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Abstract

Horn⊃ is a logic programming language which extends usual Horn clauses by
adding intuitionistic implication in goals and clause bodies. This extension can

be seen as a form of structuring programs in logic programming. We are interested
in finding correct and efficient translations from Horn⊃ programs into some rep-
resentation type that, preserving the signature, allow us suitable implementations

of these kind of programs. In this paper we restrict to the propositional setting of
Horn⊃ and we study correct translations into Boolean circuits, i.e. graphs; into

Boolean formulas, i.e. trees; and into conjunctions of propositional Horn clauses.
Different results about the efficiency of the transformations are obtained in the three

cases.
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1 Introduction

In logic programming, some approaches for extending Horn clauses consider
to incorporate into the language a new implication symbol, ⊃, with the aim
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of structuring logic programs in some blocks with local clauses [1,4,6,7,10–
14]. These extensions can also be seen as a sort of inner modularity in logic
programming (see [3] for a survey on modularity).

A typical example, borrowed from [10], is the following program (written in
Prolog terminology) for efficiently reversing a list of elements:

reverse(In,Out) : −D ⊃ revAux(In,Out, []).

where D is the set formed by the two following clauses

revAux([], K,K).

revAux([X|L], K,Aux) : −revAux(L,K, [X|Aux]).

By using the new symbol ⊃, the definition of revAux is local and therefore
only accessible inside a call to reverse.

The different extensions depend on considering closed or open blocks. More-
over, for open blocks, a scope rule is required to relate the possible definitions
of each predicate with each call to such predicate. There are mainly two scope
rules. In the dynamic scope rule, the actual (when it is called) definition of
a predicate depends on the history of calls till that moment whereas in the
static scope rule, such definition depends on program block structure. We
consider a particular extension, named Horn⊃, defined for open blocks with
the static scope rule. This programming language has been formally studied
in [1,6,7,14]. In [1] a natural extension of classical first order logic FO with
the intuitionistic implication (⊃), named FO⊃, is presented as the underly-
ing logic of the programming language Horn⊃. Additionally, in [8] a complete
calculus for FO⊃ is introduced.

Model semantics of FO⊃ is based on Kripke structures consisting of a non-
empty partially ordered set of worlds, each world associated to an interpre-
tation. However, to deal with Horn⊃, Kripke structures can be restricted
to those with (a) Herbrand interpretations associated to their worlds, (b) a
unique minimal world and (c) closure with respect to superset. Moreover, each
interpretation I univocally determines a Kripke structure (formed with all the
supersets of I) and, conversely, each Kripke structure satisfying conditions
(a), (b) and (c) is univocally determined by (the interpretation associated to)
its minimal world.

Other “good properties” that verify Horn clauses (as a programming lan-
guage) with respect to its underlying logic FO are also conserved by Horn⊃

clauses with respect to FO⊃: each program has a canonical model, the oper-
ational semantics is an effective subcalculus of a complete calculus for FO⊃

and the goals satisfied in the canonical model are the goals that can be derived
from the program in such calculus. The formalization about what are “good
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properties of a programming language” is borrowed from [9] and proved for
Horn⊃ in [1].

More related to implementation issues, a usual way to proceed is to trans-
late the extended logic programs into the language of some well-known logic
[2,6,13,14,16]. For instance, [14,16] present a transformation of the given struc-
tured program into a flat one. More concretely, [14] introduces a translation
from Horn⊃ programs into Horn programs, in the propositional setting, by
preserving the original operational semantics in Horn⊃ by means of SLD-
resolution on the resulting Horn program. In [16], this transformation is lifted
to the first order case, and generalized to normal constraint logic programs
extended with ⊃ as structuring mechanism. Such translation obtains the trans-
lated program in a signature which extends the original one with new predicate
symbols.

Concerning models, a more appropriate comparison can be done if translations
use the same signature. In these cases we can preserve the equivalence between
formulas and its transformations rather than only preserving satisfiability. In
this paper, our aim is to study possible correct and efficient translations from
propositional Horn⊃ programs into some (FO logic based) representation
type preserving the signature. Since we restrict our study to the propositional
case, from now on, Horn⊃ always means propositional Horn⊃.

In the task of representing Boolean functions, although, in principle, any valid
representation is allowed, some of them may be preferred because they are
more succinct, more efficient to manipulate or more indicative of the complex-
ity of the function. The three representation types we have chosen are Horn
clauses, Boolean formulas and Boolean circuits. All of them are well-known
data structures for representing Boolean functions. In general, the descrip-
tion of a Boolean function should be rather short and efficient; support the
evaluation and manipulation of the function; make particular properties of
the function visible; suggest ideas for a technical realization. Boolean circuit
constitutes a representation type which satisfies all the above properties, but
mainly the first one: the fact that the out-degree of its gates can be greater
than 1, often allows very compact representations.

The study made in this paper shows how to translate programs from the ex-
tended programming language into equivalent Horn programs, Boolean for-
mulas and Boolean circuits. Such translations prove that Horn⊃ programs
can be represented efficiently by Boolean circuits, while the size is exponential
when the translation is into Horn programs. Regarding to Boolean formulas,
we are not able to ensure that the size of the formula obtained by the transla-
tion is bounded by a polynomial and we leave this question open. In fact, we
show that this question is an instance of a well-known open problem.
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The paper is organized as follows: In Section 2 the programming language
Horn⊃ is introduced. In Section 3 some preliminary notions and properties
about Boolean circuits are given. In Section 4 we prove that any translation
from a Horn⊃ program into an equivalent Horn program obtains, in general,
an exponential number of clauses. Then, looking for a more efficient represen-
tation, in Sections 5 and 6 we present two translations from Horn⊃ goals into
monotone Boolean circuits and, respectively, into monotone Boolean formulas.
Both transformations are proved correct. The main result is about efficiency:
the transformation from Horn⊃ goals into monotone circuits is proved to be
linear, but the question of whether the transformation into Boolean formu-
las is efficient remains open. We conclude, in Section 7, by summarizing our
results.

2 The Extended Programming Language

In this section, after some preliminary definitions, we introduce the program-
ming language Horn⊃ by showing its syntax and its model semantics. We
also define the persistency and equivalence of formulas and prove some useful
results for later sections.

2.1 Preliminaries

We introduce here basic terminology on propositional Horn clauses, Horn
programs and its models.
A signatureΣ is a fixed set of propositional variables. A Σ-formula is a formula
built from variables in Σ, constants (true and false) and classical connectives
(¬, ∧, ∨, and →).

A Horn clause D is a Σ-formula of the form G → v where v is a variable
in Σ and G is a Horn goal, or simply of the form v. In logic programming
terminology, a Horn clause G → v is usually called “a rule” with head v and
body G, whereas a Horn clause of the form v is usually called “a fact”. A
Horn goal G is a conjunction of one or more variables in Σ. Both definitions
can be summarized in the following way:

G ::= v | G1 ∧G2 D ::= v | G→ v

A Horn program is a set of Horn clauses, P = {D1, D2, . . . , Dn}, but it can
alternatively be seen as the conjunction of its clauses, P = D1 ∧D2 ∧ . . .∧Dn.

Given a signature Σ, the model semantics for Horn is given by the set of all
Σ-interpretations Mod(Σ) = {I | I ⊆ Σ}. A Σ-interpretation I assigns a truth
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value (True or False) to each variable v in Σ: I(v) = True if and only if
v ∈ I . It is well-known that each Σ-interpretation I determines a unique truth
value I(ϕ) to each Σ-formula ϕ.

I is a model of ϕ when I(ϕ) = True. This is usually denoted by I |= ϕ.
Since clauses and goals are formulas, and a program P is the conjunction of
its clauses, I is a model of P if it is a model of all its clauses. When working
with Horn programs, the intersection of all models of P is also a model of P ,
named its canonical model.

Example 1 The set {c, d, (c∧ d) → b, (b∧ a) → a} is a Horn program with
four clauses over signature Σ = {a, b, c, d}. Among all the Σ-interpretations,
only two of them are models of the program: I1 = {c, d, b, a} and I2 =
{c, d, b}. I2 is the canonical model.

2.2 The syntax of Horn⊃

The syntax of the programming language Horn⊃ is an extension of the propo-
sitionalHorn language by adding the intuitionistic implication⊃ in goals (and
therefore in clause bodies). Let Σ be a fixed signature.

Horn⊃ clauses, named D, and Horn⊃ goals, named G, are recursively defined
as follows (where v stands for any variable in Σ):

G ::= v | G1 ∧G2 | D ⊃ G D ::= v | G→ v | D1 ∧D2

Although the definition of clauses (respectively goals) does not include the
constant true, sometimes, for technical reasons, we consider true as a clause
(respectively a goal).

A Horn⊃ program is a finite set (or conjunction) of Horn⊃ clauses. The main
difference between a Horn⊃ program and a Horn program is the use of a
“local” clause set D in goals of the kind D ⊃ G.

Example 2 The following set with three clauses is a Horn⊃ program over
signature Σ = {a, b, c, d}

{((b → c) ⊃ c) → a, b, ((a ∧ (b→ c)) ⊃ (((b → c) ∧ (a→ d)) ⊃ a)) → d}

The second clause is simply b. The first and the third program clauses are of
the form G → v. In the first one, the goal G is (b → c) ⊃ c. That is, it
contains a local set with one clause. In the third clause, the goal G is of the
form D1 ⊃ (D2 ⊃ G3), where D1 = a ∧ (b → c) and D2 = (b → c) ∧ (a → d)
are both local sets with two clauses, and G3 = a.
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2.3 The model semantics

In the underlying logic of the programming language Horn⊃, well-formed
formulas are built from propositional variables in Σ, using constants (true and
false), classical connectives (¬, ∧, ∨, and →) and the intuitionistic implication
(⊃). Given a signature Σ, the model semantics for Horn⊃ is given by the set
of all Σ-interpretations Mod(Σ) = {I | I ⊆ Σ}.

The satisfaction relation 1 , denoted by 
Σ (or simply 
 if there is no con-
fusion about the signature), between an interpretation I and a formula ϕ is
given below. Horn⊃ clauses and goals are particular formulas in this logic.

Definition 1 Let I ∈ Mod(Σ) and ϕ be a Σ-formula. The binary satisfaction
relation 
 is inductively defined as follows:

I 6
 false

I 
 v iff v ∈ I for v ∈ Σ
I 
 ¬ϕ iff I 6
 ϕ

I 
 ϕ ∧ ψ iff I 
 ϕ and I 
 ψ

I 
 ϕ ∨ ψ iff I 
 ϕ or I 
 ψ

I 
 ϕ→ ψ iff if I 
 ϕ then I 
 ψ

I 
 ϕ ⊃ ψ iff for all J ⊆ Σ such that I ⊆ J : if J 
 ϕ then J 
 ψ

Definition 2 Let I ∈ Mod(Σ) and ϕ be a Σ-formula. I is a model of ϕ if and
only if I 
 ϕ.

Note that the satisfaction of a formula ϕ ⊃ ψ in an interpretation I depends
on the satisfaction of ψ in all the interpretations J containing I that satisfy
ϕ. If the formula does not contain the connective ⊃, then 
 coincides with
the satisfaction relation in classical logic |=.

Example 3 Let ϕ be the formula ((a∧c) → b) ⊃ (c∧b) on signature {a, b, c}.
Among its eight interpretations, we have that I 
 ϕ for I = {a, b, c}, I = {a, c}
and I = {b, c}. I 6
 ϕ for I = {a, b}, I = {a}, I = {b}, I = {c} and I = ∅.
Note, for instance, that {a, b} 
 (a ∧ c) → b and {a, b} 6
 (c ∧ b).

Finally we point out that once the semantic has been defined, we can justify
that true is both a goal (v ⊃ v) and a clause (v → v).

1 Also called forcing relation in Kripke models for intuitionistic logic.
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2.4 Persistency and equivalence of formulas

Mod(Σ) is partially ordered by the inclusion relation. The satisfaction relation
does not behave monotonically with respect to this relation.
For instance, a→ b is satisfied in the interpretation I = ∅ but it is not satisfied
in J = {a}. We say that a formula is persistent whenever the satisfaction
relation behaves monotonically for it.

Definition 3 A formula ϕ is persistent when for each interpretation I, if
I 
 ϕ then J 
 ϕ for any interpretation J such that I ⊆ J .

Proposition 1 Any v ∈ Σ is persistent. Any formula ϕ ⊃ ψ is persistent. If
ϕ and ψ are persistent then ϕ ∨ ψ and ϕ ∧ ψ are persistent.

Proof. For variables and formulas of the form ϕ ⊃ ψ the property is a trivial
consequence of the satisfaction relation (Definition 1). The other two cases
are easily proved, by induction, using the satisfaction relation definition for ∧
and ∨.

From this proposition we obtain the two following results. The second result
is a consequence of the former one and it can be proved by induction on the
definition of D.

Corollary 1 Any goal G is a persistent formula.

Corollary 2 For any clause D and interpretations I1, I2, if I1 
 D and
I2 
 D then I1 ∩ I2 
 D.

Definition 4 Two formulas ϕ and ψ are (semantically) equivalent if both
have the same meaning in each I of Mod(Σ). In other words, if both are sat-
isfied in the same interpretations.

Next, we provide some examples of equivalence between goals. These results
will be useful later.

Proposition 2 G and true ⊃ G are equivalent goals.

Proof. I 
 true ⊃ G ⇔ for all J ⊇ I , J 
 G ⇔ I 
 G. The last step uses
the persistency of G.

Proposition 3 ((G1 → v) ∧D) ⊃ G2 and ((D ⊃ G1) → v) ⊃ (D ⊃ G2) are
equivalent goals.

Proof. Let us prove that, for every I in Mod(Σ), I 
 ((G1 → v) ∧D) ⊃ G2

if and only if I 
 ((D ⊃ G1) → v) ⊃ (D ⊃ G2).
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From left to right: Let us assume that I 6
 ((D ⊃ G1) → v) ⊃ (D ⊃ G2).
Then there exists J such that J ⊇ I, J 
 (D ⊃ G1) → v and J 6
 D ⊃ G2.
Moreover, there exists J1 such that J1 ⊇ J , J1 
 D and J1 6
 G2. We
distinguish two cases:
• If v ∈ J also v ∈ J1. Then J1 
 (G1 → v) ∧ D and J1 6
 G2. Therefore
I 6
 ((G1 → v) ∧D) ⊃ G2.

• If v 6∈ J then J 6
 D ⊃ G1. That is, there exists J2 such that J2 ⊇ J ,
J2 
 D and J2 6
 G1. By using Corollaries 1 and 2, it is easy to prove that
the interpretation J3 = J1 ∩ J2 verifies: J3 
 D, J3 6
 G1 and J3 6
 G2.
Then J3 
 (G1 → v) ∧ D, J3 6
 G2 and J3 ⊇ I . Therefore I 6
 ((G1 →
v) ∧D) ⊃ G2.

From right to left: Now assume that I 6
 ((G1 → v) ∧ D) ⊃ G2. There
must exist J such that J ⊇ I , J 
 (G1 → v), J 
 D and J 6
 G2. Again
two cases are distinguished:
• If v ∈ J then trivially J 
 (D ⊃ G1) → v and J 6
 D ⊃ G2. Therefore
I 6
 ((D ⊃ G1) → v) ⊃ (D ⊃ G2).

• If v 6∈ J then J 6
 G1. Since J 
 D then J 6
 D ⊃ G1 and hence
J 
 (D ⊃ G1) → v. As we also have J 6
 D ⊃ G2, we conclude I 6
 ((D ⊃
G1) → v) ⊃ (D ⊃ G2).

3 Boolean Circuits, Boolean Formulas and Horn clauses

An n-ary Boolean function is a function f : {True, False}n 7→ {True, False}.
In this section we revise from [15] some representations of Boolean functions.
Namely, we give a formal definition of the syntax and semantics of Boolean
circuits, and present Boolean formulas and Horn clauses as special cases of
Boolean circuits. Finally, we remark some properties to be used in next sec-
tions.

3.1 The syntax and semantics of Boolean Circuits

A Boolean circuit over signature Σ is a graph C = (V,E), where the nodes
V = {1, 2, . . . , n} are called the gates of C . Graph C has a rather special
structure. First, there are no cycles in the graph, so we can assume that all
edges are of the form (i, j) where i < j. All nodes in the graph have indegree
equal to 0, 1 or 2. Also, each gate i ∈ V has a sort s(i) associated with it,
where s(i) ∈ {true, false,∧,∨,¬} ∪ Σ.
If s(i) ∈ {true, false} ∪ Σ, then the indegree of i is 0, that is, i must have
no incoming edges. Gates with no incoming edges are called the inputs of C .
If s(i) = ¬ then i has indegree one. If s(i) ∈ {∧,∨}, then the indegree of i
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must be two. Finally, node n (the largest numbered gate in the circuit, which
necessarily has no outgoing edges) is called the output gate of the circuit.
Figure 1 shows an example of a circuit.

Fig. 1. Example of a circuit

Given a signature Σ, each I ⊆ Σ can be seen as a Σ-interpretation where, for
every v ∈ Σ, I(v) = True if and only if v ∈ I . The semantics of a circuit
C = (V,E) specifies a truth value I(C) for each interpretation I ⊆ Σ. The
truth value of gate i ∈ V , I(i), is defined by induction as follows: If s(i) = true

then I(i) = True and similarly if s(i) = false then I(i) = False. If s(i) ∈ Σ
then I(i) = I(s(i)). If s(i) = ¬ then there is a unique gate j < i such that
(j, i) ∈ E. By induction we know I(j), and then I(i) = True if and only if
I(j) = False. If s(i) = ∨ then there are two edges (j, i) and (j′, i) entering i.
I(i) is then True if and only if at least one of I(j), I(j′) is True. If s(i) = ∧,
then I(i) = True if and only if both I(j), I(j′) are True, where (j, i) and
(j′, i) are the incoming edges. Finally, the value of the circuit, I(C), is I(n),
where n is the output gate.

Given a Boolean circuit C (over Σ), a Σ-interpretation I is a Σ-model of C ,
denoted I |=Σ C , or I |= C for short, if the value I(C) is True. For instance,
the interpretation I = {c, d, v} is a model for the circuit in Figure 1.

A Boolean formula over signature Σ is built on constants (true, false) and
variables in Σ, by using the connectives in {∧,∨,¬}. Each formula can be seen
as a tree. That is, it is a particular case of circuit where sub-circuits (in partic-
ular variables) are not shared. In general, the possibility of sharing sub-circuits
(gates with out-degree greater than one) makes circuits more economical than
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formulas in representing Boolean functions.

Finally any Horn clause ((v1 ∧ v2 ∧ . . . ∧ vn) → v) is the Boolean formula
(¬v1 ∨ ¬v2 ∨ . . . ∨ ¬vn ∨ v).

3.2 Notation and properties

Given two circuits C1 = (V1, E1) and C2 = (V2, E2) over the same signature Σ
and given v ∈ Σ, the new circuit C1|C2

v is obtained by changing C2 for v in C1.
That is, C1|C2

v is a pair (V,E) which is the result of combining C1 and C2 as
follows: V is an adequate enumeration for the union of V1 and V2. The edges
of the new circuit are the union of E1 and E2, according to such enumeration,
except those outgoing edges from v in E1 that now come out from the output
gate of C2. Figure 2 shows C1|C2

v from two given circuits C1 and C2. Note that

Fig. 2. C1|
C2
v from C1 and C2

many circuits can compute the same Boolean function, but we are interested
in those that have minimum size. Therefore we can assume that input gates
only appear once in Boolean circuits.

A monotone Boolean function f is one that has the following property: If one
of the inputs changes from False to True, the value of the function cannot
change from True to False. f is monotone if and only if it can be expressed
as a circuit without gates of the sort ¬. These are called monotone Boolean
circuits.
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Next lemmas present some properties on monotone and non-monotone Boolean
circuits. From now on, we consider Boolean circuits over signature Σ.

Lemma 1 Let C1 be a monotone Boolean circuit, I ⊆ Σ, and v ∈ Σ. The
following holds:

(a) (Monotonicity) If I |= C1 then J |= C1, for every J ⊇ I.

(b) If I |= C1 then I |= C1|C2∨v
v for any Boolean circuit C2.

Lemma 2 Let C be a Boolean circuit, I ⊆ Σ, and v ∈ Σ. The following holds:

(a) I ∪ {v} |= C if and only if I |= C|true
v

(b) I − {v} |= C if and only if I |= C|false
v

4 Translation into conjunctions of Horn clauses

Our first proposal is to simulateHorn⊃ programs withHorn clauses, therefore
suitable for SLD resolution. This problem is efficiently solved in [14,16] but the
original signature needs to be extended in the translation process. Similarly,
in [2], a two step translation method is presented. In the first step of this
method, the introduction of new modal operators is required for eliminating
all intuitionistic implications (⊃). In the second step, modalities are eliminated
by adding to all predicates an extra argument representing the modal context.
This implies again to change the original signature.

If we want to translate the original program to Horn clauses maintaining the
same signature, the cost of any simulation becomes exponential. This result is
proved in this section. Namely, we present a particular Horn⊃ program D for
which any translation into an equivalent Horn program D̂ yields a number of
clauses that is exponential in the size of D.

Definition 5 For each Horn⊃ clause D over signature Σ, let Models(D) be
the set {I ⊆ Σ | I 
 D}. Let Min(D) be the set {I ⊆ Σ | I 6
 D but J 
 D,
for all J ⊂ I}. That is, Min(D) contains the “minimal” interpretations not
satisfying D.

In the sequel, we intentionally consider I as a set or as a conjunction, as
convenient. The set of all subsets of Σ is denoted by P(Σ).
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Definition 6 For each Horn⊃ clause D, the Horn program D̂ is defined as
follows:

For D = v, D̂ = {v}

For D = D1 ∧D2, D̂ = D̂1 ∪ D̂2

For D = G→ v, D̂ =





∅ if Models(D) = P(Σ)

⋃
I∈Min(D){I → v} in other case

Example 4 Let D be the Horn⊃ clause ([(a→ b) ⊃ b] ∧ [(c→ b) ⊃ b]) → a.
Obviously, all interpretations containing the variable a belong to Models(D).
The interpretation I0 = ∅ also belongs to Models(D). The other three inter-
pretations I1 = {b} and I2 = {c} and I3 = {b, c} do not belong to Models(D).
Among them only I1 and I2 belong to Min(D), since they do not satisfy D and
I0 satisfies D. Then D̂ = {I1 → a} ∪ {I2 → a} = {b→ a, c→ a}.

In the following theorem we prove that D and D̂ are semantically equivalent,
in other words, they have the same models.

Theorem 1 For each interpretation I and each Horn⊃ clause D it holds that
I 
 D̂ if and only if I 
 D

Proof. For D = v, the theorem is trivial. For D = D1 ∧ D2, it holds by
induction. Let D be G → v.

From left to right Let us suppose that I 6
 D. Then v 6∈ I . Since I 6
 D,
Min(D) is not empty. Therefore there exists some J ∈ Min(D) such that
J ⊆ I and J → v is a clause of the program D̂. Then I 
 J and v 6∈ I

imply I 6
 D̂.
From right to left Let us suppose that I 
 D. If v ∈ I then trivially I 
 D̂.

If v 6∈ I then I 6
 G. Let J → v be a clause in the program D̂ for some
J ∈ Min(D) (if D̂ were empty then trivially I 
 D̂). If J were a (proper)
subset of I , by persistence of goals we obtain J 6
 G. But this implies J 
 D

which contradicts J ∈ Min(D). That is, each J ∈ Min(D) is not a subset
of I and then trivially I 
 J → v. Therefore I 
 D̂.

Corollary 3 Each Horn⊃ program P is equivalent to the Horn program P̂ .

Now we are going to consider a concrete Horn⊃ clause D whose D̂ needs to
have an exponential number of clauses with respect to the symbols in D.

Lemma 3 Let D be the Horn⊃ clause

([(a11 → b) ∧ (a12 → b) ∧ . . . ∧ (a1n → b)] ⊃ b ∧
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[(a21 → b) ∧ (a22 → b) ∧ . . . ∧ (a2n → b)] ⊃ b ∧

. . .

[(an1 → b) ∧ (an2 → b) ∧ . . . ∧ (ann → b)] ⊃ b ) → a

over signature Σ = {aij | i, j ∈ {1, . . . , n}}∪{b, a}. Each interpretation of the
form {a1k1, a2k2, . . . , ankn}, with kj ∈ {1, . . . , n}, belongs to Min(D).

Proof. Let I be one of such interpretations. Without loss of generality, let
us suppose I to be {a11, . . . , an1}. The given clause D is (G1 ∧ . . . ∧Gn) → a

where each Gi is the goal ((ai1 → b) ∧ . . . ∧ (ain → b)) ⊃ b. First let us prove
that for each proper subset J ⊂ I , it holds that J 
 D. Since there exists
some ai1 6∈ J , then J 
 (ai1 → b)∧ . . .∧(ain → b) and J 6
 b. Then J 6
 Gi and
therefore J 
 (G1∧. . .∧Gn) → a. Now let us see that I 6
 D. Since a11 ∈ I , for
every interpretation K such that I ⊆ K and K 
 (a11 → b) ∧ . . . ∧ (a1n → b)
it holds that K 
 b and therefore I 
 G1. Similarly, we can obtain I 
 Gi for
each i ∈ {1, . . . , n} and then, since a 6∈ I , I 6
 D.

By Definition 6, the Horn program D̂ obtained from the clause D given in
Lemma 3 contains at least these nn clauses:

{I → a | I is {a1k1, a2k2, . . . , ankn}, with kj ∈ {1, . . . , n}} (1)

The next result shows that this set of Horn clauses is non-redundant.

Lemma 4 Any set of Horn clauses equivalent to (1) has at least nn clauses.

Proof. Denote by Ir → a the r-th clause in (1), for 1 ≤ r ≤ nn. Ir is not
a model of the r-th clause in (1), but satisfies any other clause in (1). In
addition, for each pair Ii, Ij with 1 ≤ i 6= j ≤ nn, the intersection Ii ∩ Ij is a
model of (1).
Suppose that there exists a set H of Horn clauses equivalent to (1) whose
number of clauses is smaller than nn. There must be at least two different
interpretations Ii and Ij that falsify the same clause c in H. Since we are
dealing with Horn clauses, the interpretation Ii ∩ Ij falsifies c and therefore
Ii ∩ Ij is not a model of H which is a contradiction.

5 Translation into Boolean Circuits

Unlike previous section, we present here a linear transformation µ from goals
into monotone Boolean circuits. Due to the fact that programs are of the form
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(G1 → v1) ∧ . . . ∧ (Gk → vk), where each Gi is a goal, the corresponding
translation of programs by µ should be the (now non-monotone) Boolean
circuit: (¬µ(G1) ∨ v1) ∧ . . . ∧ (¬µ(Gk) ∨ vk).

Definition 7 Let µ be the following function. It is defined by induction on
the definition of G (on the three cases v, G1 ∧ G2, and D ⊃ G), but splitting
as well the third case D ⊃ G depending on D.

µ(G) =





v if G = v (1)

µ(G1) ∧ µ(G2) if G = G1 ∧G2 (2)

µ(G2)|true
v if G = v ⊃ G2 (3)

µ(G2)|µ(G1)∨v
v if G = (G1 → v) ⊃ G2 (4)

µ(D ⊃ G2)|true
v if G = (v ∧D) ⊃ G2 (5)

µ(D ⊃ G2)|µ(D⊃G1)∨v
v if G = ((G1 → v) ∧D) ⊃ G2 (6)

Figure 3 shows the transformation of the goal ((a∧c) → b) ⊃ (c∧b) by µ. This
transformation is correct, both the goal and the obtained circuit represent the
same Boolean function, and it is efficient, since it obtains a circuit whose size
is linear with respect to the goal. In the next points we prove, respectively,
the correctness and the efficiency of µ.

Fig. 3. Circuit for ((a ∧ c) → b) ⊃ (c ∧ b)
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5.1 Transformation correctness

It is worth to note that for each goal G, the corresponding Boolean circuit
µ(G) is monotone. This fact is ensured by the own definition of µ, and it is
used, in the following theorem, to prove the correctness of the transformation.

Theorem 2 Let G be any goal, for all I ⊆ Σ, I 
 G if and only if I |= µ(G).

Proof. By structural induction on G. Case (1) is trivial and so is case (2)
by using induction on G1 and G2. Also note that (3) and (5) are respectively
particular cases of (4) and (6) because v and true→ v are equivalent clauses.
Let us see cases (4) and (6) in detail.

case (4) For G = (G1 → v) ⊃ G2, µ(G) is defined as µ(G2)|µ(G1)∨v
v .

From left to right: Let I 
 (G1 → v) ⊃ G2.
• If I 
 G2 then, by induction hypothesis on G2, I |= µ(G2) and hence,

by Lemma 1(b), I |= µ(G2)|µ(G1)∨v
v .

• If I 6
 G2 then I 
 G1, I 6
 v and I ∪ {v} 
 G2. By induction
hypothesis on G1 and G2: I |= µ(G1) and I ∪ {v} |= µ(G2). Now by
Lemma 2(a), I |= µ(G2)|true

v and due to the fact that I |= µ(G1) ∨ v,
I |= µ(G2)|µ(G1)∨v

v also holds.
From right to left: Let I 6
 (G1 → v) ⊃ G2. There must exist J such

that J ⊇ I , J 
 G1 → v and J 6
 G2. By induction hypothesis on G2:
J 6|= µ(G2).

• If v ∈ J then, by Lemma 2(a), J 6|= µ(G2)|true
v . Then J 6|= µ(G2)|µ(G1)∨v

v

since J |= µ(G1) ∨ v. And, by monotonicity (Lemma 1(a)), I 6|=
µ(G2)|µ(G1)∨v

v .
• If v 6∈ J then J 6
 G1. On the one hand, by induction hypothesis

on G1, J 6|= µ(G1) and then J 6|= µ(G1) ∨ v. On the other hand,
by Lemma 2(b), J 6|= µ(G2)|false

v . Then J 6|= µ(G2)|µ(G1)∨v
v and as

before, by monotonicity, I 6|= µ(G2)|µ(G1)∨v
v .

case (6) G = ((G1 → v) ∧D) ⊃ G2. Then µ(G) = µ(D ⊃ G2)|µ(D⊃G1)∨v
v .

By Proposition 3, G is equivalent to the formula

G′ = ((D ⊃ G1) → v) ⊃ (D ⊃ G2)

which is a formula of the form (G′
1 → v) ⊃ G′

2, for G′
1 = D ⊃ G1 and

G′
2 = D ⊃ G2. Then, as the case (4) has been proved, I 
 G if and only

if I |= µ(G′). But, by the definition of µ, µ(G′) = µ((G′
1 → v) ⊃ G′

2) =

µ(G′
2)|

µ(G′

1)∨v
v = µ(D ⊃ G2)|µ(D⊃G1)∨v

v = µ(G).
Then for all I ⊆ Σ, I 
 G if and only if I |= µ(G).
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5.2 Transformation complexity

Now we show that the size of any monotone Boolean circuit µ(G) with respect
to the size of its original goal G is linear. The size of a Boolean circuit is defined
as the number of its gates. Respectively, the size of a goal is the number of its
connectives (∧,→,⊃) and variables.

Theorem 3 Let G be a goal. The size of µ(G) is linear in the size of G.

Proof. The proof is made by induction on the construction of µ(G). Cases
(1), (2), (3), (4), and (5) are trivial. Case (4) can be seen in Figure 4 which
shows the transformation of µ(G2) when v is changed by µ(G1) ∨ v.

Fig. 4. Circuit for (G1 → v) ⊃ G2

We study the transformation in case (6). In the easiest situation the goal to
transform is the following:

G = ((G11 → v1) ∧ (G12 → v2)︸ ︷︷ ︸
D

) ⊃ G2

Applying Proposition 3, this goal is equivalent to

([(G12 → v2) ⊃ G11]︸ ︷︷ ︸
G′

→ v1) ⊃ [(G12 → v2) ⊃ G2]︸ ︷︷ ︸
G′′

and by using case (4) of µ,

µ(G) =µ(G′′)|µ(G′)∨v1
v1
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=µ((G12 → v2) ⊃ G2)|
µ(G′)∨v1
v1

=µ(G2)|
µ(G12)∨v2
v2

|µ(G′)∨v1
v1

=µ(G2)|
µ(G12)∨v2
v2

|µ((G12→v2)⊃G11)∨v1
v1

=µ(G2)|
µ(G12)∨v2
v2

|
(µ(G11)|

µ(G12)∨v2
v2

)∨v1
v1

Let us see graphically the circuit for the goal ((G11 → v1)∧ (G12 → v2)) ⊃ G2.
Figure 5 represents three Boolean circuits µ(G11), µ(G12), and µ(G2) and the
corresponding µ(G). Since the substitution |µ(G12)∨v2

v2
is shared by µ(G2) and

Fig. 5. Circuit for ((G11 → v1) ∧ (G12 → v2)) ⊃ G2

by µ(G11), the size of the circuit µ(G) is linear with respect to the size of G.
This reasoning can be extended to any D in the goal ((G1 → v) ∧D) ⊃ G2,
since D always induces a substitution σD such that µ(G) = µ(G2)σD|µ(G1)σD∨v

v

and σD is shared by µ(G2) and by µ(G1).

6 Translation into Boolean Formulas

In previous sections we have found an exponential lower bound for the problem
of simulating Horn⊃ programs with Horn clauses, and a linear upper bound
when the simulation is made using Boolean circuits. Our next proposal is
the study of the relationship between Horn⊃ programs and general Boolean

17



formulas. These are represented by trees, therefore a coarse translation from
circuits to formulas there exists, by repeating the shared sub-circuits so many
times as necessary. However we try to find a more concise translation.

In this section we present a transformation, γ, from Horn⊃ goals into mono-
tone Boolean formulas. Obviously, likewise previous µ, this function γ defines
the corresponding transformation from programs into Boolean formulas.

The function γ is essentially based on a well-known result due to Ingo Wegener
[17] whose details we explain next: for each monotone Boolean function f , let
T be a monotone Boolean formula computing f . One can choose a subtree T ′

(computing f ′) of the largest tree T . Let f ′
0 respectively f ′

1 be the functions
computed by T if we replace T ′ by False respectively by True. Thus

f = f ′
0 ∨ (f ′ ∧ f ′

1)

Before formalizing our transformation, we explain how to use this idea to
convert previous circuits into formulas.

Example 5 Suppose we have a goal G = (G1 → v) ⊃ G2. Using Theorem 2,
G and C = µ(G2)|µ(G1)∨v

v are equivalent. Moreover, as the circuit C is mono-
tone, we can choose the subcircuit C ′ = µ(G1), and the corresponding C ′

0 and
C ′

1:

C ′
0 = µ(G2)|false∨v

v = µ(G2) and C ′
1 = µ(G2)|true∨v

v = µ(G2)|true
v

ThereforeG is equivalent to C ′
0∨(C ′∧C ′

1) = µ(G2)∨(µ(G1)∧µ(G2)|true
v ).

The transformation γ uses this idea recursively and it is given by induction
on the definition of G.

Definition 8 Let γ be the following function:

γ(G) =





v if G = v (1)

γ(G1) ∧ γ(G2) if G = G1 ∧ G2 (2)

γ(G2)|true
v if G = v ⊃ G2 (3)

γ(G2) ∨ (γ(G1) ∧ γ(G2)|true
v ) if G = (G1 → v) ⊃ G2 (4)

γ(D ⊃ G2)|true
v if G = (v ∧D) ⊃ G2 (5)

γ(D ⊃ G2) ∨ (γ(D ⊃ G1)∧

γ(D ⊃ G2)|true
v ) if G = ((G1 → v) ∧D) ⊃ G2 (6)
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Theorem 4 The transformation γ is correct, that is, for all I ⊆ Σ and goal
G, I 
 G if and only if I |= γ(G).

Proof. This result is a direct consequence of the equivalence between γ(G)
and µ(G). This equivalence, γ(G) ≡ µ(G), can be proven by structural induc-
tion on G. Cases (1) and (2) are trivial. Cases (3) and (5) are respectively
particular cases of (4) and (6) because γ produces monotone formulas, and v

and true→ v are equivalent clauses.
Case (4) is formally proven as follows: µ(G) = µ(G2)|µ(G1)∨v

v which is equiv-
alent, by induction hypothesis, to the monotone formula γ(G2)|γ(G1)∨v

v . This
formula has so many occurrences of γ(G1) as v are in γ(G2). By applying the
Wegener’s result to all these occurrences, we obtain the equivalent formula
γ(G2) ∨ (γ(G1) ∧ γ(G2)|true

v ) which is the definition of γ(G).
Finally, case (6) can be reduced to case (4) by using Proposition 3.

Example 6 The application of γ to the goal ((a ∧ c) → b) ⊃ (c ∧ b) produces
the Boolean formula (c ∧ b) ∨ ((a ∧ c) ∧ (c ∧ true)).

It should be pointed out that γ allows us to obtain Boolean formulas with small
sizes. In general, it is more efficient applying directly γ than first computing µ,
and then translating it into a Boolean formula. The following example shows
this fact.

Example 7 Let G be the goal (G1 → c) ⊃ G2, where G1 and G2 are the
following goals

G1 = ((a11 → b) ⊃ b) ∧ ((a12 → b) ⊃ b) ∧ . . . ∧ ((a1n → b) ⊃ b)
G2 = ((a21 → c) ⊃ c) ∧ ((a22 → c) ⊃ c) ∧ . . . ∧ ((a2n → c) ⊃ c)

The application of µ to G produces the Boolean circuit

µ(G) = µ(G2)|
µ(G1)∨c
c

Since for each i, with 1 ≤ i ≤ n, µ((a2i → c) ⊃ c) = c|a2i∨c
c = a2i ∨ c, then

µ(G2) = (a21 ∨ c) ∧ (a22 ∨ c) ∧ . . . ∧ (a2n ∨ c) and in a symmetrical manner
µ(G1) = (a11 ∨ b) ∧ (a12 ∨ b) ∧ . . . ∧ (a1n ∨ b).

Now, the formula directly obtained from the circuit µ(G) is

(a21 ∨ [(a11 ∨ b) ∧ (a12 ∨ b) ∧ . . . ∧ (a1n ∨ b)] ∨ c) ∧
(a22 ∨ [(a11 ∨ b) ∧ (a12 ∨ b) ∧ . . . ∧ (a1n ∨ b)] ∨ c) ∧

. . . ∧
(a2n ∨ [(a11 ∨ b) ∧ (a12 ∨ b) ∧ . . . ∧ (a1n ∨ b)] ∨ c)
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However, the application of γ to G produces the Boolean formula

γ(G) = γ(G2) ∨ (γ(G1) ∧ γ(G2)|
true
c )

where γ(G2) = ((c ∨ a21) ∧ (c ∨ a22) ∧ . . . ∧ (c ∨ a2n))
γ(G1) = ((b ∨ a11) ∧ (b ∨ a12) ∧ . . . ∧ (b ∨ a1n))
γ(G2)|true

c = ((true ∨ a21) ∧ (true ∨ a22) ∧ . . . ∧ (true ∨ a2n)) = true

then γ(G) = ((c ∨ a21) ∧ . . . ∧ (c ∨ a2n))∨ ((b ∨ a11) ∧ . . . ∧ (b ∨ a1n))

We have used simplification rules as (true ∧ ϕ) = ϕ or (true ∨ ϕ) = true.
However, even without using them the size of γ(G) is smaller than the size of
the previous formula obtained from µ(G).

Although γ works well, it does not ensure that the size of the obtained for-
mula always is bounded by a polynomial in the size of the input. In fact, even
though applying natural simplification rules, the size of the obtained formulas
appreciably decrease, we have not found a systematic method that works ef-
ficiently. Moreover, we have not found either a super-polynomial lower bound
for this problem. This is a difficult task as we will see in the next section.

7 Conclusions and Open Problems

We have studied three possible representations of Horn⊃ programs maintain-
ing the signature.

The main result presented is a linear transformation from Horn⊃ programs
into Boolean circuits, which preserves the semantic equivalence between the
original program and its translation. Since the representation of Boolean func-
tions by circuits is well established, this translation allows us to work with
Horn⊃ clauses in an easy and compact way.

In addition, we have shown that any possible transformation of Horn⊃ pro-
grams intoHorn clauses requires an exponential number of clauses. Therefore,
the first language is exponentially more succinct than the second representa-
tion.

Finally, we have given a procedure that constructs a Boolean formula from a
Horn⊃ program. Unfortunately, this method is not efficient but we have not
been able to find a super-polynomial lower bound. Therefore, the problem of
whether there exists a polynomial-size translation from Horn⊃ programs into
general Boolean formulas remains open. In fact, it turns out that this is a deep
question, related to whether all efficient computation can be parallelized. On
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the one hand, if we were able to find a super-polynomial lower bound for the
problem of transforming Horn⊃ programs into formulas, then we would obtain
that circuits cannot be simulated by formulas with only a polynomial cost, and
therefore that P 6= NC1 [15]. On the other hand, if we were able to find a
polynomial upper bound for the problem, then we would obtain a subclass
of nontrivial circuits that can be converted into equivalent Boolean formulas
with only polynomial increase in its size. Although the latter question seems
easier to deal with, we think it is a non-trivial task.
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