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Abstract: Artificial intelligence (AI) has emerged as a cutting-edge tool, simultaneously accelerating,
securing, and enhancing the diagnosis and treatment of patients. An exemplification of this capability
is evident in the analysis of peripheral blood smears (PBS). In university medical centers, hematol-
ogists routinely examine hundreds of PBS slides daily to validate or correct outcomes produced
by advanced hematology analyzers assessing samples from potentially problematic patients. This
process may logically lead to erroneous PBC readings, posing risks to patient health. AI functions as
a transformative tool, significantly improving the accuracy and precision of readings and diagnoses.
This study reshapes the parameters of blood cell classification, harnessing the capabilities of AI
and broadening the scope from 5 to 11 specific blood cell categories with the challenging 11-class
PBC dataset. This transformation facilitates a more profound exploration of blood cell diversity,
surpassing prior constraints in medical image analysis. Our approach combines state-of-the-art deep
learning techniques, including pre-trained ConvNets, ViTb16 models, and custom CNN architectures.
We employ transfer learning, fine-tuning, and ensemble strategies, such as CBAM and Averaging en-
sembles, to achieve unprecedented accuracy and interpretability. Our fully fine-tuned EfficientNetV2
B0 model sets a new standard, with a macro-average precision, recall, and F1-score of 91%, 90%, and
90%, respectively, and an average accuracy of 93%. This breakthrough underscores the transformative
potential of 11-class blood cell classification for more precise medical diagnoses. Moreover, our
groundbreaking “Naturalize” augmentation technique produces remarkable results. The 2K-PBC
dataset generated with “Naturalize” boasts a macro-average precision, recall, and F1-score of 97%,
along with an average accuracy of 96% when leveraging the fully fine-tuned EfficientNetV2 B0 model.
This innovation not only elevates classification performance but also addresses data scarcity and bias
in medical deep learning. Our research marks a paradigm shift in blood cell classification, enabling
more nuanced and insightful medical analyses. The “Naturalize” technique’s impact extends be-
yond blood cell classification, emphasizing the vital role of diverse and comprehensive datasets in
advancing healthcare applications through deep learning.

Keywords: convolutional neural net (CNN); vision transformer (ViT); ImageNet models; transfer
learning (TL); machine learning (ML); deep learning (DP); blood cell classification; peripheral blood
cell (PBC); CBAM; Naturalize

1. Introduction

Hematopoiesis, the remarkable process responsible for blood cell formation, is or-
chestrated by a hierarchy of specialized cells. At its core are hematopoietic stem cells, the
ultimate architects of this symphony. These versatile cells possess the unique ability to
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self-renew and differentiate into various lineages. From them, progenitor cells emerge,
committed to specific blood cell types like red blood cells, white blood cells, and platelets.
Progenitor cells then give rise to precursor cells, which exhibit more specialized traits and
characteristics. Finally, precursor cells mature into fully functional blood cells, capable
of carrying out their vital roles in oxygen transport, immune defense, and clotting. The
presence of precursor cells in the bloodstream is essential to maintain a dynamic reservoir,
ready to respond to the body’s ever-changing demands for blood cells, ensuring a constant
supply to sustain life and preserve health [1].

The transition from promyelocyte to the differentiated granulocytes—neutrophils,
eosinophils, and basophils—constitutes a pivotal and intricately regulated process in
hematopoiesis. This maturation journey encompasses distinct phases, each characterized
by unique morphological and functional features. Following the promyelocyte stage, mye-
locytes emerge as granule-containing precursors, evolving into metamyelocytes, which dis-
play a progressive transformation in nuclear morphology. Subsequently, the cells progress
to the band cell stage, marked by a characteristic U-shaped or horseshoe-shaped nucleus.
Finally, the culmination of this finely orchestrated process results in the development of
fully mature neutrophils, eosinophils, and basophils, each armed with specialized functions
crucial for immune surveillance and response. This sequential progression underscores
the intricacy of granulopoiesis [1], contributing to the generation of a diverse and highly
specialized cellular arsenal essential for the maintenance of immune homeostasis.

Granulopoiesis [1] refers to the process of formation and maturation of granulocytes,
which are a type of white blood cell characterized by the presence of granules in their
cytoplasm. Granulocytes include neutrophils, eosinophils, and basophils, each playing
a distinct role in the immune system. Granulopoiesis takes place in the bone marrow,
where hematopoietic stem cells differentiate and undergo a series of stages to give rise to
mature granulocytes. The process involves the development and specialization of cells
through various stages, such as myeloblasts, promyelocytes, myelocytes, metamyelocytes,
and finally, the release of mature granulocytes into the bloodstream. Granulocytes play a
crucial role in the body’s defense against infections, allergic reactions, and other immune
responses.

Figure 1 offers a visually compelling depiction of granulopoiesis, showcasing the
remarkable progression from promyelocyte to the ultimate maturation of neutrophils,
eosinophils, and basophils. This visual narrative not only illuminates the intricacies of their
development in the bone marrow but also underscores their subsequent presence in the
peripheral blood and various tissues. The orchestrated journey depicted underscores the
dynamic nature of these immune sentinels as they transition from the confines of the bone
marrow into the bloodstream and tissues, where they play pivotal roles in safeguarding
the body against infections and maintaining immune homeostasis.

A peripheral blood smear is a microscopic window into hematopoiesis, offering a
quick and insightful view of blood cell types and any abnormalities, crucial for diagnosing
and monitoring hematological conditions [2].

In the realm of hematology, the meticulous examination of peripheral blood smears
is vital for diagnosing blood disorders and guiding treatment Hematologists shoulder
the burden of this labor-intensive manual process, scrutinizing countless blood cells with
unwavering attention amidst a high workload and constant distractions. Their dedication
is essential for precise diagnostics and patient care, given the criticality of the results
they deliver [2].

However, the field of hematology has witnessed a transformative evolution through
deep learning, a subset of artificial intelligence. This advancement automates peripheral
blood smear analysis, alleviating the challenges faced by hematologists. Deep learning
algorithms swiftly process blood cells, identifying subtle abnormalities and providing
rapid, consistent results. This automation eases the workload, reduces human error, and
empowers healthcare experts to focus on intricate cases [3].
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Figure 1. Enchanting glimpse into granulopoiesis.

As technology continues to advance, the fusion of deep learning and peripheral
blood smear analysis promises to revolutionize blood disorder diagnosis and management,
enhancing patient care outcomes [3].

In recent years, the drive to automate peripheral blood smear analysis has gained
momentum within hematology. Our study leverages the “Peripheral Blood Cel” (PBC)
dataset, encompassing 11 distinct blood cell classes, offering a comprehensive foundation
for analysis [4]. Challenges stemming from class imbalance in the PBC dataset are addressed
with our innovative “Naturalize” augmentation technique.

The “Naturalize” method employs a two-step process to transform medical images,
specifically peripheral blood cells. Initially, it utilizes the “Segment Anything Model”
to selectively segment images into key cell classes. This segmentation is followed by
the creation of composite images, where red and white blood cells are combined while
maintaining authentic cell sizes and preventing overlap. Unlike conventional methods,
“Naturalize” prioritizes specificity, providing precise control over image content and ex-
tending its adaptability beyond medical imaging to become a versatile tool for creating
realistic and diverse datasets.

The predominant strength of the Naturalize augmentation technique lies in its strategic
incorporation of random selection and subsequent random addition of segmented blood
cells. By integrating these elements into its methodology, Naturalize introduces an inherent
variability that significantly enhances the authenticity and diversity of the generated
composite images. This approach sets “Naturalize” apart as a powerful tool for producing
realistic and varied datasets in medical imaging and beyond.

In addition, our approach incorporates state-of-the-art deep learning models, including
ImageNet ConvNets [5] and Vision Transformer (ViT) [6], through techniques like transfer
learning [7–9], fine-tuning, and ensembling [10]. Evaluation encompasses quantitative
assessments using confusion matrices, classification reports [11], and visual evaluations
using tools like Score-CAM [12].

These advancements, combined with the pioneering application of “Naturalize”, sig-
nify substantial progress in automating peripheral blood smear analysis. This paper delves
deep into the methodologies and outcomes of these cutting-edge approaches, illuminating
their potential to reshape the field of hematology.

After this introduction, the rest of the paper will continue as follows: Section 2
highlights the relevant literature related to the detection and classification of blood cells
using pre-trained CNNs and ViTs, and Section 3 describes the methodology used in this
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study. In addition, Section 4 presents the experimental results obtained using pre-trained
ImageNet models and Google ViT for the blood cell classification. In Section 5, an in-depth
analysis of results is made. Finally, the conclusions of this work are presented in Section 6.

2. Related Works

Within the realm of machine learning, the conventional approach involved the man-
ual extraction of image features followed by classification. The advent of deep learning
revolutionized this process by automating image classification, particularly impactful
in blood cell analysis. Previous studies primarily concentrated on five white blood cell
(WBC) types: neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Distin-
guishing our research is the comprehensive classification of 11 distinct blood cell types,
inclusive of segmented and banded neutrophils, introducing Meta-myelocyte, Myelocyte,
Pro-myelocyte, erythroblasts, and platelets to the array. This expansion broadens the
classification spectrum, redefining the scope of blood cell analysis.

Jung et al. [13] introduced W-Net, a CNN-based model for white blood cell (WBC)
classification, achieving 97% accuracy with 10-fold cross-validation. Their work focused
on classifying five WBC types: neutrophils, eosinophils, basophils, lymphocytes, and
monocytes. Sahlol et al. [14] combined VGG-16 and a feature reduction algorithm (SESSA)
to achieve 95.67% accuracy for WBC leukemia image classification. They categorized WBCs
into five classes.

Almezhghwi et al. [15] used ImageNet pre-trained architectures (VGG, ResNet, DenseNet)
and data augmentation, with DenseNet-169 achieving 98.8% accuracy. Their study involved
the classification of five WBC types. Tavakoli et al. [16] developed a segmentation algorithm
and used SVM for WBC classification, achieving high accuracy in multiple datasets. They
focused on five WBC types.

Chen et al. [17] proposed a hybrid deep model combining ResNet and DenseNet
with a spatial and channel attention module (SCAM), outperforming previous methods.
They worked with datasets containing five WBC types. Katar et al. [18] applied transfer
learning with ImageNet models, with MobileNet-V3-Small achieving 98.86% accuracy.
They classified five WBC types.

Nahzat et al. [19] designed a CNN-based model using the Kaggle BCCD dataset,
achieving competitive results. They also focused on five WBC types. Heni et al. [20] intro-
duced the EK-Means method for WBC image segmentation, achieving a validation accuracy
of 96.24% with VGG-19. They categorized five WBC types. Ziquan Zhu [21,22] presented
DLBCNet models that used ResNet-50 for feature extraction and achieved impressive
accuracy. They worked with datasets containing five WBC types.

Other groups of researchers [23–28] worked on the classification of 8 blood classes in
the the PBC dataset [4]. Table 1 summarizes the work of those groups.

Table 1. Previous works on the classification of 8 blood classes of the PBC dataset

Paper Year Used Model Classes Accuracy
(%)

Precision
(%) Recall (%) F1-Score

(%)

[23] 2019 Fine-Tuned VGG-16 8 96.20 97.00 96.00 97.00
[24] 2020 ShuffleNet 8 97.94 97.94 97.94 97.94
[25] 2021 BloodCaps 8 99.30 99.17 99.16 99.88
[26] 2021 Ensemble ResNet-50-2 and VGG-19 8 99.51 99.47 99.58 99.93
[27] 2023 CNN 8 99.91 99.77 99.60 99.60
[28] 2023 Mask R-CNN 8 99.31 97.25 97.37 97.31

Distinguishing our research is the expansion of blood cell classification into 11 distinct
classes and the groundbreaking “Naturalize” augmentation technique. The shift from 8 to
11 classes presents a notable challenge due to the increased complexity in differentiating
these new classes, particularly in cases such as pro-myelocyte, myelocyte, and meta-
myelocyte, where the number of available images is insufficient.
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The “Naturalize” technique directly tackles two prominent challenges in deep learning:
data insufficiency and class imbalance. In the realm of deep learning, the quality and
balance of data significantly impact model performance. “Naturalize” effectively addresses
these challenges by generating high-quality blood cell samples, thereby augmenting our
dataset. This innovative approach substantially enhances the performance of blood cell
classification, pushing the boundaries of deep learning in blood cell analysis. Not only does
it improve accuracy, but it also ensures robustness and reliability when handling diverse
and imbalanced blood cell classes.

By broadening the classification scope to encompass 11 blood cell types and introduc-
ing the transformative “Naturalize” method, our research ushers in a new era in automated
blood cell analysis. It adeptly addresses persistent challenges in deep learning, creating a
more consistent framework and promising significant enhancements in diagnostic precision.
Ultimately, these advancements contribute to improved patient care and medical outcomes.

3. Materials and Methods

This section offers an detailed exposition of our methodology, designed to elevate
blood cell image classification within the challenging Peripheral Blood Cell (PBC) dataset
to an exceptional level of precision. Our classification endeavor leveraged the power of
pre-trained Deep Learning (DL) architectures, prominently featuring the “ImageNet Con-
vNets” and “Keras Vision Transformers (ViT)”. We harnessed the ingenious “Naturalize”
augmentation technique, strategically addressing data insufficiencies in certain classes,
such as pro-myelocyte, while concurrently expanding the available image data in other
classes. The sheer breadth and sophistication of our methodology are vividly depicted
in Figure 2, a testament to our unwavering commitment to advancing the frontiers of
image classification.

3.1. PBC Dataset
3.1.1. Original 8-Class PBC Dataset

The original PBC dataset [4], sourced from an online repository, encompasses 17,092 im-
ages categorized into eight distinct classes of blood cells. These eight classes include
neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes,
erythroblasts, and platelets (thrombocytes).

This means the original PBC contains 8 folders. The “Immature Cells” folder contains
three classes labeled as “Pro-myelocyte”, “Myelocyte”, and “Meta-myelocyte”. Also, the
“Neutrophil” folder contains two labeled classes “Banded Neutrophil” and “Segmented
Neutrophil”. Thus, the total number of classes in the original PBC dataset is 11 classes.

Table 2 provides an overview of the distribution of the eight blood cell classes within
the original PBC dataset.

Table 2. Summary of the PBC dataset.

Number Cell Type Total of Images by Type Percent

1 Neutrophils 3329 19.48
2 Eosinophils 3117 18.24
3 Basophils 1218 7.13
4 Lymphocytes 1214 7.10
5 Monocytes 1420 8.31
6 Immature Granulocytes (IG) 2895 16.94
7 Erythroblasts 1551 9.07
8 Platelets (Thrombocytes) 2348 13.74

Total 17,092 100

The images in the PBC dataset adhere to a standard size of 360 × 363 pixels [4], which
closely matches the input size of ImageNet models and the Google ViT, minimizing the
need for significant resizing.
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Figure 2. Methodology workflow using the PBC dataset.

3.1.2. New 11-Class PBC Dataset

To expand the original 8-Class PBC dataset into 11 distinct blood cell types or classes, a
separation of labeled classes in two PBC folders “Immature Granulocytes” and “Neutrophil”
was applied, as illustrated in Figure 3. These eleven classes include banded neutrophils,
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basophils, eosinophils, erythroblasts, lymphocytes, meta-myelocytes, monocytes, myelo-
cytes, platelets, pro-myelocytes, and segmented neutrophils.

Figure 3. Transition from the 8-class PBC into the 11-class PBC.

The new Peripheral Blood Cell (PBC) dataset has been grouped into 11 specific blood
cell categories, as outlined in Table 2 [4]. To achieve this classification, certain entries from
the original PBC dataset were eliminated because they did not align with the new 11 cat-
egories. For instance, 151 images initially categorized as immature granulocytes lacked
further subclassification (pro-myelocyte, myelocyte, or meta-myelocyte), resulting in a re-
duction in the total number of images in the revised 11-class PBC dataset to 16,891. Notably,
the analysis of Table 3 reveals a significant underrepresentation of the Pro-myelocyte (PMY)
category among these classes.

Table 3. Summary of the new 11-class PBC dataset.

# Cell Class Symbol Total Images By Class %

1 Basophil BA 1218 7
2 Banded Neutrophil BNE 1633 10
3 Eosinophil EO 3117 18
4 Erythroblast ERB 1551 9
5 Lymphocyte LY 1214 7
6 Meta-myelocyte MMY 1015 6
7 Monocyte MO 1420 8
8 Myelocyte MY 1137 7
9 Platelet PLT 2348 14

10 Pro-myelocyte PMY 592 4
11 Segmented Neutrophil SNE 1646 10

Total 16,891 100
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3.2. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was conducted to gain insights into the nature of
the dataset. This involved training and testing pre-trained ImageNet models with the new
11-class PBC dataset, analyzing the confusion matrix, and generating a classification report.

EDA uncovered issues: multi-class images caused confusion and were removed; frag-
ments from other classes also confused models (Figure 4). Scarce pro-myelocyte images affected
performance, addressed with “Naturalize” augmentation to match original image quality.

Figure 4. PBC images containing more than one class.

3.3. First Data Augmentation “Naturalize”

The pseudocode shown in Algorithm 1 demonstrates the principle behind the “Natu-
ralize” augmentation technique and how it works.



Algorithms 2023, 16, 562 9 of 25

Algorithm 1 Naturalize Algorithm

1: # Imports and Paths
2: import os, random, image_processing, SAM_model
3: Define file paths and import essential libraries
4:
5: # Load SAM_model and PBC Dataset
6: mount Google_drive
7: load peripheral blood smear images from PBC dataset
8: SAM = load_model(SAM_model)
9:

10: # Segment PBC Dataset Using SAM
11: segment all PBC images using SAM into segmented “RBCs, WBCs, PLTs”
12: save segmented “RBCs, WBCs, PLTs” into new datasets on Google_drive
13:
14: # Collision Function
15: function CHECK_COLLISION(positions, x, y, width, height)
16: Function to check for image collisions
17: end function
18:
19: # Composite Image Creation
20: for i in range(num_images) do
21: Load background image and initialize positions list
22: Add 1 WBC image
23: Add 8 RBC images with collision avoidance
24: Save the composite image on Google_drive
25: end for

The “Naturalize” augmentation technique consists of two primary steps:

• Step 1—Segmentation:
A portion of the initial PBC dataset images underwent segmentation and were sep-
arated into six distinct datasets employing the “Segment Anything Model (SAM)”
developed by Meta AI [29]. These datasets encompass segmented images of Red
Blood Cells (RBC), Banded Neutrophils (BNE), Meta-myelocytes (MMY), Myelocytes
(MY), Pro-myelocytes (PMY), and Segmented Neutrophils (SNE).
This selective approach, using only these six classes in SAM, was adopted based on
the findings of our earlier Exploratory Data Analysis (EDA) and classification report,
which demonstrated an overall enhancement in classification performance, contrasting
with the use of all 11 classes. Notably, for each cell class, SAM generates masks that
partition the images into three distinct components: background, segmented RBCs,
and segmented WBCs.
To offer further clarification, Figure 5 utilizes Pro-myelocytes (PMY) as a demonstra-
tion of the SAM model’s application. This figure showcases the segmentation process
for PMY images, illustrating the division into background, segmented RBCs, and
segmented PMYs.
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Figure 5. The “Naturalize” first step—segmentation.

• Step 2—Generating Composite Images (Figure 6):
The SAM-segmented RBCs were combined with randomly selected WBCs from the
“BNE, MMY, MY, PMY, and SNE” datasets to create composite images. The primary
objective in this selection and fusion of segmented RBCs and WBCs is to generate
entirely distinct images each time the Naturalize code is run.
Converting the segmented cells into the RGBA format is aimed at resetting the alpha
transparency channel within these segments, preventing their black backgrounds from
appearing in the newly generated images using the Naturalize method. However, the
size of segmented RBCs and WBCs remains unchanged to mirror the real dimensions
of blood cells in peripheral blood smears.
Determining the size (width and height) of the segmented RBCs and WBCs functions
as input for the Collision-Free mechanism, ensuring that the segmented RBC images
avoid overlapping or excessive stacking on either themselves or the segmented WBC
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images when added to the background image. This function’s output results in
well-organized peripheral blood cell images without cells accumulating on top of
each other.
This procedural demonstration is depicted in Figures 5 and 6, highlighting the creation
of composite PMY images as an illustrative example.

Figure 6. The “Naturalize” second step—composite image generation.
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Informed by our comprehensive exploratory data analysis (EDA), we have carefully
curated specific images across multiple classes, underscoring our dedication to maintaining
data quality. For instance, upon the exclusion of multi-class images from the pro-myelocyte
category, the count within the original 11-class PBC dataset reduced from 592 to 419 images,
a process similarly carried out across other classes. Following this pruning process, the
overall count of images in the original PBC dataset consolidates to 16,115 images.

During the initial application of the “Naturalize” technique, the count of pro-myelocytes
surged from 419 images to 1011 images. Table 4 vividly represents the remarkable evolution
of the original 419-PMY PBC dataset across 11 distinct blood cell classes, notably bolstered
by the addition of new created 592 PMY images. Consequently, the cumulative count of
images within the augmented 419-PMY PBC dataset now elevates to 16,345 images.

Table 4. Summary of the augmented 419-PMY PBC dataset

# Cell Class Symbol Total Images By Class %

1 Basophil BA 1123 6.8
2 Banded Neutrophil BNE 1621 9.8
3 Eosinophil EO 2937 17.8
4 Erythroblast ERB 1351 8.2
5 Lymphocyte LY 1202 7.3
6 Meta-myelocyte MMY 1007 6.1
7 Monocyte MO 1350 8.2
8 Myelocyte MY 1134 6.9
9 Platelet PLT 2178 13.2

10 Pro-myelocyte PMY 1011 6.1
11 Segmented Neutrophil SNE 1620 9.8

Total 16,345 100

The dataset underwent a significant expansion through two additional applications
of the “Naturalize” augmentation technique, resulting in the creation of the 1K-PBC and
2K-PBC datasets. Each of these datasets was enriched by adding 1000 and 2000 images
per sub-dataset from the following five blood classes: “BNE, MMY, MY, PMY, and SNE.”
Consequently, the 1K-PBC dataset now comprises: 1123 BA, 2621 BNE, 2937 EO, 1351 ERB,
1202 LY, 2007 MMY, 1350 MO, 2134 MY, 2178 PLT, 2011 PMY, and 2620 SNE. Additionally,
the 2K-PBC dataset includes: 1123 BA, 3621 BNE, 2937 EO, 1351 ERB, 1202 LY, 3007 MMY,
1350 MO, 3134 MY, 2178 PLT, 3011 PMY, and 3620 SNE.

The decision behind the sole inclusion of the following five blood cell classes “BNE,
MMY, MY, PMY, and SNE” in the second and third “Naturalize” application is based on
the results of the classification report and aims to improve classification performance.

This forward-thinking enhancement approach propelled the augmented 419-PMY
dataset to an impressive 21,534 images, rebranded as the “1K-PBC” dataset, and further
expanded it to 26,534 images, now recognized as the “2K-PBC” dataset. This heralds a
transformative era of robust and enriched data resources.

The prior datasets, namely 419-PMY, 1K-PBC, and 2K-PBC, generated using the Natu-
ralize augmentation technique, all exhibited imbalanced class distributions. In response to
this imbalance issue, we have created a new dataset called Balanced PBC, where all classes
have been rebalanced with 2000 images each. As a result, certain classes (BA, BNE, ERB, LY,
MMY, MO, MY, PMY, and SNE) have been augmented to include 2000 images, while the
number of images in the remaining classes (EO and PLT) has been reduced to 2000 each.

3.4. Comparison between Naturalize and Conventional Augmentation Techniques

Conventional image augmentation involves standard transformations such as rotation,
flipping, and color adjustments to expand datasets. These techniques focus on general
image manipulation to increase variety. On the other hand, the “Naturalize” augmentation
method is more complex and specific. It employs a selective segmentation process using
the “Segment Anything Model” to isolate particular cell classes from the dataset. This
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segmentation approach is based on findings from prior data analysis, emphasizing the
enhanced performance of a subset of classes.

Moreover, the number of segmented Red Blood Cells (RBCs), White Blood Cells
(WBCs), and Platelets (PLTs) generated from the original Peripheral Blood Cell (PBC)
dataset using the SAM model is significantly large. The random addition of these seg-
mented objects results in an incredibly vast number of unique and realistic replicas of the
original PBC dataset.

In addition, “Naturalize” offers control over the quality of the created images by
enabling the regulation of the number of added segmented RBCs with the selected seg-
mented WBCs. For instance, one can selectively choose to include 4 or 8 segmented RBCs,
providing a level of precision and control not commonly found in traditional augmenta-
tion techniques.

Furthermore, the versatility of the “Naturalize” technique extends beyond medical
imaging. By segmenting all objects in the original images and reintroducing them into the
background images, “Naturalize” can be applied to various applications, both within the
medical field and beyond. This adaptability showcases the potential for widespread use,
not limited to medical image augmentation.

This method maintains the realism of cell sizes, preserving the authentic dimensions
of blood cells. It also ensures that the combined cells do not overlap excessively through
a “Collision-Free” mechanism, a feature not typically found in traditional augmentation
methods. Overall, “Naturalize” focuses on medical image authenticity and diversity,
tailoring the augmentation process to suit specific requirements rather than applying
generic transformations.

3.5. Augmented 419-PMY PBC Dataset Preprocessing

The preprocessing of the augmented 419-PMY PBC dataset involved three primary steps:

• Step 1—Image Resizing: The images were resized to match the standard “224 × 224”
image input size required by pre-trained ImageNet ConvNets and ViT models.

• Step 2—Second Data Augmentation (Transformational): The training dataset under-
went a second augmentation step, which included geometric transformations such as
horizontal flips, vertical flips, and 90-degree rotations. This augmentation aimed to
mitigate overfitting of models.

• Step 3—Data Splitting: The final 11-class PBC dataset was split into three subsets: an
80% training set, a 10% validation set, and a 10% testing set.

3.6. Models and Dl Techniques (TL/FT/EL)

Three types of model architectures were utilized in this study: pre-trained ImageNet
ConvNets, pre-trained Vision Transformers (ViT), and customized multi-layer CNN models.
Additionally, three DL techniques were employed to train pre-trained models: Transfer
Learning (TL), Fine-Tuning (FT), and Ensemble Learning (EL) [30].

3.6.1. Pre-Trained ImageNet ConvNets

Pre-trained ImageNet models are an explicit example of ConvNets, which are trained
on a large dataset.

Pre-trained ImageNet models were used as the foundation for the study. Notable mod-
els employed in this research included ConvNexTBase [31], DenseNet-121 [32], DenseNet-
169 [32], DenseNet-201 [32], EfficientNetV2 B0 [33], and VGG-19 [34]. Figure 7 provides an
example of the architecture of the VGG-19 model when applied to classify neutrophils.
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Figure 7. Architecture of VGG-19 model classifying a neutrophil.

3.6.2. Pre-Trained Vision Transformer (ViT)

The Vision Transformer (ViT) [6] architecture, based on the transformer architecture
commonly used in Natural Language Processing (NLP), was applied. It involved splitting
input images into small patches and processing each patch through a transformer encoder.
Unlike convolutional layers, ViT used self-attention mechanisms to extract features from
input images, enabling the model to consider the entire image at once. The study utilized
the “ViTb16” architecture with 12 encoder blocks, and Figure 8 illustrates its application to
classify neutrophils [6].

Figure 8. Architecture of ViT classifying a neutrophil.

3.6.3. Customized Multi-Layer CNN

Customized multi-layer CNN models were developed and tested using the final
11-class PBC dataset. Figure 9 provides a schematic representation of a typical customized
CNN model architecture.
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Figure 9. Customized multi-layer CNN model’s architecture.

3.6.4. DL Techniques (TL/FT/EL)

Pre-trained ImageNet model has a Convolutional Base (feature extractor) and Classifier
(MLP head). Transfer learning swaps MLP head for a new one, retraining on a custom
dataset. the Convolutional Base stays non-trainable. Fine-tuning retrains the Convolutional
Base and MLP head, adapting both for a new learning task.

Ensemble learning (EL) unites results from high-performing transfer-learned or fine-
tuned models, utilizing either averaging or the Convolutional Block Attention Module
(CBAM) [35]. The objective is to attain enhanced overall model performance. In their
study [17], the authors applied Ensemble-CBAM with their top-scoring pre-trained models.
To replicate their findings, this work also utilizes the Ensemble-CBAM model.

CBAM is a tool that turbocharges the effectiveness of convolutional neural networks
(CNNs) by focusing on two critical aspects: the inter-dependencies among channels (chan-
nel attention) and the spatial locations within feature maps (spatial attention). When added
to a CNN, CBAM directs the model’s attention toward relevant data while filtering out irrel-
evant noise, leading to better performance and more resilient representations. The CBAM
module is performed on the merged features of the two nets (average or concatenation).
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Equation (1) ([36]) outlines how the channel attention block weights are computed:

αc = σ(MLP(AvgPool(xc)) + MLP(MaxPool(xc))) (1)

Here, αc stands for the attention weights for channel c within the CNN’s output feature
maps. xc represents the feature maps for channel c, which are the input to the CAM module.
σ denotes the sigmoid function. MLP denotes a multi-layer perceptron. The MaxPool
and AvgPool operations denote the max pooling and average pooling operations over the
spatial dimensions of the feature maps, respectively.

Equation (2) ([36]) demonstrates the calculation for the spatial attention block weights:

βi,j = σ
(
MLP

(
[xi,j; AvgPool(x); MaxPool(x)]

))
(2)

In this equation, βi,j represents the attention weight assigned to the spatial location
i, j in the input feature maps x. The global average pooling and max pooling operations,
denoted by AvgPool(x) and MaxPool(x) respectively, are used to extract global information
from the feature maps and reduce their spatial dimensionality. The concatenated feature
vector [xi,j; AvgPool(x); MaxPool(x)] for the spatial location i, j is passed through an MLP
layer, which applies a non-linear transformation to the feature vector. The output of the
MLP layer is passed through a sigmoid activation function, denoted by σ, to obtain the
final attention weight βi,j.

In the Ensemble-CBAM model, the top-performing models, namely “EfficientNetV2
B0 and DenseNet-169,” are combined using CBAM and an MLP head.

Three deep learning techniques (TL/FT/EL) are employed in this study to create an
optimal DL PBS tool.

3.7. Results’ Analysis and Interpretability Tools

In addition to the accuracy metrics (accuracy and loss), three results’ analysis and
interpretability tools are used. These are confusion matrix, classification reports, and
Score-CAM.

3.7.1. Confusion Matrix

A confusion matrix [37], or error matrix, visualizes algorithm performance, especially
in supervised learning. Rows represent actual classes; columns represent predicted classes.
Figure 10 displays one in multi-class classification, showing “TN and TP” for correctly
classified negative and positive cases, and “FN and FP” for misclassified cases.

Figure 10. Confusion matrix for multiclass classification.
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3.7.2. Classification Report

A classification report [37] evaluates prediction quality using precision, recall, and
F1-score per class, along with macro and weighted average accuracies. Accuracy, calculated
as a percentage of correct predictions, is determined by Equation (3) [37]:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision measures the quality of a positive prediction made by the model and the
Equation (4) [37] demonstrates its computational process:

Precision =
TP

TP + FP
(4)

Recall measures how many of the true positives (TPs) were recalled (found) and
calculated using the Equation (5) [37]:

Recall =
TP

TP + FN
(5)

F1-Score is the harmonic mean of precision and recall and can be calculated using the
Equation (6) [37]:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(6)

3.7.3. Score-CAM

A Score-CAM [12] is a score-weight visual explanation method based on a class
activation mapping (CAM) for CNN models. It helps to understand the internal mechanism
of CNN models.

4. Results and Discussion
4.1. Results

This section provides a comprehensive overview of experiments on 11-class blood
cell classification using diverse models, including pre-trained ImageNet models (“Con-
vNextBase,” “DenseNets,” “EfficientNetB0,” “VGG-19,” “ViTb16”), customized CNNs, and
ensembles. Experiments were conducted on the challenging PBC dataset, addressing class
imbalance by introducing the “Naturalize” augmentation technique, creating “augmented
419-PMY,” “1K-PBC,” “2K-PBC,” and “Balanced PBC” datasets. Model performance was
evaluated numerically using confusion matrices, classification reports, and visually with
Score-CAM.

4.1.1. Augmented 419-PMY PBC Dataset Results

Initially, all pre-trained models were fitted using transfer learning, but it was observed
that fine-tuning led to better results. Table 5 presents the accuracy scores of the training,
validation, and testing subsets of the augmented 419-PMY PBC dataset for the fine-tuned
models. Notably, the EfficientNetV2 B0 model achieved the highest training and validation
accuracies, while the DenseNet-169 model recorded the highest testing accuracy.
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Table 5. Summary of models’ training, validation, and testing accuracies.

Model
Accuracy

Training Validation Testing

ConvNexTBase 0.95 0.92 0.91
Customized-CNN 0.90 0.89 0.87
DenseNet-121 0.94 0.95 0.94
DenseNet-169 0.95 0.95 0.94
DenseNet-201 0.94 0.95 0.94
EfficientNetV2 B0 0.96 0.96 0.94
Ensemble-Average 0.95 0.94 0.94
Ensemble-CBAM 0.96 0.95 0.94
ViTb16 0.89 0.90 0.89
VGG-19 0.95 0.93 0.92

Table 6 provides the macro-average precision, recall, and F1-score of the testing subset
of the augmented 419-PMY PBC dataset for the fine-tuned models, with the DenseNet-169
model achieving the best results.

Table 6. Summary of models’ macro-average precisions, recalls, and F1-Scores.

Model
Macro Average

Precision Recall F1-Score

ConvNexTBase 0.89 0.89 0.89
Customized-CNN 0.87 0.87 0.87
DenseNet-121 0.92 0.93 0.92
DenseNet-169 0.94 0.94 0.94
DenseNet-201 0.93 0.93 0.93
EfficientNetV2 B0 0.93 0.93 0.93
Ensemble-Average 0.93 0.93 0.93
Ensemble-CBAM 0.93 0.93 0.93
ViTb16 0.86 0.87 0.86
VGG-19 0.89 0.90 0.90

Given the superior performance of the EfficientNetV2 B0 model in the training and
validation subsets, it was selected for subsequent trials.

4.1.2. EfficientNetV2 B0

Table 7 presents the classification report of the fine-tuned EfficientNetV2 B0 model
using the original PBC dataset.

Table 7. EfficientNetV2 B0—classification report for the original PBC.

Class Precision Recall F1-Score Support

BA 1.00 1.00 1.00 112
BNE 0.88 0.77 0.82 162
EO 1.00 1.00 1.00 293
ERB 1.00 1.00 1.00 135
LY 0.99 1.00 1.00 120
MMY 0.77 0.88 0.82 100
MO 1.00 0.96 0.98 135
MY 0.74 0.80 0.77 113
PLT 1.00 1.00 1.00 217
PMY 0.80 0.59 0.68 59
SNE 0.83 0.91 0.87 162

Accuracy 0.93 1608
Macro Avg. 0.91 0.90 0.90 1608
Weighted Avg. 0.93 0.93 0.93 1608
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Table 8 displays the classification report of the fine-tuned EfficientNetV2 B0 model
using the augmented 419-PMY PBC dataset.

Table 8. EfficientNetV2 B0—classification report for the augmented 419-PMY PBC.

Class Precision Recall F1-Score Support

BA 1.00 1.00 1.00 112
BNE 0.88 0.77 0.82 162
EO 1.00 1.00 1.00 293
ERB 1.00 1.00 1.00 135
LY 0.99 1.00 1.00 120
MMY 0.75 0.88 0.81 100
MO 0.99 0.96 0.98 135
MY 0.87 0.80 0.83 113
PLT 1.00 1.00 1.00 217
PMY 0.91 0.89 0.90 101
SNE 0.83 0.91 0.87 162

Accuracy 0.94 1650
Macro Avg. 0.93 0.93 0.93 1650
Weighted Avg. 0.94 0.94 0.94 1650

Tables 9–11 illustrate the classification reports of the fine-tuned EfficientNetV2 B0
model using the 1K-PBC dataset, 2K-PBC dataset, and Balanced PBC dataset, respectively.

Table 9. EfficientNetV2 B0—classification report for the 1K-PBC.

Class Precision Recall F1-Score Support

BA 0.99 1.00 1.00 112
BNE 0.90 0.91 0.90 262
EO 1.00 1.00 1.00 293
ERB 1.00 0.99 1.00 135
LY 0.98 1.00 0.99 120
MMY 0.87 0.94 0.90 200
MO 1.00 0.98 0.99 135
MY 0.92 0.88 0.90 213
PLT 1.00 1.00 1.00 217
PMY 0.98 0.94 0.96 201
SNE 0.91 0.90 0.91 262

Accuracy 0.95 2150
Macro Avg. 0.96 0.96 0.96 2150
Weighted Avg. 0.95 0.95 0.95 2150

Table 10. EfficientNetV2 B0—classification report for the 2K-PBC

Class Precision Recall F1-Score Support

BA 0.98 1.00 0.99 112
BNE 0.92 0.96 0.94 362
EO 1.00 1.00 1.00 293
ERB 0.99 0.99 0.99 135
LY 0.98 1.00 0.99 120
MMY 0.93 0.96 0.94 300
MO 0.98 0.98 0.98 135
MY 0.94 0.92 0.93 313
PLT 1.00 1.00 1.00 217
PMY 0.97 0.95 0.96 301
SNE 0.96 0.92 0.94 362

Accuracy 0.96 2650
Macro Avg. 0.97 0.97 0.97 2650
Weighted Avg. 0.96 0.96 0.96 2650
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Table 11. EfficientNetV2 B0—classification report for the Balanced PBC.

Class Precision Recall F1-Score Support

BA 1.00 1.00 1.00 200
BNE 0.90 0.86 0.88 200
EO 1.00 1.00 1.00 200
ERB 1.00 0.99 1.00 200
LY 1.00 1.00 1.00 200
MMY 0.92 0.92 0.92 200
MO 0.99 0.98 0.98 200
MY 0.87 0.93 0.90 200
PLT 1.00 1.00 1.00 200
PMY 0.95 0.90 0.93 200
SNE 0.88 0.91 0.89 200

Accuracy 0.95 2200
Macro Avg. 0.95 0.95 0.95 2200
Weighted Avg. 0.95 0.95 0.95 2200

5. Discussion

This research represents a significant step forward in the application of deep learning
to automate the reading, analysis, and classification of blood cells. Table 12 summarizes the
macro-average precisions, recalls, F1-scores, and accuracy of the fine-tuned EfficientNetV2
B0 model across the testing subsets of the imbalanced “augmented 419-PMY,” “1K-PBC,”
“2K-PBC” datasets, and the “Balanced PBC” dataset.

Table 12. EfficientNetV2 B0—macro-average precisions, recalls, and F1-Scores.

PBC Datasets
Macro Average

Precision Recall F1-Score Accuracy

Imbalanced Datasets

Original PBC 0.91 0.90 0.90 0.93
Augmented 419-PMY PBC 0.93 0.93 0.93 0.94
1K-PBC 0.96 0.96 0.96 0.95
2K-PBC 0.97 0.97 0.97 0.96

Balanced Dataset

Balanced PBC 0.95 0.95 0.95 0.95

Table 12 demonstrates that while the imbalanced nature of the 11 blood classes led
to some minor overfitting, the application of the “Naturalize” augmentation technique
substantially improved macro-average precision, recall, and F1-score, increasing from 90%
with the original PBC dataset to 97% with the 2K-PBC dataset. These findings are further
supported by the use of Score-CAM, as shown in Figure 11, which visualizes the fine-tuned
pre-trained DenseNet-169 model with the augmented 419-PMY PBC dataset.

5.1. Model Performance across Datasets

The evaluation of the EfficientNetV2 B0 model across different datasets reveals com-
pelling results. In the case of the “419-PMY PBC” dataset, where the limited number of
pro-myelocytes posed a challenge, the model demonstrated commendable precision, recall,
and F1-score improvements compared to the original PBC dataset. The effectiveness of the
“Naturalize” augmentation technique is evident as it mitigated data insufficiency issues
and improved overall model performance.

The model’s adaptability is further highlighted in its performance across the “1K-PBC”
and “2K-PBC” datasets. Notably, the macro-average precision, recall, and F1-score consis-
tently increased, showcasing the model’s capability to handle larger and more balanced
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datasets. The highest performance is observed in the “2K-PBC” dataset, where the model
achieved impressive accuracy and balanced precision across all classes.

Figure 11. Score-CAM for fine-tuned DenseNet-169.

5.2. Impact of Naturalize Augmentation Technique

The successful implementation of the “Naturalize” augmentation technique emerges as
a key contributor to the improved performance. The technique addressed challenges related
to data insufficiency and class imbalance, resulting in a substantial enhancement in macro-
average precision, recall, and F1-score. The augmentation technique not only overcame the
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limitations of the original PBC dataset but also demonstrated its effectiveness in creating
balanced datasets, as evidenced by the performance on the “2K-class-PBC” dataset.

5.3. Insights from Score-CAM Visualization

In the context of blood cell classification using Score-CAM, the integration of the
Jet colormap serves as a valuable visual aid in highlighting the regions of significance
within the blood cell images. Leveraging Score-CAM, an interpretability technique in deep
learning, the Jet colormap is applied to create a heatmap representation. This heatmap,
overlaid onto the original blood cell images, employs a spectrum of colors transitioning
through red, yellow, green, cyan, blue, and magenta. These colors depict the intensity and
relevance of features identified by the neural network in its classification decision-making
process. The Jet colormap emphasizes areas of high activation or importance, offering a
clearer understanding of specific regions or structures within the blood cell images that
contribute significantly to classification outcomes. This visualization approach enhances
interpretability, providing insights into the neural network’s decision-making process for
blood cell classification tasks.

The insights gleaned from the Score-CAM visualization further validate the effec-
tiveness of the models. Figure 11 presents an internal visualization of the fine-tuned
DenseNet-169 model using the “augmented 419-PMY PBC” dataset. This visualization
complements the quantitative results, illustrating the model’s focus on pertinent regions
of the blood cell images for accurate classification. This alignment between quantitative
metrics and visual insights bolsters the credibility of the findings.

5.4. Implications for Blood Cell Classification

The success of this study in addressing challenges related to data insufficiency and
class imbalance has broader implications for the field of blood cell classification. The
“Naturalize” augmentation technique not only improves model performance but also
holds promise for creating extensive and balanced peripheral blood smear datasets. This
breakthrough opens avenues for the widespread application of deep learning algorithms in
clinical settings, enhancing the efficiency and accuracy of blood cell analysis.

5.5. Discussion Summary

In summary, the refined EfficientNetV2 B0 model, in conjunction with the innovative
“Naturalize” augmentation technique, presents a robust solution for the automated classi-
fication of blood cells. The study’s findings contribute significantly to advancing the use
of deep learning in medical image analysis, offering potential implications for diagnostic
support in hematology.

Traditional image augmentation methods, encompassing actions like rotation and
color adjustments, primarily aim to enhance overall diversity within datasets. In contrast,
the “Naturalize” technique stands out as a sophisticated approach, utilizing precise seg-
mentation to extract specific cell classes, such as Red Blood Cells (RBCs), White Blood
Cells (WBCs), and Platelets (PLTs), from the dataset. Through the amalgamation of these
segmented elements, “Naturalize” generates a comprehensive and authentic expansion
of the original dataset. The distinguishing feature of this technique lies in its unparalleled
control, facilitating the precise selection and regulation of specific cell quantities while
maintaining realism and preventing overlap, thanks to a ’Collision-Free’ mechanism.

By effectively tackling challenges related to data insufficiency and class imbalance
through the “Naturalize” augmentation method, this study establishes a solid foundation
for the broader adoption of deep learning algorithms and models in blood cell classifica-
tion. The implementation of “Naturalize” holds tremendous promise for the creation of
comprehensive and balanced peripheral blood smear datasets.

Moreover, it is crucial to recognize that ’Naturalize’ transcends the realm of medical
imaging alone; its adaptability extends to various fields, underscoring its potential for
widespread application. This method distinguishes itself through its unwavering commit-
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ment to authenticity and tailored diversity, ensuring the preservation of genuine cell sizes
and meeting specific augmentation requirements.

6. Conclusions

In this study, we have presented a comprehensive approach to automated blood cell
classification, addressing the challenges posed by an imbalanced dataset and limited sample
sizes within specific classes. Our methodology leverages state-of-the-art deep learning
models, including pre-trained ConvNets and ViTb16, along with a customized multi-layer
CNN model. Through the application of transfer learning, fine-tuning, and ensemble
learning techniques, we have achieved remarkable results on the 11-class PBC dataset.

Our most significant achievement lies in the fully fine-tuned EfficientNetV2 B0 model,
which demonstrated exceptional performance on the original PBC dataset, with a macro-
average precision, recall, and F1-score of 91%, 90%, and 90%, respectively, and an impressive
average accuracy of 93%. This success underscores the effectiveness of our approach in
addressing the inherent challenges of blood cell classification.

Furthermore, we introduced the “Naturalize” augmentation technique, a novel and
innovative approach to generating synthetic blood cell samples with the same quality as the
original dataset. The resulting 2K-PBC dataset, augmented using “Naturalize,” achieved
outstanding results, with a macro-average precision, recall, and F1-score of 97%, and an
average accuracy of 96% when employing the fully fine-tuned EfficientNetV2 B0 model.

Our research not only provides a robust solution for blood cell classification but also
contributes to the broader field of medical image analysis by addressing the common
issues of insufficient and imbalanced data. The “Naturalize” augmentation technique
opens up new possibilities for generating high-quality synthetic data, which can enhance
the performance and generalization of deep learning models in various medical image
analysis tasks.

In conclusion, this study represents a significant step forward in the automated classi-
fication of blood cells, offering a powerful tool for medical professionals and researchers.
The combination of advanced deep learning models and innovative data augmentation
techniques has the potential to revolutionize the field, leading to more accurate and re-
liable diagnostic tools for blood-related disorders and diseases. We anticipate that our
work will inspire further research and advancements in this critical area of healthcare and
medical imaging.
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