!

0 1 ∆t ...
∆k−1

t

(k−1)!
...

...
...

...
0 0 0 ... 1




ηt−1,i (B.5)

since ηt,i is composed by γt,i and its derivatives up to order k. In addition, γt,i is
observed at each time t through the instance-label pair (xt, yt), so that we have

Φi(xt, yt) ≈ γt,i, if yt = j (B.6)

with i = (d − 1)j + r for j = 1, 2, ..., |Y| and r = 1, 2, ..., d. Then, equations (B.5)
and (B.6) above lead to the dynamical system in (2.6).





Appendix C

Appendix Continual Learning

C.1 Proof of Theorem 10

Proof. To obtain bound in (3.8) we first prove that the mean vector estimate and the
MSE vector given by (3.6) and (3.7), respectively, satisfy

P

{
|τ∞k (i) − τ⇋k

j

(i)| ≤ κ

√
2s⇋k

j
(i)

log

(
2m

δ

)}
≥ (1− δ) (C.1)

for any component i = 1, 2, . . . , m. Then, we prove that ‖s⇋k
j ‖∞ ≤ M/

√
n⇋k
j for j ∈

{1, 2, . . . , k}, where the ESSs satisfy n⇋k
k = n⇀

k and n⇋k
j ≥ n⇀

j +n↽k
j+1

‖σ2
j‖∞

‖σ2
j‖∞+ n↽k

j+1‖d
2
j+1‖∞

for j ≥ 2.
To obtain inequality (C.1), we prove that each component i = 1, 2, . . . , m of the

error in the mean vector estimate z⇋k
j

(i)
= τ∞j

(i) − τ⇋k
j

(i)
is sub-Gaussian with param-

eter η⇋k
j

(i) ≤ κ
√
s⇋k
j

(i)
. Analogously to the proof of Theorem 8, it is proven that each

component in the error of the backward mean vector τ↽k
j+1 is sub-Gaussian with param-

eters satisfying η↽k
j+1 � κ

√
s↽k
j+1. The error in the forward and backward mean vector

estimate is given by

z⇋k
j

(i)
= τ∞j

(i) − τ⇋k
j

(i)

= τ∞j
(i) − τ⇀j

(i) − s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(
τ↽k
j+1

(i) − τ⇀j
(i)
)

where the second equality is obtained using the recursion for τ⇋k
j

(i)
in (3.6). Adding
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and subtracting
s⇀j

(i)

s⇀j
(i)+s↽k

j+1
(i)

+d2j+1
(i) τ

∞
j+1

(i), we have that

z⇋k
j

(i)
= z⇀j

(i) − s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(
τ∞j+1

(i) − τ∞j+1
(i) + τ↽k

j+1

(i) − τ⇀j
(i)
)

= z⇀j
(i) − s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(
τ∞j

(i) + w
(i)
j+1 − z↽k

j+1

(i) − τ⇀j
(i)
)

since wj = τ∞
j − τ∞

j−1 and z⇀j
(i) = τ∞j

(i) − τ⇀j
(i). Then, we have that

z⇋k
j

(i)
=z⇀j

(i) − s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(
z⇀j

(i) + w
(i)
j+1 − z↽k

j+1

(i)
)

(C.2)

=

(
1− s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)
z⇀j

(i)

−
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(
w

(i)
j+1 − z↽k

j+1

(i)
)

where z⇀j
(i), z↽k

j+1
(i)

, and w
(i)
j+1 are sub-Gaussian with parameters η⇀j

(i) ≤ κ
√

s⇀j
(i),

η↽k
j+1

(i) ≤ κ
√

s↽k
j+1

(i)
, and σ(w

(i)
j ), respectively. Since z⇀

j , z↽k
j+1, and wj+1 are indepen-

dent, we have that z⇋k
j

(i)
given by (C.2) is sub-Gaussian with parameter that satisfies

(
η⇋k
j

(i)
)2

=

(
1− s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2 (
η⇀j

(i)
)2

+

(
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2(
σ
(
w

(i)
j

)2
+
(
η↽k
j+1

(i)
)2)

≤
(

1− s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2

κ2s⇀j
(i)

+

(
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2

κ2
(
dj+1

(i) + s↽k
j+1

(i)
)
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Using (3.7) we have that the sub-Gaussian parameter satisfies

(
η⇋k
j

(i)
)2
≤
(

1−
s⇋k
j

(i)

s↽k
j+1

(i)
+ d2j+1

(i)

)2

κ2

(
1

s⇋k
j

(i)
− 1

s↽k2
j+1

(i)
+ d2j+1

(i)

)−1

+

(
s⇋k
j

(i)
)2

s↽k
j+1

(i)
+ d2j+1

(i)
κ2

=

(
s↽k
j+1

(i)
+ d2j+1

(i) − s⇋k
j

(i)

s↽k
j+1

(i)
+ d2j+1

(i)

)
κ2s⇋k

j

(i)
+

(
s⇋k
j

(i)
)2

s↽k
j+1

(i)
+ d2j+1

(i)
κ2

=κ2s⇋k
j

(i)
.

The inequality in (C.1) is obtained using the union bound together with the Chernoff

bound (concentration inequality) [85] for the random variables z⇋k
j

(i)
that are sub-

Gaussian with parameter η⇋k
j

(i)
.

Now, we prove that, for any j, ‖
√
s⇋k
j ‖ ≤M/

√
n⇋k
j where the ESSs satisfy n⇋k

k =

n⇀
k and n⇋k

j ≥ n⇀
j +n↽k

j+1

‖σ2
j‖∞

‖σ2
j‖∞+ n↽k

j+1‖d
2
j+1‖∞

for j ≥ 2. Analogously to the proof of The-

orem 8, we prove that the backward MSE vector s↽k
j+1 satisfies ‖

√
s↽k
j+1‖∞ ≤ M/

√
n↽k
j+1.

Then, using that ‖
√

s↽k
j+1‖∞ ≤ M/

√
n↽k
j+1, we have that for every component i

(
s⇋k
j

(i)
)−1

=
1

s⇀j
(i)

+
1

s↽k
j+1

(i)
+ d2j+1

(i)
≥ n⇀

j

σ2
j
(i)

+
1

M2

n↽k
j+1

+ d2j+1
(i)

≥ 1

M2


n⇀

j +
1

1
n↽k
j+1

+
d2j+1

M2


 ≥ 1

M2


n⇀

j +
1

1
n↽k
j+1

+
‖d2j+1‖∞

‖σ2
j‖∞


 .

Then, we obtain

‖
√
s⇋k
j ‖∞ ≤

M√
n⇀
j + 1

1

n↽k
j+1

+
‖d2

j+1
‖∞

‖σ2
j
‖∞

. (C.3)

The inequality in (3.8) is obtained because the minimax risk is bounded by the
smallest minimax risk as shown in [76–78] so that

R(U⇋k
j ) ≤ R∞

j +
(
‖τ∞

j − τ⇋k
j ‖∞ + ‖λ⇋k

j ‖∞
) ∥∥µ∞

j

∥∥
1

that leads to (3.8) using (C.1), (C.3), and the fact that 1 ≤
√

2 log
(
2m
δ

)
.
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C.2 Proof of Theorem 11

Proof. To obtain bound in (3.9), we use the ESS obtained with forward learning in The-
orem 9 and obtained with backward learning. Analogously to the proof of Theorem 9,
we prove that the ESS obtained at backward learning satisfies

n↽k
j+1 ≥ nj+1 + n↽k

j+2

‖σ2
j+1‖∞

‖σ2
j+1‖∞ + n↽k

j+2‖d2
j+2‖∞

≥ n

(
1 +

(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

)
.

Therefore, the ESS obtained with forward an backward learning satisfies

n⇋k
j ≥n⇀

j + n

(
1 +

(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

)

·


1 +

n
(

1 + (1+α)2(k−j)−1−1−α

α(1+α)2(k−j)−1+α

)

nd2




−1

=n⇀
j + n

(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

·
(

1 +
α2

α + 1

(
1 +

(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

))−1

where the second equality follows because nd2 = α2

α+1
since

α =
nd2

2

(√
1 +

4

nd2
+ 1

)
.

Then, we have that

n⇋k
j ≥ n⇀

j + n
(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

·
(

((1 + α)2(k−j)−1 + 1)(α + 1 + α2) + α((1 + α)2(k−j)−1 − 1− α)

(α + 1)((1 + α)2(k−j)−1 + 1)

)−1

≥ n⇀
j + n

(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

(α + 1)((1 + α)2(k−j)−1 + 1)

(1 + α)2(k−j)+1 + 1
.

Now, we obtain bounds for the ESS depending on the value value of nd2. Such
bounds are obtained similarly as in Theorem 9 and we also denote by φ the golden
ratio φ = 1.618 . . ..
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1. If nd2 < 1
j2
⇒
√
nd2 ≤ α ≤

√
nd2φ ≤ φ

j
≤ 1 similarly as in the previous case,

then we have that n⇋k
j satisfies

n⇋k
j ≥ n⇀

j + n
1

α

α(2(k − j))

2 + α2(k − j)
= n⇀

j + n
k − j

1 + α(k − j)

≥ n⇀
j + n

k − j

1 + φ
j
(k − j)

where the first inequality follows because

(1 + α)2(k−j)−1 ≥ 1 + α(2(k − j)− 1)

and the second inequality is obtained using α ≤ φ
j
.

2. If 1
j2
≤ nd2 < 1⇒ 1

j
≤
√
nd2 ≤ α ≤

√
nd2φ because

α = nd2

√
1 + 4

nd2
+ 1

2
=
√
nd2
√
nd2 + 4 +

√
nd2

2

then we have that n⇋k
j satisfies

n⇋k
j ≥ n⇀

j

n

α

(1 + α)2(k−j) − 1

(1 + α)2(k−j) + 1
≥ n⇀

j

n

α

(1 +
√
nd2)2(k−j) − 1

(1 +
√
nd2)2(k−j) + 1

where the second inequality follows because the ESS is monotonically increasing
for α and α ≥ nd2. Since (1 +

√
nd2)2(k−j) ≥ 1 + 2

√
nd2(k− j) and k− j ≥ 1, we

have that

n⇋k
j ≥ n⇀

j +
n

α

√
nd2

1 +
√
nd2
≥ n⇀

j + n
1

φ

1

1 +
√
nd2

because α ≤
√
nd2φ.

3. If nd2 ≥ 1 ⇒ 1 ≤ nd2 ≤ α ≤ nd2φ because α = nd2
√

1+ 4
nd2

+1

2
, then we have that

n⇋k
j satisfies

n⇋k
j ≥ n⇀

j + n
1

α

22(k−j) − 1

22(k−j) + 1
≥ n⇀

j + n
1

nd2
1

φ

3

5

where the first inequality follows because the ESS is monotonically increasing for
α and α ≥ 1 and the second inequality is obtained using k− j ≥ 1 and α ≤ nd2φ.





Appendix D

Probabilistic Load Forecasting

D.1 Proof of Theorem 12

Proof. We first prove that for any i > 0 the optimal parameters η∗
i , σ

∗
i satisfy

i∑

j=1

λi−jutju
T
tj
η∗
i = qi (D.1)

γiσ
∗
i
2 =

i∑

j=1

λi−js2tj − qT
i η

∗
i (D.2)

while parameters ηi, σi and matrix Pi given by recursions (4.7)-(4.10) with η0 = 0K ,
any σ0, P0 = IK , and γ0 = 0 satisfy

P−1
i ηi = qi (D.3)

γiσi
2 =

i∑

j=1

λi−js2tj − qT
i ηi (D.4)

P−1
i = λiIK +

i∑

j=1

λi−jutju
T
tj

(D.5)

where qi =
i∑

j=1

λi−jstjutj . Then, in the second step of the proof we obtain bound

in (4.11) using equations (D.1)-(D.5). Finally, we prove that parameters ηi, and σi

given by recursions (4.7)-(4.10) with ηi0 , σi0 given by (4.12)-(4.15) satisfy ηi = η∗
i and

σi = σ∗
i , for i ≥ i0.

Parameters η∗
i and σ∗

i satisfy equations (D.1) and (D.2), respectively, because they
maximize the log-likelihood in (4.5). The differentiable function Li (η, σ) is concave
since Gaussian functions are log-concave. Then, Li(η, σ) has a maximum achieved by
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parameters that result in zero derivatives. Since

Li (η, σ) = −
i∑

j=1

λi−j

(
stj − uT

tj
η
)2

2σ2
+ λi−j log

(
σ
√

2π
)

we have that

∂Li(η, σ)

∂η
=

i∑

j=1

λi−j
utj (stj − uT

tj
η)

σ2

that becomes zero for η∗
i given by (D.1), and

∂Li(η, σ)

∂σ
=

i∑

j=1

λi−j

(
stj − uT

tj
η
)2

σ3
− λi−j 1

σ

that becomes zero for σ∗
i given by (D.2) since γi given by (4.10) equals γi =

i∑
j=1

λi−j .

By induction, we prove that ηi and σi given by recursions (4.7) and (4.8) satisfy
equations (D.3) and (D.4) for η0 = 0K , any σ0, P0 = IK , and γ0 = 0. Firstly, we prove
it for i = 1. From (4.9), we have that

P1 =
1

λ

(
IK −

ut1u
T
t1

λ + uT
t1ut1

)
=
(
λIK + ut1u

T
t1

)−1
(D.6)

applying the matrix inversion Lemma and using that P0 = IK . Hence, from (4.7), (4.8),
and (4.10), we get

P−1
1 η1 =

(
λIK + ut1u

T
t1

) st1ut1

λ + uT
t1ut1

= st1ut1

σ2
1 =

λs2t1
λ + uT

t1ut1

=
λs2t1 + s2t1u

T
t1ut1 − s2t1u

T
t1ut1

λ + uT
t1ut1

= s2t1 − st1u
T
t1

st1ut1

λ + uT
t1ut1

= s2t1 − st1u
T
t1η1

since η0 = 0K , P0 = IK , and γ0 = 0.
If (D.3) and (D.4) hold for i− 1, then for i we have that

Pi =
(
λPi−1

−1 + utiu
T
ti

)−1
(D.7)

applying the matrix inversion Lemma to equation (4.9). Therefore, using the recursion
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of ηi in (4.7), we have that

P−1
i ηi =λPi−1

−1ηi−1 +
λuti

λ + uT
tiPi−1uti

(
sti − uT

ti
ηi−1

)

+ utiu
T
ti
ηi−1 +

utiu
T
ti
Pi−1uti

λ + uT
tiPi−1uti

(
sti − uT

ti
ηi−1

)

=λqi−1 +
λuti

λ + uT
tiPi−1uti

(
sti − uT

ti
ηi−1

)

+ utiu
T
ti
ηi−1 +

utiu
T
ti
Pi−1uti

λ + uT
tiPi−1uti

(
sti − uT

ti
ηi−1

)
(D.8)

=λqi−1 + uti

(
sti − uT

ti
ηi−1

)
+ utiu

T
ti
ηi−1

=
i−1∑

j=1

λi−jstjutj + stiuti = qi

where the equality (D.8) is obtained by using the induction hypothesis. Using the
recursion of σi in (4.8), we have that

γiσi
2 = (γi − 1) σi−1

2

+
(
sti − uT

ti
ηi−1

)(
sti −

stiu
T
ti
Pi−1uti

λ + uT
tiPi−1uti

− λuT
ti
ηi−1

λ + uT
tiPi−1uti

)

=
i−1∑

j=1

λi−js2tj − λqT
i−1ηi−1 +

(
sti − uT

ti
ηi−1

)
(D.9)

·
(
sti −

stiu
T
ti
Pi−1uti

λ + uT
tiPi−1uti

− λqT
i−1Pi−1uti

λ + uT
tiPi−1uti

)
(D.10)

=

i−1∑

j=1

λi−js2tj + s2ti −
(

i−1∑

j=1

λi−jstju
T
tj

+ stiu
T
ti

)

·
(
ηi−1 +

Pi−1uti

λ + uT
tiPi−1uti

(
sti − uT

ti
ηi−1

))
(D.11)

where the equality (D.10) is obtained by using the induction hypothesis. Then, we
obtain (D.4) from (D.11) by using the recursion for ηi in (4.7).

In addition, by induction we prove that Pi given by recursion (4.9) satisfies the
equation (D.5). The case i = 1 is proved in the equation (D.6). If (D.5) holds for i− 1,
then for i by using (D.7) and the induction hypothesis we have that

Pi =

(
λ
(
λi−1IK +

i−1∑

j=1

λi−1−jutju
T
tj

)
+ utiu

T
ti

)−1

that directly leads to (D.5).
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To obtain the bound in (4.11), we first use the definition of Li and equations (D.2)
and (D.4) to obtain

Li (η∗
i , σ

∗
i )− Li (ηi, σi) =

γi
2

log

(
σ2
i

σ∗
i
2

)
=

γi
2

log

(
1 +

σ2
i − σ∗

i
2

σ∗
i
2

)

≤ γi
2

∣∣∣σ2
i − σ∗

i
2
∣∣∣

σ∗
i
2 =

1

2

∣∣∣∣
qT
i (η∗

i − ηi)

σ∗
i
2

∣∣∣∣ . (D.12)

We then use the following inequalities
∣∣qT

i (η∗
i − ηi)

∣∣ ≤ λi ‖η∗
i ‖ ‖ηi‖ (D.13)

1

σ∗
i
2 ≤ 2πM2 (D.14)

where the inequality (D.13) is obtained using equations (D.1) and (D.3) because

∣∣qT
i (η∗

i − ηi)
∣∣ =

∣∣∣∣∣q
T
i

(( i∑

j=1

λi−jutju
T
tj

)−1

−Pi

)
qi

∣∣∣∣∣

=

∣∣∣∣∣q
T
i

( i∑

j=1

λi−jutju
T
tj

)−1(
P−1

i −
i∑

j=1

λi−jutju
T
tj

)
Piqi

∣∣∣∣∣

=

∣∣∣∣∣λ
iqT

i

( i∑

j=1

λi−jutju
T
tj

)−1

Piqi

∣∣∣∣∣ = λi
∣∣η∗

i
Tηi

∣∣

and the inequality (D.14) is obtained due to the fact that

log

(
1

σ∗
i

)
− log

√
2π ≤ logM ⇒

∣∣∣∣
1

σ∗
i

∣∣∣∣ ≤
√

2πM

because
Li (η∗

i , σ
∗
i ) = γi(− log σ∗

i − log
√

2π)

and
Li (η∗

i , σ
∗
i ) ≤ γi logM

since N(stj ;u
T
tj
η∗
i , σ

∗
i ) ≤M for any j ≤ i ≤ n.

Substituting inequalities (D.13) and (D.14) in (D.12), we have that

Li (η∗
i , σ

∗
i )− Li (ηi, σi) ≤πM2λi ‖η∗

i ‖ ‖ηi‖

that leads to bound in (4.11) using the definition of ηi given by (D.3) and the following
inequalities

∥∥∥∥∥Pi

i∑

j=1

λi−jutju
T
tj
η∗
i

∥∥∥∥∥ ≤
∥∥∥∥∥Pi

i∑

j=1

λi−jutju
T
tj

∥∥∥∥∥ ‖η
∗
i ‖ ≤ ‖η∗

i ‖
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where the last inequality is obtained because for any i such that the matrix (4.6) is not
singular, we have that

( i∑

j=1

λi−jutju
T
tj

)−1( i∑

j=1

λi−jutju
T
tj

+ λiIK

)
� IK

which implies

( i∑

j=1

λi−jutju
T
tj

+ λiIK

)−1 i∑

j=1

λi−jutju
T
tj

= Pi

i∑

j=1

λi−jutju
T
tj
� IK .

Now, we proof by induction that for any i ≥ i0 parameters ηi and σi given by
recursions (4.7)-(4.10) with ηi0 , σi0 , Pi0, and γi0 given by (4.12)-(4.15) satisfy ηi = η∗

i ,

σi = σ∗
i , and Pi = (

i∑
j=1

λi−jutju
T
tj

)−1. Firstly, for i = i0 the assertions are obtained

directly from (4.12)-(4.15) since Hi0 is non-singular and η∗
i and σ∗

i satisfy D.1 and D.2,
respectively.

If ηi−1 = η∗
i−1 and σi−1 = σ∗

i−1 hold, then for i we have that

Pi = (λP−1
i−1 + utiu

T
ti

)−1 =

( i∑

j=1

λi−jutju
T
tj

)−1

(D.15)

applying the matrix inversion Lemma to equation (4.9). From (4.7), we get

ηi =Pi−1qi−1 +
Pi−1uti

λ + uT
tiPi−1uti

(
sti − uT

ti
Pi−1qi−1

)

=
Pi−1

λ + uT
tiPi−1uti

qi = Piqi

by replacing the induction hypothesis and using (D.15) together with the matrix inver-
sion Lemma. Then, the result for σi = σ∗

i can be obtained analogously to the steps in
(D.9)-(D.11).

D.2 Proof of Theorem 13

The proof uses the following Lemma.

Lemma. Let N (x; a, b), N (y;αx, β) be two Gaussian density functions, then

N (x; a, b)N (y;αx, β)

= N

(
x;

aβ2 + αyb2

β2 + α2b2
,

√
b2β2

β2 + α2b2

)
N
(
y; aα,

√
β2 + α2b2

)
.
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Proof.

N (x; a, b)N (y;αx, β) =
1

2πbβ
exp

{
− (x− a)2

2b2
+
− (y − αx)2

2β2

}

=
1

2πbβ
exp

{
−
x2 − 2xaβ2+αyb2

β2+α2b2
+ a2β2+y2b2

β2+α2b2

2 b2β2

β2+α2b2

}
.

Then, the result is obtained since the above expression equals

1

2πbβ
exp




−

(
x− aβ2+αyb2

β2+α2b2

)2

2 b2β2

β2+α2b2

− (y − αa)2

2 (β2 + α2b2)





by completing the squares.

Proof of Theorem 13.
In the following, st:t+i and rt+1:t+i denote the sequences {st, st+1, ..., st+i} and {rt+1, rt+2, ..., rt+i}

respectively, for any i.
We proceed by induction, for i = 1 we have that

p (st+1|st, rt+1) ∝ p (st+1, st, rt+1) = p(rt+1|st+1, st)p(st+1|st)p(st)

∝ p (rt+1|st+1) p (st+1|st) (D.16)

∝ N
(
st+1;u

T
r ηr,c, σr,c

)
N
(
st+1;u

T
s ηs,c, σs,c

)
(D.17)

where proportionalty relationships are due to the fact that st and rt+1 are known,
(D.16) is obtained because the conditional distribution of rt+1 depends only on st+1

since {st, rt}t≥1 form a HMM, and (D.17) is obtained because we model conditional
distributions as Gaussian given by (4.2) and (4.3).

Using the previous Lemma, (D.17) leads to (4.17) with ŝt+1 and êt+1 given by (4.18)
and (4.19), respectively, since ŝt = st and êt = 0.

If the statements hold for i− 1, then for i we have that

p (st+i|st, rt+1:t+i) ∝ p (st+i, st, rt+1:t+i)

=

∫
p (st, st+i−1:t+i, rt+1:t+i) dst+i−1 (D.18)

=

∫
p (st, st+i−1:t+i, rt+1:t+i−1) p (rt+i|st+i) dst+i−1 (D.19)

= p (rt+i|st+i)

∫
p (st, st+i−1, rt+1:t+i−1) p (st+i|st+i−1) dst+i−1 (D.20)

∝ p (rt+i|st+i)

∫
p (st+i−1|st, rt+1:t+i−1) p (st+i|st+i−1) dst+i−1

∝ N
(
st+i;u

T
r ηr,c, σr,c

)
(D.21)

·
∫

N (st+i−1; ŝt+i−1, êt+i−1)N
(
st+i;u

T
s ηs,c, σs,c

)
dst+i−1
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where proportionalty relationships are due to the fact that st and rt+1:t+i are known,
(D.18) is obtained by marginalizing, (D.19) and (D.20) are obtained by using the prop-
erties of HMMs, and (D.21) is obtained by using the induction hypothesis and the
models of conditional distributions as Gaussians given by (4.2) and (4.3). Then, the
result is obtained by applying the previous Lemma to (D.21) twice, and substituting
us = [1, st+i−1]

T. �
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[39] Hal Daumé III. Frustratingly easy domain adaptation. ACL 2007, page 256,
2007.

[40] Aleix M Martinez. Recognizing imprecisely localized, partially occluded, and
expression variant faces from a single sample per class. IEEE Transactions on
Pattern analysis and machine intelligence, 24(6):748–763, 2002.

[41] AAM Muzahid, Wanggen Wan, Ferdous Sohel, Lianyao Wu, and Li Hou. Cur-
venet: Curvature-based multitask learning deep networks for 3d object recogni-
tion. IEEE/CAA Journal of Automatica Sinica, 8(6):1177–1187, 2020.

[42] Yu Kong, Ming Shao, Kang Li, and Yun Fu. Probabilistic low-rank multi-
task learning. IEEE Transactions on Neural Networks and Learning Systems,
29(3):670–680, 2017.

[43] Jesse Read, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. Batch-
incremental versus instance-incremental learning in dynamic and evolving data.
International symposium on intelligent data analysis, 2012.

[44] Ryan Elwell and Robi Polikar. Incremental learning of concept drift in nonsta-
tionary environments. IEEE Transactions on Neural Networks, 22(10):1517–1531,
2011.

[45] Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types of concept
drift: The accuracy updated ensemble algorithm. IEEE Transactions on Neural
Networks and Learning Systems, 25(1), 2013.



BIBLIOGRAPHY v

[46] Francesco Orabona, Joseph Keshet, and Barbara Caputo. The projectron: a
bounded kernel-based perceptron. In International Conference on Machine Learn-
ing, pages 720–727, 2008.

[47] Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning
with kernels. IEEE Transactions on Signal Processing, 52(8):2165–2176, 2004.

[48] Yanning Shen, Tianyi Chen, and Georgios B Giannakis. Random feature-based
online multi-kernel learning in environments with unknown dynamics. The Jour-
nal of Machine Learning Research, 20(1):773–808, 2019.

[49] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai
Tu, and Gerald Tesauro. Learning to learn without forgetting by maximizing
transfer and minimizing interference. In International Conference on Learning
Representations, 2018.

[50] Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, and Massimiliano Pontil. Online-
within-online meta learning. In Advances in Neural Information Processing Sys-
tems, volume 32, pages 1–11, 2019.

[51] Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in Neural
Information Processing Systems, 31, 2018.

[52] Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan
Pascanu, and Yee Whye Teh. Functional regularisation for continual learning
with gaussian processes. arXiv preprint arXiv:1901.11356, 2019.

[53] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(12):2935–2947, 2017.

[54] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David
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