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Resumen 
 

El diseño y desarrollo de nuevos materiales con propiedades mecánicas, químicas o 

fisicoquímicas específicas a menudo involucra procesos que demandan una considerable 

inversión de tiempo y dinero, entre otros recursos. Por otra parte, la caracterización de estos 

materiales se enfrenta a su vez a dificultades relacionadas con el proceso de síntesis, la 

preparación de muestras o con las condiciones experimentales requeridas para realizar las 

mediciones. A la hora de superar estos desafíos, el aprendizaje automático y las redes 

neuronales son herramientas de gran potencial predictivo, especialmente en el estudio de la 

relación entre la estructura y las propiedades (QSPR, por sus siglas en inglés). En este trabajo se 

aplican métodos QSPR a la predicción y al estudio de propiedades características de moléculas 

y polímeros, con foco en la precisión y la interpretabilidad de los resultados. 

El aprendizaje automático se refiere a la habilidad de un algoritmo computacional para aprender 

a partir de un conjunto de datos. Según la conceptualización de Mitchell, un programa de 

ordenador aprende de la experiencia E en relación con una tarea T y medidas de rendimiento P 

si su ejecución en las tareas de T, medida por P, mejora con la experiencia E. Aquí T se define 

como la manera en que el programa debe procesar una entrada dada. La métrica de rendimiento 

P se establece específicamente para evaluar la precisión del modelo en cumplir la tarea T, 

generalmente a través de la medición de un error. La experiencia E consiste en los datos 

proporcionados al algoritmo durante la fase de entrenamiento. En el marco de la presente Tesis, 

la experiencia está dada por una base de datos de estructuras químicas, la tarea es la predicción 

de la temperatura de transición vidria y la métrica de rendimiento es representada por el error 

porcentual sobre esa predicción. A la hora de entrenar, los datos se dividen principalmente en 

dos conjuntos: entrenamiento y prueba. El conjunto de entrenamiento es empleado en la fase 

de aprendizaje, y es quien permite que el algoritmo adquiera la información sobre las 

características de los datos y genere un modelo. Por otra parte, el conjunto de prueba consiste 

en ejemplos desconocidos para dicho modelo que se utilizan para evaluar la capacidad de 

generalización del mismo, es decir, su habilidad a la hora de procesar entradas inéditas. De esta 

manera, el aprendizaje automático implica una tarea de optimización en la que se busca que el 

rendimiento no solo sea óptimo en el conjunto de entrenamiento, sino también en el conjunto 

de prueba. El rendimiento del modelo también se ve influido por la cantidad de parámetros con 

los que se construye, si es supervisado o no supervisado, entre otros. Los algoritmos no 

supervisados procesan una base de datos cuyas características más relevantes son inferidas de 
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la estructura del conjunto, mientras que los algoritmos supervisados trabajan con una base de 

datos acompañada de etiquetas para cada ejemplo. Ejemplos de algoritmos no supervisados son 

los de agrupamiento o “clustering”, mientras que la regresión lineal es un caso de algoritmo 

supervisado. En este trabajo, se emplean tanto algoritmos supervisados como no supervisados 

para desarrollar y validar modelos que permitan estudiar y predecir la temperatura de transición 

vítrea de un material y para indagar en las propiedades dinámicas de su estructura. 

Los algoritmos de aprendizaje automático, y en especial las redes neuronales (ANN, por sus 

siglas en inglés), han revolucionado el campo de la física de materiales al posibilitar la creación 

de modelos capaces de capturar relaciones complejas entre las estructuras moleculares y las 

propiedades físicas. Las ANNs son modelos informáticos inspirados en la estructura y el 

funcionamiento del cerebro humano. En términos sencillos, constan de capas interconectadas 

de neuronas artificiales que procesan y transforman los datos de entrada para generar salidas 

que se ajustan al mapeo no lineal de propiedades complejas. De esta manera, las redes 

aprenden a extraer características relevantes de dichas representaciones moleculares y a 

relacionarlas con las propiedades objetivo. Una de las ventajas primordiales de las ANN radica 

en su habilidad para lidiar con datos multidimensionales y no lineales, lo cual las convierte en 

herramientas idóneas para nuestro objetivo de capturar relaciones entre estructura y 

propiedades. Estos modelos tienen la capacidad de procesar y analizar con eficacia volúmenes 

considerables de información química, acelerando notablemente la concepción y el hallazgo de 

nuevos materiales con características específicas. Asimismo, el desarrollo orientado a la 

interpretabilidad de las ANN posibilita la adquisición de conocimiento directo sobre los factores 

químicos subyacentes que más influyen en las propiedades de interés. En este trabajo, por 

ejemplo, utilizo metodologías de agrupamiento y de análisis de componentes principales 

precisamente para entender como el algoritmo está procesando la información de la estructura 

química para enlazarla con el valor de la temperatura de transición vítrea. Es importante 

remarcar que la comprensión del algoritmo puede ser utilizada como guía para el diseño de 

nuevos compuestos con atributos específicos a cada tarea. No obstante, el rendimiento de los 

modelos QSPR basados en ANN depende de la calidad y representatividad de los datos de 

entrenamiento. La selección y depuración meticulosa del conjunto de datos son críticas para 

asegurar pronósticos precisos y fiables. Además, la interpretación de las ANN en el contexto de 

QSPR sigue siendo objeto de investigación, dado que descifrar las características moleculares 

específicas y las interacciones que aportan a los pronósticos de propiedades continúa siendo un 

desafío. 

En el ámbito de las propiedades macroscópicas de los materiales, la temperatura de transición 

vítrea (𝑇g) aparece como una de las más relevantes, tanto en el ámbito académico como en el 
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industrial. La 𝑇g denota la temperatura a la cual un material amorfo transita de un estado fluido 

a uno rígido y vítreo, motivo por el cual desempeña un papel crucial en la definición de las 

características de procesamiento de polímeros y otros materiales formadores de vidrio. No 

obstante, la comprensión de los mecanismos físicos subyacentes al fenómeno de la transición 

vítrea sigue hoy en día siendo un desafío, dado que este proceso está influido por una variedad 

de factores como la estructura molecular, la movilidad de las cadenas y las interacciones 

intermoleculares. Los enfoques tradicionales para estudiar la 𝑇g de los materiales a menudo se 

basan en técnicas experimentales (que dependiendo de la preparación de la muestra y la técnica 

experimental pueden ser muy laboriosas) o en simulaciones computacionalmente intensivas 

basadas en primeros principios. En este contexto, los modelos QSPR representan una alternativa 

eficiente y complementaria en términos de tiempo y costo a los enfoques experimentales, 

agilizando la detección y el hallazgo de nuevos materiales con un comportamiento en particular.  

La 𝑇g guarda además una estrecha relación con la dinámica de los materiales. En el caso de los 

polímeros, por ejemplo, su dinámica puede ser explorada a través de técnicas como la 

espectroscopía dieléctrica de banda ancha (BDS), la reología o los ensayos mecánico dinámicos 

(DMA). Estos métodos experimentales proporcionan información valiosa sobre el movimiento 

molecular y los procesos de relajación de distintas porciones de las estructuras moleculares en 

función de la temperatura. En este sentido, las ANN ofrecen una oportunidad única para 

capturar las relaciones entre las características estructurales y la 𝑇g, brindando de esta manera 

una perspectiva indirecta de la dinámica de los materiales sin medirla explícitamente. Los 

descriptores moleculares empleados en los modelos QSPR contienen información implícita del 

movimiento molecular y la relajación, tales como la existencia de segmentos flexibles, el 

empaquetamiento molecular o las interacciones intermoleculares. En consecuencia, los valores 

de 𝑇g pronosticados por los modelos QSPR pueden ser empleados como una estimación de la 

dinámica de los materiales. Por este motivo, en este trabajo se propone la utilización de modelos 

híbridos que fusionan ANNs con marcos teóricos como la ecuación de Langevin elástica colectiva 

no lineal (ECNLE, por sus siglas en inglés) para modelar la dinámica de los materiales. De esta 

manera, se utilizan ANNs para identificar correlaciones complejas y no lineales entre los 

descriptores moleculares y la 𝑇g, la cual a su vez se emplea como valor de entrada para la teoría 

ECNLE, que estima la dinámica de relajación del material. Al incorporar la teoría ECNLE en el 

marco del modelado, el modelo híbrido puede brindar predicciones no solo para la 𝑇g, sino 

también para la dinámica del material, como escalas de tiempo de relajación o viscosidad. En 

este trabajo se emplea el “Simplified Molecular Input-Line Entry System” (SMILES) para 

representar la estructura molecular de un compuesto mediante una cadena alfanumérica de 
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caracteres. A través de esta representación de la estructura química como entrada, se investiga 

la modelización de la 𝑇g mediante ANN de diferentes arquitecturas, así como también se 

profundiza en la interpretación de los resultados, la codificación en espacios multidimensionales 

y su agrupamiento. El trabajo se presenta a través de 3 publicaciones científicas en revistas 

indexadas internacionalmente. Es importante destacar que se trata de un estudio transversal, 

que involucra diferentes arquitecturas, propiedades, datasets y herramientas de optimización e 

interpretabilidad de los resultados, por lo que debe ser considerado en su conjunto antes que 

como desarrollos independientes. 

 

El primer artículo aborda el desarrollo de un modelo híbrido mediante el uso de una ANN para 

predecir la 𝑇g y un modelo teórico para capturar la dinámica de formadores de vidrio 

moleculares. En particular, se aplica esta metodología para estimar la dinámica de la relajación 

α de los compuestos a través de la 𝑇g y la teoría ECNLE. Para ello se emplea una arquitectura de 

red neuronal “fully connected” y una codificación estilo “one hot encoding” de las cadenas 

alfanuméricas obtenidas a través del SMILES, que permiten predicciones de la 𝑇g con errores 

porcentuales promedio inferior al 8%. Este resultado es especialmente destacable dado que en 

muchos casos la naturaleza cinética de la medida experimental de 𝑇g no permite establecer un 

único valor en la literatura, sino más bien un rango de temperaturas que depende de la velocidad 

de calentamiento-enfriamiento (entre otros factores), y por ende las incertezas no pueden 

reducirse con facilidad más allá de ese punto. La concordancia entre las predicciones y los 

resultados experimentales es notable y demuestra la validez de este enfoque híbrido para 

realizar inferencias sobre los materiales a partir de solo una representación de su estructura 

química. Además, este enfoque se puede emplear para comprender cómo las variaciones en la 

estructura molecular inducen cambios en la estimación de la 𝑇g. 

 

El segundo artículo, es similar en términos de la predicción de la dinámica a partir de la 𝑇g, pero 

se enfoca en la implementación de redes neuronales convolucionales aplicada a una familia de 

polímeros: los poliacrilatos atácticos. Haciendo uso de la capacidad de las CNN para detectar 

patrones en las estructuras químicas, se obtienen estimaciones de 𝑇g que después se emplean 

como entradas para el modelo ECNLE. Con el fin de entrenar el modelo de CNN, se codifican los 

monómeros como matrices derivadas del SMILES. Es importante mencionar que a pesar de 

trabajar sobre cadenas de polímeros (y no sobre moléculas individuales), esta metodología 

produce errores porcentuales promedio en las predicciones de menos del 9%, lo que constituye 

un logro considerable ya que la red es entrenada únicamente a partir de la estructura del 
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monómero, sin añadir ningún tipo de información física adicional. Posteriormente, se integran 

estos resultados con la teoría ECNLE para obtener estimaciones sobre la dinámica de los 

polímeros. Esta modalidad híbrida que aprovecha las CNN podría abrir nuevos caminos en la 

creación de materiales poliméricos, permitiendo una aproximación significativa a la dinámica de 

los compuestos exclusivamente a partir de la estructura del monómero. 

 

En el tercer artículo, se estudia el proceso por el cual las redes neuronales recurrentes pueden 

modelar la física detrás del proceso de transición vítrea. En esta instancia, el SMILES se codifica 

con una codificación cardinal y se emplean neuronas bidireccionales de memoria a largo plazo 

(BiLSTM por sus siglas en ingles). Estas neuronas son especialmente ventajosas ya que analizan 

la secuencia proporcionada tanto de izquierda a derecha como de derecha a izquierda, 

facilitando la identificación de patrones significativos en la misma. El error porcentual promedio 

en este caso es inferior al 9%. Luego, se demuestra mediante el Análisis de Componentes 

Principales (PCA) que la red es capaz de reconocer y seguir características en la estructura 

química que influyen en el valor de la 𝑇g. Se aplica el algoritmo de clusterización Fuzzy-C a la 

última capa oculta de la red para evaluar su capacidad de distinguir entre diversas estructuras 

químicas. Finalmente, se emplea la red neuronal para predecir los valores de 𝑇g de aminoácidos 

esenciales y un péptido corto (3-lisina), la mayoría de gran dificultad para su medida. En el caso 

de aquellos con valores experimentales, se constata que los aminoácidos que se encuentran más 

cercanos al intervalo de confianza de la red, son efectivamente predichos con mayor precisión 

que aquellos que están más alejados del intervalo. De esta manera, se concluye que es viable 

emplear las ANN como un laboratorio virtual para explorar el impacto de la estructura molecular 

en la 𝑇g. 
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Section 1  
1.1 Introduction 
 

The design and the development of new materials with desired physico-chemical properties 

often involves time-consuming and resource-intensive processes. In addition, the 

characterization of these materials has to deal with the complications involved in the synthesis 

process. To overcome these difficulties, machine learning and neural networks have emerged 

as powerful tools within the framework of quantitative structure-property relationship (QSPR) 

models [1–3]. Machine learning algorithms, particularly artificial neural networks (ANNs), have 

revolutionized the field by enabling the development of data-driven models that can capture 

complex relationships between molecular structures and properties[4–11]. 

ANNs are computational models inspired by the structure and functioning of the human 

brain[12]. In simple terms, ANNs consist of interconnected layers of artificial neurons that 

process and transform input data to produce the desired outputs. In the context of QSPR, ANNs 

are trained on large datasets of molecular structures and their corresponding 

properties[4,13,14]. The network learns how to extract relevant features from the molecular 

descriptors and map them to the target property. The advantage of ANNs lies in their ability to 

handle high-dimensional and non-linear data, making them suitable for capturing intricate 

structure-property relationships. By utilizing hidden layers with nonlinear activation functions, 

ANNs can model complex dependencies that may exist between molecular features and 

properties. Through an iterative process called training, the network adjusts its internal 

parameters to minimize the difference between predicted and actual property values. This 

optimization enables the network to generalize its learning and make accurate predictions on 

new, unseen data. Furthermore, the integration of machine learning techniques, such as ANNs, 

has facilitated the exploration and analysis of large chemical databases. These models can 

efficiently process and analyse vast amounts of chemical data, significantly accelerating the 

design and discovery of new materials with specific properties. Additionally, the interpretability 

of ANNs allows researchers to gain insights into the underlying factors influencing the properties 

of interest. This understanding can guide the rational design of new compounds with desired 

properties. However, it is important to note that the performance of ANN-based QSPR models 

is dependent on the quality and representativeness of the training data[15,16]. Careful selection 

and curation of the dataset are crucial to ensure accurate and reliable predictions. Moreover, 

the interpretability of ANNs in the context of QSPR is an ongoing research area, as understanding 

the specific molecular features and interactions that contribute to property predictions remains 

a challenge. 

Among the numerous macroscopic properties of materials, the glass transition temperature (𝑇𝑔) 

holds significant academic and industrial relevance[17–21]. 𝑇𝑔 represents the temperature at 

which an amorphous material changes from a fluid state into a rigid, glassy state. It plays a crucial 

role in determining the mechanical, thermal, and processing characteristics of polymers and 

other glass forming materials. Despite its importance, understanding the physical mechanisms 

underlying the glass transition phenomenon remains challenging. It is a complex and dynamic 

process influenced by various factors, including molecular structure, chain mobility and 

intermolecular interactions [22,23]. Traditional approaches to comprehend 𝑇𝑔 often rely on 
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laborious experimental techniques[24,25] or computationally demanding simulations based on 

first principles[26,27]. In this regard, QSPR models offer a valuable and efficient approach to 

explore the associations between the molecular structure of a compound and its corresponding 

𝑇𝑔 value. By using machine learning algorithms and ANNs, these models can uncover complex 

relationships between the structural features of a molecule and its glass transition 

dynamics[6,7,10,28,29]. These models have the potential to guide the design and development 

of materials with tailored 𝑇𝑔 values, enabling the optimization of desired properties for specific 

applications. Furthermore, QSPR models offer a more time and cost-efficient alternative to 

experimental approaches, accelerating the screening and discovery of new materials with 

targeted glass transition behaviour. 

In addition to its relevance for material properties, the 𝑇𝑔 is closely tied to the dynamics of 

materials. The dynamics of polymers, for instance, can be probed through techniques such as 

broadband dielectric spectroscopy (BDS) or differential scanning calorimetry (DSC). These 

experimental methods provide valuable insights into the molecular motion and relaxation 

processes as a function of the temperature. ANN models offer a unique opportunity to bridge 

the gap between molecular structure, 𝑇𝑔 and material dynamics by capturing the relationships 

between structural features and 𝑇𝑔, therefore providing indirect information about the 

dynamics of materials without explicitly measuring them. The molecular descriptors used in 

QSPR models can capture important aspects of molecular motion and relaxation, such as the 

presence of flexible segments, molecular packing, or intermolecular interactions. As a result, the 

predicted 𝑇𝑔 values from QSPR models can serve as approximation for the dynamics of 

materials. In this sense, there has been a growing interest in developing hybrid models that 

combine ANNs with theoretical frameworks such as the Elastically Collective Non-linear 

Langevin Equation (ECNLE) theory [30] to model the dynamics of materials. In such hybrid 

models, ANNs are employed to capture the complex and non-linear relationships between 

molecular descriptors and the glass transition temperature. The 𝑇𝑔, in turn, serves as an input 

to the ECNLE theory, which calculates the relaxation dynamics of the material. By incorporating 

the ECNLE theory into the modeling framework, the hybrid model can provide predictions not 

only for 𝑇𝑔 but also for material dynamics, such as relaxation timescales or viscosity. 

In summary, the combination of machine learning, ANNs, and experimental techniques for 

material dynamics allows for a comprehensive understanding of the relationship between 

molecular structure, glass transition temperature, and the dynamic behaviour of materials. This 

integrated approach holds great potential for accelerating materials design and optimization by 

providing valuable insights into the complex interplay between molecular structure, 𝑇𝑔, and 

material dynamics. 

The studies presented in this work employ ANNs to predict the 𝑇𝑔 of molecular glass-formers 

and polymers. The Simplified Molecular Input Line Entry System (SMILES) molecular descriptor 

is used, representing the molecular structure of a compound through an alphanumeric string of 

characters. By using this chemical structure representation as input, I investigate the modelling 

of 𝑇𝑔 behavior using three different ANN architectures. On the one hand, I explore the dynamics 

of the alpha relaxation process in molecular glass formers and polymers, by using a hybrid 

combination of fully connected and convolutional neural networks with disordered systems 

theory (ECNLE). These hybrid models successfully predict the dynamics associated with the 

alpha relaxation process. In addition, a recurrent neural network is employed to predict the glass 

transition of molecular glass-formers. While this architecture is well-suited for capturing 

temporal dependencies and sequential patterns, providing an effective tool for modelling the 
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𝑇𝑔 behaviour in these systems, I apply machine learning techniques to ensure transparency and 

interpretability of the resulting model. These techniques facilitate the understanding of how the 

ANNs arrive at their predictions, enabling researchers to gain insights into the factors driving the 

glass transition phenomenon. 

 

1.2 Methods 
 

This section describes the main theoretical background behind this Thesis. First, a definition of 

what is machine learning and the different types of artificial neural network is provided, then a 

general description of the glass transition process and the different experimental techniques 

which measure the glass transition temperature is presented. 

 

1.2.1 Machine learning 
 

Machine learning is the field which deals with the capability of a computational algorithm to 

learn from a set of data. A conceptualization of what learning is for a machine can be found in 

Mitchell[31] : “A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measures P, if its performance at tasks in T, as measured by P, 

improves with experience E”. A task T is defined by how a program should process a given input. 

For example, for a regression task the algorithm should output a function 𝑓: 𝑅𝑛 → 𝑅. The 

performance P consists in a metric defined specifically to evaluate the accuracy of the model in 

accomplishing the task T, like the measuring of an error. The experience E lies in the variety and 

amount of data that the algorithm is provided with during the training phase. The data is 

collected in a dataset from which I define mainly two sets: the training and the test set. The first 

set is the one which is used in the training phase of the model, as to say the one from which the 

algorithm learns the features of the data, while the second one is a set of unseen examples with 

which we can measure the so-called generalization power of the algorithm, as to say the 

capability of the algorithm to process an unknown input.  We assume that the examples in each 

set are independent and identically distributed, and that the probability distribution with which 

the training and test set are generated coincide. In this way, it is possible to make assumptions 

on the relationship between the training set error and the test set error. The main aim of 

machine learning is to correctly perform a task T on the test set of examples, evaluating it with 

a performance P. So, machine learning is a special type of optimization task because we do not 

want only the performance on the training set to be the best possible, but, also, we want it to 

be good on the test set. The performance of an algorithm depends also on the number of 

parameters it is built with. According to this number there could be two types of limit behaviour 

of the algorithm: underfitting or overfitting. It is underfitting when the parameters of the model 

are not sufficient to grasp the features of the dataset, while it is overfitting when the model is 

able to predict the examples of the training set but is incapable of generalization (the 

performance on the test set is scarce). Another factor which describes an algorithm is whether 

it is supervised or unsupervised. An unsupervised algorithm typically is fed with a dataset of 

features and the algorithm infers information from the structure of the dataset; on the other 

hand, a supervised algorithm is fed with a dataset provided with a label for each example in it. 

Clusterization is a typical example of unsupervised algorithm, while linear regression is an 
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example of supervised algorithm. In this work both unsupervised and supervised algorithms are 

used in order to find a model which predicts the glass transition temperature of a given material 

and to investigate what is happening inside the network.  

 

1.2.2 Artificial neural networks  
 

Artificial neural networks (ANNs) are a field of machine learning consisting in a non-linear 

mapping of information between an input and a given output. ANNs find a lot of applications, 

from pattern or face recognition, to data processing and natural language processing. In physics, 

ANNs can help understanding the complicated correlations of cause-effect of a given 

phenomenon without the use of first principles. It is called “neural” network because the parts 

which make it are thought to resemble the behaviour of a biological neuron. The biological 

neuron functions can be modelled by considering the dendrites (which represent the input) and 

the axons (which represent the output). When an electric signal is perceived by the dendrites, 

the axon responds with a signal according to a given threshold.  

 

 

Figure 1.2.1 A representation of the McCulloch-Pitts neuron. Adapted from [12]. 

 

A simple model of a single neuron was introduced by McCulloch and Pitts in 1943[32]. We can 

use a computational graph to have a scheme of the model (Figure 1.2.1). In these graphs, every 

node is a variable (scalar, vector, tensor …) and every edge is a function operating on the variable 

to give an output. Given an n-dimensional array x, it is multiplied by a set of parameters w called 

weights as shown in Equation 1.  

 

 
𝑧 =  ∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖 =1

 +  𝑤0 

 

(1) 

 

The element 𝑤0 is called bias and is an offset parameter which simulates the threshold of the 

neuron. The output of the neuron 𝑜 is given by applying a function 𝑔 over the results of 𝑧. This 

function 𝑔 is called activation function and can be linear or non-linear. For the McCulloch Pitts 

model the step function was used as activation function. The most used activation function is 

the sigmoidal, but hyperbolic tangent and linear activation functions are used as well.  

An ANN has to be provided with a dataset of examples {x}, which is typically divided in three: a 

training set, an internal validation set and a test set. The training set is the set of examples from 

which the ANN learns the features of the input, the validation set is an internal set with which it 
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is possible to monitor the generalization power of the network during the training phase, and 

the test set is a set of examples which were not used during the training phase and is used to 

test the generalization power of the network once it is trained. The training typically consists in 

the minimization of a loss function (see Equation 3), and this usually is achieved by minimizing 

the gradient of such function. 

  

1.2.2.1 Backpropagation & gradient descent 
 

When training an ANN, the information of the input flows from the first layers of the network 

to the last one generating an output. This part of the algorithm is usually addressed as 

feedforward propagation. The output 𝑜(𝑤), is then compared with the expected value 𝑦 by 

means of a loss function, which calculates the error of the prediction of the network with respect 

to the expected value. The aim of the algorithm is to lower the value of such error by adjusting 

its free parameters (the weights) to minimize the loss function. To do so, the algorithm must 

calculate the gradient of the loss function taking into account all the parameters of the model. 

The backpropagation algorithm is a tool with which is possible to calculate the gradient of the 

loss function of the ANN. It is based to the chain rule of calculus, which states for a function y = 

g(x) and a function z = f(g(x)) = f(y): 

 
𝑑𝑧

𝑑𝑥
 =

𝑑𝑧

𝑑𝑦
 
𝑑𝑦

𝑑𝑥
 (2) 

So, given the loss function L: 

 𝐿 =  𝐿(𝑜(𝑤), 𝑦)  (3) 
 

we can imagine it as a m-dimensional surface characterized by a certain number of minima (like 

in Figure 1.2.2), where 𝑚 is the number of parameters of the model. It depends on the 

parameters 𝑤 by the quantity expressed in Equation 1, to which is applied the activation 

function 𝑔(𝑧), so that the derivative of L with respect to a parameter 𝑤𝑖 is 

 
𝜕𝐿

𝜕𝑤𝑖
=  

𝜕𝐿

𝜕𝑔(𝑧)
∗

𝜕𝑔(𝑧)

𝜕𝑧
∗

𝜕𝑧

𝜕𝑤𝑖
 (4) 

 

This derivative can be now used to update and optimize the weights w of the model. One of the 

simplest approaches to update the weights is the gradient descent algorithm, for which 

 

 
𝑤𝑖 ≔ 𝑤𝑖 − 𝛼

𝜕𝐿

𝜕𝑤𝑖
 (5) 

 

where α is called learning rate. This operation is made calculating the gradient over all the set 

of examples x, but it can be also calculated by dividing the set in minibatches and updating the 

weights one batch at a time. 



 

6 
 

 

Figure 1.2.2 A scheme representing the process of the gradient descent. The point follows the gradient of the m-
dimensional surface according to the direction pointing at the minimum. 

 

This is usually more efficient and less time-consuming than the gradient descent. If the batch is 

made of 1 example, then it is called stochastic gradient descent, as the algorithm moves 

stochastically on the surface of the loss function trying to minimize the gradient. Actually, 

optimization algorithms have been developed in order to enhance the search of the minimum. 

Among these, we used the adaptive moment estimation (Adam) optimizer, a standard 

optimization method which combines the advantages of two other extensions of gradient 

descent: the momentum and the root mean square propagation (RMSProp). The momentum 

algorithm consists in considering the parameters 𝑤𝑖 as points moving on a surface with a given 

velocity 𝑣𝑖 so that the update to the weights is:  

 

 
𝑣𝑖 ≔ 𝛽𝑣𝑖 + (1 − 𝛽)𝑑𝑤𝑖  

 
(6.1) 

 𝑤𝑖 ≔ 𝑤𝑖 − 𝛼𝑣𝑖 (6.2) 
 

where 𝑑𝑤𝑖 =  
𝜕𝐿

𝜕𝑤𝑖
 . The RMSProp update is given by: 

 

 𝑠𝑖 ≔ 𝛽𝑠𝑖 + (1 − 𝛽)𝑑𝑤𝑖
2 (7.1) 

 
𝑤𝑖 ≔ 𝑤𝑖 − 𝛼

𝑑𝑤𝑖

√𝑠𝑖

 

 

(7.2) 
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and, finally, the Adam optimization algorithm is given by: 

 

 𝑣𝑖 ≔ 𝛽1𝑣𝑖 + (1 − 𝛽1)𝑑𝑤𝑖 
 

(8.1) 

 𝑠𝑖 ≔ 𝛽2𝑠𝑖 + (1 − 𝛽2)𝑑𝑤𝑖
2 

 
(8.2) 

 𝑣𝑖
𝑐𝑜𝑟𝑟 ≔  

𝑣𝑖

1 − (𝛽1)𝑡
 

 

(8.3) 

 𝑠𝑖
𝑐𝑜𝑟𝑟 ≔  

𝑠𝑖

1 − (𝛽2)𝑡
 

 

(8.4) 

 
𝑤𝑖 ≔  𝑤𝑖 −  𝛼

𝑣𝑖
𝑐𝑜𝑟𝑟

√𝑠𝑖
𝑐𝑜𝑟𝑟 + 𝜀

 

 

(8.5) 

 

where 𝑣𝑖
𝑐𝑜𝑟𝑟  and  𝑠𝑖

𝑐𝑜𝑟𝑟 are bias corrections to 𝑣𝑖 and 𝑠𝑖. This algorithm is one of the most used 

nowadays because it is a fast, computational efficient method to search the minimum of 

complex functions as the loss function. 

 

1.2.2.2 Fully connected 
 

The fully connected neural network (or multilayer perceptron) is the simplest architecture. It 

consists in a sequence of layers made of neurons in which each neuron from the previous layer 

is connected to each neuron in the following one. 

 

 

Figure 1.2.3 Fully connected architecture. It is composed by a first input layer (blue), two hidden layers (green) and 
one output layer (yellow). Adapted from [33]. 

 They are also called “feedforward” networks as the information flows in only one direction. The 

computational graph of the fully connected neural network is shown in Figure 1.2.3. This Figure 

shows the architecture of a multilayer perceptron, with one input layer (blue), followed by 2 

hidden layers (green) and ending in a single neuron output layer (yellow). 
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1.2.2.3 Convolutional neural network 
 

Convolutional neural networks (CNNs) are networks which use convolution in place of general 

matrix multiplication in at least one of their layers. They are designed to work mainly with grid-

like data. Unlike the fully connected neural network, the convolutional is characterised by sparse 

interaction, meaning that not every output unit interacts with the input units.  This happens 

because the convolutional layer is based on the multiplication of the input with a filter (or 

kernel), which is smaller than the input and spans different areas of the input, generally top to 

bottom and left to right. 

 

a)  b) 

Figure 1.2.4 a) scheme of a CNN. It is composed by an image-input layer, to which a series of filters are applied; in the 
end, the output is flattened and the result is fed to an output layer. Adapted from[6]; b) example of filter application, 
adapted from[33]. 

 

The filters applied can be more than one, and this influences the depth of the convolutional 

layer. One of the key advantages of CNNs is the parameter sharing, meaning that the algorithm 

learns one local set of parameters from the filter which are able to find important features 

spanning the whole input. This property enables the network to capture important features that 

are spatially invariant. For example, if a certain filter detects a vertical edge, it can recognize that 

pattern regardless of its position in the image. Parameter sharing significantly reduces the 

number of parameters required compared to fully connected neural networks, where each 

parameter corresponds to a connection between individual neurons. 

In a typical CNN architecture, the convolutional layers are often followed by other types of 

layers, such as pooling layers and fully connected layers. Pooling layers reduce the spatial 

dimensions of the feature maps, reducing computational complexity and providing some degree 

of translational invariance. Fully connected layers are responsible for making predictions based 

on the extracted features and are commonly found at the end of the network. These layers 

combine the learned features from the previous layers and map them to the desired output, 

such as class probabilities in image classification. An example of a convolutional neural network 

is shown in Figure 1.2.4a, where an image (input layer, blue) is spanned by 4 filters and then by 

5 filters (hidden layers, green), then the result is flattened and sent to the output layer (yellow). 

Figure 1.2.4b shows an example of the application of the convolutional filter to the input. 
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1.2.2.4 Recurrent Neural network 
 

The Recurrent Neural Network (RNN) is an architecture designed to deal with data expressed as 

sequences like time series, sentences or speech. It is characterized by the fact that it can learn 

patterns from parts of the sequence by keeping memory of it in a hidden state 𝑠 which is 

updated according to the learnt parameters. Similarly to the convolutional neural network, it is 

characterized by the property of parameter sharing, as to say that the weights locally learnt 

during the training are used on every time step of the sequence. 

 

 

Figure 1.2.5 Recurrent neural network. On the right part of the arrow, the unfolded version shows how the input 
sequence (blue) is fed to the recurrent hidden layer (green) and then outputs a single value (yellow). Adapted from 
[33]. 

 

At each time step, the current input is transformed by using a set of learnable weights and 

biases. This transformation produces an intermediate representation, often referred to as the 

hidden state or hidden activation. The hidden state captures information about the current 

input and incorporates information from previous time steps through the recurrent connections. 

The process can be expressed in terms of the following function: 

 

 𝑠<𝑡> = 𝑓(𝑠<𝑡−1>, 𝑥<𝑡>;  𝑊) (9) 
 

where 𝑠<𝑡> is the state of the system at timestep 𝑡, 𝑥<𝑡> is the input at timestep 𝑡 and 𝑊 are 

the learnt parameters. In this case, 𝑊 represents both the weights which connect a state to the 

other (𝑣), the weights which connect the state to the input 𝑥(𝑡) (𝑢) and the weights that connect 

the final state to the output (𝑣′). The “;” inside the function indicates that the terms on the left 

are timestep dependent, while the term on the right is shared along all the timesteps. It is 

possible to unfold the recurrence of the expression in Equation (9) for a finite number of 

timesteps τ in order to get an expression which does not involve recurrence. For example, for 

𝜏 =  3 we obtain: 

 

 𝑠<3> = 𝑓(𝑠<2>, 𝑥<3>;  𝑊)  =  (10.1) 
 = 𝑓(𝑓(𝑠<1>, 𝑥<2>; 𝑊), 𝑥<3>;  𝑊) (10.2) 

 

With this expression it is now possible to build the computational graph of the recurrent neural 

network in an acyclic way (Figure 1.2.5). In this graph the sequence input (blue), the hidden 
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states (green) and the output state (yellow) are depicted. The output can be produced at each 

time step or only at the final time step, depending on the specific task (in our case we focus on 

the final step). One of the most used units of recurrent neural network is the long short-term 

memory (LSTM) unit. The state 𝑠 of this unit accounts for its activation 𝑎 and a cell flag 𝑐 which 

is the kernel of the memory process. The value of the activation is influenced by the value of the 

cell flag, and the value of the cell flag is decided according to the value of the so-called gates, as 

shown in Figure 1.2.6. The LSTM has 3 types of gates (forget, update and output gate) which are 

defined as follows: 

 

 𝛤𝑓  =  𝜎(𝑤𝑓[𝑎<𝑡−1> ,𝑥<𝑡>] + 𝑏𝑓) (11.1) 

 𝛤𝑢  =  𝜎(𝑤𝑢[𝑎<𝑡−1> ,𝑥<𝑡>] + 𝑏𝑢) (11.2) 

 𝛤𝑜  =  𝜎(𝑤𝑜[𝑎<𝑡−1> ,𝑥<𝑡>] + 𝑏𝑜) (11.3) 

 

where 𝜎 is the sigmoid activation function, 𝑤 and 𝑏 are respectively the weights and the bias 

vectors, 𝑎 is the activation and 𝑥 is the input value. On each iteration a candidate for the cell 

value �̂� is calculated as follows: 

 

 �̂�<𝑡> = 𝑡𝑎𝑛ℎ(𝑤𝑐[𝑎<𝑡−1> ,𝑥<𝑡>] + 𝑏𝑐) (12) 

 

and combined with the update gate and the forget gate and the value of the cell at time t-1 to 

compute the new value of the cell as follows: 

 

 𝑐<𝑡> =  𝛤𝑓𝑐<𝑡−1> +  𝛤𝑢�̂�<𝑡>  (13) 

 

Finally, the new value for the activation is calculated using the value of the cell at time t and the 

value of the output gate as follows: 

 

 𝑎<𝑡> = 𝛤0𝑡𝑎𝑛ℎ(𝑐<𝑡>) 
 

(14) 



 

11 
 

 

Figure 1.2.6 Scheme of the Long Short-Term Memory unit 

 

This peculiar state is what allows the network to register and recognize patterns along a 

sequence. In the third paper, I used a Bidirectional-LSTM approach, which reads the SMILES 

sequences of different molecular structures both from the beginning to the end and from the 

end to the beginning.  

 

1.2.3 Principal Component Analysis 
 

The information in ANNs is codified in high dimensionality spaces which can be manipulated 

with mathematical tools, but then there is the necessity to visualize the results in a lower 

dimensional space. The Principal Component Analysis (PCA)[34] is a dimensionality reduction 

technique. The concept behind this is that the high dimensionality of the data might be 

redundant and it can be explained by an intrinsic lower-dimensional structure emerging from 

linear combinations of the dimensionalities of the original space.  

 

 

 

Figure 1.2.7 Principal Component Analysis. The data are projected on the direction of maximum variance, called 
Principal Component 1. Adapted from [34] 
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The PCA is an orthonormal transformation which projects the data of the sample in a space in 

which the variance of the sample is maximised (see Figure 1.2.7). In this way it is possible to 

analyse and manipulate the high dimensionality data in the original space (for example with a 

clustering) and then easily interpret it by embedding it in a low-dimensionality human-readable 

space. I used the PCA in order to interpret the output of the intermediate layers of the ANN, to 

verify that the network would in fact get the physics of the glass transition process. To do so, I 

extracted the activations of the last hidden layer of the ANN, as it is supposed to contain 

information connecting the molecular structure to the  𝑇𝑔. In this way it is possible to embed the 

molecular structure of the glass formers (as encoded by this layer) into an 𝑚-dimensional 𝑇𝑔-

oriented space, where 𝑚 corresponds to the number of neurons of the last hidden layer (in this 

case 𝑚 = 16). Having this mathematical representation of the molecular structure allows to 

easily make operations on it. However, the high-dimensionality of the space does not allow an 

immediate human-readable output. For this reason, the PCA is used to reduce the 

dimensionality of the space from 16 to 3 or 2 dimensions, allowing a clear reading of the 

mathematical representation of the data. 

 

1.2.4 Clustering 
 

Clustering is a technique with which a set of N data is divided into C groups called “clusters”[34]. 

Given a numerical representation of the data, like molecular descriptors, the division among the 

clusters is due to similarity between points of the dataset, so that molecules which share some 

similarity are grouped together. Classical clustering (like for example the K-means[35], see 

Figure 1.2.8) works by defining a number of centroids on the data and calculating the distance 

of each point from every centroid. 

  

 

Figure 1.2.8 A schematic example of classical clustering. 

 

A variant of the classical clustering is the fuzzy clustering (fuzzy C)[36], in which the points of the 

dataset are assigned to a cluster with a probability to belong to it. This makes the clustering 

more flexible, as the point is not forced to belong to a single cluster, but it can be shared among 

two or more clusters. 
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1.2.5 Chemical structure of molecules and polymers 
 

The chemical structure representation of a given molecule reflects the arrangement and 

connectivity of atoms within it, providing valuable insights into its composition and reactivity. 

At the core of this representation there are the atoms, which are the building blocks of 

molecules. Each atom is denoted by its elemental symbol (e.g., C for carbon, O for oxygen) and 

the arrangement of atoms in a molecule is determined by the bonds that connect them. The 

most common type of bond is the covalent bond, where atoms share electrons to achieve a 

stable electron configuration. Covalent bonds can be single, double, or triple bonds, indicating 

the number of electron pairs shared between atoms. In addition to covalent bonds, other types 

of bonds, such as ionic bonds and metallic bonds, may exist in certain molecular systems. The 

connectivity of atoms in a molecule is often depicted using graphical representations, such as 

molecular diagrams or line structures. In molecular diagrams, atoms are represented by their 

elemental symbols, and bonds are depicted as lines connecting the atoms. This visual 

representation provides a clear understanding of the spatial arrangement and connectivity of 

atoms within the molecule. In the case of polymers, the chemical structure involves the 

repetition of molecular units known as monomers. Since the chemical structure of molecules 

and polymers encodes relevant information about their properties, the main idea is that the 

representation of such structures can be used as an input for an ANN to predict a given property. 

The non-linearity mappings of the ANN can indeed grasp the correlation between the molecular 

structure and the property to predict. The simplified molecular input line entry system 

(SMILES)[37] is a way to codify the chemical structure of a molecule with alpha-numeric strings 

of characters.  

 

 

Figure 1.2.9 SMILES strings and encodings. a) the one hot encoding represents the sequence as a sparse matrix of 0s 
and 1s; b) the cardinal encoding represents the sequence as a string of numbers. In both cases 0-padding was added 
so that all the sequences had the same length. 

 

In order to use this chemical information in the model, it is necessary to convert the alpha-

numerical string in a full numerical input, and this can be done with a variety of strategies. In 

particular, in this Thesis I opted for the one-hot and cardinal encoding. In both cases, I defined 

a dictionary of characters contained in the strings of the dataset. Then, the dictionary is used in 
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the one-hot encoding to define a matrix of 0s and 1s, where the 1s correspond to the position 

of a letter inside a string of characters. In the cardinal encoding I assigned a number to each 

character according to its position in the dictionary to then convert the strings of characters into 

strings of numbers. Also, padding of 0s were added in order to have the same length for all the 

sequences. These two procedures are shown in Figure 1.2.9. 

 

1.2.6 Glass transition temperature and relaxation dynamics 
 

1.2.6.1 Glass transition temperature 
 

In a liquid, the relative position of a molecule with respect to its neighbours changes according 

to a relaxation time determined by the influence of the intermolecular forces on the random 

thermal motion of the molecules[38]. Usually this behaviour is modelled as a molecule which 

jumps out of a cage of neighbours with a characteristic time τ. This time can be approximate 

knowing that the molecule vibrates in the cage with a given frequency ν and has to overcome 

an energy barrier 𝜀 in order to escape the cage. The probability of such event is given by the 

Boltzmann distribution, so that the estimation of the characteristic escape time is: 

 

 𝜏−1 ≈ 𝜈 𝑒𝑥𝑝(−𝜀/𝑘𝑇)  (15) 
 

For a simple liquid the characteristic time is about (10−12 − 10−10)𝑠 . Another key parameter 

describing the behaviour of a fluid is the viscosity 𝜂, which depends on the relaxation time in the 

form:  

 

 𝜂 = 𝐺0 ∗ 𝜏 (16) 
 

where 𝐺0 is an instantaneous modulus which characterises the elastic response of the material 

at times shorter than the relaxation time. By putting the previous estimation of 𝜏 we obtain the 

Arrhenius behaviour 

 

 𝜂 = (𝐺0/𝜈) ∗ 𝑒𝑥𝑝(𝜀/𝑘𝐵𝑇)  (17) 
 

which is the typical behaviour of viscous liquids at high temperature. When lowering the 

temperature, assuming that the liquid does not crystallise, the material undergoes glass 

transition. The glass transition is a kinetic phenomenon concerning the solidification of a super-

cooled liquid into an amorphous solid. It is not considered as a phase transition as its features 

depend on the thermal history of the material, characterized, for example, by the cooling rate 

of the process and, on the other hand, it does not show any discontinuity in the first derivative 

of the free energy. The temperature dependence of the viscosity is given by the empirical 

formula of Vogel-Fulcher-Tammann: 
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 𝜂 = 𝜂0  ∗  𝑒𝑥𝑝(𝐵/ (𝑇 − 𝑇0))  (18) 
 

The glass transition temperature is defined by convention when the viscosity of the liquid 

reaches 1012 𝑃𝑎 ∗ 𝑠, or when its relaxation time reaches 102𝑠, as to say that the relaxation time 

becomes comparable to that of the experiment. A way to visualize the glass transition is through 

the behaviour of the volume of the substance or through its heat capacity at constant pressure. 

From the volume point of view, the cooling of a liquid would result in a change of slope in the 

graph volume vs temperature, given that the cooling rate is fast enough to avoid the 

crystallization of the sample. This process is displayed in Figure 1.2.10, where two 𝑇𝑔 are shown, 

corresponding to a faster (𝑇𝑔,1) and a slower (𝑇𝑔,2) cooling rate, along with the crystallization 

temperature 𝑇𝑐. 

 

Figure 1.2.10 Volume behaviour in the case of glass transition and crystallisation. The 𝑇𝑔,1 corresponds to a faster 

cooling rate, while 𝑇𝑔,2 corresponds to a slower cooling rate. 𝑇𝑐 is the crystallisation temperature. 

 

Experimentally, the glass transition temperature is usually measured with calorimetry (see 

section 1.2.7.1), by following the changes in heat capacity at constant pressure. The knowledge 

of the glass transition temperature is of most interest as it is involved in relevant processes like 

food processing, pharmaceutical stocking and polymer characterization. In the developing phase 

of a new material, given the difficulties that might arise in the synthesis processes, it is 

interesting to study new approaches to have at least an estimation of the 𝑇𝑔 starting from the 

chemical structure of the compound. This can also give an insight on how the structure of a 

molecule can influence the value of the 𝑇𝑔, suggesting new routes to material property tuning. 

 

1.2.6.2 Material Dynamics 
 

The understanding of relaxation dynamics plays a crucial role in the behaviour and performance 

of materials. For instance, in the pharmaceutical industry it is important to obtain materials of 

high purity and whose making process is reproducible in terms of physical, chemical and 

biological properties. In this framework, amorphous materials play a crucial role as this character 

is common in polymers used as excipients, peptides and proteins and small organic and inorganic 
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molecules. The relaxation processes are key to understanding the dynamics and properties of 

these materials. 

When a material is subjected to an external perturbation, it undergoes a response that reflects 

its molecular-chain dynamics. Under the assumption of linear response theory, the observed 

response is directly proportional to the perturbation. This theory allows to apply the fluctuation-

dissipation theorem, which states that the response of a system at thermodynamic equilibrium 

to a small applied disturbance is equivalent to its response to a spontaneous fluctuation. 

Therefore, by examining the response over a range of frequencies, the equivalence in time-

temperature concept can be employed. This concept enables the exploration of a wide range of 

molecular dynamics by mapping the effects of temperature changes onto changes in the time 

scale. 

Material dynamics are typically characterized by a specific relaxation time and its dependence 

on temperature. The broad range of relaxation times observed experimentally, spanning several 

decades, necessitates the use of multiple techniques such as broadband dielectric spectroscopy 

(BDS), dynamic mechanical analysis (DMA) or any other frequency sensitive technique. The 

knowledge of 𝑇𝑔 in the biological and pharmaceutical framework is critical to anticipate the 

spontaneous changes in the properties of the solid during storage and/or handling of the 

material. The development phase of a new material can be both costly and time-consuming, 

hence the aim of this Thesis is to propose different strategies to estimate the value of the 𝑇𝑔 

starting from the knowledge of the molecular structure of the glass former. 

 

1.2.6.3 Elastically Collective Non-Linear Langevin Equation 
 

The Elastically Collective Non-linear Langevin Equation (ECNLE) theory [30] describes the 

molecular dynamics of glass-formers with a hard-sphere based model. It considers: 1) the 

interactions of a tagged particle with its neighbours and 2) the cooperative motions of particles 

beyond the first neighbours shell. The motion of a single particle in its cage of first neighbours is 

described by a dynamic free energy 𝐹𝑑𝑦𝑛(𝑟) = 𝐹𝑖𝑑𝑒𝑎𝑙(𝑟) − 𝐹𝑐𝑎𝑔𝑖𝑛𝑔(𝑟), where 𝐹𝑖𝑑𝑒𝑎𝑙(𝑟)  is the 

ideal fluid state, while 𝐹𝑐𝑎𝑔𝑖𝑛𝑔(𝑟) characterises the localised state of the particle. The dynamical 

constraint of the cage is given by the emergence of a barrier in  𝐹𝑑𝑦𝑛(𝑟) and, defining 𝑟𝐿 as the 

localization length and 𝑟𝐵 as the barrier position, we get 𝐹𝐵 = 𝐹𝑑𝑦𝑛(𝑟𝐿) − 𝐹𝑑𝑦𝑛(𝑟𝐵), which 

considers the energy to overcome the cage barrier. Then, the collective rearrangement of the 

outer molecules of the material is accounted by a displacement field 𝑢(𝑟) to which is associated 

the elastic free energy: 

 

 
𝐹𝑒 =  ∫ 4𝜋𝜌𝑟2𝑔(𝑟)𝐾0𝑢2(𝑟)/2𝑑𝑟

∞

𝑟𝑐𝑎𝑔𝑒

   (19) 

 

where 𝜌 is the number of particles per volume, g(r) is the radial distribution function and 𝐾0 =
𝜕𝐹𝑑𝑦𝑛(𝑟)

𝜕𝑟
|𝑟 = 𝑟𝐿

. Using Kramer’s theory we obtain: 
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 𝜏𝛼

𝜏𝑠
 =  1 +  

2𝜋

√𝐾𝐵𝐾0

 
𝑘𝐵𝑇

𝑑2
 𝑒𝑥𝑝(

𝐹𝐵 + 𝑎𝐹𝑒

𝑘𝐵𝑇
)  (20) 

 

where 𝐾𝐵 =
𝜕𝐹𝑑𝑦𝑛(𝑟)

𝜕𝑟
|𝑟 = 𝑟 𝐵

, 𝜏𝑠 is the experimental time, 𝑑 is the diameter of the sphere and a 

is an adjustable parameter which improves the modelling of the external elastic field. The glass 

transition temperature enters in this model due to a density-to-temperature conversion, as the 

equation above gives the 𝜏𝛼 as a function of the volume fraction 𝛷 = 𝜌𝜋𝑑3/6, where 𝜌 is the 

number of particles per volume. The conversion is based on a thermal expansion process and it 

gives the thermal mapping 𝑇 =  𝑇𝑔 + (𝛷𝑔 − 𝛷)/(𝛽𝛷0), where 𝛷𝑔 is defined as 𝜏𝛼(𝛷𝑔)= 100s, 

𝛷0 is a characteristic volume fraction, and β is the effective thermal expansion coefficient. This 

model provides a description of the α-relaxation dynamics of a molecular glass former, and it is 

used in the papers to model the α-relaxation dynamics given the 𝑇𝑔 predicted by the network. 

 

1.2.7 Experimental techniques 
 

1.2.7.1 Differential Scanning Calorimetry 
 

The differential scanning calorimetry (DSC) is a thermoanalyitical technique which measures the 

heat necessary to raise the temperature of a sample as a function of temperature. It registers 

changes in the heat flow, which is related to the heat capacity at constant pressure by the 

equation: 

 

 
𝐻𝐹 = 𝑐𝑝

𝑑𝑇

𝑑𝑡
 (21) 

 

where 𝑐𝑝 is the heat capacity and 
𝑑𝑇

𝑑𝑡
 is the cooling or heating rate of the experiment. The setup 

is made by a reference and the sample which are heated or cooled at the same time. Changes 

in the heat flow correspond, among others, to changes in the phase of the sample, as they 

correspond to endothermic or exothermic transformations. In this way, it is possible to follow 

the transformation of a material and identify the different state passages. The glass transition 

temperature is identified by a step function behaviour of the heat flow as shown in Figure 1.2.11. 
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Figure 1.2.11 DSC measurement. In this case, the glass transition temperature corresponds to the inflection point of 
the heat capacity. 

 

 

1.2.7.2 Broadband Dielectric Spectroscopy 
 

Broadband dielectric spectroscopy (BDS) is an experimental technique based on the study of the 

response of a material to a given electric field through its dielectric permittivity, which is a 

measure of how the dipoles of the system are oriented with respect to an external electric field. 

The dielectric permittivity can be written in its complex form as 

 

  𝜀∗(𝜔) = 𝜀′(𝜔) −  𝑖𝜀′′(𝜔)  (22) 
 

where ε’ is the real part and ε’’ is the imaginary part. The relaxation processes are identified by 

a peak in the imaginary part of the permittivity and a step in its real part, as shown in Figure 

1.2.12. 

 

 

Figure 1.2.12 Dielectric permittivity behaviour as a function of the frequency. 
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In BDS experiments the sample is put in between two gold-plated electrodes, creating a 

capacitor in which the sample acts as insulator. Then, an electric field E(ω) is applied to the 

sample and the permittivity is measured. According to Debye’s equation, for an ideal case of 

non-interacting dipoles with a single time constant 𝜏 it is possible to write: 

 

  𝜀∗(𝜔) = 𝜀∞ +
𝜀𝑠−𝜀∞

1+𝑖𝜔𝜏
= 𝜀∞ +

𝛥𝜀

1+𝑖𝜔𝜏
   (23) 

 

where 𝑖 is the imaginary unit, 𝛥𝜀 = 𝜀𝑠 − 𝜀∞ is the dielectric strength, 𝜀𝑠 is the low frequency 

permittivity, 𝜀∞in the high frequency permittivity and 𝜏 is the Debye relaxation time. From 

Equation (23) it is possible to obtain an expression for the real and imaginary part of the 

permittivity: 

 

 
𝜀′(𝜔) = 𝜀∞ +

𝛥𝜀

1 + (𝜔𝜏)2
 

 
(24.1) 

 
𝜀′′(𝜔) =

𝛥𝜀 ∗  𝜔𝜏

1 + (𝜔𝜏)2
 (24.2) 

 

This model, though, is only valid in few rare cases, and fails describing the permittivity behaviour 

of many materials, which usually show a broader peak in their imaginary part. For this reason, 

experimentally it is preferred to use empirical models like the Cole-Cole or the Havriliak-Negami 

equations (respectively Equation (25.1) and Equation (25.2)):  

 

 
𝜀∗(𝜔) = 𝜀∞ +

𝛥𝜀

1 + (𝑖𝜔𝜏𝐶𝐶)𝛼
 

 
(25.1) 

 
𝜀∗(𝜔) = 𝜀∞ +

𝛥𝜀

[1 + (𝑖𝜔𝜏𝐻𝑁)𝛼]𝛽
 (25.2) 

 

 

where 𝜏𝐶𝐶  and 𝜏𝐻𝑁 are characteristic times and α and β are tuneable parameters. As shown in 

Figure 1.2.13a, the position of the peak is temperature dependent, and following its path by 

changing the temperature allows to map the relaxation dynamics of the sample as a function of 

the temperature. The main process is called α-relaxation and it corresponds to a cooperative 

motion of the molecules related to the structural relaxation of the material, coinciding with the 

glass transition process when 𝜏 =  100𝑠. It is displayed in Figure 1.2.13b. 
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Figure 1.2.13 Typical glass former behaviour. Figure 1.2.13a reports the BDS measurements of the imaginary part of 
the permittivity, with the temperature increasing from left to right. Figure 1.2.13b shows the relaxation map given by 
the position of the peaks as a function of the inverse of the temperature. 

 

Figure 1.2.13a shows the frequency dependence of the imaginary part of the complex dielectric 

permittivity at different temperatures for a typical glass former. Figure 1.2.13b shows the 

corresponding relaxation map where the logarithm of the maximum relaxation time is plotted 

as a function of inverse temperature. 

 

1.3 Hypothesis and objectives 
 

1.3.1 Hypothesis 
 

The central hypothesis of this study is that the use of machine learning techniques, specifically 
ANNs, can effectively capture the non-linear relationship between the chemical structure of 
materials and their physico-chemical properties. By developing quantitative structure-property 
relationship models, it is possible to accurately predict and understand the properties of 
materials based on a representation of their chemical structure. The combination of different 
ANN architectures and the integration of the machine learning output with theoretical models 
extends the applicability of the predictions. The underlying assumption is that the chemical 
structure of materials holds crucial information that determines some of their properties. By 
leveraging the capabilities of ANNs to handle complex, non-linear relationships, it becomes 
feasible to establish correlations between the structure and property of materials. This 
hypothesis also acknowledges the potential of machine learning output as an input for 
theoretical models, implying that the combination of numerical and theoretical approaches can 
further improve the understanding of material properties. 
 

 

 

 

a) b) 
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1.3.2 Objectives 
 

1.3.2.1 General Objective 
 

To develop and apply machine learning techniques to establish quantitative structure-property 
relationships and estimate the glass transition temperature and relaxation dynamics of 
molecular glass formers and polymers based on their chemical structure. 
 

1.3.2.2 Specific Objectives 
 

 
● Contribute to the scientific understanding of structure-properties relationships in 

amorphous materials and accelerate the development of new materials. 
● Assess the feasibility and accuracy of estimating the dynamics and 𝑇𝑔 of molecular glass 

formers and polymers before their synthesis, thereby saving time and resources in the 
material development process. 

● Validate the developed models and methodologies using experimental data and 
compare the predicted results with actual measurements. 

● Contribute to model interpretability by performing a chemical embedding into an m-
dimensional 𝑇𝑔-oriented space 

● Explore different ANN models to establish a correlation between the chemical structure 
and 𝑇𝑔 of molecular glass formers. 

● Test the models on relevant compounds like essential amino acids and peptides. 
● Combine ANNs and the elastically collective nonlinear Langevin equation (ECNLE) to 

estimate the temperature dependence of the main structural relaxation time of 
polymers and molecular glass formers using only the knowledge of their chemical 
structure. 

 

1.4 Overview and discussion of the results 
 

In this Thesis I present three works related with the theme of ANNs applied to the prediction of 

the glass transition temperature and relaxation dynamics of molecular and polymeric 

compounds. These strategies are based on the idea that the molecular structures contain 

enough information to get an estimation of the general properties of a compound, in this case 

the 𝑇𝑔.  Thanks to the numerical/theoretical prediction of the property it is possible to save time 

and resources in the development of new compounds. Three different datasets were used, 

spanning biological and pharmaceutical compounds and polymers. The study was grounded in 

a combination of variables: the level of complexity of the network (starting with a fully 

connected network, then a convolutional neural network and finishing with a recurrent neural 

network), the complexity of the chemical structures, and by the nature of the output (dynamic 

properties). 
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1.4.1 First paper: Molecular glass formers and ECNLE 
 

The first paper deals with the possibility to make hybrid models by using an ANN to predict the 

desired property and a theoretical model to show the physics of the dynamics. In particular, I do 

this applied to molecular glass formers and predicting their glass transition temperature, which 

is then used along with the ECNLE theory to estimate the α-relaxation dynamics of the 

compounds. In this article, I cured a dataset of around 200 molecular glass formers like biological 

molecules, pharmaceutical drugs, additives or sugars. The 𝑇𝑔 of the compounds is in a range 

between 200 K and 400 K and the structures are expressed in SMILES strings (see Section 1.2.5). 

Figure 1.4.1a reports the 𝑇𝑔 histogram of the dataset, and in Figure 1.4.1b shows the trend of 

the 𝑇𝑔 with respect to the SMILES length of the molecular glass formers. Note that the value of 

the 𝑇𝑔 increases with increasing SMILES’s length, which is proportional to the molecular weight 

of the compounds.   

 

 a)  b)  

Figure 1.4.1 Characterisation of the dataset. a) shows the dataset distribution of the glass transition temperature, 
while b) shows the trend of the glass transition temperature with respect to the SMILES length of the compounds. 

  

The pre-processing of the data consists in converting the SMILES strings into 2d matrices with 

the one-hot matrix encoding (see Section 1.2.5). This means that the i-th row of the matrix is 

filled with zeros except that for the dictionary position where there is the i-th symbol of the 

string. Then the matrix is flattened and fed to the fully connected neural network (see Figure 

1.4.2), obtaining a prediction of the glass transition with average percentage errors below 8% 

(see Figure 1.4.3). This result is particularly good as in most cases the kinetic nature of the glass 

transition does not allow to find in literature a single value for the 𝑇𝑔, but rather a range of 

temperatures. The network was tested with the dropout layer before each hidden layer. This 

special layer, which is turned off when the network has been trained, is needed to avoid 

overfitting, as it puts to zero a fraction of the neurons of a layer so that the learning of a given 

feature is not linked to a restricted number of neurons, but is more evenly shared along all the 

neurons of the layer. I tested different architectures, changing the number of neurons for each 

layer and some of the hyperparameters, like the value of the dropout probability or the learning 

rate. Finally, I chose as best architecture two hidden layers of 40 neurons each and eLU 

activation function, with 40% probability of dropout and a starting learning rate of 0.01. 
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Figure 1.4.2 Fully connected architecture. The network, fed with a flattened version of the SMILES one-hot encoded, 
is composed by two hidden layers of 40 neurons each and eLU activation function and outputs the 𝑇𝑔. 

 

The results of the predicted 𝑇𝑔 are shown in Figure 1.4.3. The black line represents the bisector 

of the first quadrant of the cartesian axes, so this means that, according to the position of the 

dots in the graph, there is good accordance between the prediction and the actual value of the  

𝑇𝑔.  

 

 

Figure 1.4.3 𝑇𝑔 predicted vs 𝑇𝑔 experimental. The average percentage error on the predicted 𝑇𝑔 is below 8%. 

 

Then I used the predicted 𝑇𝑔 as an input for the ECNLE theory (see Section 1.2.6.3), obtaining 

the molecular dynamics shown in Figure 1.4.4. This particular graph was obtained by using the 

correction 𝑎 in the ECNLE theory so that the contribution of the elastic force 𝐹𝑒 would be taken 

into account more precisely. 
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Figure 1.4.4 ECNLE results. The coloured bands represent the uncertainty due to the error on the prediction of the  𝑇𝑔, 

while the dots represent the BDS experimental data of the molecular dynamics. 

 

Figure 1.4.4 compares the theoretical results (coloured bands and dashed lines) with the 

experimental data obtained by BDS measurements (dots). The concordance between theory and 

experiment is noteworthy and it shows that this hybrid approach is indeed valid to make 

assumptions on materials starting from a representation of their chemical structure. Moreover, 

this method can be used to understand how changes in the molecular structure lead to changes 

in the estimation of the 𝑇𝑔. As shown in Figure 1.4.5, it is possible to use the ANN as if it was a 

“virtual laboratory”, where the relative positions of the atoms of the molecules change and 

reflect their effect on the estimation of the 𝑇𝑔. 

 

 

Figure 1.4.5 ANN as virtual laboratory. Small changes in the relative position of the atoms lead to changes in the 
estimation of the 𝑇𝑔 of the compound.   
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1.4.2 Second paper: Acrylates and ECNLE 
 

In the second paper, I focus on the application of convolutional neural networks to the 

prediction of the glass transition temperature for a family of polymers: the atactic polyacrylates. 

By taking advantage of the power of CNNs to detect patterns in the chemical structures, I obtain 

estimations of 𝑇𝑔which are subsequently utilized as inputs for the ECNLE model (see Section 

1.2.6.3). To begin, I present the characterization of the dataset, consisting of approximately 200 

monomers, as depicted in Figure 1.4.6. Figure 1.4.6a showcases the distribution of 𝑇𝑔 values 

among the monomers, while Figure 1.4.6b illustrates the relationship between the SMILES 

length and the glass transition temperature. Since this approach relies on only the differential 

chemical structure (i.e.: all polymers share the same backbone structure, so we employ only the 

monomer structure as input, thus focusing the network to the study of the pending chains), the 

observed trend differs from that obtained in previous studies, where individual molecules were 

studied. 

a)  b) 

Figure 1.4.6 Characterisation of the dataset. a) shows the dataset distribution of the glass transition temperature, 
while b) shows the trend of the glass transition temperature with respect to the SMILES length of the monomers 

 

To train the CNN model, the monomers are encoded as one-hot matrices derived from their 

SMILES strings, as explained in Section 1.2.5. Remarkably, this approach yields average 

percentage errors in the predictions of less than 9%, representing a significant outcome given 

that the network solely relies on monomer structure without any additional physical 

information.  

 

 

Figure 1.4.7 Convolutional neural network architecture. The 2D matrix encoding the SMILES is fed to the CNN, then 
the filtered image is flattened and passed to a fully connected architecture. 
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Subsequently, I feed these prediction results into the ECNLE theory, in order to obtain insights 

into the molecular dynamics of this specific class of polymers, as demonstrated in Figure 1.4.8.  

Figure 1.4.8 compares the main relaxation dynamics obtained by BDS measurement (blue line) 

with the ECNLE prediction obtained with the predicted 𝑇𝑔 (red and dashed lines). The model was 

calculated by taking into account the value of 𝑎 in the ECNLE, to have a more precise estimation 

of the contribution of the external elastic force 𝐹𝑒 . 

 

 

Figure 1.4.8 ECNLE results for the atactic poliacrylates. The blue line corresponds to VFT fit obtained by BDS 
measurements, while the red and dashed lines correspond to the range of the corresponding dynamics estimated by 
the ECNLE. 

This hybrid approach of utilizing CNNs can open new routes in the design process of new 

polymeric materials, as it allows to have a good approximation of the dynamics of the 

compounds starting solely from the monomer.  
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1.4.3 Third paper: RNN and glass transition 
 

In the third paper I show that the recurrent neural network is able to group and recognize the 

physics behind the glass transition process. In this case, the collected dataset counted about 500 

molecular glass formers, and its characterisation is shown in Figure 1.4.9. The temperature range 

of the 𝑇𝑔 spans between 18K and 450K. As in the first paper, we can see in Figure 4.9b that there 

is a strong correlation between the 𝑇𝑔 and the SMILES’s length, which increases with increasing 

molecular weight.   

 

a) b) 

Figure 1.4.9 Characterisation of the dataset. a) shows the dataset distribution of the glass transition temperature, 
while b) shows the trend of the glass transition temperature with respect to the SMILES length of the compounds 

 

Figure 1.4.10 shows a scheme of the RNN architecture used in the paper. In this case, the SMILES 

was encoded with the cardinal encoding (see Section 1.2.5) and bidirectional long short-term 

memory neurons were used. These particular nodes are advantageous because they analyse the 

given sequence both from left to right and from right to left, making it simpler to find 

significative patterns inside the sequence. The batch-normalization layer is essential for the 

performance of the network, as it is intrinsically a deep network and the batch-normalization 

helps to make the output of the BiLSTM less prone to saturation. After testing various 

architectures, I opted for a 8 nodes BiLSTM architecture, which become 16 as the network reads 

the sequence on both directions. 

 

 

Figure 1.4.10 RNN architecture. The network is fed with the SMILES sequences expressed in cardinal encoding. Its core 
is the BiLSTM layer, which examines the sequences in both directions and is able to recognize significative patterns. 

 

The graph in Figure 1.4.11 shows that the value of the predicted 𝑇𝑔 as a function of the 

experimental 𝑇𝑔 lies on the bisector of the cartesian plane, meaning that there is accordance 

between the prediction and the real value of the 𝑇𝑔. The average percentage error in this case 

is lower than 9%.  
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Figure 1.4.11 𝑇𝑔 predicted vs 𝑇𝑔 experimental. The predicted 𝑇𝑔 have an average percentage error below 9% 

 

I showed with the Principal Component Analysis that the network is able to recognize and follow 

features in the chemical structure which influence the value of the glass transition temperature. 

I applied the Fuzzy-C clustering algorithm to the last hidden layer of the network (the batch-

normalization layer, as it is supposed to be the most informative being it the one right before 

the output layer) to assess that the network is able to distinguish among the different structures. 

Then, I applied the PCA to reduce the dimensionality from 16 (number of neurons of the layer) 

to 2. The results of this analysis are shown in Figure 1.4.12. 

 

Figure 1.4.12 PCA and clustering. The PCA projects in 2 dimensions the results of the clustering applied in 16 
dimensions. From point A to point C the network groups the molecules based on their 𝑇𝑔 and structure relationship. 

 

It is also possible to define a confidence interval based on the distribution of the 𝑇𝑔 with respect 

to the molecular weight of the compounds, as shown in Figure 1.4.13. Such interval is a 
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visualisation of the network working area, as to say of the features that it learnt from the 

dataset. The line from point A to point B shows that, at same molecular weight, the 𝑇𝑔 increases 

according to an interplay of other molecular forces, demonstrating that the network was indeed 

able to grasp complex interactions laying in the process. 

 

 

Figure 1.4.13 Confidence interval. This graph shows the chemical area which the neural network learned based on the 
molecular weight and the glass transition temperature 

 

Then I used the recurrent neural network to predict the values of the glass transition 

temperatures of the 20 essential amino acids and a short peptide (3-lys).  When possible, I 

compared the experimental 𝑇𝑔with the predicted one and found that the amino acids which 

were closer to the confidence interval were indeed predicted better than those which were 

farther from it, as shown in Figure 1.4.14 with blue dots for the more accurate predictions and 

red dots for the worse ones.  

 

 

Figure 1.4.14 Essential amino acid prediction. The amino acids which are closer to the confidence interval (green dots) 
of the network (blue dots) are better predicted than those farther (red dots) 

Also in this case, I demonstrated how it is possible to use the ANNs as a virtual laboratory where 
to test the effect of the molecular structure on the 𝑇𝑔. In particular, when dealing with 

biomolecules there are several issues which might occur, like for example the degradation of 
the sample upon heating or its crystallisation upon cooling.  The use of numerical strategies to 
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estimate the properties of such molecules is a way to overcome these difficulties and open new 
routes in the understanding of the relationship between the property and the molecular 
structure in Nature. 
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Section 2  
Conclusions 
 

The QSPR is a field which is growing to find in silico alternatives to the experimental paths in the 

development of new materials. The main aim of these models is to generate accurate 

predictions with the only information of the molecular structure of the compounds. One of the 

most powerful tools to achieve such results is the use of ANNs, as they are able to identify non-

linear correlations between their inputs and outputs. The papers focus on the use of ANNs as a 

way to predict a given property (in this case the glass transition temperature) starting from a 

representation of the molecular structure. The most powerful item shared among the papers is 

that the representation of the molecular structure is given by an alpha-numerical string of 

characters, which does not contain the actual position of the atoms in the space, but whose 

pattern is used to generate a graphical drawing of the molecular structure. I demonstrate that 

this pattern contains enough information for the network to get the physics behind the process 

by finding the non-linear correlation between structure and property. Moreover, the possibility 

to access the layers of the network allows to have a mathematical representation of the 

structure which also contains information about its relationship with the predicted property. 

The activations of these layers can in fact be thought as numerical vectors and eventually be 

used as inputs for other neural networks (transfer learning) or used to apply mathematical 

operations on them (like clustering). This feature provides new tools to study the structure-

property relationship of non-synthesised new materials and to make hypothesis on 

experimentally forbidden areas, like for example for biomolecules which often undergo 

degradation in the process of characterization. Also, the output of the network can be used as 

an input for theoretical models, avoiding the costly process of synthesis involved in the 

characterisation of new materials. For example, once obtained a certain degree of accuracy in 

the prediction of the 𝑇𝑔, it was possible to obtain relaxation maps very similar to the 

experimental results by using the ECNLE theory. On the one hand, in this Thesis I analyse the 

theme of the molecular glass-formers, which are often characterized by complex interactions 

which influence their glass transition temperature and, though, are well predicted by the 

networks (first and third paper). On the other hand, I study a family of polymers, the atactic 

polyacrylates, showing how it is possible to obtain a good approximation of their molecular 

dynamics starting from their monomer structure (second paper). Altogether, in this Thesis I 

propose three different methods to estimate the value of the 𝑇𝑔 starting from a representation 

of the molecular structure of the glass former, showing that it is possible to obtain reliable 

results which are comparable with their experimental counterparts, opening new routes in the 

developing of new materials and in the study of experimentally forbidden regions.  
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A B S T R A C T   

Glass transition temperature and related dynamics play an essential role in amorphous materials research since 
many of their properties and functionalities depend on molecular mobility. However, the temperature depen-
dence of the structural relaxation time for a given glass former is only experimentally accessible after synthe-
sizing it, implying a time-consuming and costly process. In this work, we propose combining artificial neural 
networks and disordered systems theory to estimate the glass transition temperature and the temperature 
dependence of the main relaxation time based on the knowledge of the molecule’s chemical structure. This 
approach provides a way to assess the dynamics of molecular glass formers, with reasonable accuracy, even 
before synthesizing them. We expect this methodology to boost industrial development, save time and resources, 
and accelerate the scientific understanding of structure-properties relationships.   

1. Introduction 

Quantitative structure-property relationships (QSPR) models can 
boost both materials design and scientific understanding of molecular 
glass formers. They can correlate the molecular structure with important 
properties like glass transition temperature and its related dynamics, 
which are among the most significant issues associated with the 
behaviour of glass formers. Many challenging problems, especially in 
the pharmaceutical industry, like the tendency to recrystallize, water 
solubility and dissolution rate, or the long-term stability [1–4], are 
related to the structural relaxation dynamics and the glass transition 
temperature. This molecular relaxation process is usually described by a 
characteristic relaxation time and its temperature dependence, which 
can be experimentally measured using broadband dielectric spectros-
copy (BDS), dynamic light scattering (DLS), or dynamic mechanical 
analysis (DMA), among other techniques. However, when designing new 
molecular glass formers, we do not know their dynamics before syn-
thesizing and characterizing them, which are costly and time-consuming 

processes. In this sense, QSPR models are able to estimate the desired 
properties based only on the chemical structure of the molecules. 

Some theoretical approaches can help in these challenging tasks. For 
instance, the elastically collective nonlinear Langevin equation (ECNLE) 
theory has been recently used to successfully describe the temperature 
dependence of the relaxation times of different amorphous materials 
[5]. However, this approach requires the knowledge of the glass tran-
sition temperature (Tg) to estimate the molecular dynamics. Although 
this information is not available for new glass formers until synthesized, 
recent developments based on artificial neural networks (ANN) allow 
estimating their glass transition temperature based only on their 
chemical structure [6–8], without involving any experimental mea-
surements or complex synthesis. 

This work proposes a joint theoretical and numerical approach to 
estimate the glass transition temperature and the temperature depen-
dence of the structural relaxation time for several molecular glass for-
mers (including amorphous drugs and biomolecules), based only on 
their chemical structure. A neural network approach is firstly used to 
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estimate the glass transition temperature of “new” compounds from 
their chemical structure codified into a Simplified Molecular Input Line 
Entry System (SMILES) representation; then, this information is used in 
ECNLE theory to estimate the temperature dependence of the relaxation 
time for the structural relaxation process. In this way, we can estimate 
the dynamics of molecular glass formers, even before synthesizing them, 
only knowing their chemical structure. 

2. Theoretical background 

ECNLE theory describes glass-forming liquids using a hard-sphere 
fluid [1,5,9–15]. Key characteristics of the fluid are the particle size, 
d, and the number of particles per volume, ρ, from where the volume 
fraction is estimated as Φ = ρπd3/6. Two main factors affecting the 
mobility of a tagged particle are 1) interactions with its nearest neigh-
bours and 2) cooperative motions of particles beyond the first shell. The 
local dynamics (or the motion of the tagged particle within a particle 
cage) is quantified by the dynamic free energy [1,5,9–15], Fdyn(r) =
Fideal(r) + Fcaging(r), where r is the displacement. Fideal(r) corresponds to 
the delocalized or ideal fluid state and Fcaging(r) characterizes the 
localized state of the particle via caging forces, which strongly depends 
on the density and structure of systems. 

Fig. 1 shows an example for calculations of Fdyn(r) at Φ = 0.58 and 
indicates physical quantities of the local dynamics. In a sufficiently 
dense fluid, a reduction of the free volume dynamically restricts the 
motion of particles and forms a particle cage surrounding a tagged 
particle. The dynamical constraint is characterized by the emergence of 
a barrier in Fdyn(r). A particle cage radius, rcage, is roughly estimated by 
the first minimum of the radial distribution function, g(r). Other 
important length scales of the local dynamics are a localization length, 
rL, a barrier position, rB, a jump distance, Δr = rB − rL, and a local 

barrier, FB = Fdyn(rB) − Fdyn(rL). From these, we can calculate K0 =

∂2Fdyn(r)
∂r2 ⌉r=rL 

and KB =
∂2Fdyn(r)

∂r2 ⌉r=rB 
corresponding to harmonic curvatures 

at rL and rB, respectively. K0 can be interpreted as a spring constant at the 
localization length. 

Escaping of a particle from its cage requires reorganization of both 
the nearest neighbours and all particles outside the cage to generate the 
extra space. Thus, the collective motions are strongly coupled to the 
local dynamics within the cage. The cooperative rearrangement creates 
a displacement field, u(r), from the surface of the particle cage, that 
triggers particles beyond the first coordination shell to vibrate as oscil-
lators and radially propagates through the rest medium. By employing 
Lifshitz’s linear continuum mechanics [16], one can analytically 

calculate the displacement field for r ≥ rcage as u(r) =
Δreff r2

cage
r2 , where Δreff 

is the amplitude of the field, whose mathematical expression was re-
ported elsewhere [14,15]. Since u(r) is small, the oscillation of each 
particle is approximately harmonic and, thus, the elastic energy of an 
oscillator is K0

u2(r)
2 . From this, we quantify collective motion effects on 

the relaxation process by summing the harmonic elastic energy of par-
ticles outside the cage to obtain the collective elastic barrier, which is 
Fe = 4πρ

∫∞
rcage

drr2g(r)K0
u2(r)

2 . 
Inserting the local and elastic components into Kramer’s theory gives 

us the structural relaxation time 

τα

τs
= 1+

2π
̅̅̅̅̅̅̅̅̅̅̅
K0KB

√
kBT
d2 exp

(
FB + Fe

kBT

)

(1)  

where τs is a short time scale and its analytical form was previously 
reported [1,5,9–15]. Note that the above calculations provide τα(Φ). 
Direct comparisons between theory and experiments need a density-to- 
temperature conversion. In prior works [1,9–12], based on a thermal 
expansion process, it was proposed a simple thermal mapping T = Tg +

(Φg − Φ)/βΦ0, where Tg is the dynamic glass transition temperature 
defined by τα(Tg) = 100s, Φg is the volume fraction when τα(Φg ≈

0.6157) = 100s, Φ0 ≈ 0.50 is a characteristic volume fraction, and β ≈
12 × 10− 4K− 1 is an effective thermal expansion coefficient considered 
constant for all amorphous materials [1,9–12]. 

Fig. 2 shows the theoretical and experimental temperature depen-
dence of structural relaxation time for griseofulvin, nordazepam, cele-
coxib, tetrazepam, and ibuprofen. Overall, theoretical results 
quantitatively agree with experimental data over a wide temperature 
range or timescale without any fitting parameter. 

The slight deviation observed for ibuprofen (solid line) is related to 
the fact that we assume that local and collective dynamics correlate to 
each other in a universal manner for all materials. FB and Fe in Eq. (1) are 
summed with the ratio of prefactor equal to 1. In prior works [12,17], 
ECNLE calculations were improved by multiplying the elastic barrier 
with an adjustable parameter a to change the relative importance of 
collective dynamics in the glass transition. The new adjusted elastic 
barrier is Fe → a2Fe and it modifies the structural relaxation time in Eq. 
(1) as 

τα

τs
= 1+

2π
̅̅̅̅̅̅̅̅̅̅̅
K0KB

√
kBT
d2 exp

(
FB + a2Fe

kBT

)

(2) 

The value of Φg and the thermal mapping are strongly dependent on 

Fig. 1. The free energy profile normalized by kBT for a hard-sphere fluid with 
Φ = 0.58, where kB is the Boltzmann constant and T is the temperature. 
Characteristic length and energy scales for the local dynamics are defined. 

Fig. 2. Temperature dependence of the structural relaxation time calculated 
using the ECNLE theory (solid lines) and the corresponding experimental values 
(dots) for several molecular glass formers. The dashed line represents the 
ECNLE prediction for ibuprofen with the adjustable parameter a = 2.5 taken 
from Fig. 3. 
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the parameter a, which accounts for the non-universal effects of bio-
logical, conformational, and chemical complexities on the collective 
motions of molecules. It was empirically observed that the scaling 
parameter (a) typically increases with increasing fragility and depends 
on the glass transition temperature, as shown in Fig. 3. Although the 
correlation is not strong, there is a clear trend indicating an increment of 
the parameter a upon decreasing glass transition temperature. The 
estimated value of the parameter a for ibuprofen is 2.5 (being the 
experimentally observed value 2.4). The dashed line in Fig. 2 shows the 
ECNLE prediction for ibuprofen using this value for the scaling 
parameter. 

3. Numerical background 

This section describes the dataset, the encoding of the chemical 
structures, and the corresponding Tg prediction using ANN. 

3.1. Dataset 

The dataset for this work is composed of 216 molecules, including 
pharmaceutical drugs (like benzocaine or ibuprofen), biological mole-
cules (like sucrose or ribose), and typical additives used in the phar-
maceutical industry (like benzophenone), with Tg in the range 200 K – 
400 K. We accounted for the chemical and spatial structure of the 
compounds by using the Simplified Molecular Input Line Entry System 
(SMILES) [18,19], which codifies the molecules into a string of char-
acters. Table 1 in the Supporting Information (SI) shows the name of the 
compounds, their corresponding SMILES code, and the experimental 
and estimated Tg values. 

3.2. Data treatment (encoding) 

Following the same approach reported in previous works [6–8], we 
used a one-hot encoding method and an appropriate dictionary with all 
the existing characters in the SMILES code to convert the SMILES strings 
(1D) into binary matrices (2D). Thus, row i-th of the matrix is filled with 
zeros except for the position of the dictionary that coincides with the 
same character on the i-th position in the SMILES code. A one is placed 
in this case. Therefore, the number of characters in the dictionary (nd) 
and the length of each SMILES code (npos) define the columns and the 
rows of the matrix (as shown in Fig. 1 in the SI). 

3.3. ANN’s architecture 

Based on previous results [6], we used a fully connected neural 
network for this work. We tried different architectures varying the 
number of hidden layers, the number of neurons, the dropout proba-
bility, and the activation functions to improve the performance of the 
ANN. Fig. 4 shows a scheme of the optimal network: the inputs to the 
ANN are the flattened versions of the 2D SMILES matrices; we then pass 
the input to two fully connected hidden layers, containing 40 neurons 
each, and a single output regression layer. We used the ELU activation 
function in the hidden layers, a variation of the most common ReLU 
activation function, characterized by an exponential contribution 
[20,21]. In addition, we imposed a 40% dropout probability on each 
hidden layer in the training phase, whereas the output regression acti-
vation function was linear, and its loss function was the mean average 
percentage error (MAPE), defined by: 

Loss =
1

mx

∑mx

i=1

⃒
⃒Ti − T ′

i

⃒
⃒

Ti
(3) 

where mx represents the number of elements in the x-th mini-batch, 
Ti represents the experimental Tg value collected for the i-th compound 
in the mini-batch and Ti

′ the calculated value using the ANN for the same 
compound. 

3.4. ANN’s optimization 

The network was trained using the Adam optimization algorithm 
[22] provided by MATLAB with the default parameters for beta_1, 
beta_2, and epsilon (0.9, 0.999 and 10− 8, respectively) and applying the 
mini-batch strategy (mini-batch size = 16) to estimate the gradient of 
the loss function. In addition to the Adam algorithm, we imposed an 
external drop of the initial learning rate (lr), starting from lr = 0.01 and 
multiplying it by 0.25 every 500 epochs. We found that initializing the 
hidden layers and the output layers with a bias vector and a weight 
tensor whose elements are all ones, significantly improved the network’s 
performance, compared to other initialization methods [23], most likely 
due to the inclusion of the dropout layers during training, which 
randomize the data transfer from one layer to the next one [24]. 

Fig. 3. Glass transition temperature dependence of the model adjustable parameter a for several glass formers. The solid line represents the linear fit of the 
experimental data. Data were taken from reference 12. 
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3.5. ANN training 

The first step consists of training the neural network with known 
pairs of SMILES strings – glass transition temperatures. This data set is 
called the training set. The examples in the training set are fed into the 
network, which compares the predicted value with the corresponding 
experimental Tg. Then, the network adjusts its weights and bias values, 
using an appropriate learning algorithm, to minimize the average rela-
tive error between predicted and known Tg values. In parallel to the 
training process, the average relative error of the validation set is also 
calculated after each epoch (1 epoch = number of iterations over the 
mini-batches so that the whole training set is spanned). Since the mol-
ecules in the validation set do not participate in the training process, the 
prediction of their Tg values gives an estimation of the generalization 
power of the neural network. Once the network can generalize, it is fed 
with the molecules of the test set. This data set corresponds to molecules 
that were never fed to the network during the training phase, and it is in 
this sense that we say they are “unknown” (or “new”) compounds. Since 
these molecules do not belong to training or validation sets, we can say 
that the neural network predicts their glass transition temperature. 

We divided the data set into 90% training set, 6% validation set, and 
4% test set for two main reasons: on the one hand, due to the structural 
complexity and variability of the molecules in our data set, the network 
needs to learn many different features and therefore it needs to have as 
many examples (molecules) as possible in the training set; on the other 
hand, we selected for test set those molecules for which we could find 
published experimental measurements of the alpha-relaxation dy-
namics, in order to have physical feedback to compare our method with. 
In addition to this, we also wanted to ensure that the Tgs of the test set 
span over the whole temperature range (200 K–400 K). Once we 
extracted the test set molecules from the data set, we tried different 
partitions between training and validation sets, looking for a good 
representation of the chemical features (in the training set) that mini-
mizes the average percentage error (in the validation set). 

4. Results and discussion 

4.1. Estimation of the glass transition temperature 

Fig. 5 shows the predicted vs. measured glass transition temperature 
for all the molecules in the data set. The green, blue and red points 
correspond to training, validation, and test sets, respectively. In addi-
tion, the chemical structure of the test set compounds is also shown. We 
got average relative errors of 7.26% and 7.63% for validation and test 
sets, respectively. These errors are comparable to similar previous ANN 
published results [25–27] and are close to half the error obtained with 
linear regression models. Thus, the ANN does capture the relationship 
between the chemical structure and the glass transition temperature of 
molecular glass formers. The observed differences can be rationalized by 
analysing the chemical features in the training and the test sets. As 
shown in Table 1 in the SI, the training set contains several examples of 
molecules with strong intermolecular forces (with several hydrogen 
bond acceptors and donors in specific molecules), aliphatic cycles, and 
stereochemistry close to sucrose, lyxose, and trehalose. A somewhat 
similar situation is observed for sorbitol, where the structure and pres-
ence of OH groups are also well represented in the training set (espe-
cially in xylitol and meglumine). As a result, the ANN can correctly learn 
the structure-glass transition temperature relationship of these com-
pounds from sucrose benzoate, galactose, fructose, salicin, xylose, 
halothane, lactose, meglumine, and ribose (see Fig. 2 in SI). 

4.2. Estimation of the temperature dependence of the relaxation times 

Figs. 6 and 7 show the temperature dependence of the relaxation 
times for sucrose, lyxose, salol, trehalose, and sorbitol. Dots represent 
the experimental values, as measured by BDS and reported elsewhere 
[28–31], while shaded bands represent the range of relaxation times 
obtained by ECNLE theory (from ANN’s predicted Tg values, including 
error bands for Tg ± 8% corresponding to the average percentage error 
on the validation set). As shown, the experimental observations are in 
these cases inside (or very close to) the predicted relaxation region 
having an excellent agreement for sucrose, lyxose, salol, sorbitol, and 
trehalose. It is worth reminding here that the only input to the joint 

Fig. 4. Schematic picture of the artificial neural network used to predict the glass transition temperature.  
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numerical-theoretical approach we propose in this work is the chemical 
structure represented as a SMILES code. Even if the molecule has not 
been synthesized yet, we can still have a good estimation of its glass 
transition temperature and the temperature dependence of its main 
relaxation time. 

For specific compounds, like hexanetriol (see Fig. 3 in SI) or 
benzophenone, some deviations between estimated and experimental 
dynamics are observed. These differences may arise from two sources. 
On the one hand, due to the complexity and the variability of the mo-
lecular structures of the data set, it becomes difficult to obtain an 
excellent generalization from the ANN: we have to consider that map-
ping the chemical features during the ANN training determines the 

chemical structure-glass transition temperature relationship for each 
compound. Intuitively, we can see that chemical features better repre-
sented in the training set are more likely to be accurately mapped (see 
Fig. 2 in SI), and therefore, the corresponding Tg is better predicted. On 
the contrary, molecules with non-common features will be underrep-
resented, so their estimated glass transition temperature will likely 
present higher uncertainties. Therefore, it is expected that the ANN 
precision will further improve when more examples (that appropriately 
represent the chemical features observed in the test set) are added to the 
training set. 

On the other hand, in some cases (see salol in Fig. 6), the glass 
transition temperature is well predicted by the ANN, but the estimated 

Fig. 5. Predicted vs. measured glass transition temperature for all the molecules in the data set. The green, blue and red points correspond to training, validation, and 
test sets, respectively. Experimental (in red) and predicted (in brackets) glass transition temperatures are indicated (in kelvin) for all the molecular glass formers in 
the test set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Relaxation map for sucrose, lyxose and salol. Dots represent experi-
mental values measured by BDS taken from references 28–30. Dashed lines 
represent the ECNLE prediction for the temperature dependence of the relax-
ation times based on the glass transition temperature estimated from the ANN. 
Shaded bands indicate the range of relaxation times as predicted by ECNLE 
theory based on the prediction error of the ANN (Tg ± 8%). 

Fig. 7. Relaxation map for sorbitol and trehalose. Dots represent experimental 
values measured by BDS taken from references 31 and 29. Dashed lines 
represent the ECNLE prediction for the temperature dependence of the relax-
ation times based on the glass transition temperature estimated from the ANN. 
Shaded bands indicate the range of relaxation times as predicted by ECNLE 
theory based on the prediction error of the ANN (Tg ± 8%). 
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dynamics (the temperature dependence of the relaxation time) deviates 
from the experimental values. This behaviour is most likely related to 
the assumption that local and collective dynamics (in the ECNLE model) 
correlate to each other in the same way for all materials. As shown in 
Fig. 3, the coupling between the two dynamics (parameter a) depends on 
Tg, and therefore, predicting the dynamics for those compounds with 
lower values of Tg is less accurate. These deviations can be corrected by 
considering non-universal effects of chemical and biological complex-
ities (as previously discussed). 

In this sense, it is noteworthy that trehalose, with a relatively high Tg 
(380 K), shows excellent agreement between the experimental and 
predicted values for the temperature dependence of the relaxation times. 
For intermediate Tg values, like lyxose (277 K), the predicted tempera-
ture dependence of the relaxation times slightly deviates from the 
experimental values (provided the Tg is well predicted). On the low Tg 
side, we have the case of salol (219 K), for which the Tg is correctly 
estimated, but the dynamics departs from the experimental points upon 
increasing temperature. These differences in the temperature depen-
dence of the relaxation times are expected due to different molecular 
structures, glass transition temperature, and the different number of H 
bond donors (OHs in the structure) and acceptors (oxygen atoms in the 
structure) in the studied compounds [32]. 

Fig. 8 shows some corrected dynamics calculated, including non- 
universal effects (a ∕= 1) of chemical and biological complexities in 
molecules like sucrose, lyxose, and salol. According to Fig. 3, we took a 
= 1.37, 1.96, and 2.5 for sucrose, lyxose, and salol, respectively. 
Theoretical curves (with the corresponding values of the adjustable 
parameter) are now closer to the experimental data. We expect that a 
better understanding of the dependence of this parameter on chemical 
structure or glass transition temperature further improves the theoret-
ical predictions of the temperature dependence of the relaxation times. 

It is important to discuss here some limitations of the proposed 
approach. For new materials or those without experimental data of 
τα(T), the parameter a cannot be determined. To zeroth-order approxi-
mation, we use a linear function to empirically describe the a-Tg relation 
as shown in Fig. 3. Thus, combining the Tg value predicted from the 
chemical structure and ANN network with the empirical a-Tg relation 
allows us to determine (through ECNLE) τα(T) without any adjustable/fit 
parameter. However, the linear a-Tg fit means that a given Tg leads to 
one value of a or dynamic fragility. As a result, our approach deduces 
that glass-forming materials having the same Tg have the same fragility, 
and this is not necessarily the case as shown in previous publications 
[33,34]. A good option to overcome this limitation is to use the ANN not 
only to predict the Tg, but also the fragility. We tried this approach, but 
unfortunately, there is a lack of data for the fragility in the literature, 
that makes it highly inaccurate. We expect that the available amount of 
data will increase in the next years, allowing the use of ANNs for pre-
dicting fragility. 

Besides estimating the glass transition temperature, the ANN can also 
provide a new understanding of molecular glass formers. For instance, 
Fig. 9 shows the predicted Tg for isomers of lyxose and galactose (except 
for these two, we could not find the corresponding experimental Tg 
values for the rest of the molecules in the scientific literature). It is 
interesting to note that for L-Arabinose and beta-L-Arabinose, which 
only differ on the position of the upper right OH group, the Tg only 
changes three degrees. However, the same structural change between 
galactose and alpha-D-Galactose gives a Tg difference of 33 K. In this 
case, the presence of the upper left group induces a higher sensitivity of 
the dynamics to minor structural changes. It is worth mentioning that 
although the average relative error of the ANN’s prediction is about 8%, 
in the case of lyxose and galactose, the corresponding errors are below 
1% (see Table 1 in SI), making sense of the observed differences in Fig. 9. 
The same analysis can be performed on molecules not even synthesized, 
boosting the development of new materials with tuned properties. 

5. Conclusions 

We have presented in this work a new approach that combines nu-
merical methods with theory to estimate the temperature dependence of 
the structural relaxation time for molecular glass formers. Firstly, we 
built, optimized and trained an artificial neural network to assess the 
glass transition temperature of molecular glass formers only based on 
their chemical structure. Then, we used a theoretical approach based on 
the elastically collective nonlinear Langevin equation to estimate the full 
relaxation map. Although there is still some room to improve accuracy 
and overcome limitations, this first joint theoretical and numerical 
approach constitutes a suitable tool for giving a reasonable estimation of 
the dynamics of unknown molecular glass formers based on their 
chemical structure. This approach will boost materials and drug devel-
opment by designing molecular glass formers with desired properties 
and will also increase the understanding of the physical mechanisms 
related to molecular dynamics. 
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Abstract: The analysis of structural relaxation dynamics of polymers gives an insight into their
mechanical properties, whose characterization is used to qualify a given material for its practical
scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation
time, which is only available through time-consuming experimental processes following polymer
synthesis. However, it would be advantageous to estimate their dynamics before synthesizing
them when designing new materials. In this work, we propose a combined approach of artificial
neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate
the temperature dependence of the main structural relaxation time of polymers based only on the
knowledge of the chemical structure of the corresponding monomer.

Keywords: QSPR; dynamics prediction; polymers; artificial neural networks; smart design

1. Introduction

The mechanical behavior of polymeric materials is key to several industries such
as aerospace, transport, energy, and construction, among many others [1–7]. Since the
mechanical properties, together with the overall service life performance of these materials,
are directly related to their dynamics, the knowledge of the latter becomes highly relevant.
For instance, in transport and aerospace industries, some materials are expected to be
able to perform well through wide ranges in terms of frequency, presenting a low rolling
resistance and at the same time a large dissipation of energy during a braking period
(processes that correspond to approximately 10−2 Hz and 104–107 Hz, respectively) [8–11].
Therefore, for obtaining the required on-service behavior, adequate polymer selection is
combined with the fine-tuning of several other properties such as processability, durability,
and energetic efficiency. Molecular dynamics determines such mechanical properties of
the compound, and it is usually described in terms of a characteristic relaxation time
and its temperature dependence. The experimental window of these relaxations (that
can extend over several decades) imposes the necessity of a combination of techniques
(such as broadband dielectric spectroscopy (BDS), dynamic light scattering (DLS), or
dynamic mechanical analysis (DMA)), in turn converting this practice into a costly and
time-consuming process that could increase development costs.

Nevertheless, some theoretical approaches can help when designing and developing
new materials since there is no prior information about their dynamics before synthesizing
and characterizing them. Among these approaches, the elastically collective nonlinear
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Langevin equation (ECNLE) [12–14] theory was developed and successfully applied to
describe the molecular dynamics of various amorphous materials. This model solely relies
on the knowledge of the glass transition temperature (Tg), which requires a non-negligible
amount of time and resources to be determined when unknown. However, recent advances
in the field of artificial neural networks (ANN) [15–17] enable the estimation of the glass
transition temperature of polymers based only on the monomer’s chemical structure.

In this work, we combine theoretical and numerical approaches to estimate, from
a representation of the chemical structure of amorphous acrylates, their glass transition
temperature and the temperature dependence of the structural relaxation time. Firstly,
we codify the chemical structure of the compounds using the Simplified Molecular Input
Line Entry System (SMILES) [18,19] representation and employ it as an input for a neural
network algorithm that would output an estimation of the polymer’s Tg; then, we exploit
this information as an input for the ECNLE to theoretically compute the trajectory of the
molecular dynamics of the structural relaxation process, expressed as the temperature
dependence of its relaxation time. We propose this approach as a tool to speed up research
and development in the field of polymeric materials.

2. Methods and Theoretical Background

In this section, we explain the characteristics of the dataset, the process that the data
undergo, the ANN’s architecture, and how it is tuned. In addition, we include a description
of how ECNLE theory is applied to the estimation of the acrylates’ dynamics.

2.1. Dataset

We employed a cured dataset composed of about 200 atactic polyacrylates and their
corresponding Tg values above chain length saturation [20–23] (see Table S1). These acry-
lates’ monomer units were codified using a Simplified Molecular Input Line Entry System
(SMILES) [18,19] and converted into binary matrices, which are then fed to the ANN.

The external control set was composed of those polymers for which the experimental
dynamics was published. These data are essential since we want to compare the predicted
dynamics against the experimental dynamics. Table SI2 shows the parameters of the Vogel–
Fulcher–Tammann (VFT) equation that fits the corresponding observed dynamics together
with the references the data were taken from.

2.2. Chemical Structure Encoding

As we proposed in recent works [15–17], to consider the structure and composition
of the monomeric units, we transformed the chemical structures into linear strings using
SMILES [18,19]. Then, we converted these strings into binary matrices using a one hot
encoding algorithm [24] and a dictionary (composed by the following list of symbols: ‘(’,
‘O’, ‘C’, ‘=‘, ‘c’, ‘S’, ‘F’, ‘N’, ‘X’, ‘2’, ‘d’, ‘1’, ‘#’, ‘]’, ‘/’, ‘)’). Section S3 in Supplementary
Materials provides a brief explanation of this encoding process.

2.3. ANN’s Architecture and Optimization

We used convolutional neural networks fed with the polyacrylates’ monomeric struc-
tures (codified into binary matrices) and the corresponding glass transition temperatures.
Figure 1 shows a schematic view of the ANN’s architecture: the monomer structure is
codified (through a one-hot encoding process applied on its SMILES string) into a 2D ma-
trix which is then fed to convolutional layers to extract relevant chemo-structural features;
the result is flattened into a 1D vector (X ∈ Rn) feeding two fully connected layers (FC0
and FC1) with LeakyReLU activations. Section S4 in Supplementary Materials provides
more details about the neural network architecture. We compared several combinations of
hyperparameters to achieve the best possible performance for the ANNs. Such comparison
among ANNs was based on the raw performance (minimum relative error) obtained on
the dataset. A dropout [25] algorithm was used, with dropping probabilities ranging from
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0 to 0.3. Finally, the last hidden layer (FC1) was connected to a single neuron with a linear
activation function responsible for providing the glass transition temperature value.
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Figure 1. Schematic picture of the artificial neural network employed for predicting the glass
transition temperatures of acrylates.

As done in previous works [15–17], we implement the mean absolute relative error as
a loss function in the training process to ensure equal weighting of low and high Tg data
values. Given Ei (experimental Tg), Fi (forecasted Tg), and the number of acrylates in one
mini-batch mx, we define the mean absolute percentage error as

Loss =
100
mx
·

mx

∑
i=1

∣∣∣∣Ei − Fi
Ei

∣∣∣∣ (1)

We adopt a mini-batch gradient descent technique to minimize the loss function, using
an Adam optimizer [26] with a learning rate (lr) of 0.0001 for speeding up the convergence
and mini-batches of 20 acrylates each.

As usual, the data were randomly divided into test and train subsets during the
training process, and no enforcement of any preference in the way the data are split was
applied. In addition, an external control group (independent from the previous subsets)
was formed for studying polymer dynamics through ECNLE theory. ANN details are
summarized in Table 1 and Figure 1 (more details are provided in Section S4 of the SI).

Table 1. ANN hyperparameters.

Item Value

Data split ratio (train/test) 80/20
Dropout probability 0 to 0.3

Mini batch size 20
Learning rate 0.0001
Beta1 (Beta2) 0.99 (0.999)

# Hidden neurons (FC0–FC1) 30–20

2.4. Nonlinear Langevin Equation

ECNLE theory describes glass-forming liquids using a hard-sphere fluid [12–14] of
volume fraction Φ = ρπd3/6, where d is the particle size and ρ is the number of particles per
volume. The local dynamics takes account of a tagged particle considering: (1) interactions
with its nearest neighbors, and (2) cooperative motions of particles beyond the first shell.
The dynamics is quantified by the dynamic free energy [12–14], Fdyn(r) = Fideal(r) +
Fcaging(r), where r is the displacement, Fideal(r) represents the ideal fluid dynamics and
Fcaging(r) characterizes the local state of a particle subject to caging forces conditioned
by the structural features of the system. When the fluid has a sufficiently large density
(Φ ≥ 0.432) or is in a low enough temperature, the motion of particles is restricted within a
particle cage of radius rcage and a barrier in Fdyn(r) emerges with a barrier height given by
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FB = Fdyn(rB)− Fdyn(rL), where rL is the localization length of the particle and rB is the
barrier position. The escaping of a particle from its cage produces a collective elastic long-
range rearrangement of the molecules in the fluid, whose energy contribution is given by a
sum over harmonic oscillators which is described in Section S5 of the SI. Once the local and
elastic dynamics are defined and the harmonic curvatures at rB and rL (respectively K0 and
KB, see SI) is estimated, we calculate the structural relaxation time using Kramer’s theory

τ

τs
= 1 +

2π√
K0KB

kBT
d2 exp

(
FB + Fe

kBT

)
(2)

where τs is a short time scale [12–14]. As the above calculations provide τ(Φ), we use a
simple thermal mapping T = Tg +

(
Φg −Φ

)
/βΦ0, where Tg is the dynamic glass transition

temperature defined by τ
(
Tg

)
= 100 s, Φg is the volume fraction when τ

(
Φg ≈ 0.6157

)
=

100 s, Φ0 ≈ 0.5 is a characteristic volume fraction, and β ≈ 12× 10−4 K−1 is an effective
thermal expansion coefficient considered constant for all amorphous materials. Further
details to derive the theory are given in the Supplementary Materials and elsewhere [12–14].

3. Discussion

Figure 2 shows predicted vs. experimental values of the glass transition temperature
for the external control set of polyacrylates, as obtained with our trained ANN (see also
Figure S2 for the training and internal test sets). We obtained mean absolute percentage
errors of 4.3% (training set), 8.5% (validation set), and 4.5% (control set). In comparison with
other neural network approaches that we have used in the past [15], the relative number of
parameters (and, therefore, calculations) is reduced thanks to a convolutional approach
(due to the stride convolution operation that tosses out parts of the input image). It is worth
remembering here that we are feeding the ANN only with the monomer chemical structure
without any other physical or chemical input data (neither measured nor calculated).

As shown, the ANN does capture the relationship between the chemical structure
and the glass transition temperature of the polyacrylates all along the 200–400 K range
(see also Figure S2). The individual relative deviations in the external control group are
within (or close to) a 10% margin (see Table S1), in agreement with the observed values for
the internal test. More details on the obtained relative deviation for the different chemical
structures are depicted in Figure S3. Aside from the obtained low errors, our aim is not
only to predict the Tg, but also to obtain some insight into the dynamics of the polymers
under study. For this purpose, the predicted glass transition temperatures are used as input
for ECNLE theory, thus creating a hybrid ANN-theory approach for yielding a possible
relaxation area (in terms of log (τ) vs. 1000/T).

Hence, Figure 3 shows the temperature dependence of the alpha relaxation times for
(a) Poly (propyl methacrylate), (b) Poly (phenyl methacrylate), (c) Poly (butyl methacry-
late), and (d) Poly (isopropyl methacrylate). Blue lines represent the experimental values,
reported elsewhere [27–31], while dashed lines represent the range of relaxation times
obtained by ECNLE theory (from ANN’s predicted Tg values), including error bands for
Tg ± 10% (corresponding to the maximum relative error on the external control set). As
shown, the predicted relaxation region is very close to the experimental observations,
having, therefore, an acceptable agreement (especially considering that only the chemical
structure of the monomer is used as input).
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Figure 2. Predicted vs. experimental glass transition values obtained from the trained ANN on the
external control group of acrylates. Relative deviations are shown below with the corresponding
monomeric chemical structures.

In some cases, as for poly (phenyl methacrylate) or poly (isopropyl methacrylate) (see
Figure 3b,d), the glass transition temperature is well predicted, but the curvature of the
estimated dynamics deviates from the experimental values. In some other cases, as in
Figure 3a,c, the deviations are even more pronounced. Therefore, despite being inside the
proposed confidence interval, the curvature obtained from ECNLE theory does not follow
the experimental dynamics. This behavior is most likely related to the assumption that local
and collective dynamics correlate to each other for all materials in the same way (which is
an excellent approach in terms of not needing any other inputs to obtain an approximated
relaxation map but tends to oversimplify the behavior of the materials). In particular, local
and collective dynamics in Equation (2) are summed with equal weights (i.e., the ratio of
prefactor equal to 1). It has been shown [32,33] that ECNLE calculations gain accuracy by
weighting the collective elastic contribution with a parameter a 6= 1, to change its relative
importance in the glass transition process. The new adjusted elastic barrier is Fe → a2Fe
and it modifies the structural relaxation time in Equation (2) as

τ

τs
= 1 +

2π√
K0KB

kBT
d2 exp

(
FB + a2Fe

kBT

)
(3)

The parameter a strongly influences the structural features of the model (value of Φg
and the thermal mapping), as it accounts for the non-universal effects on the collective
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motions of molecules due to conformational and chemical complexities. It was empirically
observed that the Tg is typically inversely proportional to the scaling parameter a [13].
Figure S4 shows the glass transition temperature dependence of the model adjustable
parameter a for several polymers and glass formers. Although the correlation is not strong,
there is a clear trend indicating an increment of the parameter a upon decreasing glass
transition temperature. Thus, we can estimate the scaling parameter a based on the Tg.
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Figure 3. Experimental (blue) and predicted (red) relaxation times (obtained from ECNLE theory)
vs. 1000/T. Dashed lines stand for the confidence interval corresponding to the typical deviation
in the ANN prediction (10% relative error): (a) Poly (propyl methacrylate) [28], (b) poly (phenyl
methacrylate) [30], (c) poly (hexyl methacrylate) [27], and (d) poly (isopropyl methacrylate) [30].

Figure 4 shows the temperature dependence of alpha relaxation times for the same
polymers as Figure 3 after introducing the scaling parameter (a). The predicted relaxation
times change their curvature, displaying a better agreement (for cases b and d) with
the experimental observations. In the case of poly (propyl methacrylate), no further
improvement is perceived. It is also observed that, in the case of polymers with linear
alkane tails, the experimental-predicted agreement appears to decrease as the length of
the tail increases. As shown in Figure 5 (b) poly (propyl methacrylate) and (c) poly (butyl
methacrylate) already reflect this trend, which intensifies for (d) poly (pentyl methacrylate)
and (e) poly (hexyl methacrylate), while it is much smaller for (a) poly (ethyl acrylate).

Fragilities and dynamics data of members of the polyacrylates family have been
obtained from mechanical and dielectric data by several authors [33–42]. From this experi-
mental point of view, the increase in the length of the alkyl chain causes a strengthening
effect. The variation of fragility (m) with the length of the alkyl chain appears to have three
ranges: for less than three atoms, m is nearly constant; between three and five atoms, it
drastically decreases; and, for more than five atoms, m slowly decreases. Moreover, Balabin
studied the enthalpy difference between conformations of normal alkanes and showed that
n-alkyl chains are more and more flexible as the chain length increases [43]. In addition,
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some local order structure gradually develops as the carbon number in the side chain
increases due to a self-assembly process that forms supramolecular systems such as “hairy
rods” [44,45].
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Figure 4. Experimental (blue) and predicted (red) relaxation times (obtained from ECNLE theory)
vs. 1000/T after introducing the scaling parameter (a). Dashed lines stand for the confidence
interval corresponding to the typical deviation in the ANN prediction (10% relative error). (a) Poly
(propyl methacrylate), (b) poly (phenyl methacrylate), (c) poly (hexyl methacrylate) and (d) poly
(isopropyl methacrylate).

Finally, it has also been reported that nanophase separation of incompatible main
and side-chain parts occurs in amorphous side-chain polymers with long alkyl groups
(for polymers with 4 or more C atoms in the side chain) [46–49]. Considering that the
cooperative dynamics changes if the confinement size becomes comparable to the size
of cooperatively rearranging regions (CRRs), these crystalline regions could affect the
relaxation, thus creating a hindered glass transition [48]. Published results indicate that the
CRR size for alkyl sequences is in the range of one nanometer [50–52].

A more detailed view of this effect on the prediction differences with the experimental
data can be observed in Figure 5, where the relaxation maps of a series of alkyl-acrylates are
presented. As shown, the predictions progressively deviate from the experimental curves
as the side-chain length increases. Deviations in polymers with two or three atoms in the
tail are almost exclusively related to deviations in the Tg predicted by the ANN, while
for longer chains, a difference in the predicted curvature is additionally noticed. It can be
argued that the proposed approach yields acceptable predictions up to four or five atoms
in the linear chain.

These predicted and experimental results can be reconciled by considering the ECNLE
theory assumptions, which predicts the material dynamics in terms of a fluid composed
of hard spheres and does not consider other processes (such as packing density, induced
crystallization or nanophase separation). Therefore some deviations are expected from the
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experimental observations in these polymers where other processes occur. These deviations
are related to the typical relaxation length of the alpha relaxation, which is in the nanometer
range for these materials.
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Figure 5. Experimental (blue) and predicted (red) relaxation times (obtained from ECNLE theory)
vs. 1000/T (n-alkyl acrylates, with n ranging from 2 to 6). The corresponding monomeric chemical
structures are also shown. (a) Poly (ethyl acrylate) [27], (b) poly (propyl methacrylate), (c) poly (butyl
methacrylate), (d) poly (pentyl methacrylate) [27], and (e) poly (hexyl methacrylate) [27]. The plots
correspond to predictions after introducing the scaling parameter (a) for linear tailed polymers.

We can move further by analyzing the experimental-predicted dynamics relationship
for polymers where the side-chain length effects are not present. In that sense, Figure 6
shows experimental (blue) and predicted (red) relaxation times obtained from ECNLE after
introducing the scaling parameter a for nonlinear tailed polymers. Poly (2, 2, 2 trifluoroethyl
acrylate) (a), poly (isopropyl methacrylate) (b), poly (phenyl methacrylate) (c), and poly
(secbutyl methacrylate) (d) present a much better agreement than the long linear tailed
polymers (such as pentyl or hexyl methacrylates).

For this joint theoretical/numerical approach, we have two sources of uncertainty:
on the one hand, the prediction of the Tg by the ANN; on the other hand, the accuracy
of the ECNLE model to follow the temperature dependence of the relaxation times (i.e.,
fragility). Although the errors in both cases are not significant, there is still some room for
improvement. The accuracy of the ANN can be improved by increasing the size of the
training set; especially if we include polymers with chemical features similar to those we
want to predict. In the case of the ECNLE model, a better understanding of the dependence
of the parameter ‘a’ with the chemical structure or the glass transition temperature would
improve the predicted fragility.

In summary, and from a chemical structure point of view, many different factors have
been reported to affect the glass transition and the polymer dynamics, thus increasing
the difficulties in obtaining simple but realistic model approximations. The presence of
bulky groups (as phenyl) can be ‘diluted’ by the presence of long alkyl chains in the same
structure, whereas the lubricating effect of long alkyl chains can be hidden by very stiff
backbones or by nanophase separations. The hybrid approach proposed can recognize these
chemical features and quantify their relevance for estimating an alpha relaxation map area.
It is important to highlight here that this knowledge is self-learned by the network, based
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only on the monomer chemical structure and the corresponding Tg value, and that ECNLE
theory converts this output into a relaxation map. This approach could substantially help
gain both qualitative and quantitative insights into the behavior of polymeric materials,
especially for properties that are difficult and/or expensive to measure.
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corresponding monomeric chemical structure are also shown. (a) Poly (2, 2, 2 trifluoroethyl acry-
late) [31], (b) poly (isopropyl methacrylate) [29], (c) poly (phenyl methacrylate), and (d) poly (secbutyl
methacrylate) [30].

4. Conclusions

The feasibility of joining artificial neural networks and theory into a hybrid system
to provide an estimation of the temperature dependence of the polymer alpha relaxation,
based only on the knowledge of the chemical structure of the monomer, has been demon-
strated. The proposed method has been tested on a set of polyacrylates providing, for
short side-chain polymers, an excellent agreement between the predicted and experimental
temperature dependence of the relaxation times. This approach relies only on the knowl-
edge of the monomeric chemical formula and does not require any kind of experimental
measurements or calculations as input, and constitutes a valuable tool for boosting the
scientific understanding of structure–property relationships.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym14081573/s1, Table S1. The list of polyacrylates used in this work; Table S2. Parameters
of the Vogel-Fulcher-Tammann (VFT) equation for the external control group; Figure S1. Schematic
picture of the encoding process; Table S3. The number of filters and window sizes in the convolutional
layers and the number of neurons in the fully connected layers; Figure S2. Shows the predicted vs ex-
perimental Tg values for the internal subset of polyacrylates after finishing the training process; Table
S4. ECNLE caltulations; Figure S3. Relative deviations (Experimental – Predicted) / Experimental (in
%) histogram for the training and internal test sets (a). The chemical structures for those molecules
with more significant relative deviations are shown in (b). Figure S4. Glass transition temperature
dependence of the model adjustable parameter a for several polymers and glass formers.
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A B S T R A C T   

Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between 
the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the 
most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this 
work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network 
(RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In 
addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m- 
dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential 
amino acids and peptides. The results are very promising and they can open the door for exploring and designing 
new materials.   

1. Introduction 

In the field of quantitative structure-property relationship (QSPR) 
[1–6], machine learning (ML) methods open new routes to investigate 
and explore the physico-chemical properties of materials [6–11]. ML 
methods typically use molecular descriptors or a representation of mo-
lecular structures to predict several material properties. Among the most 
relevant material properties, the glass transition temperature (Tg) stands 
out since it is used in quality control of food and pharmaceutical drugs, 
defining the polymer production process parameters or tuning the me-
chanical properties of compounds [12–14], among many others. The Tg 
of numerous glass formers has been measured using different experi-
mental techniques like differential scanning calorimetry [15,16], 
broadband dielectric spectroscopy [17–19], or rheology [20] and is 
widely reported in the literature. Several theories also model the glass 
transition mechanism [12,21–23], usually involving phenomenological 
parameters that account for still not fully understood processes. 

Among the first attempts to estimate the Tg of glass formers based on 
their chemical structure, we can mention a method developed in the 
polymers field by Weyland et al. [21], which consists of considering the 
glass transition temperature as a sum of weighted group contribution of 

the atoms of the polymer. However, there is no specific way to choose 
these weights. More recent studies use artificial neural networks (ANN) 
and physico-chemical features to predict the Tg of materials but neglect 
the molecular structure and the interaction between atoms [24,25]. 
Also, whereas there are several studies dealing with the glass transition 
temperature of polymers [26–30] and inorganic glasses [25], we have 
found a lack of studies in the literature concerning the use of neural 
networks for predicting the Tg of organic molecular glass formers. These 
are very complex systems presenting a variety of intermolecular in-
teractions that makes necessary a different and innovative approach that 
overcomes the limitations of the standard ANN. 

In this work, we present a recurrent neural network (RNN) capable of 
predicting the glass transition temperature of several molecular glass 
formers (including biomolecules, pharmaceutical molecules, and addi-
tives typically used in the pharmaceutical industry). In particular, we 
show that by using a dataset of individual organic molecules structures 
and a bidirectional long short-term memory (Bi-LSTM) architecture, it is 
possible to achieve a prediction of the Tg with average deviations lower 
than 9%. Furthermore, we show that these networks also capture 
physically meaningful variables underneath the glass transition process 
in molecular glass formers, like the influence of intermolecular forces 
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and molecular weight. Finally, we apply our model to predict the Tg of 
the 20 biologically relevant amino acids and compare the results with 
the experimental measurements of a group of amino acids and peptides. 

2. Materials and methods 

In this section, we define the dataset, the data treatment, and the 
characteristics of the neural network, including the architecture and the 
training options. 

2.1. Dataset 

We have collected a dataset of 501 organic molecules whose exper-
imental glass transition temperature was reported in the literature. The 
dataset includes alcohols, hydrocarbons, sugars, aromatic compounds, 
and pharmaceutical products, spanning a Tg range from 18 K to 450 K. A 
detailed dataset description can be found in Section 1 of the Supple-
mentary Information file (SI). 

2.2. Data treatment 

We identified each molecular structure with their simplified 
molecular-input line-entry system (SMILES) [31] string using the open- 
source cheminformatics software RDkit [32] to get a unique represen-
tation of the molecular structures. We then numerically encoded each 
string using the following dictionary: 

{(, c, 4,F,=,#, n, S,@, 3, I, o, s, 6,N,H,X, 7, + ,Y, 2, d, 5, 1, P,O, ],C, − , /, [, )}

We assigned a number to each symbol according to its position in the 
dictionary (cardinal encoding), obtaining a 1-dimensional numerical 
array for each structure to feed the neural network. We padded the 
SMILES strings by adding a 0 at the beginning of each sequence and 
completing them with 0 s (only one final 0 for the longest string) so that 
all instances have the same length. The scheme in Fig. 1 shows an 
example of the encoding process. 

2.3. RNN’s architecture 

We employed a long short-term memory neural network architecture 
[33,34], constructed using MATLAB. In Fig. 2, we show a schematic 
picture of the whole network, starting with a sequence input (which 
takes as input the SMILES encoded as expressed in the previous section), 
a word embedding layer, which feeds a bidirectional long short-term 
memory (BiLSTM) layer, a batch normalisation layer and finally a 
mean absolute relative error (MARE) regression that outputs the Tg. 

We tested different values of neurons in the BiLSTM layer (from 8 to 
32 nodes) and several values of the word embedding dimension 
(10,20,30). We chose the network architecture for which the value of the 
mean absolute percentage error (MAPE) of the validation set was min-
imum, as shown in Fig. 3. Thus, we finally have 8 neurons in the BiLSTM 
and a word embedding dimension of 20. Note that, as we use a Bidi-
rectional LSTM, the number of neurons doubles to 16 as the network 
reads the sequences in both directions. We selected this set of hyper-
parameters by keeping fixed the training-validation division and 
running the learning algorithm for each architecture 100 times. 

2.4. RNN training and optimisation 

We extracted a test set of 30 elements from the dataset, trying to 
represent its variety of chemical composition as closely as possible. 
Then, we randomly shuffled 100 times the remaining dataset, splitting it 
into a training set of 441 molecules and a validation set of 30 molecules. 
This results in ~90%, 5%, and 5% partition for training, validation, and 
test set, respectively. For each split, we ran the learning algorithm of the 
RNN 100 times, to investigate the sensitivity of the architecture con-
cerning the initial conditions. We used the gradient descent method and 
the Adam optimisation protocol during the training procedure. We 
employed a learning rate of 0.01 and trained each network for 1000 
epochs. We selected a network that satisfied the following requirements:  

• MARE Train <0.06;  
• MARE Train

MARE Val > 0.8;  

• min(MARE Val). 

By fulfilling these requirements, the performance of the RNN on the 
validation set should be similar to that of the training set. Therefore the 
value of the MAPE of the validation set is below 9% (i.e., the perfor-
mance of the selected network can be defined as validation set oriented). 
In Fig. 4, we show the average Tg predicted for 100 runs versus the 
corresponding experimental values, also reporting the mean standard 
deviation of each set. 

3. Results and discussion 

In this section, we show that the network is sensitive to the physically 
meaningful variables of the glass transition process by embedding the 
last activation layer and performing non-supervised clustering analysis 
and dimensionality reduction techniques. In addition, we explore the 
possibility of employing the proposed dataset and architecture to esti-
mate the glass transition temperature of amino acids and short peptides. 

3.1. Characterisation of the network 

Based on the modality described in “RNN training and optimisation”, 
we select a network for which the average error of the validation set is 
similar to that of the training set. In Fig. 5, we show the predicted glass 
transition temperatures as a function of the corresponding experimental 
counterpart. The data lay almost perfectly on the bisector of the Carte-
sian plane, implying a concordance between the experimental and 
predicted Tg values for the molecules in the training (blue), validation 
(orange), and test (yellow) sets. The observed deviations are below 9%. 

Once the RNN has been trained (and optimised) to predict the Tg 
value, we can assume that the activation of the neurons, particularly 
those of the last layer, codify enough chemical information to embed 
molecular structures into a Tg-oriented m-dimensional space. This pro-
cedure allows performing associations among molecules in the dataset 
by applying clusterization algorithms without using molecular finger-
prints or other descriptors. By embedding the molecular structures in 
such high-dimensional space, it is possible to lead mathematical oper-
ations with these representations of the chemical structures. We then 
plotted the activation vectors in 3 dimensions using the principal 
component analysis (PCA) [35]. This dimensionality reduction is needed 
to ensure human-readability since each activation vector contains 16 

Fig. 1. Encoding the SMILES with cardinal encoding. We added a 0 at the beginning of each string and completed them with a padding of 0 s to have the same length 
for all the instances. 
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values (16 dimensions, each corresponding to a neuron’s activation). We 
observed that most of the variance, and therefore most of the chemical 
information (~88%), is contained in the first three components of the 
PCA: PC1 = 75.03%, PC2 = 6.94%, and PC3 = 6.02%. Fig. 6 shows a 3- 
dimensional colour map of the obtained components and the corre-
sponding 2D projection on the main axes (PC1 and PC2), where the 
colours represent the experimental Tg of each compound. The data 
follow a gradient from blue to red colours (i.e., from lower to higher 
glass transition temperatures). 

We performed a non-supervised analysis of the data by clustering 
using the fuzzy-c algorithm [36] on the batch normalisation layer. We 
show the obtained results in Fig. 7 (for the components PC1 and PC2). 
Fuzzy-c algorithm allows knowing the probability with which each 
molecule belongs to a given cluster (i.e., each molecule can participate 
in more than one cluster with a certain probability). Since this algorithm 
requires predefining the number of clusters, we employed the Elbow 
method to determine the optimum parameter (n = 16, we show the 
details in the SI). Clustering can help identify patterns and relationships 
between the molecular structure and the Tg by grouping similar mole-
cules together. This process also helps reveal how the network deals 
with the variables affecting the glass transition temperature, such as the 
molecular weight, intermolecular forces and other chemical 
composition-related factors. Furthermore, clustering can also be used to 
identify potential outliers in the employed datasets, which can be further 
studied to gain insights into the underlying mechanism of the glass 
transition phenomenon and the neural network training processes. 

In Fig. 7, we present chemical structures within different clusters and 

the trajectory these compounds follow on the map. The clusters on the 
bottom right (A) mainly consist of low-molecular-weight, flexible linear 
carbonated chains and weak intermolecular forces. Conversely, the left 
side of the representation (C) is composed of molecules with high- 
molecular weight, more rigid phenyl groups, and strong intermolec-
ular forces. Notably, in the middle section (B), we observe a change in 
the intermolecular forces and the structural composition of the mole-
cules as they progressively become more branched and incorporate 
bulkier molecular groups into their structure. These results show that 
the network can recognise and classify complex features linked to the 
glass transition temperature by learning from the SMILES representation 
of the chemical structure of the molecular glass formers. 

3.2. Tg vs. molecular weight 

The previous analysis can be complemented using known experi-
mental variables such as glass transition temperature and molecular 
weight, which show a well-established trend, as seen in Fig. 8a. It is 
worth noting that the network was only provided with the molecular 
structure expressed as a SMILES string, and no other chemical infor-
mation was given. Therefore, the RNN implicitly learned the general 
trend between Tg and the molecular weight from the chemical structures 
encoded as SMILES strings. 

Fig. 8a can also be interpreted as an indicator of the trained neural 
network’s confidence area for predicting the Tg of new molecular glass 
formers (i.e., where new chemical structures would be well represented 
by the elements in the dataset). Thus, the region enclosed by the dashed 

Fig. 2. The ANN architecture comprises a Sequence Input layer, a Word Embedding layer, a Bidirectional LSTM layer, a Batch Normalisation layer, and a mean 
absolute relative error output layer. It takes as an input the encoded SMILES and outputs the Tg of the molecule(s). 

Fig. 3. Architecture test: we tested different values of neurons in the BiLSTM layer (from 8 to 32 nodes) and several values of the word embedding dimension (10, 
20, 30). 
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Fig. 4. Average prediction of the glass transition temperature for the training (blue), validation(orange) and test(yellow) set. The mean standard deviation for the 
training, validation and test set are 7 K, 13 K, and 9 K, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 5. Performance of the chosen neural network for the training (blue), validation (orange) and test (yellow) sets. The data points lay almost perfectly on the 
bisector axis, indicating an excellent agreement between experimental and predicted Tg. The MAPE values obtained are 3.4%, 3.8% and 8.7% for the training, 
validation and test sets, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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b)
a)

Fig. 6. PCA projection of the batch normalisation layer activations. We use a colour map to enhance the trend of the glass transition temperature, which goes from 
blue colours (low Tg) to red colours (high Tg). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. We clustered the chemical structures within the m-dimensional space using the fuzzy C algorithm. In this way, we can observe the structural changes along 
the trajectory of the PCA, going from low-molecular-weight, linear chains and weak intermolecular forces (A) to high-molecular-weight, a higher concentration of 
more rigid groups and strong intermolecular forces (C). 
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lines represents the chemical space from which the network learned the 
underlying features of the glass transition process. In this plot, at fixed 
molecular weight (going, for example, vertically from point A to point B) 
variations in Tg are due to changes in the molecular structure (at con-
stant molecular weight) most likely because of the increasing of inter-
molecular forces (see Fig. 8b and the next paragraph for more details). 
The colour map on the plot represents the errors of the RNN in pre-
dicting the glass transition temperature of the training set. Therefore, 
the observed homogeneous distribution of red and orange dots indicates 
no bias due to molecular weight or intermolecular forces. For those el-
ements located on the upper side of the general trend, the neural 
network must consider the effect of molecular weight, the flexibility of 
the different groups, and the impact of intermolecular forces. 

In Fig. 8b, we show the same molecular weight dependence of the 
glass transition temperature dividing the molecules into those able to 
form (pink) or not (light blue) H-bond networks (only considering the 
existence of H-bonds donors and acceptors, disregarding the amount and 
location in the molecule). The molecules which lack donors or acceptors 
of hydrogen bond fall into the “no H-bond” category and occupy the 
lower part of the graph. In contrast, the molecules with potential 
hydrogen bonding properties fill the upper part of the plot. 

These results, along with the clusterisation ones, agree with tradi-
tional experimental observations of glass transition temperature trends 
for several glass formers, indicating that the network has effectively 
learnt some features of the underlying physics of the glass transition 
phenomena. 

3.3. Application to biological molecules 

The study of the properties of amino acids is a hot topic in many 
fields, such as biophysics, food, and pharmaceutical industries. Overall, 
measuring the glass transition temperature of amino acids can be com-
plex and challenging due to many factors affecting the measurement, 
including the presence of absorbed moisture, the sensitivity to mea-
surement conditions, and their degradation temperatures. In addition, 
many biomolecules are not “good” glass formers because partial or 
complete crystallization may occur during cooling, or the sample might 
degrade when melting. For these reasons, it is interesting to explore 
numerical routes to estimate the physical properties of biomolecules. 
Therefore, we used our model to predict the glass transition temperature 
of the 20 essential amino acids and a short peptide. Table 1 shows the 

predicted values for the Tg of the essential amino acids [37,38] and the 
corresponding experimental values (for some of them). 

In Fig. 9, we plot the amino acids in the previously analysed Tg versus 
molecular weight map. The red dots represent amino acids for which the 
absolute percentage error on the prediction of the Tg is higher than 10%. 
Noticeably, these compounds are all located outside the model’s pre-
dictive region. On the other hand, blue dots represent the amino acids 
and the peptides for which the prediction error is lower than 7%. These 
molecules, which are closer to the chemical space covered by the 
training set (green dots), have more accurate predictions for Tg. These 
results clearly show that the glass transition temperature of amino acids 
(at least those within the prediction confident area) can be predicted by 
our RNN trained on different chemical families. As a particular test, we 
also included the 3-lysine (3-Lys) data, which has a more complex 
chemical structure but still falls within the model’s confidence area. In 
this case, the agreement between the predicted and the measured value 
of the glass transition temperature is excellent. These findings open the 

a) b) 

Fig. 8. Molecular weight dependence of the glass transition temperature for the training set molecules. The colour map in Fig. 8a represents the absolute percentage 
error (APE) when predicting the Tg of the compound. The area between the dashed lines represents the confidence interval of the neural network. Also, the vertical 
line from point A to point B (fixed molecular weight) indicates the raising of the Tg due to the contribution of intermolecular forces. Fig. 8b shows the hydrogen bond 
distribution over the molecular weight trend. Lines are just a guide for the eyes and indicate approximate regions of low and large intermolecular forces. 

Table 1 
Results of predicting the glass transition temperature of the 20 amino acids and 
oligomer 3-Lys.*Own DSC measurements of 3-Lys samples (see section 3 in SI).  

Molecule number Name Predicted Tg [K] Tg [K] APE [%] 

1 Alanine 284   
2 Arginine 339 362 [37] 6.2 
3 Asparagine 330 466 [37] 29.2 
4 Aspartic acid 312 386 [37] 19.1 
5 Cysteine 314   
6 Glutamine 323 323 [37] 0.1 
7 Glutamic acid 310 330 [37] 6.1 
8 Glycine 229   
9 Histidine 318 408 [37] 22.2 
10 Isoleucine 273   
11 Leucine 278   
12 Lysine 311 317 [38] 1.9 
13 Methionine 281   
14 Phenylalanine 307   
15 Proline 195   
16 Serine 301 337 [37] 10.7 
17 Threonine 275 355 [37] 22.4 
18 Tryptophan 330 433 [37] 23.8 
19 Tyrosine 327 405 [37] 19.3 
20 Valine 284   
21 3-Lys 311 312.5* 0.3  
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door to using numerical approaches to estimate the glass transition 
temperature of complex molecular glass formers, especially when its 
experimental determination is difficult or even before synthesizing 
them. 

4. Conclusions 

We have presented in this work a dataset of organic molecular glass 
formers with their Tg,which has been used to train an RNN with a Bi- 
LSTM architecture. We have shown that the network can detect pat-
terns from SMILES strings and correlate them with the corresponding 
molecule’s physical property, in this case, the Tg. We have observed the 
result of such learning by embedding the activations of the neurons of 
the last layer into a Tg-oriented m-dimensional space and analysing them 
by clusterization and PCA. We further have shown that it is possible to 
predict the Tg of other complex molecules and that such predictions are 
accurate when the molecules lay in the confidence area of the model. In 
particular, we have led this analysis on the group of 20 essential amino 
acids and a short peptide (3-Lys). Finally, we have shown that this kind 
of architecture is a powerful tool for exploring and designing new ma-
terials and correlating macroscopic physical properties to the corre-
sponding molecular structure. 
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