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13 Abstract:

14 A range of phenotypes differing in growth rate were designed in the Manila clam by 

15 combining separate breeding families with size segregation within each family to constitute 

16 fast and slow growing groups. Physiological components of the energy budget and scope for 

17 growth (SFG) were then compared between these different phenotypes during the acute and 

18 chronic responses to two diets that were iso-caloric but differed by 3-fold in their 

19 protein/energy (P/E) ratios. Both diets were based on the microalgae Rhodomonas lens 

20 obtained in either the exponential or the stationary phase of culture. The aims of the study 

21 were 1) to test the effects of these changes in food composition on growth rate, estimated as 
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2

22 the balance of physiological processes of energy gain and loss integrated in the SFG; and 2) 

23 to assess the extent to which physiological adjustments to diet composition are modulated in 

24 order to fulfill the variable energy requirements posed by the occurrence of differential 

25 growth phenotypes. Growth performance improved with the high-protein (N+) diet for the 

26 different family * growth group combinations, with SFG values exceeding by 50% on 

27 average the values of the low-protein (N-) diet. Digestive constraints resulted in reduced 

28 absorption efficiency with the N-diet, which tended to cancel out the potential benefits of 

29 adjusting feeding rates in order to compensate for a low protein ration. Endogenous 

30 differences in growth rate associated with segregated phenotypes were mainly accounted for 

31 by differences in energy acquisition, with feeding rates differing by ~ 2-fold between fast 

32 and slow growers. Additionally, significant differences were recorded for the unitary 

33 metabolic costs (i.e., per unit of metabolizable energy), indicating that higher metabolic 

34 efficiency was also a component of faster growth. 

35 Key words: growth phenotypes, protein/energy ratio, Ruditapes philippinarum, scope for 

36 growth.

37

38 Introduction

39 Selective breeding is one fundamental step in aquaculture practices oriented to the 

40 generation of stocks exhibiting improved traits for animal production. For commercial 

41 species of marine bivalve mollusks, faster growth has been considered of utmost interest 

42 since the variability in growth rate of bivalves ranks among the highest in the animal kingdom 

43 (Goff, 2011), and much of this variation has been reported to be genetically determined 
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44 (Dégremont et al., 2005; Evans and Langdon, 2006; Toro and Paredes, 1996). In the context 

45 of a joint research project (FIGEBIV, MINECO 2013) centered around one important 

46 mariculture species (the Manila clam Ruditapes philippinarum), we have undertaken the 

47 analysis of this endogenous component of growth by combining physiological and genetic 

48 approaches for a) the identification of physiological components of growth variability and b) 

49 the search for candidate genes accounting for differential growth phenotypes. The desire for 

50 an experimental system appropriate to assess genotype-phenotype associations for growth 

51 traits in the context of this project has encouraged the creation of families combined with the 

52 selection of intrafamily growth groups.

53 Methods based on the quantification of physiological parameters liable to be 

54 subsequently integrated in an energy budget (the SFG approach) have proven to be useful in 

55 the identification of feeding and metabolic behavior traits that are mainly responsible for 

56 inherent differences in growth performance among groups of individuals conforming to 

57 differentiated growth categories of possible genetic origin (Bayne, 2000; Bayne et al., 1999b, 

58 1999a; Fernández-Reiriz et al., 2016; Tamayo et al., 2016, 2014, 2011). As systematized by 

59 Bayne (1999), such persistent physiological differences have been reported to comprise 

60 variable capacities for both energy acquisition (feeding and digestive behavior) and energy 

61 savings associated with metabolic processes of maintenance and growth. The existence of 

62 such a strong genetic component, however, does not exclude phenotypic plasticity in the form 

63 of a flexible physiological response to ambient fluctuations, particularly food availability as 

64 the main environmental determinant of rates of growth (Bayne, 2004). Consequently, a 

65 thorough analysis of adaption capabilities to the food environment exhibited by selected 

66 groups of bivalves would require assessment of a) the extent to which physiological behavior 
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67 underlying growth performance is genetically determined and b) how much of this behavior 

68 can, on its own, be environmentally modulated in order to achieve the more effective 

69 exploitation of available food resources within the limits set by the genetic constitution of 

70 individuals (Prieto et al., 2018; Tamayo et al., 2015).

71 In addressing the interactions between food supply and the growth rate of bivalves, 

72 several distinctive features of the food environment should be considered, especially those 

73 concerning the quantity and quality of available seston (Gosling, 2015). The main source of 

74 food in suspension feeding bivalves is assumed to be phytoplankton, and the growth of both 

75 natural and cultivated populations generally exhibits a good correlation with phytoplankton 

76 abundance, as represented by Chl a concentration in the water column (Figueiras et al., 2002; 

77 Pieters et al., 1980; Smaal and Van Stralen, 1990). However, different studies performed 

78 over the last few decades have emphasized the importance of other components of the seston, 

79 including mainly organic detritus together with bacteria and zooplankton (Arapov et al., 

80 2010; Huang et al., 2003; Langdon and Newell, 1990). Concerning this point, trophic analysis 

81 of natural populations of bivalves (see Hawkins et al., 2013 for a review) has revealed that 

82 the amount of energy available in the seston (=POM) required to achieve a given growth 

83 performance increases as a function of the relative abundance of organic detritus in the diet, 

84 very likely reflecting the poor nutritional value of these materials relative to phytoplankton 

85 as a consequence of differences in biochemical composition and specifically the higher C:N 

86 ratio of detritus.

87 Bivalve growth is not only dependent on food density (Rico-Villa et al., 2009) but 

88 also on the balance between different constituents (e.g., Brown et al., 1998; Wikfors et al., 

89 1992) and, in fact, gross biochemical composition indices have been extensively used in order 

90 to assess physiological condition (Lucas and Beninger, 1985). Among the major biochemical 
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91 constituents (i.e., proteins, carbohydrates and lipids) in diets, proteins are more directly 

92 related to growth due to their metabolic and structural functions and may consequently 

93 become a limiting factor, as suggested by both laboratory (Brown et al., 1997; Hawkins and 

94 Bayne, 1991; Ibarrola et al., 1996; Romberger and Epifanio, 1981) and field (Bayne, 2009; 

95 Gremare et al., 1997) studies. Hence, a direct connection between protein input and growth 

96 should be appreciated (Kreeger and Langdon, 1993). 

97 As evidence of potential N limitation in bivalves, the cockle Cerastoderma edule 

98 absorbs nitrogen more efficiently than overall organic matter (Urrutia et al., 1996) and 

99 absorbs proteins better than lipids (Ibarrola et al., 2000), pointing to a compensatory 

100 mechanism for strict N requirements. Similarly, protein utilization relative to energy, as 

101 measured in terms of the respective net growth efficiencies, tends to increase under 

102 conditions of food limitation (negative energy balance) in the mussel Mytilus edulis, 

103 suggesting the conservation of protein deposition rates at the expense of energy (Hawkins 

104 and Bayne, 1991), while higher conversion efficiencies for protein appear on the basis of 

105 faster growth in selected oysters (Saccostrea commercialis) relative to controls (Bayne, 

106 2000). 

107 Experiments with doubly labeled (15N and 14C) protein in the diet (Kreeger et al., 

108 1996, 1995) provided evidence of a noticeable feature concerning the metabolic fate of 

109 dietary protein in mussels (Mytilus edulis), offering a metabolically based mechanism for 

110 some of the above observations: the higher assimilation efficiency (90% of the absorbed 

111 ration) of the N isotope (the amino-N fraction) compared to less than 34% of the C isotope 

112 (the amino-C fraction) (Kreeger et al., 1996) suggests the intensive use of ingested proteins 

113 to fuel the N pool through transamination reactions for protein synthesis, with the consequent 

114 waste of most of the amino-C fraction, possibly as a component of metabolic fecal loss 
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115 (Hawkins and Bayne, 1985). In energy terms, this poses a heavy tax on the use of dietary 

116 protein for protein deposition into the tissues, to add to the elevated metabolic costs of protein 

117 synthesis (Lee et al., 2016; Pan et al., 2018). 

118 Given these high energy requirements involved in dietary protein utilization for the 

119 growth of bivalve tissues, two issues are relevant in the context of the present study:

120 1) How does changing food quality (C:N ratio), expressed as the protein to energy 

121 ratio in the diet, impact growth rate, estimated by means of the energy balance 

122 (the SFG), and which physiological components of growth are involved in that 

123 response?

124 2) How do physiological adjustments to diet quality become modulated in order to 

125 fulfill the contrasting energy requirements set by the occurrence of intrinsic 

126 differences in growth performance (i.e., fast vs. slow growing phenotypes)?

127 To address these questions, four differentiated growth phenotypes of Manila clam juveniles, 

128 obtained through combined interfamily and intrafamily segregation, were conditioned to two 

129 diets differing broadly in terms of their protein to energy ratios. Then, the physiological 

130 components of the energy balance, and resulting SFG, were determined and compared 

131 between these growth groups during both the acute and chronic responses to changing 

132 biochemical composition of the food.

133 2. - Materials and methods

134 2.1 Families and growth groups

135 Manila clam specimens used in this study belonged to the offspring of two families 

136 (1 and 8) from a set of full-sib families established for the combined characterization of 

137 growth rate, physiological parameters and SNP polymorphisms, in order to identify QTLs 
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138 related to growth and growth-associated physiological components of the energy balance. 

139 Groups of sibs (families from now on) were obtained from pair matings, which were 

140 performed in May 2015 at the IRTA hatchery. Larvae from each mating were cultured in 300 

141 L tanks at 21ºC, and fed Isochrysis galbana at 10000 cells mL-1. Water was changed every 

142 48h. Larvae from six matings survived until settlement. After completion of metamorphosis, 

143 spat form each family was transferred to 5 L containers with mesh bottom, which were  

144 suspended in 500 L tanks with running seawater, first at the IRTA facilities, and after they 

145 reached 3 mm, at the IATS facilities. When they reached a minimum size of 7 mm (December 

146 2015), 85 clams were sampled randomly from each family, they were labeled, and their shell 

147 length and height were measured. Labeled animals were redistributed in five 50 L tanks 

148 provided with substrate (fine-grained sand) and kept at a density of 340 individuals per square 

149 meter until the final sampling (June 2017), while fed a diet of Tetraselmis suecica 

150 supplemented with Isochrysis galbana and Chaetoceros sp. Two families were chosen for 

151 this study on the basis of their growth rate (see below).

152 The preliminary characterization of growth performance of these families (in terms 

153 of regression of growth rate vs. body size) indicated a 47.6% higher growth rate in Family 1 

154 relative to Family 8. For the specific objectives of this study, two growth groups were 

155 segregated inside each family by choosing the larger and smaller specimens to which the 

156 conditions of fast (F) and slow (S) growth, respectively, were assigned. Table 1 shows the 

157 sizes and characteristics of these groups determined in order to fulfill the requirements of the 

158 experimental design: some 30 individuals per growth group presenting the highest degree of 

159 size-homogeneity possible (CV ranged from 7% in F to 16% in S groups). Size differences 
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160 achieved between F and S groups were similar for both families:, i.e., ~ 2x in terms of shell 

161 length and 6x in terms of live weight.

162

163 Table 1. Mean (SD) size of the four groups of clams before starting the experiments

family Growth group N Length (mm) Weight (mg)
1 F 30 23.14 (1.54) 2359.05 (468.63)
1 S 27 12.36 (1.93) 380.63 (138.36)
8 F 30 21.92 (1.91) 2095.39 (602.52)
8 S 34 11.4 (1.96) 314.07 (150.41)

164

165 2.2 Maintenance and experimental design

166 After arrival at the laboratory of Animal Physiology (UPV/EHU, 21st June 2017), 

167 these groups were separately maintained for 10 days in a 50 L tank filled with aerated 

168 seawater (34 PPT) regulated at 17 ºC and fed Isochrysis galbana (T-ISO clone) at a cell 

169 concentration equivalent to 1 mm3 L-1 (~20,000 cells mL-1). Water in the tank was changed 

170 daily.

171 In these experiments, we tested the responses of clams from different families and 

172 growth groups to diets that differed in biochemical composition and that were based on 

173 cultures of the microalgal species Rhodomonas lens growing in the exponential phase (Diets 

174 N+) or maintained in the stationary phase of the culture (Diets N-). A basic outline of the 

175 experimental design is presented in Figure 1: each of the aforementioned F and S groups was 

176 homogenously divided (F=0.21, p=0.893) into four subgroups for subsequent diet 

177 treatments, and each clam was numbered for individual determinations of growth and 

178 physiological parameters. Each of these groups was food-conditioned (acclimated) to the 
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179 diets N+ or N- for 15 days (Table 2). Subsequently, each member of the pair conditioned to 

180 diets N+ or N- was exposed to one of the experimental diets based on exponential (E) or 

181 stationary (S) cultures for physiological determination, resulting in 4 experimental conditions 

182 for each growth group and family (Figure 1 and Table 3). In the notation of these categories, 

183 the first letter indicates the diet used in acclimation, and the second letter indicates the 

184 experimental diets used for the acute exposure prior (3 d) and during physiological 

185 determination. That is, each group*family combination was analyzed under the four 

186 nutritional scenarios stated in Acute exposure in Figure 1: N+N+, N+N-, N-N+ and N-N; 

187 using different pools of clams under each condition (i.e., no repeated measurements were 

188 carried out).
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189

190 Figure 1.- Experimental setup for the recording of physiological parameters in the 

191 fast (F) and slow (S) growing groups segregated from two families. Five individuals (n=5) 

192 were used in each of the 16 resulting groups. 

193

194 2.3 Composition of diets

195 The basic component of diets was the microalgae R. lens in either exponential or 

196 stationary phase. E microalgae were obtained in a continuous culture system, in which 20% 

197 of the stock was renewed daily. To obtain S microalgae, cultures that had reached the 
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198 exponential phase were maintained in a static culture system without further addition of 

199 nutrients until the stationary phase was reached. The turning point for the transition from the 

200 E to S stage of culture was identified by the color change of the culture (from red to green), 

201 indicative of N limitation. 

202 Table 2. Diet composition, including the culture phase of R. lens, C:N index and 

203 protein/energy ratio

Diet Culture phase C:N Protein/Energy (P/E, µg J-1)
N+ E (Exponential) 4.94 (0.21) 24.77 (0.53)
N- S (Stationary) 14.54 (0.22) 8.11 (0.12)

204

205 Tables 2 and 3 show the composition and characteristics of two types of diets used in 

206 this study: the acclimation diets used in food conditioning of clams prior to experimentation 

207 and the experimental diets used in the acute exposure of clams during physiological 

208 measurements. The composition of the acclimation diets included only microalgae in either 

209 the E or S phase of culture. The composition of the experimental diets was based also on 

210 these microalgae as food but included 35-40% inorganic content (by weight) to fulfill the 

211 requirements of an inorganic tracer in absorption efficiency (AE) determinations by the 

212 Conover method. The inorganic component consisted of silt particles <63 µm obtained from 

213 surficial sediment samples collected in the field that were ashed at 450 ºC for organic matter 

214 combustion. Hence, experimental diets were prepared by mixing both microalgae and silt 

215 particles in the stated proportions with the aid of a magnetic stirrer and then dosed with a 

216 peristaltic pump. Both acclimation and experimental diets were dosed at approx. 1 and 1.25 

217 mm3 L-1, respectively, in terms of particles packed volume, to achieve a POM concentration 

218 of 0.6 mg L-1 under each condition.
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219 Elemental analysis of diets was conducted during the acclimation period, as well as 

220 in the course of experiments, on samples collected over preweighted glass fiber filters (GF/C) 

221 by filtering a known volume of water from the feeding tanks and washing with 50 mL of 

222 seawater. Samples were immediately frozen at -20ºC, lyophilized, and maintained at -20ºC 

223 until they were analyzed in an Euro EA Elemental Analyzer (CHNS) from EuroVector, using 

224 acetanilide as a standard. The protein/energy ratio was indirectly estimated as follows: 

225 protein content of the sample (µg) was estimated by using the equivalence P=N * 5.8 

226 (Gnaiger and Bitterlich, 1984), while energy content (J) was estimated as the product of POM 

227 and the energy equivalents (22.906 and 26.826 J mg-1 for E and S cultures, respectively; Platt 

228 and Irwin, 1973).

229 Table 3. Characteristics of both acclimation and exposure diets, where TPM is total 

230 particulate matter, PIM is particulate inorganic matter, POM is particulate organic matter, 

231 OC is organic content (=POM/TPM) and C:N is the carbon to nitrogen index.

Diet TPM (mg L-1) PIM (mg L-1) POM (mg L-1) OC C:N
N+ 0.64 (0.15) 0.09 (0.07) 0.55 (0.08) 0.87 (0.07) 4.94 (0.21)

Acclimation diets
N- 0.56 (0.05) 0.05 (0.01) 0.51 (0.04) 0.92 (0.02) 14.54 (0.22)

N+N+ 1.13 (0.25) 0.53 (0.19) 0.60 (0.09) 0.54 (0.08) 5.40
N+N- 1.25 (0.24) 0.48 (0.09) 0.77 (0.16) 0.62 (0.03) 10.70
N-N+ 1.20 (0.25) 0.56 (0.19) 0.64 (0.09) 0.54 (0.08) 5.43

Diet composition in 
the acute exposure of 
the different 
experimental 
conditions N-N- 1.00 (0.15) 0.35 (0.08) 0.65 (0.11) 0.65 (0.07) 13.57

232

233 Characterization of food suspensions leading to the data in Table 3 was carried out 

234 twice per week in triplicate during the acclimation period and 5-6 times in triplicate during 

235 the exposure. For this purpose, samples of water collected from the feeding tanks were 

236 filtered through preweighted glass fiber filters (GF/C), rinsed with ammonium formate (0.9% 

237 w/v) to prevent salt retention and dried for 24-48 h at 100ºC to estimate dry weight. Ash 
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238 weight was computed after calcination for 6 h at 450ºC. Total particulate matter (TPM, mg 

239 L-1) and particulate inorganic matter (PIM, mg L-1) were calculated from the dry weight and 

240 ash weight of material retained in the filters, respectively, and the difference TPM – PIM 

241 represented the particulate organic matter (POM, mg L-1). 

242 2.4 Physiological determinations

243 Physiological determinations were performed individually, with five individual 

244 samples for each condition. Measurements involved in the quantification of components of 

245 the energy balance lasted 4 days for each experimental condition.

246 The clearance rate (CR, L h-1) was measured by the flow-through chamber method 

247 (Crisp, 1971), where clams were individually placed in a 125 mL flask with a constant supply 

248 of diet. Flow rates through the flasks were regulated to produce reductions in particle 

249 concentrations in the range of 15-30%, corresponding to conditions for which CR is 

250 independent of the flow rate (Filgueira et al., 2006). Twelve to 16 such measurements were 

251 registered during the daytime (from 8 a.m. to 8 p.m.) by means of a particle counter (Beckman 

252 Z1 Counter), and the CR of each individual was estimated as the average of these 

253 measurements. The organic ingestion rate (OIR, mg h-1) was then computed as the product 

254 of CR and POM.

255 Absorption efficiency (AE, decimal units) was estimated by the method of (Conover, 

256 1966) from the organic content of food suspensions and the feces produced in the course of 

257 CR measurements. Both water samples and feces were filtered on GF/C filters and processed 

258 for total dry weight and inorganic weight determinations as described previously (section 
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259 2.3). Organic content (OC) was computed as organic weight (= total - inorganic) divided by 

260 total weight. 

261 The absorption rate (AR, mg h-1) of organic matter was estimated as the product of 

262 OIR and AE, and the energy equivalents that were applied to the absorbed ration in SFG 

263 computation were those described in Section 2.3.

264 The metabolic rate was assessed as the oxygen consumption rate (VO2, µL O2 h-1). 

265 Clams were individually placed in 150 mL chambers filled with filtered seawater at a 

266 constant temperature (17ºC) sealed with LDO oxygen probes connected to a Hatch HQ40d 

267 oximeter. Rates of oxygen consumption were computed from the decline in oxygen 

268 concentration in the chambers registered over 3-4 h. A chamber without animals was used as 

269 a control. These rates were converted to energy equivalents (J h-1) by using the following 

270 oxi-caloric coefficient: 1 mL O2=20.08 J (Gnaiger, 1983).

271 For determination of ammonia excretion rates (VNH4-N, µg NH4-N h-1), animals 

272 were located individually in open flasks with 30 mL of filtered seawater (0.2 µm Millipore 

273 membranes) for 2-3 h, and the ammonia concentration was determined according to the 

274 phenol-hypochlorite method (Solórzano, 1969). Two flasks without animals were used as 

275 controls. Rates of ammonia excretion were converted to energy equivalents (U: J h-1) by 

276 using a conversion factor of 24.853 J mg-1 (Elliott and Davison, 1975).

277 The O:N index was calculated as the proportion between atomic equivalents of 

278 oxygen consumed and nitrogen excreted by each animal.

279 The scope for growth (SFG, J h-1) was estimated as the following difference: AR – 

280 (R + U)
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281 After physiological determinations were concluded, clams were dissected, gill area 

282 was estimated by image analysis with Fiji software (Schindelin et al., 2012), and soft tissues 

283 were lyophilized to obtain dry weight measurements. Growth in terms of energy was 

284 indirectly estimated by the conversion factor of 23.96 J mg-1 (Álvarez-Jorna, 1995). For 

285 comparative purposes, physiological rates were standardized to a common tissue dry weight 

286 of 85.95 mg (the average value), using scaling factors (b) obtained in a previous experiment 

287 of 0.609, 0.697 and 1.00 to scale CR, VO2 and VNH4-N, respectively, to soft body weight 

288 (own unpublished data). Likewise, a mass exponent of 2.00 was used to standardize gill area 

289 to a common length.

290 Statistical analysis

291 This study comprises the analysis of the effects of 4 factors on the suite of 

292 physiological traits involved in growth rate, including a) Two endogenous factors associated 

293 with differences in growth performance between families (family factor) and with the effects 

294 of size segregation (growth category factor). b) Two exogenous factors corresponding to 

295 differences in the biochemical composition of the acclimation diet prior to physiological 

296 experiments (acclimation diet factor) or the actual diet ingested during physiological 

297 determinations (exposure diet factor). Physiological measurements recorded under this 

298 experimental design were compared for significant differences through a 4-way ANOVA 

299 using R (R Core Team, 2016), after the data were tested for normality (Shapiro-Wilk) and 

300 homoscedasticity (Levene). Relationships between different components of energy balance 

301 as well as between SFG and actual growth rates were fitted through linear regression analyses 

302 (by least squares) using the same software.

303 3. - Results:
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304 3.1 Comparison of means of pooled values corresponding to factors under analysis

305 Means of pooled values of the physiological components of the energy balance, gill 

306 areas and O:N indices, computed for alternative values of the 4 factors (categories) referred 

307 to above, are presented in Table 4. Table 5 summarizes the results of the corresponding 4-

308 way ANOVA, including terms for both single factors and factor interactions up to the 4th 

309 degree. 

310 Table 4.- Means of pooled values (SE) of different parameters computed for alternative 

311 values of the factors under study: family (F;1 vs. 8); growth group (G;F vs. S); acclimation 

312 diet (A;N+ vs. N-) and exposure diet (E;N+ vs. N-). CR=clearance rate (L h-1); GA=gill area 

313 (mm2); AE=absorption efficiency (decimal units); AR=absorption rate (J h-1); R=metabolic 

314 rate (J h-1); U=nitrogen excretion rate (J h-1); SFG=scope for growth (J h-1); 

315 O:N=oxygen:nitrogen index (atomic ratio).

CR AE AR R U O:N SFG GA

N+
0.83 
(0.05)

0.72 
(0.02)

9.91 
(0.57)

1.36 
(0.08)

0.17 
(0.02)

21.49 
(3.28)

8.38 
(0.58)

406.26 
(7.14)A

N-
0.8 
(0.05)

0.65 
(0.02)

8.06 
(0.45)

1.3 
(0.11)

0.17 
(0.03)

41.28 
(6.87)

6.6 
(0.44)

361.52 
(10.2)

N+
0.89 
(0.05)

0.81 
(0.01)

10.28 
(0.57)

1.48 
(0.09)

0.27 
(0.03) 12 (1.39)

8.52 
(0.59) -E

N-
0.75 
(0.05)

0.56 
(0.01)

7.69 
(0.39)

1.17 
(0.09)

0.06 
(0.01)

50.77 
(6.46)

6.46 
(0.41) -

F
0.95 
(0.05)

0.67 
(0.03)

10.3 
(0.52)

1.44 
(0.09)

0.12 
(0.02)

36.35 
(5.26)

8.74 
(0.52)

370.57 
(7.68)G

S
0.68 
(0.04)

0.7 
(0.02)

7.67 
(0.46)

1.21 
(0.09)

0.22 
(0.03)

26.42 
(5.84)

6.24 
(0.47)

397.22 
(10.61)

1
0.91 
(0.04)

0.67 
(0.02)

9.72 
(0.51)

1.3 
(0.11)

0.17 
(0.03)

27.16 
(4.73)

8.24 
(0.52)

369.58 
(9.38)F

8
0.73 
(0.05)

0.7 
(0.02)

8.25 
(0.53)

1.35 
(0.08)

0.16 
(0.03)

35.61 
(6.3)

6.74 
(0.52)

398.2 
(9.07)
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318 CR and gill area: These two parameters are considered together on account of the 

319 functional relationship linking the filtering activity with the surface area of the filtering 

320 organ. Both endogenous factors (family and growth category) are associated with significant 

321 differences in CR and gill area, although trends are not strictly concordant: for example, 

322 offspring of Family 1 exhibit approximately 20% higher CR compared with that of Family 

323 8, and F clams present a similar difference with respect to S clams (irrespective of family 

324 ascription). Conversely, gill areas tend to be higher in S clams and Family 8, and these 

325 differences are clearly less sharp relative to CR differences but are still significant. On the 

326 other hand, the very significant positive influence of acclimation to diets N+ on the gill area 

327 (Table 5 and Figure 2b) partly supports the effect that clams tend to feed faster with this diet, 

328 especially following a period of acclimation (Table 4). 

329 Absorption efficiency and absorption rate: Each of the factors under study exerted 

330 significant differences (p<0.001) on absorption efficiency. However, even if significant, 

331 effects of endogenous factors (family and growth group) per se appear quantitatively 

332 irrelevant compared with the strong effect of actual dietary condition, resulting, for instance, 

333 in a 44% increase observed in the absorption efficiency of clams exposed to diets N+ relative 

334 to diets N- (Table 4). The complex behavior of this parameter in the acute vs. chronic 

335 response to changing diet composition in each group of clams results in a set of combined 

336 effects (interactions; Table 5) that will be the described in the next section. Absorption rate 

337 behavior combines the effects of feeding rates (CR) and absorption efficiencies. 

338 Consequently, AR values exhibited substantial significant differences (Table 5) for each 

339 factor (acclimation, exposure, growth group and family). Compared with diets N-, feeding 

340 diets N+ promoted an increase in the AR, both in the acute response (33% increase) and 
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341 during acclimation (23%) (Table 4). Concerning the endogenous factors, differences in 

342 feeding rates caused greater AR values in F relative S clams or in clams from Family 1 

343 compared with those of Family 8 (Table 4). 

344 Metabolic expenditures (R and U) and O:N index: Both metabolic and N excretion 

345 rates increase significantly with acute exposure to N+ diets (Table 4 and 5), but this effect is 

346 considerably higher for U (350%) than for R (26%). Consequently, values of the O:N index 

347 experienced a 4-fold decline in clams fed this high N diet. Overall, acclimation to N+ diets 

348 also promoted a significant reduction in the O:N index (Table 5), although this effect was 

349 only noticeable during acute exposure to N- diets (Figure 4c). This behavior is accounted for 

350 by the consistent significance of the exposure*acclimation interaction term for R, U and the 

351 O:N index (Table 5). 

352 Endogenous factors (family and growth group) had no significant effects on 

353 metabolic rate or the O:N index, although F clams registered, on average, 19% more 

354 metabolic activity than S clams. Rates of ammonia excretion were significantly higher (~2-

355 fold) in S than F clams, but no differences between Family 1 and 8 were recorded.

356 SFG: SFG integrates a diversity of effects on physiological components and was 

357 significantly affected for all tested variables, both endogenous and exogenous (dietary). 

358 Confirming their status as fast growers, F clams had significantly higher SFG than S clams, 

359 while those belonging to Family 1 had higher SFG than clams from Family 8. On the other 

360 hand, both acute and chronic exposure to N-rich diets promoted a significant increase in the 

361 SFG, with acclimation enhancing the effects of the acute change (see acclimation*exposure 

362 interaction term in Table 5).
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363

364 3.2 Combined dynamics of the acute and chronic responses

365 Figures 2a to 5a have been designed to represent the dynamics of the different 

366 physiological parameters combining the acute and chronic (acclimation) responses to 

367 changes in the N content of the diet. Each point (with standard deviation bars) represents the 

368 mean (n=5) value of each group, in which different clams were used, whereas lines 

369 connecting these points for the N+N+, N+N-, N-N-, N-N+ and N+N+ sequence of 

370 experimental conditions are drawn to model the acute-chronic response to dietary change.

371

372 Figure 2a) Size-standardized values of clearance rate in fast (black) and slow (gray) 

373 growing clams belonging to families 1 (solid lines) and 8 (dotted lines); b) size-

374 standardized gill area values of fast (dark) and slow (light) growing clams from both 

375 families and acclimated to N+ and N- diets.

376 The main dietary effects on CR are accounted for by the acclimation*exposure 

377 interaction (Table 5), conforming to a general pattern in which the acute change of the diet 
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378 (either from N+ to N- and vice versa) results in a decline in feeding rate followed by a 

379 recovery along the acclimation period (“W shaped pattern”; Figure 2a). In addition, acute 

380 exposure to the low-nitrogen diet had a higher impact on CR than did the change from N- to 

381 N+, leading to bigger decreases in the feeding activity. The magnitude of these changes tends 

382 to be greater in Family 1 than Family 8, with maximal differences between the S groups of 

383 both families.

384
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385 Figure 3a) Absorption efficiency and b) absorption rate values of fast (black) and 

386 slow (gray) growing clams belonging to families 1 (solid lines) and 8 (dotted lines)

387

388 AE shows a positive dependence on the N content of the diet, with a general U-shaped 

389 pattern in which the acute response (i.e., a strong reduction in AE following the change from 

390 N+ to N- diets) is reinforced during the acclimation period (Figure 3a). However, these 

391 effects are smaller in slow growing clams (S), which are able to maintain their AE values 

392 relatively stable along the acclimation phase, resulting in higher efficiencies of S clams with 

393 the low-N diet. 

394 Rates of absorption (AR) approximately follow this same “U-shaped” trend (Figure 

395 3b), with some deviations from the general pattern due to the differential behavior of CR 

396 between families and growth groups: while F clams exposed to N+ diets rapidly recovered 

397 from reduced AR values achieved during chronic exposure to N-poor diets, the response of 

398 S clams required much longer acclimation periods. 
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399

400 Figure 4 Size-standardized values of a) metabolic rate (VO2) and b) ammonia excretion 

401 rate of fast (black) and slow (gray) growing clams belonging to families 1 (solid lines) and 

402 8 (dotted lines); c) O:N index of each group (Acclim: acclimation diet; Exp: exposure diet)

403 Rates of energy expenditure (both metabolic and excretion rates) showed a rather 

404 common pattern of response to combined acute and chronic changes in N content of the diet 

405 (Figure 4). In general, acute change involving improved nutritional conditions (from N- to 

406 N+) results in a positive effect on these rates, leading to maximal values that are maintained 

407 or reduced (depending on growth group or family) during the acclimation. Following the 

408 acute decline in the N+ to N- change, acclimation to the N- diet resulted in an additional 

409 minor reduction in excretion rates, these changes being greater for S than for F clams. 
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410 The combined effects of acute exposure and acclimation to diets with different N 

411 contents on SFG fit different patterns for F and S clams (Figure 5; see also 

412 acclimation*exposure*growth group interaction in Table 5). For F clams, acute decline 

413 following the N+ to N- change is further reinforced during acclimation to the poor diet, while 

414 the increasing response to the opposite acute change is maintained along the acclimation to 

415 the N+ diet. This U-shaped pattern would indicate that the SFG trend of F clams is governed 

416 by AE behavior. For S clams, any change in diet quality (either from N- to N+ or vice versa) 

417 resulted in a decline of SFG values in the acute response, followed by a recovery during the 

418 acclimation phase. This W-shaped pattern would indicate that the SFG trend in slow growing 

419 clams is governed by CR behavior. 
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421 Figure 5 Size-standardized SFG values in fast (black) and slow (gray) growing clams 

422 belonging to families 1 (solid lines) and 8 (dotted lines).

423 3.3 The relationship between SFG and actual growth rate (GR)

424 The potential of SFG methodology to predict actual growth rates (GR) was tested by 

425 performing regression analysis of both measurements (Figure 6). For this purpose, only 

426 physiological measurements recorded under fully acclimated conditions were employed, 

427 assuming that weight changes used in actual growth measurements would reflect the stable 

428 conditions achieved in acclimated specimens. The fitted regression equation was SFG=1.03 

429 GR + 2.19 (F=52.9, p<0.001), in which the slope did not significantly differ from 1 

430 (F=0.0366 p=0.8494), but intercept was significantly different from 0 (F=4.2396 

431 p=0.04639), reflecting a slight overestimation of SFG over actual growth. Nevertheless, the 

432 weak significance (p=0.046) concerning the deviation of the intercept from 0 is indicative of 

433 a good concordance between both measurements and would confirm the validity of SFG 

434 methodology in predicting the growth rate. 

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344



25

435

436 Figure 6 Relationship between SFG and actual growth for fast (black) and slow 

437 (gray) growing clams. The solid line represents y=x, while the dashed line is a plot of the 

438 regression equation fitted to the experimental data.

439
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441 Table 5. Summary of 4-way ANOVA testing of the significant effects of acclimation and exposure to alternative diets, growth category 

442 and family on gill area and physiological parameters. Significant differences (p<0.05) are highlighted in bold characters. 

CR Gill area AE AR R VNH4-N SFG O:N

Acclimation F = 0.368, p = 0.546 F = 14.949, p < 0.001 F = 106.456, p < 0.001 F = 14.243, p < 0.001 F = 0.202, p = 0.655 F = 0, p = 0.989 F = 11.451, p = 0.001 F = 13.579, p < 0.001

Exposure F = 8.228, p = 0.006 - F = 1199.494, p < 0.001 F = 57.89, p < 0.001 F = 6.594, p = 0.013 F = 88.567, p < 0.001 F = 15.122, p < 0.001 F = 52.109, p < 0.001

Growth category F = 31.335, p < 0.001 F = 5.305, p = 0.025 F = 14.949, p < 0.001 F = 25.778, p < 0.001 F = 3.548, p = 0.064 F = 18.561, p < 0.001 F = 22.495, p < 0.001 F = 3.414, p = 0.069 

Family F = 13.032, p = 0.001 F = 6.12, p = 0.016 F = 15.454, p < 0.001 F = 8.536, p = 0.005 F = 0.148, p = 0.701 F = 0.259, p = 0.613 F = 8.135, p = 0.006 F = 2.476, p = 0.121 

Acclimation:Exposure F = 29.94, p < 0.001 - F = 0.502, p = 0.481 F = 13.532, p < 0.001 F = 6.936, p = 0.011 F = 9.952, p = 0.002 F = 16.999, p < 0.001 F = 20.479, p < 0.001

Acclimation:Growth category F = 0.886, p = 0.35 F = 0.441, p = 0.509 F = 12.999, p = 0.001 F = 3.688, p = 0.059 F = 0.52, p = 0.474 F = 1.009, p = 0.319 F = 5.347, p = 0.024 F = 2.229, p = 0.14 

Exposure:Growth category F = 0.146, p = 0.703 - F = 26.049, p < 0.001 F = 1.399, p = 0.241 F = 2.025, p = 0.16 F = 15.061, p < 0.001 F = 1.631, p = 0.206 F = 0.001, p = 0.971 

Acclimation:family F = 0.29, p = 0.592 F = 1.666, p = 0.201 F = 0.929, p = 0.339 F = 0.005, p = 0.942 F = 1.015, p = 0.317 F = 3.087, p = 0.084 F = 0.083, p = 0.774 F = 2.813, p = 0.098 

Exposure:family F = 0.167, p = 0.684 - F = 19.741, p < 0.001 F = 3.028, p = 0.087 F = 1.226, p = 0.272 F = 0.117, p = 0.734 F = 1.544, p = 0.219 F = 1.876, p = 0.176 

Type of seed:family F = 0.012, p = 0.915 F = 0.925, p = 0.34 F = 9.759, p = 0.003 F = 0.091, p = 0.764 F = 0.088, p = 0.767 F = 1.554, p = 0.217 F = 0.253, p = 0.617 F = 0.071, p = 0.79 
Acclimation:Exposure:Growth 
category F = 0.911, p = 0.344 - F = 30.004, p < 0.001 F = 5.319, p = 0.024 F = 0.367, p = 0.547 F = 0.021, p = 0.885 F = 5.356, p = 0.024 F = 0.638, p = 0.427 

Acclimation:Exposure:family F = 2.928, p = 0.092 - F = 4.146, p = 0.046 F = 1.324, p = 0.254 F = 2.563, p = 0.114 F = 2.685, p = 0.106 F = 2.506, p = 0.118 F = 4.524, p = 0.037 

Acclimation:Growth category:family F = 0.071, p = 0.79 F = 0.233, p = 0.631 F = 13.829, p < 0.001 F = 0.84, p = 0.363 F = 0.219, p = 0.641 F = 0.91, p = 0.344 F = 0.506, p = 0.479 F = 0.409, p = 0.525 

Exposure: Growth category:family F = 1.112, p = 0.296 - F = 0.003, p = 0.958 F = 1.005, p = 0.32 F = 3.009, p = 0.088 F = 0.697, p = 0.407 F = 1.925, p = 0.17 F = 0.288, p = 0.594 
Acclimation:Exposure: Growth 
category:family F = 2.166, p = 0.146 - F = 0.355, p = 0.553 F = 3.129, p = 0.082 F = 0.93, p = 0.338 F = 2.105, p = 0.152 F = 2.372, p = 0.128 F = 1.421, p = 0.238 
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444 4. - Discussion:

445 The aims of this study were mainly to test the effect of diet quality, given as the 

446 nitrogen to energy ratio (or inversely, the C:N index), on features of the physiological 

447 behavior underlying variability among differentiated growth phenotypes. To 

448 experimentally address this question concerning the dependence of growth rate of 

449 bivalves on dietary food value, several procedures have been attempted to obtain a range 

450 of biochemical profiles. These include the use of different microalgal species (Albentosa 

451 et al., 1996; Enright et al., 1986; Epifanio, 1979; Fernández-Reiriz et al., 2015; Pettersen 

452 et al., 2010; Walne, 1970), mixtures of microalgae with inert organic particles (Albentosa 

453 et al., 2002, 1999; Maeda-Martínez et al., 2016; Pérez-Camacho et al., 1998) or 

454 manufactured microcapsules (Kreeger et al., 1996, 1995; Kreeger and Langdon, 1993) as 

455 well as the manipulation of phytoplankton cultures for the specific purpose of changing 

456 the protein content of the cell (Kreeger and Langdon, 1994, 1993; Uriarte and Farı́as, 

457 1999; Utting, 1985). This last procedure has the advantage of relying mainly on 

458 differences in biochemical composition, while other differential features related to the 

459 physical constitution of particles that might affect the rates of food processing would be 

460 virtually absent. In this study, two different diets were made up from the same species of 

461 phytoplankton (Rhodomonas lens) cultivated either in the exponential or stationary phase 

462 to achieve a 2.5-fold difference in the protein content (C:N ratios of 4.9 and 12.8 in diets 

463 N+ and N-, respectively). The transition from the exponential (N+) to the stationary (N-) 

464 phase of the culture was observed to result in an increase in cell size (from 44.2 to 82.5 

465 pg cell-1), but food supply in our experiments was not regulated to the same cell number 

466 but rather to achieve the same organic ration (mg POM L-1) in both diets, and gill retention 

467 efficiency has been reported to be constant (near 100%) in that size range (Defossez and 

468 Hawkins, 1997; Ward and Shumway, 2004); hence, we generated the hypothesis that 
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469 differences in physiological behavior observed between both diets respond solely to 

470 differences in their biochemical composition. 

471 Early observations concerning limitations exerted by N availability on energy 

472 flows within coastal environments (Mann, 1982), as well as the positive relationship 

473 between protein ingestion and production exhibited by marine invertebrates (Roman, 

474 1983), offer an appropriate reference context for the present finding that acclimation to 

475 N+ diets promoted a higher growth rate than acclimation to N- diets in juveniles of the 

476 Manila clam. This confirms previous results concerning the positive correlation reported 

477 between dietary protein content of experimental diets and growth rate in the early life 

478 stages of many different species of bivalves (Brown et al., 1998; Enright et al., 1986; 

479 Kreeger and Langdon, 1993; Maeda-Martínez et al., 2016; Uriarte and Farı́as, 1999; 

480 Utting, 1986; Wikfors et al., 1992), including juveniles of the Manila clam (Ruditapes 

481 philippinarum) (Albentosa et al., 2002; Langton et al., 1977) and the con-generic R. 

482 decussatus (Albentosa et al., 1999). In the specific case of Manila clams, Gallager and 

483 Mann (1981) reported a negative impact on growth for diets presenting C:N ratios above 

484 10.5. Thus, actively growing bivalves appear to require moderate to high levels of dietary 

485 protein to optimize growth, whereas diet quality (the protein to energy P/E ratio) has been 

486 reported to be a better predictor of growth performance than the overall food ration 

487 (Kreeger and Langdon, 1993). 

488 4.1 Acute vs. chronic response to changing dietary N content

489 In the present experiments, groups of clams were conditioned for 15 days to N+ 

490 or N- diets, and then physiological parameters and the resulting SFG were recorded for 

491 each acclimation group with both N+ and N- diets. The obtained set of data could thus be 

492 arranged to generate a sequence comprising the acute followed by the chronic response 
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493 of physiological parameters to every change from N+ to N- and vice versa (see Figures 

494 2a to 5a). Growth rate differences found between N+ and N- diets were accounted for by 

495 differences in physiological behavior regarding the main components of the energy 

496 balance and features of this behavior, including both short and long-term responses to 

497 dietary change. Characteristically, the acute-chronic sequence varies for the different 

498 physiological parameters, depicting a complex pattern of food conditioning. For instance, 

499 net energy gain (the absorption rate: AR) was governed by the contrasting behavior of the 

500 feeding rate and absorption efficiency: feeding rates declined with every change in the 

501 diet (either N+ to N- or vice versa), and full achievement required acclimation, whereas 

502 AE increased in the acute change to the N+ diet and further improved during the 

503 acclimation to that diet. Patterns of metabolic energy expenditure were characterized by 

504 the increase in both oxygen consumption and ammonia excretion in the acute change from 

505 N- to N+, which partly declines during the acclimation to the N-rich diet.

506 Values of physiological parameters recorded under corresponding acclimation 

507 diets (i.e., the N+N+ and N-N- experimental sets) would be representative of stable 

508 conditions after diet acclimation, and computed SFG from these values can consequently 

509 be assumed to indicate growth performance exhibited by the different groups. 

510 Comparison of physiological behavior of clams fully conditioned to N+ and N- diets, 

511 across the different family * growth group combinations (Figure 7), indicate significantly 

512 higher rates of both energy gain and loss and resulting SFG values that were increased by 

513 50% on average for clams fed the high-protein diet, with the only exception being the S8 

514 (slow growers of Family 8) group. 
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515

516 Figure 7: Bar plot reporting components of net energy gain (sum of all categories) and 

517 loss (R: gray bars, U: white bars) and resulting SFG (dark gray bars) in the different 

518 family * growth group combinations fully acclimated to diets N+ and N-. 

519

520 While the beneficial effect of increased protein/energy (P/E) indices of the diet on 

521 the growth rate of bivalves has been broadly documented (see references above), there is 

522 presently a noticeable lack of experimental evidence in this group concerning the 

523 concomitant effects on the energy budget and the physiological components of growth 

524 that are involved in the improvement of individual production. In this respect, commercial 

525 fish species might provide a useful reference for comparative purposes since the energetic 

526 response to variable E/P diets has been frequently tested (Bendiksen et al., 2002; Boujard 
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527 and Médale, 1994; Helland and Grisdale-Helland, 1998; Morales et al., 1994): For 

528 instance, data from experiments performed on the rainbow trout fed high and low P/E 

529 diets designed on an iso-energetic basis (Saravanan et al., 2012) agree with the present 

530 results regarding the positive effects of protein-rich diets on feed intake (= OIR), 

531 digestible energy intake (=AR) and energy retention (=SFG), with nonsignificant 

532 differences in metabolic heat output associated with diet. The same results obtained in 

533 such different aquacultured animal models are indicative of common mechanisms and 

534 point to limitations of the homeostatic control of protein income, exemplified for instance 

535 by the fact that specimens exposed to low P/E diets do not resort to “overeating” to 

536 compensate for reduced dietary protein, with a resulting reduction in growth performance. 

537

538 Figure 8 Absorption efficiency (AE) as a function of organic ingestion (OIR). Lines were 

539 fitted to mean values for the different groups of clams fully acclimated to N+ (closed 

540 circles) and N- (open circles) diets.
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541 Further analysis of the physiological components of energy gain in the present 

542 experiments suggests that the above limitations might stem from digestive constraints. 

543 Increased energy income with high-quality (high P/E) food relies partly on a behavioral 

544 response since the feeding rate has increased significantly by the term of acclimation to 

545 N+ relative to N- diets (by 12% on average). However, the outstanding effect of protein-

546 rich diets on energy balance is mediated by a strong increase in the AE, which rises by 

547 nearly 80% (from 0.51 to 0.85) during the change from fully acclimated N- to N+. 

548 Although the AE of N (AEN) has been reported to be higher than that of C (AEC) under 

549 several circumstances (Bayne, 2009; Urrutia et al., 1996), consideration of this factor 

550 could not fully account for differences in AE for overall organics of the magnitude found 

551 in this study, since N absorption contributes at most 20% to the total absorption of 

552 organics. Consequently, broad differences in digestive performance (sensu Navarro et al., 

553 2009) on both types of food particles should be invoked to account for a more efficient 

554 absorption of R. lens cells in the exponential (E) relative to the stationary (S) phase of the 

555 culture. Since most of the change (~80%) has already occurred in the short-term response 

556 (see Figure 3a), variable digestibility must rely on differential features of both microalgal 

557 cells (e.g., biochemical constitution or, eventually, size), rather than be based on enzyme 

558 induction processes that might take place during acclimation. This interpretation is 

559 consistent with the different behaviors exhibited by E and S cells upon digestion (Figure 

560 8): while the AE of E microalgae appears to be virtually independent of the ingestion rate, 

561 that of S microalgae declines with rising ingestion, revealing that digestive yield is 

562 strongly dependent on the gut residence time of food particles. This feature of the N- diet, 

563 a characteristic of poorly digestible food, would have the effect of canceling out the 

564 benefits of any potential increase in the feeding rate oriented to compensate for the low 

565 protein ration.
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566 Feeding on different P/E diets has a neat effect on rates of energy expenditure 

567 (both oxygen consumption and ammonia excretion rates), although the energetic 

568 relevance of these dietary effects is lower, with the SFG response mainly driven by energy 

569 gain processes (as it will be discussed later). Two main points would summarize the 

570 present results concerning energy expenditure: 1) Acclimation to a high-protein diet 

571 increases both metabolic and N excretion rates, with the stronger change being achieved 

572 in the acute response. 2) These dietary effects are much higher for rates of excretion 

573 relative to the metabolic response, resulting in a maximum decrease of the O:N ratio by 

574 a factor of 7.5 when clams acclimated to the N- diet are fed the N+ diet. The 

575 corresponding difference in O:N ratios between clams fully acclimated to N+ and N- was 

576 a factor of 5.1. 

577 Determination of ammonia excretion in studies regarding the scope for growth 

578 determination has been traditionally neglected in bivalves since its representation in the 

579 energy budget is considered low (1-10% of total metabolic energy expenditure in M. 

580 edulis; Bayne and Newell, 1983). However, this measurement gains interest in the context 

581 of studies—such as the present study—testing the effect of variable protein/energy inputs 

582 on the components of the energy balance, given that ammonia excretion represents a 

583 summary output of dietary protein metabolism. The reason, provided by studies reported 

584 in the Introduction section (see Kreeger et al., 1996, 1995), is that the preferred pathway 

585 for protein assimilation in bivalves appears to comprise incorporation to the N pool 

586 through transamination reactions, rather than the most direct incorporation to the pool of 

587 essential amino acids for protein synthesis. Consequently, Langton et al., (1977) reported 

588 in Tapes japonica (=Ruditapes philippinarum) a 2-fold increase in ammonia excretion 

589 corresponding to a 3.5-fold increase in N-protein ingestion, similar to the present results 

590 with the same species, where a 2.7-fold increase in N ingestion led to an 8.7-times 
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591 increase in N excretion. A positive dependence of rates of ammonia excretion on dietary 

592 protein ingestion generally has been documented in other aquatic animals, such as fishes 

593 (Brunty et al., 1997; Green and Hardy, 2008; Porter et al., 1987), pointing to a certain 

594 identity concerning the mechanisms of protein assimilation in ammoniotelic organisms. 

595 In line with the present approach, a 2 to 3-fold increase in the rate of N excretion has been 

596 reported in response to increasing dietary P/E ratios by the same factor in both shrimps 

597 (Coelho et al., 2019; Gauquelin et al., 2007) and fishes (Saravanan et al., 2012).

598 Consideration of the extent to which the stoichiometric C:N coupling between the 

599 diet and growing tissues occurs might provide further understanding of the observed diet-

600 dependent behavior of N excretion. Bayne (2017) put forward a stoichiometric hypothesis 

601 fitting experimental data for Crassostrea gigas (Bayne, 2009; Mao et al., 2006): “When 

602 feeding behaviour cannot fully compensate for an imbalance between C:N of the tissues 

603 and C:N of the diet, and nitrogen is absorbed in excess of the demand, then this excess is 

604 removed by excretion. Similarly, if insufficient N is absorbed then nitrogen excretion is 

605 reduced in order to conserve tissue nitrogen”. In the present case, N surplus resulting from 

606 the elevated energy inputs achieved to sustain high growth demands with the N+ diet 

607 would account for rates of ammonia excretion that exceed 10 times the rates recorded 

608 with the N- diet, in which low protein content combines with reduced AE to doubly 

609 constrain N absorption. 

610

611 4.2 Endogenous factors

612 Separate breeding of two families differing in growth rate and size-segregation 

613 inside each family was combined in this study to achieve a wide range of growth 

614 phenotypes for physiological determinations and SFG computation. In general, 
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615 physiological differences accounting for growth variation were found to be higher for the 

616 size-segregation factor than the family factor: For instance, based on means of pooled 

617 values (Table 4), net energy gain values differed by 34% between fast (F) and slow (S) 

618 clams, while the corresponding difference between F1 and F8 amounted only to 18%; the 

619 equivalent figures for the SFG were 40 and 22%, respectively. These trends occur 

620 irrespective of the diet, since interaction terms have null or weak significance (Table 5). 

621 Energy losses, when significantly different, showed the opposite behavior. Thus, the 

622 energy balances for the different family * growth group combinations rank as follows: 

623 F.1>F.8>S.1 >S.8

624 The relative contribution of components of energy gain and loss to SFG variation 

625 is illustrated in Figure 9. Clearly, energy balance fluctuations recorded across diets and 

626 growth phenotypes are overwhelmingly driven by the physiological processes of feeding 

627 and absorption, while the effects of metabolic energy expenditure are virtually null 

628 (regression equations for either respiration or ammonia excretion rates were only 

629 significant on their intercepts). Previous studies analyzing SFG fluctuations across size-

630 segregated growth groups of clams (R. philippinarum: Tamayo et al., 2011) and mussels 

631 (M. galloprovincialis: Fernández-Reiriz et al., 2016) also reported that fast growth was 

632 mainly accounted (80- 90%) for by increased energy gain, while 10-20% was explained 

633 by changes in metabolism. This agrees with the general observation that limits to growth 

634 in bivalves are set primarily by functional constraints on feeding and digestion rather than 

635 by the associated metabolic costs (Bayne et al., 1989; Navarro et al., 1992), although 

636 metabolic constraints have been reported at low food concentrations (Albentosa et al., 

637 1996; Beiras et al., 1994), i.e., when food rations approach the maintenance conditions.

638
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639

640 Figure 9 Net energy gain (AR) and loss (R and U) at different levels of the SFG. Lines 

641 fitted (minimum squares) to individual data for all experimental sets in this study. 

642 Physiological parameters accounting for SFG fluctuations were the same, 

643 irrespective of diet acclimation, and involved both rates of energy acquisition and 

644 conversion efficiencies: 

645 1) Increased energy acquisition in faster growers was fully accounted for by the 

646 higher feeding rates found in F clams (40% increase with respect to S clams) and clams 

647 from Family 1 (25% increase with respect to those of Family 8), since the AE was found 

648 to decline (little but significantly; Table 5) in fast growers relative to slow growers. 

649 Several studies comparing the feeding behavior of size-segregated growth groups have 

650 reported that faster feeding of F specimens correlated with larger gills in both clams 

651 (Tamayo et al., 2011) and mussels (Prieto et al., 2018). The present results preclude any 

652 generalization of this kind of relationship as gill areas were found in this case to be 

653 consistently higher in the groups of clams exhibiting lower clearance rates (i.e., in fam. 8 
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654 compared with fam. 1 and in S clams compared with F clams), suggesting that a greater 

655 pumping capacity per unit of surface area (or increased gill efficiency) would be an 

656 alternative mechanism to achieve fast feeding. On the other hand, gill area was found to 

657 differentiate during diet acclimation (higher values corresponded to the protein-rich diet), 

658 an adaptive response similar to gill and palp size adjustments to different food 

659 environments revealed in transplant experiments of different species of bivalves 

660 (Tedengren et al., 1990; Worrall and Widdows, 1983). This points to a highly plastic trait 

661 (Honkoop et al., 2003) and does not support the idea, implicit in previous studies (Prieto 

662 et al., 2019, 2018; Tamayo et al., 2011), that gill size would be a constitutive trait, liable 

663 per se to account for interindividual differences in feeding and growth rates. The ability 

664 to adapt the size of filtering structures was noticeably greater in F clams and clams of 

665 Family 1 (see Figure 2b), and this differential behavior might explain the prompter and 

666 more efficient feeding adjustments exhibited by fast growers during the dietary changes. 

667 Generally, F/Fam.1 clams lost less feeding and absorption capacity with diet N- and 

668 recovered earlier their previous level of activity with diet N+ than did the S/Fam.8 clams. 

669 This, combined with more restrained energy losses, resulted in fast growers achieving a 

670 better management of energy resources during nutritional fluctuations. 

671 2) Lack of significant differences in rates of metabolic energy expenditure 

672 recorded for the different growth phenotypes implies that increased energy gain (2 to 3-

673 fold increase in rates of absorption between fast and slow growers) does not occur at the 

674 expense of greater metabolic outputs, thus pointing to variable metabolic efficiency 

675 (Bayne, 2004, 1999). Indeed, the unitary metabolic costs (i.e., per unit of metabolizable 

676 energy or AR) were found to decline for rising SFG (Figure 10), indicating that greater 

677 metabolic efficiencies also stood out as a component of faster growth. Statistical 

678 comparison (ANOVA) of mean values for these unitary costs between the different family 
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679 * growth group combinations indicates significant differences between families, where 

680 Family 1 sibs attained 77% lower unitary costs than Family 8 sibs (F=6.486, p=0.0159). 

681 Similar results concerning interfamily differences in metabolic efficiency have also been 

682 reported in the mussel Perna canaliculus (Ibarrola et al., 2017). 

683

684 Figure 10.- Unitary metabolic costs (computed individually) as a function of SFG (open 

685 circles), and mean values of this relationship in the different growth phenotypes (squares: 

686 F clams, triangles: S clams; black symbols: Family 1, gray symbols: Family 8), under 

687 fully acclimated conditions. Superscripts indicate significant differences (p< 0.05) in 

688 terms of unitary costs

689 Therefore, the present results confirmed most earlier studies on bivalves reporting 

690 selection for faster growth to entail faster rates of feeding and absorption (increased 

691 energy acquisition), most frequently coupled to increased metabolic efficiency 

692 represented by the reduced metabolic costs per unit of absorption (Bayne, 2000, 1999; 

693 Bayne et al., 1999b, 1999a; Fernández-Reiriz et al., 2016; Holley and Foltz, 1987; 
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694 Ibarrola et al., 2017; Pernet et al., 2008; Tamayo et al., 2016, 2015, 2014, 2011; Toro and 

695 Vergara, 1998). Bayne (2000) and Pace et al. (2006) have convincingly associated these 

696 variations in costs of growth with differences in the efficiency of protein deposition in 

697 both larvae and adult oysters. In spite of very different experimental approaches used in 

698 the segregation of growth phenotypes, a noticeable uniformity regarding the complex of 

699 physiological processes underlying differential growth appears to be the rule across those 

700 studies. Moreover, this endogenous component of growth variability has been found to 

701 subsume a wide range of phenotypic plasticity for physiological traits, expressed in the 

702 form of the present feeding and digestive adjustments to a change in the biochemical 

703 composition of food, as well as equivalent responses reported in variable nutritional 

704 (Bayne, 2000; Tamayo et al., 2015) or thermal (Tamayo et al., 2013) contexts.
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