
DEPARTMENT OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE

OPTIMIZING DEEP NEURAL NETWORK

DEPLOYMENT FOR INTELLIGENT

SECURITY VIDEO ANALYTICS

by:

Unai Elordi Hidalgo

Supervised by:

Dr. Ignacio Arganda Carreras

&

Dr. Luis Unzueta Irurtia

Donostia – San Sebastian, May 31, 2023

(c)2023  UNAI ELORDI HIDALGO





DEPARTMENT OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE

OPTIMIZING DEEP NEURAL NETWORK

DEPLOYMENT FOR INTELLIGENT

SECURITY VIDEO ANALYTICS

by:

Unai Elordi Hidalgo

Supervised by:

Dr. Ignacio Arganda Carreras

&

Dr. Luis Unzueta Irurtia

Donostia – San Sebastian, May 31, 2023









Abstract

Intelligent Security Video Analytics (ISVA) powered by Artificial Intelligence

(AI) offer a solution to the limitations of traditional video surveillance, limi-

tations such as manual monitoring inefficiencies and the inability to detect

security threats in real-time. Deep Neural Networks (DNNs) have proven to

be highly effective in video analytics, but their deployment in current intel-

ligent system infrastructures is challenging due to their high computational

power requirements. These networks are complex inter-connected neu-

ron graphs with a large number of parameters and arithmetic operations,

resulting in processing bottlenecks. Moreover, DNN-based vision applica-

tions involve processing pipelines with multiple DNN inference tasks and

data pre- and post-processing operations, leading to increased processing

overhead. Although several DNN optimization techniques have been pro-

posed, new end-to-end pipeline optimization strategies are necessary as

more complex DNN-based intelligent systems are developed.

To overcome these DNN computing limitations, new AI accelerators have

emerged (Google’s TPU, Intel’s VPU, etc. that we can generically call "xPU",

and also improved CPU, GPU and FPGA architectures), designed to be

energy-efficient and to enhance the performance of DNN inference. How-

ever, deploying these devices effectively requires significant expertise and

analysis. Additionally, the cost of these devices may not be justified unless

they are utilized efficiently.

ISVA systems can be integrated into heterogeneous, decentralized, and

distributed computing platforms, such as cloud or fog environments, and

offline edge devices or in the Internet of Things (IoT) context. These in-

frastructures require a comprehensive analysis of the optimal deployment



strategy due to their diversity, including multiple devices, application archi-

tectures, and runtimes. Unfortunately, these runtimes and devices are not

designed for DNN inference, and there is a lack of support for AI accelerators

in such diverse computing platforms.

This thesis aims to enhance the deployment of DNN-based vision appli-

cations in intelligent system infrastructures through the latest advances

in DNN optimization techniques and tailored deployment strategies for

Computer Vision (CV). The research aims to improve the efficiency and ef-

fectiveness of ISVA, enabling seamless integration into intelligent system

infrastructures and paving the way for smarter IoT systems. By optimizing

DNN and CV techniques and deployment strategies, the thesis seeks to over-

come the challenges associated with the computational requirements of

DNN-based vision applications.

To achieve the objectives of enhancing the deployment of DNN-based vi-

sion applications in intelligent system infrastructures, this study proposes

different deployment strategies of DNNs for ISVA in different environments.

These environments include (1) serverless cloud environments for large-

scale and highly variable computing workloads, (2) heterogeneous IoT

platforms, and (3) edge devices with low-computational resources and

demanding workloads.

The first strategy provides a comprehensive performance evaluation of

DNN inference in serverless cloud environments and multi-DNN deploy-

ment strategies in the context of video surveillance. The second strategy

analyzes the optimal deployment in heterogeneous IoT environments of

multi-DNN-based face recognition algorithms including face quality assess-

ment, anti-spoofing, face verification, and managing secure biometric data.

Finally, the third strategy optimizes an end-to-end multi-DNN deployment

pipeline for aircraft cabin readiness verification.

Their outcomes reveal that the deployment of DNN-based solutions for

ISVA can benefit from on-site benchmarking and knowledge-based pro-

cedures to leverage the computing capabilities of the targeted computing

platforms in each use case.



Resumen

La vídeo analítica inteligente para la seguridad actualmente aplica al-

goritmos de Inteligencia Artificial (IA) que permiten dar solución a las

limitaciones de la vídeo vigilancia tradicional, que hasta ahora se basa mer-

amente en la monitorización manual y con una capacidad muy limitada

para detectar amenazas de seguridad en tiempo real.

Las redes neuronales profundas (Deep Neural Networks, DNNs, en inglés)

han demostrado ser altamente efectivas para el análisis de vídeo, pero su

implementación en las infraestructuras actuales de sistemas inteligentes

implican un reto importante debido a sus altos requisitos computacionales.

Estas redes son grafos complejos de neuronas interconectadas con un gran

número de parámetros y operaciones aritméticas, lo que resulta en cuellos

de botella en el procesamiento. Además, las aplicaciones de visión basadas

en DNNs involucran múltiples operaciones de inferencia de DNN y de pre- y

post-procesamiento de datos, lo que lleva a una mayor sobrecarga de proce-

samiento. Aunque se han propuesto numerosas técnicas de optimización

de DNNs, se necesitan nuevas estrategias de optimización en aplicaciones

de extremo-a-extremo (end-to-end) basados en sistemas inteligentes de

visión basados en DNNs.

Con objetivo de dar respuesta a los requisitos computacionales de los DNNs,

los nuevos aceleradores de IA han ido apareciendo en el mercado como

(Las TPUs de Google, VPUs de Intel, etc., que se pueden denominar de man-

era generica como genérica "xPU", así como arquitecturas mejoradas de

CPU, GPU y FPGA), diseñados para ser energéticamente eficientes y con un

incremento de rendimiento muy considerable para la inferencia DNN. Sin

embargo, desplegar de forma eficiente las aplicaciones basadas en DNNs



dentro de estos dispositivos requiere de un expertise y know-how significa-

tivos. Además, el coste económico de estos dispositivos puede no estar

justificado a menos que se utilicen eficientemente. Los sistemas de ISVA

pueden estar integrados en plataformas de computación heterogéneas, de-

scentralizadas y distribuidas como entornos en la nube (cloud), la niebla

(fog) y dispositivos en extremo (edge) sin conexión o en el contexto de

Internet de las Cosas (Internet of Things, IoT, en inglés). Estas platafor-

mas requieren de un análisis exhaustivo en decidir la estrategia óptima

de despliegue debido a su diversidad, incluyendo múltiples dispositivos,

arquitecturas de aplicaciones y entornos virtualizados de ejecución. De-

safortunadamente, estos entornos virtualizados y sus dispositivos hardware

asociados no están diseñados para la inferencia DNN, y por lo tanto, no ex-

iste un soporte para desplegar estos sistemas entre la diversas opciones de

los aceleradores de IA.

Esta tesis tiene como objetivo optimizar el despliegue de aplicaciones

de visión basadas en DNN dentro de las infraestructuras de sistemas

inteligentes teniendo en cuenta los últimos avances en técnicas de op-

timización y estrategias de despliegue personalizadas de DNNs para visión

por computador (Computer Vision, CV, en inglés). La investigación de este

trabajo tiene como objetivo mejorar la eficiencia y la eficacia de los sistemas

de vídeo analítica, habilitando un proceso de despliegue optimo para los

sistemas inteligentes y entornos IoT. Basandose en estas técnicas y estrate-

gias de despliegue de DNNs para CV, esta tesis pretende dar solucion a los

desafíos asociados a los requisitos computacionales de las aplicaciones de

visión artificial basadas en DNNs.

Para lograr estos objetivos, este estudio propone diferentes estrategias de

despliegue de DNN para análisis de videoen diferentes entornos de eje-

cución. Estos entornos incluyen (1) entornos en la nube serverless para

delegar procesos a gran escala con una gran variabildad, (2) plataformas

IoT heterogéneas y (3) dispositivos edge con recursos computacionales

limitados con procesos computacionales exigentes. La primera estrate-

gia proporciona una evaluación integral del rendimiento de la inferencia



de DNN en entornos en la nube serverless y estrategias de despliegue de

múltiples DNN en el contexto de la video analítica. La segunda estrate-

gia analiza el despliegue óptimo de algoritmos de reconocimiento facial

basados en múltiples DNN en entornos de IoT heterogéneos, que incluyen

evaluación de calidad facial, anti-suplantación de identidad, verificación

facial y gestión de datos biométricos seguros. Finalmente, la tercera estrate-

gia optimiza un flujo proceso constante de vídeo analítica desplegado con

múltiples DNNs ejecutándose en dispositivos de bajos recursos para sol-

ventar la problemática de la correcta posición del equipaje de mano en la

cabina del avión Los resultados de esta tesis revelan que el despliegue de

soluciones basadas en DNN para ISVA pueden beneficiarse de evaluaciones

comparativas in-situ y de procedimientos basados en el conocimiento para

aprovechar las capacidades computacionales de las plataformas en cada

caso de uso.





Laburpena

Adimen Artifizialean (Artificial Intelligence, AI, ingelesez) oinarritutako

segurtasunerako-bideo-analisi adimendunak ((Intelligent security video

analytics, ISVA, ingelesez) bideo-zaintza tradizionalaren mugei irtenbidea

eman diezaiokete. Bideo analisi sistema tradizional hauek orain arte eragin-

kortasun gutxiko begi bistako monitorizazio hutsa egiten dute eta arazoak

dituzte segurtasun mehatxuen aurrean behar bezala erreakzionatzeko.

Sare neuronal sakonak (Deep Neural Networks, DNNs, ingelesez) oso era-

ginkorrak direla frogatu da bideoaren analisiaren munduan, baina egungo

sistema adimendunetako azpiegituretan ezartzea benetan zaila izan dai-

teke, batez ere, gaitasun konputazional handia eskatzen dutelako DNNak.

Sare sakon hauek beraien artean interkonektatuta dauden neuronen grafo

konplexuak dira, parametro eta eragiketa aritmetiko ugari dituztenak, eta

horrek prozesamendu geldo bat ekarri dezake. Horretaz gain, DNNetan oi-

narritutako ikusmen aplikazioek datuen pre eta post prozesamendua gehitu

behar diote DNN inferentziari eta beraz, honek prozesamendu guztiaren

denbora gehitzen du. DNNak optimizatzeko teknika ugari proposatu diren

arren, muturretik-muturrerainoko optimizazio estrategia berriak behar dira

DNNetan oinarritutako sistema adimendun konplexuagoak garatzen diren

heinean.

DNN konputazio-muga horiei aurre egiteko, AI azeleragailu berriak (Google-

ren TPUa, Intelen VPUa, etab., orokorrean "xPU" dei diezaiokeguna, baita

CPU, GPU eta FPGA arkitekturak ere) sortzen ari dira, energetikoki era-

ginkorrak izateko eta DNN inferentzia-errendimendu hobeagoak emateko

diseinatuta baitaude. Hala ere, gailu hauek modu eraginkorrean ezartzeak

analisi sakona behar du. Era berean, baliteke gailu horien kostua ez justifi-

katua egotea eraginkortasunez erabiltzen ez badira.



ISVA sistemak konputazio-plataforma heterogeneo, deszentralizatu eta

banatuetan txertatu daitezke, hala nola, hodei (cloud) edo laino (fogo) in-

guruneetan eta ertzeko gailuetan (edge) edo Gauzen Interneteko (Internet

of Things, IoT, ingelesez) testuinguruan. Plataforma hauek inplementazio-

estrategia optimoaren azterketa zabala behar dute haien aniztasuna dela

eta, hainbat gailu, aplikazio-arkitektura eta exekuzio-denborak kontuan

hartu behar baitira. Zoritxarrez, birtualizatutako exekuzio inguru eta gailu

hauek ez daude DNN inferentziarako diseinatuta eta AI azeleragailuentzako

integrazio falta da dago konputazio-plataforma anitz hauek sustatzeko.

Tesi honek DNNetan oinarritutako ikusmen aplikazioen hedapena hobetu

nahi du sistema adimendunen azpiegituretan, optimizazio-tekniketan eta

DNNak ikusmen artifizialerako (Computer Vision, CV, ingelesez) pertsonali-

zatutako hedapen-estrategien azken aurrerapenen bidez. Ikerketak ISVAren

adimen artifizialeko algoritmoen eraginkortasuna hobetzea du helburu, sis-

tema adimendunen azpiegituretan integrazio ahalbidetuz eta IoT sistema

adimentsuagoetarako bidea irekiz.

Sistema adimendunen azpiegituretan DNNetan oinarritutako ikusmen

aplikazioen hedapena hobetzeko helburuak lortzeko, ikerketa honek, DN-

Nen gaitasuna hobetzeko estrategia desberdinak proposatzen ditu ISVAko

ingurune ezberdinetan. Ingurune horien artean daude (1) zerbitzaririk

gabeko hodei-inguruneak eskala handiko eta oso aldakorreko konputazio-

lan kargak egiteko (serverless), (2) IoT plataforma heterogeneoak eta (3)

konputazio baliabide mugatuak eta lan-karga mugatuak jaso ditzaketen

konputazio inguruneak.

Lehenengo estrategiak DNN inferentziaren errendimenduaren ebaluazio

integrala eskaintzen du zerbitzaririk gabeko hodei-inguruneetan eta DNN

anitzeko estrategiak bideo-zaintzaren testuinguruan. Bigarren estrategiak

DNN anitzetan oinarritutako aurpegi-ezagutza algoritmoen esparruan ari-

tzen da IoT ingurune heterogeneoetan. Azkenik, hirugarren estrategiak

DNN anitzeko bideo analisis pipelineak optimizatzen ditu du hegazkinen

kabinaren segurtasuna bermatzeko.



Tesi honen emaitzak agerian uzten ditu DNNn oinarritutako soluzio optimi-

zatuak beharrezkoak direla ISVArako eta ezagutzan oinarritutako prozedurei

etekina atera diezaiekeela erabilera kasu bakoitzean.





Acknowledgements

First and foremost, I would like to express my most sincere gratitude to

my supervisors Luis Unzueta (Vicomtech) and Ignacio Arganda Carreras

(Euskal Herriko Unibertsitatea). Your patience, empathy, courage, and con-

stant supervision have created an efficient environment in which I have

been able to thrive as a researcher. Thank you both for your support and

guidance.

I am so grateful to be a part of Intelligent Transport System department and

Video Surveillance and Security department. Thanks to Jorge Garcia and

Oihana Otaegui for helping me to find the most appropriate projects and

resources to carry out this researching work.

Special thanks to Julián Florez, Edurne Loyarte, and Jorge Posada for their

confidence in me and for believing in the feasibility of this PhD dissertation

thesis like I did. Vicomtech has provide me with a comfortable environment

and resources to carry out this dissertation thesis.

Special thanks to Nerea Aranjuelo, Jon Goenetxea and Jose Luis Apellaniz

for contributing to this research work. Also, thanks to Carlos Toro for his

unconditional willingness and support during the final stages of this thesis.

I would like to thank my parents and my brother, for their love and uncon-

ditional support; for always believing in me and encouraging me to pursue

my dreams.

Last but not least, thank you Kattalin for being there in the bad and good

moments. Your emotional support, patience and love are essential in my

life. Lea, welcome to the family, we have a long long way to live together.

The following pages of the dissertation are dedicated to you.



Eskerrik asko

Unai Elordi Hidalgo

May 2023



Contents

List of Figures xix

List of Tables xxv

I Introduction 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Research environment and context . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

II Related work 15

2 Related work 17

2.1 DNN complexity optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 AI acceleration hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 DNN inference optimization and deployment tools . . . . . . . . . . . . . . 28

2.4 Deployment heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xv



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

III Research Results 39

3 Optimal deployment of DNNs in serverless cloud architectures 41

3.1 Background and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Benchmarking DNN inference in serverless environments with MLPerf . . 46

3.3 On-demand serverless video surveillance with optimal deployment of

deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Knowledge-driven approach for the optimal deployment of DNNs in heteroge-

neous IoT platforms 65

4.1 Background and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Experiments and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Practical deployment examples . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Optimizing end-to-end multi-DNN-based video analytics on the edge 91

5.1 Background and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Experiments and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 On-site readjustment of the system in an aircraft cabin . . . . . . . . . . . . 111

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

IV Conclusions 119

6 Conclusions and future work 121

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

V Appendix 125

A Publications related to the research done for this thesis 127

A.1 Benchmarking deep neural network inference performance on serverless

environments with MLPerf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xvi



CONTENTS

A.2 Designing automated deployment strategies of face recognition solutions

in heterogeneous iot platforms. . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.3 Optimal deployment of face recognition solutions in a heterogeneous iot

platform for secure elderly care applications. . . . . . . . . . . . . . . . . . . 128

A.4 On-demand Serverless Video Surveillance with Optimal Deployment of

Deep Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.5 Leveraging Synthetic Data for DNN-Based Visual Analysis of Passenger

Seats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.6 Building Synthetic Simulated Environments for Configuring and Training

Multi-camera Systems for Surveillance Applications . . . . . . . . . . . . . 131

A.7 Building a Camera-based Smart Sensing System for Digitalized On-

demand Aircraft Cabin Readiness Verification . . . . . . . . . . . . . . . . . 132

A.8 How can deep neural networks be generated efficiently for devices with

limited resources? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.9 Optimizing Video Analytics Deployment for In-Flight Cabin Readiness

Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.10 Multi-Task Explainable Quality Networks for Large-Scale Forensic Facial

Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B Other publications related with the application of computer vision and Deep

Neural Networks field 137

B.1 A temporally consistent grid-based visual odometry framework for multi-

core architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.2 Efficient Multi-task based Facial Landmark and Gesture Detection in

Monocular Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.3 Virtual reality interfaces applied to web-based 3D E-commerce. . . . . . . 139

B.4 Efficient Multi-task based Facial Landmark and Gesture Detection in

Monocular Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C Patent applications 141

C.1 Method, System and Computer Program Product for Eye Gaze Direction

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.2 Method and System for Detecting Presence of Objects in Passenger Com-

partments of Transport Means . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xvii



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

D Other published resources 143

D.1 SmaCS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

E Glossary 145

Acronyms 147

VI Bibliography 151

Bibliography 153

xviii



List of Figures

1.1 Visual representation of the Thesis’ motivation, challenges and contribu-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Key reasons to optimize DNN architectures. . . . . . . . . . . . . . . . . . . 5

1.3 Traditional computing vs AI accelerators, benefits and drawbacks. . . . . . 6

1.4 DNN-based vision pipelines scheduling issues, main bottleneck and pro-

cessing overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 The complexity of deploying DNN-based vision apps in a diverse intelli-

gent system infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Comparing monolithic and microservice architecture: advantages and

disadvantages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Benchmarking of the most representative DNN architectures published

until 2018 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Visual representation of pruning methods. From left to right: fine-grained,

vector, kernel and filter pruning. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The expected growth of the AI-related semiconductor market. Source: [2]. 25

2.4 Overview of the future of semiconductors in MLPerf ML benchmarking

standard and the current expectations of the markets on the preferences

of use in the industry. Left: the submission percentage using AI hard-

ware in MLPerf inference 0.5 benchmark [3]. Right: the preferences of the

deployments for edge computing [2]. . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Software tools delivering minimum execution time for each platform-

network configuration. Source: [4]. . . . . . . . . . . . . . . . . . . . . . . . 30

xix



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

2.6 The computing environments for the intelligent system infrastructure.

Cloud for centralized and high processing, Fog environment for middle-

ware tasks, Edge for processing the information near the data. . . . . . . . 31

3.1 The visual representation of the FaaSification process from MLPerf Infer-

ence monolithic design [3] to serverless runtime. This process decouples

SUT module functionalities into function instances. This process also re-

quires rethinking LoadGen and DataSet interaction with the serverless

implementation of the SUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 The proposed benchmarking architecture for measuring DNN inference

performance in serverless environment using MLPerf rules and practi-

cal guidelines. The workflow of the benchmarking process is numbered

from 1 to 11. This workflow includes data initialization from LoadGen,

warmup process for cold start initialization (blue color), and performance

evaluation process in the warm stage (red color). . . . . . . . . . . . . . . . 50

3.3 Inference latency results with OpenVINO IR (IR), Caffe (CF) and Tensor-

Flow (TF) MobilenetV1 (left) and SSDMobilenetV1 (right) models, and

OpenVINO IE (IE) and OpenCV (OCV) as inference engines. . . . . . . . . . 53

3.4 Inference throughput results with OpenVINO IR (IR), Caffe (CF) and Ten-

sorFlow (TF) DNN models, and OpenVINO IE (IE) and OpenCV (OCV) as

inference engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 The proposed serverless architecture and workflow for deploying multiple

DNNs in a video surveillance scenario. The initialization process (cold

stage) is represented in blue color while the on-demand execution (warm

stage) is in red. The serverless instance comprises three layers: the Deep

Learning (DL) layer for DNN inference, the High-Level Algorithm (HLA)

layer, and the Business Logic (BL) layer for handling business logic. . . . . 57

3.6 Average cost to process 10K images with VSS in AWS Lambda. The horizon-

tal axis represents image batch size per request (1,5,10) and the color bars

represent the allocated memory per function, from 704MB to 3008MB.

AWS free tier is not included in this experiment . . . . . . . . . . . . . . . . 60

3.7 Cold start time analysis of the global scope strategy according to the

amount of allocated memory per function (from 704MB to 3008MB). . . . 61

xx



LIST OF FIGURES

3.8 Cold start time analysis of the local scope strategy according to the amount

of allocated memory per function (from 704MB to 3008MB). . . . . . . . . 61

3.9 Total times to process 10K images with the VSS in AWS-Lambda. The color

bars represent image batch size. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 User interaction and face recognition workflow in different phases. (1)

facial image acquisition, (2) spoofing detection, (3) biometric feature

extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Example of a user interacting with the face recognition application and

receiving feedback in real-time during the image acquisition process. . . . 69

4.3 Examples of results from the FIQ and anti-spoofing algorithms for various

situations and spoofing attacks using mobile and webcam cameras. . . . . 71

4.4 Workflow for the automated deployment of the IoT face recognition solution. 72

4.5 Case retrieving workflow for knowledge-driven methodology. . . . . . . . . 74

4.6 Biometric data management with fully homomorphic encryption during

enrollment and verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Comparison between DNN inference performances obtained by the

heterogeneous deployment optimizer vs manual heterogeneous con-

figurations on a TANK AIoT Dev. Kit with a Mustang-V100-MX8 DNN

acceleration card.: (a) MobileNetV1; (b) ResNet-50. . . . . . . . . . . . . . . 82

4.8 Comparison between DNN inference performances obtained by the het-

erogeneous deployment optimizer vs manual heterogeneous configura-

tions on Jetson Xavier AGX 32GB.; (a) MobileNetV1; (b) ResNet-50 . . . . . 83

4.9 The influence of the background hardware usage with heterogeneous

deployment optimizer decisions on TANK AIoT Dev. Kit with a Mustang-

V100-MX8 DNN acceleration card: (a) MobileNetV1; (b) ResNet-50. . . . . 83

4.10 The influence of the background hardware usage with heterogeneous

deployment optimizer decisions on a NVidia Jetson Xavier AGX: (a) Mo-

bileNetV1; (b) ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 The class diagram of the mobile face recognition application (Android app) 85

4.12 Face recognition workflow image examples in mobile scenario. . . . . . . . 86

4.13 PAL Robotics ARI’s sensors including RGBD camera sensor. . . . . . . . . . 87

xxi



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

4.14 The front-end interface of the face recognition functionality on the robot’s

touchscreen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Conceptual design of a camera-based intelligent system for digitalized

on-demand aircraft cabin readiness verification, and examples of the kind

of images that would be captured from cameras installed over the seats

and the corridor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Examples of image crops to be processed by multiple DNNs to verify the

correct positioning of the luggage for the cabin readiness verification. . . . 94

5.3 Example of subdivision in the positioning of luggage for TTL cabin readi-

ness as a three-level hierarchy of classes. . . . . . . . . . . . . . . . . . . . . 95

5.4 The architecture of metric-guided multi-task domain adversarial proto-

typical networks (MMDAPNs). . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Multi-camera multi-MMDAPN-based end-to-end processing pipeline. . . 100

5.6 The cabin mockup, AI-processor and camera setup used for the experiments.103

5.7 The objects used for the MMDAPN experiments. . . . . . . . . . . . . . . . 103

5.8 Examples of the virtual environment used to generate synthetic images.

(a) Exterior view of a Boeing 737 airplane. (b) Interior perspective view of

the airplane cabin. (c) Cabin and non-cabin luggage virtual objects. (d)

View of passengers holding their luggage. . . . . . . . . . . . . . . . . . . . . 104

5.9 Examples of image ROIs from captured images and synthetic images for

the different fine-grained subclasses. The first two rows refers to real

images while the third and fourth rows refers to synthetic . . . . . . . . . . 104

5.10 Distribution of the eight fine-grained subclasses in the captured and

generated samples. Subclasses with index from 0 to 3 represent correct

situations and from 4 to 7 incorrect ones (cabin luggage incorrectly placed).105

5.11 Image features visualization after PCA. Each subclass is represented us-

ing a different color. Features are extracted using the trained MMDAPN

(right) and the model without the metric-guided prototypical network

component (left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.12 The Multi-MMDAPN processing pipeline evaluation to find the optimal

deployment configuration with Jetson Xavier AGX 32GB. The optimal

configurations are selected in red rectangle. . . . . . . . . . . . . . . . . . . 110

xxii



LIST OF FIGURES

5.13 The workflow for multi-DNN-based onboard video analytics with on-site

model readjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.14 An example of the CVMS: On the left, the control panel and seat monitor-

ing. On the right, the post-processing results. . . . . . . . . . . . . . . . . . 113

xxiii





List of Tables

2.1 Summary of current DNN complexity optimization methods. . . . . . . . . 18

2.2 Comparison of optimizations in the TensorRT, OpenVINO, and TensorFlow-

lite DNN deployment tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Selected DNN model parameters for experimental results of section 3.3 . . 59

4.1 Comparison of state-of-the-art IoT platform approaches vs. our proposal

(FD: Face detection, FLD: Face and facial landmark detection, PGR: Pose

and gesture recognition, IQA: image quality analysis, SAD: spoofing attack

detection, FIR: Facial identity recognition). . . . . . . . . . . . . . . . . . . . 80

5.1 Multi-MMDAPN processing pipeline parameter description . . . . . . . . 101

5.2 Comparison of MMDAPN with subclass accuracy and overall correctness

on the test set with state-of-the-art alternatives (Sc: subclass). . . . . . . . 106

5.3 Qualitative comparison of our Multi-MMDAPN processing pipeline with

respect to alternative state-of-the-art approaches. . . . . . . . . . . . . . . 108

5.4 Overview of the trials conducted in testing session 1. . . . . . . . . . . . . . 114

5.5 Summary of the results obtained in testing session 1. . . . . . . . . . . . . 115

5.6 Overview of the trials conducted in testing session 2. . . . . . . . . . . . . 115

5.7 Summary of the results obtained in testing session 2. . . . . . . . . . . . . 116

xxv





Part I

Introduction

1





CHAPTER

1
Introduction

1.1 Motivation

Intelligent security video analytics (ISVA) can automatically and accurately analyze de-

tailed situational awareness from video surveillance images [5]. Recent advances in

Artificial Intelligence (AI) and computer vision have greatly enhanced the cognitive ca-

pabilities of ISVA systems. In particular, the outstanding prediction capabilities of Deep

Neural Networks (DNNs) have driven the development of diverse DNN-based end-to-

end vision applications for video analytics in the Machine Learning (ML) field, including

face recognition, potential security threat detection, person and object tracking [6].

The integration of DNN-based end-to-end vision applications in ISVA systems can

significantly improve the efficiency of security operations. More specifically, these appli-

cations can alleviate the workload of security personnel who often face time-consuming

duties that are prone to human error.

To effectively integrate these DNN-based applications within an ISVA system, it

is necessary to follow a comprehensive deployment process that includes data acqui-

sition, training the DNN model, optimizing the performance of the model, and the

deployment in AI workloads. There are currently practical guidelines such as Machine

Learning Operations (MLOps) that can help to optimize the deployment process and

3



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

ensure success of the integration [7]. Also, in order to put these applications into pro-

duction requires the assessment of the technology readiness level for machine learning

applications (MLTRL) [8]. This structured evaluation method enables technology devel-

opers and managers by providing clear descriptions of the current technology status.

MLTRL contain 10 levels to define the technology maturity level, from the designing

basic principles for a ML problem (0) to ready for deployment in production (9). Re-

search on MLOps is in its early stages [9] and there is significant room for improvement

in standardizing these practical guidelines to efficiently ensure the final MLTRL levels.

MLOps is based on a life cycle which is clearly divided into two phases: ML (for learning

and training phase) and the Ops (for DNN deployment for AI workloads).

This thesis is focused on dealing with the challenges and the research work for the

Ops phase. More specifically, this thesis aims to create deployment strategies that are

(1) adapted to the decentralized, distributed and heterogeneous environments of in-

telligent system infrastructures; (2) tailored to the hardware device architectures and

software runtime / framework specifications; and (3) analyzed using comprehensive

performance evaluation indices. The visual representation of this thesis’ motivation,

challenges and proposed solutions is illustrated in Figure 1.1.

Figure 1.1: Visual representation of the Thesis’ motivation, challenges and contributions.

Deploying DNN-based applications for ISVA system presents two main challenges.

The first challenge is the high demand for computing resources required by these appli-

cations. The second challenge is how to deal with optimal deployment strategies with

4



1. INTRODUCTION

diverse and highly heterogeneous ISVA targets. The following subsections analyze these

challenges more in detail.

1.1.1 Challenge 1: DNN-based vision applications demand high com-

puting resources

This challenge arises from three primary causes: DNN complexity, current hardware is-

sues for DNN processing, and the lack of efficient parallelization techniques to execute

multiple DNN instances.

As illustrated in Figure 1.2, DNNs are complex architectures composed of multiple

layers of interconnected artificial neurons represented as a node graph. Adding predic-

tion capabilities to DNNs requires a long learning process, which consists of an iterative

training process updating the parameters of the neurons based on a large-scale image

dataset. Once this learning process is finished, the DNN is prepared for prediction.

This prediction process, or inference, is the main bottleneck for DNN-based vision

applications. It involves the propagation of artificial neurons to recognize highly com-

plex patterns. These DNN architectures require storing a large number of parameters

and operations which usually have 32-bit floating point (FP) precision. Consequently,

processing the inference of all consecutive neurons in a DNN model hinders real-time

processing, especially, for low-resource devices.

Figure 1.2: Key reasons to optimize DNN architectures.

To reduce the computing requirements of DNNs, numerous studies have explored

optimization approaches. These methods assess the complexity of the DNN graph,

5



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

measuring model complexity (i.e., the total number of parameters) and computational

complexity (i.e., the number of FLOPs) [1]. Model compression approaches such as

pruning, quantization, and low-rank factorization [10] have been particularly effective

for Convolutional Neuronal Networks (CNNs), significantly reducing both the storage

size and computing demands of DNNs.

The DNN research community continues to propose new architectures to enhance

learning capabilities of DNNs, which typically involves increasing model complexity. For

example, vision transformers (ViT) have demonstrated superior accuracy to CNNs [11].

However, their increased complexity requires further research to make them suitable

for low-resource devices. For example, this survey [12] demonstrates that ViT models

can reach up to 239 millions of parameters and 1.5 gigabytes of storage size.

Choosing the optimal hardware is crucial for the successful deployment of DNN-

based vision applications. While CPU and GPU architectures have traditionally been

used for every computing task, the CPU’s general-purpose design is not well-suited for

DNN-vision applications. In contrast, GPU architectures are more suitable for these

applications, but they can be expensive and energy intensive.

The lack of efficient hardware architectures for DNN inference has driven the devel-

opment of specialized AI accelerators, including Google’s TPUs, Intel’s VPUs, etc. (xPUs

in general) as discussed in [13]. These accelerators are designed to be energy-efficient

and can scale up performance as the workload increases, as shown in Figure 1.3.

Figure 1.3: Traditional computing vs AI accelerators, benefits and drawbacks.

These accelerators are supported by deployment tools and inference engines, such

6



1. INTRODUCTION

as TensorFlow Lite [14], TensorRT [15], and OpenVINO [16], which optimize the DNN

models to fully utilize the hardware capabilities and accelerate the inference speed as

noted in [17].

AI accelerators can be expensive, especially high-end ones, and, the benefits they

provide may not be the same across all types of workloads. Moreover, deployment soft-

ware tools and inference engines are typically vendor-specific and may pose challenges

for users. Setting up and using AI accelerators effectively requires expertise in consider-

ing factors such as DNN model architectures, target hardware limitations, software /

runtime limitations and performance requirements.

Figure 1.4: DNN-based vision pipelines scheduling issues, main bottleneck and processing
overhead.

The DNN-based application workload is usually queued in a pipeline with image

capturing, pre-processing, prediction tasks, and post-processing as shown in Figure 1.4.

These extra image processing tasks significantly increase the processing overhead. More-

over, the integration of additional cognitive capabilities for video analytics involves

executing multiple pipelines in parallel. Therefore, optimal handling and scheduling of

these pipelines are crucial for maximizing hardware usage and making the acquisition

of AI accelerators cost-effective.

7



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

1.1.2 Challenge 2: DNN deployment targets are diverse and heteroge-

neous

ISVA systems could consider a wide range of deployment targets, especially in the con-

text of the Internet of Things (IoT), including distributed and decentralized systems,

such as cloud, fog, and edge computing platforms [18]. As a result, there are theoreti-

cally numerous computer architectures, DNN models, and DNN deployment software

tools that can be used.

However, in reality, many deployment targets face issues due to incompatibilities

with hardware, DNN architectures, inference engines, and software tools. Therefore,

deploying and maintaining DNN-based vision applications in such environments can

be challenging, as illustrated in Figure 1.5.

DNN-BASED VIDEO ANALYTICS 

APPLICATIONS

FOG

EDGE

services

serverless

Micro-services

gateways

IoT & AI accelerators

CLOUD

HOW DEPLOY 

AND 

MAINTAIN
D

iv
e
rs

e
 a

n
d
 h

e
te

ro
g
e
n
e
o
u
s
 c

o
m

p
u
ti
n
g
 e

n
v
ir
o
n
m

e
n
tDNN MODELS

DNN-based vision system

CAPTURE
PRE-

PROCESING
DNN PREDICTION

POST 

PROCESSING

Pipeline 1

CAPTURE
PRE-

PROCESING
DNN PREDICTION

POST

PROCESSING

Pipeline 0

CAPTURE
PRE-

PROCESING
DNN PREDICTION

POST 

PROCESSING

Pipeline 2

CAPTURE
PRE-

PROCESING
DNN PREDICTION

POST 

PROCESSING

Pipeline N

Figure 1.5: The complexity of deploying DNN-based vision apps in a diverse intelligent
system infrastructure.

AI accelerators can be leveraged for edge computing to perform lightweight DNN

processing, such as in smart AI cameras [19]. However, for many IoT devices, DNN

inference processing is infeasible due to their limited computational capabilities.

To address these challenges, one solution is to delegate the inference processing to

fog or cloud computing, where devices such as IoT gateways can handle a larger num-

ber of DNN inference requests [20]. This offloading strategy enables the execution of

8



1. INTRODUCTION

heavy processing DNN-based applications in cloud environments with more resources.

The workload delegation process for DNN-based vision applications requires exe-

cuting many tasks simultaneously. Until recently, task parallelization was commonly

seen as a CPU multithreading monolithic application architecture. A monolithic appli-

cation architecture refers to a software system that is built as a single, self-contained

unit and executed in a single process. However, this architecture is not the most opti-

mal choice for distributed environments. In contrast, microservices have emerged as a

more suitable architectural pattern for modern infrastructures [21]. Microservices de-

couple a large application into a suite of small, modular services that can be developed,

tested, and deployed independently. Thanks to microservices, DNN-based applications

can be deployed as services [22], enabling easier scalability and finer-grained control

over DNN inference requests. The differences between monolithic and microservice

architectures are illustrated in Figure 1.6.

Figure 1.6: Comparing monolithic and microservice architecture: advantages and disad-
vantages.

A microservice architecture employs homogeneous runtimes for task execution,

such as virtual machines, containers, and innovative cloud services such as serverless

computing [23]. These runtimes provide benefits such as simplified maintenance and

a homogeneous programming interface. However, they also have limitations, such as

strict computing constraints and ephemeral storage resources, which can pose chal-

lenges for resource-intensive DNN-based applications. While CPUs and GPUs are

typically used as the back-end hardware for these runtimes, newer AI accelerators are

9



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

not yet fully integrated into background computing. Additionally, allocating cloud

GPUs for DNN processing inference can significantly increase the economic cost for the

infrastructure.

1.2 Objectives

The main objective of this Thesis is to provide insights and contributions to the optimal

deployment of DNN-based vision applications for ISVA systems. More specifically, this

Thesis’ contributions are focused on the generation and deployment of a modular pro-

cessing pipeline in current intelligent system infrastructures. The modular design of

this pipeline aims to leverage the strength of the customized deployments in order to

improve performance indices. This dissertation is not only focused on the investigation

of how to improve performance indices but also it aims to extend the key factors to im-

prove the performance of ISVA applications such as subject, detection, recognition, and

tracking.

More specifically, the objectives of this Thesis are as follows:

1. Develop a modular pipeline to optimally generate and deploy DNN models

• Adapted to the needs of the intelligent system’s infrastructures (i.e, central-

ized, decentralized, distributed with edge/cloud Computing).

• Tailored to the software/hardware specs of targeted low-resource devices

(RAM, CPU, storage size, operating system, etc)

• Adjusted to the available DNN inference engines and deployment tools

analyzing DNN structures and how to improve their performance indices.

2. Extract the key factors to enhance the efficiency of ISVA tasks such as object and

subject detection, recognition and tracking.

1.3 Contributions

The contributions of this thesis are:

10



1. INTRODUCTION

1. A new method for understanding the key factors to design DNNs with better per-

formance indices considering the proposed DNN structures and the different kind

of optimization techniques. This method was presented in Articulated Motion

and Deformable Objects - 10th International Conference, AMDO 2018 [24].

2. A new method to evaluate the DNN models performance in serverless environ-

ments. More specifically, it provides a novel decomposition methodology from

the current MLPerf benchmark to the serverless function execution model. This

method was presented in the journal of IEEE software , in the special issue of

Serverless Applications Engineering [25].

3. A novel approach for the optimal generation and deployment of DNN mod-

els for Cloud Serverless architectures for Intelligent Video Surveillance Systems.

This approach was presented in the Proceedings of the 16th International Joint

Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications (VISIGRAPP) [26].

4. A novel knowledge-driven approach for automatic deployment of DNNs for face

recognition solutions in the highly heterogeneous IoT hardware. All of this, tak-

ing into account the specificities of user interaction, system security and privacy

preserving issues. This contribution was reflected in three papers published in

KES 2021 [27], Information [28] and IEEE Journal of Selected Topics in Signal

Processing [29].

5. A comprehensive end-to-end approach for deploying a multi-DNN-based on-

board video analytics system for edge computing environments. This deployment

is based on a real-world pattern recognition scenario. In particular, this scenario

involves checking the correct positioning of luggage in aircraft cabins in areas that

could pose a safety risk during critical flight phases such as taxiing, take-off, and

landing (TTL). This contribution outcomes are (1) a conference paper published

in ROBOVIS2020 [30], (2) a patent application EP22382620, and, (3) a journal arti-

cle submitted to IEEE Access (under rview process) and referenced in appendix

section A.9, and (4) SMACS Dataset reference also in appendix section D.1.

11



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

1.4 Research environment and context

The research work reported in this Thesis was done during the participation of the PhD

candidate in different research projects at the Intelligent Video Surveillance Department

of Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), under the

supervision of Professor Ignacio-Arganda carreras (Computational Intelligence Group

from the University of the Basque Country UPV/EHU) and PhD Luis Unzueta (Principal

Researcher of Intelligent Video Surveillance Department of Fundación Vicomtech).

1.4.1 Projects

Related research projects of the thesis dissertation.

• SmaCS: The project developed a machine learning algorithm for cabin luggage

control in poor light and contrast conditions. This project conceived a camera-

based prototype solution, validated in a relevant environment in the CleanSky2

integrated cabin demonstrator, for digitalized on-demand verification of Taxi,

Take-off and Landing (TTL) for cabin luggage.

– Full-title: Smart Cabin System for cabin readiness

– Funded under: H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green

And Integrated Transport, H2020-EU.3.4.5.6. - ITD Systems.

– Duration: 1 October 2019 - 31 July 2022.

– Project coordinator: Otonomy Aviation (France).

• EWISA: The objective was to increase intelligence in video surveillance. The

approach used was a process like entity, which consisted of camera-specific

processes, a modular implementation of successive analysis layers for optimal

situational awareness:

– Full-title: Early Warning for Increased Situational Awareness

– Funded under: FP7-SECURITY - Specific Programme "Cooperation": Secu-

rity

– Duration: 1 September 2014 - 30 June 2019.

12



1. INTRODUCTION

– Project coordinator: Kentro Meleton Asfaleias.

• SHAPES: This project aims to build an interoperable platform integrating smart

digital solutions to collect and analyze older individuals’ health, environmental

and lifestyle information, identify their needs and provide personalized solutions

that uphold the individuals’ data protection and trust.

– Full-title: Smart and Healthy Ageing through People Engaging in Supportive

Systems

– Funded under: H2020-EU.3.1. - SOCIETAL CHALLENGES - Health, demo-

graphic change and well-being, H2020-EU.3.1.4.1. - Active ageing, inde-

pendent and assisted living, H2020-EU.2.1.1.3. - Future Internet: Software,

hardware, Infrastructures, technologies and services.

– Duration: 1 November 2019 - 31 October 2023.

– Project coordinator: National University of Ireland Maynooth.

• NEOPOLIS: This project aims to create a surveillance system which analyzes the

perception of citizen safety by tracking the number of people and classifying

their gender using Deep Learning methods. In order to avoid a centralized server,

this approach proposes to integrate each tracking system in the streetlights with

a low-resource board to process each street locally and send the measurement

through the net. Therefore, this project avoids privacy issues, due to the images

are processed locally, and no image is stored.

– Full-title: Solución inteligente de seguridad en base a interpretación semán-

tica de percepción ciudadana y cálculo de flujos de información en tiempo

real.

– Funded under: Basque Government, Hazitek 2018-2019.

– Duration: 1 september 2018 - 31 december 2019.

– Project Coordinator: Iker Barrena (HISPAVISTA)

13



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

1.5 Thesis organization

This Thesis is structured as follows:

• Chapter 2 outlines the background and the related work presented in the state of

the art.

• Chapter 3 exposes the optimal deployment of DNNs in serverless cloud architec-

tures.

• Chapter 4 proposes a knowledge-driven methodology to deploy DNNs in the

heterogenous IoT environment.

• Chapter 5 proposes a methodology to optimally deploy end-to-end computer

vision tasks for multi-DNN video analytic pipeline, from problem definition,

training, and the optimal pipeline generation of the video-analytic system.

• Chapter 6 defines the conclusions and the future work of this PhD thesis work.

• Part V defines this PhD thesis publications and patent applications.

• Part VI corresponds to the bibliography section that lists all the research references

that were cited in the dissertation.

14



Part II

Related work

15





CHAPTER

2
Related work

This chapter provides a comprehensive analysis of the related work published in the

literature that addresses the two challenges outlined in Section 1.1, namely: (1) the high

computing requirements of DNN inference and (2) the complexity of heterogeneous

deployment targets. In particular, we review the key contributions, gaps, and limita-

tions in the field, highlighting the areas where further research is needed. This literature

revision derives from [1], [2], [24] (contribution 1), [3], [31] articles and surveys.

The research community has proposed several techniques to address the first chal-

lenge, focusing mainly on optimizing three main aspects: (1) the DNN architecture

complexity, (2) the AI hardware, and (3) the DNN inference and deployment software

tools. More specifically, Section 2.1 analyzes different DNN complexity optimiza-

tion techniques to reduce the DNN model inference processing time and storage size.

Section 2.2 analyzes current AI acceleration hardware architectures along with their

potential, characteristics, and limitations for deployment in intelligent system infras-

tructures. Section 2.3 reviews current DNN inference engines and deployment tools. In

addition, regarding the second challenge, Section 2.4 describes different deployment

approaches in heterogeneous infrastructures including cloud, fog, edge and IoT en-

vironments. Finally, the identified gaps and further research areas are discussed in

Section 2.5.

17



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

2.1 DNN complexity optimizations

As highlighted in Section 1.1.1, optimizing the model and computation complexity of

DNNs can help to reduce the DNN inference computing requirements [1]. This can be

done by means of a compact network design, model compression (quantization and

neuron pruning techniques), and tensor decomposition. Table 2.1 provides a summary

of the most relevant complexity optimizations approaches for DNNs.

Table 2.1: Summary of current DNN complexity optimization methods.

Method Type Description Layers References
Compact network Comp. Efficiency Network Conv, FC, [32], [33],
design modifications Pool [34], [35],

[36]
Fixed point Compression Bit-width All [37], [38],
quantization reduction [39],[40],

[41], [42]
Codebook Compression Weight sharing All [43]
quantization
Fine grained Compression Unstructured All [44], [45],
pruning sparsity [43], [32],

[46],[47]
Vector pruning Compression Structured Conv [48], [49]

sparsity kernels
Filter pruning Compression Structured Conv [50], [51],

sparsity channels [52], [53]
Low-rank Comp. Efficiency Matrix Conv [54], [55],
factorization decomposition [56],[57]

2.1.1 Compact network design

Compact network designs focus on improving the architecture of current well-known

DNN models [58] [59] to reduce their computational complexity, finding bottlenecks

and providing a better architectural design. The DNN called AlexNet [46] was the win-

ner of the ImageNet [60] Large Scale Visual Recognition Challenge (ILSVRC) 2012 with

a remarkable difference in terms of accuracy with respect to its competitors. This work

is considered one of the most influential papers in the DNN research field. Since its

18



2. RELATED WORK

publication, numerous new DNN architectures have been proposed by the research

community in order to improve accuracy, but also trying to improve the number of pa-

rameters and operations. Figure 2.1 shows a benchmarking of the most representative

DNN architectures proposed up to 2018 [1].

Figure 2.1: Benchmarking of the most representative DNN architectures published until
2018 [1].

SqueezeNet [32] is one of the first DNN models specifically designed with a re-

duction of the computation complexity in mind, while maintaining the accuracy. In

particular, this DNN architecture defines a fire-module CNN architecture that came

from AlexNet and had 50× times fewer MB. At the beginning of 2017, MobileNet [33]

networks became popular in the field of object detection and classification, thanks to

their depth-wise separable convolution strategy. This architectural improvement was

integrated in large networks such as SSD [59] and VGG [58].

ShuffleNet [34] was later presented with the point-wise group convolution and

channel shuffle approach. These new operations improved MobileNet’s accuracy and

reduced computational complexity to 40 MFLOPs.

Huang et al. proposed the DenseNet CNN architecture that utilizes dense connec-

tions between layers to alleviate the vanishing-gradient problem, strengthen feature

propagation, encourage feature reuse, and substantially reduce the number of parame-

ters [61].

19



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

In early 2018, Hasanpour et al. presented SimpNet [36], which featured a new pool-

ing operation called SAF-pooling that improves the generalization power of the network,

while it tries to keep the network structure simple by choosing the best features.

MobileNetV2 [35] was presented with a new architecture based on an inverted resid-

ual structure where the input and output of the residual block are thin bottleneck layers

using lightweight depth-wise convolutions. MobileNetV3 [62] builds upon these V1 and

V2 improvements and introduces new features such as the h-swish activation function

and squeeze-and-excitation module. While these changes aim to enhance accuracy

rather than speed, h-swish is faster than swish and helps enhance accuracy.

Google Brain researchers [63] proposed EfficientNet in 2019. The primary contribu-

tion of EfficientNet is that it achieves state-of-the-art performance on image classifica-

tion tasks with significantly fewer parameters and computations. They proposed a new

scaling method that uniformly scales all dimensions of depth/width/resolution using a

simple yet highly effective compound coefficient. According to their experiments, the

most accurate EfficientNet model achieves state-of-the-art 84.4% top-1 / 97.1% top-5

accuracy on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the

best existing CNNs. In 2021 this research group proposed EfficientNetV2 [64], a new

family of convolutional networks that have faster training speed and better parameter

efficiency than previous models, achieving 87.3 % of Top1 accuracy.

Recently, ViTs have outperformed state-of-the-art CNNs in terms of accuracy [12].

However, these models are complex and require significant processing power and stor-

age space, making them less suitable for low-resource devices. Additionally, Han et

al. [11] suggest that further improvements are needed for ViTs to be fully optimized

for computer vision tasks, including better generalization and robustness, as well as a

clearer understanding of why transformers perform well on visual tasks.

2.1.2 Quantization

Network quantization is a technique that compresses the original network by reducing

the number of bits needed to represent each weight. This results in minimal accuracy

loss during the prediction step. There are several methods of quantization, including

fixed-point, binary, and codebook quantization [10].

20



2. RELATED WORK

Fixed-point quantization transforms 32-bit weights and activations to reduced bit-

width values. In 2015, Gupta et al. [37] proposed Stochastic Rounding, demonstrating

that a network could be trained with 16 bit-width weight values. In order to reduce

bit-width, DoReFa-Net [38] was designed to train DNNs with a 6-bit gradient descent

method applying a different adaptive quantization level depending on the layer, from

1-bit to 6-bit.

Reducing the quantization level to the minimum (1 bit per weight) can cause a sig-

nificant decrease in the accuracy of inference prediction results. However, research

such as BinaryConnect [39] has proposed binary training with values of 1 and -1 using

Expectation Back-Propagation (EBP) to address these accuracy issues. To reduce com-

putational complexity, several works such as Binary Neural Networks (BNN) [40] and

XNOR-Net [41] have proposed using bit-wise binary operators instead of floating point

operations (FLOPs). Local binary CNNs, as described by Juefei-Xu et al. [42], take a dif-

ferent approach to optimizing convolutions by using local binary convolution based on

Local Binary Patterns (LBP) to process data.

Codebook quantization methods organize DNN weights using a codebook with

groups of quantization codes. Each codebook value represents a quantization center,

typically determined through k-means clustering. Rule-based strategies then apply

predefined heuristics to set bit widths for convolution and fully connected layers. The

model weights are shared and encoded using the Huffman method [43]. While the accu-

racy loss is negligible, these methods can increase DNN inference overhead due to the

time required to search for encoded weights in the table.

2.1.3 Pruning

Network pruning aims at reducing network complexity to prevent over-fitting and obtain

a better generalization. Based on the assumption that many parameters are redundant,

or at least less relevant, this technique removes unimportant connections and therefore

increases the sparsity of weights.

Pruning can be categorized into structured and unstructured methods. Unstruc-

tured pruning does not follow a specific geometry and requires additional information

to define sparse locations. In contrast, structured pruning places non-zero parameters

in well-defined locations without extra overhead.

21



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

The benefits and the drawbacks of the unstructured and structured pruning are:

• Unstructured pruning:

– Benefits: Easy implementation, high sparsity and accuracy, higher pruning

rate.

– Drawbacks: Not hardware friendly, important performance degradation in

highly parallel implementations like GPUs. This limitation can be overcome

in structured weight pruning.

• Structured pruning

– Benefits: Exploits hardware-efficient structures. It removes large sections

of weights by changing tensor shapes such as channels and convolutional

filters.

– Drawbacks: Suffers from accuracy drop when the pruning rate is high.

Pruning methods can be classified based on their granularity level. Fine-grained prun-

ing is used for unstructured pruning, while vector, kernel, and filter level pruning are

used for structured pruning. Figure 2.2 provides a visual representation of each method

according to its granularity level.

FINE GRAINED PRUNING
VECTOR-LEVEL

PRUNING

KERNEL-LEVEL

PRUNING

FILTER-LEVEL

PRUNING

UNSTRUCTURED

PRUNING

STRUCTURED PRUNING

Figure 2.2: Visual representation of pruning methods. From left to right: fine-grained,
vector, kernel and filter pruning.

Fine-grained pruning was explored even before the current DNNs by LeCun et

al. [44] and Hassibi and Stork [45]. They used second order derivatives of the loss func-

tion, calculated the saliency, and removed parameters with low saliency. Following with

22



2. RELATED WORK

the unstructured fine-grained pruning, the lottery ticket hypotesis [65] conjectures that

certain connections together with their randomly initialized weights can enable a com-

parable accuracy with the original network when trained in isolation. The previously

mentioned deep compression approach [43] (section 2.1.2) combines fine-grained prun-

ing, quantization and weight sharing through Huffman coding. This approach achieved

35× less MegaBytes (MB) and reduced 3× the FLOPs. In 2016, the SqueezeNet architec-

ture [32] improved the deep compression approach by reducing AlexNet [46] by 50× less

MB. Later, Abadi et al. [47] demonstrated that large-sparse models perform better for

pruning optimizations than small-dense models across a diverse set of neural network

architectures, improving the deep compression approach.

In vector level pruning, the current research (see for instance Mao et al. [48]) applies

a better regularization of the sparse computation patterns, achieving similar accuracy

to fine-grained pruning. For kernel level pruning, Anwar and Hwang [66] presented a

structured sparsity approach. Each network connection importance is defined by the

particle filtering approach and the importance weight of each particle is defined by the

computed classification error of the network connectivity pattern.

Several works have focused on filter level pruning to improve the efficiency of Con-

vNets. For example, Li et al. [50] proposed a structured pruning method for all layers,

reducing the FLOPs in ResNets by 20% [51]. Luo and Wu [52] introduced ThiNet, which

prunes parameters based on the computed statistic information of the next layer. Ayinde

et al. [53] suggested filter level pruning according to the relative cosine distances in the

feature space. He et al. [67] proposed Progressive Soft Filter pruning, which improves

accuracy by 1.08% and reduces the FLOPs of ResNet101 by 42%. This approach reduces

the dependency on pretrained models and provides better performance when training

from scratch.

Nevertheless, the benefits of network pruning are still unclear. The decision to

choose the important weights is a very active topic and as a result, the rethinking of the

value of the network pruning [68] opens a discussion about the assumptions made by

the previous research. Liu et al. [68] make some observations that contradict common

beliefs. For example, training a large and over-parameterized model is often not neces-

sary to obtain an efficient model and learning important weights are typically not useful

for the small pruned model. Also, the pruned architecture itself, rather than a set of in-

herited “important” weights, is more crucial to the efficiency in the final model, which

23



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

suggests that in some cases pruning can be useful as an architecture search paradigm.

Finally inheriting weights from a large model is not necessarily optimal, and might trap

the pruned model into a bad local minimum.

2.1.4 Low-rank factorization

Low-Rank factorization optimizes convolutional operations with matrix factorization

methods. Lin et al. [54] presented a binarized CNN with separable filters where the

convolutions were factorized by Singular Value Decomposition (SVD).

Tensor ring decomposition is an alternative to SVD, proposed by Qibin et al. [55],

which represents a large dimensional tensor by circular multi-linear products through a

low dimensional core sequence. Following this approach (Wide Compression: Tensor

Ring Nets) Wang et al. [56] rely on tensor ring factorization for deep learning structures

such as fully connected layers and convolutional layers. With the idea of a neural net-

work automatic compression, DeepThin self compression [57] identifies and breaks

artificial constraints imposed by low-rank factorization with a reshaping process that

adds non-linearities on the approximation function.

2.2 AI acceleration hardware

The AI acceleration hardware’s objective is to address the increasing demand for process-

ing power for DNN inference required by AI applications. These hardware architectures

are designed specifically to execute DNN inference workloads optimally. This results

in faster processing times, reduced energy consumption, and improved overall perfor-

mance. Based on the semiconductor market analysis published by [2], the AI hardware

market would increase by five times in 2025 as depicted in Figure 2.3.

24



2. RELATED WORK

Figure 2.3: The expected growth of the AI-related semiconductor market. Source: [2].

The AI accelerator hardware typically involves specialized processing units (e.g.,

Google’s TPUs 1, and Intel’s VPUs 2, in general, xPUs) designed to perform specific

AI computations and DNN layer operations, such as matrix multiplication, convolu-

tion and pooling. This heterogeneous hardware can be categorized into three main

types [13]: Graphics Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs)

and Application-Specific Integrated Circuits (ASICs). Below, a detailed description of

each type of device is provided, including their unique benefits and drawbacks, in or-

der to better understand their characteristics and suitability for different use cases and

applications.

• Graphics Processing Units (GPUs): Originally designed for graphics processing,

GPUs are widely used for AI acceleration due to their highly parallel process-

ing capabilities. These devices are very efficient for the convolution operations.

However high-end GPU hardware can be expensive and require high energy

consumption. The most representative example of GPU architecture for DNN in-

ference is the NVidia Jetson family 3 because of the trade-off between computing

capabilities and energy consumption.

1https://cloud.google.com/tpu/docs/tpus
2https://www.intel.com/content/www/us/en/products/details/processors/movidius-

vpu/movidius-myriad-x/docs.html
3https://developer.nvidia.com/embedded/jetson-modules

25



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

• Field Programmable Gate Arrays (FPGAs): FPGAs are programmable chips that

can be customized for specific tasks and can be reprogrammed to adapt to differ-

ent AI workloads, providing high performance and flexibility. However, the circuit

reprogramming capabilities require a high level of expertise due to lower-level

programming languages, which may not be suitable for all AI workloads. This

is because the FPGAs have limited memory bandwidth and on-chip memory

resources, which can result in performance bottlenecks for large DNN models.

Additionally, FPGAs can be more expensive than GPUs due to their specialized

hardware, reprogrammability capabilities, and development costs. Intel ARRIA

10 4 is a representative example.

• Application-Specific Integrated Circuits (ASICs): ASICs are highly specific in-

tegrated circuits designed to compute AI workload providing the best trade-off

between performance and power efficiency. In contrast, designing and manufac-

turing ASICs can be expensive, especially for small-scale projects. ASICs main

limitation is the lack of flexibility to adapt to AI workloads that require frequent

DNN model and layer operation updates. The most representative ASIC hardware

may be the Tensor Processing Unit (TPU) by Google and the Intel Movidius Vision

Processing Unit (VPU) architecture.

The analysis of hardware performance for computing has been a significant and

rapidly-evolving area of research in recent years. In particular, a comprehensive system-

atic literature review of AI hardware accelerators and ML tools was conducted by [69] ,

analyzing more than 169 research papers published between 2009 and 2019. This re-

view has provided valuable insights into the recommendations and guidelines for AI

hardware selection.

At the same time, both academic and industrial organizations have made several

attempts at assessing the measurement of the inference performance of AI accelera-

tors.. MLPerf [3] is an initiative by MLCommons to establish standard ML benchmarks

for hardware, software, and cloud platforms. Even though this dissertation is focused

on inference, MLPerf also does benchmarking for training tasks. MLPerf includes edge,

mobile, datacenter and tiny hardware use cases for measuring inference performance

4https://www.intel.es/content/www/es/es/products/details/fpga/arria/10.html

26



2. RELATED WORK

based on their use cases and performance characteristics. From the first submission,

MLPerf 0.5 5, to the current MLPerf 2.1 6, this benchmarking standard has been adopting

different AI hardware devices.

Figure 2.4 illustrates the utilization and preference of various AI accelerators based

on the MLPerf 0.5 submission [3] and the semiconductor manufacturing market analy-

sis [2]. The results indicate that, despite the potential benefits of FPGA for AI workloads,

its utilization remains low for several reasons. Firstly, high-end FPGAs can be expensive.

Secondly, limited resources in terms of on-chip memory and arithmetic units, especially

for CNNs, reduce their flexibility to use in AI workloads [70]. Lastly, reprogramming

different AI circuits requires specialized expertise.

Figure 2.4: Overview of the future of semiconductors in MLPerf ML benchmarking stan-
dard and the current expectations of the markets on the preferences of use in the industry.
Left: the submission percentage using AI hardware in MLPerf inference 0.5 benchmark [3].
Right: the preferences of the deployments for edge computing [2].

The preference for using GPUs and ASICs in AI applications can be attributed to the

suitability of CNNs, which are widely used in computer vision. Convolutional layers are

capable of learning complex hierarchical representations from input data. The highly

parallel nature of GPUs and ASICs is well-suited to deploy AI workloads, as they are spe-

cialized for computing matrix operations [71]. For example, Google’s TPUs can deliver

up to 200 times the performance per Watt compared to traditional CPUs or GPUs. Intel’s

VPUs are optimized for tasks such as object detection and recognition and can deliver

real-time performance at very low power consumption. However, compared to GPU

5https://github.com/mlcommons/inference_results_v0.5
6https://github.com/mlcommons/inference_results_v2.1

27



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

architectures, ASICs require lower weight precision (such as 8-bit or 16-bit), have lim-

ited flexibility, and can be challenging to adapt to new or changing DNN models and AI

workloads, according to [37].

2.3 DNN inference optimization and deployment tools

Deploying an AI model with optimal performance requires the use of software tools that

enhance inference speed. These tools make several optimizations to a DNN model that

are crucial for achieving optimal inference latency. The optimization techniques are

based on the DNN complexity reduction techniques described in Section 2.1 and they

are usually optimized for ASICs, GPUs, CPUs, and FPGAs. There are currently many

deployment tools, but most of these tools share the following characteristics:

• Graph optimization: Detects DNN common layer patterns to reduce the com-

putation complexity such as tensor decomposition and matrix factorization

techniques.

• Model quantization: Reduces the precision of the weights and activations in a

model. They are usually reduced to 16 floating point (FP) and 8 int precision. The

latter can lead to a significant drop in accuracy result. To mitigate this issue, many

deployment tools include a calibration step which consists of a calibration of the

weights and activations from a defined data subset.

• Graph partitioning: Splits the layers of a DNN into different parts that can be

optimized for different AI accelerator. This process analyzes the affinity of each

part and delegates to the most suitable AI accelerator. This method is especially

effective for large DNN models.

• Parallelization methods: Mainly used for accelerating the DNN inference based

on the hardware architecture design, operating system and DNN model.

• Dataflow optimizations: Reduce the latency time to access the data in memory.

Improving the dataflow within a model, it is possible to minimize the time re-

quired to move data between layers and make more efficient use of the available

memory.

28



2. RELATED WORK

There are several options for running DNN inference using deployment tools. Some

tools, such as TensorRT [72], optimize the model for a specific accelerator. Others, like

OpenVINO [73], use a plugin-based inference engine to support multiple NPUs. Finally,

approaches like TensorFlow-Lite [14] generate both the model and the inference en-

gine for each deployment, reducing the overall space requirement by only including

necessary operations. There are tools available for general-purpose inference, such as

open neural network exchange (ONNX) runtime [74]. These include various optimized

inference engines that are tailored to specific target hardware. ONNX defines differ-

ent runners that can be configured with different drivers and hardware, such as NVidia

GPUs and Intel CPUs.

Table 2.2 compares the common features of TensorRT, OpenVINO and TensorFlow-

Lite, ONNX runtime DNN deployment tools.

Table 2.2: Comparison of optimizations in the TensorRT, OpenVINO, and TensorFlow-lite
DNN deployment tools.

Optimizations TensorRT OpenVINO TensorFlow ONNX
lite runtime

Inference HW specific Plugin based Target ORT optimized
model execution code generation (XLA) , ONNX for general

Graph No Fused operators Fused operators fused operators
optimizations

Model 16FP/8Int 16FP/8Int 16FP/8Int 16FP/8Int
quantization data-layouts

Layer DLA with Heterogeneous Model NO
decomposition GPU fallback plugin Tiling
Parallelization Multi-stream Asynchronous Depends on Operation

methods execution inference HW threading
Dataflow Dynamic Tensor NO NO Shared memory

optimizations Memory General purpose
Kernel allocator

auto-tuning
Layer and

Tensor Fusion
Target GPU, ASIC CPU, GPU, Mobile (CPU, GPU) Depends on

hardware FPGA, VPU TPU general runner
CPU & GPU

29



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

There have been studies on the evaluation of deep learning deployment tools and

inference engines. For instance, Ulker et al. [4] evaluated the inference performance of

tools such as TensorRT, OpenVINO, and TensorFlow-Lite using state-of-the-art CNN

architectures for multiple hardware platforms.

Figure 2.5: Software tools delivering minimum execution time for each platform-network
configuration. Source: [4].

This paper [4] reveals important insights and conclusions for optimal tool selec-

tion when considering minimum latency and maximum throughput. As can be seen

in the results shown in Figure 2.5 TensorRT has the best overall performance for in-

ference on NVidia platforms. According to their insights, PyTorch performs better in

small batch sizes and compact networks while TensorFlow delivers higher throughput

in higher batch sizes. Finally, they conclude that none of the software is always the

best choice. Shafi et al. [75] analyzed the performance between TensorRT software opti-

mizations on the NVidia platform GPUs hardware. Through an empirical study, based

on advance driver assistance system (ADAS), they observed significant performance

and accuracy gains from software optimizations, with some additional highly unex-

pected non-deterministic behaviors, such as different outputs with the same inputs

or increased execution latency for the same neural network model on more powerful

hardware platforms.

Li et al. [76] surveyed deep learning compilers and their design, including multi-level

intermediate representations (IR) and background/foreground optimizations. They

presented a detailed analysis and highlights potential and research directions of deep

30



2. RELATED WORK

learning compilers using TensorFlow-Lite and TensorFlow-TensorRT conversions. They

found that TensorFlow to TensorRT (TF-TRT) direct optimization performs better at

high precision, especially with GPUs with tensor core ASICs. However, TensorFlow-Lite

performs better for lightweight DNN models.

Gorbachev et al. [73] and Demidovskij et al. [77] presented the OpenVINO DL Work-

bench, the platform that provides the performance tuning, analysis, and deployment

tools for the deployment of DNNs on Intel hardware for several NPUs such as CPUs,

GPUs, VPUs, FPGAs. According to the authors, the DL Workbench tends to play one of

leading roles in terms of feature completeness across other existing platforms in the

field.

2.4 Deployment heterogeneity

An intelligent system infrastructure consists of both hardware and software compo-

nents that are capable of performing complex tasks requiring human-like intelligence.

To meet the high processing demands of these tasks, a multi-level computing environ-

ment may be utilized. This computing structure, as shown in Figure 2.6, can be divided

into three levels: cloud, fog, and edge computing.

Figure 2.6: The computing environments for the intelligent system infrastructure. Cloud for
centralized and high processing, Fog environment for middleware tasks, Edge for processing
the information near the data.

Cloud computing is responsible for taking centralized decisions, while edge comput-

ing processes data close to the sources to avoid network latencies and maintain privacy.

The fog computing layer plays a crucial role in bridging the gap between cloud and edge

computing working as a middleware. The mission of fog computing is to reduce the

workload overhead of cloud computing while also supporting the AI services that edge

computing cannot handle.

31



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

This cloud, fog, edge multi-level computing structure is an ideal target for deploying

end-to-end DNN-based vision applications across different industries, including ISVA

systems. But, as previously discussed in Section 1.1.2, the growing heterogeneity and

diversity of intelligent system for deployment infrastructure present a challenge. This

heterogeneity can be attributed to several factors:

• Hardware architectures with heterogeneous computing capabilities, ranging from

specialized micro-AI hardware accelerators to powerful cloud computing servers.

• The need to scale AI services to meet the demands of expanding user bases further

contributes to the increasing number of deployment targets.

• Advances in DNN inference architectures, engines, and deployment tools con-

tinue to evolve, leading to a constant expansion of deployment targets.

The deployment of DNN-based vision applications in ISVA systems is an area that

is still in its early stages, as noted in a systematic review by Shidik et al. [6]. This work

provides an in-depth explanation of the current datasets, integration, and network in-

frastructure design required to meet the demand for multimedia data. According to

Limna et al. [78], there are several proposals to move traditional video surveillance to

intelligent video surveillance as a service (VSaaS) which would represent the future of

ISVA systems. But, the current approaches are merely based on the recording and video

analysis using commercial applications. This Limna work proposes a component-based

VSaaS called Nokkhum which deploys complete video surveillance through REST APIs,

webfront client, controllers, data communication, and image processor. Although this

image processor includes face detection and motion detection, it is primarily focused

on inter-module communication and information sharing, rather than visual analytics

deployment.

Despite the lack of specific articles of DNN deployment in ISVA systems, the re-

searchers instead propose approaches for general-purpose deployment of DNN-based

vision applications in cloud, fog, edge, and IoT environments. The following subsections

describe the current literature on each computing environment.

32



2. RELATED WORK

2.4.1 Cloud based deployment

Serverless computing is seen as the next step in the evolution of the cloud computing

model [31]. Serverless computing enables dynamic management of resource scalability

under the Function-as-a-Service (FaaS) paradigm. Developers can delegate operational

complexity and scalability to the cloud provider without requiring extensive cloud

computing expertise.

Despite its limitations, the recent literature has explored the deployment of DNNs

in serverless environments providing important insights and conclusions [31, 79, 80].

Ishakian et al. [31] evaluated the feasibility of deploying a ML serving system based

on the DNN inference for image classification tasks. They concluded that the per-

formance of these models is acceptable when the serverless container is constantly

working, but the when the container is in the initialization process, the performance is

not under service level agreements (SLA). They also argue that serverless computing

limitations such as the lack of GPUs, the stateless nature of the functions and the diffi-

culties in maintaining the state between invocations make the DNN deployment very

challenging.

Zhang et al. [79] presented MARK, a general-purpose and cost-effective inference

serving ML system built in a general cloud environment. This work employs three de-

sign choices to tackle the challenge of meeting service-level objectives (SLOs). Firstly, it

dynamically batches the inference. Secondly, it applies predictive auto-scaling to hide

provisioning latency. Finally, it provides flexible structure to cover occasional workload

spikes using GPU hardware and serverless function instances.

Romero et al. proposed the INFaaS [80] inference serving system. This system auto-

matically generates and uses model-variants, which are versions of a model that vary in

terms of resource footprint, latency, cost, and accuracy. INFaaS also selects the appro-

priate hardware architecture and makes scaling and resource allocation decisions to

meet user-defined objectives.

The automatic scalability of serverless computing offers a promising solution for

running DNN-based vision applications within a micro-service architecture. However,

these applications typically operate within a homogeneous runtime environment and

there is still a tendency to use monolithic applications for cloud computing. Additionally,

workload prediction remains an ongoing challenge in this field.

33



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

2.4.2 Fog and edge deployment

In contrast to cloud computing approaches, edge and fog DNN deployment alternatives

are focused on harnessing the heterogeneous capabilities of AI hardware. These strate-

gies primarily propose DNN inference scheduling methodologies within monolithic

application architectures. As stated in the Section 1.1.2, a monolithic architecture refers

to a self-contained program in which all resources such as the main program, libraries,

and files reside within the same execution unit.

The popularity of these approaches for video analytic pipelines has promoted

the release of commercial applications such as NVidia DeepStream [81] and Intel DL

Streamer [82]. Both are based on the open-source GStreamer 7 multimedia frame-

work, and they provide hardware-accelerated modules that encompass decode, pre-

processing, and DNN inference of input video streams. They consider the pipeline for

object detection, attribute classification, and tracking but also allow users to build more

complex pipelines if required. However, deploying multiple concurrent classification

DNNs as in the case of ISVA systems is challenging in current off-the-shelf DNN ac-

celerators and deep learning frameworks, as they are not designed for that. They only

provide a single-level priority, one-DNN-per-process execution model, sequential infer-

ence interfaces, and assume that the DNN inference is executed on a single processing

element, CPU, GPU, or xPU; no more than one simultaneously.

Some works have focused on scheduling the heterogeneous computing capabilities

for embedded processors. For instance, Xiang et al. [83] proposed DART, a CPU-GPU

scheduling framework for DNNs offering deterministic response time to real-time tasks

and increased throughput to best-effort tasks. It employs a pipeline-based scheduling

architecture with data parallelism, where heterogeneous CPUs and GPUs are arranged

into nodes with different parallelism levels. Similarly, Lim et al. proposed ODMDEF [84],

an on-device CPU-GPU co-scheduling framework to remove the performance barrier

precluding DNN executions from being bound by the GPU. Experiments with the NVidia

Jetson AGX Xavier platform show that it speeds up the execution time by up to 46.6%

over the GPU-only solution. Jeong et al. [85] proposed a parallelization methodology

to maximize the throughput of a single DNN-based application using GPU and NPU

by exploiting various types of parallelism on TensorRT: multi-threading, multi-stream,

7https://gstreamer.freedesktop.org/

34



2. RELATED WORK

pipelining of the inference network, and partial network duplication. They devised

a heuristic to determine the pipeline cut-points achieving 81%-391% throughput im-

provement over the baseline inference that uses the GPU only in six real-life object

detection networks on a NVidia Jetson AGX Xavier board. These same authors also

presented a tool called Jetson-aware Embedded Deep learning Inference acceleration

(JEDI) for making the proposed optimizations in NVidia Jetson boards [86].

There are alternatives focused on optimizing the deployment of multiple DNNs in

a single processing element. For example, Kim [87] presented a methodology to allow

higher priority DNNs to occupy the GPU preferentially. Every decomposed DNN layer

job is stacked in a priority order inside the layer queue. Higher priority layer jobs can

preempt lower-priority ones using stream prioritization, reducing the execution time

of DNNs by up to 60.4%. Cox et al. proposed MASA [88], a responsive memory-aware

multi-DNN execution framework on CPU, an on-device middleware featuring model-

ing inter and intra-network dependency, and leveraging complementary memory usage

of each layer. It can consistently ensure the average response time when determinis-

tically and stochastically executing multiple DNNs. Finally, Yu et al. [89] proposed a

graph- and runtime-level cross-layer scheduling framework for multi-tenant inference

optimization in GPU, which automatically coordinates concurrent DNN computing

at different execution levels. It achieves 1.3x 1.7x speedup compared to regular DNN

runtime libraries (e.g., CuDNN, TVM) and concurrent scheduling methods (e.g., NVidia

Multi-Stream).

2.4.3 Deployment for IoT environments

IoT paradigm refers to the network of physical objects connected to the internet and

other devices or applications. These objects are embedded with sensors and other tech-

nologies that allow them to gather, send, and exchange data, making them smarter and

more interactive. While the previous subsection analyzed the optimal deployment of

DNN-based vision applications per computing layer (cloud, edge, fog), there are other

research works focused on the optimal deployment of DNN-based vision applications

across multiple interconnected devices in an IoT environment.

The benefits of the AI integration in IoT technologies had been recently reviewed by

Chang et al. [90] who conducted a comprehensive analysis of the potential and chal-

35



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

lenges of a new paradigm called artificial intelligence internet of things (AIoT). The

authors explored the benefits of AIoT, including enhanced efficiency and productivity,

improved quality of life, and reduced environmental impact. They also identified several

challenges, including data security, privacy concerns, and lack of standardization.

The recent published literature presents an increasing interest to deploy face recog-

nition in IoT systems. The majority of the works propose secure and efficient user

authentication approaches based on computer vision and AI algorithms for these en-

vironments. The comprehensive review of Yousefpour et al. [91] is usually referenced

as an article that covers secure user authentication along with many other IoT-related

paradigms such as fog computing, cloudlets, and multi-access edge computing (MEC).

All these approaches handle the security and the performance of the data produced

by the IoT platform. Hu et al. [92] presented an example of a fog-based face identifi-

cation and resolution system. Instead of using DNNs for images processing, this work

proposed classic Haar and LBP features for face detection and identification. Although

these methods use less computational resources, these computer vision methods are

not as accurate as DNN face recognition techniques. To reduce the network traffic, this

framework delegates part of the resolution task to fog nodes, and only the biometric data

is transmitted to the cloud. Using a task partitioning strategy, the cloud overhead is re-

lieved and the devices located at the edge network assume the role of image processing,

making full use of the computing power.

In [93], Hu et al. extended this approach to solve confidentiality, integrity, and

availability issues. The proposed method provides a mechanism for an authentication

and session key agreement scheme, supported by a data encryption scheme and data

integrity checking. Wang and Nakachi [94] presented a secured framework for face

recognition in edge and cloud networks based on sparse representation. In contrast to

DNN based face recognition, this method is based on a discriminative dictionary, which

requires fewer computation resources, but the accuracy results are worse than DNN

based face-recognition approaches. Another inconvenience of this method is that each

time a new sample is added, dictionary training is required. these authors establish a

distributed learning framework to train the recognition method. The training samples

are divided into two parts, one for dictionary and classifier training, and one for ensem-

ble training. The decision template is extracted for each class in the intermediate space,

expanded by the estimated label vectors and based on the ensemble training set. The

36



2. RELATED WORK

recognition is identified according to pairwise similarity between the decision profile

of the testing sample and each of the decision templates. To guarantee privacy, they

adopted a low complexity for the encrypting algorithm, based on random unitary trans-

form, without affecting the accuracy. Mao et al. [95] designed an edge device-based

DNN training scheme for face recognition with differentially private mechanisms to

protect private data. The DNN is split into two parts, one deployed on the user’s device

and the other on the edge server. They avoided cryptographic tools to keep the user

side lightweight.

2.5 Discussion

Our analysis revealed the following outcomes and gaps for the optimal deployment of

DNN-based vision systems from various perspectives:

• Although there are ML benchmarking standards for measuring single DNN in-

ference performance in several target hardware such as MLPerf [3], measuring

ISVA system performance requires more comprehensive evaluation than ana-

lyzing the inference latency, accuracy and energy consumption. ISVA systems

often involve the simultaneous execution of multiple DNNs, and thus, their be-

havior under such conditions needs to be assessed. This includes evaluating the

performance of executing several models simultaneously and how they interact

with each other. Chapter 3 defines a methodology to make the comprehensive

assessment of the DNN inference based on serverless potentials and limitations.

• In the intelligent system infrastructures, the DNN inference scalability issues

are typically addressed using monolithic architecture relying on task schedul-

ing and workload prediction. However, there is room for improvement in lever-

aging the automatic scalability capabilities and dealing with the limitations of

the micro-service application architecture. Chapter 3 proposes different method-

ologies to deal with this limitation for DNN-based vision applications for ISVA

systems.

• The general-purpose DNN deployment approaches are primarily centered on

optimizing single DNN model for specific hardware or runtime. Also, the de-

ployment tools and inference engines require high expertise to take the full

37



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

advantage of the optimizations, especially for ASICS. Chapter 4 proposes an au-

tomatic deployment algorithm based on knowledge-driven methodologies to

automatize this heterogeneous deployment process.

• Most of the DNN-based vision optimizations are focused on DNN architecture

complexity reduction. However, there is a lack of attention given to other im-

portant tasks, such as camera capturing and image pre- and post-processing

optimizations, which are essential for the end-to-end DNN-based vision ap-

plications. Chapter 5 proposes a comprehensive end-to-end methodology for

deploying a DNN-based vision application into a modular and auto-configurable

video analytic pipeline.

• While there are commercial alternatives for general-purpose video analytics

pipelines, they mostly focus on computer vision tasks such as object detection,

tracking, and classification. There is a wider range of DNN-based end-to-end ap-

plications in ISVA that require research attention. This limitation is also analyzed

in Chapter 5.

38



Part III

Research Results

39





CHAPTER

3
Optimal deployment of DNNs in

serverless cloud architectures

This chapter explores the optimal deployment of DNNs in serverless cloud archi-

tectures. As analyzed in Section 2.4, serverless computing is seen as the next step in

the evolution of the cloud computing model, and its benefits can be crucial to enhance

the scalability of AI services. This chapter refers to contributions 2 and 3, described in

Section 1.3. More specifically, this chapter is divided into three different sections:

• The background and challenges for the deployment of DNN-based vision applica-

tions in serverless environments (Section 3.1).

• An approach to benchmark DNN-based applications performance in serverless

cloud architecture based on the MLPerf standard rules [3] (Section 3.2).

• An approach for the optimal deployment of multiple DNN models within a server-

less environment for use in a Video Surveillance System (VSS). (Section 3.3).

3.1 Background and challenges

Serverless computing is a cloud-native model under the scope of the Function-as-a-

Service (FaaS) paradigm. This computing model hides server usage from developers

41



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

and runs code on-demand, automatically scaled and billed only for the time the code is

running [31]. Its two key features are cost (pay-as-you-go billing with millisecond granu-

larity) and elasticity (scaling from zero to "infinity"). It allows developers to concentrate

on providing a piece of code (function) to be executed by the serverless computing

platform and to delegate all their operational complexity and scalability to the cloud

provider, without requiring a high level of cloud computing expertise.

The FaaS platforms are materialized in function instances. More specifically, when a

function is called, the serverless computing platform creates an instance of that func-

tion to execute the code. These instances are created on-demand and are typically

short-lived.

FaaS platforms have two stages [96]. The first stage begins when the FaaS function

is invoked for the first time, creating an isolated runtime environment with the neces-

sary resources. This process takes additional time to be completed and, consequently,

this stage is called cold start stage. When the container initialization is finished, the

remaining function instances are executed concurrently. This second stage is called

warm stage. Serverless functions offer several advantages that make them well-suited

for DNN prediction tasks. However, deploying DNN models in a serverless environment

presents several challenges:

• Serverless functions are stateless by default. This means that they do not store

any information about previous executions or interactions. Therefore, in contrast

to monolithic applications, debugging and tracing serverless functions can be

complex due to several reasons. Serverless functions are managed, deeply con-

trolled, and disconnected environments. Developers do not have most of the

typical debugging tools at their disposal. The distributed and controlled nature

of the environment essentially blocks any chance of remote debugging. The in-

creased complexity, loss of control over software layers, and the large number of

participating functions and back-end services complicate the task of finding the

cause of a faulty execution. A tedious but widespread strategy is the manual ana-

lysis of log data. Controlling the state requires the use of an external service which

provides that state. But adding a state to the application can increase the com-

plexity of the solution, because it makes it harder to scale, and it can potentially

create a single point of failure.

42



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

• The lack of access to GPUs can be a significant limitation for serverless com-

puting, especially for workloads that require intensive parallel computing such

as DNN-based vision applications for ISVA. Without access to GPUs, serverless

computing platforms are limited to using CPUs backend hardware [97], which

can significantly slow down the execution of parallelizable tasks. This limita-

tion can result in longer processing times, higher latency, and increased costs

for users who need to scale their workloads quickly. There are very recent ini-

tiatives for enabling GPU in serverless environments [98], but they are still far

from a robust integration. As explained in Section 2.2 GPUs are specialized hard-

ware that can perform parallel computations much faster than CPUs. Even when

GPU-based serverless resources are available, they may be more expensive than

CPU-based instances. Therefore, the deployment strategy should consider the

most cost-effective computing platform for the specific use case.

• Each function is executed in an isolated container that is created specifically to

handle a single request. As a result, functions rely on ephemeral storage during

the execution of the function. Therefore, when the function instance finishes,

all data in the container is erased. This means that if a function fails or is termi-

nated for any reason, all the data is lost. This can be a problem for DNN inference,

where data consistency is critical. For instance, if a function fails while processing

an input, the entire inference process may need to be restarted due to the loss of

output information. Additionally, serverless computing platforms often impose

limits on the amount of ephemeral storage available to functions. This can cause

issues for DNN inference where models and data can quickly exceed the avail-

able storage. If a function runs out of storage, it may fail or need to be restarted,

resulting in increased latency and reduced performance.

• The serverless system creates a container and loads the function code into mem-

ory when a function is invoked for the first time. This initial setup time, also

known as cold start, can result in increased latency for the first request. Cold

start time can be a significant limitation for DNN inference particularly for real-

time applications, making it unsuitable for time-critical applications. Additionally,

DNN inference tasks may require a large number of compute resources, leading to

longer cold start times. This increased latency issue is particularly relevant when

43



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

loading larger DNN models. The longer the cold start time, the more resources

are consumed, which can lead to higher costs and reduced scalability. Another

drawback of the cold start issue is the inability of serverless environments to ef-

fectively manage sudden increases in traffic. In traditional server environments,

administrators can pre-scale infrastructure to accommodate high loads. However,

the dynamic scaling nature of the serverless systems can lead to increased cold

start.

• When the serverless computing functions are in the warm state, they can scale

rapidly to meet spikes in demand, but they cannot scale up to infinity. How-

ever, there are limits to the resources that can be allocated. If demand exceeds

these limits, the system may struggle to handle the load. Scaling up resources in

serverless platforms requires allocating more resources to functions, which can

increase costs. However, configuring larger resource functions do not necessarily

result in better DNN inference performance. This is because the target hardware

configuration is managed by a serverless cloud provider.

In order to deal with these limitations, we summarize the current performance strategies

presented in the literature [96] [99] for serverless environments:

• Concise function logic: Splitting high complex and fat/monolithic serverless

functions into smaller serverless functions can reduce the processing time and

memory consumption. Also, separating each serverless function entry logic

(handler function) from the core logic (core function) leverages cold start time

reduction. Streaming services and online storage services can optimize data

transformation and the request payload size.

• Third-party dependencies: If third-party dependencies are required, avoid us-

ing open source packages. Since their general-purpose and third-party inter-

dependency nature, open source packages include more functionalities than

required and, thus, can cause a significant slowdown in cold start time and in-

crease processing time.

• Resource management: Limit the re-initialization of local variables in every in-

stance. Instead, global/static variables or singleton patterns can be used to handle

44



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

the application scope variables. This approach can help reduce the startup time

of serverless functions and improve their performance. Using global or static vari-

ables in serverless functions can introduce some complexity, as the variables need

to be properly initialized and that their state is managed correctly across multiple

invocations. However, with careful design and implementation, this approach

can help improve the performance of serverless functions.

• Allocated function memory: The amount of memory allocated to a function can

have a significant impact on serverless performance and execution cost. Allocat-

ing more memory to a function can improve its performance by reducing the time

it takes to execute, but it can also increase the cost of running the function. Find-

ing the optimal balance between the amount of memory allocated to a function

and its execution cost can be challenging. It is important to carefully evaluate the

memory requirements of the function and to monitor its performance to ensure

that it is using the allocated memory efficiently.

• Language agnostic advice: The choice of programming language can have a sig-

nificant impact on the performance and execution cost of serverless functions.

Different languages have different characteristics, such as startup time, mem-

ory usage, and ease of deployment, that can affect the performance of serverless

functions. Finding the optimal programming language for a given serverless ap-

plication involves balancing the configuration of computing resources with the

execution cost. A key strategy is to carefully evaluate the requirements of the

application and select a language that is well-suited to the task at hand.

• Keep the container in the warm state: Make pre-configured periodical calls to

serverless functions to avoid changing to a cold stage. Keeping the containers in

a warm state, it’s possible to reduce the latency associated with cold starts and

improve the performance of serverless functions. This approach can be particu-

larly useful for applications with low or unpredictable traffic patterns, where cold

starts can have a significant impact on performance.

In the following section we propose a benchmarking methodology to evaluate the

performance of DNN inference in a serverless environment. This evaluation process

45



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

is essential to define the optimal deployment strategies for DNN-based vision applica-

tions.

3.2 Benchmarking DNN inference in serverless environ-

ments with MLPerf

Measuring the performance of DNN-based vision applications across diverse hardware

components in an intelligent system infrastructure is complex. Each hardware/runtime

system has unique capabilities and performance characteristics, making accurate com-

parison difficult. Organizations such as the MLPerf consortium, a group of AI leaders

from academia, research labs, and industry, aim to solve this problem by building fair

and useful benchmarks for unbiased evaluations of training and inference performance.

The MLPerf Inference benchmarking suite has become the standard, driven by over

30 organizations and 200 ML engineers and practitioners [3]. However, MLPerf bench-

marking tools are currently designed for monolithic architecture scenarios. This means

that the DNN inference is processed in the same execution unit (the targeted CPU, GPU

or xPU), thus colliding with serverless system architectures. In this chapter, we propose

a benchmarking methodology of DNN inference in FaaS platforms taking into consider-

ation the MLPerf practical guidelines and rules. More specifically, this approach aims to

answer the following questions:

• How to deploy DNN models and their inference engine? This includes choosing

a suitable DNN inference engine and loading and processing the trained DNN

models, considering the space and memory constraints of serverless platforms.

• How to handle the performance results? Considering that the FaaS platforms

are stateless with ephemeral storage, how do we manage the persistence of the

measured results?

• How to design a benchmarking platform on ML applications in serverless en-

vironments? Traditional ML benchmarking methodologies measure the per-

formance of ML models in physical target hardware in monolithic application

architectures. In contrast, the serverless environment has a distributed nature

46



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

designed for micro-service application architecture. Also, these serverless appli-

cations are deployed to virtualized and containerized environments. Therefore,

these differences require rethinking the benchmarking platform design.

3.2.1 Enabling serverless runtime in MLPerf

MLPerf Inference is designed to benchmark common ML-based vision tasks (image

classification and object detection), and NLP tasks (translation). MLPerf provides a

comprehensive submission process to contribute to the benchmarking results for new

hardware architectures. To do this submission, MLPerf Inference provides a benchmark-

ing suite with software tools to enable fair comparisons between hardware targets and

DNN models.

The MLPerf Inference architecture contains three components:

• System Under Test (SUT): It runs the DNN inference and the performance mea-

surements are sent back to the Load Generator (LoadGen). The submitter is

responsible for implementing the System Under Test (SUT), with rules in place to

ensure model-equivalence across different architectures and frameworks. Tech-

niques such as pruning and retraining are not allowed since benchmarking is

based on pre-trained models. Additionally, caching images and manipulating or

optimizing the image acquisition process are prohibited.

• LoadGen: This component is responsible for feeding input data to the System

Under Test (SUT) and calculating performance measurements for benchmark-

ing. Its behavior is determined by a configuration file that is read at the start

of benchmarking. LoadGen generates query traffic based on MLPerf scenarios

and collects information for logging, debugging, and post-processing. It records

queries and responses from the SUT and reports statistics and summarizes results

when finished.

• Dataset: To prepare input data for benchmarking, MLPerf uses standard and pub-

licly available datasets to enable community participation. However, only a subset

of the dataset is used for benchmarking. The LoadGen component is responsible

for downloading these datasets from public sources.

47



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

MLPerf Inference (version 2.1) considers the following application scenarios for bench-

marking when feeding the SUT:

• Single stream: In this scenario, an inference query is sent, and the next query

is only sent after the first one is completed. This setup is used in applications

where quick response times are critical, such as when multiple client applications

require prompt results.

• Multi stream: In this scenario, LoadGen periodically sends a set of inferences

per query at intervals between 50 and 100 ms. This covers a range of inferences

for various industrial automation and remote sensing tasks. For example, video

analytic pipelines may simultaneously analyze frames from multiple cameras.

• Server: Inputs arrive according to a Poisson distribution. This scenario is relevant

to online applications where query response times are unpredictable and low la-

tency is crucial. An example of this scenario could be consumer-facing websites

that offer translation services.

• Offline: The complete input data set is sent in a unique query. The offline sce-

nario is designed for batch-processing background applications where all data is

readily accessible, and latency is not a concern. A suitable example of this would

be identifying people and locations in a photo album.

Regarding the benchmarks, MLPerf Inference has two divisions for submitting re-

sults: closed and open. Strict rules govern the closed division, such as using specific

DNN model implementations, to address the lack of a standard inference-benchmarking

workflow. The open division, on the contrary, allows submitters to change the model

and demonstrate different performance and quality targets.

As depicted in Figure 3.1, following the MLPerf guidelines and rules to enable ML

benchmarking in a serverless environment requires a FaaSification process. FaaSifica-

tion is the process of transforming existing code into functions in conformance with

the programming conventions expected by the target provider. According to Spillner et

al. [100], this process can be classified into three levels depending on the considered

Atomic Unit (AU): shallow (AU: functions or methods), medium (AU: lines of code) and

deep (AU: instructions). This FaaSification process also requires a new scenario for

48



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

serverless micro-service architectures. In particular, this scenario executes a burst of

several instances with no time interval between consecutive inference queries.

Figure 3.1: The visual representation of the FaaSification process from MLPerf Inference
monolithic design [3] to serverless runtime. This process decouples SUT module function-
alities into function instances. This process also requires rethinking LoadGen and DataSet
interaction with the serverless implementation of the SUT.

Figure 3.2 depicts our FaaS benchmarking architecture and the life cycle of the

benchmarking process, numbered from 1 to 11. The SUT is designed following a shal-

low FaaSification process, i.e., the AUs are functions and methods. More specifically,

our SUT implementation is composed of two layers:

• Inference Engine (IE) layer: This layer encompasses the software tools to infer

trained DNN models with ML task-related algorithms.

• Handler layer: This layer manages the DNN inference algorithm depending on

the selected DNN framework and the post-processing operations to obtain the

inference results.

For this FaaS architecture design, we have relied on MLPerf Inference’s components,

but alternative benchmarking suites could also be considered, as any suite should

contain components like SUT, LoadGen and data set.

As shown in Figure 3.2, firstly, the LoadGen configures the data set source from the

Online Storage Service (OSS) (step 1). Also, the LoadGen is subscribed to a Notifica-

tion Service (NS) to handle the benchmarking life cycle (step 2). Next, the warmup

49



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Func�on
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Func�on
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Func�on
instance

LoadGen

SUT (FaaS backend)

OSS

Data set

7: Send queries

Worker
process

Worker
process

SUT (FaaS backend)

Ev
en

t
lis

te
n

er

3: Warmup
Worker
process

Worker
process
Func�on
instance

DNN inference Post-processing

Func�on instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Func�on
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Func�on
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Func�on
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Func�on
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Func�on
instance

result0
result1

resultN

result2

OSS

1: Load 6: Start

8: Store
Ev

en
t

lis
te

n
er

No�fica�on
service

4: Finish warmup

5: No�fy finished state

10: No�fy finished benchmark
9: Finish benchmark

11: Download results and calculate benchmark

Layer

IE Handler

Layer

Cold stage

Warm stage

2: Subscribe

Figure 3.2: The proposed benchmarking architecture for measuring DNN inference perfor-
mance in serverless environment using MLPerf rules and practical guidelines. The workflow
of the benchmarking process is numbered from 1 to 11. This workflow includes data ini-
tialization from LoadGen, warmup process for cold start initialization (blue color), and
performance evaluation process in the warm stage (red color).

process executes a few function instances to avoid cold start delays during the bench-

marking process, and hence, changing the state of the FaaS container to warm stage

(step 3). During the first function instance execution, trained DNN models and software

tools are downloaded to the containers and then, these DNN resources are loaded to

be available for the next warmed function instances. Finally, the LoadGen receives the

warmup finish notification from the SUT (steps 4 and 5) and the system is ready to start

benchmarking.

For each input element from the data set, the LoadGen uploads a .json file to the

OSS (step 6). This file, which contains the paths to the input data set, is comprised of pa-

rameters such as database input data references, the result delivering output data, and

benchmarking action commands. Next, following the event-driven design of the FaaS

platforms [101, 102], each uploading action triggers an event automatically creating a

function instance (see event listener in Figure 3.2). At this point in the benchmarking

process, the SUT invokes several function instances (one per query). So, each function

50



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

performs the inference and post-processing tasks of the data coming from the OSS, and

measures the following output values:

• The start and end timestamps.

• The processing time (the function’s latency).

• The post-processing results of the function for accuracy evaluation.

To preserve the FaaS data persistence, each function instance saves the measured

output values in a separate file in the OSS (step 8). The last function instance sends a

finishing action message to the LoadGen (step 9-10). Finally, the LoadGen downloads

all files with the mentioned output values from OSS (step 11). This information is orga-

nized into different lists to calculate the inference latency, throughput, and accuracy

results, which are calculated like this:

• Latency: Instead of using average latency as the definitive metric, the 90th per-

centile of the latency list is calculated, thus reducing the impact of outliers.

• Throughput: The number of queries divided by the total time. This total time

refers to the time difference between the maximum value of the end timestamp

and the minimum value of the start timestamp.

• Accuracy calculation: The post-processing results are compared with respect to

the ground truth data according to a measurement protocol, which depends on

the ML task.

3.2.2 Implementation and evaluation

We tested our approach in Amazon Lambda, with Amazon S3 to store the input and

output data, and Amazon Simple Notification Service (SNS) as the NS. As mentioned

above, we focused our implementation and tests on computer vision tasks to bench-

mark the processing capabilities of the DNN inference engines of OpenCV [103] and

OpenVINO Inference Engine (IE) [104] using Caffe, Tensorflow, and OpenVINO Interme-

diate Representation (IR) models. In particular, we have taken the monolithic MLPerf

algorithm class and its functions as AUs, and we manually deployed to a FaaS func-

tion, supported by Amazon Lambda layers. We have made the source code available

51



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

(https://github.com/ Vicomtech/serverless-mlperf) to enable a follow-up discussion

about the proposed design, implementation and experiments with the MLPerf and

serverless computing communities.

To evaluate the feasibility of our implementation, we benchmarked two DNN models

of the MLPerf closed division with the following configuration:

• Data set: ImageNet [60] and COCO [105] (subset of randomized 10K images per

data set).

• Performance metrics: Latency and throughput.

• DNN models: We used MobileNetV1 and SSDMobileNetV1 for image classifica-

tion and object detection respectively, with 32 Floating Point (FP) precision in

Caffe, TensorFlow and OpenVINO IR formats.

• FaaS memory configurations: 768MB, 1536MB, 2240MB, 3008MB.

The baseline to compare these results with monolithic implementations would be the

results published in the MLPerf’s webpage.

Figure 3.3 depicts the latency time for different function memory configurations,

from 768MB to 3GB. We observed that BY increasing the allocated memory for each

function instance, the latency improves in both benchmarked models, especially in

ranges between 768-1536MB. This performance improvement is between 2.12-2.20X

larger for MobileNetV1 and 1.58-2.55X for SSDMobileNetV1. This confirms the observa-

tions of Maissen et al. [97] about the latency reduction when the allocated memory is

increased, and therefore, the CPU power increases linearly.

Moreover, OpenVINO IR models achieve the best performance results. This is

because the OpenVINO IE DNN inference engine operations are optimized for Intel

parallelization and vectorization instructions such as AVX, SSE2 or SSE4, and currently

Amazon Lambda processors rely on Intel hardware [97].

As expected, since SSDMobileNetV1 has more parameters and layers than Mo-

bileNetV1, its latency is higher. While in MobileNetV1 the performance of Caffe and TF

models is quite similar, in SSDMobileNet the reduction of the latency with the Caffe

model is between 1.33X and 1.98X compared to TF.

52



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

768 1536 2240 3008
Mem ory (MB)

0

100

200

300

400

500

1
3

8
.1

6
2

.6

4
2

.5

3
2

.3

21
7.

1

1
0

2
.1

6
8

.2

5
3

22
1.

5

1
0

4
.5

6
9

.9

5
4

.2

Latency Benchmark: MobilenetV1

IE-IR OCV-CF OCV-TF

La
te

nc
y 

tim
e(

m
se

cs
)

768 1536 2240 3008
Memory (MB)

0

100

200

300

400

500

La
te

nc
y 

tim
e 

(m
se

cs
)

30
0.

3

13
9.

2

93
.4

70
.6

43
8.

1

27
6.

8

18
6.

4

13
9.

5

51
4.

3

20
4.

3

13
6.

4

10
2.

8

Latency Benchmark: SSDMobilenetV1

IE-IR OCV-CF OCV-TF

Figure 3.3: Inference latency results with OpenVINO IR (IR), Caffe (CF) and TensorFlow
(TF) MobilenetV1 (left) and SSDMobilenetV1 (right) models, and OpenVINO IE (IE) and
OpenCV (OCV) as inference engines.

30 40 50 60 70 80 90 100
QPS(Queries per second)

768

1536

2240

3008

M
em

or
y(

M
B)

Throughput benchmark: MobileNetV1 & SSDMobileNetV1

MobileNetV1 IE-IR
MobileNetV1 OCV-TF
MobileNetV1 OCV-CF
SSDMobileNetV1 IE-IR
SSDMobileNetV1 OCV-TF
SSDMobileNetV1 OCV-CF

Figure 3.4: Inference throughput results with OpenVINO IR (IR), Caffe (CF) and TensorFlow
(TF) DNN models, and OpenVINO IE (IE) and OpenCV (OCV) as inference engines.

Nevertheless, the inference throughput values calculated in Figure 3.4 reveal that the

inference latency time does not have any influence in the throughput values. We believe

the variations in inference throughput depend on the AWS cloud provider scheduling

resources.

53



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

3.2.3 Conclusions

The increasing need to deploy ML tasks at high scale demands optimal execution mod-

els such as serverless functions. However, finding an efficient DNN inference workload

using minimum resources requires an important benchmarking analysis. Throughout

our benchmarking evaluation of DNN inference efficiency, we have observed that the

amount of the allocated memory for each function instance plays an important role in

inference latency time reduction, especially when the configured memory is between

768MB and 1536MB.

Also, the OpenVINO IE DNN inference engine and OpenVINO IR model optimiza-

tions contribute to reduce the inference latency in Amazon Lambda hardware. However,

these latency results do not influence the inference throughput results. We hypothesize

that this occurs due to the cloud provider scheduling capabilities. However, we believe

that 51-83 QPS values make Amazon Lambda a suitable platform for DNN inference.

The design space is still very large —different serverless environments, different

benchmarks (in addition to MLPerf), different hardware targets (CPUs, GPUs, xPUs,

etc)— and requires further investigation. Therefore, we expect to expand these bench-

marking evaluations to the most popular serverless function platforms. We will also

explore how to benchmark more complex ML systems that consider a computing con-

tinuum formed by mobile, edge, and cloud resources [106], relying on standards such

as MLPerf.

The previous sections were focused on evaluating the optimal deployment of DNN

models in serverless environments, but this analysis is based on a single DNN inference

step itself. The DNN-based vision applications, especially for ISVA systems, usually exe-

cute person/object tracking including multiple DNNs executing simultaneously. In the

following section, we propose a methodology to help build a cost-effective on-demand

VSS system, leveraging (1) the latest advances of DNN optimization techniques along

with (2) tailored deployment strategies to make the most of current FaaS architectures.

This work represents a step forward in distributed computational VSS infrastructures

and the VSaaS paradigm [78].

54



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

3.3 On-demand serverless video surveillance with opti-

mal deployment of deep neural networks

This section presents a methodology and architecture for deploying multiple DNN

models in a serverless environment taking video surveilance as a practical example.

This methodology is comprised of multiple decoupled software layers that allow

effectively managing multiple processes, such as business logic, data access, and com-

puter vision algorithms that leverage DNN optimization techniques.

The proposed serverless architecture is illustrated in Figure 3.5, together with the

lifecycle of the processing pipeline, where each processing task is numbered from 1 to

11. This pipeline contains two main components: the initialization process (from step

1 to 7) and the on-demand invocation task (from step 8 to 11). The event controller

shown in the architecture represents the event-triggering design of FaaS platforms (see

Figure 3.5). In this context, each input image source triggers an event for the FaaS func-

tion. For security purposes, the images are stored in a Virtual Private Cloud (VPC) and

the image data is encrypted. The serverless function is activated by the image itself,

avoiding the need for unnecessary read/write permissions on the image data. Follow-

ing the serverless strategies described above, the designed FaaS function references the

resources in the global scope (software layers) and the processing workload relies on

the handler function.

3.3.1 Initialization process

When the serverless function is invoked for the first time (cold start), the initialization

process begins, and the warm-up process initializes the runtime execution container

along with the software layers (step 2-3). Then, DNN models are downloaded to the

runtime container (step 5-6). Finally, the DNN models are loaded along with libraries

initialization.

FaaS functions should be simple and concise. In addition, FaaS architectures are

based on ephemeral storage, which means data will be erased when the function fin-

ishes. Based on these requirements, we decoupled the functionalities in three layers

which are shared across serverless function instances:

55



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

• Deep Learning (DL) layer: In charge of handling DNN workloading operations

such as model loading and inference processing, along with pre- and post-

processing low-level image operations.

• High Level Algorithm (HLA) layer: Containing the library for complex computer

vision pipelines such as face detection, face recognition and body pose detection,

supported by several DNN models for inference processing.

• Business Logic (BL) layer: Which provides utilities to deal with accessibility to I/O

operations, communications, and business logic algorithms.

Ideally, an optimal initialization process will preserve the accuracy and the infer-

ence latency of DNN models [1] under FaaS limitations such as storage size, memory

consumption, and computing resources. Model compression techniques, such as prun-

ing and quantization [43], reduce the size of the DNN files, and therefore the required

amount of memory to load the compressed model, lessening the cold start delay. These

compression techniques are especially relevant when several DNN models are loaded

into a layer, because of the rigorous constraint of storage size on FaaS platforms. How-

ever, these techniques require special attention in the deployment, since too much

compression could dramatically affect the accuracy of the models [68].

Changing the execution runtime from monolithic VSS architecture (all code is pro-

cessed in the same execution unit) to FaaS architecture requires a FaaSification process.

As stated by Spillner et al. [100], this process depends on the Atomic Units (AU), which

are classified depending on the level of complexity (third-party dependencies, inter-

function dependencies, etc) as shallow (AU: functions or method), medium (AU:lines

of code) and deep (AU: instructions). Since the complexity of the DNN processing

algorithm lies in three functions (load model, DNN inference, post-processing), our

approach is deployed using a shallow FaaSification process supported by HLA and DL

layers.

3.3.2 On-demand invocation tasks

After the first invocation of a serverless function instance, the system verifies that all

resources are in the warm state and ready for DNN inference. Next, several instances of

the handler function are triggered from the input data. These handler instances execute

56



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

a set of complex computer vision algorithms which involve multiple DNN inference pro-

cessing (step 10). Supported by the HLA and DL layer to process vision tasks and DNN

inference process, when the FaaS function finishes, the BL layer encodes the algorithm

output in the preferred output (step 11).

The serverless platform capabilities to offload the computation across several

instances could leverage an impressive DNN inference throughput. However, the vir-

tualized hardware resources of serverless computing become a processing bottleneck,

especially, when the vision tasks are required to process many DNN models at the same

pipeline.

Based on the analysis of the computational complexity of DNN models [1], choosing

the ones that lower inference time while preserving the accuracy is crucial when build-

ing this type of serverless architectures. Moreover, vectorization programming libraries

such as single input multiple output (SIMD) instructions and multi-threading-block

libraries give an extra processing power to the presented serverless architecture.

Figure 3.5: The proposed serverless architecture and workflow for deploying multiple DNNs
in a video surveillance scenario. The initialization process (cold stage) is represented in
blue color while the on-demand execution (warm stage) is in red. The serverless instance
comprises three layers: the Deep Learning (DL) layer for DNN inference, the High-Level
Algorithm (HLA) layer, and the Business Logic (BL) layer for handling business logic.

The assigned memory to each FaaS function instance plays an important role in

performance optimization because, more memory per function means more resources

for the handler function, but also higher price per execution. On the contrary, FaaS in-

stances are billed by function execution time, so less time per function means lower

57



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

price. Therefore, a good trade-off between allocated memory and function execution

cost becomes an essential strategy.

3.3.3 VSS use case and experiments

We evaluated the potential of our approach in the following use case: a VSS that periodi-

cally receives (every few minutes) images acquired by several surveillance cameras to

detect human presence and recognize registered individuals in uncontrolled environ-

ments.

Deep Learning models are complex and require a huge amount of processing power.

A Deep Learning model inference lies in matrix multiplications, regularization, and the

number of weights. So, choosing the most optimal DNN with minimum latency and

maximum accuracy is a crucial strategy. More specifically, in this VSS we deployed four

DNNs trained for the following purposes:

• Camera coverage detection (CM): A MobileNetV1-based image classifier to de-

tect whether the image comes from a camera that has been covered (by a hand, a

sticker, etc.) or not.

• Human body points detection (HP): An OpenPose-based regression model with

MobileNetV1 as the backbone to detect people’s body landmarks.

• Human face landmarks detection (FL): A classic convolutional design-based re-

gression model that localizes both eyes, nose tip, and mouth corners in a cropped

facial image.

• Human face re-identification (FR): A MobileNetV2-based facial feature extractor

for re-identification purposes. The extracted facial features are compared with the

registered ones to determine whether they correspond to registered individuals.

Table 3.1 shows the performance parameters of the selected models.

We took AWS Lambda as a baseline to design and test our methodology. The source

code is written in Python language. We used OpenVINO as DNN framework and OpenCV

for the computer vision algorithms. Also, we used the AWS boto3 library for I/O opera-

tions. Since video surveillance environments manage biometric data, to preserve the

security of user privacy, we stored all images in a VPC along with an encrypted Amazon

58



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

Table 3.1: Selected DNN model parameters for experimental results of section 3.3

NAME Complexity (GFlops) AVG Precission (Mp) AVG Precission(%)
CM 0.569 4.24 70.9
HP 15.435 4.099 42.8
FL 0.021 0.191 92.95
FR 0.588 1.107 99.47

S3 storage service. We also gave the minimum and only necessary permissions to the

handler lambda function. Finally, we monitored function calls with Amazon X-Ray. The

low-economic impact to process 10,000 images with different batch sizes per request

and memory configurations per function is shown in Figure 3.6. Notice the minimum

memory to support the VSS application logic is 704MB. The cost calculation is based on

the equation 3.1:

cost = nr ∗ ((0.0009765625∗am)∗ (0.001∗ r u(r d ,m)∗mcc +mr c (3.1)

Where nr represents the number of requests in a month, am is the allocated memory in

MB, r d is the request duration in ms, r u is the round-up operation to the nearest M mul-

tiple (m=100 ms), mcc stands for monthly compute charges (0.0000166667 USD/GB-s),

and mr c represents monthly request charges (0.0000002 USD/request).

This cost experiment evinces that more images per request involve cost-saving,

especially when the allocated memory function is higher. However, despite the cost

fluctuation of the first three configurations (704MB to 1536MB) being negligible, the

price evolution of the remaining configurations is increased from 13.38% (2048MB) to

61%. (3008MB). Despite the AWS Lambda free tier offering 1 million Amazon Lambda

function instances, these function instances are activated with images (put request)

coming from S3 online storage service. This S3 free tier offers 2000 put requests (im-

ages) in a month. So, for this experiment, the Amazon free tier was discarded because it

represented only the 1% of the experiment.

Figures 3.7 and 3.8 analyze the influence of the cold start delays according to local

and global scope resource management strategies. In the local scope strategy, all initial-

ization processes are executed in the handler function while the global scope initializes

all resources before the first handler function. Each figure contains three different lines

which represent the container setup time (green), the runtime init function time (blue),

59



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

1 5 10
Number of images per request

0.5

1

1.5

2.0

2.5

3.0

Co
st
 (U

SD
)

1.
54

1.
52

1.
491.
54

1.
52

1.
491.
55

1.
52

1.
49

2.
5

2.
46

2.
39

1.
74

1.
73

1.
72.

17

2.
12

2.
08

704MB
1024MB

1536MB
2048MB

2560MB
3008MB

Figure 3.6: Average cost to process 10K images with VSS in AWS Lambda. The horizontal
axis represents image batch size per request (1,5,10) and the color bars represent the allo-
cated memory per function, from 704MB to 3008MB. AWS free tier is not included in this
experiment

and the code execution function total time (yellow). The container setup is the time

delay to create an isolated image container. In the runtime init function we evaluate

the time delay of the serverless function resources (loading external resources, classes

initializations, loading third-party libraries, code downloading). Finally, the function

code execution calculates the total execution time of a serverless cold instance.

Our analysis of the resource management strategies reveals that initializing the re-

sources in the global scope improves the performance of the cold start delays (about

2-4 seconds difference). Also, the increased time delay of the global scope in func-

tion runtime initialization is due to the DNN models, code, and libraries loaded in

this step. As it was expected, as far as the allocated memory per function instance

increases, the cold-start time delay is reduced in both scope strategies. This time reduc-

tion is especially visible when the allocated memory is between 704 and 1536MB. In

contrast, the container setup’s minimal time variations reveal that the FaaS container

initialization does not depend on the allocated memory per function instance. To ana-

lyze the cost-worthiness of serverless computing deployment, Figure 3.9 reveals that

our FaaS architecture leverages an outstanding performance with an important time

saving from hours, which would be needed with an off-the-shelf PC, to minutes (our ap-

60



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

704 1024 1536 2048 2560 3008
Memory (MB)

0

5

10

15

20

Ti
m
e 
(s
)

18.2

3.8

0.4

12.3

3.8

0.3

8.3

3.4

0.4

6.9

2.9
0.4

6.7

2.9
0.4

6.7

2.7
0.4

Func code exec Func runtime init Cont setup

Figure 3.7: Cold start time analysis of the global scope strategy according to the amount of
allocated memory per function (from 704MB to 3008MB).

704 1024 1536 2048 2560 3008
Memory (MB)

0

5

10

15

20

Ti
m
e 
(s
)

22.4

0.7
0.4

16.0

0.7
0.3

10.6

0.6
0.6

9.4

0.7
0.4

9.1

0.6
0.5

8.9

0.6
0.4

Func code exec Func runtime init Cont setup

Figure 3.8: Cold start time analysis of the local scope strategy according to the amount of
allocated memory per function (from 704MB to 3008MB).

proach). Also, the influence of the allocated memory per function instance is shown in

Figure 3.7, where the reduction of the processing time is very significant, especially be-

tween the 704MB and 1536MB configurations. Considering the economic and the time

61



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Figure 3.9: Total times to process 10K images with the VSS in AWS-Lambda. The color bars
represent image batch size.

performance analysis shown in Figures 3.6, 3.7, and 3.8, we conclude that the optimal

allocated memory per function remains on 1536MB. Also, as observed in Figure 3.9, the

optimal way to achieve the maximum processing throughput is processing one image

per each FaaS instance.

3.3.4 Conclusions

The FaaS platform environment offers a suitable distributed execution model to provide

parallel processing at a high scale. Nevertheless, the resource limitations of this plat-

form collide with the DNN complex environment. To overcome this challenge, we have

presented a methodology to optimally deploy several DNN models to FaaS platforms

supported by the latest computer vision techniques to maximize the DNN processing

performance at minimum cost. We have also evaluated a VSS case study supported

by experimental results that reveal an outstanding performance improvement of our

serverless architecture. Furthermore, we conclude that the major bottleneck lies in

the processing of each FaaS function, while the influence of the memory allocation

per function is visible in the processing speed. Nevertheless, there is large room for

improvement in reducing the DNN complex environment, while the bottleneck could

be addressed by analyzing the possibilities of distributing the DNN processing into

62



3. OPTIMAL DEPLOYMENT OF DNNS IN SERVERLESS CLOUD
ARCHITECTURES

multi-tenant systems.

Current computing requirements for high-scale inference of DNNs demand dis-

tributed execution environments. The advantages of serverless functions in distributed

computation offloading and automatic resource scalability make them a very suitable

environment for such a task.

63





CHAPTER

4
Knowledge-driven approach for

the optimal deployment of
DNNs in heterogeneous IoT

platforms

This chapter explores the optimal deployment of DNNs in heterogeneous IoT plat-

forms by means of a knowledge-driven approach. More specifically, our focus is on

addressing the deployment challenges of face recognition solutions in IoT platforms for

older adult care and industrial applications. We analyze various approaches and pro-

pose a knowledge-driven methodology for automated deployment of DNN-based face

recognition solutions on IoT devices. This approach manages biometric data securely

and provides real-time feedback for improved user interaction. This chapter refers to

contribution 4 described in Section 1.3.

The chapter is organized into five sections. Section 4.1 describes the background

and challenges for face recognition-based user authentication in heterogeneous IoT

platforms. Section 4.2 defines the whole face recognition methodology including user

interaction workflow (subsection 4.2.1), the automatic deployment process of face

verification algorithms(subsection 4.2.2), and the secure biometric data management

65



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

process (subsection 4.2.3). Section 4.3 presents the results and evaluation of our pro-

posed methodology. Section 4.4 provides practical examples of how the proposed

approach can be applied in different kinds of devices, including IoT gateways, de-

vices without DNN inference capabilities, and devices that process the face recognition

pipeline locally at the edge. Finally, in Section 4.5, we draw conclusions and suggest

ideas for future research.

4.1 Background and challenges

Industry 4.0, the fourth Industrial Revolution, is focusing on interconnectivity, automa-

tion, autonomy, machine learning, and real-time data, in parallel to the growing number

of interconnected devices around the world [107]. The interconnected devices could be

very diverse: wearables, smart appliances, smartphones, tablets, smart TVs, embedded

computers, gateways, laptops, computers, different kinds of robots, etc. In this context,

the IoT paradigm plays a major role, using applications running on devices with sensing,

networking, and processing capabilities that interact with other devices and services on

the Internet. IoT allows integrating the physical world into computer-based systems,

providing manufacturing companies with many growth opportunities. Thus, expanding

IoT capabilities will enable more sophisticated products and services to contribute to

the progress of Industry 4.0. One way to expand them is to improve the sensing capa-

bilities of interconnected IoT devices to detect and recognize users, to allow them to

interact securely with IoT applications.

In recent years, DNNs have allowed the development of robust solutions for com-

puter vision tasks such as face recognition, including face detection, alignment, and

identity recognition [108] [109] [110]. Current face recognition solutions can help to

secure the use of IoT applications, by restricting the access to sensitive data to individ-

uals with the required permissions, in a pervasive and user-friendly way, without the

need to have something (e.g., PINs or passwords) to memorize. Users could perform

authentication by having their face recognized on IoT devices with cameras, and this

one-time login could provide access to a full IoT network of devices of many different

kinds. Furthermore, some applications might require these machines to identify peo-

ple at a distance without their collaboration (e.g., to localize users, or for surveillance

66



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

purposes), and face recognition opens up this possibility, unlike other biometric-based

authentication alternatives, such as fingerprints, iris, or hand geometry [111].

However, deploying DNN-based face recognition solutions in IoT platforms is a

challenging problem mainly due to the following factors:

• Taking into account that to obtain (near) real-time responses, DNN models need

to be processed locally, and not on remote servers—as server-device data trans-

ference would add considerable latency in such cases—the computational cost

of DNN inference could be higher than the computational resources available in

many IoT devices. In addition, they could have different kinds of processors (xPUs:

CPUs, GPUs, FPGAs, etc.), which require specific DNN inference engines (Intel’s

OpenVINO, Google’s TensorFlow Lite, NVidia’s TensorRT, Facebook’s PyTorch, etc)

[3].

• To allow users to enroll on one device and authenticate on another, respecting

their privacy in compliance with the law, such as the EU’s General Data Protec-

tion Regulation (GDPR), biometric data needs to be managed securely, preventing

intruders from accessing it.

• Besides the high heterogeneity of IoT devices with which users might interact in

terms of shape, functionalities, sensing, and computing capabilities, we might

face a high variety of user interaction capabilities, from fully active to fully assisted

(e.g., in older adult care applications). All users should be able to interact satisfac-

torily with the deployed face recognition system during the face enrollment and

verification stages.

In the upcoming sections, we address these three challenges with a focus on older

adult care and industrial applications.

4.2 Methodology

4.2.1 User interaction workflow for face verification

We propose the user interaction and recognition workflow shown in Figure 4.1. It con-

siders the user-centered design principles described in [112], and the importance of

67



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

providing real-time feedback, as suggested in [113], not only to obtain good quality im-

ages but also to improve the technology acceptance and adoption. Thus, the user will

trigger this workflow the first time to enroll into the system, and every following time

there is the need to verify the user’s identity.

The workflow is divided into three phases: (1) facial image acquisition, (2) spoof de-

tection, and (3) biometric features extraction. The goal of phase 1 is to assist the user in

presenting themselves appropriately to the camera to extract facial images with suffi-

cient quality for the subsequent phases. Then, in phase 2, the system will check that

there is not an attempt of spoofing, and if there is, it would ask for a new image, go-

ing back to phase 1. Finally, in phase 3, it will perform the biometric feature extraction

for the registration or the verification. Some users could have physical difficulties that

could interfere with the interaction with the device, making it difficult to hold it still

when taking a picture. For this reason, the proposed interaction does not present a but-

ton to press when taking the image, as this action could cause extra movement and

result in a blurred image. The system will automatically take the image when all the

required quality conditions are met.

Figure 4.1: User interaction and face recognition workflow in different phases. (1) facial
image acquisition, (2) spoofing detection, (3) biometric feature extraction.

68



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

Figure 4.2: Example of a user interacting with the face recognition application and receiving
feedback in real-time during the image acquisition process.

More specifically, in phase 1, the system’s interface will show the mirrored video

stream captured by the device’s camera with an overlapping human shape that will work

as a guideline for users. First, based on the face regions, facial landmarks, head pose,

and facial gesture estimations obtained by a series of DNNs [114] [115], the system will

indicate if the face is too close or far from the camera (“move closer”, “move further”), or

if the head is tilted (“move to the left” or “move to the right”). Since some users might

have difficulties in reading small text, an icon would indicate the movement to facilitate

the comprehension of the feedback messages. In the case the user is accompanied by

someone else (e.g., an assistant), the system will detect more than one face, but it will

consider only the face closer to the device as the user that requires verification, hence

providing the feedback to that specific user. Figure 4.2 shows some examples of the user

interface and the provided feedback.

Then, once the image passes this check, the user’s facial image is cropped and “nor-

malized” based on the detected facial landmarks (i.e., it is resized and rotated so that

the eyes are in predefined positions in the cropped image).

69



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

This normalized facial image is then processed by another DNN for face image qual-

ity (FIQ) assessment [116]. FIQ methodologies provide a score that can also be obtained

to check whether the image respects the required conditions, and, providing feedback to

improve when they are not met (with a message like “improve the lighting conditions”).

This quality score is defined as FIQ value. This proposed face recognition workflow in-

cludes FIQ assessment methodology based on multi-task explainable quality networks

(XQNets) [29] for large-scale forensic face recognition applications. More specifically,

this network allows assessing FIQ efficiently along with a set of environmental variables

that explain the calculated FIQ value. This way, the feedback provided to the user when

posing in front of the camera can be more sophisticated to correct the environmental

conditions if required. Apart from the FIQ overall information, this model also offers

the following information: hot spots, sharpness, and deviation from uniform lighting.

If this quality check is also passed, the processing of the user’s normalized facial

image continues in phase 2. During phases 2 and 3 there is no need to show the user

the mirror image from the camera as it could be confusing (seeing the image the whole

time they might think that there is something wrong with the image acquisition when

it has been acquired already). In phase 2, following the observations made in [117],

to improve the security of the verification system, another DNN would verify whether

the normalized facial image corresponds to a spoofing attack or not [118] [119]. In

our implementation for the spoof detection procedure, we used a MobileNetV3-based

classification model, trained with the Celeb-Spoof dataset [119] due to its lightweight

processing requirements and high accuracy processing capabilities. The anti-spoofing

procedure could be further enhanced by using depth sensors in addition to a camera.

Figure 4.3 shows examples of FIQ assessment and anti-spoofing results in various sce-

narios, including different identification card types, mobile-reproduced videos, and

wearing masks.

Finally, in phase 3, another DNN would extract the biometric feature vector (i.e.,

the i-vector) from the normalized facial image that allows authenticating facial identi-

ties [120]. Once the features are extracted, the system can proceed to compare them

against those stored during registration with a verification algorithm -that could involve

Euclidean distance, cosine similarity, etc.—and grant the access or not depending on

the result.

70



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

Figure 4.3: Examples of results from the FIQ and anti-spoofing algorithms for various
situations and spoofing attacks using mobile and webcam cameras.

In order to preserve the user’s privacy, no facial images are stored, neither during

the user registration process nor during the surveillance/authentication process, only

the extracted i-vectors are used, which are encrypted and managed as explained in

Section 4.2.3 to preserve the user’s privacy.

4.2.2 Deployment of face recognition algorithms

Figure 4.4 shows our proposed knowledge-driven workflow for the automated de-

ployment of face recognition solutions on heterogeneous IoT platforms for industrial

applications (e.g., on the private network of a company’s facilities). This deployment

scenario considers a wide range of devices and robots with whom users might inter-

act. To reduce the latency of the face recognition solution as much as possible, this

deployment workflow considers two runtime scenarios. The first scenario contemplates

on-device DNN inference for devices with DNN inference capabilities. The second

scenario deploys the face recognition solution on the IoT gateway to handle multiple

requests at once using containerized services. This deployment process categorizes

the client devices and robots into suitable and not suitable devices for DNN inference.

Those suitable will host the face recognition service directly, and the rest will communi-

cate with the IoT gateway when required, by submitting images and processing requests

to the gateway and receiving the corresponding responses. To improve the user experi-

71



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

ence, users register their face credentials on one device and the biometric data is shared

among the rest of the private network’s IoT devices. Thus, the face login can be done on

any of these devices. Even though this network is private, biometric data encryption

is necessary, so the administrator manages the encryption keys to preserve privacy, as

explained in the next section.

Figure 4.4: Workflow for the automated deployment of the IoT face recognition solution.

This deployment procedure automatically decides which is the most suitable DNN

package—DNN models and Inference Engine (IE)—for optimal DNN inference in each

IoT device. The decisions are taken by a case-based reasoning (CBR) system [115]. A

CBR is a problem-solving method where the solutions are based on previous experi-

ences. A CBR system is organized in cases, which are represented as problems and

solutions. An “experience” instance would correspond to a previously solved case. In

our context, we have one case type that would be represented like this:

• Problem: New device with heterogeneous hardware (i.e., might have one or more

kinds of processors, including in some cases DNN accelerators).

• Solution: The most optimal DNN IE and DNN model configuration package for

the target device.

72



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

As it is shown in Figure 4.4, the automated deployment workflow has 8 steps, and

the CBR process is its core. The standard CBR process is comprised of four tasks: (1)

Retrieve case, (2) reuse/adapt case, (3) evaluate case, and (4) retain case. Almost all

tasks are executed in a module called automated heterogeneous deployment optimizer

(AHDO) which is hosted on a virtual private cloud (VPC). In contrast, each IoT device

and gateways with DNN inference capabilities execute the case evaluation task. Next,

we will explain these steps and components in detail.

4.2.2.1 Case retrieval

This task is the CBR’s starting point. Its goal is to retrieve the most similar old cases (ex-

periences) to the new case. Each client and the IoT gateway activate this retrieving task

sending their hardware specifications to the AHDO (step 1). Each hardware specifica-

tion represents a new case for the CBR system. The old cases are stored in the knowledge

database. All cases (new, old) follow a specific case structure which we define in cate-

gorical and quantitative values. The categorical values represent the hardware vendor

(Intel, NVidia, Google), the DNN accelerator types (GPU, CPU, VPU, TPU, FPGA, etc.),

and system architecture (x86, arm64, etc.). The quantitative values represent a feature

vector of hardware characteristics such as number of cores, clock speed, and dedicated

RAM.

This case retrieving task analyzes the categorical and the quantitative similarities

between old and new cases (step 2), as shown in Figure 4.5. First, it calculates the cate-

gorical similarity using the Hamming distance. This operation returns the most similar

results (the lower the distance, the more similar) as a list of tuples associated to a tu-

ple identifier. Those with a distance value lower than the threshold cat_thr are selected

for the quantitative similarity measurement. From this list, the system takes the tuple

identifiers and extracts the quantitative values of each DNN accelerator, represented as

feature vectors. Then, the cosine similarities between each feature vector and the new

case feature vector are calculated. From these, if the highest value is higher than the

threshold quant_thr, the solution is found (case reuse), otherwise the solution requires

an adaptation (case adaptation). When the knowledge database is empty, the new case

goes to the case adaptation step, automatically.

73



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Figure 4.5: Case retrieving workflow for knowledge-driven methodology.

4.2.2.2 Case reuse/adaptation

As mentioned in the previous section, this task finds the solution of a problem providing

two alternatives, the reuse of a retrieved case solution or the adaptation of the new case

solution (step 3). The case reuse only associates the previous retrieved solution to the

new case problem. The case adaptation instead involves a more complex task. However,

for both cases, the VPC creates a unified package of candidate DNN resources (DNN

IEs, DNN models, and also a small dataset of labeled images for testing) and transfers it

to the target device, robot, or gateway (step 4).

For the case adaptation, we choose a rule-based engine to find the solution to the

new case. We define a set of rules which represents the relationship between DNN IEs

and DNN models. These rules are defined by an expert human (Machine Learning engi-

neer). These defined rules and the hardware information of the new case are executed

in the rule-based engine (expert system) and as a result, the expert system returns a list

of possible candidates of DNN IE and DNN models, along with the testing dataset.

These DNN models can be of the same kind but trained in different DNN IEs and

with different precisions (from most accurate to fastest: FP32, FP16, or INT8). Some

DNN IEs require using specific computing processors (e.g., Google’s TFLite Edge TPU

for Google’s TPUs, or NVidia’s TensorRT for NVidia’s GPUs), but in other cases, the same

processor is suitable for different DNN IEs. Moreover, the face recognition solution is

composed of several DNNs such as face and face-landmark detection, head pose, facial

gesture, facial image quality analyzer, anti-spoofing detector, and identity recognition.

74



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

These models can be deployed into heterogeneous hardware. For example, some

models could run in one CPU processor and the remaining models in the GPU pro-

cessor, depending on the requests of image batches that suit best with the processor.

Here, with batch processing, we do not refer to resizing the input of the DNN model

to a specific image batch size, but to a batch of several inference requests which are

executed asynchronously. Depending on the target hardware architecture, optimizing

the inference process such as splitting the N batch of images in N requests or using

inference asynchronously could improve the performance. That is why choosing the

optimal model configuration plays an essential role in this deployment process.

4.2.2.3 Case evaluation

In step 5, the CBR system evaluates the solution proposed in the previous case

reuse/adaptation task. More specifically, it evaluates the performance of the solu-

tion candidates of DNN IE and models. This task is done directly on the IoT device. This

evaluation process, apart from benchmarking the inference latency and accuracy of the

DNN models, also analyzes the DNN graph partitioning capabilities for those models in

the DNN IEs that have heterogeneous inference capabilities, such as OpenVINO and

TensorRT [121]. The DNN graph partitioning consists of splitting the DNN model into

different subgraphs (group of layers) and delegating their workload to the most suitable

DNN accelerators. The case evaluation is shown in the algorithm 1.

This algorithm returns a list of optimal hardware configurations (OHC) for each

batch size. The algorithm iterates through all possible batch sizes and, for each one,

iterates through their corresponding heterogeneous hardware configuration (HCONF).

For each pair of batches and downloaded configuration from the VPC, the algorithm

loads the corresponding IE based on the hardware heterogeneous configuration and se-

lects the required precision model according to the VPC downloaded candidate. Then,

the algorithm chooses a suitable DNN model for benchmarking and the image test-

ing database included in the VPC downloaded package. When the selected model is

loaded, the algorithm checks if all the DNN layers are supported by the device. If all lay-

ers of the DNN model are suitable for the current DNN IE, the benchmark is performed,

otherwise, the configuration is discarded.

75



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Algorithm 1 Case evaluation algorithm

1: procedure EVALCASE(HCONF ,IB ,DMC ,DNNIE , TESTDATA )
Input: HCONF .Heterogenous HW device conf

2: IB . Image/request inference batch sizes list
3: DMC .DNN model candidates
4: DNNIE .DNN IE
5: TESTDATA . Testing dataset for benchmarking

Output: OHC . List of heterogeneous HW conf per batch
6: for batch in IB do
7: for hdconf in HCONF do
8: for ie in DNNIE do
9: dm = getPrecisionDNNModels(ie, DMC,hdconf)

10: db=loadDatatForBench(TESTDATA)
11: loadModelsToIE(ie, dm, db,hdconf )
12: aff=getLayerAffinities(ie,dm,hdconf)
13: if allLayersSupported(ie, hdconf,dm) then
14: makeBench(ie, dm,hdconf,aff, db)
15: perflistdev=storeBenchMetrics(dm,hdconf,ib)
16: optconfb = findOptimalConf(perflistdev,ib)
17: OHC.append(optconfb)
18: else
19: discardDevConf(dm, hdconf)

Return OHC

When the DNN graph partitioning is not supported by the device, this step is skipped,

but the benchmarking is executed anyway for the evaluation process. Finally, for each

batch size, the findOptimalConf function selects the best DNN model configuration find-

ing the trade-off between inference latency and accuracy results following the MLPerf

benchmarking standard [3]. Then this configuration is added to the OHC list.

4.2.2.4 Case retaining

Steps 6 and 7 are undertaken to submit the selected configuration back to the VPC

and then, this new case (problem and solution) is stored in the knowledge database

—the case problem (categorical and quantitative values) and the case solution (the most

optimal DNN IE and DNN model configuration).

76



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

4.2.2.5 Updating the new trained DNN models

Since the DNN models and DNN IEs are constantly evolving, we consider the updating

process of these resources (step 8). This process not only consist of uploading DNN

resources, but also the rules and relations for the rule-based engine. Thus, these new

rules, DNN resources are stored in the knowledge database. This updating process also

requires evaluating if these new DNN resources are more suitable for the IoT device.

Thus, when the updating process is finished, the VPC notifies to all IoT devices that the

new DNN resources are available.

4.2.2.6 Running the face recognition system

When the system is ready to load the face recognition system, our approach provides

the functionality to load the most optimal model. But when the DNN model is loaded to

the DNN accelerator memory, its graph cannot change during runtime. The model’s per-

formance depends on several factors such as its case scenario, input data throughput

(number of face images to be processed simultaneously) and batch size, which leads to

situations where models with larger batch sizes may not obtain the best results. In cases

where several faces need to be verified configurations with larger batch sizes perform

faster than other options with the highest precision models and the face recognition

system’s workload will use the 100 % of the hardware resources, the most optimal way

to use them. In the opposite situation, when the input face images throughput is low,

choosing this option could lead to energy waste, degrading their performance. Further-

more, choosing cheaper hardware accelerators and reducing batch size can perform

similarly with lower power consumption.

4.2.3 Biometric data management

The biometric data of the user results from processing the users’ facial images with

a DNN trained with data that correspond to other people, but not to the user. Thus,

this biometric data is an abstract representation generated by a combination of the ap-

pearances of some of the people used for training the DNN, but not specifically from

the user. This means that it would be impossible to reconstruct with high precision

the user’s real appearance from the biometric data, using techniques such as those de-

scribed in [122]. Nevertheless, this kind of reconstruction could reveal relevant personal

77



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

information from the real user, due to the similarity to those people, such as “gender”,

“skin color”, “hairstyle”, etc., which needs to be protected. While a completely secure

system against any kind of threats does not exist, an appropriate level of security for the

targeted scenario and the expected kind of attacks can be designed.

In this approach, biometric data would never be transferred to the cloud, i.e., it

would only be stored in those devices where the face recognition solution has been de-

ployed. Thus, an expected possible attack could be somebody accessing the devices,

robots, or gateway to steal the stored data. To prevent this, the data should be encrypted,

and the encryption keys should be kept safe by an administrator.

In our context, we consider the method [123] as the most appropriate for our

purpose. It proposes an efficient fully homomorphic encryption-based approach to

cryptographically secure the registered and the probe biometric data, performing the

matching directly in the encrypted domain, leveraging the observation that a typical

face matching metric, either Euclidean distance or cosine similarity, can be decomposed

into its constituent series of addition and multiplication operations. It utilizes a batch-

ing scheme that allows homomorphic multiplication of multiple values at the cost of a

single homomorphic multiplication, and dimensionality reduction to further provide

a trade-off between computational efficiency and matching performance. Therefore,

the biometric data shared among the devices, robots, and gateway will always remain

encrypted, as long as the administrator keeps the encryption keys safe (e.g., in a secure

hardware element [124]).

This approach requires 4 keys: a public key for encryption, a private key for decryp-

tion of the scores, and linearization and Galois keys for the matching operations of the

encrypted data (Figure 4.6). This way, if someone steals the stored biometric data from

the hardware platform, it would not be usable without access to the private key required

for decryption.

This private key should be kept safely in a secure element of the hardware platform,

for example, a trusted platform module (TPM) or a trusted execution environment

(TEE). TPMs are normally available in modern computer PC motherboards. TEEs are

available in Jetson Xavier NX, Jetson AGX Xavier series, and Jetson TX2 series devices.

78



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

Figure 4.6: Biometric data management with fully homomorphic encryption during enroll-
ment and verification.

4.3 Experiments and discussion

4.3.1 Qualitative evaluation

Table 4.1 shows a qualitative comparison of our approach with respect to state-of-

the-art alternatives, in terms of face recognition technology, interaction assistance,

deployment algorithms and privacy. We also include in this comparison our previous

version [27] to see the differences more in detail. As can be observed, both [27] and the

improved approach presented in this paper stand out in terms of interaction assistance

and deployment, issues which were poorly addressed by the other alternatives. The

main differences between [27] and the extended version are the inclusion of a DNN for

image quality assessment, which allows an improved interaction with the user, and es-

pecially, the way in which the DNN resources are deployed, by means of the presented

knowledge-driven approach, which takes advantage of previous cases (experience) to

reuse and adapt the knowledge to new cases, as required. The versatility offered by our

deployment scheme overcomes previous approaches by removing dependence on the

devices’ hardware and allowing usage of more complex DNN models with improved face

recognition capabilities. In terms of privacy and data protection, our method employs

an efficient fully homomorphic encryption-based approach and restricts all operations

to local devices, offering a lightweight processing pipeline without compromising se-

79



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

curity. All these features make our approach well-suited to all demands required by an

industrial scenario to be deployed among workers.

Table 4.1: Comparison of state-of-the-art IoT platform approaches vs. our proposal (FD:
Face detection, FLD: Face and facial landmark detection, PGR: Pose and gesture recog-
nition, IQA: image quality analysis, SAD: spoofing attack detection, FIR: Facial identity
recognition).

Method Face recognition Assistance Deployment of Privacy in the
approach interaction algorithms IoT platform

[92] Pretrained Haar-based Not Manually Schemes for authentication,
[93] for FD and LBP features considered predefined session key agreement,

model for FIR to be integrity checking for
trained on the cloud. secure data encryption,

and data transmission
and storage

[94] Discriminative dictionary Not Manually Biometric data encrypted
learning for FIR that Considered predefined with a low complexity
needs to be trained encrypting algorithm

based on random
unitary transformation

[95] DNN for FIR split in two parts: Not Manually Differential privacy for user’s
one deployed on the user side considered predefined confidential datasets.

and the other on the No cryptographic tools
edge server side. used to keep

user side lightweight.
[27] Pretrained DNN models for Real-time visual feedback Automated selection Biometric data

FLD, PGR, SAD, deployed on based on FLD and PGR to of the appropriate homomorphically encrypted.
fog gateway and client devices guide the user during DNN inference engine All computations

suitable for DNN inference. enrollment and DNN model configurations are done on
verification. and, batch size, based on . the private network.

IoT device characteristics Biometric data not sent
to the cloud

Pretrained DNN models for Real-time visual feedback Automated selection Biometric data
Ours FLD, PGR, IQA, SAD, and FIR based on FLD, PGR and of the appropriate, homomorphicall encrypted.

deployed on fog gateway IQA to guide the user DNN inference engine, All computations are done
and client devices suitable during enrollment DNN model configurations, on the private network.

for DNN inference. and verification. batch size, by means of a, Biometric data not sent
knowledge-driven approach. to the cloud

4.3.2 Quantitative Evaluation

In order to evaluate the performance that a DNN-based face recognition solution would

achieve following our deployment approach, compared to standard—manually prede-

fined—deployments, we completed two experiments on two different target devices. We

used MobileNetV1 [33], ResNet-50 [51], and SSD-MobileNetV1 [59], which are popular

DNN architectures for the computer vision tasks of “image classification” (for instance,

all the tasks applied to cropped facial images; spoofing detection, identity recognition,

80



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

etc), and “object detection” (face regions in our case). The weights of these DNNs have

FP16 precision. We used the following hardware for the benchmarking experiments:

• IEI TANK AIoT Developer Kit embedded PC with Intel Mustang V100 MX8 for DNN

acceleration card. This hardware contains an Intel CPU, GPU and a High Density

Deep Learning (HDDL) card (Mustang) compatible with Intel’s OpenVINO DNN

IE.

• NVidia Jetson Xavier AGX 32GB. This hardware contains a NVidia GPU with 512-

core NVidia Volta GPU with 64 Tensor cores and 2 NVDLA (dla0, dla1) DNN

accelerators compatible with NVidia’s TensorRT DNN IE.

The first experiment consisted of measuring the performance of MobileNetV1 and

ResNet-50 for different image batch sizes (1 to 48) with different inference configura-

tions, assuming that all hardware resources are fully available. These two hardware

platforms allow DNN graph partitioning across heterogeneous hardware, given a selec-

tion of computing processors and their execution priority. For the TANK we considered

the following configurations: <CPU, HDDL>, <GPU, CPU> and <HDDL, GPU, CPU>,

where the order represents the execution priority. For the Jetson we se-lected the fol-

lowing configurations: <GPU>, <DLA0, GPU>, <DLA1, GPU>. The current version of

Jetpack (4.5.1) —the Jetson’s SDK—, does not allow the deployment of a DNN model

across both DLA cores (DLA0 and DLA1). Each DLA core is totally independent and can

only communicate with the GPU for the inference.

Figure 4.7 shows that the <GPU, CPU> configuration performs best with smaller

batches (1 to 4), while <HDDL, GPU, CPU> is the fastest for higher batch sizes. Those

would be the configurations chosen by our approach for those batch sizes (the opti-

mal). In principle, the CPU’s and GPU’s hardware processing capabilities are bigger

than those of the Mustang V100. Thus, theoretically the <GPU, CPU> configuration

should be the best choice for all batch size configurations. However, the parallelization

processing methods of the CPU, based on SIMD vectorization techniques, are designed

for a general parallelization purpose, and not for DNN inference processing. Also, the

cache L1/L2/L3 memory is shared across the CPU and GPU hardware, so, this creates a

time overhead because of the data transference between the cache memory to CPU and

GPU. In contrast, the Mustang V100 MX8’s architecture is specifically designed for DNN

81



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

inference processing with 8 cores of Myriad X processors ensembled at USB 3.2 speed.

The processing capabilities of each core is much lower than those of the CPU and GPU,

but when several inference instances are executed, it runs more efficiently. In addition,

each Myriad X core has a dedicated memory (512MB for each core) to load DNN model

weights. Thus, the inference processing is parallelizable at 100 % and there is not data

transfer overhead.

Figure 4.7: Comparison between DNN inference performances obtained by the heteroge-
neous deployment optimizer vs manual heterogeneous configurations on a TANK AIoT Dev.
Kit with a Mustang-V100-MX8 DNN acceleration card.: (a) MobileNetV1; (b) ResNet-50.

Figure 4.8 shows that more stable inference results are obtained in the Jetson, with

smaller standard deviation of latency times for all batches and configurations. It also

shows that the GPU performs better than the <DLA, GPU> configuration. One of the

main reasons is because the capacity of each DLA is 2.5 TOPS, while the GPU can exe-

cute 11 TOPS with FP16 precision. Also, even though the DLA’s design is based on 4

highly configurable modules (convolution, normalization, activations, data transfer),

deploying DNNs to this hardware faces the following drawbacks: First, the current im-

plementation of this module has a limited number of DNN layers and thus those not

supported are transferred to the GPU adding an important overhead. Moreover, each

DLA core is only able to execute 4 batch streams in parallel. Therefore, even though

this NVDLA architecture is innovative, and its low power consumption (0.5-1 Watt) is

interesting for IoT platforms, it is still far from the GPU’s processing capabilities. In

contrast, the NVidia Volta design contains 8 Streaming Multiprocessors (SM) and each

SM includes 64 CUDA cores, 8 Tensor Cores. Also, it has ultra-fast memory access with

82



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

128KB of L1 cache memory per Volta SM and sharing 512KB L2 offering faster access

than previous generations.

Figure 4.8: Comparison between DNN inference performances obtained by the heteroge-
neous deployment optimizer vs manual heterogeneous configurations on Jetson Xavier
AGX 32GB.; (a) MobileNetV1; (b) ResNet-50

The second experiment consisted of measuring the performance of MobileNetV1

and ResNet-50 for different image batch sizes with different inference configurations,

but with SSD-MobileNetV1 being constantly executed as background “computing noise”

in different computing processors. Figure 4.9 and Figure 4.10 show the influence of this

noise and the configurations that would select our approach in each case.

Figure 4.9: The influence of the background hardware usage with heterogeneous de-
ployment optimizer decisions on TANK AIoT Dev. Kit with a Mustang-V100-MX8 DNN
acceleration card: (a) MobileNetV1; (b) ResNet-50.

This influence of the background execution is clearly visible in the Figure 4.9. For

example, when the CPU is selected for background execution, the <GPU, CPU> and

83



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Figure 4.10: The influence of the background hardware usage with heterogeneous deploy-
ment optimizer decisions on a NVidia Jetson Xavier AGX: (a) MobileNetV1; (b) ResNet-50

<HDDL, GPU, CPU> devices are selected as the optimal configurations. But, when

the GPU is selected for background execution, the HDDL heterogeneous configura-

tion takes almost all batch configurations as optimal (4, 8, 16, 32, 48). Conversely,

Figure 4.10, shows very stable results like those shown in Figure 4.8, and the GPU con-

figuration is always the optimal choice. However, as was expected, the higher latency

times on both DNN models are clearly visible because of the background execution of

SSD-MobileNetV1.

4.4 Practical deployment examples

This section describes practical deployment examples for deploying the face recognition

workflow defined in Figure 4.4. These examples are divided into different subsec-

tions based on the runtime scenarios mentioned in section 4.2.2. The first subsection

describes a scenario for client applications with no DNN inference capabilities. In par-

ticular, when a mobile device requests face recognition functionalities from an IoT

gateway using the local network. The second subsection represents a runtime scenario

with DNN inference capabilities where all face recognition workflow and application

logic are executed on board. This practical deployment target is a mobile robot.

.

84



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

4.4.1 Deployment runtime scenario: mobile client + IoT gateway

This deployment scenario includes two components, a smartphone with a client appli-

cation and the IoT gateway to process face recognition workload.

The IoT gateway mission is to offer face recognition services to devices that cannot

perform DNN inference processing. This is typically achieved using low-consumption

and powerful AI hardware such as GPUs and ASICs. The DNN models and inference

engine run on dedicated software within a containerized runtime. These runtimes pub-

lish services to client applications via REST APIs and secure communication utilities.

Client devices can access these services, but the application logic and interfaces are

implemented on the client side. The biometric i-vectors are stored on the IoT gateway.

The smartphone has a client application with a user interface and uses the appli-

cation logic to request face recognition functionalities to the IoT gateway. Figure 4.11

shows an example of an Android mobile app implementation, including app activities,

interfaces, and communication handlers for the REST API.

Figure 4.11: The class diagram of the mobile face recognition application (Android app)

The key modules of the application are listed below:

• MainActivity: This is the primary interface of the app and is responsible for con-

figuring the username and server settings (IP and port) for the IoT gateway. It can

initiate the user registration or face verification process.

• FRegisterActivity: This module manages the face registration process by invoking

services from the IoT gateway.

85



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

• VerificationActivity: This module handles tasks related to facial image verification

and also invokes services from the IoT gateway.

• RequestConfig: This module manages communication and receives asyn-

chronous callbacks from the IoT rest API responses. The ICallbackListener class

implements the necessary function calls based on response results.

To prevent security issues, the biometric i-vectors extracted are stored in the IoT gate-

way. Figure 4.12 displays images of the various stages of the face recognition workflow

along with the graphical user interface.

Figure 4.12: Face recognition workflow image examples in mobile scenario.

4.4.2 Deployment runtime scenario: Mobile robot

In contrast to the previous deployment scenario, all resources (client application, ap-

plication logic, and face recognition functionalities) are deployed to PAL Robotics’ ARI

robot 1.

1https://pal-robotics.com/robots/ari/

86



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

The robot is equipped with an RGBD camera sensor that works in conjunction with

an anti-spoofing DNN model as shown in Figure 4.13. The core functionalities of the

face recognition workflow are implemented in the robot operating system (ROS) as part

of the face recognition workflow package.

Figure 4.13: PAL Robotics ARI’s sensors including RGBD camera sensor.

Face Recognition functionalities rely on the robot’s NVidia Jetson TX2 2 for the ex-

ecution of the server and client. It also uses ARI’s Head RGBD camera (Real Sense) as

input. The solution has been integrated through several steps:

• Wrap the Face Recognition server and client as a ROS package.

• Wrap client calls to recognizer services in ROS topics and services. Specifically,

the new Python script does the following:

• Subscribe to the ROS topic of the robot’s Head RGBD camera (Intel RealSense):

/head_front_camera/color/image_raw/compressed. As a ROS topic, the advan-

tage is that multiple digital solutions can use the same camera without overlapping

and can be streamed and processed continuously.

2https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-tx2/

87



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

• Use of CvBridge python package to convert ROS camera topic to OpenCV image,

which is processed by the recognizer.

• Wrap existing recognizer services, by mapping the ROS topics and services.

The robot stores biometric data and shares it with other IoT gateways. A web-based

interface is used to access the camera while ROS handles the application logic and com-

munication. Figure 4.14 shows an example image of the graphical user interface in the

ARI robot.

Figure 4.14: The front-end interface of the face recognition functionality on the robot’s
touchscreen.

4.5 Conclusions

In this work, we have presented a knowledge-driven approach for the optimal deploy-

ment of DNN-based face recognition solutions in a heterogeneous IoT platform for

industrial applications. Our approach tackles its specific challenges in terms of ease of

use, hardware heterogeneity, and security. Ease of use is covered by a customized work-

flow that offers an intuitive interface, and, considers the shared use between the user

and companions, by means of automated feedback to automatically take the “selfie”

88



4. KNOWLEDGE-DRIVEN APPROACH FOR THE OPTIMAL DEPLOYMENT OF
DNNS IN HETEROGENEOUS IOT PLATFORMS

with the best possible quality. Device heterogeneity is addressed by a smart deploy-

ment optimizer, capable of selecting the appropriate DNN inference approach for the

targeted device’s hardware specifications. Data security is enforced by a scheme that

avoids the transmission and the storage of biometric data in the cloud and employs

fully homomorphic encryption to perform all face matching operations directly on the

encrypted domain. A qualitative comparison with state-of-the-art alternatives and ex-

periments to select the optimal inference approach for different computing situations

(different batch sizes and computing noise) reveal its potential for the desired goal. Fu-

ture work will include further experiments for a greater variety of equipment and a

deeper study of the interaction issues with a wider range of users.

89





CHAPTER

5
Optimizing end-to-end

multi-DNN-based video
analytics on the edge

This chapter presents an end-to-end method for deploying a multi-DNN-based

on-board video analytics system to warn aircraft cabin crew members when passengers

store their luggage in areas that could pose a safety risk during critical flight phases such

as taxiing, take-off, and landing (TTL). This chapter refers to contribution 5, described

in Section 1.3.

The chapter is organized into five sections. Section 5.1 describes the background

and challenges of multi-DNN-based onboard video analytics for aircraft cabin readiness

verification. Section 5.2 describes the proposed approach to deploy such kind of system.

Section 5.3 describes the conducted experimental results to show the potential of this

approach. Section 5.4 explains an on-site readjustment procedure of this approach for

its practical use in an aircraft cabin. Finally, in Section 5.5, we draw conclusions and

suggest ideas for future research.

91



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

5.1 Background and challenges

Currently, aircraft cabin operations such as the verification of TTL cabin readiness

are done manually. This results in an increased workload for the crew, operational

inefficiencies, and a non-negligible risk of human errors in handling safety-related pro-

cedures. For TTL, specific cabin readiness requirements apply to the passenger, to the

position of seat components and cabin luggage. The usage of cameras and vision-based

object-recognition algorithms may offer a promising solution for specific functionalities

such as cabin luggage detection. However, building a suitable camera-based smart sens-

ing system for this purpose brings many challenges as it needs to be low weight, with

competitive cost and robust recognition capabilities on individual seat level, complying

with stringent constraints related to airworthiness certification.

In the aircraft cabin environment, cameras are used as of today for overall cabin

monitoring purposes. Current cabin video monitoring systems are characterized by

restrained video and image analysis capabilities and are not conceived for specific

purposes such as TTL cabin readiness verification. Despite the recent progress in the

optimal installation of surveillance cameras to monitor different areas of aircrafts, in

practice, the captured images are not being fully exploited. Moreover, different for-

mat images and cameras should need to be concealed to exploit the captured images,

including AI to help the crew in handling safety procedures. Building a camera-based in-

telligent system for this purpose reaching the highest Technology Readiness Level (TRL)

[125], i.e., TRL9, “an actual system proven in an operational environment”, requires over-

coming many challenges. With the currently available DNN-based methodologies and

equipment this process would start in TRL2, i.e., “a technology concept formulated”,

and the next step would be to build a TRL3 “experimental proof of concept”. This tran-

sition from TRL2 to TRL3 is not evident, and relevant technological factors must be

analyzed in detail.

Figure 5.1 shows the conceptual design of such a system and the kind of images that

would be captured from cameras over the seats and the corridor. In these examples,

luggage is placed in different wrong areas for TTL, such as on the corridor’s floor and

seats, and passengers can also totally or partially occlude the luggage depending on

their locations and poses.

92



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

Figure 5.1: Conceptual design of a camera-based intelligent system for digitalized on-
demand aircraft cabin readiness verification, and examples of the kind of images that would
be captured from cameras installed over the seats and the corridor.

This setup could also be used for other applications such as checking the seat occu-

pancy, whether tray tables are in stowed positions, and identifying dangerous behaviors

of passengers, etc.

The economic viability of the system requires minimizing the number of cameras to

be installed. This means that each should cover the maximum possible area, e.g., two

seat-rows. As it can be observed, the kind of lenses that allow this significantly distort

the image content. Thus, the appearances of the visualized objects can be quite differ-

ent depending on the image region where they are located and the camera position. All

these factors are relevant for the design of the computer vision and machine learning

algorithms [126]. Captured images would then be processed by AI-processors, which in

our context, are edge computing devices that include AI-accelerator(s), i.e., a new gen-

eration of CPUs, GPUs, FPGAs, and alternative chips, neural processing units (NPUs),

specially designed for the optimal deployment of DNNs [127]

Currently, the most advanced computer vision algorithms rely on DNNs for tasks

such as object detection [128], image classification [129], etc. Object detection DNNs

can be used to obtain bounding boxes of objects and passengers in an image, as well as

distinguish between different kinds of object classes. On the other hand, image classi-

fication DNNs can be applied to image regions containing one seat or aisle section to

label the image content with learned concepts (Figure 5.2).

93



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Figure 5.2: Examples of image crops to be processed by multiple DNNs to verify the correct
positioning of the luggage for the cabin readiness verification.

This can help determine whether luggage positioning in that region is correct or

not. The advantage of using image classification DNNs in this context is that training

data can be labeled more easily, and that DNNs for classification are also much more

efficient.

To obtain accurate classification results, samples from the same class should have

similar visual appearances and be significantly different from the other class. How-

ever, as shown in Figure 5.2, this is not the case in our problem as there could be many

different kinds of objects and people involved, with widely varied appearances and spa-

tial relations. In addition, there are objects whose presence is not a problem for TTL

cabin readiness, such as magazines, books, food, smartphones, tablets, jackets, wal-

lets, etc., which we will refer to as “non-cabin luggage”. On the contrary, “cabin luggage”

would include backpacks, bottles, briefcases, camcorders, hats, laptops, shopping bags,

suitcases, tote bags, etc.

Thus, considering this kind of variability, we can divide the two classes into fine-

grained subclasses grouped according to different visual appearances. Figure 5.3 shows

an example of this subdivision for seats in standard seat rows of the aircraft, represented

as a three-level hierarchy of classes. The top level contains the two-goal classes (correct

or incorrect).

94



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

Figure 5.3: Example of subdivision in the positioning of luggage for TTL cabin readiness as
a three-level hierarchy of classes.

The middle level considers the presence or absence of a passenger on the seat,

and the lower level considers the absence or presence of objects, their type, and their

positioning.

Going through the hierarchy from the top level to each class of the lower level, we

obtain more specific and richer descriptions of the correct and incorrect situations. A

classification DNN could be trained by taking these lower-level subclasses indepen-

dently. However, a better approach is to leverage this extra information to improve the

accuracy and reliability of the system through learning paradigms such as multi-task

learning [130, 131] and metric-guided prototype learning [132]. In this chapter, we

analyze how this could be done in our context.

Another problem to be tackled in this system is that as the appearances of seats

vary depending on their placement in the image—due to perspective and the image

distortion— multiple DNNs would needed to analyze the whole scene. Each DNN would

learn the specific kind of appearances expected in each image region. For that, how

datasets are designed and used for training is another key factor to be considered, espe-

cially in this kind of context with visual specificities not normally present in generalist

datasets, like ImageNet [60], COCO [105] or OpenImages [133]. For this purpose, we also

present in this chapter the SmaCS dataset [134] to facilitate future research. Considering

95



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

that in practice, data could usually come from different data sources (i.e., various cabins,

real or synthetic), we consider domain adaptation techniques to enhance generalization

performance [135].

Deploying a multi-DNN-based multi-camera system on an onboard embedded

processor for aircraft cabin readiness verification, consuming minimal power, poses

significant challenges in achieving accuracy, robustness, and responsiveness. In the

following sections, we address this challenging problem by making the following contri-

butions:

1. An approach to deploy on-board video analytics for in-flight TTL cabin readi-

ness verification with an optimal trade-off between response delay and power

consumption.

2. Metric-guided multi-task domain-adversarial prototypical networks (MMDAPNs)

for efficient and robust image classification, exploiting the hierarchical structure

of classes.

3. An optimal multi-MMDAPN processing pipeline tailored to the embedded pro-

cessor’s heterogeneous computing capabilities.

4. Experimental results with the SmaCS dataset [134], comprising around 30K im-

ages captured in a cabin mockup and 7K generated with computer graphics

depicting various situations involving passengers and objects.

5.2 Methodology

5.2.0.1 MMDAPN architecture design and training

DNNs rely on data to learn and make predictions. The accuracy and reliability of DNNs

depend on how the data is handled during training, such as identifying commonalities

between classes and the relationships between labels. Multi-task learning [130] aims to

improve the learning performance of multiple related tasks by sharing valuable infor-

mation between them. In our case, the primary task is to classify the top-level classes,

while auxiliary tasks involve classifying the subclasses. However, identifying common-

alities between different subclasses could make it challenging to distinguish between

96



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

the main classes. Metric-guided prototype learning [132] can help address this issue by

making DNNs focus on relevant image features to distinguish between classes based on

semantic hierarchical priors.

Designing a system that uses DNNs requires careful consideration of the amount

and quality of data available to train the model. To ensure better generalization, train-

ing datasets should be designed with care, gathering as many samples as possible of

each subclass from different real cabins to avoid bias among classes. Synthetic data

can help with this process [136] [137], but it isimportant to handle the domain gap be-

tween different data sources (i.e., various cabins, real or synthetic). Domain adaptation

methods [135] can help DNNs extract robust cross-domain features.

Our proposed MMDAPN architecture improves the classification accuracy and

reliability of DNNs by combining multi-task, metric-guided prototype, and domain ad-

versarial learning paradigms. Figure 5.4 shows the architecture of MMDAPNs used to

train classification models that exploit the semantic information present in the hierar-

chy of classes for aircraft cabin readiness verification with data from different sources

(e.g., synthetic and real cabins). The deployment of multiple MMDAPNs to analyze im-

ages like those shown in Figure 5.2 enables efficient on-board video analytics of in-flight

TTL cabin readiness verification.

Figure 5.4: The architecture of metric-guided multi-task domain adversarial prototypical
networks (MMDAPNs).

In our context, we construct MMDAPNs around a backbone classification DNN.

Given the limited computational resources of the onboard embedded processor, we

97



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

consider efficient DNNs such as EfficientNetV2 [64]. During training, the MMDAPN

architecture aims to optimize three tasks using multi-task learning: (1) classifying the

main top-level classes (i.e., correct or incorrect luggage positioning), (2) classifying the

source domain (e.g., cabin 1, cabin 2, cabin 3, etc.), and (3) classifying the fine-grained

scene descriptive subclasses (Figure 5.3).

The input data comes from two sources: (1) an annotated dataset of images gathered

from various cabins (real or synthetic), and (2) subclass prototypes generated by the

user-defined semantic hierarchical priors that guide the learning process. The former is

introduced batch by batch in each iteration of the training process, equally distributing

the data from each data source (i.e., cabin 1, cabin 2, etc.). Data samples include la-

bels for three tasks: luggage positioning correctness (0 or 1), domain ID (integer value),

and scene descriptive subclass ID (integer value). The latter uses a finite metric on

the hierarchical class set to supervise a prototypical network that associates each class

with a representation or prototype and classifies observations according to the nearest

prototype [132]. More specifically, the metric is defined by semantic distances among

subclasses under the form of a cost matrix that acts as a distortion-based regularizer for

the prototypical network.

Eq. (5.1) shows the loss function of MMPADNs. LC is a binary cross-entropy loss

for the luggage positioning correctness classification, LD is a binary or softmax cross-

entropy loss for the domain classification (depending on whether there are two or more

data source domains), LP is the loss for the subclass-prototype classification and LDt

the loss for the metric-distortion-based regularization. The loss weights λC , λD , λP

and λDt are floating-point values between 0 and 1, empirically selected to balance the

contribution of each loss.

L =λC L C +λDL D +λP L P +λDt L Dt (5.1)

By including LD in the loss function, the MMPADN learns how to distinguish each

domain during training and adjusts the backbone DNN’s weights to maximize the out-

come of the rest of the learning tasks in all domains. This helps the DNN learn the most

robust features for all domains simultaneously.

We rely on the approach of metric-guided prototypes proposed in [132] for the defi-

nitions of LP and LDt . We consider a training dataset N of N elements x ∈X N with

98



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

ground truth classes z ∈K N , hierarchically organized. A user-defined cost matrix D

defines a finite metric that considers the shortest path between nodes of the hierarchi-

cal K classes. Ω is the embedding space that forms a continuous metric space when

equipped with the distance function d : Ω×Ω 7→ R+. Eq. (5.2) shows an example of

D for the class hierarchy example of Figure 5.3, where rows and columns follow the

same order as the lower-level subclasses, i.e., 0: Correct_with_passenger_holding_non-

cabin_luggage, 1: Correct_with_passenger_nothing_else, 2: Correct_no_passenger_non-

cabin_luggage_on_the_seat, etc.

D =



0 2 4 4 6 6 6 6
2 0 2 4 6 6 6 6
4 2 0 2 6 6 6 6
4 4 2 0 6 6 6 6
6 6 6 6 0 2 4 4
6 6 6 6 2 0 2 4
6 6 6 6 4 2 0 2
6 6 6 6 4 4 2 0


(5.2)

In this example, we distinguish four semantic distance values: 0 for the lower-level

subclass with respect to itself, 2 for lower-level subclasses of the same top-level and

mid-level groups, 4 for subclasses of the same top-level group and different mid-level

class, and 6 for subclasses of different top-level groups.

Following this nomenclature, a prototypical network is characterized by an em-

bedding function f : X → Ω and a set π ∈ ΩK of K prototypes. Based on [138], a

prototypical network associates with an observation xn the posterior probability over

its class zn , as shown in Eq. (5.3).

p(zn = k|xn) = exp(−d( f (xn),πk ))∑
l∈K

exp(−d( f (xn),πl ))
,∀k ∈K (5.3)

Thus, LP is defined as the normalized negative log-likelihood of the true classes, as

shown in Eq. (5.4). This loss encourages the embedding function f (xn) to be close to

the prototype πzn and far from the other prototypes.

LP ( f ,π) = 1
N

∑
n∈N

(
d( f (xn),πzn )+ log

( ∑
l∈K

exp(−d( f (xn),πl ))

))
(5.4)

99



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Finally, LD t is defined as shown in Eq. (5.5). This loss enforces a metric-consistent

prototype arrangement to avoid conflicting with the second term of LP by scaling proto-

type coordinates inΩ by a scalar factor s. Thus, it encourages a low distortion between

s ·π scaled prototypes and D .

L Dt (π) = 1
K (K−1) min

s∈R+

∑
k,l∈K 2,k 6=l

(
sd(πk ,πl )−D[k,l ]

D[k,l ]

)2
(5.5)

5.2.1 Optimal multi-MMDAPN processing pipeline

The installation’s characteristics are determined by the cabin areas to be covered and the

minimum cabin luggage size. These characteristics include the number of cameras, their

placement, their lens characteristics, the number of image regions of interest (ROIs) an-

alyzed (Figure 5.2), and their resolution. However, deploying the multi-MMDAPN-based

approach optimally in a heterogeneous embedded processor onboard that satisfies the

onboard response latency and power consumption constraints is not straightforward.

The proposed end-to-end processing pipeline for this purpose is shown in Figure 5.5

and is composed of four modules: (1) multithreaded image capture, (2) batched image

pre-processing, (3) multi-MMPADN inference, and (4) response post-processing.

Figure 5.5: Multi-camera multi-MMDAPN-based end-to-end processing pipeline.

The first module produces a full-image frame pool in the GPU by capturing im-

ages from n cameras scheduled by n CPU threads and decoding them in the GPU. The

second module, composed of x pre-processing workers, consumes x batches of k im-

ages from this frame pool to produce a pool of batched cropped images corresponding

to p ROIs that are padded and resized to match the MMPADN’s input resolution in

100



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

GPU. Then, the third module, composed of y multi-MMPADN inference workers in

GPU-NPU, consumes y multi-ROI batches from this pool and delivers the classification

results to the fourth module that maps them in CPU to cabin placements to be shown

in the monitoring system interface.

Parameter Description
k number of images in a batch
p number of ROIs
x pre-processing threads / number of batches
y number of DNN inference threads

Table 5.1: Multi-MMDAPN processing pipeline parameter description

The values of k, p, x, and y must be carefully selected, as well as the XPU (typically,

GPU and/or NPU) where the MMPADN models will be deployed for inference to obtain

the optimal trade-off between latency and power consumption for a targeted embed-

ded processor that complies with onboard constraints. To help achieve this goal, we

propose algorithm 2.

Algorithm 2 Multi-MMDAPN processing pipeline optimization for the multi-camera
onboard system.

1: procedure PIPEOPT(m,I,c,kmax, xmax, ymax,Pthr ,∆thr )
2: copt = None
3: kopt = xopt = yopt =−1
4: Smin = BigNumber
5: for c in c do
6: for k ← 1 to kmax do
7: for x ← 1 to xmax do
8: for y ← 1 to ymax do
9: Pmax,∆avg ← eval(m,I,c,k, x, y)

10: if Pmax < Pthr&∆avg <∆thr then
11: S ← dmin((Pmax,∆avg)
12: if S < Smin then
13: copt = c
14: kopt = k
15: xopt = x
16: yopt = y

17: return copt,kopt, xopt, yopt

101



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Algorithm 2 evaluates the performance of various MMPADN-XPU deployment con-

figurations c using a testing dataset I of n videos processed by m MMDAPNs. The

algorithm measures the average latency ∆avg and maximum power consumption Pmax

for each deployment candidate configuration. It then selects all the configurations that

meet the maximum acceptable Pthr and ∆thr values. The optimal deployment configura-

tion is selected based on the minimum Euclidean distance Smin between the normalized

latency and power values and the origin (0,0) on the latency-power plane.

5.3 Experiments and discussion

5.3.1 The SmaCS dataset

To collect the required data for the SmaCS dataset [134], we built a cabin mockup and

generated synthetic data with 3D graphics. The mockup consists of one side of three

cabin seat rows, the aisle, and the covering cabin exterior made of polystyrene (Fig-

ure 5.6). It is illuminated by three possible light sources: (1) natural light coming from

the room’s windows beside it, (2) artificial light on top of the room, and (3) a spotlight

beside the cabin’s window to emulate directional sunlight. We recorded the data on dif-

ferent days, varying the illumination conditions. To monitor two seat rows, we put two

cameras on top of the four seats closer to the window and another on top of the aisle to

monitor the aisle and the two seats beside it.

We created a recording protocol that 18 participants followed to simulate different

situations with cabin and non-cabin luggage objects (Figure 5.7). The recording pro-

tocol specified the acting guide for passengers, such as how long they should sit in a

specific seat and where they should place the carried object, if any. The goal of the

recording protocol was to recreate a balanced number of situations, such as correctly

and incorrectly placed luggage.

On the other hand, we generated the synthetic data by following the methodology

explained in [136]. We modeled 22 different object types to simulate typical cabin and

non-cabin luggage objects, a cabin model representing a Boeing 737 aircraft, and a set

of human models with different poses and appearances for the seated passengers. The

appearance of the cabin and objects is randomized for higher variability.

102



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

Figure 5.6: The cabin mockup, AI-processor and camera setup used for the experiments.

Figure 5.7: The objects used for the MMDAPN experiments.

Figure 5.8 shows some images of the virtual environment that were used to generate

synthetic data.

In [134], we published the data of one of the seats (the closest to the cabin’s window

of the back row). For this seat, we obtained approximately 30K real and 7K synthetic sam-

ples. Figure 5.9 shows some examples of both real and synthetic ROI images. Figure 5.10

shows the distribution of the collected data regarding the defined subclasses.

103



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

(a) (b)

(c) (d)

Figure 5.8: Examples of the virtual environment used to generate synthetic images. (a) Ex-
terior view of a Boeing 737 airplane. (b) Interior perspective view of the airplane cabin. (c)
Cabin and non-cabin luggage virtual objects. (d) View of passengers holding their luggage.

Figure 5.9: Examples of image ROIs from captured images and synthetic images for the dif-
ferent fine-grained subclasses. The first two rows refers to real images while the third and
fourth rows refers to synthetic

104



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

Figure 5.10: Distribution of the eight fine-grained subclasses in the captured and gener-
ated samples. Subclasses with index from 0 to 3 represent correct situations and from 4 to 7
incorrect ones (cabin luggage incorrectly placed).

It can be seen that the number of samples per subclass in the synthetic data is bal-

anced but not in the real data. The reason is that even if the actors followed a recording

protocol, capturing samples representing the “empty seat” subclass (subclass 3) in the

intermediate moments between two situations is inevitable.

5.3.2 Accuracy and reliability evaluation

To test the accuracy and reliability of the proposed MMDAPN, we separated a subset of

approximately 2,700 images for testing (real samples) and used the rest of them (real

and synthetic) to train the model. The testing images do not contain visually similar

situations (e.g., the same person with the same object and illumination) as it haappens

in the training data.

We used EfficientNetV2-B0 [64] as the backbone network of the MMDAPN with pre-

trained weights from the ImageNet dataset [60]. We resized input images to 300×300

pixels, as it is the minimum size that allows visualizing small objects for classification,

and empirically set the values of λC = 0.8, λD = 0.6, λP = 1, λDt = 1. We used D as shown

in Eq. 5.2.

105



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Table 5.2 presents a comparison of MMDAPN’s performance on the test set against

nine state-of-the-art alternatives. These alternatives include: (1) an image classi-

fier based on EfficientNetV2-B0 [64], trained solely on overall correctness classes, (2)

DANN with EfficientNetV2-B0 as the backbone [137], trained in a similar manner, (3)

EfficientNetV2-B0 trained using subclasses and inferring overall correctness from them,

(4) DANN with subclasses, (5) EfficientNetV2-B0 with multi-tasking, where the main

task is overall correctness and subclasses serve as auxiliary tasks [131], (6) DANN with

multi-tasking, (7) EfficientNetV2-B0 with prototypes of subclasses [132], used for infer-

ring overall correctness, and (8) DANN with prototypes, following the same approach as

(7), and (9) EfficientNetV2-B0 with multi-tasking and prototypes of subclasses.

Table 5.2: Comparison of MMDAPN with subclass accuracy and overall correctness on the
test set with state-of-the-art alternatives (Sc: subclass).

Correct cabin luggage position Incorrect cabin luggage position
Method Sc0 Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Correctness
EfficientNetV2 [64] - - - - - - - - 85.29%
EfficientNetV2[64] subclasses 76.09% 100% 94.93% 100% 73.19% 66.67% 100% 72.46% 89.02%
EfficientNetV2 [64] + multi-task [131] 77% 96% 100% 100% 74% 65% 100% 100% 92%
EfficientNetV2 [64] + prototypes[132] 68% 97% 54% 100% 45% 66% 100% 100% 88%
EfficientNetV2 [64] + multi-task [131] 76% 99% 96% 100% 57% 66% 100% 100% 90%
+ prototypes[132]
DANN [137] - - - - - - - - 94.4%
DANN [137] subclasses 79% 94% 96% 100% 77% 70% 100% 99% 91%
DANN [137] + multi-task [131] 60.7% 99.7% 97.9% 100% 76.3% 100% 100% 99.3% 95.0%
DANN [137] + prototypes [132] 62% 100% 99% 100% 54% 79% 100% 99% 90%
MMDAPN (ours) 65.4% 100% 100% 100% 75.2% 97.7% 99.0% 100% 96.9%

The results reveal that all methods achieve perfect detection accuracy for an empty

seat (subclass 3), with a 100% accuracy rate across all cases. However, the most chal-

lenging scenarios arise in subclass 0 (passenger holding non-cabin luggage), reaching

a maximum accuracy of 79%, and subclass 4 (cabin luggage on the egress with a pas-

senger), reaching a maximum accuracy of 77%. This outcome is to be expected since

an empty seat provides visual consistency, whereas the presence of a passenger intro-

duces increased visual variability. Additionally, distinguishing between non-cabin and

cabin luggage can be difficult, particularly when the luggage is partially occluded by

passengers. Similarly, detecting luggage on the egress can present challenges for the

same reason.

Among all the methods considered, MMDAPN achieves the highest accuracy in

overall correctness classification, achieving a remarkable accuracy of 96.9%. This re-

sult surpasses the second-best method (DANN + multi-task) by 1.9% and outperforms

106



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

the least accurate method (EfficientNetV2) by a substantial margin of 11.61%. Further-

more, MMDAPN also achieves the highest scores in four out of the subclasses, which is

the highest number of top rankings among all the methods. However, it is worth em-

phasizing that the most significant outcome in this particular use case is the overall

correctness classification.

The closest competitor to MMDAPN is DANN with multi-tasking, but MMDAPN

consistently yields superior results across all categories except for three subclasses (sub-

classes 4, 5, and 6), where multi-task DANN achieves marginally better performance.

The results further demonstrate that incorporating both the multi-task approach,

which integrates subclass information, and the matrix-guided prototypical component,

which influences the positioning of subclasses in the feature space, leads to improved

classification accuracy. Based on these findings, we conclude that the MMDAPN archi-

tecture effectively classifies whether cabin luggage is correctly or incorrectly placed on

the monitored seat.

To observe the impact of the metric-guided prototypical network component on the

arrangement of features in the feature space, we extracted the features from the training

images and employed principal component analysis (PCA) for dimensionality reduc-

tion, aiming to visualize the results. In Figure 5.11, we present the extracted features

using MMDAPN with and without the metric-guided prototypical network component.

Figure 5.11: Image features visualization after PCA. Each subclass is represented using a
different color. Features are extracted using the trained MMDAPN (right) and the model
without the metric-guided prototypical network component (left).

In the case of training without the prototypical metric guidance (Figure 5.11, left),

the features of different subclasses appear more entangled in the space, as exemplified

107



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

by subclasses 4, 5, and 7. Conversely, when the metric-guided prototypical network

component is incorporated (Figure 5.11, right), the features of each subclass exhibit

clearer separation, and subclasses that are more similar to each other, such as subclass

6 and 7, are situated closer in the feature space. Consequently, in situations where mis-

classification occurs, the outcomes would be more meaningful, and the system would

be more reliable.

5.3.3 Optimal processing pipeline evaluation

We conducted both qualitative and quantitative evaluations to assess the effectiveness

of our optimal processing pipeline. The qualitative evaluation involved comparing var-

ious features of our approach with state-of-the-art alternatives. On the other hand,

for the quantitative evaluation, we presented experimental results of deploying multi-

MMDAPN using a practical example on an NVIDIA Jetson AGX Xavier platform. In

Table 5.3, we summarize the qualitative comparison across five different categories.

Table 5.3: Qualitative comparison of our Multi-MMDAPN processing pipeline with respect
to alternative state-of-the-art approaches.

Method DNN types DNN workload Optimization XPUs Deployment
type criteria involved config

[83] Classifiers Variable ∆min CPU-GPU Manual
[84] Classifiers Variable ∆min CPU-GPU Manual

[85][86] Detectors Constant Max throughput GPU-NPU Manual
[87] Classifiers Variable ∆min GPU Manual
[88] Detectors Variable ∆ and RAM CPU Manual

and classifiers trade-off
[89] Classifiers Variable ∆min GPU Manual

Ours Classifiers Constant ∆ and P CPU-GPU Automatic
trade-off -NPU

As described previously, our approach focuses on constantly operating classifica-

tion DNNs. While other works may employ detection DNNs or a combination of both

types with variable workloads, our multi-DNN deployment aims to handle different

situations specific to our use case. Unlike deployment methodologies that primarily

prioritize inference speed and memory management, our deployment strategy also

takes into account power consumption, optimizing the processing pipeline across the

CPU-GPU-NPU subsystems. As illustrated in Figure 5.5, the CPU is responsible for

108



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

post-processing and capture tasks, while the preprocessing and multi-DNN inference

tasks are offloaded to GPU and NPU hardware accelerators. Considering that the em-

bedded device installed in the aircraft must adhere to low-power specifications, our

approach strikes a balance between latency and power consumption measurements.

Additionally, in contrast to state-of-the-art alternatives, which require manual configu-

ration of deployment parameters, our approach automatically calculates the optimal

configuration parameters for the processing pipeline.

In the quantitative evaluation, we selected JEDI [86] from the methods listed in

Table 5.3 as it shares the same DNN workload type as our approach. However, it is im-

portant to note that while JEDI uses DNNs for detection (specifically, YOLOv4 [139]), our

approach focuses on classification. This distinction implies that JEDI may require more

computational resources compared to our pipeline. Furthermore, both our pipeline

and JEDI employ different configurations that influence the trade-off between latency

and power consumption. As a result, it becomes necessary to evaluate which approach

yields the best results when considering their respective configurations.

In order to compare different deployment configurations, we conducted mea-

surements of latency and power consumption using algorithm 2 with the following

configuration parameters: kmax = 15, xmax = 15, ymax = 6, Pthr = 30W, and ∆thr =
40ms. We considered various batch sizes, specifically k = 1,3,5,15, x = 1,3,5,15, and

y = 1,2,3,6. To calculate the average latency per image ∆avg, we used the formula

(Tl −T f )/num_processed_frames, where Tl represents the total processing time and T f

denotes the time spent on the framework. Power consumption measurements were

taken every second to prevent system saturation. For the evaluation of JEDI, we used

their publicly available implementation [140]. The methodology employed to measure

latency and power consumption was consistent for both our approach and JEDI.

The deployment software used for the NVIDIA Jetson Xavier AGX was JetPack 4.6.2,

which incorporated TensorRT 8.2.1 and CUDA 10.2. The system was configured for

MAXN power mode, and the Jetson clocks were activated. We employed 15 full-HD

cameras as input sources for our approach. Specifically, our approach used six ROIs,

each trained with an MMDAPN model. This resulted in a total of six MMDAPNs, with

EfficientNetV2-B0 [64] serving as the backbone. The cropped images were resized to

dimensions of 300×300 pixels. For the purpose of comparison with JEDI, we selected

109



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Figure 5.12: The Multi-MMDAPN processing pipeline evaluation to find the optimal deploy-
ment configuration with Jetson Xavier AGX 32GB. The optimal configurations are selected
in red rectangle.

their optimized implementation of YOLOv4 [139] with an input size of 416×416 pixels

from their publicly available object detection implementations [140].

The Jetson Xavier AGX is equipped with a CPU, a GPU, and two NPUs (known as

NVDLAs). In these experiments, we quantized both the MMDAPN models and YOLOv4

models to FP16 precision, as it offers improved latency without significant accuracy loss.

While INT8 quantization is also possible through a calibration process, it can result in a

notable decrease in accuracy due to the reduced numeric range compared to FP16 or

FP32.

Figure 5.12 depicts the optimal pipeline configurations for our approach and JEDI.

We only considered candidates that fell within the limits of ∆thr and Pthr. Each candi-

date’s hardware deployment configuration is represented by different shapes. For our

approach, rectangles represent that all DNNs run on the GPU, triangles represent 4

110



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

DNNs on the GPU and 2 on the 2 NPUs (one on each), and circles indicate 5 DNNs on

the GPU and 1 on a single NPU. Stars symbolize JEDI’s optimized YOLOv4 for GPU con-

figurations k = 1,3,5,15 and x = 1,3,5,15 that fall within the ∆thr and Pthr limits. Since

JEDI does not support multi-DNN execution, we considered y = 1 for DNN threading.

The hexagon denotes JEDI’s best YOLOv4 configuration, utilizing 2 NVDLAs and GPU

hardware with the PND-A technique and a (82) cutpoint, employing a model configura-

tion of k = 1, x = 1, and y = 1. The graph presents the latency in milliseconds and power

consumption in Watts.

The experiment demonstrates that our method’s optimal configuration (GPU2NPU

_k15x1y6) outperforms JEDI’s (YOLOv4GPU_k5x3y1): ∼16ms/∼15W compared to JEDI’s

∼20ms/∼22W. Our method’s optimal configuration uses the GPU and 2 NPUs for multi-

DNN inference with k = 15, x = 1, and y = 6. This suggests that loading 15 frames to

preprocess all crops in the same thread (k = 15, x = 1), but executing DNN inference in

a separate thread, is more efficient (y = 6). Notably, 80% of the top 10 candidates em-

ploy a GPU-NPU hardware combination (8 out of 10). The experiment also reveals that

using two threads for DNN (y = 2) yields the fastest latency results with GPU hardware

configuration (GPU_k15x1y2). However, using y = 3 results in the worst performance

across all GPU configurations, with higher latencies and power consumption. JEDI’s

YOLOv4 candidates for GPU configurations indicate that employing multiple prepro-

cessing threads leads to faster inference results for x = 5 and x = 15, surpassing the

MMDAPN approach’s performance with a single thread for DNN (y = 1).

5.4 On-site readjustment of the system in an aircraft cabin

One of the main challenges in using DNNs for practical applications is their need for

significant computational resources for fine-tuning when false positives (FPs) and nega-

tives (FNs) are detected. This can be a problem when these resources are not available

onboard, such as in aircrafts where internet connectivity for cloud computing is not

always possible. As a result, alternative approaches must be considered for model

readjustments.

Figure 5.13 shows our proposed workflow for this goal, where we consider the

following components:

111



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Figure 5.13: The workflow for multi-DNN-based onboard video analytics with on-site
model readjustment.

1. The video acquisition component (VAC): It is in charge of managing all aspects

of video acquisition. This includes optimal and multithreaded camera capture, as

well as image encoding and decoding functionalities for the source image. Addi-

tionally, VAC contains various image processing algorithms to prepare data for

multi-DNN model inference.

2. The AI component (AIC): It contains the algorithm to process the captured im-

ages for the TTL-condition classification. This operation is done in two stages:

first, feature vectors are extracted with the MMDAPNs explained above, and then,

these vectors are projected to discriminant embedded spaces (DES) modeled

with manifold-learning-based approaches such as Linear Discriminant Analysis

(LDA) [141]. The DES produces the effect of increasing inter-class and reducing

intra-class feature distances.

3. The data management component (DMC): It is the core component of the ap-

plication. It processes the responses from the AIC to obtain the TTL-condition

classification result, given a user-defined sensitivity threshold. Meanwhile, the

user interface interacts with the DMC’s features to manage the application’s logic.

4. The communication interface component (CIC): It manages the bi-directional

communication between the AI-processor result information and the cabin video

monitoring system (CVMS) of the aircraft.

112



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

The AIC’s DES models are trained using representative feature vectors for each

class. Training DES models such as LDA is faster and can be done on an embedded

AI-processor such as the Jetson Xavier AGX. This allows for on-site readjustment with

new samples, a process that we call on-site incremental learning (OSIL). To prevent

model degradation during OSIL, quality checks are performed using a testing dataset.

If a model fails to meet the required quality, it is not updated on-site. In that case the

MMDAPN should be retrained off-site.

The CVMS interface, shown in Figure 5.14, allows for system readjustment using the

OSIL approach. Signals from the Jetson board are received via Ethernet. The interface

displays minimalistic graphics of the system’s response for analyzed seats and two corri-

dor sections on the left: green indicates a correct TTL situation, red indicates incorrect,

and yellow indicates uncertain. If a failure is observed (Figure 5.14), the user can correct

it by stopping the system using the central blue buttons, selecting the location of the

failure and the correct class using the central green and red buttons, and then retraining

and restarting the system using the central blue buttons.

Figure 5.14: An example of the CVMS: On the left, the control panel and seat monitoring.
On the right, the post-processing results.

113



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

5.4.1 Experimental results

To evaluate the OSIL procedure, we conducted additional experiments in a cabin

mockup. Over one month, we recorded several trials with different passengers perform-

ing various use cases in each cabin seat. They wore different clothes and varied their

body and object poses while being recorded. Throughout these recordings, the system

was operational at all times. Then, an evaluator segmented the videos to count distin-

guishable trials and check the system’s response. Whenever a FP or FN was detected, it

was counted towards the accuracy, FP, and FN calculations.

These trials were conducted under three different illumination conditions: high

(500-1500 lux), normal (250-450 lux), and low (10-100 lux). The cameras were set to au-

tomatically adjust the signal’s gain to accommodate these varying illumination levels.

As a result, the visual appearance of the captured images remained relatively consistent

across all three conditions. The recordings were split into two testing sessions, each

lasting two weeks.

During the first session, the system was tested without using OSIL. In the second

session, the OSIL approach was applied to adjust the system whenever a FP or FN was

detected. To evaluate the potential of OSIL, we then compared the differences observed

between the two sessions.

The number of trials counted during the first session is summarized in Table 5.4.

Here PAX refers to a passenger seat. Figure 5.5 shows the obtained average accuracy, FP,

and FN results. We confirmed that illumination differences did not significantly impact

the system’s functioning. Only two cases had results below 90%: non-cabin luggage on

the PAX (84.82%) and passenger with cabin luggage in the egress (87.04%). The average

accuracy was 94.61%.

Table 5.4: Overview of the trials conducted in testing session 1.

114



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

Table 5.5: Summary of the results obtained in testing session 1.

The observed main reasons for failure in this session were the following:

• non-cabin cabin luggage on the PAX vs Passenger holding cabin luggage: Jackets
are confused with back bags and vice versa.

• Luggage under the front seat in the exit row: A small portion of the object is visible
in some cases.

• Passenger with cabin luggage in the egress: A small portion of the object is visible
in some cases.

In contrast, Table 5.6 summarizes the number of trials counted during the second

session. Table 5.7 shows the average accuracy, FP, and FN results. In this case, all cases

are above 90%, and the average accuracy is 95.74%. Therefore, this demonstrates that

OSIL has improved the system’s functioning.

Table 5.6: Overview of the trials conducted in testing session 2.

115



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Table 5.7: Summary of the results obtained in testing session 2.

5.5 Conclusions

In this work, we presented an approach for verifying the proper placement of luggage

in aircraft cabins by deploying on-board video analytics with an optimal balance be-

tween response delay and power consumption. Our approach combines metric-guided

multi-task domain adversarial prototypical Networks (MMDAPNs) with an optimized

processing pipeline that takes advantage of the heterogeneous computing capabilities

of embedded processors. To assess the effectiveness of our approach, we conducted

experiments using the SmaCS dataset [134], which was specifically created for research

in this domain.

Experimental results demonstrate that the MMDAPN architecture significantly en-

hances the classification accuracy of overall luggage positioning correctness when

compared to existing state-of-the-art alternatives. This notable improvement can be

attributed to the incorporation of a subclasses hierarchy, along with the matrix-guided

prototypical component, which effectively influences the arrangement of subclasses

within the feature space.

In contrast to alternative state-of-the-art multi-DNN processing pipelines, our ap-

proach harnesses the heterogeneous computing capabilities available and effectively

determines the optimal configuration that strikes a balance between processing latency

and power consumption. To evaluate these capabilities, we conducted an end-to-end

deployment of the multi-MMDAPN system and compared it to an equivalent state-of-

the-art approach for object detection [140] on the Jetson AGX platform. Our findings

indicate that employing higher batch sizes and increasing the number of worker DNN

116



5. OPTIMIZING END-TO-END MULTI-DNN-BASED VIDEO ANALYTICS ON
THE EDGE

threads contribute to more efficient pipeline processing in both scenarios. Furthermore,

we observed that the simultaneous multi-DNN classification approach outperforms

object detection in terms of optimization and efficiency.

In future work, we plan to investigate incremental learning techniques that enable

the system to adapt and readjust on-site using the embedded processor in response

to false positives and negatives. Additionally, we will explore methods to incorpo-

rate spatio-temporal features into the system without compromising its performance,

aiming to enhance its accuracy and robustness further.

117





Part IV

Conclusions

119





CHAPTER

6
Conclusions and future work

6.1 Conclusions

This thesis studied the key factors for the optimal deployment of DNN-based vision

applications in diverse and heterogeneous intelligent system infrastructures. The main

objective was to generate and optimally deploy a modular processing pipeline to im-

prove performance indices. More specifically, this work proposes different strategies

to effectively address optimal deployment issues considering the needs of intelligent

system infrastructures, tailored to the hardware/software specifications and adjusted to

the current DNN inference engines and optimizations. Our concluding observations

and the corresponding strategies proposed in this research work are the following:

Observation 1: A serverless cloud computing model is a suitable alternative for

deploying end-to-end DNN-based vision applications at high scale.

Strategy 1: The optimal management of the allocated memory of serverless function

instances is a crucial factor to maximize the DNN processing performance at minimum

cost. Furthermore, the bottleneck resides in the DNN processing task of each server-

less function instance. While lightweight DNN models can be deployed effectively in

serverless environments, deploying large DNN models is not currently feasible due to

serverless limitations.

121



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

In Chapter 3, we proposed two contributions to define these strategies. The first ap-

proach assesses the DNN performance in serverless environments. Based on the MLPerf

standard guidelines, this contribution presents a novel decomposition methodology

for benchmarking DNN inference in a serverless function execution model. Chapter 3

also proposed an approach to optimally deploy several DNN models to FaaS platforms

supported by the latest computer vision techniques. Through different experimental

studies, we conclude that defining optimal memory allocation for each function influ-

ences the inference latency and economic cost. In particular, the allocated memory

amount performed best between 768MB and 1536MB in our set of experiments. Also, the

OpenVINO IE DNN inference engine and OpenVINO IR model optimizations contribute

to reduce the inference latency in Amazon Lambda hardware. Finally, the research

results indicate that DNN processing latency has negligible influence on throughput

results providing 51-83 queries per second in Amazon Lambda.

Observation 2: Deploying DNN-based vision applications on IoT platforms re-

quires dealing with device hardware heterogeneity and DNN inference optimization.

But it also requires focusing on the optimal processing of other components such as

pre-processing and user interaction while preserving privacy and enhancing security.

Strategy 2: Create deployment strategies tailored to the target hardware and soft-

ware specificities (operating system (OS), RAM, AI accelerators), focused on the DNN

environment (number of DNN models, DNN model configurations, task delegation

strategies), and, designed to end-to-end ISVA application requirements (encryption

algorithm, network balance, and user interaction workflow).

In chapter 4 we described a knowledge-driven approach for the optimal deployment

of DNN-based face recognition solutions in a heterogeneous IoT platform for older

adult care and industrial applications. This methodology tackles its specific challenges

in terms of ease of use, hardware heterogeneity, and security. Ease of use is covered by a

customized workflow that offers an intuitive interface and considers the shared use be-

tween the user and companions, by means of automated feedback to automatically take

the “selfie” with the best possible quality. Device heterogeneity is addressed by a smart

deployment optimizer, capable of selecting the appropriate DNN inference approach

for the targeted device’s hardware specifications. Data security is enforced by a scheme

that avoids the transmission and storage of biometric data in the cloud and employs

fully homomorphic encryption to perform all face matching operations directly on the

122



6. CONCLUSIONS AND FUTURE WORK

encrypted domain. A qualitative comparison and preliminary experiments to select the

optimal inference approach for different computing situations (different batch sizes

and computing noise) reveal its potential for the desired goal.

Observation 3: Optimally deploying DNN-based vision applications on edge video

analytic pipelines to maximize the hardware usage while minimizing power consump-

tion demands the optimization of the whole processing pipeline. This requires a deep

analysis of DNN model optimizations, pre- and post- image processing algorithms,

resource scheduling, and parallelization strategies.

Strategy 3: To effectively address this observation, the following key factors should

be taken into consideration: (1) Identify the ISVA end-to-end vision application re-

quirements and performance metrics to design the processing pipeline, (2) Create an

optimal scheduling method for the video analytics pipeline that maximizes the het-

erogeneous hardware capabilities for DNN inference, reduces the complexity of DNN

models, minimizes processing latency, and maintains prediction accuracy.

In Chapter 5 we present an end-to-end approach for deploying a multi-DNN-based

on-board video analytics system for edge computing environments. This approach

takes the verification of the correct positioning of luggage in aircraft as a use case sce-

nario. More specifically, this approach is done by deploying onboard video analytics that

balances response time and power consumption. This methodology uses metric-guided

multi-task domain adversarial prototypical Networks (MMDAPNs) and an optimal

processing pipeline. This leverages the heterogeneous computing capabilities of the

embedded processor. We evaluated our approach using the SmaCS dataset [134]. The

pipeline processing algorithm automatically finds the best balance between latency and

power consumption. To enable onboard system adjustments, MMADPNs can serve as

feature extractors that are projected onto retrainable discriminant embedded spaces

modeled using manifold-learning approaches. Based on the experiments we conclude

that larger batch sizes and more worker DNN threads are more efficient for optimal

pipeline processing.

6.2 Future work

Serverless computing’s high scaling capabilities offer a bright future for ISVA vision ap-

plications and services. However, to overcome serverless computing limitations, further

123



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

research is needed to reduce DNN model and computation complexity. One poten-

tial solution is to distribute DNN processing into multi-tenant systems. The design

space is vast, with different serverless environments, benchmarks, and hardware tar-

gets requiring further investigation. We plan to expand our benchmarking evaluations

to popular serverless function platforms and explore benchmarking more complex

ML systems that consider a computing continuum formed by mobile, edge, and cloud

resources [106], using standards such as MLPerf.

As advancements in DNN architectures and optimizations continue, the diverse

nature of intelligent system infrastructure is likely to present more challenges and is-

sues. For example, there is a growing interest in research on explainable AI systems,

which requires the integration of additional processes to interpret the results of DNN

black-boxes. This can pose a challenge for real-time systems. Therefore, it is essential

to conduct further experiments with a broader range of users and equipment and to

study the interaction issues with these techniques in greater depth. Knowledge-driven

approaches may be helpful in addressing these challenges.

The research and developer community is suggesting guidelines for the deployment

life-cycle of ML, from training to inference processing in the context of MLOps. These

guidelines focus on deploying conventional object detection and classification results

for computer vision problems in ISVA systems. As AI hardware, DNN deployment tools,

and architectures continue to develop, new approaches for standardizing deployment

strategies will be proposed by the research community for the MLOps community.

124



Part V

Appendix

125





APPENDIX

A
Publications related to the

research done for this thesis

A.1 Benchmarking deep neural network inference perfor-

mance on serverless environments with MLPerf

Title: Benchmarking deep neural network inference performance on serverless environ-

ments with mlperf

Authors: Unai Elordi, Luis Unzueta, Jon Goenetxea, Sergio Sanchez-Carballido, Ignacio

Arganda-Carreras, Oihana Otaegui

Journal: IEEE SOFTWARE

Year: 2021

DOI: https://.doi.org/10.1109/MS.2020.3030199

Abstract: We provide a novel decomposition methodology from the current MLPerf bench-

mark to the serverless function execution model. We have tested our approach in Amazon

Lambda to benchmark the processing capabilities of OpenCV and OpenVINO inference

engines.

127

https://.doi.org/10.1109/MS.2020.3030199


OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

A.2 Designing automated deployment strategies of face

recognition solutions in heterogeneous iot platforms.

Title: Designing automated deployment strategies of face recognition solutions in het-

erogeneous iot platforms.

Authors: Unai Elordi, Chiara Lunerti, Luis Unzueta, Jon Goenetxea, Nerea Aranjuelo,

Alvaro Bertelsen, Ignacio Arganda-Carreras

Journal: Information

Year: 2021

DOI: https://doi.org/10.3390/info12120532

Abstract: In this paper, we tackle the problem of deploying face recognition (FR) solu-

tions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the

optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices

(e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while

respecting the user’s; privacy, and the design of appropriate user interaction with facial

verification mechanisms for all kinds of users. We analyze different approaches to solv-

ing all these challenges and propose a knowledge-driven methodology for the automated

deployment of DNN-based FR solutions in IoT devices, with the secure management of

biometric data, and real-time feedback for improved interaction. We provide some prac-

tical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and

NVIDIA’s hardware platforms as IoT devices.

A.3 Optimal deployment of face recognition solutions in a

heterogeneous iot platform for secure elderly care applica-

tions.

Title:Optimal deployment of face recognition solutions in a heterogeneous iot plat-

form for secure elderly care applications.

Authors: Unai Elordi, Alvaro Bertelsen, Luis Unzueta, Nerea Aranjuelo, Jon Goenetxea,

Ignacio Arganda-Carreras

Proceedings: Procedia Computer Science

128

https://doi.org/10.3390/info12120532


A. PUBLICATIONS RELATED TO THE RESEARCH DONE FOR THIS THESIS

Year: 2021

DOI: https://doi.org/10.1016/j.procs.2021.09.093

Abstract: Face recognition provides a desirable solution for authentication and surveil-

lance in Internet of Things platforms for elderly care. However, its inclusion is challenging

because of the possibly reduced interaction capabilities of users, the high variety of inter-

action devices, and the need of managing biometric data securely. Our approach relies

on lightweight deep neural networks for secure recognition and to guide users during

interaction. An automated procedure selects the appropriate inference engine, model

configurations, and batch size, based on edge device characteristics. Biometric data is

homomorphically encrypted to preserve privacy. An evaluation with respect to state-of-

the-art alternatives shows its potential.

A.4 On-demand Serverless Video Surveillance with Opti-

mal Deployment of Deep Neural Networks.

On-demand Serverless Video Surveillance with Optimal Deployment of Deep Neural

Networks.

Authors: Unai Elordi, Luis Unzueta, Jon Goenetxea, Estíbaliz Loyo, Ignacio Arganda-

Carreras, Oihana Otaegui

Proceedings: VISIGRAPP (4: VISAPP)

Pages: 717-723

publisher: SciTePress

organization: INSTICC

isbn: 978-989-758-488-6

issn: 2184-4321

Year: 2021

DOI: https://doi.org/10.5220/0010344807170723

Abstract: We present an approach to optimally deploy Deep Neural Networks (DNNs) in

serverless cloud architectures. A serverless architecture allows running code in response

to events, automatically managing the required computing resources. However, these

resources have limitations in terms of execution environment (CPU only), cold starts,

129

https://doi.org/10.1016/j.procs.2021.09.093
https://doi.org/10.5220/0010344807170723


OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

space, scalability, etc. These limitations hinder the deployment of DNNs, especially con-

sidering that fees are charged according to the employed resources and the computation

time. Our deployment approach is comprised of multiple decoupled software layers that

allow effectively managing multiple processes, such as business logic, data access, and

computer vision algorithms that leverage DNN optimization techniques. Experimental

results in AWS Lambda reveal its potential to build cost-effective on-demand serverless

video surveillance systems.

A.5 Leveraging Synthetic Data for DNN-Based Visual Ana-

lysis of Passenger Seats.

Leveraging Synthetic Data for DNN-Based Visual Analysis of Passenger Seats

Authors: Nerea Aranjuelo, Jose Luis Apellaniz, Luis Unzueta, Jorge García, Sara García,

Unai Elordi and Oihana Otaegui

Journal: SN Computer Science 4

issn: 2661-8907

Year: 2023

DOI: https://doi.org/10.1007/s42979-022-01453-x

Abstract: Deep neural network (DNN)-based vision systems could improve passenger

transportation safety by automating processes such as verifying the correct positioning of

luggage, seat occupancy, etc. Abundant and well-distributed data are essential to make

DNNs learn appropriate pattern recognition features and have enough generalization

ability. The use of synthetic data can reduce the effort of generating varied and annotated

data. However, synthetic data usually present a domain gap with real-world samples,

that can be reduced with domain adaptation techniques. This paper proposes a method-

ology to build simulated environments to generate balanced and varied synthetic data

and avoid including redundant samples to train classification DNNs for passenger seat

analysis. We show a practical implementation for detecting whether luggage is correctly

placed or not in an aircraft cabin. Experimental results show the contribution of the syn-

thetic samples and the importance of correctly discarding redundant data.

130

https://doi.org/10.1007/s42979-022-01453-x


A. PUBLICATIONS RELATED TO THE RESEARCH DONE FOR THIS THESIS

A.6 Building Synthetic Simulated Environments for Con-

figuring and Training Multi-camera Systems for Surveil-

lance Applications

uilding Synthetic Simulated Environments for Configuring and Training Multi-

camera Systems for Surveillance Applications

Authors: Unai Elordi, Luis Unzueta, Jon Goenetxea, Estíbaliz Loyo, Ignacio Arganda-

Carreras, Oihana Otaegui

Proceedings: VISIGRAPP (5: VISAPP)

Pages: 80-91

publisher: SciTePress

organization: INSTICC

isbn: 978-989-758-488-6

issn: 2184-4321

Year: 2021

DOI: https://doi.org/10.5220/0010344807170723

Abstract: Synthetic simulated environments are gaining popularity in the Deep Learning

Era, as they can alleviate the effort and cost of two critical tasks to build multi-camera

systems for surveillance applications: setting up the camera system to cover the use cases

and generating the labeled dataset to train the required Deep Neural Networks (DNNs).

However, there are no simulated environments ready to solve them for all kind of sce-

narios and use cases. Typically, ‘ad hoc’ environments are built, which cannot be easily

applied to other contexts. In this work we present a methodology to build synthetic simu-

lated environments with sufficient generality to be usable in different contexts, with little

effort. Our methodology tackles the challenges of the appropriate parameterization of

scene configurations, the strategies to generate randomly a wide and balanced range of

situations of interest for training DNNs with synthetic data, and the quick image cap-

turing from virtual cameras considering the rendering bottlenecks. We show a practical

implementation example for the detection of incorrectly placed luggage in aircraft cabins,

including the qualitative and quantitative analysis of the data generation process and its

influence in a DNN training, and the required modifications to adapt it to other surveil-

lance contexts.

131

https://doi.org/10.5220/0010344807170723


OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

A.7 Building a Camera-based Smart Sensing System for

Digitalized On-demand Aircraft Cabin Readiness Verifica-

tion

Building a Camera-based Smart Sensing System for Digitalized On-demand Aircraft

Cabin Readiness Verification

Authors: Luis Unzueta, Sandra Garcia, Jorge Garcia, Valentin Corbin, Nerea Aranjuelo,

Unai Elordi, Oihana Otaegui, Maxime Danielli

Proceedings: Proceedings of the International Conference on Robotics, Computer Vi-

sion and Intelligent Systems - ROBOVIS

Pages: 98-105

publisher: SciTePress

organization: INSTICC

isbn: 978-989-758-479-4

Year: 2021

DOI: https://doi.org/10.5220/0010128500980105

Abstract: Synthetic simulated environments are gaining popularity in the Deep Learning

Era, as they can alleviate the effort and cost of two critical tasks to build multi-camera

systems for surveillance applications: setting up the camera system to cover the use cases

and generating the labeled dataset to train the required Deep Neural Networks (DNNs).

However, there are no simulated environments ready to solve them for all kind of sce-

narios and use cases. Typically, ‘ad hoc’ environments are built, which cannot be easily

applied to other contexts. In this work we present a methodology to build synthetic simu-

lated environments with sufficient generality to be usable in different contexts, with little

effort. Our methodology tackles the challenges of the appropriate parameterization of

scene configurations, the strategies to generate randomly a wide and balanced range of

situations of interest for training DNNs with synthetic data, and the quick image cap-

turing from virtual cameras considering the rendering bottlenecks. We show a practical

implementation example for the detection of incorrectly placed luggage in aircraft cabins,

including the qualitative and quantitative analysis of the data generation process and its

132

https://doi.org/10.5220/0010128500980105


A. PUBLICATIONS RELATED TO THE RESEARCH DONE FOR THIS THESIS

influence in a DNN training, and the required modifications to adapt it to other surveil-

lance contexts.

A.8 How can deep neural networks be generated efficiently

for devices with limited resources?

How can deep neural networks be generated efficiently for devices with limited re-

sources?

Authors: Unai Elordi, Luis Unzueta, Ignacio Arganda-Carreras, Oihana Otaegui

Proceedings: Articulated Motion and Deformable Objects - 10th International Confer-

ence

Pages: 4-33

publisher: Springer International Publishing

isbn: 978-3-319-94544-6

Year: 2018

DOI: https://doi.org/10.5220/0010128500980105

Abstract: Despite the increasing hardware capabilities of embedded devices, running

a Deep Neural Network (DNN) in such systems remains a challenge. As the trend in

DNNs is to design more complex architectures, the computation time in low-resource de-

vices increases dramatically due to their low memory capabilities. Moreover, the physical

memory used to store the network parameters augments with its complexity, hindering a

feasible model to be deployed in the target hardware. Although a compressed model helps

reducing RAM consumption, a large amount of consecutive deep layers increases the com-

putation time. Despite the wide literature about DNN optimization, there is a lack of

documentation for practical and efficient deployment of these networks. In this paper, we

propose an efficient model generation by analyzing the parameters and their impact and

address the design of a simple and comprehensive pipeline for optimal model deployment.

133

https://doi.org/10.5220/0010128500980105


OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

A.9 Optimizing Video Analytics Deployment for In-Flight

Cabin Readiness Verification

Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification

Authors: Unai Elordi, Nerea Aranjuelo, Luis Unzueta, Jose Luis Apellaniz, Ignacio

Arganda-Carreras

Journal: IEEE access

DOI: https://doi.org/10.5220/0010128500980105

Abstract: In this paper, we propose an approach to optimize the deployment of on-board

video analytics for checking the correct positioning of luggage in aircraft cabins. The

system consists of embedded cameras installed on top of the cabin and a heterogeneous

embedded processor. Each camera covers multiple regions of interest (i.e., multiple seats

or aisle sections) to minimize the number of cameras required. Each image region is pro-

cessed by a separate image classification algorithm trained with the expected kind of

visual appearance considering the effect of perspective and lens distortion. They clas-

sify these regions as correct or incorrect for cabin readiness by exploiting the hierarchical

structure of classes composed of different configurations of passengers’ and objects’ pres-

ence or absence and the objects’ location. Our approach leverages semantic distances

between classes to guide prototypical neural networks for multi-tasking between the main

classification (i.e., correct or incorrect status) and auxiliary attributes (i.e., scene configu-

rations), learning robust features from different data domains (i.e., various cabins, real

or synthetic). The processing pipeline optimizes response delay and power consumption

by leveraging embedded processors’ computing capabilities. We carried out experiments

in a cabin mockup with a Jetson AGX Xavier, efficiently obtaining better-quality descrip-

tive information from the scene to improve the system’s accuracy compared to alternative

state-of-the-art methods.

134

https://doi.org/10.5220/0010128500980105


A. PUBLICATIONS RELATED TO THE RESEARCH DONE FOR THIS THESIS

A.10 Multi-Task Explainable Quality Networks for Large-

Scale Forensic Facial Recognition

Multi-Task Explainable Quality Networks for Large-Scale Forensic Facial Recogni-

tion

Authors: Andrea Macarulla Rodriguez, Luis Unzueta and Zeno Geradts, Marcel Worring,

Unai Elordi

Journal: IEEE Journal of Selected Topics in Signal Processing

Pages:1-12 Year: 2023

DOI: https://doi.org/10.1109/JSTSP.2023.3267263

Abstract: Identifying suspects from surveillance footage is a crucial task in forensic inves-

tigations, but it is often hindered by the variable conditions of observation and the large

amounts of data. Face image quality (FIQ) is a metric that measures the usefulness of a

face sample for facial recognition. Existing methods for automated FIQ assessment only

provide a scalar value for quality, and do not indicate which factors are causing low qual-

ity. Additionally, these methods are computationally expensive, which makes current FIQ

assessment methods unsuitable for large numbers of images. To address these issues, we

introduce multi-task explainable quality networks (XQNets). XQNets provide both the

quality value and the associated facial and environmental attributes, and automatically

learn how each attribute contributes to the quality value during the training process. We

also propose a dataset-agnostic quality pairing protocol to ensure that sample pairs are

balanced across datasets and evaluations are fair. Our experiments on the LFW and SC-

face benchmarks show that our approach generalizes well across different datasets and

outperforms state-of-the-art methods. Our method offers a fast, explainable approach to

FIQ assessment, making it suitable for large-scale forensic applications.

135

https://doi.org/10.1109/JSTSP.2023.3267263




APPENDIX

B
Other publications related with

the application of computer
vision and Deep Neural

Networks field

B.1 A temporally consistent grid-based visual odometry

framework for multi-core architectures.

Title: A temporally consistent grid-based visual odometry framework for multi-core

architectures.

Authors: Leonardo de Maeztu, Unai Elordi, Marcos Nieto, Javier Barandiarán, Oihana

Otaegui

Journal: Journal of Real-Time Image Processing 10

Year: 2015

Pages: 59–769

DOI: https://doi.org/10.1007/s11554-014-0425-y

Abstract: Most recent visual odometry algorithms based on sparse feature matching are

137

https://doi.org/10.1007/s11554-014-0425-y


OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

computationally efficient methods that can be executed in real time on desktop comput-

ers. However, further efforts are required to reduce computational complexity in order

to integrate these solutions in embedded platforms with low power consumption. This

paper presents a spacetime framework that can be applied to most stereo visual odometry

algorithms greatly reducing their computational complexity. Moreover, it enables exploit-

ing multi-core architectures available in most modern computing platforms. According

to the tests performed on publicly available datasets and an experimental driverless car,

the proposed framework significantly reduces the computational complexity of a visual

odometry algorithm while improving the accuracy of the results.

B.2 Efficient Multi-task based Facial Landmark and Ges-

ture Detection in Monocular Images.

Efficient Multi-task based Facial Landmark and Gesture Detection in Monocular Im-

ages

Authors: Jon Goenetxea, Luis Unzueta, Unai Elordi, Oihana Otaegui, Fadi Dornaika

Proceedings: VISIGRAPP (5: VISAPP)

Pages: 680-687

publisher: SciTePress

organization: INSTICC

isbn: 978-989-758-488-6

issn: 2184-4321

Year: 2021

DOI: https://doi.org/110.5220/0010373006800687

Abstract: The communication between persons includes several channels to exchange

information between individuals. The non-verbal communication contains valuable

information about the context of the conversation and it is a key element to understand

the entire interaction. The facial expressions are a representative example of this kind of

non-verbal communication and a valuable element to improve human-machine interac-

tion interfaces. Using images captured by a monocular camera, automatic facial analysis

systems can extract facial expressions to improve human-machine interactions. However,

138

https://doi.org/110.5220/0010373006800687


B. OTHER PUBLICATIONS RELATED WITH THE APPLICATION OF
COMPUTER VISION AND DEEP NEURAL NETWORKS FIELD

there are several technical factors to consider, including possible computational limita-

tions (e.g. autonomous robots), or data throughput (e.g. centralized computation server).

Considering the possible limitations, this work presents an efficient method to detect a set

of 68 facial feature points and a set of key facial gestures at the same time. The output of

this method includes valuable information to un derstand the context of communication

and improve the response of automatic human-machine interaction systems.

B.3 Virtual reality interfaces applied to web-based 3D E-

commerce.

EVirtual reality interfaces applied to web-based 3D E-commerce

Authors: Unai ELordi, Álvaro Segura, Jon Goenetxea,

Proceedings: VISIGRAPP (5: VISAPP)

Pages: 680-687

publisher: SciTePress

organization: INSTICC

isbn: 978-989-758-488-6

issn: 2184-4321

Year: 2021

DOI: https://doi.org/110.5220/0010373006800687

Abstract: The communication between persons includes several channels to exchange

information between individuals. The non-verbal communication contains valuable

information about the context of the conversation and it is a key element to understand

the entire interaction. The facial expressions are a representative example of this kind of

non-verbal communication and a valuable element to improve human-machine interac-

tion interfaces. Using images captured by a monocular camera, automatic facial analysis

systems can extract facial expressions to improve human-machine interactions. However,

there are several technical factors to consider, including possible computational limita-

tions (e.g. autonomous robots), or data throughput (e.g. centralized computation server).

Considering the possible limitations, this work presents an efficient method to detect a set

of 68 facial feature points and a set of key facial gestures at the same time. The output of

139

https://doi.org/110.5220/0010373006800687


OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

this method includes valuable information to un derstand the context of communication

and improve the response of automatic human-machine interaction systems.

B.4 Efficient Multi-task based Facial Landmark and Ges-

ture Detection in Monocular Images.

Efficient Multi-task based Facial Landmark and Gesture Detection in Monocular Im-

ages

Authors: Alejandro Clemotte , Harbil Arregui, Miguel A. Velasco, Luis Unzueta, Jon

Goenetxea, Unai Elordi, Eduardo Rocón, Ramón Ceres, Javier Bengoechea, Iosu

Arizkuren ,Eduardo Jauregui

Proceedings: Actas de las XXXVII Jornadas de Automática

Pages: 680-687

publisher: SciTePress

organization: INSTICC

isbn: 978-84-9749-808-1

Year: 150-155

DOI: https://doi.org/110.5220/0010373006800687

Abstract: TThis paper presents a pilot study completed in the framework of the INTER-

AAC project. The aim of the project is to develop a new human-computer interaction

(HCI) solution based on eye-gaze estimation from webcam images for people with motor

disorders such as cerebral palsy, neurodegenerative diseases, and spinal cord injury that

are otherwise unable to use a keyboard or mouse. In this study, we analyzed cursor tra-

jectories recorded during the experiment and validated that users with different diseases

can be automatically classi ed in groups based on trajectory metrics. For the clustering,

Ward’s method was used. The metrics are based on speed and acceleration statistics from

full fi ltered tracks. The results show that the participants can be grouped into two main

clusters. The main contribution of this work is the evaluation of the clustering techniques

applied to eye-gaze trajecto- ries for the automatic classi cation of users diseases based on

a real experiment carried with the help of three clinical partners in Spain.

140

https://doi.org/110.5220/0010373006800687


APPENDIX

C
Patent applications

C.1 Method, System and Computer Program Product for

Eye Gaze Direction Estimation

Abstract: A computer-implemented method for estimating eye gaze direction, compris-

ing: fitting (11) a 3D face model (111) to a monocular image (101) obtained from an

imaging device, thus obtaining values of a set of face model parameters representing at

least one model position parameter (t), at least one orientation parameter (r), at least one

shape parameter (s) and at least one action parameter (a), obtaining (12) normalized 3D

gaze estimation vectors for the right and left eyes (121) with respect to the imaging device

viewpoint; estimating (13) the eye gaze direction with respect to at least one target in the

scene. A system comprising at least one processor configured to perform the steps of the

method. A computer program product comprising computer program instructions/code

for performing the method. A computer-readable memory/medium that stores program

instructions/code for performing the method.

Applicants: Fundacion Centro De Tecnologias De Interaccion Visual Y Comunicaciones

Vicomtech

Inventors: Unzueta Irurtia Luis [es]; Goenetxea Imaz Jon [es]; Elordi Hidalgo Unai [es];

Otaegui Madurga Oihana [es]

141



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Application number: EP3506149A1

Application data: 2017-12-27

Publication data: 2019-07-03

C.2 Method and System for Detecting Presence of Objects

in Passenger Compartments of Transport Means

Abstract: computer-implemented method for detecting presence of objects in passen-

ger compartments of transport means, comprising: receiving, at a computing system,

at least one image of the inside of a passenger compartment of a transport means; ex-

tracting, by a DNN, a descriptive feature vector associated to the received image, the

descriptive feature vector containing information of the image indicative of the pres-

ence of objects within the passenger compartment, the objects being unallowed objects

or objects located in unallowed locations within the passenger compartment; classify-

ing, by a discriminant embedding space-based classifier, the image in a particular class

of a set of predefined classes based on the associated descriptive feature vector of the

image; and determining, by the computing system, the presence of unallowed objects

or objects located in unallowed locations within the passenger compartment according

to the corresponding class associated to the image.

Applicants: Fundacion Centro De Tecnologias De Interaccion Visual Y Comunicaciones

Vicomtech

Inventors: Nerea Aranjuelo [es], Luis Unzueta [es], Unai Elordi [es], Jose Luis apellaniz

[es], Sara García [es], Jorge García [es], Oihana Otaegui [es], Maxime Danielli [fr].

Application number: EP22382620

Application data: not available publicly

Publication data: review pending

142



APPENDIX

D
Other published resources

D.1 SmaCS dataset

Abstract: The SmaCS dataset is created to support research on object detection and scene

understanding, specifically related to identifying the proper positioning of cabin luggage

during taxi, take-off, and landing (TTL) operations. Examples of cabin luggage include

backpacks, bottles, briefcases, camcorders, hats, laptops, shopping bags, suitcases, tote

bags, etc. During TTL, these items should not be placed in areas that could compromise

the safety, such as on seats, egresses, held by passengers, or in the aisle. On the other hand,

other types of objects, such as magazines, books, food, smartphones, tablets, jackets, and

wallets, do not have these restrictions and should be ignored. To collect the necessary

data, a cabin mockup was built, and synthetic data was generated using 3D graphics.

The mockup features one side of three cabin seat rows, an aisle, and an exterior made of

polystyrene. The mockup was illuminated from three possible light sources: natural light

from the room’s windows, artificial light on the ceiling, and a spotlight beside the cabin

window to mimic directional sunlight. The recordings were done on different days under

varying lighting conditions. We utilized two cameras to observe two seat rows, one placed

above the four seats closest to the window, and another above the aisle, to monitor the

aisle and the two seats beside it. We established a recording protocol that 18 participants

followed to simulate a variety of situations with cabin and non-cabin luggage objects.

143



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

The protocol instructed passengers on actions such as how long to sit in a specific seat and

where to place carried items. The goal of the protocol was to create a balanced number

of scenarios, such as correctly and incorrectly placed luggage. Here, we make public the

data of one of the seats (closest to the cabin window of the back row). For this seat, we

obtained around 34K real and 7K synthetic samples.

Applicants: FUNDACION CENTRO DE TECNOLOGIAS DE INTERACCION VISUAL Y

COMUNICACIONES VICOMTECH

Inventors: Unai ELordi, Nerea Aranjuelo, Luis Unzueta, Jose Luis Apellaniz, Jorge Gar-

cia, Oihana Otaegui.

DOI ttps://doi.org/10.5281/zenodo.7524808

Publication data: 2023-01-11

144

ttps://doi.org/10.5281/zenodo.7524808


APPENDIX

E
Glossary

145





Acronyms

AI Artificial Intelligence

AIoT Artificial Intelligence Internet of Things

API Application Programming Interface

ASIC Application-specific Integrated Circuits

AU Atomic Unit

AWS Amazon Web Services

BNN Binary Neural Network

CBR Case Based Reasoning

CNN Convolutional Neural Network

CPU Central Processing Unit

CVMS Cabin Video Monitoring System

DES Discriminant Embedding Space

DL Deep Learning

DNN Deep Neural Networks

EBP Expectation Back-Propagation

FaaS Function as a Service

147



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

FD Face Detection

FIQ Face Image Quality

FIR Facial Identity Recognition

FLD Face Landmark Detection

FLOP Floating Point Operation

FN False Negative

FP False Positive

FPGA Field Programmable Gate Arrays

GDPR General Data Protection Regulation

GPU Graphic Processing Unit

HDDL High Density Deep Learning

IE Inference Engine

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IoT Internet of Things

IQA Image Quality Assesment

IR Intermediate Representation

ISVA Intelligent Security Video Analyitcs

LBP Local Binary Patterns

MEC Multi-access Edge Computing

ML Machine Learning

MLOps Machine Learning Operations

148



ACRONYMS

MLTRL Machine Learning Technology Readinness level

MMDAPN Multitask Metric-guided Domain Adversarial Prototype Network

NS Notification Service

NVDLA NVidia Deep Learning Accelerator

ONNX Open Neural Network eXchange

OSIL On-Site Incremental Learning

OSS Online Storage System

PCA Principal Component Analysis

PGR Pose and Gesture Recognition

REST Representational State Transfer

RGBD Red Green Blue Depth

ROI Region Of Interest

ROS Robot Operating System

SAD Spoofing Attack Detection

SIMD Single Input Multiple Output

SLA Service Level Agreement

SLO Nueral Processing Unit

SLO Service Level Objectives

SM Streaming Multiprocessors

SNS Service Notification Service

SSD Single Shot Detection

149



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

SVD Singular Value Decomposition

TEE Trusted Execution Environment

TFLOP Tera Floating Point Operation

TPM Trust Platform Module

TPU Tensor Processing Unit

TRL Technology Readiness Level

TTL Taxi Take-off Landing

VGG Visual Geometry Group

ViT Vision Transformers

VPC Virtual Private Cloud

VSaaS Video Surveillance as a Service

VSS Video Surveillance System

150



Part VI

Bibliography

151





Bibliography

[1] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. Benchmark

analysis of representative deep neural network architectures. IEEE Access, 6:64270–

64277, 2018. xix, 6, 17, 18, 19, 56, 57

[2] Gaurav Batra, Zach Jacobson, Siddarth Madhav, Andrea Queirolo, and Nick San-

thanam. Artificial-intelligence hardware: New opportunities for semiconductor

companies. McKinsey and Company, January, 2, 2019. xix, 17, 24, 25, 27

[3] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther

Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark

Charlebois, William Chou, et al. Mlperf inference benchmark. In 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA), pages

446–459. IEEE, 2020. xix, xx, 17, 26, 27, 37, 41, 46, 49, 67, 76

[4] Berk Ulker, Sander Stuijk, Henk Corporaal, and Rob G. J. Wijnhoven. Reviewing

inference performance of state-of-the-art deep learning frameworks. Proceed-

ings of the 23th International Workshop on Software and Compilers for Embedded

Systems, 2020. xix, 30

[5] Carlo S. Regazzoni, Andrea Cavallaro, Ying Wu, Janusz Konrad, and Arun Ham-

papur. Video analytics for surveillance: Theory and practice [from the guest

editors]. IEEE Signal Processing Magazine, 27:16–17, 2010. 3

[6] Guruh Fajar Shidik, Edi Noersasongko, Adhitya Nugraha, Pulung Nurtantio An-

dono, Jumanto Jumanto, and Edi Jaya Kusuma. A systematic review of intelligence

video surveillance: trends, techniques, frameworks, and datasets. IEEE Access,

7:170457–170473, 2019. 3, 32

153



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

[7] Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim

Zentici, Adrien Lavoillotte, Makoto Miyazaki, and Lynn Heidmann. Introducing

MLOps. O’Reilly Media, 2020. 4

[8] Alexander Lavin, Ciarán M. Gilligan-Lee, Alessya Visnjic, Siddha Ganju, Dava

Newman, Atilim Gunes Baydin, Sujoy Ganguly, Danny B. Lange, Ajay Sharma,

Stephan Zheng, Eric P. Xing, Adam Gibson, James Parr, Chris Mattmann, and

Yarin Gal. Technology readiness levels for machine learning systems. Nature

Communications, 13, 2020. 4

[9] Tomasz Marcin Mucha, Sijia Ma, and Kaveh Abhari. Beyond mlops: The lifecy-

cle of machine learning-based solutions. In Americas Conference on Information

Systems, 2022. 4

[10] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression

and acceleration for deep neural networks. ArXiv, abs/1710.09282, 2017. 6, 20

[11] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua

Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang,

and Dacheng Tao. A survey on vision transformer. IEEE transactions on pattern

analysis and machine intelligence, PP, 2022. 6, 20

[12] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollár, Kaiming He, and Ross B. Gir-

shick. Benchmarking detection transfer learning with vision transformers. ArXiv,

abs/2111.11429, 2021. 6, 20

[13] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi,

and Jeremy Kepner. Survey of machine learning accelerators. In 2020 IEEE high

performance extreme computing conference (HPEC), pages 1–12. IEEE, 2020. 6, 25

[14] TensorflowLite. ML for mobile and edge devices. https://www.tensorflow.

org/lite, 2023. [Online; accessed 19-FEB-2023]. 7, 29

[15] NVidia TensorRT. https://developer.nvidia.com/tensorrt, 2023. [Online;

accessed 19-FEB-2023]. 7

154

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://developer.nvidia.com/tensorrt


BIBLIOGRAPHY

[16] OpenVINO. . https://docs.openvino.ai/latest/home.html, 2023. [Online;

accessed 19-FEB-2023]. 7

[17] Gaurav Verma, Yashi Gupta, Abid M Malik, and Barbara Chapman. Performance

evaluation of deep learning compilers for edge inference. In 2021 IEEE Inter-

national Parallel and Distributed Processing Symposium Workshops (IPDPSW),

pages 858–865. IEEE, 2021. 7

[18] Hanan Elazhary. Internet of things (iot), mobile cloud, cloudlet, mobile iot, iot

cloud, fog, mobile edge, and edge emerging computing paradigms: Disambigua-

tion and research directions. Journal of Network and Computer Applications,

128:105–140, 2019. 8

[19] T.Prem Jacob, A. Pravin, and R. Rajakumar. An ai-powered smart camera for

object detection. In 2021 6th International Conference on Communication and

Electronics Systems (ICCES), pages 1701–1703, 2021. 8

[20] Liangzhi Li, Kaoru Ota, and Mianxiong Dong. Deep learning for smart industry:

Efficient manufacture inspection system with fog computing. IEEE Transactions

on Industrial Informatics, 14(10):4665–4673, 2018. 8

[21] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,

Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,

today, and tomorrow. Present and ulterior software engineering, pages 195–216,

2017. 9

[22] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian

Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-

man, Maleen Abeydeera, Logan Adams, Hari Angepat, Christian Boehn, Derek

Chiou, Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen

Heil, Kyle Holohan, Ahmad El Husseini, Tamas Juhasz, Kara Kagi, Ratna K. Kovvuri,

Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Brandon Perez,

Amanda Rapsang, Steven Reinhardt, Bita Rouhani, Adam Sapek, Raja Seera,

Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods, Phillip Yi Xiao, Dan

Zhang, Ritchie Zhao, and Doug Burger. Serving dnns in real time at datacenter

scale with project brainwave. IEEE Micro, 38(2):8–20, 2018. 9

155

https://docs.openvino.ai/latest/home.html


OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

[23] Garrett McGrath and Paul R. Brenner. Serverless computing: Design, implementa-

tion, and performance. In 2017 IEEE 37th International Conference on Distributed

Computing Systems Workshops (ICDCSW), pages 405–410, 2017. 9

[24] Unai Elordi, Luis Unzueta, Ignacio Arganda-Carreras, and Oihana Otaegui. How

can deep neural networks be generated efficiently for devices with limited re-

sources? In Articulated Motion and Deformable Objects - 10th International

Conference, AMDO 2018, Palma de Mallorca, Spain, July 12-13, 2018, Proceedings,

pages 24–33, 2018. 11, 17

[25] Unai Elordi, Luis Unzueta, Jon Goenetxea, Sergio Sanchez-Carballido, Ignacio

Arganda-Carreras, and Oihana Otaegui. Benchmarking deep neural network in-

ference performance on serverless environments with mlperf. IEEE Software,

38(1):81–87, 2021. 11

[26] Unai Elordi, Luis Unzueta, Jon Goenetxea, Estíbaliz Loyo, Ignacio Arganda-

Carreras, and Oihana Otaegui. On-demand serverless video surveillance with

optimal deployment of deep neural networks. In Proceedings of the 16th Inter-

national Joint Conference on Computer Vision, Imaging and Computer Graphics

Theory and Applications, VISIGRAPP 2021, Volume 4: VISAPP, Online Streaming,

February 8-10, 2021, pages 717–723, 2021. 11

[27] Unai Elordi, Álvaro Bertelsen, Luis Unzueta, Nerea Aranjuelo, Jon Goenetxea, and

Ignacio Arganda-Carreras. Optimal deployment of face recognition solutions in a

heterogeneous iot platform for secure elderly care applications. In Jaroslaw Wa-

tróbski, Wojciech Salabun, Carlos Toro, Cecilia Zanni-Merk, Robert J. Howlett,

and Lakhmi C. Jain, editors, Knowledge-Based and Intelligent Information & En-

gineering Systems: Proceedings of the 25th International Conference KES-2021,

Virtual Event / Szczecin, Poland, 8-10 September 2021, volume 192 of Procedia

Computer Science, pages 3204–3213. Elsevier, 2021. 11, 79, 80

[28] Unai Elordi, Chiara Lunerti, Luis Unzueta, Jon Goenetxea, Nerea Aranjuelo, Al-

varo Bertelsen, and Ignacio Arganda-Carreras. Designing automated deployment

strategies of face recognition solutions in heterogeneous iot platforms. Inf.,

12(12):532, 2021. 11

156



BIBLIOGRAPHY

[29] Andrea Macarulla Rodriguez, Luis Unzueta, Zeno Geradts, Marcel Worring, and

U. Elordi. Multi-task explainable quality networks for large-scale forensic facial

recognition. IEEE Journal of Selected Topics in Signal Processing, 2023. 11, 70

[30] Luis Unzueta, Sandra Garcia, Jorge García, Valentin Corbin, Nerea Aranjuelo,

U. Elordi, Oihana Otaegui, and Maxime Danielli. Building a camera-based smart

sensing system for digitalized on-demand aircraft cabin readiness verification. In

ROBOVIS, 2020. 11

[31] Paul C. Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.

The server is dead, long live the server: Rise of serverless computing, overview of

current state and future trends in research and industry. CoRR, abs/1906.02888,

2019. 17, 33, 42

[32] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016. 18, 19,

23

[33] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-

volutional neural networks for mobile vision applications. CoRR, abs/1704.04861,

2017. 18, 19, 80

[34] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely

efficient convolutional neural network for mobile devices. CoRR, abs/1707.01083,

2017. 18, 19

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

4510–4520, 2018. 18, 20

[36] Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, Mohammad

Sabokrou, and Ehsan Adeli. Towards principled design of deep convolutional

networks: Introducing simpnet. arXiv preprint arXiv:1802.06205, 2018. 18, 20

157



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

[37] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

Deep learning with limited numerical precision. In International conference on

machine learning, pages 1737–1746. PMLR, 2015. 18, 21, 28

[38] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.

Dorefa-net: Training low bitwidth convolutional neural networks with low

bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016. 18, 21

[39] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. In Ad-

vances in neural information processing systems, pages 3123–3131, 2015. 18,

21

[40] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-

gio. Binarized neural networks: Training deep neural networks with weights and

activations constrained to +1 or -1. arXiv: Learning, 2016. 18, 21

[41] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural networks. In

European Conference on Computer Vision, pages 525–542. Springer, 2016. 18, 21

[42] Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. Local binary convo-

lutional neural networks. CoRR, abs/1608.06049, 2016. 18, 21

[43] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015. 18, 21, 23, 56

[44] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. pages

598–605, 1990. 18, 22

[45] Babak Hassibi and David G Stork. Second order derivatives for network pruning:

Optimal brain surgeon. In Advances in neural information processing systems,

pages 164–171, 1993. 18, 22

158



BIBLIOGRAPHY

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012. 18, 23

[47] Martin Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467, 2016. 18, 23

[48] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J

Dally. Exploring the regularity of sparse structure in convolutional neural net-

works. arXiv preprint arXiv:1705.08922, 2017. 18, 23

[49] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep

convolutional neural networks. CoRR, abs/1512.08571, 2015. 18

[50] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Prun-

ing filters for efficient convnets. In 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net, 2017. 18, 23

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016. 18, 23, 80

[52] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method

for deep neural network compression. 2017 IEEE International Conference on

Computer Vision (ICCV), pages 5068–5076, 2017. 18, 23

[53] Babajide O Ayinde and Jacek M Zurada. Building efficient convnets using redun-

dant feature pruning. arXiv preprint arXiv:1802.07653, 2018. 18, 23

[54] Jeng-Hau Lin, Tianwei Xing, Ritchie Zhao, Zhiru Zhang, Mani Srivastava, Zhuowen

Tu, and Rajesh K. Gupta. Binarized convolutional neural networks with separable

filters for efficient hardware acceleration. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages 344–352, 2017. 18, 24

[55] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor

ring decomposition. CoRR, abs/1606.05535, 2016. 18, 24

159



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

[56] Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide

compression: Tensor ring nets. In 2018 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages

9329–9338. Computer Vision Foundation / IEEE Computer Society, 2018. 18, 24

[57] Matthew Sotoudeh and Sara S Baghsorkhi. Deepthin: A self-compressing library

for deep neural networks. arXiv preprint arXiv:1802.06944, 2018. 18, 24

[58] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 18, 19

[59] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In

Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision –

ECCV 2016, pages 21–37, Cham, 2016. Springer International Publishing. 18, 19,

80

[60] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), pages 248–255, 2009. 18, 52, 95, 105

[61] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.

Densely connected convolutional networks. In IEEE Conf. on Computer Vision

and Pattern Recognition, CVPR, Honolulu, HI, USA, pages 2261–2269, 2017. 19

[62] Andrew G. Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-

ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le,

and Hartwig Adam. Searching for mobilenetv3. 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 1314–1324, 2019. 20

[63] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for con-

volutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov,

editors, Proceedings of the 36th International Conference on Machine Learning,

ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings

of Machine Learning Research, pages 6105–6114. PMLR, 2019. 20

160



BIBLIOGRAPHY

[64] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training.

In Proc. Int. Conf. on Machine Learning, ICML, 18-24 July, Virtual Event, volume

139 of Proc. of Machine Learning Research, pages 10096–10106, 2021. 20, 98, 105,

106, 109

[65] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding

sparse, trainable neural networks. 2018. 23

[66] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep

convolutional neural networks. ACM Journal on Emerging Technologies in Com-

puting Systems (JETC), 13(3):32, 2017. 23

[67] Yang He, Xuanyi Dong, Guoliang Kang, Yanwei Fu, and Yi Yang. Progressive deep

neural networks acceleration via soft filter pruning. ArXiv, abs/1808.07471, 2018.

23

[68] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethink-

ing the value of network pruning. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-

view.net, 2019. 23, 56

[69] Manar AbuTalib, Sohaib Majzoub, Qassim Nasir, and Dina J. Hejji. A systematic

literature review on hardware implementation of artificial intelligence algorithms.

J. Supercomput., 77(2):1897–1938, 2021. 26

[70] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,

Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William

Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,

Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit

Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,

James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,

Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-

jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,

Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad

161



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan

Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,

Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and

Doe Hyun Yoon. In-datacenter performance analysis of a tensor processing unit.

In Proceedings of the 44th Annual International Symposium on Computer Archi-

tecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017, pages 1–12. ACM, 2017.

27

[71] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient process-

ing of deep neural networks: A tutorial and survey. Proceedings of the IEEE,

105(12):2295–2329, 2017. 27

[72] Han Vanholder. Efficient inference with tensorrt. In GPU Technology Conference,

volume 1, page 2, 2016. 29

[73] Yury Gorbachev, Mikhail Fedorov, Iliya Slavutin, Artyom Tugarev, Marat Fatekhov,

and Yaroslav Tarkan. Openvino deep learning workbench: Comprehensive ana-

lysis and tuning of neural networks inference. In 2019 IEEE/CVF International

Conference on Computer Vision Workshops, ICCV Workshops 2019, Seoul, Korea

(South), October 27-28, 2019, pages 783–787. IEEE, 2019. 29, 31

[74] ONNX Runtime. home. https://onnxruntime.ai/, 2023. [Online; accessed

26-APR-2023]. 29

[75] Omais Shafi, Chinmay Rai, Rijurekha Sen, and Gayathri Ananthanarayanan. De-

mystifying tensorrt: Characterizing neural network inference engine on nvidia

edge devices. 2021 IEEE International Symposium on Workload Characterization

(IISWC), pages 226–237, 2021. 30

[76] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi

Luan, and Depei Qian. The deep learning compiler: A comprehensive survey.

IEEE Transactions on Parallel and Distributed Systems, 32:708–727, 2020. 30

[77] Alexander Demidovskij, Artyom Tugaryov, Alexander Suvorov, Yaroslav Tarkan,

Marat Fatekhov, Igor Salnikov, Andrey Kashchikhin, Vladimir Golubenko, Galina

Dedyukhina, Alina Alborova, Ryan Palmer, Mikhail Fedorov, and Yury Gorbachev.

162

https://onnxruntime.ai/


BIBLIOGRAPHY

Openvino deep learning workbench: A platform for model optimization, analy-

sis and deployment. In 2020 IEEE 32nd International Conference on Tools with

Artificial Intelligence (ICTAI), pages 661–668, 2020. 31

[78] Thanathip Limna and Pichaya Tandayya. A flexible and scalable component-

based system architecture for video surveillance as a service, running on infras-

tructure as a service. Multim. Tools Appl., 75(4):1765–1791, 2016. 32, 54

[79] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. Mark: Exploiting

cloud services for cost-effective, slo-aware machine learning inference serving.

In Dahlia Malkhi and Dan Tsafrir, editors, 2019 USENIX Annual Technical Con-

ference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019, pages 1049–1062.

USENIX Association, 2019. 33

[80] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis. Infaas:

Automated model-less inference serving. In Irina Calciu and Geoff Kuenning, edi-

tors, 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16,

2021, pages 397–411. USENIX Association, 2021. 33

[81] DeepStream SDK. DeepStream SDK | NVIDIA Developers. https://

onnxruntime.ai/, 2023. [Online; accessed 26-APR-2023]. 34

[82] Intel Deep Learning streamer. https://docs.openvino.ai/latest/

openvino_docs_dlstreamer.html, 2023. [Online; accessed 28-APR-2023]. 34

[83] Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel CPU/GPU scheduling

for multi-dnn real-time inference. IEEE Real-Time Systems Symposium (RTSS),

pages 392–405, 2019. 34, 108

[84] CheolSu Lim and Myungsun Kim. ODMDEF: On-device multi-DNN execution

framework utilizing adaptive layer-allocation on general purpose cores and accel-

erators. IEEE Access, 9:85403–85417, 2021. 34, 108

[85] Eunji Jeong, Jangryul Kim, Samnieng Tan, Jaeseong Lee, and Soonhoi Ha. Deep

learning inference parallelization on heterogeneous processors with tensorRT.

IEEE Embedded Systems Letters, pages 1–1, 2021. 34, 108

163

https://onnxruntime.ai/
https://onnxruntime.ai/
https://docs.openvino.ai/latest/openvino_docs_dlstreamer.html
https://docs.openvino.ai/latest/openvino_docs_dlstreamer.html


OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

[86] Eunjin Jeong, Jangryul Kim, and Soonhoi Ha. TensorRT-based framework and

optimization methodology for deep learning inference on Jetson boards. ACM

Trans. Embed. Comput. Syst., 21(5):51:1–51:26, 2022. 35, 108, 109

[87] Myungsun Kim. Guaranteeing that multi-level prioritized DNN models on an

embedded GPU have inference performance proportional to respective priorities.

IEEE Embedded Systems Letters, 2021. 35, 108

[88] Bart Cox, Jeroen Galjaard, Amirmasoud Ghiassi, Robert Birke, and Lydia Yiyu

Chen. MASA: Responsive multi-DNN inference on the edge. IEEE International

Conference on Pervasive Computing and Communications (PerCom), pages 1–10,

2021. 35, 108

[89] Fuxun Yu, Shawn Bray, Di Wang, Longfei Shangguan, Xulong Tang, Chenchen Liu,

and Xiang Chen. Automated runtime-aware scheduling for multi-tenant DNN in-

ference on GPU. IEEE/ACM International Conference On Computer Aided Design

(ICCAD), pages 1–9, 2021. 35, 108

[90] Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhaohui Cai, and Guoqing Tu. A

survey of recent advances in edge-computing-powered artificial intelligence of

things. IEEE Internet of Things Journal, 8:13849–13875, 2021. 35

[91] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,

Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. All one needs to know about

fog computing and related edge computing paradigms: A complete survey. J. Syst.

Archit., 98:289–330, 2019. 36

[92] Pengfei Hu, Huansheng Ning, Tie Qiu, Yanfei Zhang, and Xiong Luo. Fog comput-

ing based face identification and resolution scheme in internet of things. IEEE

Trans. Ind. Informatics, 13(4):1910–1920, 2017. 36, 80

[93] Pengfei Hu, Huansheng Ning, Tie Qiu, Houbing Song, Yanna Wang, and Xuanxia

Yao. Security and privacy preservation scheme of face identification and resolu-

tion framework using fog computing in internet of things. IEEE Internet Things J.,

4(5):1143–1155, 2017. 36, 80

164



BIBLIOGRAPHY

[94] Yitu Wang and Takayuki Nakachi. A privacy-preserving learning framework for

face recognition in edge and cloud networks. IEEE Access, 8:136056–136070, 2020.

36, 80

[95] A privacy-preserving deep learning approach for face recognition with edge

computing. In Irfan Ahmad and Swaminathan Sundararaman, editors, USENIX

Workshop on Hot Topics in Edge Computing, HotEdge 2018, Boston, MA, July 10,

2018. USENIX Association, 2018. 37, 80

[96] Daniel Bardsley, Larry Ryan, and John Howard. Serverless performance and op-

timization strategies. In 2018 IEEE International Conference on Smart Cloud,

SmartCloud 2018, New York City, NY, USA, September 21-23, 2018, pages 19–26.

IEEE, 2018. 42, 44

[97] Pascal Maissen, Pascal Felber, Peter G. Kropf, and Valerio Schiavoni. Faasdom:

a benchmark suite for serverless computing. In Julien Gascon-Samson, Kaiwen

Zhang, Khuzaima Daudjee, and Bettina Kemme, editors, 14th ACM International

Conference on Distributed and Event-based Systems, DEBS 2020, Montreal, Quebec,

Canada, July 13-17, 2020, pages 73–84. ACM, 2020. 43, 52

[98] Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, and Daeyoung Kim. Gpu enabled

serverless computing framework. In Ivan Merelli, Pietro Liò, and Igor V. Kotenko,

editors, 26th Euromicro International Conference on Parallel, Distributed and

Network-based Processing, PDP 2018, Cambridge, United Kingdom, March 21-23,

2018, pages 533–540. IEEE Computer Society, 2018. 43

[99] A Baird, G Huang, C Munns, and O Weinstein. Serverless architectures with aws

lambda: Overview and best practices, 2017. 44

[100] Josef Spillner, Cristian Mateos, and David A. Monge. Faaster, better, cheaper: The

prospect of serverless scientific computing and HPC. In Esteban E. Mocskos and

Sergio Nesmachnow, editors, High Performance Computing - 4th Latin American

Conference, CARLA 2017, Buenos Aires, Argentina, and Colonia del Sacramento,

Uruguay, September 20-22, 2017, Revised Selected Papers, volume 796 of Commu-

nications in Computer and Information Science, pages 154–168. Springer, 2017.

48, 56

165



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

[101] Ioana Baldini, Paul C. Castro, Kerry Shih-Ping Chang, Perry Cheng, Stephen Fink,

Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander

Slominski, and Philippe Suter. Serverless computing: Current trends and open

problems. In Sanjay Chaudhary, Gaurav Somani, and Rajkumar Buyya, editors,

Research Advances in Cloud Computing, pages 1–20. Springer, 2017. 50

[102] M. Garrett McGrath and Paul R. Brenner. Serverless computing: Design, imple-

mentation, and performance. In Aibek Musaev, João Eduardo Ferreira, and Teruo

Higashino, editors, 37th IEEE International Conference on Distributed Comput-

ing Systems Workshops, ICDCS Workshops 2017, Atlanta, GA, USA, June 5-8, 2017,

pages 405–410. IEEE Computer Society, 2017. 50

[103] Intel. OpenCV:Open Source Computer Vision Library. https://opencv.org,

2023. [Online; accessed 19-FEB-2023]. 51

[104] Intel. OpenVINO:open-source toolkit for optimizing and deploying deep learning

models. https://github.com/openvinotoolkit/openvino, 2023. [Online;

accessed 19-FEB-2023]. 51

[105] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common ob-

jects in context. In Computer Vision - ECCV 2014 - 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, volume 8693 of

Lecture Notes in Computer Science, pages 740–755, 2014. 52, 95

[106] Luciano Baresi, Danilo Filgueira Mendonça, Martin Garriga, Sam Guinea, and

Giovanni Quattrocchi. A unified model for the mobile-edge-cloud continuum.

ACM Trans. Internet Techn., 19(2):29:1–29:21, 2019. 54, 124

[107] Sathyan Munirathinam. Chapter six - industry 4.0: Industrial internet of things

(IIOT). Adv. Comput., 117:129–164, 2020. 66

[108] Muhtahir O. Oloyede, Gerhard P. Hancke, and Hermanus Carel Myburgh. A review

on face recognition systems: recent approaches and challenges. Multim. Tools

Appl., 79(37-38):27891–27922, 2020. 66

166

https://opencv.org
https://github.com/openvinotoolkit/openvino


BIBLIOGRAPHY

[109] Murat Taskiran, Nihan Kahraman, and Cigdem Eroglu Erdem. Face recognition:

Past, present and future (a review). Digit. Signal Process., 106:102809, 2020. 66

[110] Yassin Kortli, Maher Jridi, Ayman Al Falou, and Mohamed Atri. Face recognition

systems: A survey. Sensors, 20(2), 2020. 66

[111] Anil K Jain, Patrick Flynn, and Arun A Ross. Handbook of biometrics. Springer

Science & Business Media, 2007. 67

[112] Lidia Bajenaru, Ion Alexandru Marinescu, Ciprian Dobre, Gabriel Ioan Prada, and

Costas S. Constantinou. Towards the development of a personalized healthcare

solution for elderly: from user needs to system specifications. In 12th Interna-

tional Conference on Electronics, Computers and Artificial Intelligence, ECAI 2020,

Bucharest, Romania, June 25-27, 2020, pages 1–6. IEEE, 2020. 67

[113] Ramon Blanco-Gonzalo, Chiara Lunerti, Raul Sanchez-Reillo, and

Richard Michael Guest. Biometrics: Accessibility challenge or opportunity? PLOS

ONE, 13(3):1–20, 03 2018. 68

[114] Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov, Karthik Raveendran, and

Matthias Grundmann. Blazeface: Sub-millisecond neural face detection on

mobile gpus. CoRR, abs/1907.05047, 2019. 69

[115] Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, and Matthias Grundmann.

Real-time facial surface geometry from monocular video on mobile gpus. In

CVPR Workshop on Computer Vision for Augmented and Virtual Reality 2019,

Long Beach, CA, 2019. 69, 72

[116] Torsten Schlett, Christian Rathgeb, Olaf Henniger, Javier Galbally, Julian Fierrez,

and Christoph Busch. Face image quality assessment: A literature survey. ACM

Comput. Surv., dec 2021. 70

[117] Heinz Hofbauer, Luca Debiasi, Susanne Kränkl, and Andreas Uhl. Exploring pre-

sentation attack vulnerability and usability of face recognition systems. IET Biom.,

10(2):219–232, 2021. 70

167



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

[118] Kavita Kavita, Gurjit Singh Walia, and Rajesh Rohilla. A contemporary survey of

unimodal liveness detection techniques: Challenges amp; opportunities. In 2020

3rd International Conference on Intelligent Sustainable Systems (ICISS), pages

848–855, 2020. 70

[119] Yuanhan Zhang, ZhenFei Yin, Yidong Li, Guojun Yin, Junjie Yan, Jing Shao, and

Ziwei Liu. Celeba-spoof: Large-scale face anti-spoofing dataset with rich an-

notations. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael

Frahm, editors, Computer Vision – ECCV 2020, pages 70–85, Cham, 2020. Springer

International Publishing. 70

[120] M. Swapna, Yogesh Kumar Sharma, and B. M. G. Prasad. A survey on face recog-

nition using convolutional neural network. In K. Srujan Raju, Roman Senkerik,

Satya Prasad Lanka, and V. Rajagopal, editors, Data Engineering and Communica-

tion Technology, pages 649–661, Singapore, 2020. Springer Singapore. 70

[121] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen,

and Vikas Chandra. Heterogeneous dataflow accelerators for multi-dnn work-

loads. In 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pages 71–83, 2021. 75

[122] Guangcan Mai, Kai Cao, Pong C. Yuen, and Anil K. Jain. On the reconstruction

of face images from deep face templates. IEEE Trans. Pattern Anal. Mach. Intell.,

41(5):1188–1202, 2019. 77

[123] Vishnu Naresh Boddeti. Secure face matching using fully homomorphic encryp-

tion. In 9th IEEE International Conference on Biometrics Theory, Applications and

Systems, BTAS 2018, Redondo Beach, CA, USA, October 22-25, 2018, pages 1–10.

IEEE, 2018. 78

[124] Dorottya Papp, Máté Zsombor, and Levente Buttyán. Tee-based protection of

cryptographic keys on embedded iot devices. In Annales Mathematicae et Infor-

maticae, volume 53, pages 245–256. Eszterházy Károly Egyetem Líceum Kiadó,

2021. 78

168



BIBLIOGRAPHY

[125] Mihály Héder. From nasa to eu: the evolution of the trl scale in public sector

innovation. The Innovation Journal, 22:1, 2017. 92

[126] Zhong-Qiu Zhao, Peng Zheng, Shou tao Xu, and Xindong Wu. Object detection

with deep learning: A review. IEEE Transactions on Neural Networks and Learning

Systems, 30:3212–3232, 2018. 93

[127] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. A survey of ac-

celerator architectures for deep neural networks. Engineering, 6:264–274, 2020.

93

[128] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul W. Fieguth, Jie Chen, Xinwang Liu,

and Matti Pietikäinen. Deep learning for generic object detection: A survey.

International Journal of Computer Vision, 128:261–318, 2019. 93

[129] Wei Wang, Yujing Yang, Xin Wang, Weizheng Wang, and Ji Li. Development of

convolutional neural network and its application in image classification: a survey.

Optical Engineering, 58:040901 – 040901, 2019. 93

[130] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Trans. on

Knowledge and Data Engineering, 2021. 95, 96

[131] Fang Wang, Hu Han, Shiguang Shan, and Xilin Chen. Deep multi-task learning for

joint prediction of heterogeneous face attributes. In 2017 12th IEEE International

Conference on Automatic Face & Gesture Recognition (FG 2017), pages 173–179.

IEEE, 2017. 95, 106

[132] Vivien Sainte Fare Garnot and Loic Landrieu. Leveraging class hierarchies with

metric-guided prototype learning. In The British Machine Vision Conference,

BMVC, 22-25 November, Virtual Event, 2021. 95, 97, 98, 106

[133] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper R. R. Uijlings, Ivan Krasin, Jordi

Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov,

Tom Duerig, and Vittorio Ferrari. The open images dataset V4. Int. J. Comput.

Vis., 128(7):1956–1981, 2020. 95

169



OPTIMIZING DEEP NEURAL NETWORK DEPLOYMENT FOR INTELLIGENT
SECURITY VIDEO ANALYTICS

[134] Unai Elordi, Nerea Aranjuelo, Luis Unzueta, Jose Luis Apellaniz, Jorge García, and

Oihana Otaegui. SmaCS dataset, January 2023. 95, 96, 102, 103, 116, 123

[135] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. Neuro-

computing, 312:135–153, 2018. 96, 97

[136] Nerea Aranjuelo, Jorge García, Luis Unzueta, Sara García, Unai Elordi, and Oihana

Otaegui. Building synthetic simulated environments for configuring and training

multi-camera systems for surveillance applications. In Proc. Int. Joint Conf. on

Computer Vision, Imaging and Computer Graphics Theory and Applications, VISI-

GRAPP, Volume 5: VISAPP, Online Streaming, February 8-10, pages 80–91, 2021.

97, 102

[137] Nerea Aranjuelo, Jose Luis Apellaniz, Luis Unzueta, Jorge García, Sara García,

Unai Elordi, and Oihana Otaegui. Leveraging synthetic data for dnn-based visual

analysis of passenger seats. SN Computer Science, [in press]. 97, 106

[138] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-

shot learning. In Advances in Neural Information Processing Systems 30: Annual

Conference on Neural Information Processing Systems, December 4-9, 2017, Long

Beach, CA, USA, pages 4077–4087, 2017. 99

[139] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Opti-

mal speed and accuracy of object detection. CoRR, abs/2004.10934, 2020. 109,

110

[140] Jetson-aware embedded deep learning inference acceleration framework with

TensorRT. https://github.com/cap-lab/jedi. Accessed: 2023-05-29. 109,

110, 116

[141] Gastão Florêncio Miranda Jr., Carlos Eduardo Thomaz, and Gilson Antonio Gi-

raldi. Geometric data analysis based on manifold learning with applications for

image understanding. In 30th SIBGRAPI Conference on Graphics, Patterns and

Images - Tutorials, SIBGRAPI-T 2017, Niterói, Brazil, October 17-18, 2017, pages

42–62. IEEE Computer Society, 2017. 112

170

https://github.com/cap-lab/jedi

	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Research environment and context
	1.5 Thesis organization


	II Related work
	2 Related work
	2.1 DNN complexity optimizations
	2.2 AI acceleration hardware
	2.3 DNN inference optimization and deployment tools
	2.4 Deployment heterogeneity
	2.5 Discussion


	III Research Results
	3 Optimal deployment of DNNs in serverless cloud architectures
	3.1 Background and challenges
	3.2 Benchmarking DNN inference in serverless environments with MLPerf
	3.3 On-demand serverless video surveillance with optimal deployment of deep neural networks

	4 Knowledge-driven approach for the optimal deployment of DNNs in heterogeneous IoT platforms
	4.1 Background and challenges
	4.2 Methodology
	4.3 Experiments and discussion
	4.4 Practical deployment examples
	4.5 Conclusions

	5 Optimizing end-to-end multi-DNN-based video analytics on the edge
	5.1 Background and challenges
	5.2 Methodology
	5.3 Experiments and discussion
	5.4 On-site readjustment of the system in an aircraft cabin
	5.5 Conclusions


	IV Conclusions
	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work


	V Appendix
	A Publications related to the research done for this thesis
	A.1 Benchmarking deep neural network inference performance on serverless environments with MLPerf
	A.2 Designing automated deployment strategies of face recognition solutions in heterogeneous iot platforms. 
	A.3 Optimal deployment of face recognition solutions in a heterogeneous iot platform for secure elderly care applications.
	A.4 On-demand Serverless Video Surveillance with Optimal Deployment of Deep Neural Networks.
	A.5 Leveraging Synthetic Data for DNN-Based Visual Analysis of Passenger Seats.
	A.6 Building Synthetic Simulated Environments for Configuring and Training Multi-camera Systems for Surveillance Applications
	A.7 Building a Camera-based Smart Sensing System for Digitalized On-demand Aircraft Cabin Readiness Verification
	A.8 How can deep neural networks be generated efficiently for devices with limited resources?
	A.9 Optimizing Video Analytics Deployment for In-Flight Cabin Readiness Verification
	A.10 Multi-Task Explainable Quality Networks for Large-Scale Forensic Facial Recognition

	B Other publications related with the application of computer vision and Deep Neural Networks field
	B.1 A temporally consistent grid-based visual odometry framework for multi-core architectures.
	B.2 Efficient Multi-task based Facial Landmark and Gesture Detection in Monocular Images.
	B.3 Virtual reality interfaces applied to web-based 3D E-commerce.
	B.4 Efficient Multi-task based Facial Landmark and Gesture Detection in Monocular Images.

	C Patent applications
	C.1 Method, System and Computer Program Product for Eye Gaze Direction Estimation
	C.2  Method and System for Detecting Presence of Objects in Passenger Compartments of Transport Means

	D Other published resources
	D.1 SmaCS dataset

	E Glossary
	Acronyms

	VI Bibliography
	Bibliography


